WO2015085806A1 - 无机胶纤维复合材料补强和保护混凝土的方法 - Google Patents

无机胶纤维复合材料补强和保护混凝土的方法 Download PDF

Info

Publication number
WO2015085806A1
WO2015085806A1 PCT/CN2014/087176 CN2014087176W WO2015085806A1 WO 2015085806 A1 WO2015085806 A1 WO 2015085806A1 CN 2014087176 W CN2014087176 W CN 2014087176W WO 2015085806 A1 WO2015085806 A1 WO 2015085806A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic
magnesia
concrete
inorganic adhesive
fiber sheet
Prior art date
Application number
PCT/CN2014/087176
Other languages
English (en)
French (fr)
Inventor
丁铸
崔棚
董必钦
刘伟
陆晗
邢锋
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2015085806A1 publication Critical patent/WO2015085806A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B13/00Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material
    • B32B13/14Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/34Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/105Ceramic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention relates to concrete reinforcement, in particular to a method for reinforcing and protecting concrete by an inorganic rubber fiber composite material.
  • the concrete structure is affected by the load and various environmental corrosive media, and the structural deterioration is gradually caused, resulting in cracks, cracks and even damage, thereby reducing the safety of the concrete structure and shortening the service life.
  • the reinforcement of concrete is mostly made of surface-bonded fiber reinforced composite materials, such as fiber reinforced composites (CFRP) composed of carbon fiber cloth and epoxy organic rubber. CFRP has been widely used due to its advantages of high strength, high efficiency, light weight and convenient construction. It has formed a relatively mature technical system.
  • the epoxy-based organic glue used for pasting has the following defects: (1) The softening temperature is low, generally 60-80 ° C, and toxic gas is volatilized under high temperature and fire, and the epoxy group will be various with the human body. The group reacts, so it is usually considered to be toxic or carcinogenic, which poses a great threat to the safety of people's lives and property; (2) it accelerates aging under ultraviolet light and seriously affects the bonding performance; (3) Inorganic concrete materials have large differences in elastic modulus.
  • the technical problem to be solved by the present invention is to provide a method for reinforcing and protecting concrete by using an inorganic rubber fiber composite material which is safe, environmentally friendly, long in life and simple in construction.
  • the technical solution adopted by the present invention is a method for reinforcing and protecting concrete by an inorganic rubber fiber composite material, and an inorganic adhesive-fiber sheet reinforcing material layer is pasted on the surface of the concrete member, and the construction includes the following steps:
  • steps (4) and (5) are repeated.
  • the fiber sheet is a unidirectional fiber layer or a fiber fabric layer.
  • the fiber is a combination of one or more of glass fiber, carbon fiber, basalt fiber or aramid fiber.
  • the inorganic adhesive is a phosphate adhesive
  • the phosphate adhesive is composed of the following components by weight:
  • the phosphate adhesive consists of the following components in parts by weight:
  • the retarder weight is 8%-15% by weight of the magnesia; and the weight of the water is 18-25% by weight of the phosphate cement material.
  • the dihydrogen phosphate salt is at least one of potassium dihydrogen phosphate, sodium dihydrogen phosphate and ammonium dihydrogen phosphate
  • the inorganic mineral filler is fly ash, wollastonite powder, blast furnace.
  • At least one of slag powder, steel slag powder, kaolin, metakaolin, zeolite, the retarder is at least one of borax and boric acid;
  • magnesia is calcined magnesia, fused magnesia and seawater magnesia
  • At least one of the calcined magnesia, fused magnesia or seawater magnesia has a magnesia content of not less than 80%.
  • the fibrous sheet is immersed in an inorganic adhesive and rubbed for 3 to 6 minutes.
  • steps (4) and (5) are repeated to obtain an inorganic binder-fiber sheet reinforcing material layer of a multilayer fiber sheet.
  • the method of the invention improves the bending strength and impact toughness of the concrete member, and the inorganic adhesive-fiber sheet reinforcing material layer blocks the penetration of the external corrosive medium into the concrete, and strengthens and protects the internal material of the concrete member, Extend the service life of concrete.
  • the inorganic rubber material and the concrete material have close elastic modulus, good coordination of deformation, good interfacial compatibility, high temperature resistance, long life, safety and environmental protection.
  • the reinforcing structure of the concrete fiber composite material of the invention is simple in construction, convenient for popularization and application in engineering construction and reinforcement, and has good economic benefits.
  • FIG. 1 is a schematic cross-sectional view showing a reinforcing structure of a concrete fiber composite material using a 1-layer fiber sheet according to an embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view showing a reinforcing structure of a concrete fiber composite material using two layers of fiber sheets according to an embodiment of the present invention
  • steps (4) and (5) are repeated.
  • the fiber composite material comprises an inorganic adhesive-fiber sheet reinforcing material layer, the fiber sheet layer is sandwiched in the inorganic adhesive, and may be one or more layers, and the inorganic adhesive-fiber sheet reinforcing material layer is pasted on the surface of the concrete member;
  • the inorganic binder is formed by mixing an inorganic cementing material with water.
  • the fibrous sheet may be a unidirectional fibrous layer or a fibrous fabric layer.
  • the fiber is a combination of one or more of glass fiber, carbon fiber, basalt fiber or aramid fiber.
  • the inorganic adhesive is a phosphate adhesive, and the phosphate adhesive consists of the following components by weight:
  • the dihydrogen phosphate is at least one of potassium dihydrogen phosphate, sodium dihydrogen phosphate and ammonium dihydrogen phosphate
  • the inorganic mineral filler is fly ash, wollastonite powder, blast furnace slag powder, steel slag powder, kaolin, metakaolin
  • the retarder is at least one of borax and boric acid
  • the magnesia is at least one of calcined magnesia, fused magnesia and seawater magnesia, and calcined magnesia and electrofusion
  • the magnesia content in magnesia or seawater magnesia is not less than 80%.
  • the retarder weight is 8%-15% by weight of the magnesia; the weight of the water is 18-25% by weight of the phosphate cement material.
  • the construction method of the concrete fiber composite reinforcing structure of the first embodiment of the present invention is as follows: a sample of a C40 cement concrete beam is prepared, and the size is 100 mm ⁇ 100 mm ⁇ 550 m. After the concrete sample solidified and hardened and cured under standard conditions for 28 days, the surface was ground and chiseled.
  • the fiber material adopts the carbon fiber HITEX-C200 of Nanjing Haituo Composite Materials Co., Ltd., and its performance is shown in Table 1.
  • the inorganic cement is prepared; the phosphate adhesive is formed by mixing and stirring the powdered phosphate cement material with water.
  • the parts by weight of the powdered phosphate cement material in this embodiment are potassium dihydrogen phosphate 100, magnesia 60, Fly ash 55, borax 4; the weight fraction of water is 55.
  • the phosphate cement is prepared by weighing and mixing the powdery raw materials, and uniformly stirring with water in a mixer to obtain a desired inorganic binder.
  • the inorganic cement is evenly applied to the surface of the concrete beam with a clean shovel, and the thickness is 1 to 1.5 mm.
  • the unidirectional continuous carbon fiber sheet is flatly pasted on the adhesive; compacted and vented. Then, a layer of inorganic adhesive is evenly spread on the unidirectional continuous carbon fiber sheet, and the thickness is 1 to 1.5 mm, compacted and exhausted, and after being hardened, it is trimmed to obtain a concrete beam adhered on the surface.
  • the fiber sheet used was one layer. When the fiber composite material is pasted, a length of 50 mm is left at both ends of the concrete beam to ensure that the fixed constraint at both ends does not have a restraining effect on the fiber cloth during the loading test.
  • the concrete fiber composite reinforcing structure test piece of the present embodiment was tested at room temperature for 7 days and then compared with the blank concrete beam, and the four-point bending strength was tested on the material testing machine (NYL-300 type), every three The concrete beams are a group, and the average bending strength of the three concrete beams is the bending strength of the group.
  • the four-point bending strength of the blank concrete beam is 10.68 MPa.
  • the concrete beam bonded with one layer of unidirectional continuous carbon fiber has a bending strength increased by 55% compared with the blank concrete beam.
  • the parts by weight of the powdered phosphate cement material in this embodiment are potassium dihydrogen phosphate 100, magnesia 62, Fly ash 60, borax 6.
  • the weight of water is 55.
  • the phosphate cement is prepared by weighing and mixing the powdery raw materials, and uniformly stirring with water in a mixer to obtain a desired inorganic binder.
  • a fiber composite material was prepared and a concrete beam was bonded, and the carbon fiber sheet was two layers.
  • the concrete fiber composite reinforcing structure test piece of the present embodiment is cured at room temperature for 7 days, and then tested at a material testing machine (NYL-300 type) for four-point bending strength, and the bending strength is compared with that of the blank concrete beam. Increased by 65%.
  • the parts by weight of the powdered phosphate cement material are potassium dihydrogen phosphate 100, magnesia 70, Fly ash 50, borax 8.
  • the weight fraction of water is 50.
  • the phosphate cement is prepared by weighing and mixing the powdery raw materials, and uniformly stirring with water in a mixer to obtain a desired inorganic binder.
  • a fiber composite material was prepared and a concrete beam was bonded, and the carbon fiber sheet was one layer.
  • the concrete fiber composite reinforcing structure test piece of the present embodiment is cured at room temperature for 7 days, and then tested at a material testing machine (NYL-300 type) for four-point bending strength, and the bending strength is compared with that of the blank concrete beam. Increased by 58%.
  • the parts by weight of the powdered phosphate cement material are potassium dihydrogen phosphate 100, magnesia 70, Fly ash 40, borax 12.
  • the weight of water is 45.
  • the phosphate cement is prepared by weighing and mixing the powdery raw materials, and uniformly stirring with water in a mixer to obtain a desired inorganic binder.
  • a fiber composite material was prepared and a concrete beam was bonded, and the carbon fiber sheet was two layers.
  • the concrete fiber composite reinforcing structure test piece of the present embodiment is cured at room temperature for 7 days, and then tested at a material testing machine (NYL-300 type) for four-point bending strength, and the bending strength is compared with that of the blank concrete beam. Increased by 67%.
  • the parts by weight of the powdered phosphate cement material are potassium dihydrogen phosphate 100, magnesia 80, Fly ash 40, borax 12.
  • the weight fraction of water is 50.
  • the phosphate cement is prepared by weighing and mixing the powdery raw materials, and uniformly stirring with water in a mixer to obtain a desired inorganic binder.
  • a fiber composite material was prepared and a concrete beam was bonded, and the carbon fiber sheet was one layer.
  • the concrete fiber composite reinforcing structure test piece of the present embodiment is cured at room temperature for 7 days, and then tested at a material testing machine (NYL-300 type) for four-point bending strength, and the bending strength is compared with that of the blank concrete beam. Increased by 60%.
  • the parts by weight of the powdered phosphate cement material are potassium dihydrogen phosphate 100, magnesia 75, Fly ash 40, borax 12.
  • the weight of water is 45.
  • the phosphate cement is prepared by weighing and mixing the powdery raw materials, and uniformly stirring with water in a mixer to obtain a desired inorganic binder.
  • a fiber composite material was prepared and a concrete beam was bonded, and the carbon fiber sheet was two layers.
  • the concrete fiber composite reinforcing structure test piece of the present embodiment is cured at room temperature for 7 days, and then tested at a material testing machine (NYL-300 type) for four-point bending strength, and the bending strength is compared with that of the blank concrete beam. Increased by 70%.
  • the parts by weight of the powdered phosphate cement material are potassium dihydrogen phosphate 100, magnesia 80, Borax 15.
  • the weight fraction of water is 35.
  • the phosphate cement is prepared by weighing and mixing the powdery raw materials, and uniformly stirring with water in a mixer to obtain a desired inorganic binder.
  • a fiber composite material was prepared and a concrete beam was bonded, and the carbon fiber sheet was one layer.
  • the concrete fiber composite reinforcing structure test piece of the present embodiment is cured at room temperature for 7 days, and then tested at a material testing machine (NYL-300 type) for four-point bending strength, and the bending strength is compared with that of the blank concrete beam. Increased by 59%.
  • the parts by weight of the powdered phosphate cement material are potassium dihydrogen phosphate 100, magnesia 80, Fly ash 40, borax 15.
  • the weight fraction of water is 50.
  • the phosphate cement is prepared by weighing and mixing the powdery raw materials, and uniformly stirring with water in a mixer to obtain a desired inorganic binder.
  • a fiber composite material was prepared and a concrete beam was bonded, and the carbon fiber sheet was two layers.
  • the concrete fiber composite reinforcing structure test piece of the present embodiment is cured at room temperature for 7 days, and then tested at a material testing machine (NYL-300 type) for four-point bending strength, and the bending strength is compared with that of the blank concrete beam. Increased by 72%.
  • the parts by weight of the powdered phosphate cement material are potassium dihydrogen phosphate 100, magnesia 70, Fly ash 10, borax 14.
  • the weight fraction of water is 40.
  • the phosphate cement is prepared by weighing and mixing the powdery raw materials, and uniformly stirring with water in a mixer to obtain a desired inorganic binder.
  • a fiber composite material was prepared and a concrete beam was bonded, and the carbon fiber sheet was one layer.
  • the concrete fiber composite reinforcing structure test piece of the present embodiment is cured at room temperature for 7 days, and then tested at a material testing machine (NYL-300 type) for four-point bending strength, and the bending strength is compared with that of the blank concrete beam. Increased by 58%.
  • the parts by weight of the powdered phosphate cement material are potassium dihydrogen phosphate 100, magnesia 70, Fly ash 10, borax 10.
  • the weight fraction of water is 40.
  • the phosphate cement is prepared by weighing and mixing the powdery raw materials, and uniformly stirring with water in a mixer to obtain a desired inorganic binder.
  • a fiber composite material was prepared and a concrete beam was bonded, and the carbon fiber sheet was two layers.
  • the concrete fiber composite reinforcing structure test piece of the present embodiment is cured at room temperature for 7 days, and then tested at a material testing machine (NYL-300 type) for four-point bending strength, and the bending strength is compared with that of the blank concrete beam. Increased by 73%.
  • An inorganic binder was prepared in accordance with the composition ratio of the phosphate cement material of Example 1.
  • the carbon fiber sheet was previously immersed in a magnesium phosphate gelling material inorganic adhesive and kneaded for 5 minutes, and the concrete beam was bonded in accordance with the method of Example 1.
  • the carbon fiber sheet is a layer.
  • the concrete fiber composite reinforcing structure test piece of the present embodiment is cured at room temperature for 7 days, and then tested at a material testing machine (NYL-300 type) for four-point bending strength, and the bending strength is compared with that of the blank concrete beam. Increased by 60%.
  • An inorganic binder was prepared in accordance with the composition ratio of the phosphate cement material of Example 2.
  • the carbon fiber sheet was previously immersed in a magnesium phosphate gelling material inorganic adhesive and kneaded for 5 minutes, and the concrete beam was bonded in accordance with the method of Example 1.
  • the carbon fiber sheet is two layers.
  • the concrete fiber composite reinforcing structure test piece of the present embodiment is cured at room temperature for 7 days, and then tested at a material testing machine (NYL-300 type) for four-point bending strength, and the bending strength is compared with that of the blank concrete beam. Increased by 68%.

Abstract

一种无机胶纤维复合材料补强和保护混凝土的方法,在混凝土构件表面粘贴无机胶粘剂-纤维片材增强材料层,包括以下步骤:(1)对混凝土构件的表面进行粗糙处理;(2)将无机胶凝材料与水混合、搅拌均匀形成无机胶粘剂;(3)在处理好的混凝土构件的表面均匀涂抹一层无机胶粘剂;(4)将纤维片材粘贴在的无机胶粘剂上;(5)将纤维片材铺平、压实、排气后再在纤维片材外表面涂刷一层无机胶粘剂。通过该方法提高了混凝土的抗折强度和冲击韧性,对混凝土结构的内部材料起到补强和保护作用。无机胶粘剂纤维复合材料的耐高温性能好,寿命长、安全、环保;本发明施工简便,便于在工程建设和加固中推广应用,具有良好的经济效益。

Description

无机胶纤维复合材料补强和保护混凝土的方法 技术领域
本发明涉及混凝土补强,尤其涉及无机胶纤维复合材料补强和保护混凝土的方法。
背景技术
混凝土结构在服役过程中由于受到荷载与各种环境腐蚀介质共同作用,而逐渐发生结构劣化,导致出现裂纹,裂缝,甚至破坏,从而降低混凝土结构物的安全性,缩短使用寿命。为了及时修复劣化的混凝土结构,保证其使用的安全性,延长其使用寿命,必须对劣化的混凝土进行修复和补强。目前,混凝土的加固补强多采用表面粘贴纤维增强复合材料,例如碳纤维布与环氧有机胶构成的纤维增强复合材料(CFRP)。CFRP具有高强、高效、质轻和施工方便的优点而得到广泛应用,形成了比较成熟的技术体系,我国还制定了《混凝土结构加固设计规范》(GB 50367-2006)和《结构加固修复用碳纤维片材》(GB/T 21490-2008)。但粘贴用的环氧类有机胶有如下缺陷,(1)软化温度较低,一般多为60~80℃,在高温和火灾下会挥发出有毒气体,环氧基会与人体内的多种基团反应,因此通常被认为是有毒或者致癌物质,这给人们的生命财产安全带来极大的威胁;(2)在紫外线的照射下会加速老化,严重影响粘结性能;(3)与无机类的混凝土材料的弹性模量差距大,在多次热胀冷缩和湿胀干缩循环条件下,两者的变形不协调,易产生裂缝,因而相容性差。针对这类问题,发明专利申请(CN 102351443 A, CN201210356357),公开了耐高温碱矿渣胶凝材料及其制备方法,可在一定程度上解决环氧类有机胶不耐高温的问题,但因其施工方法比较繁琐,不利于工程实际中的推广应用。
技术问题
本发明要解决的技术问题是提供一种安全、环保、寿命长、且施工简便的无机胶纤维复合材料补强和保护混凝土的方法。
技术解决方案
为了解决上述技术问题,本发明采用的技术方案是,一种无机胶纤维复合材料补强和保护混凝土的方法,在混凝土构件表面粘贴无机胶粘剂-纤维片材增强材料层,施工包括以下步骤:
(1)对混凝土构件的表面进行粗糙处理;
(2)将无机胶凝材料与水混合、搅拌均匀形成无机胶粘剂;
(3)在处理好的混凝土构件的表面均匀涂抹一层无机胶粘剂;
(4)将纤维片材粘贴在的无机胶粘剂上;
(5)将纤维片材铺平、压实、排气后再在纤维片材外表面涂刷一层无机胶粘剂;
(6)如果采用多层纤维片材的无机胶粘剂-纤维片材增强材料层,则重复步骤(4)和(5)。
以上所述的方法,所述的纤维片材为单向纤维层或者纤维织物层。
以上所述的方法,所述的纤维为玻璃纤维、碳纤维、玄武岩纤维或芳纶纤维中的一种或多种的组合。
以上方法,所述的无机胶粘剂为磷酸盐胶粘剂,磷酸盐胶粘剂按重量份,由以下组分组成:
磷酸二氢盐 100;
镁砂 60-80;
无机矿物填料 0-60;
缓凝剂 4-15;
水 35-55。
以上所述的方法,磷酸盐胶粘剂按重量份,由以下组分组成:
磷酸二氢盐 100;
镁砂 65-75;
无机矿物填料 20-50;
缓凝剂 5-12;
水 35-55。
以上所述的方法,所述的缓凝剂重量为镁砂重量的8%-15%;水的重量为磷酸盐胶凝材料重量百分比的18-25%。
以上所述的方法,所述的磷酸二氢盐为磷酸二氢钾、磷酸二氢钠及磷酸二氢铵中的至少一种,所述的无机矿物填料是粉煤灰、硅灰石粉、高炉矿渣粉、钢渣粉、高岭土、偏高岭土、沸石中的至少一种,所述的缓凝剂是硼砂和硼酸中的至少一种;镁砂为重烧镁砂、电熔镁砂和海水镁砂中的至少一种,重烧镁砂、电熔镁砂或海水镁砂中的镁砂含量不小于80%。
以上所述的方法,在步骤(4)之前,将纤维片材在放无机胶粘剂中浸泡并杵捣3~6分钟。
以上所述的方法,重复步骤(4)和(5),获得多层纤维片材的无机胶粘剂-纤维片材增强材料层。
有益效果
本发明的方法提高了混凝土构件的抗折强度和冲击韧性,无机胶粘剂-纤维片材增强材料层阻隔了外界腐蚀介质对混凝土的渗透,对混凝土构件的内部材料起到补强和保护作用,可以延长混凝土的使用寿命。无机胶凝材料与混凝土材料的弹性模量接近,变形的协调性好,具有较好的界面相容性,而且耐高温性能好、寿命长、安全、环保。本发明混凝土纤维复合材料补强结构施工简便,便于在工程建设和加固中推广应用,具有良好的经济效益。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1是本发明实施例混凝土纤维复合材料补强结构使用1层纤维片材时的剖面示意图;
图2是本发明实施例混凝土纤维复合材料补强结构使用2层纤维片材时的剖面示意图;
图中:3-混凝土构件,2-无机胶粘剂,1-纤维片材。
本发明的实施方式
本发明无机胶纤维复合材料补强和保护混凝土的方法,在混凝土构件表面粘贴无机胶粘剂-纤维片材增强材料层,其施工方法包括以下步骤:
(1)对混凝土构件的表面进行粗糙、凿毛处理;
(2)将无机胶凝材料与水混合、搅拌均匀形成无机胶粘剂;
(3)在处理好的混凝土表面均匀涂抹一层无机胶粘剂;
(4)将纤维片材平整地粘贴在的无机胶粘剂上;
(5)将纤维片材铺平、压实、排气后再在纤维片材外表面涂刷一层无机胶粘剂;
(6)如果采用多层纤维片材的增强材料层,则重复步骤(4)和(5)。
纤维复合材料包括无机胶粘剂-纤维片材增强材料层,纤维片材层夹在无机胶粘剂中,可以是一层或多层,无机胶粘剂-纤维片材增强材料层粘贴在混凝土构件的表面上;其中,无机胶粘剂由无机胶凝材料与水混合而成。
纤维片材可以是单向纤维层或者纤维织物层。
纤维为玻璃纤维、碳纤维、玄武岩纤维或芳纶纤维中的一种或多种的组合。
无机胶粘剂为磷酸盐胶粘剂,磷酸盐胶粘剂按重量份,由以下组分组成:
磷酸二氢盐 100;
镁砂 60-80;
无机矿物填料 0-60;
缓凝剂 3-15;
水 35-55。
其中,磷酸二氢盐可磷酸二氢钾、磷酸二氢钠及磷酸二氢铵中的至少一种,无机矿物填料是粉煤灰、硅灰石粉、高炉矿渣粉、钢渣粉、高岭土、偏高岭土、沸石中的至少一种,缓凝剂是硼砂和硼酸中的至少一种;镁砂为重烧镁砂、电熔镁砂和海水镁砂中的至少一种,重烧镁砂、电熔镁砂或海水镁砂中的镁砂含量不小于80%。
磷酸盐胶粘剂中,缓凝剂重量为镁砂重量的8%-15%;水的重量为磷酸盐胶凝材料重量百分比的18-25%。
表1:实施例1-10磷酸盐胶粘剂的配比表
(重量份) 磷酸二氢钾 镁砂 粉煤灰 硼砂
实施例1 100 60 55 4 55
实施例2 100 62 60 6 55
实施例3 100 70 50 8 50
实施例4 100 70 40 12 45
实施例5 100 80 40 12 50
实施例6 100 75 40 12 45
实施例7 100 80 0 15 35
实施例8 100 80 40 15 50
实施例9 100 70 10 14 40
实施例10 100 70 10 10 40
实施例1
本发明实施例1混凝土纤维复合材料补强结构的施工方法如下:制备C40水泥混凝土梁试样,尺寸为100mm×100mm×550m。在混凝土试样凝固硬化、并在标准条件下养护28天后,对其表面进行打磨和凿毛处理。
纤维材料采用南京海拓复合材料有限责任公司的碳纤维HITEX-C200,其性能见表1。
表1: 碳纤维性能表
单位面积质量 (g/m2 抗拉强度标准值
(MPa)
受拉弹性模量
(MPa)
伸长率
(%)
≤200 ≥3400 ≥2.4×105 ≥1.7
制备无机胶结剂;磷酸盐胶粘剂由粉状磷酸盐胶凝材料与水混合、搅拌均匀而成。
本实施例中的粉状磷酸盐胶凝材料的重量份数为,磷酸二氢钾100、镁砂60、 粉煤灰55、硼砂4;水的重量份数为55。磷酸盐胶结剂的制备方法是将粉状的原材料按比例称量、混合,在搅拌机中与水搅拌均匀,得到所需无机胶结剂。
粘贴纤维片材。用干净的铲子将无机胶结剂均匀的涂刷在混凝土梁的表面,厚度为1~1.5mm。并将单向连续碳纤维片材平整地粘贴在胶粘剂上;压实、排气。再在单向连续碳纤维片材上均匀铺摊一层无机胶粘剂,厚度为1~1.5mm,压实、排气,待其硬化后,对其进行修边处理,可得到表面粘贴的混凝土梁。使用的纤维片材为1层。粘贴纤维复合材料时,在混凝土梁的两端各留出50mm的长度,以保证加载测试时,两端的固定约束不会对纤维布产生约束效果。
本实施例的混凝土纤维复合材料补强结构试件在室温条件下固化7天后与空白混凝土梁进行对比试验,在材料实验机(NYL-300型)上测试其四点抗弯强度,每三个混凝土梁为一组,三根混凝土梁的平均抗弯强度为该组的抗弯强度。空白混凝土梁的四点抗弯强度为10.68MPa,使用1层单向连续碳纤维粘贴的混凝土梁,其抗弯强度与空白混凝土梁相比增加了55%。
实施例2
本实施例中的粉状磷酸盐胶凝材料的重量份数为,磷酸二氢钾100、镁砂62、 粉煤灰60、硼砂6。水的重量份数为55。磷酸盐胶结剂的制备方法是将粉状的原材料按比例称量、混合,在搅拌机中与水搅拌均匀,得到所需无机胶结剂。
按照实施例1所述的方法,制备纤维复合材料并粘贴混凝土梁,碳纤维片材为2层。本实施例的混凝土纤维复合材料补强结构试件在室温条件下固化7天后,在材料实验机(NYL-300型)上测试其四点抗弯强度,其抗弯强度与空白混凝土梁相比增加了65%。
实施例3
粉状磷酸盐胶凝材料的重量份数为,磷酸二氢钾100、镁砂70、 粉煤灰50、硼砂8。水的重量份数为50。磷酸盐胶结剂的制备方法是将粉状的原材料按比例称量、混合,在搅拌机中与水搅拌均匀,得到所需的无机胶结剂。
按照实施例1所述的方法,制备纤维复合材料并粘贴混凝土梁,碳纤维片材为1层。本实施例的混凝土纤维复合材料补强结构试件在室温条件下固化7天后,在材料实验机(NYL-300型)上测试其四点抗弯强度,其抗弯强度与空白混凝土梁相比增加了58%。
实施例4
粉状磷酸盐胶凝材料的重量份数为,磷酸二氢钾100、镁砂70、 粉煤灰40、硼砂12。水的重量份数为45。磷酸盐胶结剂的制备方法是将粉状的原材料按比例称量、混合,在搅拌机中与水搅拌均匀,得到所需的无机胶结剂。
按照实施例1所述的方法,制备纤维复合材料并粘贴混凝土梁,碳纤维片材为2层。本实施例的混凝土纤维复合材料补强结构试件在室温条件下固化7天后,在材料实验机(NYL-300型)上测试其四点抗弯强度,其抗弯强度与空白混凝土梁相比增加了67%。
实施例5
粉状磷酸盐胶凝材料的重量份数为,磷酸二氢钾100、镁砂80、 粉煤灰40、硼砂12。水的重量份数为50。磷酸盐胶结剂的制备方法是将粉状的原材料按比例称量、混合,在搅拌机中与水搅拌均匀,得到所需的无机胶结剂。
按照实施例1所述的方法,制备纤维复合材料并粘贴混凝土梁,碳纤维片材为1层。本实施例的混凝土纤维复合材料补强结构试件在室温条件下固化7天后,在材料实验机(NYL-300型)上测试其四点抗弯强度,其抗弯强度与空白混凝土梁相比增加了60%。
实施例6
粉状磷酸盐胶凝材料的重量份数为,磷酸二氢钾100、镁砂75、 粉煤灰40、硼砂12。水的重量份数为45。磷酸盐胶结剂的制备方法是将粉状的原材料按比例称量、混合,在搅拌机中与水搅拌均匀,得到所需的无机胶结剂。
按照实施例1所述的方法,制备纤维复合材料并粘贴混凝土梁,碳纤维片材为2层。本实施例的混凝土纤维复合材料补强结构试件在室温条件下固化7天后,在材料实验机(NYL-300型)上测试其四点抗弯强度,其抗弯强度与空白混凝土梁相比增加了70%。
实施例7
粉状磷酸盐胶凝材料的重量份数为,磷酸二氢钾100、镁砂80、 硼砂15。水的重量份数为35。磷酸盐胶结剂的制备方法是将粉状的原材料按比例称量、混合,在搅拌机中与水搅拌均匀,得到所需的无机胶结剂。
按照实施例1所述的方法,制备纤维复合材料并粘贴混凝土梁,碳纤维片材为1层。本实施例的混凝土纤维复合材料补强结构试件在室温条件下固化7天后,在材料实验机(NYL-300型)上测试其四点抗弯强度,其抗弯强度与空白混凝土梁相比增加了59%。
实施例8
粉状磷酸盐胶凝材料的重量份数为,磷酸二氢钾100、镁砂80、 粉煤灰40、硼砂15。水的重量份数为50。磷酸盐胶结剂的制备方法是将粉状的原材料按比例称量、混合,在搅拌机中与水搅拌均匀,得到所需的无机胶结剂。
按照实施例1所述的方法,制备纤维复合材料并粘贴混凝土梁,碳纤维片材为2层。本实施例的混凝土纤维复合材料补强结构试件在室温条件下固化7天后,在材料实验机(NYL-300型)上测试其四点抗弯强度,其抗弯强度与空白混凝土梁相比增加了72%。
实施例9
粉状磷酸盐胶凝材料的重量份数为,磷酸二氢钾100、镁砂70、 粉煤灰10、硼砂14。水的重量份数为40。磷酸盐胶结剂的制备方法是将粉状的原材料按比例称量、混合,在搅拌机中与水搅拌均匀,得到所需的无机胶结剂。
按照实施例1所述的方法,制备纤维复合材料并粘贴混凝土梁,碳纤维片材为1层。本实施例的混凝土纤维复合材料补强结构试件在室温条件下固化7天后,在材料实验机(NYL-300型)上测试其四点抗弯强度,其抗弯强度与空白混凝土梁相比增加了58%。
实施例10
粉状磷酸盐胶凝材料的重量份数为,磷酸二氢钾100、镁砂70、 粉煤灰10、硼砂10。水的重量份数为40。磷酸盐胶结剂的制备方法是将粉状的原材料按比例称量、混合,在搅拌机中与水搅拌均匀,得到所需的无机胶结剂。
按照实施例1所述的方法,制备纤维复合材料并粘贴混凝土梁,碳纤维片材为2层。本实施例的混凝土纤维复合材料补强结构试件在室温条件下固化7天后,在材料实验机(NYL-300型)上测试其四点抗弯强度,其抗弯强度与空白混凝土梁相比增加了73%。
实施例11
按照实施例1的磷酸盐胶凝材料组成配比,配制无机胶粘剂。将碳纤维片材预先在磷酸镁胶凝材料无机胶粘剂中浸泡并杵捣5分钟,并按照实施例1的方法粘贴混凝土梁。碳纤维片材为一层。
本实施例的混凝土纤维复合材料补强结构试件在室温条件下固化7天后,在材料实验机(NYL-300型)上测试其四点抗弯强度,其抗弯强度与空白混凝土梁相比增加了60%。
实施例12
按照实施例2的磷酸盐胶凝材料组成配比,配制无机胶粘剂。将碳纤维片材预先在磷酸镁胶凝材料无机胶粘剂中浸泡并杵捣5分钟,并按照实施例1的方法粘贴混凝土梁。碳纤维片材为二层。
本实施例的混凝土纤维复合材料补强结构试件在室温条件下固化7天后,在材料实验机(NYL-300型)上测试其四点抗弯强度,其抗弯强度与空白混凝土梁相比增加了68%。

Claims (9)

  1. 一种无机胶纤维复合材料补强和保护混凝土的方法,其特征在于,在混凝土构件表面粘贴无机胶粘剂-纤维片材增强材料层,施工包括以下步骤:
    (1)对混凝土构件的表面进行粗糙处理;
    (2)将无机胶凝材料与水混合、搅拌均匀形成无机胶粘剂;
    (3)在处理好的混凝土构件的表面均匀涂抹一层无机胶粘剂;
    (4)将纤维片材粘贴在的无机胶粘剂上;
    (5)将纤维片材铺平、压实、排气后再在纤维片材外表面涂刷一层无机胶粘剂。
  2. 根据权利要求1所述的方法,其特征在于,所述的纤维片材为单向纤维层或者纤维织物层。
  3. 根据权利要求1所述的方法,其特征在于,所述的纤维为玻璃纤维、碳纤维、玄武岩纤维或芳纶纤维中的一种或多种的组合。
  4. 根据权利要求1方法,其特征在于,所述的无机胶粘剂为磷酸盐胶粘剂,磷酸盐胶粘剂按重量份,由以下组分组成:
    磷酸二氢盐 100;
    镁砂 60-80;
    无机矿物填料 0-60;
    缓凝剂 4-15;
    水 35-55。
  5. 根据权利要求4所述的方法,其特征在于,磷酸盐胶粘剂按重量份,由以下组分组成:
    磷酸二氢盐 100;
    镁砂 65-75;
    无机矿物填料 20-50;
    缓凝剂 5-12;
    水 35-55。
  6. 根据权利要求4所述的方法,其特征在于,所述的缓凝剂重量为镁砂重量的8%-15%;水的重量为磷酸盐胶凝材料重量百分比的18-25%。
  7. 根据权利要求4所述的方法,其特征在于,所述的磷酸二氢盐为磷酸二氢钾、磷酸二氢钠及磷酸二氢铵中的至少一种,所述的无机矿物填料是粉煤灰、硅灰石粉、高炉矿渣粉、钢渣粉、高岭土、偏高岭土、沸石中的至少一种,所述的缓凝剂是硼砂和硼酸中的至少一种;镁砂为重烧镁砂、电熔镁砂和海水镁砂中的至少一种,重烧镁砂、电熔镁砂或海水镁砂中的镁砂含量不小于80%。
  8. 根据权利要求1所述的方法,其特征在于,在步骤(4)之前,将纤维片材在放无机胶粘剂中浸泡并杵捣3~6分钟。
  9. 根据权利要求1所述的方法,其特征在于,重复步骤(4)和(5),获得多层纤维片材的无机胶粘剂-纤维片材增强材料层。
PCT/CN2014/087176 2013-12-13 2014-09-23 无机胶纤维复合材料补强和保护混凝土的方法 WO2015085806A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310684927.7 2013-12-13
CN201310684927.7A CN103786382B (zh) 2013-12-13 2013-12-13 无机胶纤维复合材料补强和保护混凝土的方法

Publications (1)

Publication Number Publication Date
WO2015085806A1 true WO2015085806A1 (zh) 2015-06-18

Family

ID=50662646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087176 WO2015085806A1 (zh) 2013-12-13 2014-09-23 无机胶纤维复合材料补强和保护混凝土的方法

Country Status (2)

Country Link
CN (1) CN103786382B (zh)
WO (1) WO2015085806A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103786382B (zh) * 2013-12-13 2016-09-14 深圳大学 无机胶纤维复合材料补强和保护混凝土的方法
CN103738000B (zh) * 2013-12-13 2016-06-01 深圳大学 纤维复合材料补强和保护混凝土的方法
CN104228184B (zh) * 2014-09-19 2015-12-02 深圳大学 一种磷酸盐基纤维复合材料及其制备方法
CN104929257B (zh) * 2015-03-04 2017-08-25 瞿浩荣 用于聚氨酯保温板的覆面玻璃纤维毡及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102199951A (zh) * 2011-01-31 2011-09-28 云南巨和建设集团有限公司 使用碳纤维加固混凝土结构的施工方法
CN102617059A (zh) * 2012-03-23 2012-08-01 深圳大学 磷酸盐基胶结料
CN103738000A (zh) * 2013-12-13 2014-04-23 深圳大学 纤维复合材料补强和保护混凝土的方法
CN103786382A (zh) * 2013-12-13 2014-05-14 深圳大学 无机胶纤维复合材料补强和保护混凝土的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101245668A (zh) * 2008-03-11 2008-08-20 李唐宁 双面增强或加固工程结构的施工方法
CN102409867A (zh) * 2011-09-14 2012-04-11 博睿思科技(大连)有限公司 一种碳纤维复合材料加固工艺
CN102691851A (zh) * 2012-06-15 2012-09-26 上海久坚加固工程有限公司 用纤维复合材料布加固管道的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102199951A (zh) * 2011-01-31 2011-09-28 云南巨和建设集团有限公司 使用碳纤维加固混凝土结构的施工方法
CN102617059A (zh) * 2012-03-23 2012-08-01 深圳大学 磷酸盐基胶结料
CN103738000A (zh) * 2013-12-13 2014-04-23 深圳大学 纤维复合材料补强和保护混凝土的方法
CN103786382A (zh) * 2013-12-13 2014-05-14 深圳大学 无机胶纤维复合材料补强和保护混凝土的方法

Also Published As

Publication number Publication date
CN103786382B (zh) 2016-09-14
CN103786382A (zh) 2014-05-14

Similar Documents

Publication Publication Date Title
WO2015085807A1 (zh) 纤维复合材料补强和保护混凝土的方法
WO2015085806A1 (zh) 无机胶纤维复合材料补强和保护混凝土的方法
AU2002221647B2 (en) Fire-proof material
KR101187409B1 (ko) 친환경 고성능을 발현하는 마그네시아 실리케이트 인산염계 복합체
WO2012100608A1 (zh) 界面混凝土及施工方法
WO2022099935A1 (zh) 超高分子量纤维-乳化沥青改性的高韧性地质聚合物注浆材料及制备方法和应用
Balaguru et al. Geopolymer for repair and rehabilitation of reinforced concrete beams
CN112723841A (zh) 一种抗裂抹灰砂浆
CN103755223B (zh) 一种混凝土界面处理剂
CN108314378A (zh) 一种用于外墙外保温系统工程的特种泡沫混凝土
CN110981372A (zh) 一种利用工业固废制备的高性能保温抹面砂浆及其制备方法
CN106703280A (zh) 一种纤维复合胶板及其制备方法
CN102503214A (zh) Whdf型混凝土无机抗裂减渗剂
CN114890742B (zh) 一种纳米材料复合超高性能混凝土
WO2023210877A1 (ko) 산중성 폐내화물을 재활용한 내화 뿜칠 피복재 조성물
KR102291583B1 (ko) 탄소섬유망과 무기질계 접착제를 이용한 콘크리트 구조물의 보수보강 구조 및 방법
KR101524703B1 (ko) 플랜트의 금속파이프 취약부 및 보수부의 보강방법
CN107032698A (zh) 一种节能装配式墙板粘合剂
CN113336520A (zh) 一种高铁砼基层修补材料及其修补方法
CN113045284A (zh) 一种基于纳米气凝胶颗粒的隔热铺垫瓦块及其制备方法
KR102535694B1 (ko) 콘크리트 보수와 보강을 위한 폴리머 몰탈 조성물
CN112430021A (zh) 单向frp网格/高延性高渗透混凝土复合加固受损rc梁及其制备方法
CN112482813A (zh) Frp/ecc渗透式双向加固受损钢筋混凝土双向板及其制备方法
KR102535681B1 (ko) 보강용 폴리머 모르타르 조성물 및 이와 크림프 철망을 활용한 콘크리트 보수 공법
WO2023120767A1 (ko) Frp 화재보호용 불연 마감재

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14870450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14870450

Country of ref document: EP

Kind code of ref document: A1