WO2015087006A1 - Turbomachine d'aéronef comportant un échangeur de chaleur et une boite d'engrenages en v - Google Patents

Turbomachine d'aéronef comportant un échangeur de chaleur et une boite d'engrenages en v Download PDF

Info

Publication number
WO2015087006A1
WO2015087006A1 PCT/FR2014/053283 FR2014053283W WO2015087006A1 WO 2015087006 A1 WO2015087006 A1 WO 2015087006A1 FR 2014053283 W FR2014053283 W FR 2014053283W WO 2015087006 A1 WO2015087006 A1 WO 2015087006A1
Authority
WO
WIPO (PCT)
Prior art keywords
gearbox
heat exchanger
exchanger
turbomachine
arms
Prior art date
Application number
PCT/FR2014/053283
Other languages
English (en)
Inventor
Carmen ANCUTA
Bruno Albert Beutin
Original Assignee
Snecma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma filed Critical Snecma
Priority to US15/103,177 priority Critical patent/US10036322B2/en
Priority to GB1610631.2A priority patent/GB2535941B/en
Publication of WO2015087006A1 publication Critical patent/WO2015087006A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/32Arrangement, mounting, or driving, of auxiliaries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/36Power transmission arrangements between the different shafts of the gas turbine plant, or between the gas-turbine plant and the power user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/38Arrangement of components angled, e.g. sweep angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/213Heat transfer, e.g. cooling by the provision of a heat exchanger within the cooling circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/40Transmission of power
    • F05D2260/403Transmission of power through the shape of the drive components
    • F05D2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • Aircraft turbomachine having a heat exchanger and a gearbox V
  • the present invention relates to an aircraft turbomachine comprising a heat exchanger and a generally V-shaped gearbox.
  • gearbox whose housing has a shape substantially V and has two arms interconnected by a connecting portion.
  • the arms enclose gear lines which are located in non-parallel planes and which are interconnected by at least one gear located in the junction portion of the arms.
  • the Applicant has furthermore proposed, in Application FR 13/52284, means for fixing this type of gearbox on a turbomachine body.
  • a turbomachine is equipped with heat exchangers among which at least one air / oil exchanger type ACOC (Air Cooled OH Cooler) or SACOC (Surface Air Cooled OH Cooler).
  • This exchanger comprises two circuits, respectively air and oil, air taken from a stream of the turbomachine being intended to flow in a first circuit for exchanging heat energy with oil flowing in the second circuit, the oil thus cooled being conveyed by a pipe to one or equipment to lubricate.
  • the present invention proposes in particular a solution for facilitating the integration of a heat exchanger in a turbomachine equipped with a gearbox V.
  • the present invention provides an aircraft turbomachine, comprising at least one heat exchanger and a gearbox for the drive of equipment, which has a general V shape and which comprises two lateral arms interconnected by a part median junction, said arms enclosing gear lines which are located in non-parallel planes and which are united to each other by at least one gear located in said junction part, characterized in that the heat exchanger is mounted between the arms of the gearbox.
  • the lateral arms of a V-gear box define between them a space in which is mounted a heat exchanger.
  • This is particularly advantageous because it facilitates the integration of the exchanger in the turbomachine and also allows the use of an unused space in the prior art.
  • the exchanger can be shaped to occupy the best inter-arm space of the gearbox.
  • the heat exchanger is for example an air-oil exchanger, for example of the ACOC or SACOC type.
  • This exchanger can be a brick or fin exchanger.
  • a brick exchanger it may comprise an air intake scoop and at least one air outlet nozzle, which are mounted between the arms of the gearbox.
  • the inlet scoop is intended to collect air in a flow of air flowing in the turbomachine, and in particular a secondary air flow in the case of a turbojet engine.
  • the fins are swept by an air flow of the turbomachine, such as a flow secondary, and exchange heat energy with oil circulating in an oil circuit of the exchanger.
  • the brick and fin exchangers are well known to those skilled in the art.
  • the heat exchanger may comprise a cooling fluid outlet (cooling oil in the case of an ACOC or SACOC exchanger) of equipment carried by the gearbox.
  • the exchanger thus cools a gearbox equipment.
  • the gearbox can be located at six o'clock by analogy with the dial of a clock. It is thus located in the lower part of the turbomachine, which can facilitate its access by an operator during a maintenance operation.
  • the exchanger comprises means for attachment to the two arms of the gearbox.
  • the exchanger thus stiffens the arms of the box. It is therefore conceivable to remove the transverse reinforcing member of the prior art, which connected the arms together to stiffen the box and thus limit its deformations, in particular the approximation or the spacing of its arms.
  • the means for fixing the exchanger to the box may comprise damping means.
  • the gearbox can be fixed on the body of the turbomachine, which is surrounded by an annular wall formed of two substantially semi-cylindrical covers.
  • Each cover is preferably slidably mounted in axial translation on the body of the turbomachine and connected by connecting rods to a rail / slide system carried by the heat exchanger.
  • the exchanger thus serves as a support for a rail / slide system which can facilitate the opening of the annular wall and the displacement of its covers, this annular wall being for example the wall called I FS (Inner Structured Fan) which serves to delimit internally the flow vein of the secondary flow of a turbofan engine.
  • I FS Inner Structured Fan
  • the rail / slide system may comprise a rail integral with the exchanger and a slide movable in translation with respect to the rail, the slide being connected by a first connecting rod to a second connecting rod, one end of which is articulated on the body of the rail. the turbomachine and whose other end is articulated on a hood.
  • the second rods substantially form a V and have one of their ends fixed substantially at one and the same point on the slide.
  • the first rods preferably form substantially a V and have one of their ends fixed substantially at one and the same point on the body of the turbomachine.
  • Each second connecting rod can be connected to one of the first links, at a point distant from its longitudinal ends.
  • this system rail / slide and connecting rods can function as an umbrella.
  • the turbomachine comprises a first surface-type heat exchanger and a second volume-type heat exchanger or brick, said first heat exchanger being mounted between the arms of the gearbox and said second heat exchanger being secured. said first exchanger and mounted under said first heat exchanger.
  • Said second exchanger may comprise a scoop with movable flap, and preferably controlled.
  • FIG. 1 is a schematic perspective view of a gearbox V of a turbomachine, seen from above;
  • FIG. 2 is another schematic perspective view of the gearbox of FIG. 1, viewed from the side;
  • FIG. 3 is a schematic perspective view of a turbomachine equipped with the gearbox of FIG. 1, seen from downstream and from the side;
  • FIGS. 4 and 5 are schematic perspective views of a turbomachine equipped with a V-gearbox and a heat exchanger which carries a rail / slide system, this system being illustrated in two positions respectively closing and opening of an annular wall, not shown;
  • FIGS. 6 and 7 are schematic views of the bottom and front of the turbomachine of Figures 4 and 5, wherein the wall is in the closed position or work;
  • FIGS. 8 and 9 are schematic views of the bottom and front of the turbomachine of Figures 4 and 5, wherein the wall is in the open position and advanced;
  • FIGS 10 and 1 1 are schematic views of the bottom and front of the turbomachine of Figures 4 and 5, wherein the wall is in the open and retracted position also called maintenance position;
  • FIGS. 12 and 13 are diagrammatic perspective views of a heat exchanger of the ACOC type.
  • FIG. 14 is a schematic perspective view of a SACOC type heat exchanger.
  • upstream and downstream refer to the flow direction of the gases in a turbomachine.
  • FIGS 1 and 2 show a gearbox 10 for driving equipment (not shown) of a turbomachine such as a turbojet or an airplane turboprop.
  • This gearbox 10 is intended to transmit a mechanical power originating from the turbomachine via a radial shaft coming out of it, and to transmit it to the equipment which are pumps, generators of electricity, etc. .
  • Transmission is made by a kinematic chain composed of successive gears, this chain being composed of gear lines 12 located in non-parallel planes and schematically represented by lines in dotted lines in FIG.
  • a gear line 12 is an assembly of adjacent gears, in principle meshing with each other, whose gear wheels are located in the same plane or in parallel planes; in other words, the axes of rotation of the gears are all parallel (perpendicular to this plane or to these parallel planes), and it is considered that the toothed wheels meshing directly with each other extend in the same plane; the gear line may however continue in parallel planes if there are gear wheels aligned along the same axis of rotation or gear offsets in the same gear.
  • the gearbox 10 essentially comprises a kinematic chain composed of the set of toothed wheels, meshing with each other so as to transmit a movement, inside a casing 14.
  • This chain is connected to a drive shaft 16 which is the radial shaft of the turbomachine or an intermediate shaft, the chain being also connected to shafts 18 power take-off equipment.
  • the gearbox 10 is attached to the turbomachine and the equipment is itself attached to the gearbox 10.
  • the housing 14 of the gearbox 10 has a substantially V-shaped shape and comprises two arms 20 interconnected at one of their ends by a joining portion 22.
  • the joining portion 22 extends on substantially half the length of the arms 20.
  • Each arm 20 has at least one side mounting surface of the equipment.
  • the gearbox 10 is mounted on the body of the turbomachine 24 which is here a turbojet engine.
  • this turbomachine 24 comprises from upstream to downstream a fan 26 which generates a flow which divides into two coaxial flows, the primary flow supplying the engine which comprises a low pressure compressor, a high pressure compressor, a combustion chamber, a high pressure turbine, a low pressure turbine and a nozzle 28 for exhausting the combustion gases.
  • the turbomachine 24 furthermore comprises, between the low-pressure and high-pressure compressors, a structural intermediate casing 30 which typically comprises an intermediate hub 31 surrounded by two coaxial cylindrical walls, internal and external, respectively, which define the passage vein of the secondary flow. and which are interconnected by radial tubular arms which generally serve the passage of servitudes.
  • the gearbox 10 is mounted downstream of the fan 26 in the space between the casing 36 of the high-pressure compressor and the aforementioned inner cylindrical wall of the intermediate casing 30.
  • the gearbox 10 is positioned so that its connecting portion 22 is upstream and that its arms 20 extend downstream and are located symmetrically on either side of a plane passing through the longitudinal axis A turbomachine.
  • the gearbox 10 could be mounted in another way in the turbomachine, and in particular have a different orientation.
  • the gearbox could be positioned so that its arms extend upstream.
  • Figures 1 to 3 show the prior art as described in the patent application FR 13/52284.
  • FIGS 4 to 1 1 show an embodiment of the invention.
  • a heat exchanger 40 is mounted between the arms 20 of the gearbox 10 (FIGS. 4 and 5).
  • the exchanger 40 shown in FIGS. 4 and 5 is an air / oil exchanger (ACOC) of the brick exchanger type, and comprises a heat exchange block 42 defining two circuits, respectively of air and oil, a scoop 44 withdrawing air from the secondary flow and supplying the air circuit of the block 42, and at least one nozzle 46 for exhausting the air leaving this air circuit.
  • the oil circuit of the block 42 is supplied with oil by appropriate means not shown and comprises an output (not visible) connected by a pipe or the like to equipment 48 such as a generator mounted on one of the faces of an arm 20 of the box 10.
  • the exchanger 40 occupies almost all the inter-arm space of the box 10 and is fixed directly on the arms 20 by appropriate means.
  • the gearbox 10 and the exchanger 40 are mounted in the vicinity of the body 38 of the turbomachine, which is surrounded by two annular walls defining the flow vein of the secondary flow, as described in the foregoing.
  • the radially inner wall, called IFS is not shown in FIGS. 4 and 5, but is shown in FIGS. 6 to 11 and 14 (under the reference 50).
  • the inlet scoop 44 of the exchanger 40 communicates with an orifice of this wall 50 to allow the withdrawal of air in the secondary flow, and the nozzle 46 communicates with another orifice of this wall to evacuate the hot air leaving the exchange block 42 in the secondary stream.
  • the air exhaust nozzle 46 may have a reinforced structure so as to rigidly connect the two arms 20 in the vicinity of their free ends, that is to say opposite the junction portion 22, to form a reinforcing member that takes the efforts between the two arms. This makes it possible to prevent a phenomenon of flapping between the arms which would lead to premature wear of the casing 14 of the gearbox 10.
  • a load-lifting rod for example articulated to its ends on each arm 20, can rigidly connect the two arms 20 in the vicinity of their free ends.
  • the wall 50 is substantially cylindrical and is formed of two semi-cylindrical covers 52 which are mounted around the body 38 on either side of a longitudinal vertical plane of the turbomachine.
  • the wall 50 In the working or closing position shown in FIGS. 6 and 7, the wall 50 is closed and the covers 52 are brought closer to the body 38 of the turbomachine. In this position, the lower longitudinal edges 54 of the covers 52 are in the vicinity of one another, the upper longitudinal edges 56 being able to be spaced from each other, as can be seen in FIG. 7, to define for example a circumferential space for mounting the suspension pylon of the turbomachine to the aircraft.
  • the turbomachine comprises means for moving each cover 52 from their working position to a maintenance position (shown in FIGS. 10 and 11), in which the cover is on the one hand radially spaced from the body 38 of the turbomachine and on the other hand retreated downstream from its working position.
  • the displacement means comprise rail / slide systems 60, 62 and rods 64, 66.
  • Rail / slide systems 60 are mounted between the upper longitudinal edges 54 of the covers and the body 38 of the turbomachine, and each comprise a guide rail mounted on the body 38 of the turbomachine and a slide shaped to slide along the rail guidance.
  • the guide rail of each system 60 can be directly supported by the pylon.
  • the system 60 extends substantially parallel to the longitudinal axis of the turbomachine.
  • Each cap 52 is further connected to the body 38 of the turbomachine by a connecting rod 64, one end 68 of which is articulated to a fastening means (such as a yoke) integral with the radially inner surface of the cap 52, and whose end 70 opposite is articulated on a means of fixed fastening of the body 38 of the turbomachine.
  • the ends 68, 70 of the connecting rods 64 may be articulated by ball or pivot connections.
  • the connecting rods 64 are articulated substantially at the same point on the body 38 of the turbomachine, which can then comprise a single means 72 for fastening these rods 64.
  • the displacement means further comprise a rail / slide system 62 carried by the heat exchanger 40 and connected by connecting rods 66 to the rods 64 mentioned above.
  • the system 62 comprises a guide rail 74 fixed on the exchange block 42 and a slideway 76 shaped to slide along the guide rail 74.
  • the rail 74 and the slideway 76 are here substantially parallel to the longitudinal axis of the rail. turbomachine and extend in the longitudinal vertical plane mentioned above ( Figure 8).
  • the rail 74 has its upstream end which is downstream of the scoop 44 so as not to disturb the withdrawal of air in the secondary flow ( Figures 4, 5 and 8).
  • the rail 74 extends downstream beyond the exchanger 40 and extends above the nozzle 46, which may comprise two independent outputs located on either side of the system 62, to avoid that the it traverses the flow of air exiting the nozzle 46.
  • This variant embodiment is shown in FIGS. 12 and 13.
  • the slideway 76 has a length equivalent to that of the rail 74. Its downstream end comprises means 78 for articulation (ball or pivot) of the upstream ends of the two connecting rods 66. These ends are thus fixed at one and the same point on the slideway 76.
  • the connecting rods 66 form a V whose tip is oriented upstream and is therefore opposed to that of the other connecting rods 64.
  • the downstream ends of the connecting rods 66, opposite the system 62, are articulated on the rods 64, so that the spacing of the connecting rods 66, one from the other (that is to say the enlargement of the angle they define between them) causes the spacing of the rods 64, one of the other, and the opening of the wall 50, that is to say the spacing of the covers 52 of the body 38 of the turbomachine.
  • the rods 64, 66 thus function as an umbrella, the connecting rods 66 ensuring the function of the umbrella's whales and causing the connecting rods to move apart or toward each other when they are themselves apart or close together one from the other.
  • each connecting rod 66 on a connecting rod 64 is located at a distance from the ends of the connecting rod 64. In the example shown, this point is located at about 1/3 of the length of the connecting rod 64, measured since the downstream end 70 of the connecting rod 64.
  • the system 62 and the connecting rods 64, 66 extend substantially in the same plane and are therefore coplanar. It is substantially symmetrical with respect to the longitudinal vertical plane mentioned above.
  • the displacement of the covers 52 from their working positions to their maintenance positions can be achieved as follows.
  • the covers 52 are moved from upstream to downstream, along the integral guide rails of the body 38 of the turbomachine and the exchanger 40.
  • the covers 52 then pass from their working positions shown in FIGS. 6 and 7. at their maintenance positions shown in Figures 8 and 9, wherein they are spaced from the body 38 and retreated downstream.
  • the displacement of the covers 52 from their working positions to their maintenance positions can be carried out manually or be automated, for example by means of electrical actuation means, mechanical, hydraulic or pneumatic actuating cylinders. These actuating means can be unique and act directly on the slide 76 of the system 62 for example.
  • the nozzle 46 comprises two adjacent half-portions separated from each other by the rail / slide system 62.
  • the reference 82 designates damping pads which connect the exchanger 40 to the gearbox 10 to limit the transmission of vibrations between these elements.
  • the equipment 48 (FIG. 13) carried by the gearbox 10 is cooled by oil leaving the exchanger 40, which is conveyed from the exchanger to the equipment by a first pipe 84, then removed from the equipment and returned to the exchanger by a second pipe 86.
  • the equipment 48 is here a variable frequency generator AC (Variable Frequency Generator).
  • FIG. 14 represents an alternative embodiment of the invention in which the heat exchanger 40 'is of the finned type (SACOC) and comprises fins 88 intended to be swept by the secondary flow 90 and to exchange energy heat with oil from an oil circuit 92 of the exchanger.
  • This exchanger 40 'therefore does not include scoop or nozzle and is mounted between the arms of a gearbox, as explained in the foregoing, for example by means of supports 94 shaped to fit the inter-arm space and to be attached to these arms by appropriate means.
  • the surface of the exchanger 40 'comprising the fins 88 is in the extension of the wall 50 (IFS), the latter being modified to include the exchanger 40 '. Part of this wall 50 can remain fixed during the opening of the covers, to facilitate this opening.
  • IFS extension of the wall 50
  • At least one support 94 shaped to fit the inter-air space may have a reinforced structure so as to rigidly connect the two arms and thus avoid a flapping phenomenon between the arms. Furthermore, it is possible to provide a hybrid heat exchanger made from the surface-type heat exchanger 40 'by adding to this device a volume-type heat exchanger, that is to say of the exchanger type brick such as a heat exchanger 40 described above, so as to increase the cooling capacity.
  • the free space visible in Figure 14 between the supports 94 and the surface exchanger 40 ' can be used to accommodate at least a portion of the heat exchanger block of the heat exchanger.
  • This block can serve as a support for the surface exchanger, and therefore replace the supports 94.
  • An air intake scoop in the secondary flow and supply air circuit of this block is provided adjacent to the surface exchanger upstream of the latter with respect to the direction of flow of air, and at least one exhaust nozzle is provided downstream.
  • the sample scoop may be flush with the flow of air in the secondary flow (scoop called "flush" in English) and extend upstream surface of the surface exchanger.
  • the scoop may intercept the flow of air (so-called dynamic scoop) and be arranged so as not to prevent the air of the secondary stream to lick the surface of the surface exchanger.
  • this dynamic scoop can be provided with a controlled flap, so as to vary the flow of air taken and therefore the cooling capacity according to the cooling requirements (see Figures 15a and 15b).
  • the flap 96 may have a slightly curved longitudinal section in the shape of an S, in order to improve the aerodynamics in the position open scoop 44, in comparison with a plane flap which could generate vortices especially at the leading edge.
  • the axis 98 of the flap 96 may have its end bearings each housed in the casing of a lateral arm 20, to be lubricated by the lubricating oil of the gears in the arms 20.
  • the control mechanism of the axis 98 may also be provided to fit in the housing of a lateral arm 20, but a mechanism outside the housing remains possible.
  • the references 100 and 102 respectively designate the outer wall of the gearbox 10 and a link rigidly connecting the two arms 20.
  • the oil circuits of the two surface exchangers 40 'and volume 40 can be connected in series or in parallel.
  • this solution remains compatible with a rail / slide system carried by the heat exchanger, such as the system 62 described with reference to Figures 4 to 8.
  • This system can be fixed to the plate 104 of the surface exchanger 40 ', in a median attachment zone which separates two lateral zones of the plate, each lateral zone comprising fins.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • General Details Of Gearings (AREA)
  • Control Of Turbines (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Turbomachine d'aéronef, comportant au moins un échangeur de chaleur (40) et une boîte d'engrenages (10) de forme générale en V et comprenant deux bras latéraux (20) reliés entre eux par une partie médiane de jonction, l'échangeur de chaleur étant monté entre les bras de la boîte d'engrenages.

Description

Turbomachine d'aéronef comportant un échangeur de chaleur et une boîte d'engrenages en V
DOMAINE TECHNIQUE
La présente invention concerne une turbomachine d'aéronef comportant un échangeur de chaleur et une boîte d'engrenages de forme générale en V.
ETAT DE L'ART
Dans la demande FR 12/58196, la déposante a proposé une boîte d'engrenages dont le carter a une forme sensiblement en V et comporte deux bras reliés entre eux par une partie de jonction. Les bras renferment des lignes d'engrenages qui sont situées dans des plans non parallèles et qui sont unies entre elles par au moins un engrenage situé dans la partie de jonction des bras.
La construction de la chaîne cinématique en plusieurs lignes d'engrenages situées dans des plans non parallèles permet de disposer d'une boîte d'engrenages même de grandes dimensions entièrement à proximité du carter de la turbomachine, sans encombrement excessif ni dans la direction radiale ni dans la direction axiale ni dans la direction angulaire, la boîte n'étant pas rectiligne. On dispose de plus d'un grand choix de faces de la boîte d'engrenages, s'étendant dans des directions très différentes, pour y placer les équipements à entraîner, ce qui contribue aussi à limiter l'encombrement de l'assemblage.
La déposante a en outre proposé, dans la demande FR 13/52284, des moyens de fixation de ce type de boîte d'engrenages sur un corps de turbomachine.
Par ailleurs, une turbomachine est équipée d'échangeurs de chaleur parmi lesquels au moins un échangeur air/huile du type ACOC {Air Cooled OH Cooler) ou SACOC (Surface Air Cooled OH Cooler). Cet échangeur comprend deux circuits, respectivement d'air et d'huile, de l'air prélevé dans un flux de la turbomachine étant destiné à circuler dans un premier circuit pour échanger de l'énergie calorifique avec de l'huile circulant dans le second circuit, l'huile ainsi refroidie étant acheminée par une conduite jusqu'à un ou des équipements à lubrifier.
La présente invention propose notamment une solution pour faciliter l'intégration d'un échangeur de chaleur dans une turbomachine équipée d'une boîte d'engrenages en V.
EXPOSE DE L'INVENTION
La présente invention propose une turbomachine d'aéronef, comportant au moins un échangeur de chaleur et une boîte d'engrenages pour l'entraînement d'équipements, qui a une forme générale en V et qui comprend deux bras latéraux reliés entre eux par une partie médiane de jonction, lesdits bras renfermant des lignes d'engrenages qui sont situées dans des plans non parallèles et qui sont unies entre elles par au moins un engrenage situé dans ladite partie de jonction, caractérisée en ce que l'échangeur de chaleur est monté entre les bras de la boîte d'engrenages.
Selon l'invention, les bras latéraux d'une boîte d'engrenages en V définissent entre eux un espace dans lequel est monté un échangeur de chaleur. Ceci est particulièrement avantageux car cela facilite l'intégration de l'échangeur dans la turbomachine et permet en outre d'utiliser un espace inutilisé dans la technique antérieure. L'échangeur peut être conformé pour occuper au mieux l'espace inter-bras de la boîte d'engrenages.
L'échangeur de chaleur est par exemple un échangeur air-huile, par exemple du type ACOC ou SACOC. Cet échangeur peut être un échangeur brique ou à ailettes. Dans le cas d'un échangeur brique, il peut comprendre une écope d'entrée d'air et au moins une tuyère de sortie d'air, qui sont montées entre les bras de la boîte d'engrenages. L'écope d'entrée est destinée à prélever de l'air dans un flux d'air s'écoulant dans la turbomachine, et en particulier un flux d'air secondaire dans le cas d'un turboréacteur à double flux. Dans le cas d'un échangeur à ailettes, les ailettes sont balayées par un flux d'air de la turbomachine, tel qu'un flux secondaire, et échangent de l'énergie calorifique avec de l'huile circulant dans un circuit d'huile de l'échangeur. Les échangeurs briques et à ailettes sont bien connus de l'homme du métier.
L'échangeur de chaleur peut comprendre une sortie de fluide de refroidissement (de l'huile de refroidissement dans le cas d'un échangeur ACOC ou SACOC) d'un équipement porté par la boîte d'engrenages. L'échangeur refroidit ainsi un équipement de la boîte d'engrenages. Comme l'échangeur est situé à proximité des équipements portés par la boîte, il n'est pas nécessaire de prévoir une conduite de grande longueur pour relier la sortie de fluide de refroidissement de l'échangeur à l'équipement, ce qui réduit notamment la masse de l'ensemble.
La boîte d'engrenages peut être située à six heures par analogie avec le cadran d'une horloge. Elle est ainsi située en partie basse de la turbomachine, ce qui peut faciliter son accès par un opérateur, lors d'une opération de maintenance.
Avantageusement, l'échangeur comprend des moyens de fixation aux deux bras de la boîte d'engrenages. L'échangeur rigidifie ainsi les bras de la boîte. Il est donc envisageable de supprimer l'organe de renfort transversal de la technique antérieure, qui reliait les bras entre eux afin de rigidifier la boîte et limiter ainsi ses déformations, en particulier le rapprochement ou l'écartement de ses bras.
Les moyens de fixation de l'échangeur à la boîte peuvent comprendre des moyens d'amortissement.
La boîte d'engrenages peut être fixée sur le corps de la turbomachine, qui est entouré par une paroi annulaire formée de deux capots sensiblement semi-cylindriques. Chaque capot est de préférence monté coulissant en translation axiale sur le corps de la turbomachine et relié par des bielles à un système de rail/glissière porté par l'échangeur de chaleur. L'échangeur sert ainsi de support à un système de rail/glissière qui peut faciliter l'ouverture de la paroi annulaire et le déplacement de ses capots, cette paroi annulaire étant par exemple la paroi appelée I FS (Inner Fan Structuré) qui sert à délimiter intérieurement la veine d'écoulement du flux secondaire d'un turboréacteur à double flux.
Le système de rail/glissière peut comprendre un rail solidaire de l'échangeur et une glissière mobile en translation vis-à-vis du rail, la glissière étant reliée par une première bielle à une deuxième bielle dont une extrémité est articulée sur le corps de la turbomachine et dont l'autre extrémité est articulée sur un capot. De préférence, les deuxièmes bielles forment sensiblement un V et ont une de leurs extrémités fixée sensiblement en un même point sur la glissière. Les première bielles forment de préférence sensiblement un V et ont une de leurs extrémités fixée sensiblement en un même point sur le corps de la turbomachine. Chaque deuxième bielle peut être reliée à l'une des premières bielles, en un point distant de ses extrémités longitudinales. Comme cela sera expliqué dans le détail dans ce qui suit, ce système de rail/glissière et de bielles peut fonctionner comme un parapluie.
Avantageusement, la turbomachine comprend un premier échangeur de chaleur du type surfacique et un deuxième échangeur de chaleur du type volumique ou à brique, ledit premier échangeur de chaleur étant monté entre les bras de la boîte d'engrenages et ledit deuxième échangeur de chaleur étant solidaire dudit premier échangeur et monté sous ledit premier échangeur de chaleur. Ledit deuxième échangeur peut comprendre une écope à volet mobile, et de préférence piloté.
DESCRIPTION DES FIGURES
L'invention sera mieux comprise et d'autres détails, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante faite à titre d'exemple non limitatif et en référence aux dessins annexés dans lesquels :
- la figure 1 est une vue schématique en perspective d'une boîte d'engrenages en V d'une turbomachine, vue de dessus ;
- la figure 2 est une autre vue schématique en perspective de la boîte d'engrenages de la figure 1 , vue de côté ; - la figure 3 est une vue schématique en perspective d'une turbomachine équipée de la boîte d'engrenages de la figure 1 , vue de l'aval et de côté ;
- les figures 4 et 5 sont des vues schématiques en perspective d'une turbomachine équipée d'une boîte d'engrenages en V et d'un échangeur de chaleur qui porte un système de rail/glissière, ce système étant illustré dans deux positions respectivement de fermeture et d'ouverture d'une paroi annulaire non représentée ;
- les figures 6 et 7 sont des vues schématiques de dessous et de face de la turbomachine des figures 4 et 5, dans lesquelles la paroi est en position fermée ou de travail ;
- les figures 8 et 9 sont des vues schématiques de dessous et de face de la turbomachine des figures 4 et 5, dans lesquelles la paroi est en position ouverte et avancée ;
- les figures 10 et 1 1 sont des vues schématiques de dessous et de face de la turbomachine des figures 4 et 5, dans lesquelles la paroi est en position ouverte et reculée aussi appelée position de maintenance ; et
- les figures 12 et 13 sont des vues schématiques en perspective d'un échangeur de chaleur de type ACOC, et
- la figure 14 est une vue schématique en perspective d'un échangeur de chaleur de type SACOC.
DESCRIPTION DETAILLEE
Dans la description qui suit, les termes « amont » et « aval » font référence au sens d'écoulement des gaz dans une turbomachine.
On se réfère d'abord aux figures 1 et 2 qui représentent une boîte d'engrenages 10 pour l'entraînement d'équipements (non représentés) d'une turbomachine telle qu'un turboréacteur ou un turbopropulseur d'avion.
Cette boîte d'engrenages 10 est destinée à transmettre une puissance mécanique originaire de la turbomachine par l'intermédiaire d'un arbre radial sortant de celle-ci, et à le transmettre aux équipements qui sont des pompes, des générateurs d'électricité, etc. La transmission s'effectue par une chaîne cinématique composée d'engrenages successifs, cette chaîne étant composée de lignes d'engrenages 12 situées dans des plans non parallèles et schématiquement représentées par des lignes en traits pointillés sur la figure 1 . Une ligne d'engrenages 12 est un ensemble d'engrenages adjacents, engrenant en principe entre eux, dont les roues dentées sont situées dans un même plan ou dans des plans parallèles ; en d'autres termes, les axes de rotation des roues dentées sont tous parallèles (perpendiculaires à ce plan ou à ces plans parallèles), et on considère que les roues dentées engrenant directement entre elles s'étendent dans un même plan ; la ligne d'engrenages peut toutefois se poursuivre dans des plans parallèles s'il existe des roues dentées alignées le long d'un même axe de rotation ou des décalages de dentures dans un même engrenage.
La boîte d'engrenages 10 comprend essentiellement une chaîne cinématique composée de l'ensemble des roues dentées, engrenant entre elles de façon à transmettre un mouvement, à l'intérieur d'un carter 14. Cette chaîne est reliée à un arbre d'entraînement 16 qui est l'arbre radial de la turbomachine ou un arbre intermédiaire, la chaîne étant également reliée à des arbres 18 de prise de mouvement des équipements. La boîte d'engrenages 10 est fixée à la turbomachine et les équipements sont eux- mêmes fixés à la boîte d'engrenage 10.
Le carter 14 de la boîte d'engrenages 10 a une forme sensiblement en V et comprend deux bras 20 reliés entre eux à une de leurs extrémités par une partie de jonction 22. Dans l'exemple représenté, la partie de jonction 22 s'étend sur sensiblement la moitié de la longueur des bras 20. Chaque bras 20 comporte au moins une face latérale de montage des équipements.
Comme cela est visible en figure 3, la boîte d'engrenages 10 est montée sur le corps de la turbomachine 24 qui est ici un turboréacteur à double flux. De façon classique, cette turbomachine 24 comprend d'amont en aval une soufflante 26 qui génère un flux qui se divise en deux flux coaxiaux, le flux primaire alimentant le moteur qui comprend un compresseur basse pression, un compresseur haute pression, une chambre de combustion, une turbine haute pression, une turbine basse pression et une tuyère 28 d'éjection des gaz de combustion. La turbomachine 24 comprend en outre, entre les compresseurs à basse pression et haute pression, un carter intermédiaire 30 structural qui comprend typiquement un moyeu intermédiaire 31 entouré par deux parois cylindriques coaxiales, respectivement interne et externe, qui définissent la veine de passage du flux secondaire et qui sont reliées entre elles par des bras tubulaires radiaux qui servent en général au passage de servitudes.
Dans l'exemple représenté, la boîte d'engrenages 10 est montée en aval de la soufflante 26 dans l'espace situé entre le carter 36 du compresseur haute pression et la paroi cylindrique interne précitée du carter intermédiaire 30. La boîte d'engrenages 10 est positionnée de sorte que sa partie de jonction 22 soit orientée vers l'amont et que ses bras 20 s'étendent vers l'aval et soient situés de manière symétrique de part et d'autre d'un plan passant par l'axe longitudinal A de la turbomachine. Naturellement, la boîte d'engrenages 10 pourrait être montée d'une autre façon dans la turbomachine, et en particulier avoir une orientation différente. Par exemple, pour certaines architectures de turbomachine ou turbopropulseur, en fonction des carters, la boite d'engrenages pourrait être positionnée de sorte que ses bras s'étendent vers l'amont.
Les figures 1 à 3 représentent l'art antérieur tel que décrit dans la demande de brevet FR 13/52284.
Les figures 4 à 1 1 représentent un mode de réalisation de l'invention.
Selon l'invention, un échangeur de chaleur 40 est monté entre les bras 20 de la boîte d'engrenages 10 (figures 4 et 5).
L'échangeur 40 représenté aux figures 4 et 5 est un échangeur air/huile (ACOC) du type échangeur brique, et comporte un bloc 42 d'échange de chaleur définissant deux circuits, respectivement d'air et d'huile, une écope 44 de prélèvement d'air dans le flux secondaire et d'alimentation du circuit d'air du bloc 42, et au moins une tuyère 46 d'évacuation de l'air sortant de ce circuit d'air. Le circuit d'huile du bloc 42 est alimenté en huile par des moyens appropriés non représentés et comprend une sortie (non visible) reliée par une conduite ou analogue à un équipement 48 tel qu'un générateur monté sur l'une des faces d'un bras 20 de la boîte 10.
Dans l'exemple représenté, l'échangeur 40 occupe la quasi-totalité de l'espace inter-bras de la boîte 10 et est fixé directement sur les bras 20 par des moyens appropriés.
La boîte d'engrenages 10 et l'échangeur 40 sont montés au voisinage du corps 38 de la turbomachine, qui est entouré par deux parois annulaires délimitant la veine d'écoulement du flux secondaire, comme décrit dans ce qui précède. La paroi radialement interne, appelée IFS, n'est pas représentée aux figures 4 et 5 mais l'est aux figures 6 à 1 1 et 14 (sous la référence 50).
L'écope d'entrée 44 de l'échangeur 40 communique avec un orifice de cette paroi 50 pour autoriser le prélèvement d'air dans le flux secondaire, et la tuyère 46 communique avec un autre orifice de cette paroi pour évacuer l'air chaud sortant du bloc d'échange 42 dans le flux secondaire.
La tuyère 46 d'évacuation de l'air peut posséder une structure renforcée de façon à relier de manière rigide les deux bras 20 au voisinage de leurs extrémités libres c'est-à-dire opposées à la partie de jonction 22, pour former un organe de renfort qui reprend les efforts entre les deux bras. Cela permet d'empêcher un phénomène de battement entre les bras qui entraînerait une usure prématurée du carter 14 de la boîte d'engrenages 10. En alternative ou de façon cumulative à cette réalisation, une bielle de reprise d'efforts, par exemple articulée à ses extrémités sur chaque bras 20, peut relier de manière rigide les deux bras 20 au voisinage de leurs extrémités libres. Comme cela est visible aux figures 6 à 1 1 , la paroi 50 est sensiblement cylindrique et est formée de deux capots 52 semi-cylindriques qui sont montés autour du corps 38 de part et d'autre d'un plan vertical longitudinal de la turbomachine.
En position de travail ou de fermeture représentée aux figures 6 et 7, la paroi 50 est fermée et les capots 52 sont rapprochés du corps 38 de la turbomachine. Dans cette position, les bords longitudinaux inférieurs 54 des capots 52 sont au voisinage l'un de l'autre, les bords longitudinaux supérieurs 56 pouvant être à distance l'un de l'autre, comme cela est visible en figure 7, pour définir par exemple un espace circonférentiel de montage du pylône de suspension de la turbomachine à l'aéronef.
La turbomachine comprend des moyens de déplacement de chaque capot 52 depuis leur position de travail jusqu'à une position de maintenance (représentée aux figures 10 et 1 1 ), dans laquelle le capot est d'une part écarté radialement du corps 38 de la turbomachine et d'autre part reculé vers l'aval par rapport à sa position de travail.
Dans l'exemple représenté, les moyens de déplacement comprennent des systèmes de rail/glissière 60, 62 et des bielles 64, 66.
Des systèmes de rail/glissière 60 sont montés entre les bords longitudinaux supérieurs 54 des capots et le corps 38 de la turbomachine, et comprennent chacun un rail de guidage monté sur le corps 38 de la turbomachine et une glissière conformée pour coulisser le long du rail de guidage. Alternativement, le rail de guidage de chaque système 60 peut être directement supporté par le pylône. Comme cela est schématiquement représenté dans les dessins, le système 60 s'étend sensiblement parallèlement à l'axe longitudinal de la turbomachine.
Chaque capot 52 est en outre relié au corps 38 de la turbomachine par une bielle 64 dont une extrémité 68 est articulée sur un moyen de fixation (tel qu'une chape) solidaire de la surface radialement interne du capot 52, et dont l'extrémité 70 opposée est articulée sur un moyen de fixation solidaire du corps 38 de la turbomachine. Les extrémités 68, 70 des bielles 64 peuvent être articulées par des liaisons à rotule ou à pivot.
On constate en figure 6 qu'en position de travail les extrémités 68 des bielles 64 s'étendent dans un plan transversal L en retrait (vers l'aval) du plan transversal passant par les extrémités libres (aval) des bras 20 de la boîte 10 afin qu'il n'y ait pas de risques de contact entre les bielles 64 et la boîte 10.
Comme cela est visible aux figures 4 à 6 notamment, les bielles 64 sont articulées sensiblement en un même point sur le corps 38 de la turbomachine, qui peut alors comprendre un moyen 72 unique de fixation de ces bielles 64.
Ces bielles 64 forment un V dont la pointe est orientée vers l'aval. Le déplacement des capots 52 de leur position de travail à leur position de maintenance entraîne un agrandissement de l'angle formé par les bielles. Le débattement angulaire de chaque capot 52 autour de l'axe longitudinal du système 60 correspondant est ici de l'ordre de 30° environ.
Selon l'invention, les moyens de déplacement comprennent en outre un système de rail/glissière 62 porté par l'échangeur de chaleur 40 et relié par des bielles 66 aux bielles 64 précitées.
Le système 62 comprend un rail de guidage 74 fixé sur le bloc d'échange 42 et une glissière 76 conformée pour coulisser le long du rail de guidage 74. Le rail 74 et la glissière 76 sont ici sensiblement parallèles à l'axe longitudinal de la turbomachine et s'étendent dans le plan vertical longitudinal précité (figure 8).
Le rail 74 a son extrémité amont qui est en aval de l'écope 44 pour ne pas perturber le prélèvement d'air dans le flux secondaire (figures 4, 5 et 8). Le rail 74 se prolonge vers l'aval au-delà de l'échangeur 40 et s'étend au-dessus de la tuyère 46, qui peut comprendre deux sorties indépendantes situées de part et d'autre du système 62, pour éviter que celui-ci traverse le flux d'air sortant de la tuyère 46. Cette variante de réalisation est représentée aux figures 12 et 13. La glissière 76 a une longueur équivalente à celle du rail 74. Son extrémité aval comprend des moyens 78 d'articulation (à rotule ou pivot) des extrémités amont des deux bielles 66. Ces extrémités sont ainsi fixées en un même point sur la glissière 76.
Les bielles 66 forment un V dont la pointe est orientée vers l'amont et est donc opposée à celle des autres bielles 64. Les extrémités aval des bielles 66, opposées au système 62, sont articulées sur les bielles 64, de façon à ce que l'écartement des bielles 66, l'une de l'autre (c'est-à-dire l'agrandissement de l'angle qu'elles définissent entre elles) provoque l'écartement des bielles 64, l'une de l'autre, et l'ouverture de la paroi 50, c'est-à-dire l'écartement des capots 52 du corps 38 de la turbomachine. Les bielles 64, 66 fonctionnent ainsi comme un parapluie, les bielles 66 assurant la fonction des baleines du parapluie et entraînant les bielles à s'écarter ou à se rapprocher l'une de l'autre lorsqu'elles sont elles-mêmes écartées ou rapprochées l'une de l'autre.
Le point 80 d'articulation de chaque bielle 66 sur une bielle 64 est situé à distance des extrémités de la bielle 64. Dans l'exemple représenté, ce point est situé à environ 1 /3 de la longueur de la bielle 64, mesurée depuis l'extrémité aval 70 de la bielle 64.
Le système 62 et les bielles 64, 66 s'étendent sensiblement dans un même plan et sont donc coplanaires. Il est sensiblement symétrique par rapport au plan vertical longitudinal précité.
Le déplacement des capots 52 depuis leurs positions de travail jusqu'à leurs positions de maintenance peut être réalisé comme suit.
On déplace les capots 52 depuis l'amont vers l'aval, le long des rails de guidage solidaires du corps 38 de la turbomachine et de l'échangeur 40. Les capots 52 passent alors de leurs positions de travail représentées aux figures 6 et 7 à leurs positions de maintenance représentées aux figures 8 et 9, dans lesquelles ils sont écartés du corps 38 et reculés vers l'aval.
Ce déplacement est rendu possible par l'intermédiaire des systèmes
60, et en particulier des glissières solidaires des capots 52 et qui coopèrent avec les rails solidaires du corps 42, et d'autre part par les bielles 64. Le système 62 et les bielles 66 permettent de guider ce déplacement et assurent que les capots sont dans une même position vis-à-vis du corps de la turbomachine.
Le déplacement des capots 52 depuis leurs positions de travail jusqu'à leurs positions de maintenance peut être effectué manuellement ou être automatisé, par exemple grâce à des moyens d'actionnement électriques, mécaniques, hydrauliques ou pneumatiques actionnant des vérins. Ces moyens d'actionnement peuvent être uniques et agir directement sur la glissière 76 du système 62 par exemple.
Dans la variante de réalisation des figures 12 et 1 3 évoquée ci- dessus, la tuyère 46 comprend deux demi-parties adjacentes séparées l'une de l'autre par le système de rail/glissière 62. Par ailleurs, la référence 82 désigne des plots d'amortissement qui relient l'échangeur 40 à la boîte d'engrenages 10 afin de limiter la transmission de vibrations entre ces éléments. De plus, comme expliqué dans ce qui précède, l'équipement 48 (figure 13) porté par la boîte d'engrenages 10 est refroidi par de l'huile sortant de l'échangeur 40, qui est acheminée depuis l'échangeur jusqu'à l'équipement par une première conduite 84, puis évacuée de l'équipement et renvoyée à l'échangeur par une seconde conduite 86. L'équipement 48 est ici un générateur de courant AC { Variable Frequency Generator).
La figure 14 représente une variante de réalisation de l'invention dans laquelle l'échangeur de chaleur 40' est du type à ailettes (SACOC) et comprend des ailettes 88 destinées à être balayées par le flux secondaire 90 et à échanger de l'énergie calorifique avec de l'huile d'un circuit d'huile 92 de l'échangeur. Cet échangeur 40' ne comprend donc pas d'écope ni de tuyère et est monté entre les bras d'une boîte d'engrenages, comme expliqué dans ce qui précède, par exemple au moyen de supports 94 conformés pour s'adapter à l'espace inter-bras et pour être fixés à ces bras par des moyens appropriés. La surface de l'échangeur 40' comportant les ailettes 88 est dans le prolongement de la paroi 50 (IFS), cette dernière étant modifiée pour inclure l'échangeur 40'. Une partie de cette paroi 50 peut rester fixe lors de l'ouverture des capots, pour faciliter cette ouverture.
Au moins un support 94 conformé pour s'adapter à l'espace interbras l'air peut posséder une structure renforcée de façon à relier de manière rigide les deux bras et éviter ainsi un phénomène de battement entre les bras. Par ailleurs, il est possible de prévoir un échangeur de chaleur hybride réalisé à partir de l'échangeur de chaleur de type surfacique 40' en ajoutant à ce dispositif un échangeur de chaleur de type volumique, c'est-à-dire du type échangeur brique tel qu'un échangeur 40 décrit précédemment, de façon à augmenter la capacité de refroidissement.
L'espace libre visible sur la figure 14 entre les supports 94 et l'échangeur surfacique 40' peut être utilisé pour y loger au moins une partie du bloc d'échange de chaleur de l'échangeur volumique. Ce bloc peut servir de support pour l'échangeur surfacique, et donc remplacer les supports 94. Une écope de prélèvement d'air dans le flux secondaire et d'alimentation du circuit d'air de ce bloc est prévue adjacente à l'échangeur surfacique en amont de ce dernier par rapport à la direction d'écoulement de l'air, et au moins une tuyère d'évacuation de l'air est prévue en aval. L'écope de prélèvement peut être affleurante à l'écoulement de l'air dans le flux secondaire (écope dite « flush » en anglais) et prolonger vers l'amont la surface de l'échangeur surfacique.
En variante, l'écope de prélèvement peut intercepter l'écoulement de l'air (écope dite dynamique) et être disposée de façon à ne pas empêcher l'air du flux secondaire de venir lécher la surface de l'échangeur surfacique. Dans un mode de réalisation, cette écope dynamique peut être munie d'un volet piloté, de façon à faire varier le débit d'air prélevé et donc la capacité de refroidissement en fonction des besoins en refroidissement (cf. figures 15a et 15b).
Le volet 96 peut avoir une section longitudinale légèrement courbée selon la forme d'un S, afin d'améliorer l'aérodynamique dans la position ouverte de l'écope 44, en comparaison avec un volet plan qui risquerait de générer des tourbillons notamment au niveau de son bord d'attaque.
L'axe 98 du volet 96 peut avoir ses paliers d'extrémités logés chacun dans le carter d'un bras latéral 20, pour être lubrifiés par l'huile de lubrification des engrenages dans les bras 20. Le mécanisme de commande de l'axe 98 peut également être prévu pour loger dans le carter d'un bras latéral 20, mais un mécanisme extérieur au carter reste possible.
Les références 100 et 102 désignent respectivement la paroi extérieure de la boîte d'engrenages 10 et une liaison reliant de manière rigide les deux bras 20.
Les circuits d'huile des deux échangeurs surfacique 40' et volumique 40 peuvent être reliés en série ou en parallèle.
Par ailleurs, cette solution reste compatible avec un système de rail/glissière porté par l'échangeur de chaleur, tel que le système 62 décrit en référence aux figures 4 à 8. Ce système peut être fixé à la plaque 104 de l'échangeur surfacique 40', dans une zone médiane de fixation qui sépare deux zones latérales de la plaque, chaque zone latérale comportant des ailettes.

Claims

REVENDICATIONS
1 . Turbomachine d'aéronef, comportant au moins un échangeur de chaleur (40, 40') et une boîte d'engrenages (10) pour l'entraînement d'équipements, qui a une forme générale en V et qui comprend deux bras latéraux (20) reliés entre eux par une partie médiane de jonction, lesdits bras renfermant des lignes d'engrenages qui sont situées dans des plans non parallèles et qui sont unies entre elles par au moins un engrenage situé dans ladite partie de jonction, caractérisée en ce que l'échangeur de chaleur est monté entre les bras de la boîte d'engrenages.
2. Turbomachine selon la revendication 1 , caractérisée en ce que l'échangeur de chaleur (40, 40') est un échangeur air-huile, par exemple du type ACOC ou SACOC.
3. Turbomachine selon la revendication 1 ou 2, caractérisée en ce que l'échangeur de chaleur (40, 40') comprend une sortie de fluide de refroidissement d'un équipement (48) porté par la boîte d'engrenages (10).
4. Turbomachine selon l'une des revendications précédentes, caractérisée en ce que la boîte d'engrenages (10) est situé à six heures par analogie avec le cadran d'une horloge.
5. Turbomachine selon l'une des revendications précédentes, caractérisée en ce que l'échangeur (40, 40') comprend des moyens de fixation aux deux bras (20) de la boîte d'engrenages (10).
6. Turbomachine selon la revendication 5, caractérisée en ce que les moyens de fixation comprennent des moyens d'amortissement.
7. Turbomachine selon l'une des revendications précédentes, caractérisée en ce que la boîte d'engrenages (10) est fixé sur un corps (38) de la turbomachine, qui est entouré par une paroi annulaire (50) formée de deux capots (52) sensiblement semi-cylindriques, chaque capot étant relié par des bielles (64, 66) à un système de rail/glissière (62) porté par l'échangeur (40, 40').
8. Turbomachine selon la revendication 7, caractérisée en ce que le système de rail/glissière (62) comprend un rail (74) solidaire de l'échangeur (40, 40') et une glissière (76) mobile en translation vis-à-vis du rail, la glissière étant reliée par une première bielle (66) à une deuxième bielle (64) dont une extrémité est articulée sur le corps et dont l'extrémité opposée est articulée sur un capot (52).
9. Turbomachine selon la revendication 8, caractérisée en ce que les premières bielles (66) forment sensiblement un V et ont une de leurs extrémités fixée sensiblement en un même point (78) sur la glissière (76).
10. Turbomachine selon la revendication 8 ou 9, caractérisée en ce que les deuxièmes bielles (64) forment sensiblement un V et ont une de leurs extrémités (72) fixée sensiblement en un même point sur le corps (38) de la turbomachine, chaque deuxième bielle (64) étant reliée à l'une des premières bielles (66), en un point (80) distant de ses extrémités longitudinales.
1 1 . Turbomachine selon l'une des revendications précédentes, caractérisée en ce qu'elle comprend un premier échangeur de chaleur (40') du type surfacique et un deuxième échangeur de chaleur (40) du type volumique ou à brique, ledit premier échangeur de chaleur étant monté entre les bras de la boîte d'engrenages et ledit deuxième échangeur de chaleur étant solidaire dudit premier échangeur et monté sous ledit premier échangeur de chaleur.
12. Turbomachine selon la revendication 1 1 , caractérisée en ce que ledit deuxième échangeur (40) comprend une écope (44) à volet mobile, et de préférence piloté.
PCT/FR2014/053283 2013-12-12 2014-12-11 Turbomachine d'aéronef comportant un échangeur de chaleur et une boite d'engrenages en v WO2015087006A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/103,177 US10036322B2 (en) 2013-12-12 2014-12-11 Electroformed nickel-chromium alloy
GB1610631.2A GB2535941B (en) 2013-12-12 2014-12-11 Aircraft turbomachine comprising a heat exchanger and a gearbox in a V configuration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1362451 2013-12-12
FR1362451A FR3014953B1 (fr) 2013-12-12 2013-12-12 Turbomachine d'aeronef comportant un echangeur de chaleur et une boite d'engrenages en v

Publications (1)

Publication Number Publication Date
WO2015087006A1 true WO2015087006A1 (fr) 2015-06-18

Family

ID=50179780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/053283 WO2015087006A1 (fr) 2013-12-12 2014-12-11 Turbomachine d'aéronef comportant un échangeur de chaleur et une boite d'engrenages en v

Country Status (4)

Country Link
US (1) US10036322B2 (fr)
FR (1) FR3014953B1 (fr)
GB (1) GB2535941B (fr)
WO (1) WO2015087006A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3059046A1 (fr) * 2016-11-22 2018-05-25 Safran Aircraft Engines Echangeur thermique pour turbomachine optimise pour reduire la perturbation d'ecoulement fluide dans ce reacteur

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10502142B2 (en) * 2017-04-11 2019-12-10 United Technologies Corporation Turbine engine gearbox assembly with sets of inline gears
WO2024096879A1 (fr) * 2022-11-03 2024-05-10 General Electric Company Moteur à turbine à gaz ayant un troisième flux

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1258196A (fr) 1960-05-31 1961-04-07 Perfectionnements apportés aux souffleries à tambour pour le nettoyage des graines dans les batteuses agricoles
FR1352284A (fr) 1962-01-22 1964-02-14 Shell Int Research Procédé de traitement de dispersions aqueuses stables de substances macromoléculaires oléfiniques
US6212974B1 (en) * 1998-12-17 2001-04-10 United Technologies Corporation Variable stiffness positioning link for a gearbox
US20090175716A1 (en) * 2008-01-08 2009-07-09 Rolls-Royce North American Technologies, Inc. Integrated bypass engine structure
US7631485B2 (en) * 2004-12-01 2009-12-15 United Technologies Corporation Tip turbine engine with a heat exchanger
US8490410B2 (en) * 2010-11-17 2013-07-23 United Technologies Corporation Axial accessory gearbox
US20130239584A1 (en) * 2012-03-14 2013-09-19 United Technologies Corporation Constant-speed pump system for engine thermal management system aoc reduction and environmental control system loss elimination

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8192143B2 (en) * 2008-05-21 2012-06-05 United Technologies Corporation Gearbox assembly
US8602717B2 (en) * 2010-10-28 2013-12-10 United Technologies Corporation Compression system for turbomachine heat exchanger
GB201121971D0 (en) * 2011-12-21 2012-02-01 Rolls Royce Deutschland & Co Kg Accessory mounting for a gas turbine
US9194294B2 (en) * 2012-05-07 2015-11-24 United Technologies Corporation Gas turbine engine oil tank
FR2999155B1 (fr) * 2012-12-12 2014-11-21 Aircelle Sa Ensemble propulsif pour aeronef
FR3003323B1 (fr) * 2013-03-14 2016-10-07 Snecma Fixation d'une boite d'engrenages en v sur une turbomachine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1258196A (fr) 1960-05-31 1961-04-07 Perfectionnements apportés aux souffleries à tambour pour le nettoyage des graines dans les batteuses agricoles
FR1352284A (fr) 1962-01-22 1964-02-14 Shell Int Research Procédé de traitement de dispersions aqueuses stables de substances macromoléculaires oléfiniques
US6212974B1 (en) * 1998-12-17 2001-04-10 United Technologies Corporation Variable stiffness positioning link for a gearbox
US7631485B2 (en) * 2004-12-01 2009-12-15 United Technologies Corporation Tip turbine engine with a heat exchanger
US20090175716A1 (en) * 2008-01-08 2009-07-09 Rolls-Royce North American Technologies, Inc. Integrated bypass engine structure
US8490410B2 (en) * 2010-11-17 2013-07-23 United Technologies Corporation Axial accessory gearbox
US20130239584A1 (en) * 2012-03-14 2013-09-19 United Technologies Corporation Constant-speed pump system for engine thermal management system aoc reduction and environmental control system loss elimination

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3059046A1 (fr) * 2016-11-22 2018-05-25 Safran Aircraft Engines Echangeur thermique pour turbomachine optimise pour reduire la perturbation d'ecoulement fluide dans ce reacteur

Also Published As

Publication number Publication date
FR3014953B1 (fr) 2016-01-01
GB201610631D0 (en) 2016-08-03
US10036322B2 (en) 2018-07-31
GB2535941A (en) 2016-08-31
GB2535941B (en) 2020-02-26
FR3014953A1 (fr) 2015-06-19
US20160376990A1 (en) 2016-12-29

Similar Documents

Publication Publication Date Title
EP2834503B1 (fr) Dispositif de récupération de l'huile de lubrification d'un réducteur épicycloïdal
CA2639211C (fr) Pylone de suspension d'un moteur sous une aile d'avion
EP3066320B1 (fr) Turbomachine équipée de moyens de reprise des efforts de poussée de son moteur
WO2014140441A1 (fr) Boite d'engrenages en v pour entraînement d'équipements de turbomachine
EP2867551B1 (fr) Palier a moyen de lubrification et systeme pour changer le pas des pales d'une helice de turbopropulseur d'aeronef, equipe dudit palier
FR3064682B1 (fr) Carter intermediaire de turbomachine d'aeronef comprenant un embout de passage de lubrifiant connecte a une aube de carter par une piece de raccord
EP2878774B1 (fr) Turbomachine comportant des moyens de support d'au moins un équipement
FR3022301A1 (fr) Turbomachine comprenant un systeme d'entrainement d'un equipement tel qu'un boitier d'accessoires
EP3864297B1 (fr) Module de soufflante a pales a calage variable
FR2987402A1 (fr) Dispositif de lubrification d'un reducteur epicycloidal compatible d'un montage modulaire.
FR2987417A1 (fr) Dispositif de recuperation de l'huile de lubrification d'un reducteur epicycloidal.
FR3087823A1 (fr) Module de soufflante equipe d'une machine electrique pour une turbomachine d'aeronef
FR3055001A1 (fr) Systeme de changement de pas equipe de moyens de reglage du pas des pales et turbomachine correspondante
WO2015107300A1 (fr) Boîtier d'entraînement pour équipements
WO2015087006A1 (fr) Turbomachine d'aéronef comportant un échangeur de chaleur et une boite d'engrenages en v
FR3055000A1 (fr) Module de changement de pas pour turbomachine et turbomachine correspondante
FR3014478A1 (fr) Assemblage pour turbomachine d'aeronef comprenant un dispositif de circulation de fluide a conception amelioree vis-a-vis des risques de fuite
FR3055309A1 (fr) Systeme de changement de pas equipe de moyens de lubrification d'un palier de transfert de charge
EP3698050B1 (fr) Carter extérieur de turbo-compresseur avec réservoir d'huile intégré
FR3055002A1 (fr) Systeme de changement de pas equipe de moyens d'alimentation fluidique d'un moyen de commande et turbomachine correspondante
FR3009583A1 (fr) Turbomachine a organe de deviation d’objets etrangers
FR3046402A1 (fr) Systeme de changement de pas pour turbopropulseur a doublet d'helices contrarotatives amont
FR3108654A1 (fr) Turbomachine d’aeronef equipee d’une machine electrique
FR3064295B1 (fr) Carter intermediaire de turbomachine d'aeronef comprenant un embout de passage de lubrifiant solidaire d'une plateforme
FR3140906A1 (fr) Turbomachine a cycle recupere equipee d’un echangeur de chaleur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14827500

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15103177

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 201610631

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20141211

122 Ep: pct application non-entry in european phase

Ref document number: 14827500

Country of ref document: EP

Kind code of ref document: A1