WO2015087390A1 - Device for examining solar cell panels, and method for examining solar cell panels - Google Patents

Device for examining solar cell panels, and method for examining solar cell panels Download PDF

Info

Publication number
WO2015087390A1
WO2015087390A1 PCT/JP2013/083070 JP2013083070W WO2015087390A1 WO 2015087390 A1 WO2015087390 A1 WO 2015087390A1 JP 2013083070 W JP2013083070 W JP 2013083070W WO 2015087390 A1 WO2015087390 A1 WO 2015087390A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cell panel
wave
inspection
impedance
Prior art date
Application number
PCT/JP2013/083070
Other languages
French (fr)
Japanese (ja)
Inventor
輝雄 池田
Original Assignee
株式会社アイテス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイテス filed Critical 株式会社アイテス
Priority to PCT/JP2013/083070 priority Critical patent/WO2015087390A1/en
Priority to JP2014552416A priority patent/JP5918390B2/en
Publication of WO2015087390A1 publication Critical patent/WO2015087390A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/026Dielectric impedance spectroscopy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell panel inspection apparatus and a solar cell panel inspection method.
  • each instantaneous power value is constantly acquired from a plurality of power conditioners by the power value acquisition circuit of the monitoring device, and each acquired instantaneous power value and output thereof are output.
  • the device information of each power conditioner is displayed on the display circuit.
  • the abnormality information acquisition circuit When the abnormality information is acquired by the abnormality information acquisition circuit, the abnormality information and the device information of the power conditioner that outputs the abnormality information are displayed by the display circuit, and the alarm is notified by the alarm circuit. With such a configuration, it is said that defects in the entire solar cell array can be managed in a unified manner simply by confirming the display of one monitoring device.
  • the inspection device for a capacitive touch screen panel that uses a resonance circuit to inspect the electrical characteristics of the touch screen panel
  • the inspection object is not a solar cell panel
  • a power source that supplies voltage or current to the circuit
  • a touch screen panel electrical characteristic inspection device that includes a resonance frequency changing unit that changes the resonance frequency of the touch panel, and an operation unit that connects the touch screen panel unit and the resonance frequency changing unit (for example, a patent) Reference 2).
  • an electrical characteristic of an ITO electrode of a touch screen panel is detected by connecting a simple LC resonance circuit in series to an existing touch screen panel to obtain a resonance frequency characteristic, and this is detected on the touch screen. It can be used for panel failure analysis.
  • Patent Document 1 it is not possible to directly detect defects on a solar cell panel, but to detect a defect in a photovoltaic power generation facility by a device that monitors the power conditioner of each solar cell module. It seems to be useful for reducing the burden on workers. However, even if it turns out which power conditioner is defective, the monitoring apparatus described in Patent Document 1 cannot determine whether the cause of failure is due to disconnection or deterioration. Therefore, after all, it is necessary to separately inspect the solar cell panel.
  • a test object is touchscreen panels, such as a smart phone, and a scale and a structure differ greatly from a solar cell panel. Therefore, it is difficult to divert the configuration of the device of Patent Document 2 as it is to a solar cell panel inspection device.
  • the present invention has been made in view of the above-described problems, and provides a solar cell panel inspection apparatus and a solar cell panel inspection method capable of easily and accurately performing the presence or absence of defects in a solar cell panel. The purpose is to provide.
  • the characteristic configuration of the inspection apparatus for solar cell panel according to the present invention for solving the above problems is as follows.
  • AC wave input unit for inputting inspection AC wave to the solar cell panel to be inspected,
  • An AC wave measurement unit that measures the attenuated AC wave returning from the solar cell panel;
  • An arithmetic unit that calculates the impedance of the solar cell panel based on the inspection AC wave and the attenuated AC wave;
  • a frequency changing unit for changing the frequency of the AC wave input unit;
  • a determination unit for determining the state of the solar cell panel;
  • the frequency changing unit changes the frequency of the AC wave input unit so that the impedance of the solar cell panel becomes a minimum value,
  • the determination unit is to determine the state of the solar cell panel by comparing the minimum value with a reference value.
  • the conventional solar cell panel inspection device inspects all installed solar cell panels including the presence or absence of defects regardless of the cause of the defect.
  • the state of the solar cell panel can be determined only by the impedance information of the solar cell panel in the state where the solar cell panel is installed (the configuration of this configuration). Details will be described later in the “Detailed Description of the Invention”.) For this reason, it is possible to confirm whether the solar cell panel to be inspected is at least “normal” or “abnormal” before the inspection performed near the solar cell panel. And when it determines with "normal”, a subsequent test
  • solar cell panel is used to include a solar cell module to which a plurality of solar cell panels are connected and a solar cell string.
  • the “inspection AC wave” means an AC wave (transmitted AC wave) transmitted to the solar cell panel to be inspected.
  • the “attenuating AC wave” is an AC wave corresponding to the inspection AC wave, and the inspection AC wave (sending AC wave) sent to the solar cell panel is inspected around the circuit of the solar cell panel. It means the AC wave that has returned to, that is, the AC wave (received AC wave) received by the inspection device.
  • the determination unit determines that the solar cell panel is in an abnormal state when the minimum value is five times or more of the reference value, and the sun when the minimum value is less than five times the reference value. It is preferable to determine that the battery panel is in a deteriorated state.
  • the impedance of the solar cell panel is calculated based on the inspection AC wave and the attenuated AC wave, and the minimum value of the impedance is compared with the reference value. At this time, when the minimum value is 5 times or more of the reference value, it is determined that the solar cell panel is in an abnormal state, and when the minimum value is less than 5 times the reference value, the solar cell panel is in a deteriorated state. Presume that there is.
  • “abnormal” means, for example, a state in which a disconnection occurs in the solar cell panel. Therefore, by calculating the minimum value of the impedance, it is possible to determine whether the cause of the defect of the solar cell panel is disconnection or deterioration.
  • the defect system (string) has been identified in advance, so when an operator specifies the defective part by bringing the inspection device close to the solar panel, the defective part is identified.
  • optimal repairs and the like can be performed, and the inspection efficiency is improved.
  • the working time can be shortened and the burden on the worker can be reduced.
  • the cause of the defect of the solar cell panel can be determined in advance, since the worker inspects the defect with the inspection device after this, the inspection becomes highly accurate and the long-term reliability of the solar cell panel can be improved. .
  • the solar cell panel is preferably a solar cell module in which a plurality of solar cells are connected.
  • a solar cell panel In terms of an AC circuit, a solar cell panel can generally be considered to be represented by an equivalent circuit in which a resistance (Rs component), an inductive reactance (L component), and a capacitive reactance (C component) are connected in series.
  • the solar cell panel inspection apparatus of this configuration is for determining the state of the solar cell panel from the minimum impedance value, and therefore adjusts the inspection AC wave to a frequency at which the L component and the C component are balanced.
  • the influence of the L component due to modularization (or stringing) can be minimized. Therefore, the solar cell panel inspection apparatus of this configuration can be suitably used particularly for a solar cell module in which a plurality of solar cells are connected.
  • the AC wave input unit and the AC wave measurement unit are connected to the solar cell panel via a capacitor having a withstand voltage larger than the generated voltage of the solar cell panel.
  • the current generated by the solar panel receiving light energy is a direct current of a high voltage (for example, several hundred volts). If this direct current is applied to the inspection device, the inspection device is likely to break. Therefore, when the solar cell panel inspection apparatus of this configuration is connected to the solar cell panel, a capacitor having a withstand voltage larger than the power generation voltage of the solar cell panel is interposed. For this reason, the high-voltage direct current generated by the solar cell is cut by the capacitor, and a correct inspection result can be obtained.
  • a direct current of a high voltage for example, several hundred volts
  • a cut-off circuit that cuts off a pulse wave that arrives at the AC wave input unit and the AC wave measurement unit from the solar cell panel is provided in front of the capacitor.
  • a high-voltage pulse wave is transmitted to the AC wave input unit and AC wave measurement unit of the inspection device at that moment, which may cause a failure of the inspection device. Therefore, in the solar cell panel inspection apparatus having this configuration, a cutoff circuit is provided in front of the capacitor. Thereby, an alternating current input part and an alternating current wave measurement part can be protected from the impact of a pulse wave, and damage can be prevented.
  • the interruption circuit is preferably a switch circuit capable of switching between a high resistance part and a conduction part.
  • the solar cell panel inspection device of this configuration blocks a large pulse wave that can be received when the inspection device is connected to the solar cell panel by the cutoff circuit, and protects the AC wave input unit and the AC wave measurement unit. is doing.
  • a large pulse wave is a phenomenon that occurs at the moment when the inspection device is connected to the solar cell panel at the start of inspection, and once the inspection device is connected, the problem of the pulse wave does not occur. Therefore, in the solar cell panel inspection apparatus of this configuration, the cutoff circuit is configured as a switch circuit that can switch between the high resistance portion and the conduction portion.
  • switching means opening and closing the switch.
  • the switch When the switch is closed, it is connected to both the high resistance part and the conduction part, but the inspection AC wave flows through the conduction part having a low resistance. On the other hand, when the switch is opened, the conduction part is cut and the inspection AC wave flows through the high resistance part. With such a configuration, at the start of inspection, switching to a high resistance portion is performed to prevent arrival of a pulse wave, and thereafter switching to a conduction portion is performed to disconnect unnecessary high resistance portions from the circuit. Therefore, during inspection, the minimum value of the impedance of the solar cell panel can be appropriately calculated, and a correct inspection result can be obtained.
  • the frequency changing unit preferably changes the frequency of the AC wave input unit in a range of 50 to 2500 kHz.
  • the inspection device for the solar cell panel of this configuration changes the frequency of the AC wave input unit within the above range, the change in frequency characteristics due to the series (or parallel) connection of the solar cell panels is covered, and the C component and L The minimum value of the impedance of the solar cell panel can be reliably calculated while offsetting the influence of the components.
  • the solar cell panel is wired so as to be collected in a connection box, and the AC wave input unit and the AC wave measurement unit are connected to the solar cell panel via the connection box.
  • the solar cell panel inspection apparatus of this configuration is configured to input an AC wave through the connection box and measure the attenuated AC wave as described above, and therefore, the solar cell to be inspected in the connection box The panel can be easily checked for defects. Therefore, the burden on the worker can be reduced and the work efficiency of defect inspection can be improved.
  • the characteristic configuration of the method for inspecting a solar cell panel according to the present invention for solving the above problems is as follows.
  • AC wave input process for inputting inspection AC wave to the solar cell panel to be inspected AC wave measuring step of measuring the attenuated AC wave returning from the solar cell panel, A calculation step of calculating an impedance of the solar cell panel based on the inspection AC wave and the attenuated AC wave;
  • the solar cell panel inspection method of this configuration performs defect inspection of the solar cell panel using the solar cell panel inspection device described above, it is possible to improve inspection accuracy and work efficiency.
  • FIG. 1 is an explanatory diagram regarding a solar cell panel
  • (a) is a schematic configuration diagram of the solar cell panel
  • (b) is an equivalent circuit diagram of the solar cell panel.
  • FIG. 2 is an explanatory diagram relating to a solar cell panel inspection apparatus according to the present invention.
  • FIG. 2 (a) is a diagram showing the flow of AC waves when AC waves are input to the solar cell panel, and FIG. It is a substantial equivalent circuit diagram derived from a).
  • FIG. 3 is a graph showing the relationship between the frequency and impedance measured according to the number of connected solar battery panels.
  • FIG. 4 is a schematic configuration diagram of a solar cell panel inspection apparatus.
  • FIG. 5 is a circuit diagram relating to a solar cell panel inspection apparatus.
  • FIG. 6 is a circuit diagram relating to calculations executed by the solar cell panel inspection apparatus.
  • FIG. 7 is a flowchart of a solar cell panel inspection method performed using a solar cell panel inspection apparatus.
  • FIG. 1 is an explanatory diagram relating to the solar cell panel M.
  • FIG. FIG. 1A is a schematic configuration diagram of a solar cell panel M.
  • the solar cell panel M is configured as a solar cell module in which a plurality of cells S are connected in series, and a desired number of solar cell panels M are connected in series.
  • FIG. 1A illustrates four solar cell panels M.
  • Each cell S constituting each solar cell panel M is formed by joining an n-type semiconductor containing many negatively charged electrons and a p-type semiconductor containing many positively charged holes. When holes enter the n-type semiconductor, they combine with electrons. Similarly, when electrons enter the p-type semiconductor, they combine with holes.
  • a region called a depletion layer having no electrons or holes is formed on the joint surface.
  • An electric field is generated in the depletion layer.
  • the current generated by the solar cell panel M is a direct current, and it is necessary to convert it into an alternating current in order to use it as electricity.
  • each wiring of the solar cell panel M is concentrated in the connection box 1, and the connection box 1 is further connected to the power conditioner 2.
  • the direct current generated by the solar cell panel M is converted into alternating current by the power conditioner 2 and used as power in factories, offices, residences, and the like.
  • FIG. 1B is an equivalent circuit diagram of one cell S constituting the solar battery panel M.
  • a single cell S constituting the solar cell panel M has a constant current source ( I component), parallel diode (D component), series resistance (Rs component), and parallel resistance (Rsh component).
  • I component constant current source
  • D component parallel diode
  • Rs component series resistance
  • Rsh component parallel resistance
  • the equivalent circuit diagram of the solar cell module can be expressed as the equivalent circuit diagram of FIG. 1B, as in the case of one cell S, although the values of each component such as series resistance change.
  • FIG. 2 is an explanatory diagram relating to the inspection device for the solar cell panel M according to the present invention.
  • FIG. 2A is a diagram illustrating the flow of an AC wave when the AC wave is input to the solar cell panel M.
  • FIG. 2B is a substantial equivalent circuit diagram derived from FIG.
  • a depletion layer is formed in the cell S and an electric field is generated.
  • the AC wave captures the depletion layer as a capacitor that can store electric charge. Therefore, as shown in FIG. 2A, a capacitive reactance (C component) may be written in the equivalent circuit diagram. it can.
  • C component capacitive reactance
  • an alternating current wave does not pass parallel resistance (Rsh component), but passes a capacitor
  • the angular frequency ⁇ means the following equation (2).
  • Equation (1) if the value of ⁇ (that is, frequency f) is selected so that ⁇ L and 1 / ⁇ C are equal, impedance Z becomes the minimum value and equal to the value of resistance R.
  • the present inventors calculate the minimum value of the impedance Z to determine whether there is a defect in the solar cell panel M and whether the defect is due to disconnection (abnormal state) of the solar cell panel M or due to deterioration.
  • the minimum value of the impedance Z is calculated by the equations (1) and (2) while changing the frequency f, and this is used as a reference value as a criterion for determination.
  • the minimum value of the impedance Z is calculated for the solar cell panel M to be inspected while changing the frequency f in the same manner as described above. And the presence or absence of the defect of the solar cell panel M is discovered by comparing this minimum value with a reference value.
  • FIG. 3 is a graph showing the relationship between the frequency and impedance measured according to the number of connected solar battery panels.
  • the solar cell panel M is usually configured by modularizing a plurality of cells S connected in series. Therefore, it is necessary to confirm whether the relationship between the angular frequency ⁇ (that is, the frequency f) and the impedance Z can be applied to an actual solar cell panel product. Therefore, the present inventors measured the frequency characteristics for each number of connected solar cell panels. The frequency characteristics were measured for 1 to 6 solar cell panels and 10 solar cell modules connected. For reference, the same measurement was performed for only the cable connecting the solar cell panels (that is, the number of connected solar cell panels was 0). When the frequency is gradually increased from a low frequency to a high frequency, in all the graphs shown in FIG.
  • the impedance rapidly decreases in the initial stage, and thereafter, the decrease in impedance stops or starts to increase. .
  • the increase in impedance was more rapid as the number of connected solar cell panels was larger.
  • the influence of the C component due to modularization is greatly involved in the equation (1) when the impedance is decreasing.
  • the influence of the L component by modularization is largely concerned in the convergence or rise of the fall of the impedance which borders on a certain frequency. Therefore, when a frequency that balances the C component and the L component is selected, the influence of both the C component and the L component can be suppressed, and as a result, the impedance becomes the minimum value. Specifically, when examining the graph of FIG.
  • the impedance decreases rapidly until the frequency is around 450 kHz, and the impedance gradually rises while drawing a gentle curve from around 500 kHz. I understand that. For this reason, in the case of a single solar cell panel that is not modularized, it is difficult to determine the minimum impedance value.
  • the impedance gradually increases as the frequency approaches 500 kHz as in the case of a single panel, but the rate of increase is greater than that of a single panel.
  • the frequency greatly increases to the right from 300 to 400 kHz as a result of a sudden drop in impedance.
  • the minimum impedance value can be easily determined.
  • the minimum impedance value can be clearly determined.
  • the minimum impedance value can be clearly calculated as the number of connected solar cell panels increases, that is, the solar cell module structure increases, and the solar cell is calculated from the value.
  • the state of the panel (such as the presence or absence of defects) can be determined. Therefore, if it is a test
  • the inspection apparatus 100 for the solar cell panel M according to the present invention will be described.
  • FIG. 4 is a schematic configuration diagram of an inspection apparatus 100 (hereinafter referred to as “inspection apparatus 100”) for solar cell panel M according to the present invention.
  • FIG. 5 is a circuit diagram relating to the inspection apparatus 100 for the solar battery panel M. As shown in FIG. 4, the inspection apparatus 100 is connected to the connection box 1 and returns from the solar cell panel M to the AC wave input unit 10 that inputs an AC wave for defect inspection to the solar cell panel M.
  • An AC wave measuring unit 20 that measures the damped AC wave, a frequency changing unit 30 that changes the frequency of the test AC wave that is input in the AC wave input unit 10, an arithmetic unit 40 that calculates the impedance of the solar cell panel M, It is comprised from the determination part 50 which determines the state of the solar cell panel M from the impedance calculated by the calculating part 40.
  • FIG. 4 the AC wave input unit 10 and the AC wave measurement unit 20 in the inspection apparatus 100 are connected to the solar cell panel M via the connection box 1. Since the solar cell panel M is installed at an outdoor high place, the inspection performed by the worker using the inspection device involves danger and burden.
  • the state of the solar cell panel M can be easily confirmed in advance through the connection box 1 before the inspection performed by the worker. For this reason, the worker can know the solar cell panel M that really needs to be inspected, and can prepare for the appropriate repair according to the cause of the defect, and can quickly cope with it. As a result, the danger and burden on the worker can be reduced, and the inspection efficiency can be improved.
  • AC wave input unit, AC wave measurement unit For defect inspection of the solar cell panel M, the AC wave input unit 10 inputs an AC wave of frequency f (referred to as “inspection AC wave f”) to the solar cell panel M.
  • the inspection AC wave f passes through the equivalent circuit shown in FIG. 2B, but at this time, it is somewhat attenuated by the resistance (Rs component). This attenuated AC wave is referred to as an attenuated AC wave g with respect to the inspection AC wave f.
  • the AC wave measurement unit 20 measures the attenuated AC wave g returning from the solar cell panel M.
  • the inspection AC wave f and the attenuated AC wave g are used for the calculation of the impedance Z.
  • the solar cell panel M receives light energy to generate a direct current, and the direct current is converted into an alternating current by the power conditioner 2.
  • the solar cell panel It is necessary to exclude the direct current generated by M. Therefore, in the inspection apparatus 100 of this configuration, as shown in FIG. 5, the AC wave input unit 10 and the AC wave measurement unit 20 are respectively connected via capacitors C ⁇ b> 1 and C ⁇ b> 2 having a higher withstand voltage than the power generation voltage of the solar cell panel M.
  • a configuration for connecting to the solar cell panel M is adopted. Thereby, since the direct current generated by the solar panel M is cut by the capacitors C1 and C2, it is possible to correctly measure the attenuated alternating wave g.
  • a high-voltage pulse wave is transmitted to the AC wave input unit 10 and the AC wave measurement unit 20 of the inspection device 100 at that moment, leading to a failure of the inspection device 100.
  • the interruption circuit 70 including the high resistance part 60 in the previous stage of the capacitors C1 and C2 the shock of the pulse wave
  • the AC wave input unit 10 and the AC wave measurement unit 20 are prevented from being damaged.
  • such a pulse wave is a phenomenon that occurs only at the moment when the inspection apparatus 100 is connected to the solar cell panel M.
  • the cutoff circuit 70 is configured as a switch circuit that can be switched so that it can be connected to either the high resistance part 60 or the conduction part where the high resistance part 60 does not exist.
  • the inspection apparatus 100 can be connected to the high resistance portion 60 at the start of inspection to prevent the arrival of a pulse wave, and then can be changed to be connected to the conduction portion to disconnect the unnecessary high resistance portion 60 from the circuit. it can. Therefore, during the inspection, the value of the impedance Z of the solar cell panel M can be appropriately calculated, and a correct inspection result can be obtained.
  • the frequency changing unit 30 changes the inspection AC wave f (AC wave having the frequency f) so that the impedance Z of the solar cell panel M becomes the minimum value. Specifically, in the equations (1) and (2), the value of the frequency f is changed so that ⁇ L and 1 / ⁇ C are equal, and the impedance when ⁇ L and 1 / ⁇ C are equal. If the value of Z can be found, the value of resistance R can be obtained. Therefore, the inspection AC wave f (AC wave having the frequency f) is adjusted by the frequency changing unit 30. At this time, the frequency changing unit 30 changes the frequency f in the range of 50 to 2500 kHz.
  • the change of the frequency characteristics due to the modularization of the solar cell panel M is covered, and the value of the impedance Z of the solar cell panel M is calculated while controlling the influence of the C component and the L component.
  • the frequency f at which the impedance Z becomes the minimum value can be specified.
  • the calculation unit 40 calculates the value of the impedance Z of the solar cell panel M based on the inspection AC wave f and the attenuated AC wave g.
  • the voltage corresponding to the inspection AC wave f is V0
  • the voltage corresponding to the attenuated AC wave g is V1
  • the resistance of the tester is R1
  • the resistance of the solar panel M is R2, as shown in FIG. It can be represented by an equivalent circuit diagram. As shown in FIG. 6, since R1 and R2 are connected in series, the following partial pressure equation holds.
  • Equation (4) can be derived from equation (3).
  • V0 is a voltage set when the inspection AC wave f is input from the AC wave input unit 10
  • V1 is a voltage of the attenuated AC wave g measured by the AC wave measurement unit 20
  • the value of the resistance R2 of the solar cell panel M can be calculated by substituting V0, V1, and R1 into Equation (4).
  • the resistance R2 in Expression (4) means the resistance of the solar cell panel M, and therefore corresponds to the resistance R in Expression (1).
  • the frequency changing unit 30 changes the value of the frequency f so that ⁇ L and 1 / ⁇ C are equal to each other.
  • the value of the impedance Z is calculated, and finally the minimum value of the impedance Z can be calculated. Since the minimum value of the impedance Z calculated by the calculation unit 40 is used by the determination unit 50, for example, it is stored as data in a memory, a hard disk, or the like.
  • the determination unit 50 determines the state of the solar cell panel M by comparing the minimum value of the impedance Z of the solar cell panel M calculated by the calculation unit 40 with the reference value.
  • the reference value is a minimum value of the impedance Z calculated in advance by the inspection apparatus 100 for the solar cell panel M in which no defect exists.
  • the resistance value becomes larger than that of the solar cell panel M in which no defect exists. Therefore, if the minimum value of the impedance Z calculated by the calculation unit 40 is compared with the reference value, it is possible to determine whether or not there is a defect in the solar cell panel M to be inspected.
  • the determination unit 50 not only determines whether or not there is a defect in the solar cell panel M, but also determines whether the defect is due to disconnection of the solar cell panel M or due to deterioration. can do.
  • the worker can know in advance the solar cell panel M that really needs to be inspected, and prepare for appropriate repair according to the cause of the defect. Can be done and dealt with promptly. As a result, the burden on the worker can be reduced and the inspection efficiency can be improved.
  • FIG. 7 is a flowchart of a method for inspecting the solar cell panel M implemented using the inspection apparatus 100.
  • the inspection method is mainly performed through each step of an AC wave input process, an AC wave measurement process, a calculation process, a frequency change process, and a determination process.
  • each step in the inspection method is indicated by the symbol “S”.
  • each component of the inspection device 100 is appropriately arranged and connected to the solar cell panel M.
  • the inspection apparatus 100 connects the AC wave input unit 10 and the AC wave measurement unit 20 to the solar cell panel M through the connection box 1.
  • direct current by the solar cell panel M is converted into alternating current, if the inspection AC wave f is simply input from the AC wave input unit 10, the attenuated AC wave g cannot be measured correctly, and the solar cell panel M There is a risk of hindering the inspection. Therefore, as shown in FIG.
  • capacitors C ⁇ b> 1 and C ⁇ b> 2 having a higher withstand voltage than the power generation voltage of the solar cell panel M are arranged between the AC wave input unit 10 and the AC wave measurement unit 20 and the solar cell panel M. .
  • flow by the electric power generation of the solar cell panel M can be cut, the attenuation
  • a high resistance is provided by a switch in front of the capacitors C1 and C2 arranged as shown in FIG.
  • a cutoff circuit 70 is provided that enables switching between the part 60 and the conduction part (in FIG. 5, a part surrounded by a dotted frame).
  • the pulse wave is a phenomenon that occurs only at the start of the inspection, it is not necessary to leave the circuit in the conductive state on the high resistance portion 60 side after processing the pulse wave by the high resistance portion 60. Therefore, it is determined whether or not the processing of the pulse wave is completed (S2), and after the processing of the pulse wave is completed (S2; YES), the switch of the cutoff circuit 70 shown by the dotted frame in FIG. 5 is closed. Then, it will be in the conduction
  • step 2 when the pulse wave processing is not yet completed (S2; NO), the connection to the high resistance portion 60 side is continued (S1). In this way, by performing steps 0 to 3, preparations for inspecting the solar cell panel M are made.
  • the inspection AC wave f is input from the AC wave input unit 10 to the solar cell panel M (S4).
  • the purpose of the inspection apparatus 100 is to obtain the minimum value of the impedance Z based on the equation (1). As shown in FIG. 3, it can be seen from the graph of frequency characteristics measured for each number of connected solar cell panels that the minimum value of impedance Z is the minimum value of the graph. Therefore, it is preferable that the input of the inspection AC wave f is a direction that gradually shifts from a low frequency to a high frequency. By inputting in this way, the minimum value of the graph of the frequency characteristic, that is, the minimum value of the impedance Z can be obtained efficiently.
  • Step 4 is an AC wave input process.
  • the inspection AC wave f input to the solar cell panel M from the AC wave input unit 10 in step 4 corresponds to the resistance component of the solar cell panel M (corresponding to Rs in the equivalent circuit diagram shown in FIG. 2B). And is returned from the solar cell panel M as an attenuated AC wave g.
  • the attenuation AC wave g at this time is measured by the AC wave measurement unit 20 (S5).
  • the state of the solar cell panel M is measured by measuring the damped AC wave g and executing a calculation process and a determination process described later. Can be determined.
  • Step 5 is an AC wave measurement process.
  • Step 6 based on the inspection AC wave f and the attenuated AC wave g, the value of the impedance Z of the solar cell panel M is calculated by the calculation unit 40 (S6).
  • the calculation in step 6 is counted as the nth time.
  • the impedance Z is calculated a plurality of times based on the equations (1) to (4), and the calculated impedance Z value (n-th) is the previously calculated impedance value (n-1).
  • Steps 6 and 7 are defined as calculation steps.
  • step 7 will be described in detail.
  • the minimum value of the impedance Z of the solar cell panel M is a minimum value from the graph of the frequency characteristics shown in FIG.
  • the impedance Z calculated at the nth time when the value of the impedance Z calculated at the nth time is larger than the value of the impedance Z calculated at the (n-1) th time (S7; YES), the impedance Z calculated at the (n-1) th time. Can be recognized as the minimum value, that is, the minimum value of the impedance Z.
  • the value of impedance Z calculated at the nth time is smaller than the value of impedance Z calculated at the (n-1) th time (S7; NO), the minimum value (minimum value) of impedance Z is not yet known.
  • the frequency f is adjusted to be higher than the nth time (S8), and the inspection AC wave f is input again from the AC wave input unit 10 to perform the AC wave input step (S4) (the frequency of the inspection AC wave f is changed).
  • the step (S8) to be changed will be described later.
  • the frequency changing unit 30 changes the frequency of the inspection AC wave f. (S8).
  • the inspection method according to the present invention determines the defect state based on the minimum value of the impedance Z of the solar cell panel M. Therefore, in equations (1) and (2), it is necessary to select a frequency f that makes ⁇ L and 1 / ⁇ C equal.
  • the frequency f is selected from the value of the impedance Z calculated by the calculation unit 40 based on the test AC wave f input to the AC wave input unit 10 at the nth time from the value of the impedance Z calculated at the (n-1) th time. If it is smaller (S7; NO), the frequency f is changed to be higher than the nth time (S8), and the inspection AC wave f is input to the solar cell panel M again as the n + 1th time (S4). Then, the process proceeds to step 5 and step 6 where the value of impedance Z is calculated and compared with the value of impedance Z calculated in the nth calculation step in step 7.
  • steps 4 to 8 are repeated until a frequency f is found such that the impedance Z becomes the minimum value (minimum value) in equation (1).
  • the process proceeds to the next step.
  • the minimum value of the impedance Z is stored as data in, for example, a memory or a hard disk in order to be used in the next step.
  • the minimum value of the impedance Z of the solar cell panel M is calculated in steps 4 to 8, the minimum value is compared with a reference value (S9).
  • the reference value is a minimum value of the impedance Z calculated in advance by the inspection apparatus 100 for the solar cell panel M in which no defect exists.
  • the resistance value becomes larger than that of the solar cell panel M in which no defect exists. Therefore, it is determined whether or not the minimum value of the impedance Z of the solar cell panel M calculated in the series of steps 4 to 8 is equal to the reference value (S9).
  • the identity between the minimum value of the impedance Z and the reference value is determined based on whether or not they are substantially the same, and the determination criterion is determined according to the inspection conditions, the required inspection accuracy, and the like. it can. For example, if the minimum value of the impedance Z is within a range of ⁇ 10% from the reference value, it can be determined that both are substantially the same.
  • the minimum value of the impedance Z is equal to the reference value (S9; YES)
  • the solar cell panel M to be inspected is not defective and is determined to be “normal state” (S10). Thereafter, it is determined whether or not to continue the inspection (S14).
  • step 11 the magnification of the minimum value of the impedance Z with respect to the reference value is obtained (S11).
  • the minimum value of the impedance Z is less than 5 times the reference value, since the impedance Z of the solar cell panel M tends to increase, it is determined that the solar cell panel M is in the “degraded state” (S12).
  • the impedance Z of the solar cell panel M is excessively increased, so that it is determined to be in the “abnormal state” (S13).
  • a series of steps 9 to 13 is set as a determination step.
  • the state of the solar cell panel M can be determined in detail based on an appropriately set determination criterion.
  • the magnification of the minimum value of the impedance Z with respect to the reference value serving as the determination criterion is an example.
  • the magnification is set to 5 to 20 times according to the type and number of solar cell panels, the usage environment, and the like. be able to. If it is determined in steps 9 to 13 that the solar cell panel M is in a deteriorated state or an abnormal state, the worker brings the inspection device close to the solar cell panel M directly in order to find the defective part. Inspect.
  • the determination step for example, when the state of the solar cell panel M is determined to be “degraded state”, if it can be determined how much the deterioration has progressed, the inspection accuracy can be further improved, and the subsequent worker The inspection efficiency can be improved.
  • the determination of the degree of deterioration of the solar cell panel M is possible by the stepwise state determination of the solar cell panel M. For example, when the minimum value of the impedance Z with respect to the reference value is more than 1 time and less than 2 times, the deterioration state of the solar cell panel M is determined to be “slightly deteriorated”.
  • the above criteria for the stepwise determination are only examples, and the optimum step is determined according to the type, number, usage environment, etc. of the solar cell panel M and the magnification of the minimum value of the impedance Z with respect to the reference value serving as the determination criterion. Judgment criteria can be set.
  • the defect inspection for one solar cell panel M is completed by a series of steps 0 to 13, it is determined whether or not to continue the inspection of the solar cell panel M (S14).
  • the inspection is continued (step 14; YES)
  • the process moves to the next solar cell panel (step 15), the inspection apparatus 100 is set appropriately, and the steps 1 to 14 are repeated.
  • the inspection is terminated (S16).
  • the operator can know in advance the solar cell panel M that needs to be inspected when the inspection device is directly brought close to the solar cell panel M. Furthermore, it is possible to prepare for the appropriate repair according to the cause of the defect and to deal with it promptly. As a result, the burden on the worker can be reduced and the inspection efficiency can be improved.
  • the solar cell panel inspection apparatus and solar cell panel inspection method of the present invention are used for solar cell inspection, but can also be used for inspections other than solar cell panels.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Photovoltaic Devices (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

Provided are: a device (100) for examining solar cell panels (M) which enables the presence of faults in the solar cell panels (M) to be easily and accurately determined; and a method for examining solar cell panels. The device (100) for examining the solar cell panels (M) determines the state of the solar cell panels (M), and is provided with: an AC-wave input unit (10) which inputs an examination AC wave (f) into the solar cell panels (M) to be examined; an AC-wave measurement unit (20) for measuring an attenuated AC wave (g) which is returned from the solar cell panels (M); a calculation unit (40) which calculates, on the basis of the examination AC wave (f) and the attenuated AC wave (g), the impedance (Z) of the solar cell panels (M); a frequency changing unit (30) which changes the frequency (f) of the AC-wave input unit (10); and a determination unit (50) which determines the state of the solar cell panels (M). The frequency changing unit (30) changes the frequency (f) of the AC-wave input unit (10) such that the impedance (Z) of the solar cell panels (M) becomes a minimum value. The determination unit (50) compares this minimum value with a reference value. Furthermore, in this method for examining the solar cell panels (M), the device (100) for examining the solar cell panels (M) is used.

Description

太陽電池パネルの検査装置、及び太陽電池パネルの検査方法Solar cell panel inspection apparatus and solar cell panel inspection method
 本発明は、太陽電池パネルの検査装置、及び太陽電池パネルの検査方法に関する。 The present invention relates to a solar cell panel inspection apparatus and a solar cell panel inspection method.
 近年、環境に配慮したクリーンなエネルギーへの関心の高まりから、エネルギー源が無尽蔵に存在する太陽光を利用した太陽光発電が注目されている。太陽光発電によって長期的に安定したエネルギーを供給するためには、発電に使用する太陽電池パネルに不具合が生じていないか定期的に検査する必要がある。 In recent years, solar power generation using sunlight, which has inexhaustible energy sources, has attracted attention due to the growing interest in environmentally friendly clean energy. In order to supply long-term stable energy by solar power generation, it is necessary to periodically inspect the solar cell panel used for power generation for defects.
 太陽電池パネルの検査では、通常、「クラック(マイクロクラックを含む)」や「断線」等の欠陥の有無の確認が行われる。太陽電池パネルの検査は一般に、作業員が検査機器を太陽電池パネルに近づけて行っている。しかし、太陽電池パネルが多数設置されていると必然的に作業に時間が掛かる上に、太陽電池パネルは屋外の高所に設置されているため、検査の際は作業員に大きな負担が伴う場合がある。そのため、作業員の安全を確保しながら欠陥検査の精度及び効率を向上させることが望まれている。 In the inspection of solar cell panels, it is usually checked for the presence or absence of defects such as “cracks (including microcracks)” and “disconnections”. In general, an inspection of a solar cell panel is performed by an operator with an inspection device close to the solar cell panel. However, if a large number of solar panels are installed, the work will inevitably take a long time, and the solar panels are installed at high places outdoors. There is. Therefore, it is desired to improve the accuracy and efficiency of defect inspection while ensuring the safety of workers.
 そこで、従来、太陽電池パネルの検査に関して、多数の太陽電池モジュールとパワーコンディショナーとの中から不良部分を一箇所で容易に特定できるようにした太陽光発電設備の監視装置があった(例えば、特許文献1を参照)。特許文献1によれば、太陽光発電設備の稼働中、当該監視装置の電力値取得回路で複数のパワーコンディショナーから夫々の瞬間電力値が常時取得され、その取得した各瞬間電力値とそれを出力した各パワーコンディショナーの機器情報とが表示回路により表示される。また、異常情報取得回路で異常情報を取得した場合は、その異常情報とそれを出力したパワーコンディショナーの機器情報とが表示回路により表示され、警報回路によって警報が報知される。このような構成によって、一つの監視装置の表示を確認するだけで、太陽電池アレイ全体の不良を一元的に管理できるとされている。 Therefore, conventionally, there has been a monitoring device for a photovoltaic power generation facility that can easily identify a defective portion from one of a large number of solar cell modules and power conditioners with respect to the inspection of solar cell panels (for example, patents). Reference 1). According to Patent Literature 1, during operation of a photovoltaic power generation facility, each instantaneous power value is constantly acquired from a plurality of power conditioners by the power value acquisition circuit of the monitoring device, and each acquired instantaneous power value and output thereof are output. The device information of each power conditioner is displayed on the display circuit. When the abnormality information is acquired by the abnormality information acquisition circuit, the abnormality information and the device information of the power conditioner that outputs the abnormality information are displayed by the display circuit, and the alarm is notified by the alarm circuit. With such a configuration, it is said that defects in the entire solar cell array can be managed in a unified manner simply by confirming the display of one monitoring device.
 一方、検査対象が太陽電池パネルではないが、タッチスクリーンパネルの電気的特性を検査するために共振回路を用いた静電容量方式タッチスクリーンパネルの検査装置において、回路に電圧または電流を供給する電源部と、ITO電極の抵抗及び電極間の静電容量を直列に配置した静電容量方式タッチスクリーンパネル部と、電源部に接続され、電気的共振を起こすLC共振回路を含む共振部と、共振部の共振周波数を変化させる共振周波数変更部と、タッチスクリーンパネル部と共振周波数変更部とを接続する作動部とから構成される、タッチスクリーンパネルの電気的特性検査装置があった(例えば、特許文献2を参照)。特許文献2によれば、既存のタッチスクリーンパネルに簡単なLC共振回路を直列接続して共振周波数特性を取得することにより、タッチスクリーンパネルのITO電極の電気的特性を検出し、これをタッチスクリーンパネルの不良分析に利用できるようにしたとされている。 On the other hand, in the inspection device for a capacitive touch screen panel that uses a resonance circuit to inspect the electrical characteristics of the touch screen panel, although the inspection object is not a solar cell panel, a power source that supplies voltage or current to the circuit A capacitive touch screen panel unit in which the resistance of the ITO electrode and the capacitance between the electrodes are arranged in series, a resonance unit including an LC resonance circuit connected to the power source unit and causing electrical resonance, There has been a touch screen panel electrical characteristic inspection device that includes a resonance frequency changing unit that changes the resonance frequency of the touch panel, and an operation unit that connects the touch screen panel unit and the resonance frequency changing unit (for example, a patent) Reference 2). According to Patent Document 2, an electrical characteristic of an ITO electrode of a touch screen panel is detected by connecting a simple LC resonance circuit in series to an existing touch screen panel to obtain a resonance frequency characteristic, and this is detected on the touch screen. It can be used for panel failure analysis.
実用新案登録第3184828号公報Utility Model Registration No. 3184828 特開2012-122989号公報JP 2012-122989 A
 上記のとおり、太陽電池パネルの検査は、高所での作業になるため危険や負担が伴う場合が多く、安全且つ効率的に検査を行うことが望まれている。この点、特許文献1に記載のように、太陽電池パネルに対して直接欠陥検査を行うのではなく、各太陽電池モジュールのパワーコンデショナーを監視する装置によって太陽光発電設備の不良を発見することは、作業員の負担軽減に役立つと思われる。しかし、特許文献1に記載されている監視装置は、どのパワーコンデショナーが不良であるかが判明しても、その不良原因が断線によるものか、あるいは劣化によるものかを判別することができない。そのため、結局、太陽電池パネルに対して別途検査を行う必要がある。また、特許文献2の装置は、共振回路を利用してパネルの不良を判別するものであるが、検査対象はスマートフォン等のタッチスクリーンパネルであり、太陽電池パネルとは規模や構造が大きく異なる。そのため、特許文献2の装置の構成をそのまま太陽電池パネルの検査装置に転用することは困難である。 As described above, the inspection of the solar cell panel is often carried out at a high place, so there are many dangers and burdens, and it is desired to perform the inspection safely and efficiently. In this regard, as described in Patent Document 1, it is not possible to directly detect defects on a solar cell panel, but to detect a defect in a photovoltaic power generation facility by a device that monitors the power conditioner of each solar cell module. It seems to be useful for reducing the burden on workers. However, even if it turns out which power conditioner is defective, the monitoring apparatus described in Patent Document 1 cannot determine whether the cause of failure is due to disconnection or deterioration. Therefore, after all, it is necessary to separately inspect the solar cell panel. Moreover, although the apparatus of patent document 2 discriminate | determines the panel defect using a resonance circuit, a test object is touchscreen panels, such as a smart phone, and a scale and a structure differ greatly from a solar cell panel. Therefore, it is difficult to divert the configuration of the device of Patent Document 2 as it is to a solar cell panel inspection device.
 このように、特許文献1及び特許文献2の検査装置では、太陽電池パネルの欠陥検査に際して、作業員の負担の軽減と効率的な検査とを両立させることは困難であり、改善の余地があった。本発明は、上記問題点に鑑みてなされたものであり、太陽電池パネルの欠陥の有無を容易に且つ正確に行うことを可能とする太陽電池パネルの検査装置、及び太陽電池パネルの検査方法を提供することを目的とする。 As described above, in the inspection apparatuses of Patent Document 1 and Patent Document 2, it is difficult to achieve both the reduction of the burden on the worker and the efficient inspection in the defect inspection of the solar cell panel, and there is room for improvement. It was. The present invention has been made in view of the above-described problems, and provides a solar cell panel inspection apparatus and a solar cell panel inspection method capable of easily and accurately performing the presence or absence of defects in a solar cell panel. The purpose is to provide.
 上記課題を解決するための本発明に係る太陽電池パネルの検査装置の特徴構成は、
 検査対象の太陽電池パネルに検査交流波を入力する交流波入力部と、
 前記太陽電池パネルから戻ってくる減衰交流波を計測する交流波計測部と、
 前記検査交流波と前記減衰交流波とに基づいて前記太陽電池パネルのインピーダンスを算出する演算部と、
 前記交流波入力部の周波数を変更する周波数変更部と、
 前記太陽電池パネルの状態を判定する判定部と、
を備え、
 前記周波数変更部は、前記太陽電池パネルのインピーダンスが最小値となるように前記交流波入力部の周波数を変更し、
 前記判定部は、前記最小値を参照値と比較し、前記太陽電池パネルの状態を判定することにある。
The characteristic configuration of the inspection apparatus for solar cell panel according to the present invention for solving the above problems is as follows.
AC wave input unit for inputting inspection AC wave to the solar cell panel to be inspected,
An AC wave measurement unit that measures the attenuated AC wave returning from the solar cell panel;
An arithmetic unit that calculates the impedance of the solar cell panel based on the inspection AC wave and the attenuated AC wave;
A frequency changing unit for changing the frequency of the AC wave input unit;
A determination unit for determining the state of the solar cell panel;
With
The frequency changing unit changes the frequency of the AC wave input unit so that the impedance of the solar cell panel becomes a minimum value,
The determination unit is to determine the state of the solar cell panel by comparing the minimum value with a reference value.
 上記課題で説明したように、従来の太陽電池パネルの検査装置は、設置されている全ての太陽電池パネルに対して、欠陥原因の如何に関わらず欠陥の有無を含めて検査を行っているため、太陽電池パネルの故障診断を完了するまで作業時間が掛かる等の問題があった。そこで、太陽電池パネルに検査機器を近づけて検査を行う前に、予め太陽電池パネルに欠陥の有無を確認することができれば、検査の効率を向上させることが可能となる。つまり、欠陥が存在しないことが分かった太陽電池パネルに対しては、作業員が実際に検査機器を近づけて行う検査を省略することができ、作業員の負担を軽減することができる。
 この点、本構成の太陽電池パネルの検査装置であれば、太陽電池パネルが設置された状態において、太陽電池パネルのインピーダンスの情報のみで太陽電池パネルの状態を判定することができる(本構成の詳細については、後の「発明を実施するための形態」の中で説明する。)。このため、太陽電池パネルに近づいて行う検査の前に、検査対象の太陽電池パネルが少なくとも「正常」又は「異常」のどちらの状態であるかを確認することができる。そして、「正常」と判定された場合は、その後の検査は当該太陽電池パネルに対しては不要となる。一方、「異常」と判定された場合は、検査対象の太陽電池パネルには何らかの欠陥が存在しているため、作業員は実際に太陽電池パネルに検査機器を近づけて検査を行う作業に取り掛かる。このように、検査の初期段階において、検査が必要な太陽電池パネルかどうかを判定することができるため、作業時間の短縮に繋がり、作業員の負担を軽減することができる。
 なお、本明細書において「太陽電池パネル」は、複数の太陽電池パネルが接続された太陽電池モジュールや、太陽電池ストリングを包含する意味として使用する。また、「検査交流波」とは、検査対象となる太陽電池パネルに送出される交流波(送出交流波)を意味する。一方、「減衰交流波」とは、検査交流波に対応する交流波のことであり、太陽電池パネルに送出された検査交流波(送出交流波)が、太陽電池パネルの回路を巡って検査装置に戻ってきた交流波、つまり、検査装置が受信する交流波(受信交流波)を意味する。
As described in the above problem, the conventional solar cell panel inspection device inspects all installed solar cell panels including the presence or absence of defects regardless of the cause of the defect. There was a problem that it took a long time to complete the failure diagnosis of the solar battery panel. Therefore, if the presence or absence of a defect can be confirmed in advance in the solar cell panel before inspecting the inspection device close to the solar cell panel, the efficiency of the inspection can be improved. That is, for a solar cell panel that has been found to be free of defects, an inspection that is actually performed by an operator approaching an inspection device can be omitted, and the burden on the operator can be reduced.
In this respect, if the solar cell panel inspection apparatus of this configuration is used, the state of the solar cell panel can be determined only by the impedance information of the solar cell panel in the state where the solar cell panel is installed (the configuration of this configuration). Details will be described later in the “Detailed Description of the Invention”.) For this reason, it is possible to confirm whether the solar cell panel to be inspected is at least “normal” or “abnormal” before the inspection performed near the solar cell panel. And when it determines with "normal", a subsequent test | inspection becomes unnecessary with respect to the said solar cell panel. On the other hand, if it is determined as “abnormal”, the solar cell panel to be inspected has some defect, so that the worker actually starts the inspection by bringing the inspection device close to the solar cell panel. As described above, since it is possible to determine whether or not the solar cell panel needs to be inspected in the initial stage of the inspection, the working time can be shortened and the burden on the worker can be reduced.
In the present specification, “solar cell panel” is used to include a solar cell module to which a plurality of solar cell panels are connected and a solar cell string. Further, the “inspection AC wave” means an AC wave (transmitted AC wave) transmitted to the solar cell panel to be inspected. On the other hand, the “attenuating AC wave” is an AC wave corresponding to the inspection AC wave, and the inspection AC wave (sending AC wave) sent to the solar cell panel is inspected around the circuit of the solar cell panel. It means the AC wave that has returned to, that is, the AC wave (received AC wave) received by the inspection device.
 本発明に係る太陽電池パネルの検査装置において、
 前記判定部は、前記最小値が前記参照値の5倍以上である場合に前記太陽電池パネルが異常状態にあると判定し、前記最小値が前記参照値の5倍未満である場合に前記太陽電池パネルが劣化状態にあると判定することが好ましい。
In the solar cell panel inspection apparatus according to the present invention,
The determination unit determines that the solar cell panel is in an abnormal state when the minimum value is five times or more of the reference value, and the sun when the minimum value is less than five times the reference value. It is preferable to determine that the battery panel is in a deteriorated state.
 本構成の太陽電池パネルの検査装置であれば、検査交流波と減衰交流波とに基づいて、太陽電池パネルのインピーダンスを算出し、当該インピーダンスの最小値と、参照値とを比較する。このとき、最小値が参照値の5倍以上である場合は、太陽電池パネルが異常状態にあると判定し、最小値が参照値の5倍未満である場合は、太陽電池パネルが劣化状態にあると推定する。ここで、「異常」とは、例えば、太陽電池パネルに断線が生じている状態を意味する。従って、インピーダンスの最小値を算出することにより、太陽電池パネルの欠陥の原因が断線であるのか、劣化であるのかを判別することできる。このように、本構成の太陽電池パネルの検査装置では、予め欠陥系統(ストリング)を突き止めているため、作業員が検査機器を太陽電池パネルに近づけて欠陥箇所を特定した際、当該欠陥箇所に対して最適な修理等を行うことができ、検査の効率が向上する。その結果、作業時間を短縮することができ、作業員の負担を軽減することができる。また、太陽電池パネルの欠陥原因を予め判別することができるが、この後に作業員が検査機器によって欠陥検査を行うため、精度の高い検査となり、太陽電池パネルの長期信頼性も向上させることができる。 If it is a solar cell panel inspection apparatus of this configuration, the impedance of the solar cell panel is calculated based on the inspection AC wave and the attenuated AC wave, and the minimum value of the impedance is compared with the reference value. At this time, when the minimum value is 5 times or more of the reference value, it is determined that the solar cell panel is in an abnormal state, and when the minimum value is less than 5 times the reference value, the solar cell panel is in a deteriorated state. Presume that there is. Here, “abnormal” means, for example, a state in which a disconnection occurs in the solar cell panel. Therefore, by calculating the minimum value of the impedance, it is possible to determine whether the cause of the defect of the solar cell panel is disconnection or deterioration. In this way, in the solar cell panel inspection apparatus of this configuration, the defect system (string) has been identified in advance, so when an operator specifies the defective part by bringing the inspection device close to the solar panel, the defective part is identified. As a result, optimal repairs and the like can be performed, and the inspection efficiency is improved. As a result, the working time can be shortened and the burden on the worker can be reduced. Moreover, although the cause of the defect of the solar cell panel can be determined in advance, since the worker inspects the defect with the inspection device after this, the inspection becomes highly accurate and the long-term reliability of the solar cell panel can be improved. .
 本発明に係る太陽電池パネルの検査装置において、
 前記太陽電池パネルは、複数の太陽電池セルが接続されてなる太陽電池モジュールであることが好ましい。
In the solar cell panel inspection apparatus according to the present invention,
The solar cell panel is preferably a solar cell module in which a plurality of solar cells are connected.
 太陽電池パネルは、交流回路的には一般に、抵抗(Rs成分)と誘導性リアクタンス(L成分)と容量性リアクタンス(C成分)とが直列に接続した等価回路で表されると考えることができ、太陽電池パネルを直列(または並列)に接続すると、L成分の影響を受けて周波数特性が大きく変化する傾向がある。
 この点、本構成の太陽電池パネルの検査装置は、インピーダンスの最小値から太陽電池パネルの状態を判定するものであるため、L成分とC成分とがつり合うような周波数に検査交流波を調整することで、モジュール化(またはストリング化)によるL成分の影響を最小限に抑えることができる。従って、本構成の太陽電池パネルの検査装置は、特に複数の太陽電池セルが接続されてなる太陽電池モジュールに対して好適に利用することができる。
In terms of an AC circuit, a solar cell panel can generally be considered to be represented by an equivalent circuit in which a resistance (Rs component), an inductive reactance (L component), and a capacitive reactance (C component) are connected in series. When solar cell panels are connected in series (or in parallel), the frequency characteristics tend to change greatly under the influence of the L component.
In this respect, the solar cell panel inspection apparatus of this configuration is for determining the state of the solar cell panel from the minimum impedance value, and therefore adjusts the inspection AC wave to a frequency at which the L component and the C component are balanced. Thus, the influence of the L component due to modularization (or stringing) can be minimized. Therefore, the solar cell panel inspection apparatus of this configuration can be suitably used particularly for a solar cell module in which a plurality of solar cells are connected.
 本発明に係る太陽電池パネルの検査装置において、
 前記交流波入力部及び前記交流波計測部は、前記太陽電池パネルの発電電圧より大きい耐電圧を有するコンデンサを介して前記太陽電池パネルに接続されていることが好ましい。
In the solar cell panel inspection apparatus according to the present invention,
It is preferable that the AC wave input unit and the AC wave measurement unit are connected to the solar cell panel via a capacitor having a withstand voltage larger than the generated voltage of the solar cell panel.
 太陽電池パネルが光エネルギーを受けて発電する電流は高電圧(例えば、数百ボルト)の直流であり、この直流を検査装置に印加すると検査装置が壊れてしまう可能性が高い。そこで、本構成の太陽電池パネルの検査装置は、太陽電池パネルに接続する際、太陽電池パネルの発電電圧より大きい耐電圧を有するコンデンサが介されている。このため、太陽電池が発電した高電圧の直流はコンデンサによりカットされ、正しい検査結果を得ることができる。 The current generated by the solar panel receiving light energy is a direct current of a high voltage (for example, several hundred volts). If this direct current is applied to the inspection device, the inspection device is likely to break. Therefore, when the solar cell panel inspection apparatus of this configuration is connected to the solar cell panel, a capacitor having a withstand voltage larger than the power generation voltage of the solar cell panel is interposed. For this reason, the high-voltage direct current generated by the solar cell is cut by the capacitor, and a correct inspection result can be obtained.
 本発明に係る太陽電池パネルの検査装置において、
 前記太陽電池パネルから前記交流波入力部及び前記交流波計測部に到来するパルス波を遮断する遮断回路が、前記コンデンサの前段に設けられることが好ましい。
In the solar cell panel inspection apparatus according to the present invention,
It is preferable that a cut-off circuit that cuts off a pulse wave that arrives at the AC wave input unit and the AC wave measurement unit from the solar cell panel is provided in front of the capacitor.
 太陽電池パネルに検査装置を接続すると、その瞬間に高電圧のパルス波が検査装置の交流波入力部及び交流波計測部に伝達され、検査装置の故障を招く場合がある。そこで、本構成の太陽電池パネルの検査装置では、コンデンサの前段に遮断回路を設けている。これにより、パルス波の衝撃から交流波入力部及び交流波計測部を保護し、破損を防止することができる。 When an inspection device is connected to the solar cell panel, a high-voltage pulse wave is transmitted to the AC wave input unit and AC wave measurement unit of the inspection device at that moment, which may cause a failure of the inspection device. Therefore, in the solar cell panel inspection apparatus having this configuration, a cutoff circuit is provided in front of the capacitor. Thereby, an alternating current input part and an alternating current wave measurement part can be protected from the impact of a pulse wave, and damage can be prevented.
 本発明に係る太陽電池パネルの検査装置において、
 前記遮断回路は、高抵抗部と導通部とを切り替え可能なスイッチ回路であることが好ましい。
In the solar cell panel inspection apparatus according to the present invention,
The interruption circuit is preferably a switch circuit capable of switching between a high resistance part and a conduction part.
 上記のように、本構成の太陽電池パネルの検査装置は、太陽電池パネルに検査装置を接続した際に受け得る大きなパルス波を遮断回路によって遮断し、交流波入力部及び交流波計測部を保護している。このような大きなパルス波は、検査開始時に太陽電池パネルに検査装置を接続した瞬間に発生する現象であり、一旦検査装置を接続した後はパルス波の問題は発生しない。そこで、本構成の太陽電池パネルの検査装置は、遮断回路を高抵抗部と導通部とを切り替え可能なスイッチ回路として構成している。ここで、「切り替え」とは、スイッチを開閉することを意味する。スイッチを閉じた状態にすると、高抵抗部と導通部との両方に接続されるが、検査交流波は抵抗が低い導通部を流れることになる。一方、スイッチを開いた状態にすると、導通部が切断されて検査交流波は高抵抗部を流れることになる。このような構成により、検査開始時には高抵抗部に切り替えてパルス波の到来を防止し、その後は導通部に切り替えて不要な高抵抗部を回路から切り離している。従って、検査中は太陽電池パネルのインピーダンスの最小値を適切に算出することができ、正しい検査結果を得ることができる。 As described above, the solar cell panel inspection device of this configuration blocks a large pulse wave that can be received when the inspection device is connected to the solar cell panel by the cutoff circuit, and protects the AC wave input unit and the AC wave measurement unit. is doing. Such a large pulse wave is a phenomenon that occurs at the moment when the inspection device is connected to the solar cell panel at the start of inspection, and once the inspection device is connected, the problem of the pulse wave does not occur. Therefore, in the solar cell panel inspection apparatus of this configuration, the cutoff circuit is configured as a switch circuit that can switch between the high resistance portion and the conduction portion. Here, “switching” means opening and closing the switch. When the switch is closed, it is connected to both the high resistance part and the conduction part, but the inspection AC wave flows through the conduction part having a low resistance. On the other hand, when the switch is opened, the conduction part is cut and the inspection AC wave flows through the high resistance part. With such a configuration, at the start of inspection, switching to a high resistance portion is performed to prevent arrival of a pulse wave, and thereafter switching to a conduction portion is performed to disconnect unnecessary high resistance portions from the circuit. Therefore, during inspection, the minimum value of the impedance of the solar cell panel can be appropriately calculated, and a correct inspection result can be obtained.
 本発明に係る太陽電池パネルの検査装置において、
 前記周波数変更部は、前記交流波入力部の周波数を50~2500kHzの範囲で変更することが好ましい。
In the solar cell panel inspection apparatus according to the present invention,
The frequency changing unit preferably changes the frequency of the AC wave input unit in a range of 50 to 2500 kHz.
 本構成の太陽電池パネルの検査装置は、交流波入力部の周波数を上記の範囲内で変更するため、太陽電池パネルの直列(または並列)接続による周波数特性の変化をカバーし、C成分とL成分との影響を相殺しながら、太陽電池パネルのインピーダンスの最小値を確実に算出することができる。 Since the inspection device for the solar cell panel of this configuration changes the frequency of the AC wave input unit within the above range, the change in frequency characteristics due to the series (or parallel) connection of the solar cell panels is covered, and the C component and L The minimum value of the impedance of the solar cell panel can be reliably calculated while offsetting the influence of the components.
 本発明に係る太陽電池パネルの検査装置において、
 前記太陽電池パネルは接続箱に集約するように配線され、前記交流波入力部及び前記交流波計測部は、前記接続箱を介して前記太陽電池パネルに接続されていることが好ましい。
In the solar cell panel inspection apparatus according to the present invention,
It is preferable that the solar cell panel is wired so as to be collected in a connection box, and the AC wave input unit and the AC wave measurement unit are connected to the solar cell panel via the connection box.
 上記にて説明したように、太陽電池パネルは屋外の高所に設置されているため、作業員が検査機器を太陽電池パネルに近づけて行う検査には危険が伴う場合がある。この点、本構成の太陽電池パネルの検査装置は、上記のように接続箱を介して交流波を入力し、減衰交流波を計測する構成であるため、当該接続箱にて検査対象の太陽電池パネルについて欠陥の有無を容易に確認することができる。従って、作業員の負担を軽減し、欠陥検査の作業効率を向上させることができる。 As described above, since the solar cell panel is installed at a high altitude outdoors, there is a risk that the inspection performed by the worker close to the solar cell panel may be dangerous. In this respect, the solar cell panel inspection apparatus of this configuration is configured to input an AC wave through the connection box and measure the attenuated AC wave as described above, and therefore, the solar cell to be inspected in the connection box The panel can be easily checked for defects. Therefore, the burden on the worker can be reduced and the work efficiency of defect inspection can be improved.
 上記課題を解決するための本発明に係る太陽電池パネルの検査方法の特徴構成は、
 検査対象の太陽電池パネルに検査交流波を入力する交流波入力工程と、
 前記太陽電池パネルから戻ってくる減衰交流波を計測する交流波計測工程と、
 前記検査交流波と前記減衰交流波とに基づいて前記太陽電池パネルのインピーダンスを算出する演算工程と、
 前記検査交流波の周波数を変更する周波数変更工程と、
 前記太陽電池パネルの状態を判定する判定工程と、
を包含し、
 前記周波数変更工程において、前記太陽電池パネルのインピーダンスが最小値となるように前記検査交流波の周波数を変更し、
 前記判定工程において、前記最小値を参照値と比較し、前記太陽電池パネルの状態を判定することにある。
The characteristic configuration of the method for inspecting a solar cell panel according to the present invention for solving the above problems is as follows.
AC wave input process for inputting inspection AC wave to the solar cell panel to be inspected,
AC wave measuring step of measuring the attenuated AC wave returning from the solar cell panel,
A calculation step of calculating an impedance of the solar cell panel based on the inspection AC wave and the attenuated AC wave;
A frequency changing step for changing the frequency of the inspection AC wave;
A determination step of determining the state of the solar cell panel;
Including
In the frequency changing step, the frequency of the inspection AC wave is changed so that the impedance of the solar cell panel becomes a minimum value,
In the determination step, the minimum value is compared with a reference value to determine the state of the solar cell panel.
 本構成の太陽電池パネルの検査方法は、上記の太陽電池パネルの検査装置を利用して太陽電池パネルの欠陥検査を行うため、検査の精度や作業効率の向上を実現することができる。 Since the solar cell panel inspection method of this configuration performs defect inspection of the solar cell panel using the solar cell panel inspection device described above, it is possible to improve inspection accuracy and work efficiency.
図1は、太陽電池パネルに関する説明図であり、(a)は太陽電池パネルの概略構成図であり、(b)は太陽電池パネルの等価回路図である。FIG. 1 is an explanatory diagram regarding a solar cell panel, (a) is a schematic configuration diagram of the solar cell panel, and (b) is an equivalent circuit diagram of the solar cell panel. 図2は、本発明に係る太陽電池パネルの検査装置に関する説明図であり、(a)は太陽電池パネルに交流波を入力したときの交流波の流れを示す図であり、(b)は(a)から導かれる実質的な等価回路図である。FIG. 2 is an explanatory diagram relating to a solar cell panel inspection apparatus according to the present invention. FIG. 2 (a) is a diagram showing the flow of AC waves when AC waves are input to the solar cell panel, and FIG. It is a substantial equivalent circuit diagram derived from a). 図3は、太陽電池パネルの接続枚数別に計測した周波数とインピーダンスとの関係を示すグラフである。FIG. 3 is a graph showing the relationship between the frequency and impedance measured according to the number of connected solar battery panels. 図4は、太陽電池パネルの検査装置の概略構成図である。FIG. 4 is a schematic configuration diagram of a solar cell panel inspection apparatus. 図5は、太陽電池パネルの検査装置に関する回路図である。FIG. 5 is a circuit diagram relating to a solar cell panel inspection apparatus. 図6は、太陽電池パネルの検査装置が実行する演算に関する回路図である。FIG. 6 is a circuit diagram relating to calculations executed by the solar cell panel inspection apparatus. 図7は、太陽電池パネルの検査装置を用いて実施する太陽電池パネルの検査方法のフローチャートである。FIG. 7 is a flowchart of a solar cell panel inspection method performed using a solar cell panel inspection apparatus.
 以下、本発明の太陽電池パネルの検査装置、及び太陽電池パネルの検査方法に関する実施形態を、図1~図7に基づいて説明する。ただし、本発明は、以下に説明する実施形態や図面に記載される構成に限定されることを意図しない。 Hereinafter, an embodiment relating to a solar cell panel inspection apparatus and a solar cell panel inspection method of the present invention will be described with reference to FIGS. However, the present invention is not intended to be limited to the configurations described in the embodiments and drawings described below.
<太陽電池パネルの検査装置>
 初めに、本発明の太陽電池パネルの検査装置を開発するにあたり、本発明者は太陽電池パネルの構成及び等価回路について以下のような考察をした。これについて図1に基づいて説明する。
<Inspection device for solar panel>
First, in developing the solar cell panel inspection apparatus according to the present invention, the present inventor has considered the following configuration and equivalent circuit of the solar cell panel. This will be described with reference to FIG.
[太陽電池パネルの等価回路]
 図1は、太陽電池パネルMに関する説明図である。図1(a)は、太陽電池パネルMの概略構成図である。太陽電池パネルMは複数のセルSが直列に接続された太陽電池モジュールとして構成され、太陽電池パネルMどうしも所望の枚数が直列に接続される。図1(a)では4枚の太陽電池パネルMを例示している。夫々の太陽電池パネルMを構成するセルSは、負の電荷を有する電子を多く含むn型半導体と、正の電荷を有するホールを多く含むp型半導体とが接合されたものである。ホールがn型半導体に入ると電子と結合する。これと同様に、電子がp型半導体に入るとホールと結合する。このように、n型半導体とp型半導体とが接合した際、接合面では電子もホールもない空乏層と呼ばれる領域が形成される。この空乏層には電界が生じており、空乏層に太陽光が入射すると光が半導体に吸収されて電子とホールが生じ、これらが電界で押し出されることにより外部回路へ電流として流れる。この一連の仕組みが発電である。太陽電池パネルMで生成された電流は直流であり、電気として利用するためには交流に変換する必要がある。図1(a)に示すように、太陽電池パネルMの各配線は接続箱1に集約されており、接続箱1はさらにパワーコンディショナー2に接続されている。太陽電池パネルMで発電された直流は、パワーコンディショナー2によって交流に変換され、工場、オフィス、住居等で電力として利用される。
[Equivalent circuit of solar panel]
FIG. 1 is an explanatory diagram relating to the solar cell panel M. FIG. FIG. 1A is a schematic configuration diagram of a solar cell panel M. FIG. The solar cell panel M is configured as a solar cell module in which a plurality of cells S are connected in series, and a desired number of solar cell panels M are connected in series. FIG. 1A illustrates four solar cell panels M. Each cell S constituting each solar cell panel M is formed by joining an n-type semiconductor containing many negatively charged electrons and a p-type semiconductor containing many positively charged holes. When holes enter the n-type semiconductor, they combine with electrons. Similarly, when electrons enter the p-type semiconductor, they combine with holes. Thus, when the n-type semiconductor and the p-type semiconductor are joined, a region called a depletion layer having no electrons or holes is formed on the joint surface. An electric field is generated in the depletion layer. When sunlight enters the depletion layer, the light is absorbed by the semiconductor to generate electrons and holes, which are pushed out by the electric field and flow as current to the external circuit. This series of mechanisms is power generation. The current generated by the solar cell panel M is a direct current, and it is necessary to convert it into an alternating current in order to use it as electricity. As shown in FIG. 1A, each wiring of the solar cell panel M is concentrated in the connection box 1, and the connection box 1 is further connected to the power conditioner 2. The direct current generated by the solar cell panel M is converted into alternating current by the power conditioner 2 and used as power in factories, offices, residences, and the like.
 図1(b)は、太陽電池パネルMを構成する1枚のセルSにおける等価回路図である。太陽電池パネルM全体の構成は上記のとおりであるが、電気回路図で考えた場合、太陽電池パネルMを構成する1枚のセルSは、図1(b)に示すように定電流源(I成分)、並列ダイオード(D成分)、直列抵抗(Rs成分)、及び並列抵抗(Rsh成分)の組み合わせで表すことができる。太陽電池パネルMはセルSを直列に接続したモジュール構造をしているが、図1(b)に示す等価回路がセルSの枚数だけ直列に接続したものと考えることができる。従って、太陽電池モジュールの等価回路図は、直列抵抗等の各成分の値は変わるものの、セルSが1枚のときと同様に図1(b)の等価回路図として表すことができる。 FIG. 1B is an equivalent circuit diagram of one cell S constituting the solar battery panel M. Although the configuration of the entire solar cell panel M is as described above, when considered in terms of an electric circuit diagram, a single cell S constituting the solar cell panel M has a constant current source ( I component), parallel diode (D component), series resistance (Rs component), and parallel resistance (Rsh component). Although the solar cell panel M has a module structure in which the cells S are connected in series, it can be considered that the equivalent circuit shown in FIG. Accordingly, the equivalent circuit diagram of the solar cell module can be expressed as the equivalent circuit diagram of FIG. 1B, as in the case of one cell S, although the values of each component such as series resistance change.
 図2は、本発明に係る太陽電池パネルMの検査装置に関する説明図である。図2(a)は、太陽電池パネルMに交流波を入力したときの交流波の流れを示す図である。図2(b)は、図2(a)から導かれる実質的な等価回路図である。上記のとおり、セルS内には空乏層が形成され電界が生じている。ここに交流波を入力すると、交流波は空乏層を電荷が蓄えられるコンデンサとして捉えるため、図2(a)に示すように、等価回路図には容量性リアクタンス(C成分)を表記することができる。そして、図2(a)中の矢印で示すように、交流波は並列抵抗(Rsh成分)を通らず、電気容量の大きいコンデンサを通る。つまり、図2(a)において、実線で示してある部分の誘導性リアクタンス(L成分)、直列抵抗(Rs成分)、及び容量性リアクタンス(C成分)を通ることとなる。従って、図2(b)に示すように、太陽電池パネルMに交流波を入力した場合の等価回路図は、実質的には直列抵抗(Rs成分)と誘導性リアクタンス(L成分)と容量性リアクタンス(C成分)とで表される等価回路図となる。 FIG. 2 is an explanatory diagram relating to the inspection device for the solar cell panel M according to the present invention. FIG. 2A is a diagram illustrating the flow of an AC wave when the AC wave is input to the solar cell panel M. FIG. FIG. 2B is a substantial equivalent circuit diagram derived from FIG. As described above, a depletion layer is formed in the cell S and an electric field is generated. When an AC wave is input here, the AC wave captures the depletion layer as a capacitor that can store electric charge. Therefore, as shown in FIG. 2A, a capacitive reactance (C component) may be written in the equivalent circuit diagram. it can. And as shown by the arrow in Fig.2 (a), an alternating current wave does not pass parallel resistance (Rsh component), but passes a capacitor | condenser with a large electrical capacitance. That is, in FIG. 2A, the inductive reactance (L component), the series resistance (Rs component), and the capacitive reactance (C component) shown by the solid line are passed. Therefore, as shown in FIG. 2B, the equivalent circuit diagram when an AC wave is input to the solar cell panel M is substantially a series resistance (Rs component), inductive reactance (L component), and capacitive. This is an equivalent circuit diagram represented by reactance (C component).
 図2(b)のような等価回路図で表されるとき、Zをインピーダンス(Ω)、Rを抵抗(Ω)、ωを角周波数(rad/s)とすると、次の式(1)が成り立つ。 When expressed as an equivalent circuit diagram as shown in FIG. 2B, when Z is impedance (Ω), R is resistance (Ω), and ω is angular frequency (rad / s), the following equation (1) is obtained. It holds.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)において、角周波数ωは次の式(2)を意味する。 In the equation (1), the angular frequency ω means the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(1)において、ωLと1/ωCとが等しくなるようにω(すなわち、周波数f)の値を選択すれば、インピーダンスZは最小値となり、且つ抵抗Rの値と等しくなる。ここで、太陽電池パネルMに欠陥が存在すると、抵抗Rの値は欠陥が存在しない場合より大きくなる。そこで、本発明者らは、このインピーダンスZの最小値を算出することにより、太陽電池パネルMの欠陥の有無、及び当該欠陥が太陽電池パネルMの断線(異常状態)によるものか、又は劣化によるものかを判定することができる装置、及び検査方法を開発した。つまり、先ず欠陥が存在しない太陽電池パネルMについて、周波数fを変更しながら式(1)及び式(2)によりインピーダンスZの最小値を算出し、これを判定の基準となる参照値とする。次に、検査対象の太陽電池パネルMに対して、上記と同様に周波数fを変更しながらインピーダンスZの最小値を算出する。そして、この最小値と参照値とを比較することによって、太陽電池パネルMの欠陥の有無等を発見するものである。 In Equation (1), if the value of ω (that is, frequency f) is selected so that ωL and 1 / ωC are equal, impedance Z becomes the minimum value and equal to the value of resistance R. Here, if there is a defect in the solar cell panel M, the value of the resistance R becomes larger than when there is no defect. Therefore, the present inventors calculate the minimum value of the impedance Z to determine whether there is a defect in the solar cell panel M and whether the defect is due to disconnection (abnormal state) of the solar cell panel M or due to deterioration. We have developed a device that can determine whether it is a thing and an inspection method. That is, first, with respect to the solar cell panel M having no defect, the minimum value of the impedance Z is calculated by the equations (1) and (2) while changing the frequency f, and this is used as a reference value as a criterion for determination. Next, the minimum value of the impedance Z is calculated for the solar cell panel M to be inspected while changing the frequency f in the same manner as described above. And the presence or absence of the defect of the solar cell panel M is discovered by comparing this minimum value with a reference value.
 図3は、太陽電池パネルの接続枚数別に計測した周波数とインピーダンスとの関係を示すグラフである。太陽電池パネルMは、通常、複数のセルSが直列に接続されてモジュール化した構成となっている。そのため、角周波数ω(すなわち、周波数f)とインピーダンスZとの関係を実際の太陽電池パネルの製品に適用できるのかを確認する必要がある。そこで、本発明者らは、太陽電池パネルの接続枚数毎に周波数特性の測定を行った。周波数特性の測定は、太陽電池パネルを1~6枚、及び10枚接続した太陽電池モジュールについて行った。また、参考のため、太陽電池パネルを接続するケーブルのみ(すなわち、太陽電池パネルの接続枚数が0枚のもの)についても同様の測定を行った。周波数を低周波数から高周波数に徐々に上げていくと、図3に示された何れのグラフも、初期においてインピーダンスが急激に下降し、その後は、インピーダンスの下降が収まるか、あるいは上昇に転じた。インピーダンスの上昇は、太陽電池パネルの接続枚数が多いものほど急激であった。このような現象は、インピーダンスが下降しているときは、式(1)において、モジュール化によるC成分の影響が大きく関与していると考えられる。そして、ある周波数を境とするインピーダンスの下降の収束又は上昇は、モジュール化によるL成分の影響が大きく関与していると考えられる。従って、C成分とL成分とがつり合うような周波数を選択した場合、C成分及びL成分の両者の影響を抑えることができ、その結果としてインピーダンスは最小値となる。具体的に図3のグラフを検討すると、パネルの枚数が1枚の場合、周波数が450kHz付近までは、インピーダンスが急激に小さくなり、500kHz付近からなだらかな曲線を描きながらインピーダンスが徐々に上昇していることが分かる。このため、太陽電池パネルをモジュール化していない1枚の場合では、インピーダンスの最小値は判別が困難である。太陽電池パネルを2枚接続してモジュール化した場合は、1枚のときと同様に周波数が500kHz付近になると徐々にインピーダンスが上昇していくが、上昇率は1枚のときよりも大きくなる。さらに、太陽電池パネルの枚数が3枚、4枚と増加していくにつれて、急激なインピーダンスの下降から周波数が300~400kHzを境として右上がりに大きく上昇していく様子が分かる。そして、太陽電池パネルの接続枚数が4枚からは、インピーダンスの最小値の判別が容易となり、太陽電池パネルの接続枚数が6枚以上になると、インピーダンスの最小値を明確に判別することができる。このように、本発明の検査装置では、太陽電池パネルの接続枚数が増加する、つまり、太陽電池モジュール構造が増加するにつれて、インピーダンスの最小値を明確に算出することができ、その値から太陽電池パネルの状態(欠陥の有無等)を判別することができる。従って、本発明の太陽電池パネルMの検査装置であれば、複数の太陽電池セルSが直列接続されて構成される太陽電池モジュールに対して好適に高精度な検査を実施することができる。
 以下、本発明に係る太陽電池パネルMの検査装置100について説明する。
FIG. 3 is a graph showing the relationship between the frequency and impedance measured according to the number of connected solar battery panels. The solar cell panel M is usually configured by modularizing a plurality of cells S connected in series. Therefore, it is necessary to confirm whether the relationship between the angular frequency ω (that is, the frequency f) and the impedance Z can be applied to an actual solar cell panel product. Therefore, the present inventors measured the frequency characteristics for each number of connected solar cell panels. The frequency characteristics were measured for 1 to 6 solar cell panels and 10 solar cell modules connected. For reference, the same measurement was performed for only the cable connecting the solar cell panels (that is, the number of connected solar cell panels was 0). When the frequency is gradually increased from a low frequency to a high frequency, in all the graphs shown in FIG. 3, the impedance rapidly decreases in the initial stage, and thereafter, the decrease in impedance stops or starts to increase. . The increase in impedance was more rapid as the number of connected solar cell panels was larger. Such an effect is considered that the influence of the C component due to modularization is greatly involved in the equation (1) when the impedance is decreasing. And it is thought that the influence of the L component by modularization is largely concerned in the convergence or rise of the fall of the impedance which borders on a certain frequency. Therefore, when a frequency that balances the C component and the L component is selected, the influence of both the C component and the L component can be suppressed, and as a result, the impedance becomes the minimum value. Specifically, when examining the graph of FIG. 3, when the number of panels is one, the impedance decreases rapidly until the frequency is around 450 kHz, and the impedance gradually rises while drawing a gentle curve from around 500 kHz. I understand that. For this reason, in the case of a single solar cell panel that is not modularized, it is difficult to determine the minimum impedance value. When two solar cell panels are connected to form a module, the impedance gradually increases as the frequency approaches 500 kHz as in the case of a single panel, but the rate of increase is greater than that of a single panel. Furthermore, it can be seen that as the number of solar cell panels increases from 3 to 4, the frequency greatly increases to the right from 300 to 400 kHz as a result of a sudden drop in impedance. When the number of connected solar cell panels is four, the minimum impedance value can be easily determined. When the number of connected solar cell panels is six or more, the minimum impedance value can be clearly determined. Thus, in the inspection apparatus of the present invention, the minimum impedance value can be clearly calculated as the number of connected solar cell panels increases, that is, the solar cell module structure increases, and the solar cell is calculated from the value. The state of the panel (such as the presence or absence of defects) can be determined. Therefore, if it is a test | inspection apparatus of the solar cell panel M of this invention, a highly accurate test | inspection can be implemented suitably with respect to the solar cell module comprised by connecting the several photovoltaic cell S in series.
Hereinafter, the inspection apparatus 100 for the solar cell panel M according to the present invention will be described.
[太陽電池パネルの検査装置の構成]
 図4は、本発明に係る太陽電池パネルMの検査装置100(以下、「検査装置100」と称する。)の概略構成図である。図5は、太陽電池パネルMの検査装置100に関する回路図である。図4に示すように、検査装置100は、接続箱1に接続されており、太陽電池パネルMに欠陥検査のための交流波を入力する交流波入力部10と、太陽電池パネルMから戻ってくる減衰交流波を計測する交流波計測部20と、交流波入力部10において入力する検査交流波の周波数を変更する周波数変更部30と、太陽電池パネルMのインピーダンスを算出する演算部40と、演算部40によって算出されたインピーダンスから太陽電池パネルMの状態を判定する判定部50とから構成されている。ここで、図4で示すように、検査装置100における交流波入力部10と交流波計測部20とは、接続箱1を介して太陽電池パネルMに接続されている。太陽電池パネルMは屋外の高所に設置されているため、作業員が検査機器を用いて行う検査には危険や負担が伴う。しかし、上記のような構成であれば、作業員が行う検査の前に予め接続箱1を介して太陽電池パネルMの状態を容易に確認することができる。このため、作業員は真に検査の必要な太陽電池パネルMを知ることができ、さらに、欠陥原因に応じた適切な修理の準備を行い、速やかに対処することができる。その結果、作業員の危険や負担が軽減し、検査の効率を向上させることができる。
[Configuration of inspection device for solar cell panel]
FIG. 4 is a schematic configuration diagram of an inspection apparatus 100 (hereinafter referred to as “inspection apparatus 100”) for solar cell panel M according to the present invention. FIG. 5 is a circuit diagram relating to the inspection apparatus 100 for the solar battery panel M. As shown in FIG. 4, the inspection apparatus 100 is connected to the connection box 1 and returns from the solar cell panel M to the AC wave input unit 10 that inputs an AC wave for defect inspection to the solar cell panel M. An AC wave measuring unit 20 that measures the damped AC wave, a frequency changing unit 30 that changes the frequency of the test AC wave that is input in the AC wave input unit 10, an arithmetic unit 40 that calculates the impedance of the solar cell panel M, It is comprised from the determination part 50 which determines the state of the solar cell panel M from the impedance calculated by the calculating part 40. FIG. Here, as shown in FIG. 4, the AC wave input unit 10 and the AC wave measurement unit 20 in the inspection apparatus 100 are connected to the solar cell panel M via the connection box 1. Since the solar cell panel M is installed at an outdoor high place, the inspection performed by the worker using the inspection device involves danger and burden. However, if it is the above structures, the state of the solar cell panel M can be easily confirmed in advance through the connection box 1 before the inspection performed by the worker. For this reason, the worker can know the solar cell panel M that really needs to be inspected, and can prepare for the appropriate repair according to the cause of the defect, and can quickly cope with it. As a result, the danger and burden on the worker can be reduced, and the inspection efficiency can be improved.
〔交流波入力部、交流波計測部〕
 太陽電池パネルMの欠陥検査のため、交流波入力部10は、太陽電池パネルMに周波数fの交流波(これを、「検査交流波f」と称する。)を入力する。検査交流波fは、図2(b)に示す等価回路を通るが、このとき、抵抗(Rs成分)によっていくらか減衰する。この減衰した交流波を検査交流波fに対して減衰交流波gと称する。交流波計測部20は、太陽電池パネルMから戻ってくる減衰交流波gを計測する。検査交流波f及び減衰交流波gは、インピーダンスZの演算に利用される。上記で説明したように、太陽電池パネルMは光エネルギーを受けて直流電流を生成し、直流はパワーコンディショナー2によって交流に変換される。交流波入力部10から太陽電池パネルMに検査交流波fを適切に入力し、交流波計測部20によって太陽電池パネルMから戻ってくる減衰交流波gを正しく計測するためには、太陽電池パネルMが生成する直流を排除する必要がある。そこで、本構成の検査装置100では、図5に示すように、交流波入力部10及び交流波計測部20を、太陽電池パネルMの発電電圧より大きい耐電圧を有するコンデンサC1,C2を夫々介して、太陽電池パネルMに接続する構成を採用している。これにより、太陽電池パネルMが発電した直流はコンデンサC1,C2によってカットされるため、減衰交流波gを正しく計測することが可能となる。
[AC wave input unit, AC wave measurement unit]
For defect inspection of the solar cell panel M, the AC wave input unit 10 inputs an AC wave of frequency f (referred to as “inspection AC wave f”) to the solar cell panel M. The inspection AC wave f passes through the equivalent circuit shown in FIG. 2B, but at this time, it is somewhat attenuated by the resistance (Rs component). This attenuated AC wave is referred to as an attenuated AC wave g with respect to the inspection AC wave f. The AC wave measurement unit 20 measures the attenuated AC wave g returning from the solar cell panel M. The inspection AC wave f and the attenuated AC wave g are used for the calculation of the impedance Z. As described above, the solar cell panel M receives light energy to generate a direct current, and the direct current is converted into an alternating current by the power conditioner 2. In order to properly input the inspection AC wave f from the AC wave input unit 10 to the solar cell panel M and correctly measure the attenuated AC wave g returned from the solar cell panel M by the AC wave measuring unit 20, the solar cell panel It is necessary to exclude the direct current generated by M. Therefore, in the inspection apparatus 100 of this configuration, as shown in FIG. 5, the AC wave input unit 10 and the AC wave measurement unit 20 are respectively connected via capacitors C <b> 1 and C <b> 2 having a higher withstand voltage than the power generation voltage of the solar cell panel M. Thus, a configuration for connecting to the solar cell panel M is adopted. Thereby, since the direct current generated by the solar panel M is cut by the capacitors C1 and C2, it is possible to correctly measure the attenuated alternating wave g.
 また、太陽電池パネルMに検査装置100を接続すると、その瞬間に高電圧のパルス波が検査装置100の交流波入力部10及び交流波計測部20に伝達され、検査装置100の故障を招く場合がある。そこで、図5の点線枠で囲んだ部分で示すように、本発明の検査装置100においては、コンデンサC1,C2の前段に高抵抗部60を含む遮断回路70を設けることによって、パルス波の衝撃による交流波入力部10及び交流波計測部20の破損を防止している。一方、このようなパルス波は、太陽電池パネルMに検査装置100を接続した瞬間にのみ生じる現象である。そのため、検査開始時のみパルス波を回避すればよく、パルス波の回避後は遮断回路70の高抵抗部60は不要となる。そこで、検査装置100では図5に示すように、遮断回路70は、高抵抗部60又は高抵抗部60が存在しない導通部のどちらかに接続することができるよう、切り替え可能なスイッチ回路として構成されている。このように、検査装置100は、検査開始時に高抵抗部60に接続してパルス波の到来を防止した後、導通部に接続するよう変更して不要な高抵抗部60を回路から切り離すことができる。従って、検査中は太陽電池パネルMのインピーダンスZの値を適切に算出することができ、正しい検査結果を得ることができる。 Further, when the inspection device 100 is connected to the solar cell panel M, a high-voltage pulse wave is transmitted to the AC wave input unit 10 and the AC wave measurement unit 20 of the inspection device 100 at that moment, leading to a failure of the inspection device 100. There is. Therefore, as shown by the part surrounded by the dotted line frame in FIG. 5, in the inspection apparatus 100 of the present invention, by providing the interruption circuit 70 including the high resistance part 60 in the previous stage of the capacitors C1 and C2, the shock of the pulse wave The AC wave input unit 10 and the AC wave measurement unit 20 are prevented from being damaged. On the other hand, such a pulse wave is a phenomenon that occurs only at the moment when the inspection apparatus 100 is connected to the solar cell panel M. Therefore, it is only necessary to avoid the pulse wave only at the start of the inspection, and the high resistance portion 60 of the cutoff circuit 70 is unnecessary after the avoidance of the pulse wave. Therefore, in the inspection apparatus 100, as shown in FIG. 5, the cutoff circuit 70 is configured as a switch circuit that can be switched so that it can be connected to either the high resistance part 60 or the conduction part where the high resistance part 60 does not exist. Has been. As described above, the inspection apparatus 100 can be connected to the high resistance portion 60 at the start of inspection to prevent the arrival of a pulse wave, and then can be changed to be connected to the conduction portion to disconnect the unnecessary high resistance portion 60 from the circuit. it can. Therefore, during the inspection, the value of the impedance Z of the solar cell panel M can be appropriately calculated, and a correct inspection result can be obtained.
〔周波数変更部〕
 周波数変更部30は、太陽電池パネルMのインピーダンスZが最小値となるように、検査交流波f(周波数fの交流波)を変更する。具体的には、式(1)及び式(2)において、ωLと1/ωCとが等しくなるように周波数fの値を変更させてゆき、ωLと1/ωCとが等しくなったときのインピーダンスZの値を見つけることができれば、抵抗Rの値を得ることができる。そのため、周波数変更部30によって検査交流波f(周波数fの交流波)を調整する。このとき、周波数変更部30は、50~2500kHzの範囲で周波数fを変更する。この範囲であれば、太陽電池パネルMのモジュール化による周波数特性の変化をカバーし、C成分とL成分との影響をコントロールしながら、太陽電池パネルMのインピーダンスZの値を算出し、最終的にインピーダンスZが最小値となる周波数fを特定することができる。
[Frequency changing section]
The frequency changing unit 30 changes the inspection AC wave f (AC wave having the frequency f) so that the impedance Z of the solar cell panel M becomes the minimum value. Specifically, in the equations (1) and (2), the value of the frequency f is changed so that ωL and 1 / ωC are equal, and the impedance when ωL and 1 / ωC are equal. If the value of Z can be found, the value of resistance R can be obtained. Therefore, the inspection AC wave f (AC wave having the frequency f) is adjusted by the frequency changing unit 30. At this time, the frequency changing unit 30 changes the frequency f in the range of 50 to 2500 kHz. Within this range, the change of the frequency characteristics due to the modularization of the solar cell panel M is covered, and the value of the impedance Z of the solar cell panel M is calculated while controlling the influence of the C component and the L component. The frequency f at which the impedance Z becomes the minimum value can be specified.
〔演算部〕
 演算部40は、検査交流波fと減衰交流波gとに基づいて太陽電池パネルMのインピーダンスZの値を算出する。ここで、検査交流波fに対応する電圧をV0とし、減衰交流波gに対応する電圧をV1とし、テスターの抵抗をR1とし、太陽電池パネルMの抵抗をR2とすると、図6に示すような等価回路図で表すことができる。図6に示すように、R1及びR2は直列に接続されているため、以下のような分圧の式が成り立つ。
[Calculation section]
The calculation unit 40 calculates the value of the impedance Z of the solar cell panel M based on the inspection AC wave f and the attenuated AC wave g. Here, when the voltage corresponding to the inspection AC wave f is V0, the voltage corresponding to the attenuated AC wave g is V1, the resistance of the tester is R1, and the resistance of the solar panel M is R2, as shown in FIG. It can be represented by an equivalent circuit diagram. As shown in FIG. 6, since R1 and R2 are connected in series, the following partial pressure equation holds.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式(3)から以下の式(4)を導くことができる。 The following equation (4) can be derived from equation (3).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(4)において、V0は交流波入力部10から検査交流波fを入力する際に設定される電圧であり、V1は交流波計測部20により計測される減衰交流波gの電圧であり、R1は既知であるから、式(4)にV0、V1、及びR1を代入すれば、太陽電池パネルMの抵抗R2の値を算出することができる。ここで、式(4)における抵抗R2は太陽電池パネルMの抵抗を意味するから、式(1)における抵抗Rに相当する。そして、上記にて説明したように、式(1)及び(2)に基づいて、周波数変更部30によりωLと1/ωCとが等しくなるように周波数fの値を変更してゆき、その都度、インピーダンスZの値が算出され、最終的にインピーダンスZの最小値を算出することができる。演算部40によって算出されたインピーダンスZの最小値は判定部50で使用されるため、例えば、メモリやハードディスク等にデータとして記憶される。 In Formula (4), V0 is a voltage set when the inspection AC wave f is input from the AC wave input unit 10, and V1 is a voltage of the attenuated AC wave g measured by the AC wave measurement unit 20, Since R1 is known, the value of the resistance R2 of the solar cell panel M can be calculated by substituting V0, V1, and R1 into Equation (4). Here, the resistance R2 in Expression (4) means the resistance of the solar cell panel M, and therefore corresponds to the resistance R in Expression (1). Then, as described above, based on the equations (1) and (2), the frequency changing unit 30 changes the value of the frequency f so that ωL and 1 / ωC are equal to each other. Then, the value of the impedance Z is calculated, and finally the minimum value of the impedance Z can be calculated. Since the minimum value of the impedance Z calculated by the calculation unit 40 is used by the determination unit 50, for example, it is stored as data in a memory, a hard disk, or the like.
〔判定部〕
 判定部50は、演算部40によって算出された太陽電池パネルMのインピーダンスZの最小値と参照値とを比較して太陽電池パネルMの状態を判定する。ここで、参照値とは、欠陥が存在しない太陽電池パネルMに対して、検査装置100によって予め算出されたインピーダンスZの最小値のことである。太陽電池パネルMに欠陥が存在すると、欠陥が存在しない太陽電池パネルMより抵抗値が大きくなる。そのため、演算部40により算出されたインピーダンスZの最小値と参照値とを比較すれば、検査対象の太陽電池パネルMに欠陥が存在するかどうか判別することができる。判定基準としては、例えば、インピーダンスZの最小値が参照値の5倍以上である場合は、太陽電池パネルMは断線状態であり、インピーダンスZの最小値が参照値の5倍未満である場合は、太陽電池パネルMは劣化状態であると判定することができる。なお、この判定の基準となる倍率は一例であり、太陽電池パネルの種類や使用環境等に応じて、5~20倍に設定することができる。このように、判定部50では、単に太陽電池パネルMの欠陥の有無を判定するだけではなく、その欠陥が太陽電池パネルMの断線に起因するものなのか、あるいは劣化に起因するものかまで判定することができる。従って、太陽電池パネルMに直接検査機器を近づけて行う検査に際し、作業員は真に検査の必要な太陽電池パネルMを予め知ることができ、さらに、欠陥原因に応じた適切な修理の準備を行い、速やか対処することができる。その結果、作業員の負担が軽減し、検査効率を向上させることができる。
(Decision part)
The determination unit 50 determines the state of the solar cell panel M by comparing the minimum value of the impedance Z of the solar cell panel M calculated by the calculation unit 40 with the reference value. Here, the reference value is a minimum value of the impedance Z calculated in advance by the inspection apparatus 100 for the solar cell panel M in which no defect exists. When a defect exists in the solar cell panel M, the resistance value becomes larger than that of the solar cell panel M in which no defect exists. Therefore, if the minimum value of the impedance Z calculated by the calculation unit 40 is compared with the reference value, it is possible to determine whether or not there is a defect in the solar cell panel M to be inspected. As a determination criterion, for example, when the minimum value of the impedance Z is 5 times or more of the reference value, the solar cell panel M is in a disconnected state, and when the minimum value of the impedance Z is less than 5 times the reference value. It can be determined that the solar cell panel M is in a deteriorated state. Note that the magnification used as a reference for this determination is an example, and it can be set to 5 to 20 times depending on the type of solar cell panel, the usage environment, and the like. As described above, the determination unit 50 not only determines whether or not there is a defect in the solar cell panel M, but also determines whether the defect is due to disconnection of the solar cell panel M or due to deterioration. can do. Therefore, in the inspection performed by bringing the inspection device close to the solar cell panel M, the worker can know in advance the solar cell panel M that really needs to be inspected, and prepare for appropriate repair according to the cause of the defect. Can be done and dealt with promptly. As a result, the burden on the worker can be reduced and the inspection efficiency can be improved.
<太陽電池パネルの検査方法>
 次に、検査装置100を用いた太陽電池パネルMの検査方法(以下、「検査方法」とする。)について説明する。図7は、検査装置100用いて実施する太陽電池パネルMの検査方法のフローチャートである。検査方法は、主に、交流波入力工程、交流波計測工程、演算工程、周波数変更工程、及び判定工程の各工程を経て実施される。なお、以下の検査方法の説明及び図7において、検査方法における各ステップを記号「S」で示してある。
<Solar cell panel inspection method>
Next, an inspection method (hereinafter referred to as “inspection method”) of the solar cell panel M using the inspection apparatus 100 will be described. FIG. 7 is a flowchart of a method for inspecting the solar cell panel M implemented using the inspection apparatus 100. The inspection method is mainly performed through each step of an AC wave input process, an AC wave measurement process, a calculation process, a frequency change process, and a determination process. In the following description of the inspection method and FIG. 7, each step in the inspection method is indicated by the symbol “S”.
[検査装置の配置設定]
 検査装置100を用いて太陽電池パネルMの欠陥検査を行うにあたり、検査装置100の各構成要素を適切に配置し、太陽電池パネルMに接続する。検査装置100は交流波入力部10及び交流波計測部20を太陽電池パネルMに接続箱1を介して接続する。ここで、太陽電池パネルMによる直流は交流に変換されるため、単に交流波入力部10から検査交流波fを入力すると、減衰交流波gを正しく計測することができず、太陽電池パネルMの検査に支障を来す虞がある。そのため、図5に示すように、交流波入力部10及び交流波計測部20と、太陽電池パネルMとの間に太陽電池パネルMの発電電圧より大きい耐電圧を有するコンデンサC1,C2を配置する。これにより、太陽電池パネルMの発電による直流をカットできるため、減衰交流波gを正しく計測することができる。
 また、検査開始時に発生するパルス波による交流波入力部10及び交流波計測部20の故障を防止するため、図5に示すように上記にて配置したコンデンサC1,C2の前段にスイッチによって高抵抗部60と導通部とを切り替え可能とする遮断回路70を設ける(図5において、点線枠で囲まれた部分である。)。
[Inspection device layout settings]
When performing a defect inspection of the solar cell panel M using the inspection device 100, each component of the inspection device 100 is appropriately arranged and connected to the solar cell panel M. The inspection apparatus 100 connects the AC wave input unit 10 and the AC wave measurement unit 20 to the solar cell panel M through the connection box 1. Here, since direct current by the solar cell panel M is converted into alternating current, if the inspection AC wave f is simply input from the AC wave input unit 10, the attenuated AC wave g cannot be measured correctly, and the solar cell panel M There is a risk of hindering the inspection. Therefore, as shown in FIG. 5, capacitors C <b> 1 and C <b> 2 having a higher withstand voltage than the power generation voltage of the solar cell panel M are arranged between the AC wave input unit 10 and the AC wave measurement unit 20 and the solar cell panel M. . Thereby, since the direct current | flow by the electric power generation of the solar cell panel M can be cut, the attenuation | damping alternating current wave g can be measured correctly.
Further, in order to prevent a failure of the AC wave input unit 10 and the AC wave measuring unit 20 due to a pulse wave generated at the start of the inspection, a high resistance is provided by a switch in front of the capacitors C1 and C2 arranged as shown in FIG. A cutoff circuit 70 is provided that enables switching between the part 60 and the conduction part (in FIG. 5, a part surrounded by a dotted frame).
[検査開始~導通部接続(S0~S3)]
 上記のように検査装置100の各構成要素を適切に配置した後、太陽電池パネルMに対して欠陥検査を開始する(S0)。
 先ず、交流波入力部10と交流波計測部20とを太陽電池パネルMに接続するが、検査開始時にこれらを太陽電池パネルMに直接接続すると、高電圧のパルス波が交流波入力部10及び交流波計測部20に到来し、その衝撃で検査装置100が破損する虞がある。そのため、図5の点線枠にて示した遮断回路70において、スイッチを開いて高抵抗部60側のみを導通させた高抵抗部接続状態にする(S1)。一方、パルス波は検査開始時のみに生じる現象であるため、高抵抗部60によってパルス波を処理した後は、回路を高抵抗部60側に導通状態のままにしておく必要はない。そのため、パルス波の処理が完了したかどうかを判断し(S2)、パルス波の処理が完了した後は(S2;YES)、図5の点線枠にて示した遮断回路70のスイッチを閉じる。そうすると、抵抗値が小さい導通部側を電流が流れる導通部接続状態となる(S3)。ステップ2において、パルス波の処理がまだ完了していない場合は(S2;NO)、高抵抗部60側への接続を継続する(S1)。このように、ステップ0~3を実行することで、太陽電池パネルMの検査を実施する準備を整える。
[Inspection start-conduction part connection (S0 to S3)]
After appropriately disposing each component of the inspection apparatus 100 as described above, a defect inspection is started on the solar cell panel M (S0).
First, the AC wave input unit 10 and the AC wave measurement unit 20 are connected to the solar cell panel M. When these are directly connected to the solar cell panel M at the start of inspection, a high-voltage pulse wave is generated by the AC wave input unit 10 and There is a possibility that the inspection apparatus 100 may be damaged by the impact when it arrives at the AC wave measurement unit 20. Therefore, in the cutoff circuit 70 shown by the dotted frame in FIG. 5, the switch is opened to bring the high resistance portion 60 into a high resistance portion connection state (S1). On the other hand, since the pulse wave is a phenomenon that occurs only at the start of the inspection, it is not necessary to leave the circuit in the conductive state on the high resistance portion 60 side after processing the pulse wave by the high resistance portion 60. Therefore, it is determined whether or not the processing of the pulse wave is completed (S2), and after the processing of the pulse wave is completed (S2; YES), the switch of the cutoff circuit 70 shown by the dotted frame in FIG. 5 is closed. Then, it will be in the conduction | electrical_connection part connection state in which an electric current flows through the conduction | electrical_connection part side with small resistance value (S3). In step 2, when the pulse wave processing is not yet completed (S2; NO), the connection to the high resistance portion 60 side is continued (S1). In this way, by performing steps 0 to 3, preparations for inspecting the solar cell panel M are made.
[交流波入力工程(S4)]
 次に、交流波入力部10から太陽電池パネルMに検査交流波fを入力する(S4)。検査装置100は、式(1)に基づいてインピーダンスZの最小値を得ることが目的である。図3に示すように、太陽電池パネルの接続枚数別に計測した周波数特性のグラフから、インピーダンスZの最小値はグラフの極小値であることが分かる。そのため、検査交流波fの入力は、低周波数から徐々に高周波数へシフトする方向とすることが好ましい。このように入力することで、周波数特性のグラフの極小値となる点、すなわち、インピーダンスZの最小値を効率良く得ることができる。ステップ4を交流波入力工程とする。
[AC wave input process (S4)]
Next, the inspection AC wave f is input from the AC wave input unit 10 to the solar cell panel M (S4). The purpose of the inspection apparatus 100 is to obtain the minimum value of the impedance Z based on the equation (1). As shown in FIG. 3, it can be seen from the graph of frequency characteristics measured for each number of connected solar cell panels that the minimum value of impedance Z is the minimum value of the graph. Therefore, it is preferable that the input of the inspection AC wave f is a direction that gradually shifts from a low frequency to a high frequency. By inputting in this way, the minimum value of the graph of the frequency characteristic, that is, the minimum value of the impedance Z can be obtained efficiently. Step 4 is an AC wave input process.
[交流波計測工程(S5)]
 ステップ4において交流波入力部10から太陽電池パネルMに入力された検査交流波fは、太陽電池パネルMの抵抗成分(図2(b)に示される等価回路図において、Rsに相当する。)の影響により減衰され、減衰交流波gとして太陽電池パネルMから戻ってくる。このときの減衰交流波gを交流波計測部20によって計測する(S5)。太陽電池パネルMに欠陥が存在する場合、この抵抗成分の影響が大きくなるため、減衰交流波gを計測して後で説明する演算工程及び判定工程を実行することにより、太陽電池パネルMの状態を判定することができる。ステップ5を交流波計測工程とする。
[AC wave measurement process (S5)]
The inspection AC wave f input to the solar cell panel M from the AC wave input unit 10 in step 4 corresponds to the resistance component of the solar cell panel M (corresponding to Rs in the equivalent circuit diagram shown in FIG. 2B). And is returned from the solar cell panel M as an attenuated AC wave g. The attenuation AC wave g at this time is measured by the AC wave measurement unit 20 (S5). When there is a defect in the solar cell panel M, the influence of this resistance component becomes large. Therefore, the state of the solar cell panel M is measured by measuring the damped AC wave g and executing a calculation process and a determination process described later. Can be determined. Step 5 is an AC wave measurement process.
[演算工程(S6~S7)]
 次に、検査交流波fと減衰交流波gとに基づいて、演算部40によって太陽電池パネルMのインピーダンスZの値を算出する(S6)。なお、ステップ6における計算は、n回目としてカウントされる。インピーダンスZは、式(1)~(4)の各計算式に基づいて複数回算出され、算出されたインピーダンスZの値(n回目)は、前回算出されたインピーダンスの値(n-1回目)と比較される(S7)。ステップ6及びステップ7を演算工程とする。ここで、ステップ7について詳細に説明すると、上記で説明したとおり、太陽電池パネルMのインピーダンスZの最小値は、図3に示された周波数特性のグラフから極小値である。従って、例えば、n回目に算出したインピーダンスZの値が、n-1回目に算出したインピーダンスZの値と比較して大きくなっている場合(S7;YES)、n-1回目に算出したインピーダンスZの値が極小値、すなわち、インピーダンスZの最小値であると認定できる。一方、n回目に算出したインピーダンスZの値が、n-1回目に算出したインピーダンスZの値より小さい場合(S7;NO)、インピーダンスZの最小値(極小値)はまだ判明していないため、n+1回目の測定では周波数fをn回目より高く調整し(S8)、検査交流波fを再び交流波入力部10から入力して交流波入力工程(S4)を行う(検査交流波fの周波数を変更する工程(S8)については後で説明する。)。そして、検査交流波fと減衰交流波gとに基づいて演算工程(S6~S7)を実行する。なお、演算工程が初回(n=1)の場合は、そのまま後述の周波数変更工程(S8)に進行する。
[Calculation process (S6 to S7)]
Next, based on the inspection AC wave f and the attenuated AC wave g, the value of the impedance Z of the solar cell panel M is calculated by the calculation unit 40 (S6). The calculation in step 6 is counted as the nth time. The impedance Z is calculated a plurality of times based on the equations (1) to (4), and the calculated impedance Z value (n-th) is the previously calculated impedance value (n-1). (S7). Steps 6 and 7 are defined as calculation steps. Here, step 7 will be described in detail. As described above, the minimum value of the impedance Z of the solar cell panel M is a minimum value from the graph of the frequency characteristics shown in FIG. Therefore, for example, when the value of the impedance Z calculated at the nth time is larger than the value of the impedance Z calculated at the (n-1) th time (S7; YES), the impedance Z calculated at the (n-1) th time. Can be recognized as the minimum value, that is, the minimum value of the impedance Z. On the other hand, when the value of impedance Z calculated at the nth time is smaller than the value of impedance Z calculated at the (n-1) th time (S7; NO), the minimum value (minimum value) of impedance Z is not yet known. In the (n + 1) th measurement, the frequency f is adjusted to be higher than the nth time (S8), and the inspection AC wave f is input again from the AC wave input unit 10 to perform the AC wave input step (S4) (the frequency of the inspection AC wave f is changed). The step (S8) to be changed will be described later.) Then, the calculation steps (S6 to S7) are executed based on the inspection AC wave f and the attenuated AC wave g. If the calculation process is the first time (n = 1), the process proceeds to the frequency changing process (S8) described later.
[周波数変更工程(S8)]
 ステップ6のインピーダンスZの算出を経て、ステップ7においてインピーダンスZが前回の測定値より大きい値ではないと判断された場合(S7;NO)、検査交流波fの周波数を周波数変更部30によって変更する(S8)。本発明に係る検査方法は、太陽電池パネルMのインピーダンスZの最小値に基づいて欠陥状態を判定する。そのため、式(1)及び(2)において、ωLと1/ωCとが等しくなるような周波数fを選択する必要がある。周波数fの選択は、上述のとおり、n回目に交流波入力部10に入力した検査交流波fによって演算部40が算出したインピーダンスZの値が、n-1回目に算出したインピーダンスZの値より小さい場合(S7;NO)、周波数fをn回目より高くなるように変更し(S8)、n+1回目として再び太陽電池パネルMに検査交流波fを入力する(S4)。そして、ステップ5、ステップ6へと進み、インピーダンスZの値を算出し、ステップ7でn回目の演算工程で算出したインピーダンスZの値と比較する。
[Frequency changing step (S8)]
If the impedance Z is determined not to be larger than the previous measurement value in Step 7 after the calculation of the impedance Z in Step 6 (S7; NO), the frequency changing unit 30 changes the frequency of the inspection AC wave f. (S8). The inspection method according to the present invention determines the defect state based on the minimum value of the impedance Z of the solar cell panel M. Therefore, in equations (1) and (2), it is necessary to select a frequency f that makes ωL and 1 / ωC equal. As described above, the frequency f is selected from the value of the impedance Z calculated by the calculation unit 40 based on the test AC wave f input to the AC wave input unit 10 at the nth time from the value of the impedance Z calculated at the (n-1) th time. If it is smaller (S7; NO), the frequency f is changed to be higher than the nth time (S8), and the inspection AC wave f is input to the solar cell panel M again as the n + 1th time (S4). Then, the process proceeds to step 5 and step 6 where the value of impedance Z is calculated and compared with the value of impedance Z calculated in the nth calculation step in step 7.
 このように、式(1)においてインピーダンスZが最小値(極小値)となるような周波数fが見つかるまで、ステップ4~8を繰り返す。インピーダンスZの最小値が得られた場合、次の工程へと進む。なお、インピーダンスZの最小値は、次の工程で使用するため、例えば、メモリやハードディスク等にデータとして記憶しておく。 Thus, steps 4 to 8 are repeated until a frequency f is found such that the impedance Z becomes the minimum value (minimum value) in equation (1). When the minimum value of the impedance Z is obtained, the process proceeds to the next step. Note that the minimum value of the impedance Z is stored as data in, for example, a memory or a hard disk in order to be used in the next step.
[判定工程(S9~S13)]
 ステップ4~8によって太陽電池パネルMのインピーダンスZの最小値が算出されたら、当該最小値を参照値と比較する(S9)。ここで、参照値とは、欠陥が存在しない太陽電池パネルMに対して、検査装置100によって予め算出しておいたインピーダンスZの最小値のことである。太陽電池パネルMに欠陥が存在すると、欠陥が存在しない太陽電池パネルMより抵抗値が大きくなる。そのため、ステップ4~8の一連の工程で算出された太陽電池パネルMのインピーダンスZの最小値が、参照値と等しいかどうかを判定する(S9)。ここで、インピーダンスZの最小値と参照値との同一性は、実質的に同一であるか否かで判定され、その判定基準は、検査条件や要求される検査精度等に応じて決めることができる。例えば、インピーダンスZの最小値が参照値から±10%の範囲にあれば、両者は実質的に同一と判定することができる。インピーダンスZの最小値が参照値と等しい場合(S9;YES)、検査対象の太陽電池パネルMには欠陥が存在しておらず、「正常状態」と判定される(S10)。その後、検査を続行するか否かを判定する(S14)。一方、インピーダンスZの最小値が参照値と等しくない場合(S9;NO)、太陽電池パネルMには何らかの欠陥が存在していると予測されるため、欠陥の原因の判定が行われる。
 ステップ11では、参照値に対するインピーダンスZの最小値の倍率が求められる(S11)。インピーダンスZの最小値が参照値の5倍未満である場合、太陽電池パネルMのインピーダンスZが増大傾向にあるため、太陽電池パネルMは「劣化状態」にあると判定される(S12)。一方、インピーダンスZの最小値が参照値の5倍以上である場合、太陽電池パネルMのインピーダンスZが過剰に増大しているため、「異常状態」にあると判定される(S13)。このステップ9~13の一連の工程を判定工程とする。判定工程によれば、適切に設定された判定基準に基づいて、太陽電池パネルMの状態を詳細に判定することができる。
 なお、上記の判定基準となる参照値に対するインピーダンスZの最小値の倍率は一例であり、例えば、太陽電池パネルの種類や枚数、使用環境等に応じて、前記倍率を5~20倍に設定することができる。ステップ9~13の判定工程において、太陽電池パネルMが劣化状態又は異常状態であると判定された場合、欠陥箇所を具体的に発見するため、作業員は検査機器を直接太陽電池パネルMに近づけて検査を行う。
[Determination Step (S9 to S13)]
When the minimum value of the impedance Z of the solar cell panel M is calculated in steps 4 to 8, the minimum value is compared with a reference value (S9). Here, the reference value is a minimum value of the impedance Z calculated in advance by the inspection apparatus 100 for the solar cell panel M in which no defect exists. When a defect exists in the solar cell panel M, the resistance value becomes larger than that of the solar cell panel M in which no defect exists. Therefore, it is determined whether or not the minimum value of the impedance Z of the solar cell panel M calculated in the series of steps 4 to 8 is equal to the reference value (S9). Here, the identity between the minimum value of the impedance Z and the reference value is determined based on whether or not they are substantially the same, and the determination criterion is determined according to the inspection conditions, the required inspection accuracy, and the like. it can. For example, if the minimum value of the impedance Z is within a range of ± 10% from the reference value, it can be determined that both are substantially the same. When the minimum value of the impedance Z is equal to the reference value (S9; YES), the solar cell panel M to be inspected is not defective and is determined to be “normal state” (S10). Thereafter, it is determined whether or not to continue the inspection (S14). On the other hand, when the minimum value of the impedance Z is not equal to the reference value (S9; NO), it is predicted that some defect exists in the solar cell panel M, and therefore the cause of the defect is determined.
In step 11, the magnification of the minimum value of the impedance Z with respect to the reference value is obtained (S11). When the minimum value of the impedance Z is less than 5 times the reference value, since the impedance Z of the solar cell panel M tends to increase, it is determined that the solar cell panel M is in the “degraded state” (S12). On the other hand, when the minimum value of the impedance Z is 5 times or more of the reference value, the impedance Z of the solar cell panel M is excessively increased, so that it is determined to be in the “abnormal state” (S13). A series of steps 9 to 13 is set as a determination step. According to the determination step, the state of the solar cell panel M can be determined in detail based on an appropriately set determination criterion.
Note that the magnification of the minimum value of the impedance Z with respect to the reference value serving as the determination criterion is an example. For example, the magnification is set to 5 to 20 times according to the type and number of solar cell panels, the usage environment, and the like. be able to. If it is determined in steps 9 to 13 that the solar cell panel M is in a deteriorated state or an abnormal state, the worker brings the inspection device close to the solar cell panel M directly in order to find the defective part. Inspect.
 判定工程において、例えば、太陽電池パネルMの状態が「劣化状態」と判定された場合、その劣化がどの程度進行しているかまで判定できれば、検査精度をさらに向上させることができ、その後の作業員による検査効率を向上させることができる。太陽電池パネルMの劣化程度の判定は、太陽電池パネルMの段階的な状態判定によって可能となる。例えば、参照値に対するインピーダンスZの最小値が1倍超2倍未満の場合は太陽電池パネルMの劣化状態を「やや劣化している」と判定し、2倍以上3倍未満の場合は「劣化している」と判定し、3倍以上4倍未満の場合は「とても劣化している」と判定し、4倍以上5倍未満の場合は「非常に劣化している」と判定するように設定する。この場合、太陽電池パネルMの微妙な劣化状態まで判定できるため、例えば、劣化が相当進行した太陽電池パネルMを優先的に補修又は交換し、それほど劣化が進行していない太陽電池パネルMについては経過観察とすることで、太陽電池パネルM全体としての品質を一定以上に維持しながら、修繕コストを抑制することが可能となる。なお、上記の段階的な判定における基準は一例であり、太陽電池パネルMの種類や枚数、使用環境等、また、判定基準となる参照値に対するインピーダンスZの最小値の倍率に応じて最適な段階判定の基準を設けることが可能である。 In the determination step, for example, when the state of the solar cell panel M is determined to be “degraded state”, if it can be determined how much the deterioration has progressed, the inspection accuracy can be further improved, and the subsequent worker The inspection efficiency can be improved. The determination of the degree of deterioration of the solar cell panel M is possible by the stepwise state determination of the solar cell panel M. For example, when the minimum value of the impedance Z with respect to the reference value is more than 1 time and less than 2 times, the deterioration state of the solar cell panel M is determined to be “slightly deteriorated”. If it is 3 times or more and less than 4 times, it is judged as “very deteriorated”, and if it is 4 times or more and less than 5 times, it is judged as “very deteriorated”. Set. In this case, since the subtle deterioration state of the solar cell panel M can be determined, for example, the solar cell panel M in which the deterioration has progressed considerably is preferentially repaired or replaced, and the solar cell panel M in which the deterioration has not progressed so much. By performing the follow-up observation, it is possible to suppress the repair cost while maintaining the quality of the solar cell panel M as a whole above a certain level. Note that the above criteria for the stepwise determination are only examples, and the optimum step is determined according to the type, number, usage environment, etc. of the solar cell panel M and the magnification of the minimum value of the impedance Z with respect to the reference value serving as the determination criterion. Judgment criteria can be set.
 ステップ0~13の一連の工程によって一つの太陽電池パネルMに対する欠陥検査は終了するが、引き続き太陽電池パネルMの検査を続行するか否かを判断する(S14)。検査を続行する場合は(ステップ14;YES)、次の太陽電池パネルに移動し(ステップ15)、検査装置100を適切にセットしてステップ1~14までの各工程を繰り返し行う。検査を続行しない場合は(ステップ14;NO)、検査を終了する(S16)。
 このように、本発明に係る太陽電池パネルMの検査方法は、太陽電池パネルMに直接検査機器を近づけて行う検査に際し、作業員は検査が必要な太陽電池パネルMを予め知ることができる。さらに、欠陥原因に応じた適切な修理を行う準備を行い、速やか対処することができる。その結果、作業員の負担が軽減し、検査効率を向上させることができる。
Although the defect inspection for one solar cell panel M is completed by a series of steps 0 to 13, it is determined whether or not to continue the inspection of the solar cell panel M (S14). When the inspection is continued (step 14; YES), the process moves to the next solar cell panel (step 15), the inspection apparatus 100 is set appropriately, and the steps 1 to 14 are repeated. If the inspection is not continued (step 14; NO), the inspection is terminated (S16).
As described above, in the inspection method for the solar cell panel M according to the present invention, the operator can know in advance the solar cell panel M that needs to be inspected when the inspection device is directly brought close to the solar cell panel M. Furthermore, it is possible to prepare for the appropriate repair according to the cause of the defect and to deal with it promptly. As a result, the burden on the worker can be reduced and the inspection efficiency can be improved.
 本発明の太陽電池パネルの検査装置、及び太陽電池パネルの検査方法は、太陽電池の検査に利用されるものであるが、太陽電池パネル以外の検査に利用することも可能である。 The solar cell panel inspection apparatus and solar cell panel inspection method of the present invention are used for solar cell inspection, but can also be used for inspections other than solar cell panels.
 1     接続箱
 10    交流波入力部
 20    交流波計測部
 30    周波数変更部
 40    演算部
 50    判定部
 100   太陽電池パネルの検査装置
 f     検査交流波(周波数)
 g     減衰交流波
 M     太陽電池パネル
 S     セル
 Z     インピーダンス
DESCRIPTION OF SYMBOLS 1 Connection box 10 AC wave input part 20 AC wave measurement part 30 Frequency change part 40 Calculation part 50 Judgment part 100 Inspection apparatus of solar cell panel f Inspection AC wave (frequency)
g Attenuating AC Wave M Solar Panel S Cell Z Impedance

Claims (9)

  1.  検査対象の太陽電池パネルに検査交流波を入力する交流波入力部と、
     前記太陽電池パネルから戻ってくる減衰交流波を計測する交流波計測部と、
     前記検査交流波と前記減衰交流波とに基づいて前記太陽電池パネルのインピーダンスを算出する演算部と、
     前記交流波入力部の周波数を変更する周波数変更部と、
     前記太陽電池パネルの状態を判定する判定部と、
    を備え、
     前記周波数変更部は、前記太陽電池パネルのインピーダンスが最小値となるように前記交流波入力部の周波数を変更し、
     前記判定部は、前記最小値を参照値と比較し、前記太陽電池パネルの状態を判定する太陽電池パネルの検査装置。
    AC wave input unit for inputting inspection AC wave to the solar cell panel to be inspected,
    An AC wave measurement unit that measures the attenuated AC wave returning from the solar cell panel;
    An arithmetic unit that calculates the impedance of the solar cell panel based on the inspection AC wave and the attenuated AC wave;
    A frequency changing unit for changing the frequency of the AC wave input unit;
    A determination unit for determining the state of the solar cell panel;
    With
    The frequency changing unit changes the frequency of the AC wave input unit so that the impedance of the solar cell panel becomes a minimum value,
    The said determination part is a test | inspection apparatus of the solar cell panel which compares the said minimum value with a reference value and determines the state of the said solar cell panel.
  2.  前記判定部は、前記最小値が前記参照値の5倍以上である場合に前記太陽電池パネルが異常状態にあると判定し、前記最小値が前記参照値の5倍未満である場合に前記太陽電池パネルが劣化状態にあると判定する請求項1に記載の太陽電池パネルの検査装置。 The determination unit determines that the solar cell panel is in an abnormal state when the minimum value is five times or more of the reference value, and the sun when the minimum value is less than five times the reference value. The solar cell panel inspection apparatus according to claim 1, wherein the battery panel is determined to be in a deteriorated state.
  3.  前記太陽電池パネルは、複数の太陽電池セルが接続されてなる太陽電池モジュールである請求項1又は2に記載の太陽電池パネルの検査装置。 The solar cell panel inspection apparatus according to claim 1 or 2, wherein the solar cell panel is a solar cell module in which a plurality of solar cells are connected.
  4.  前記交流波入力部及び前記交流波計測部は、前記太陽電池パネルの発電電圧より大きい耐電圧を有するコンデンサを介して前記太陽電池パネルに接続されている請求項1~3の何れか一項に記載の太陽電池パネルの検査装置。 4. The AC wave input unit and the AC wave measuring unit are connected to the solar cell panel via a capacitor having a withstand voltage larger than a power generation voltage of the solar cell panel. The inspection apparatus of the solar cell panel as described.
  5.  前記太陽電池パネルから前記交流波入力部及び前記交流波計測部に到来するパルス波を遮断する遮断回路が、前記コンデンサの前段に設けられる請求項4に記載の太陽電池パネルの検査装置。 5. The solar cell panel inspection apparatus according to claim 4, wherein a cut-off circuit that cuts off a pulse wave that arrives at the AC wave input unit and the AC wave measurement unit from the solar cell panel is provided in a stage preceding the capacitor.
  6.  前記遮断回路は、高抵抗部と導通部とを切り替え可能なスイッチ回路である請求項5に記載の太陽電池パネルの検査装置。 The solar cell panel inspection apparatus according to claim 5, wherein the shut-off circuit is a switch circuit capable of switching between a high resistance part and a conduction part.
  7.  前記周波数変更部は、前記交流波入力部の周波数を50~2500kHzの範囲で変更する請求項1~6の何れか一項に記載の太陽電池パネルの検査装置。 The solar cell panel inspection apparatus according to any one of claims 1 to 6, wherein the frequency changing unit changes the frequency of the AC wave input unit in a range of 50 to 2500 kHz.
  8.  前記太陽電池パネルは接続箱に集約するように配線され、前記交流波入力部及び前記交流波計測部は、前記接続箱を介して前記太陽電池パネルに接続されている請求項1~7の何れか一項に記載の太陽電池パネルの検査装置。 The solar cell panel is wired so as to be concentrated in a connection box, and the AC wave input unit and the AC wave measurement unit are connected to the solar cell panel via the connection box. The solar cell panel inspection apparatus according to claim 1.
  9.  検査対象の太陽電池パネルに検査交流波を入力する交流波入力工程と、
     前記太陽電池パネルから戻ってくる減衰交流波を計測する交流波計測工程と、
     前記検査交流波と前記減衰交流波とに基づいて前記太陽電池パネルのインピーダンスを算出する演算工程と、
     前記検査交流波の周波数を変更する周波数変更工程と、
     前記太陽電池パネルの状態を判定する判定工程と、
    を包含し、
     前記周波数変更工程において、前記太陽電池パネルのインピーダンスが最小値となるように前記検査交流波の周波数を変更し、
     前記判定工程において、前記最小値を参照値と比較し、前記太陽電池パネルの状態を判定する太陽電池パネルの検査方法。
    AC wave input process for inputting inspection AC wave to the solar cell panel to be inspected,
    AC wave measuring step of measuring the attenuated AC wave returning from the solar cell panel,
    A calculation step of calculating an impedance of the solar cell panel based on the inspection AC wave and the attenuated AC wave;
    A frequency changing step for changing the frequency of the inspection AC wave;
    A determination step of determining the state of the solar cell panel;
    Including
    In the frequency changing step, the frequency of the inspection AC wave is changed so that the impedance of the solar cell panel becomes a minimum value,
    A method for inspecting a solar cell panel, wherein, in the determination step, the minimum value is compared with a reference value to determine a state of the solar cell panel.
PCT/JP2013/083070 2013-12-10 2013-12-10 Device for examining solar cell panels, and method for examining solar cell panels WO2015087390A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/083070 WO2015087390A1 (en) 2013-12-10 2013-12-10 Device for examining solar cell panels, and method for examining solar cell panels
JP2014552416A JP5918390B2 (en) 2013-12-10 2013-12-10 Solar cell panel inspection apparatus and solar cell panel inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/083070 WO2015087390A1 (en) 2013-12-10 2013-12-10 Device for examining solar cell panels, and method for examining solar cell panels

Publications (1)

Publication Number Publication Date
WO2015087390A1 true WO2015087390A1 (en) 2015-06-18

Family

ID=53370738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083070 WO2015087390A1 (en) 2013-12-10 2013-12-10 Device for examining solar cell panels, and method for examining solar cell panels

Country Status (2)

Country Link
JP (1) JP5918390B2 (en)
WO (1) WO2015087390A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150219714A1 (en) * 2014-02-05 2015-08-06 The United States Of America As Represented By The Secretary Of The Navy Counterfeit microelectronics detection based on capacitive and inductive signatures
JP6189550B1 (en) * 2016-04-28 2017-08-30 株式会社アイテス Solar panel inspection equipment
JP2017161314A (en) * 2016-03-08 2017-09-14 オムロン株式会社 Failure detection device and failure detection method of dc power source
JP6208843B1 (en) * 2016-12-26 2017-10-04 株式会社アイテス Solar cell panel inspection apparatus and solar cell panel inspection method
JP2019221083A (en) * 2018-06-21 2019-12-26 株式会社日立パワーソリューションズ Method and apparatus for diagnosing solar cell module
JP2021087243A (en) * 2019-11-25 2021-06-03 株式会社アイテス Solar cell string inspection device and inspection method
KR20230061699A (en) * 2021-10-29 2023-05-09 주식회사 티엔이테크 Apparatus for measuring quantum efficiency of perovskite solar cell and method for controlling the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004221145A (en) * 2003-01-10 2004-08-05 Sanyo Electric Co Ltd Method and apparatus for inspecting photovoltaic device
JP2012042283A (en) * 2010-08-17 2012-03-01 Sony Corp Inspection method and inspection device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102869997A (en) * 2010-05-18 2013-01-09 Sma太阳能技术股份公司 Method for diagnosis of contacts of a photovoltaic system and apparatus
JP5691891B2 (en) * 2011-07-04 2015-04-01 日立金属株式会社 Connection box for photovoltaic power generation
JP2014165232A (en) * 2013-02-22 2014-09-08 Mitsubishi Electric Corp Photovoltaic power generation module and photovoltaic power generation system
JP6091391B2 (en) * 2013-02-22 2017-03-08 三菱電機株式会社 Diagnostic method for solar panel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004221145A (en) * 2003-01-10 2004-08-05 Sanyo Electric Co Ltd Method and apparatus for inspecting photovoltaic device
JP2012042283A (en) * 2010-08-17 2012-03-01 Sony Corp Inspection method and inspection device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9959430B2 (en) * 2014-02-05 2018-05-01 The United States Of America As Represented By The Secretary Of The Navy Counterfeit microelectronics detection based on capacitive and inductive signatures
US20150219714A1 (en) * 2014-02-05 2015-08-06 The United States Of America As Represented By The Secretary Of The Navy Counterfeit microelectronics detection based on capacitive and inductive signatures
JP2017161314A (en) * 2016-03-08 2017-09-14 オムロン株式会社 Failure detection device and failure detection method of dc power source
JP6189550B1 (en) * 2016-04-28 2017-08-30 株式会社アイテス Solar panel inspection equipment
WO2017187589A1 (en) * 2016-04-28 2017-11-02 株式会社アイテス Solar cell panel inspection device and solar cell panel inspection method
JP2018105680A (en) * 2016-12-26 2018-07-05 株式会社アイテス Inspection device for solar panel and method for inspecting solar panel
JP6208843B1 (en) * 2016-12-26 2017-10-04 株式会社アイテス Solar cell panel inspection apparatus and solar cell panel inspection method
JP2019221083A (en) * 2018-06-21 2019-12-26 株式会社日立パワーソリューションズ Method and apparatus for diagnosing solar cell module
JP7102245B2 (en) 2018-06-21 2022-07-19 株式会社日立パワーソリューションズ Diagnostic method and diagnostic equipment for solar cell modules
JP2021087243A (en) * 2019-11-25 2021-06-03 株式会社アイテス Solar cell string inspection device and inspection method
JP7306605B2 (en) 2019-11-25 2023-07-11 株式会社アイテス Photovoltaic string inspection device and inspection method
KR20230061699A (en) * 2021-10-29 2023-05-09 주식회사 티엔이테크 Apparatus for measuring quantum efficiency of perovskite solar cell and method for controlling the same
KR102552281B1 (en) 2021-10-29 2023-07-07 주식회사 티엔이테크 Apparatus for measuring quantum efficiency of perovskite solar cell and method for controlling the same

Also Published As

Publication number Publication date
JPWO2015087390A1 (en) 2017-03-16
JP5918390B2 (en) 2016-05-18

Similar Documents

Publication Publication Date Title
JP5918390B2 (en) Solar cell panel inspection apparatus and solar cell panel inspection method
JP4780416B2 (en) Solar cell array fault diagnosis method
Sarikh et al. Fault diagnosis in a photovoltaic system through IV characteristics analysis
CN103438797B (en) Deformation of transformer winding online test method and system
US20200341046A1 (en) Method and apparatus for detecting faults in a three-phase electrical distribution network
CN101752877B (en) Photovoltaic synchronization inverter with photovoltaic array IV test function and test method
US10753984B2 (en) Method and measurement arrangement for monitoring a production process of a modularly set-up voltage source
JP6481571B2 (en) Inspection apparatus and inspection method
JP6172530B2 (en) Abnormality diagnosis method for photovoltaic power generation system
CN103176142A (en) Grid-connection adaptability testing system and method for photovoltaic power stations
KR101631267B1 (en) A Photovoltaic Modular Abnormal Condition Effective Diagnosis System and Method thereof
CN104378065B (en) A kind of photovoltaic plant method for diagnosing faults
CN104502691A (en) Online monitoring and analysis device for energy efficiency of distribution transformer
CN107807305B (en) Component type inverter wiring detection method, device and system
WO2016199445A1 (en) Method and device for testing photovoltaic generation system
WO2017149859A1 (en) Arcing position detection device and arcing position detection method
CN104251978A (en) Tester for affection of alternating-current crosstalk and voltage fluctuation of direct-current system on relay
JP6312081B2 (en) Defect diagnosis device
JP2015025795A (en) Insulation inspection method, and insulation inspection device
CN105203865B (en) The method of work of the Online Transaction Processing of distributed electrical source grid-connected inverter and electric capacity
JP6702168B2 (en) Solar power generation system inspection device and inspection method
CN102226773B (en) Test bench for X-ray detection apparatuses
KR102448187B1 (en) the fault detection methods of PV panel using unit vector analysis for I-V curve
KR101631266B1 (en) A Module of Abnormal Condition Diagnosis System in a serially connected photovoltaic module string and Method thereof
CN106291195A (en) A kind of Intellectualized starting functional transformer comprehensive test device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014552416

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13899053

Country of ref document: EP

Kind code of ref document: A1