WO2015085627A1 - 一种金属/空气电池 - Google Patents

一种金属/空气电池 Download PDF

Info

Publication number
WO2015085627A1
WO2015085627A1 PCT/CN2013/090149 CN2013090149W WO2015085627A1 WO 2015085627 A1 WO2015085627 A1 WO 2015085627A1 CN 2013090149 W CN2013090149 W CN 2013090149W WO 2015085627 A1 WO2015085627 A1 WO 2015085627A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
metal
air
product separation
battery case
Prior art date
Application number
PCT/CN2013/090149
Other languages
English (en)
French (fr)
Inventor
孙公权
王二东
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Publication of WO2015085627A1 publication Critical patent/WO2015085627A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • H01M12/065Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode with plate-like electrodes or stacks of plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This invention relates to metal/air batteries, and more particularly to a metal/air battery having a product separation unit.
  • Metal/air batteries have the advantages of high theoretical specific energy, green environmental protection, etc., and have broad application prospects in the field of mobile power sources such as emergency reserve power supplies and field lighting power supplies.
  • Magnesium/air battery is a typical metal/air battery. It is an electrochemical reaction device using magnesium or magnesium alloy as anode fuel, air oxygen as oxidant and neutral brine as electrolyte solution. Magnesium/air batteries have high energy density (theoretical energy density is up to 3910Wh/kg), the reactants and products are non-polluting, and safe to use.
  • the magnesium/air battery electrode reaction and the total battery reaction are:
  • Anode electrode reaction Mg+20H" ⁇ Mg(OH) 2 +2e” -2.69V
  • Cathode electrode reaction l/20 2 +H 2 0+2e" ⁇ 20H” +0.4V
  • Total battery reaction Mg+l/20 2 +H 2 0 ⁇ Mg(OH) 2 +3.09V
  • the reactants in the magnesium/air battery reaction are magnesium metal, oxygen in the air, and water.
  • the product is hydrogen.
  • Magnesium hydroxide is a flocculent colloid that accumulates in the battery as the reaction time of the battery increases.
  • the magnesium hydroxide product is more viscous.
  • the magnesium hydroxide After the end of the discharge, the magnesium hydroxide has turned into a slurry.
  • the method of mechanically replacing the magnesium anode is usually adopted to realize the electric energy recovery of the battery.
  • the slurry-like magnesium hydroxide should be separated out of the battery and the residual part attached to the surface of the cathode should be cleaned. Otherwise, the performance and service life of the cathode will be severely affected. Therefore, product separation has become one of the important technologies that restrict the practical use of magnesium/air batteries, and has become an important factor affecting its service life and maintenance operations.
  • the product after the reaction is discharged from the battery with the electrolyte solution using a circulation pump.
  • the cycle operation requires a product filtration device outside the battery to ensure a stable and reliable cycle. Therefore, the method has a large number of auxiliary devices, which increases the weight, volume, and power consumption of the battery.
  • the product is loaded in a separation bag, and after the battery is discharged, the separation bag is taken out together with the product.
  • the third method has significant advantages for effectively reducing the use of auxiliary components and increasing the utilization of the electrolyte.
  • Magnesium/air battery magnesium hydroxide product particle size is small (tens of nanometers to several hundred micrometers), and it is difficult for ordinary hydrophilic membrane to effectively separate magnesium hydroxide. . If a dense membrane is chosen, it will affect the ionic conductivity and thus the battery performance.
  • the magnesium/air battery is discharged After the formation, the electrolyte has been exhausted, the product is in the form of a slurry, and the battery cavity is tightly filled, and it is difficult to take the product out of the battery cavity. Therefore, the selection of the separation membrane and the design of the separation structure determine whether the separation of the magnesium/air battery product is effective, and is one of the key technologies that determine whether the battery can be put into practical use.
  • the present invention is directed to a metal/air battery having a product separation device in view of the problems associated with prior metal/air battery product separation. To achieve the above object, the present invention is implemented by the following technical scheme.
  • a metal/air battery comprises a battery case, a metal anode and an air cathode, wherein the battery case is a hollow container, and support rods are respectively arranged on left and right sides of the metal anode, and two support rods are used as product separation frames, metal anodes The left and right sides are respectively fixed with the support rod and placed in a product separation bag, and the product separation bag is placed in the battery case.
  • a fixing rod is arranged between the two support rods, and the two ends of the fixing rod are respectively connected with the support rod.
  • the upper end of the battery case is provided with an opening, and the product separation bag is inserted into the battery case through the opening or taken out from the battery case.
  • the two support rods are vertically disposed in the battery case, and the two support rods form an integrated structure with the product separation bag.
  • the utility model comprises a battery casing, a metal anode and an air cathode, wherein an air cathode accommodating groove is respectively arranged on an outer wall surface of opposite sides of the battery casing, the air cathode is placed in the accommodating groove, and the accommodating groove is connected with the inner chamber of the container
  • the metal anode is placed in the battery case and between the two air cathodes; the metal anode and the air cathode are both flat structures, and the metal anode and the air cathode are arranged in parallel.
  • An elastic device is fixed on the bottom of the battery case and directly under the support rod, and the product separation frame can be pushed up under the condition that no vertical downward force is applied, so that the upper end of the product separation frame is separated from the inside of the battery case; It can be placed inside the battery case under the condition that an external force is applied vertically downward.
  • the upper surface of the battery case and the two supporting rods are respectively disposed with a locking gusset plate; when the locking gusset plate is locked, the upper end of the battery case is sealed and sealed, and the product separating frame is vertically fixed. Inside the battery case; when the stop plate is opened, it can separate the upper surface of the battery case from other parts of the battery case, and at the same time, the product separation frame is pushed up by the elastic device to separate the product. The upper end of the frame is separated from the inside of the battery case.
  • the product separation bag is an open upper bag body
  • the product separation bag is a hydrophilic material; the hydrophilic material is a composite of one or more of polypropylene, polyethylene, hydrophilic PTFE, Nafion, and polyvinyl alcohol.
  • the product separation bag has a thickness of 0.01 to 0.5 mm.
  • the inner diameter of the product separation bag is larger than the outer diameter
  • the product separation bag has an inner pore diameter of 10 to 50 ⁇ m and an outer pore diameter of 0.1 to 20 ⁇ m.
  • the volume of the product separation bag is 1-16 times the volume of the metal anode.
  • the magnesium/air battery of the present invention has the following advantages:
  • hydrophilic membrane and the pore-filling hydrophilic treatment on the outer surface can make the product separation more thorough, and the use of the membrane does not affect the ion conductivity and does not affect the discharge performance of the battery;
  • the product separator has a simple structure and is easy to operate, and hardly increases the volume of the battery
  • FIG. 1 is a schematic structural view of a magnesium/air battery according to the present invention.
  • FIG. 2 is a schematic view showing the internal structure of the magnesium/air battery of the present invention.
  • Figure 3 is a schematic view showing the microstructure of the product separation bag of the present invention.
  • Figure 4 is a graph showing the discharge performance of the battery under the same conditions as the embodiment (the magnesium/air battery of the present invention) and the comparative example (conventional magnesium/air battery);
  • Anode AZ61 magnesium alloy; cathode; self-made carbon fiber felt air electrode; electrolyte: 10% NaCl solution; temperature: room temperature;
  • Figure 5 is a graph showing the constant power discharge performance of the magnesium/air battery of the present invention.
  • Discharge power 1.4W; electrolyte: 10% NaCl solution; temperature: room temperature.
  • 1 is the actuating button; 2.
  • the upper surface of the battery case ie, the battery cover); 3 is the battery case; 4 is the air electrode; 5 is the retaining tongue placement hole in the moving button structure; 6 is the slide; 7 is a metal anode; 8 is a product separation frame; 9 is a spring; 10 is a monomolecular polymer layer outside the product separation bag; 11 is a hydrophilic material layer inside the product separation bag.
  • the magnesium/air battery comprises a battery case 3, a magnesium alloy anode and an air cathode 4.
  • the battery case 3 is a hollow container, and support rods are respectively arranged on the left and right sides of the magnesium alloy anode, and two support rods are used as products.
  • the separation frame, the left and right sides of the magnesium alloy anode are respectively fixed with the support rod and placed in a product separation bag, and the product separation bag is placed in the battery casing.
  • a fixing rod is arranged between the two support rods, and the two ends of the fixing rod are respectively connected with the support rod.
  • the upper end of the battery case is provided with an opening, and the product separation bag is inserted into the battery case through the opening or taken out from the battery case.
  • the two support rods are vertically disposed in the battery case, and the two support rods form an integrated structure with the product separation bag.
  • the utility model comprises a battery casing, a magnesium alloy anode and an air cathode, wherein an air cathode accommodating groove is respectively arranged on an outer wall surface of opposite sides of the battery casing, the air cathode is placed in the accommodating groove, and the accommodating groove is connected to the inner chamber of the container a magnesium alloy anode placed in the battery casing between the two air cathodes; magnesium alloy
  • the anode and the air cathode are both flat structures, and the magnesium alloy anode and the air cathode are arranged in parallel.
  • An elastic device is fixed on the bottom of the battery case and directly under the support rod, and the product separation frame can be pushed up under the condition that no vertical downward force is applied, so that the upper end of the product separation frame is separated from the inside of the battery case; It can be placed inside the battery case under the condition that an external force is applied vertically downward.
  • the upper surface of the battery case and the two support rods are respectively disposed with a stopper plate 1; when the stopper plate is locked, the upper end of the battery case is sealed and sealed, and the product separation frame is vertical Fixed to the inside of the battery case; when the stop plate is opened, it can separate the upper surface of the battery case from other parts of the battery case, and at the same time, the product separation frame is pushed up by the elastic device to make the product The upper end of the separator is separated from the inside of the battery case.
  • the product separation bag is an open upper bag body
  • the product separation bag is a hydrophilic material; the hydrophilic material is hydrophilic PTFE.
  • the product separation bag had a thickness of 0.2 mm.
  • the product separation bag has an inner diameter of 30 ⁇ m and an outer diameter of 10 ⁇ m.
  • the volume of the product separation bag is twice that of the metal anode.
  • Fig. 4 is a graph showing the discharge performance of the battery under the same conditions as in the comparative example (conventional magnesium/air battery); it can be seen from the figure that the performance in the examples is superior to that in the comparative example.
  • Fig. 5 is a graph showing the constant power discharge performance of the magnesium/air battery according to the embodiment; as can be seen from the figure, the battery has stable discharge performance and no significant voltage attenuation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)

Abstract

一种金属/空气电池,包括电池壳体(3)、金属阳极(7)和空气阴极(4),电池壳体(3)为一中空容器,于金属阳极(7)的左右两侧分别设有支撑杆,两个支撑杆作为产物分离架(8),金属阳极(7)的左右两侧分别与支撑杆固接后置于一产物分离袋中,产物分离袋置于电池壳体(3)内。与现有技术相比,所述金属/空气电池采用的亲水处理方式可以使产物分离更彻底,同时该膜的使用不影响离子传导能力,不影响电池放电性能;金属/空气电池产物分离器结构简单,操作简便,几乎不增加电池的体积,同时因产物分离效率的提高大幅度的增强了电池的使用寿命。

Description

一种金属 /空气电池 技术领域
本发明涉及金属 /空气电池, 具体地说是一种具有产物分离装置的金属 / 空气电池。
背景技术
金属 /空气电池具有理论比能量高, 绿色环保等优点,在应急储备电源、 野外照明电源等可移动电源的领域具有广阔的应用前景。
镁 /空气电池是一种典型的金属 /空气电池, 它是一种采用镁或镁合金为 阳极燃料, 空气中氧气作为氧化剂, 中性盐水作为电解质溶液的电化学反 应装置。镁 /空气电池具有能量密度高(理论能量密度高达 3910Wh/kg)、 反 应物和产物无污染、 使用安全等特点。 镁 /空气电池电极反应和电池总反应 分别为:
阳极电极反应: Mg+20H"→Mg(OH)2+2e" -2.69V (1) 阴极电极反应: l/202+H20+2e"→20H" +0.4V (2) 电池总反应: Mg+l/202+H20→ Mg(OH)2 +3.09V (3) 由上式可知,镁 /空气电池反应中反应物为金属镁、空气中的氧气和水, 产物为氢氧化镁。 氢氧化镁是一种絮状的胶体, 随着电池反应时间的延长, 这种絮状产物在电池内逐渐积累。 而且, 由于电解液中的水在电池放电过 程中逐渐消耗, 氢氧化镁产物更加粘稠。 待放电结束后, 氢氧化镁已变成 泥浆状。 为了提高镁 /空气电池连续使用时间, 并降低使用成本, 通常采用 机械更换镁阳极的方法, 实现电池的电能恢复。 更换新阳极前, 需先将泥 浆状的氢氧化镁分离出电池外, 并将附着在阴极表面的残余部分清洗干净。 否则, 阴极的性能和使用寿命将会受到严重影响。 因此, 产物分离成为制 约镁 /空气电池实用化的重要技术之一, 成为影响其使用寿命、 维护操作的 重要因素。
将氢氧化镁产物与镁 /空气电池主体分离大体有三种办法: (1 ) 用水反 复冲洗使产物分离出电池外。 这种方法因为需要大量的水, 实用意义不高;
(2)采用循环泵将反应后的产物随电解质溶液排出电池外。 循环操作需在 电池外设置产物过滤装置以保证循环过程的稳定可靠。 因此, 该方法辅助 装置较多, 增加了电池的重量、 体积和功耗。 (3 ) 采用分离袋装载产物, 待电池放电完成后, 将分离袋与产物一起取出。 第三种方法对于有效减少 辅助部件的使用并提高电解液的利用率具有明显的优点。 然而, 该方法仍 然存在以下两个主要问题:(1 )镁 /空气电池氢氧化镁产物颗粒粒径很小(几 十纳米至几百微米), 普通的亲水膜难以有效将氢氧化镁分离。 如果选择致 密的膜则会影响离子电导率, 进而影响电池性能。 (2) 镁 /空气电池放电完 成后, 电解液已消耗殆尽, 产物为泥浆状, 且紧密充满电池内腔, 将产物 从电池内腔取出也比较困难。 因此, 分离膜的选择和分离结构的设计是决 定了镁 /空气电池产物分离是否有效, 是决定该电池能否实用化的关键技术 之一。
发明内容
本发明针对现有金属 /空气电池产物分离中存在的问题, 提出一种具有 产物分离装置的金属 /空气电池。 为实现上述目的, 本发明采用以下技术方 案来实现。
一种金属 /空气电池, 包括电池壳体、 金属阳极和空气阴极, 电池壳体 为一中空容器, 于金属阳极的左右两侧分别设有支撑杆, 两个支撑杆作为 产物分离架, 金属阳极的左右两侧分别与支撑杆固接后置于一产物分离袋 中, 产物分离袋置于电池壳体内。
于两个支撑杆间设有固定杆, 固定杆的二端分别与支撑杆相连接。 所述电池壳体上端设有开口, 产物分离袋通过开口放入电池壳体内或 从电池壳体内取出。
两个支撑杆垂直设置于电池壳体内, 两个支撑杆与产物分离袋形成一 体化结构。
包括电池壳体、 金属阳极和空气阴极, 于电池壳体相对两侧的外壁面 上分别开设有空气阴极容置槽, 空气阴极置于容置槽内, 容置槽与容器内 部腔室相连通; 金属阳极置于电池壳体内、 两空气阴极之间; 金属阳极和 空气阴极均为平板状结构, 且金属阳极和空气阴极平行设置。
所述电池壳体底部、 支撑杆的正下方固定有弹力装置, 其可在无垂直 向下的外力施加的条件下将产物分离架向上推移, 使产物分离架的上端脱 离电池壳体内部; 亦可在有垂直向下的外力施加的条件下置于电池壳体内 部。
所述电池壳体上表面、 两个支撑杆正上方分别设置有止动扣板; 所述 止动扣板闭锁时, 其可保证电池壳体上端开口密封, 同时将所述产物分离 架垂直固定于电池壳体内部; 所述止动扣板开启时, 其可将电池壳体上表 面与电池壳体其它部分分离, 同时使产物分离架在所述弹力装置的作用下 向上推移, 使产物分离架的上端脱离电池壳体内部。
所述产物分离袋为一上端开口的袋体;
所述产物分离袋为亲水材料;亲水材料为聚丙烯、聚乙烯、亲水 PTFE、 Nafion, 聚乙烯醇中一种或二种以上的复合物。
所述产物分离袋的厚度为 0.01-0.5mm。
所述产物分离袋内侧孔径大于外侧孔径;
所述产物分离袋内侧孔径为 10-50 μ m, 外侧孔径为 0.1-20 μ m。 所述产物分离袋的容积是金属阳极体积的 1-16倍。
与现有技术相比, 本发明所述镁 /空气电池具有以下优点:
( 1 )亲水隔膜的采用及其外表面的填孔式亲水处理, 可以使产物分离 更彻底, 同时该膜的使用不影响离子传导能力, 不影响电池放电性能;
(2) 产物分离器结构简单, 操作简便, 几乎不增加电池的体积;
( 3 )采用了该产物分离装置的镁 /空气电池不会因产物的难以分离影响 电池阴极的性能, 其可大幅度增强电池的使用寿命。
附图说明
图 1为本发明所述镁 /空气电池结构示意图;
图 2为本发明所述镁 /空气电池的内部结构示意图;
图 3为本发明所述产物分离袋的微观结构示意图;
图 4为实施例(本发明所述镁 /空气电池)与对比例(传统镁 /空气电池) 在相同条件下的电池放电性能曲线;
阳极: AZ61镁合金; 阴极; 自制碳纤维毡空气电极; 电解液: 10%NaCl 溶液; 温度: 室温;
图 5为本发明所述镁 /空气电池恒功率放电性能曲线;
放电功率: 1.4W; 电解液: 10%NaCl溶液; 温度: 室温。
图中, 1为止动扣; 2.电池壳体上表面 (即电池盖); 3为电池壳体; 4 为空气电极; 5为止动扣结构中的止动舌放置孔; 6为滑道; 7为金属阳极; 8 为产物分离架; 9 为弹簧; 10 为产物分离袋外侧的单分子聚合物层; 11 为产物分离袋内侧的亲水材料层。
具体实施方式
实施例 1 :
镁 /空气电池结构如图 1-3所示。
所述镁 /空气电池, 包括电池壳体 3、镁合金阳极和空气阴极 4, 电池壳 体 3 为一中空容器, 于镁合金阳极的左右两侧分别设有支撑杆, 两个支撑 杆作为产物分离架, 镁合金阳极的左右两侧分别与支撑杆固接后置于一产 物分离袋中, 产物分离袋置于电池壳体内。
于两个支撑杆间设有固定杆, 固定杆的二端分别与支撑杆相连接。 所述电池壳体上端设有开口, 产物分离袋通过开口放入电池壳体内或 从电池壳体内取出。
两个支撑杆垂直设置于电池壳体内, 两个支撑杆与产物分离袋形成一 体化结构。
包括电池壳体、 镁合金阳极和空气阴极, 于电池壳体相对两侧的外壁 面上分别开设有空气阴极容置槽, 空气阴极置于容置槽内, 容置槽与容器 内部腔室相连通; 镁合金阳极置于电池壳体内、 两空气阴极之间; 镁合金 阳极和空气阴极均为平板状结构, 且镁合金阳极和空气阴极平行设置。 所述电池壳体底部、 支撑杆的正下方固定有弹力装置, 其可在无垂直 向下的外力施加的条件下将产物分离架向上推移, 使产物分离架的上端脱 离电池壳体内部; 亦可在有垂直向下的外力施加的条件下置于电池壳体内 部。
所述电池壳体上表面、两个支撑杆正上方分别设置有止动扣板 1 ; 所述 止动扣板闭锁时, 其可保证电池壳体上端开口密封, 同时将所述产物分离 架垂直固定于电池壳体内部; 所述止动扣板开启时, 其可将电池壳体上表 面与电池壳体其它部分分离, 同时使产物分离架在所述弹力装置的作用下 向上推移, 使产物分离架的上端脱离电池壳体内部。
所述产物分离袋为一上端开口的袋体;
所述产物分离袋为亲水材料; 亲水材料为亲水 PTFE。
所述产物分离袋的厚度为 0.2mm。
所述产物分离袋内侧孔径为 30 μ m, 外侧孔径为 10 μ m。
所述产物分离袋的容积是金属阳极体积的 2倍。
图 4为实施例与对比例 (传统镁 /空气电池) 在相同条件下的电池放电 性能曲线; 从图中可以看出, 实施例中的性能优于对比例中的电池性能。
图 5为实施例所述镁 /空气电池恒功率放电性能曲线;从图中可以看出, 该电池放电性能稳定, 无明显电压衰减。

Claims

^tl ¾ ^ ^
1.一种金属 /空气电池, 包括电池壳体、 金属阳极和空气阴极, 电池壳 体为一中空容器, 其特征在于:
于金属阳极的左右两侧分别设有支撑杆, 两个支撑杆作为产物分离架, 金属阳极的左右两侧分别与支撑杆固接后置于一产物分离袋中, 产物分离 袋置于电池壳体内。
2. 如权利要求 1所述金属 /空气电池, 其特征在于:
于两个支撑杆间设有固定杆, 固定杆的二端分别与支撑杆相连接。
3. 如权利要求 1所述金属 /空气电池, 其特征在于:
所述电池壳体上端设有开口, 产物分离袋通过开口放入电池壳体内或 从电池壳体内取出。
4. 如权利要求 1所述金属 /空气电池, 其特征在于: 两个支撑杆垂直设 置于电池壳体内, 两个支撑杆与产物分离袋形成一体化结构。
5. 如权利要求 1所述金属 /空气电池, 其特征在于:
包括电池壳体、 金属阳极和空气阴极, 于电池壳体相对两侧的外壁面 上分别开设有空气阴极容置槽, 空气阴极置于容置槽内, 容置槽与容器内 部腔室相连通; 金属阳极置于电池壳体内、 两空气阴极之间; 金属阳极和 空气阴极均为平板状结构, 且金属阳极和空气阴极平行设置。
6. 如权利要求 1或 3所述金属 /空气电池, 其特征在于: 所述电池壳体 底部、 支撑杆的正下方固定有弹力装置, 其可在无垂直向下的外力施加的 条件下将产物分离架向上推移, 使产物分离架的上端脱离电池壳体内部; 亦可在有垂直向下的外力施加的条件下置于电池壳体内部。
7. 如权利要求 6所述金属 /空气电池, 其特征在于: 所述电池壳体上表 面、 两个支撑杆正上方分别设置有止动扣板; 所述止动扣板闭锁时, 其可 保证电池壳体上端开口密封, 同时将所述产物分离架垂直固定于电池壳体 内部; 所述止动扣板开启时, 其可将电池壳体上表面与电池壳体其它部分 分离, 同时使产物分离架在所述弹力装置的作用下向上推移, 使产物分离 架的上端脱离电池壳体内部。
8. 如权利要求 1所述金属 /空气电池, 其特征在于: 所述产物分离袋为 一上端开口的袋体;
所述产物分离袋为亲水材料;亲水材料为聚丙烯、聚乙烯、亲水 PTFE、 Nafion, 聚乙烯醇中一种或二种以上的复合物。
9. 如权利要求 8所述金属 /空气电池, 其特征在于:
所述产物分离袋的厚度为 0.01-0.5mm。
10. 如权利要求 1或 9所述金属 /空气电池, 其特征在于: 所述产物分 离袋内侧孔径大于外侧孔径;
所述产物分离袋内侧孔径为 10-50μιη, 外侧孔隙率为 0.1-20 μιη。
11. 如权利要求 1所述金属 /空气电池, 其特征在于: 所述产物分离 的容积是金属阳极体积的 1-16倍。
PCT/CN2013/090149 2013-12-15 2013-12-20 一种金属/空气电池 WO2015085627A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310694526.XA CN104716404B (zh) 2013-12-15 2013-12-15 一种金属/空气电池
CN201310694526.X 2013-12-15

Publications (1)

Publication Number Publication Date
WO2015085627A1 true WO2015085627A1 (zh) 2015-06-18

Family

ID=53370550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090149 WO2015085627A1 (zh) 2013-12-15 2013-12-20 一种金属/空气电池

Country Status (2)

Country Link
CN (1) CN104716404B (zh)
WO (1) WO2015085627A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106882824A (zh) * 2015-12-16 2017-06-23 中国科学院大连化学物理研究所 一种纳米氢氧化镁制备方法及纳米氢氧化镁
CN108183245B (zh) * 2016-12-08 2019-11-12 中国科学院大连化学物理研究所 一种金属水电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3595700A (en) * 1967-03-30 1971-07-27 Leesona Corp Method of making electrode
CN1459129A (zh) * 2001-03-09 2003-11-26 杨德谦 带有软口袋的金属-空气电池和用于金属-空气电池的软口袋材料
CN202871941U (zh) * 2012-08-31 2013-04-10 北京九能京通新能源科技有限公司 金属空气电池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2079359U (zh) * 1990-11-08 1991-06-19 江崇友 能中断发电的铝空气电池
JPH07272770A (ja) * 1994-03-28 1995-10-20 Matsushita Electric Ind Co Ltd 空気電池の袋状密封包装体およびその製造法
US20040175603A1 (en) * 2001-11-20 2004-09-09 De-Qian Yang Durable and an easy refueling metal-gas battery with soft pocket
CN101587975B (zh) * 2008-05-19 2011-04-20 哈峰 一种一次性金属空气电池
CN202084614U (zh) * 2011-05-19 2011-12-21 周建林 一种新型金属燃料电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3595700A (en) * 1967-03-30 1971-07-27 Leesona Corp Method of making electrode
CN1459129A (zh) * 2001-03-09 2003-11-26 杨德谦 带有软口袋的金属-空气电池和用于金属-空气电池的软口袋材料
CN202871941U (zh) * 2012-08-31 2013-04-10 北京九能京通新能源科技有限公司 金属空气电池

Also Published As

Publication number Publication date
CN104716404A (zh) 2015-06-17
CN104716404B (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
US10115975B2 (en) Water-activated permanganate electrochemical cell
CN106450514B (zh) 一种准固态Na-CO2二次电池及其制备方法
US20070141464A1 (en) Porous metal hydride electrode
JP2007080609A (ja) 電気化学装置用電極、固体電解質/電極接合体及びその製造方法
US9190221B2 (en) Aqueous-based electric double-layer capacitor
CN102637468A (zh) 复合材料、薄膜电极和超级电容器制备
JP2013225443A (ja) 金属空気電池およびエネルギーシステム
CA2892173C (en) Anaerobic aluminum-water electrochemical cell
US9330855B2 (en) Aqueous-based electric double-layer capacitor
CN103748723A (zh) 具有安全和稳定的氢储存的能量单元
Mögelin et al. Porous glass membranes for vanadium redox-flow battery application-Effect of pore size on the performance
US20160111705A1 (en) Metal-Air Battery with Expandable Anode
CN108511855A (zh) 一种Li/Na复合金属负极的Li/Na-O2二次电池
WO2015085627A1 (zh) 一种金属/空气电池
JP6290509B2 (ja) 炭素添加剤を伴う亜鉛スラリー負極を用いた空気極電池
CN113060799B (zh) 基于三明治结构电极的自吸水自发电式水处理装置和方法
WO2017110880A1 (en) Metal-air battery with expandable anode
CN106549188B (zh) 一种锌硫单液流电池系统
KR20080014134A (ko) 울트라 캐패시터
JP6904611B2 (ja) 電気エネルギー生成用の充電式電気化学デバイス
CN105714325A (zh) 一种具有透水板的静态供水固体聚合物电解质水电解装置
JP7020440B2 (ja) 空気電池、空気電池システム、及び空気電池システムを搭載している乗り物
EP1846979B1 (en) Hydrogen-air secondary cell
JP2017120704A (ja) 金属空気電池
US20150010850A1 (en) Electrochemical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13898894

Country of ref document: EP

Kind code of ref document: A1