WO2015085442A1 - Techo bioclimático domótico - Google Patents

Techo bioclimático domótico Download PDF

Info

Publication number
WO2015085442A1
WO2015085442A1 PCT/CL2013/000088 CL2013000088W WO2015085442A1 WO 2015085442 A1 WO2015085442 A1 WO 2015085442A1 CL 2013000088 W CL2013000088 W CL 2013000088W WO 2015085442 A1 WO2015085442 A1 WO 2015085442A1
Authority
WO
WIPO (PCT)
Prior art keywords
bioclimatic
roof
home automation
panels
rail
Prior art date
Application number
PCT/CL2013/000088
Other languages
English (en)
French (fr)
Inventor
Guillermo David HERMOSILLA SALAZAR
Original Assignee
Hermosilla Salazar Guillermo David
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hermosilla Salazar Guillermo David filed Critical Hermosilla Salazar Guillermo David
Priority to PCT/CL2013/000088 priority Critical patent/WO2015085442A1/es
Publication of WO2015085442A1 publication Critical patent/WO2015085442A1/es

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F10/00Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins
    • E04F10/08Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins of a plurality of similar rigid parts, e.g. slabs, lamellae
    • E04F10/10Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins of a plurality of similar rigid parts, e.g. slabs, lamellae collapsible or extensible; metallic Florentine blinds; awnings with movable parts such as louvres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/10Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/20Arrangements for moving or orienting solar heat collector modules for linear movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S2025/01Special support components; Methods of use
    • F24S2025/013Stackable support elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • the thermal insulation that is used today in the process of installing roofs in building projects are: fiberglass, insulation, aluminum, sealant foam, green roof, etc.
  • These sustainable mechanisms present some drawbacks of effectiveness in the different seasons of the year due to their static or non-removable condition, in addition to being indoors, specifically between the roof, causes the thermal load accumulated in summer to be transmitted to the interior, and in winter wastes this same caloric load delivered by the sun on days cleared by the insulating property it contains, thus wasting the opportunity for a better temperature provided naturally within places inhabited by users.
  • the Green Roofs also known as: living roof, landscaped roof, greenroof or skygarden, consists of an integral system composed of several layers of materials designed to promote the growth of vegetation on roofs, terraces and open areas rarely used.
  • living roof, landscaped roof, greenroof or skygarden consists of an integral system composed of several layers of materials designed to promote the growth of vegetation on roofs, terraces and open areas rarely used.
  • this technique is only applicable to new constructions, leaving out existing ones.
  • the disadvantage of this type of solution is the maintenance of these terraces, which are of high cost, and the necessary participation of large amounts of water, which limits energy savings to certain geographical areas with precarious water resources .
  • a suitable and pleasant thermal solution can be delivered to the building, it clearly abuses another natural resource (water), turning this modality into a cost-benefit process.
  • the domotic bioclimatic roof is a dynamic roof construction system to face the different climatic situations that occur in the country in different seasons and different geographical areas, innovative in solar capture through a dynamic structure for both energy saving as for the application to existing buildings.
  • Said non-static device can be activated automatically or manually, in this way it becomes more effective against the inclement weather, also achieving a decrease in energy, since there would be a thermal improvement in the constructions where this protection would be applied.
  • This new technique is directly related to the decrease in energy consumption, saving technical resources, quality of life and environmental protection, since it is a clean, non-polluting and inexhaustible energy (product that is a natural source of energy ).
  • This new way to save energy sustainable development as a country, understanding that the energy crisis will increase over the years due to the increase in the price of fossil fuel where it represents 72% of energy consumption in Chile. Therefore, Chile, by improving energy efficiency with the use of natural resources, will allow sustainable economic growth and greater competitiveness.
  • Figure 1 Represents the base structure of the Domotic Bioclimatic Roof that is installed on the roof of the building.
  • Figure 2 Represents the cover kit fully deployed based on the base structure of the Domotic Bioclimatic Roof, the module.
  • Figure 3 Represents a plan view of the module that, when repeated, will form the domotic bioclimatic roof, with the cover kit fully retracted and showing the motor installed next to the rail beam and the rail beam axis.
  • Figure 4 Represents a leaking cut of the cover kit, showing the panel that makes up the kit, the space where the guide slide moves.
  • Figure 5 Represents an elevation view of the cover kit showing the elements that compose it as panels, sliding rails and their spaces to move and the axis thereof.
  • Figure 6 Represents a plan view of the rail beam and its components such as the electric motor that allows the movement of the entire folding mechanism by the traction belt.
  • Figure 7 Represents an elevation view of the rail beam together with the whole mechanism that composes it: the motor, the pulley and the piola.
  • Figure 8 Represents a perspective view of the electric motor next to the rail beam with all the system involved, pulley and pole.
  • Figure 9 Represents a cross-sectional view of the rail beam, highlighting the section of the beam, semi-enclosed U-shape, together with everything that makes up the beam.
  • Figure 10 Represents a longitudinal section view of the rail beam showing the system that composes it, the pulley, traction belt, double contact hanging carriage allowing the transit of the roofs and the cylindrical axis
  • Figure 11 Represents a perspective view of the possible panels to form the cover kit having as a fundamental requirement that its longitudinal ends have an inverted angle fold, in this case demonstrating it in a fiberglass cover.
  • Figure 12 Represents a perspective view of another panel materiality that could compose the cover kit, with the same requirements already mentioned, in this case zinc.
  • Figure 13 Represents a perspective view of another materiality that the cover kit can compose, fulfilling the same requirements already exposed, in this case solar panel.
  • Figure 14 Represents an elevation view of the guide slide and its section, formed by a Z-shaped plate.
  • Figure 15 Represents a perspective view of the guide slide, formed by a plate where its Z-shaped section is best shown.
  • Figure 16 Represents a view of the rear elevation of the hook whose function is to connect the cover kit system with the rail guide system.
  • Figure 17 Represents a view of the side elevation of the hook with its components, the body of the hook, the connecting bolt and the hanging carriage.
  • Figure 18 Represents a view of the front elevation of the hook.
  • Figure 19 Represents a front perspective view of the cover kit in its fully retracted form.
  • Figure 20 Represents a front perspective view of the cover kit in its semi-retracted form.
  • Figure 21 Represents a front perspective view of the cover kit in its fully deployed form.
  • Figure 22 Represents a detailed view of the union of the rail beam system and its respective components with the cover kit.
  • Figure 23 Represents a perspective view of the modules formed by the base structure and the cover kit arranged on the roof, the kit shows two of the three ways of how it is deployed on the ceiling, one fully deployed and the other fully retracted .
  • Figure 24 Represents a detailed view of the union of the rail beam system and its respective components with the cover kit.
  • the domotic bioclimatic roof consists primarily of the application of a layer of special paint to capture solar radiation, black in color on the surface to be treated (on the roof of the building roof), which aims to capture and concentrate much of the thermal load emitted by the sun, and then be used inside this establishment in the cold seasons of the year.
  • the base structure (1) of light metal material composed of the anchor base, pillars, tensioners, rail beams (5) and the axis of the rail beam (5) are installed on the painted ceiling. 28), fast installation and disassembly.
  • This structure is fixed to the base building with a special anchoring system that transmits the bioclimatic roof loads to the building.
  • the rail beam (5) is semi-enclosed section U (6) that contains inside a pulley (8), a double-contact hanging carriage (21), a cylindrical shaft (22), a bolt (23) and a belt of traction (9), which allows the transit of one of the ends of the cover kit (4), since the upper cover is fixed to the base structure (1), this whole system is activated by an electric motor (7) which is located next to the rail beam (5).
  • the cover kit (4) is added, which is composed of: panels of materiality according to the client's requirement, being able to use fiberglass panels (11), zinc (12) or solar panels (29), all having as a common and fundamental requirement that their longitudinal ends have an inverted angle fold; a guide slide (13), with its respective space for transit (3), which is formed by a plate (13) of section Z, which at the same time has hooks (15) composed of connecting bolts (16) and a hanging carriage (17) thus allowing the joining of the honeycombs (11) or (12) or (29) with each other, and their free transit along the rail beam (5).
  • the electric motor (7) attached to the outer side of the rail beam (5), is controlled by a computerized or home automation circuit (24) that has computer applications through mechanisms such as wind sensors (25), temperature sensor (26 ) and rain sensor (27), every circuit is energized by voltaic solar panels that are installed in the upper parts of the roofs.
  • a computerized or home automation circuit (24) that has computer applications through mechanisms such as wind sensors (25), temperature sensor (26 ) and rain sensor (27), every circuit is energized by voltaic solar panels that are installed in the upper parts of the roofs.
  • This entire system can be activated via home automation (24), electric or manual according to customer's requirement.

Abstract

Techo Bioclimático Domótico para uso eficiente de ahorro energético, para ser instalado fácilmente sobre construcciones existentes o por construir, que permite la captación de energía solar para el control óptimo de las variables climáticas de un recinto. Dicho techo comprende uno o más módulos, con cada módulo configurado por medio de una estructura base dispuesto sobre el techo original, que sostiene un conjunto de paneles retráctiles. La estructura base comprende una viga-riel que interiormente contiene un mecanismo de tracción de paneles; donde dichos elementos interactúan por medio de un sistema digitalizado.

Description

TECHO BIOCLIMÁTICO DOMÓTICO
ESTADO DE LA TÉCNICA
En el mercado actual no existe una aplicación tecnológica de este tipo, sólo se pueden encontrar soluciones estáticas que son instaladas al interior de las edificaciones sin la opción de poder removerlas de manera dinámica, a eso se le suma que su incorporación es invasiva en las construcciones existentes y de alto costo.
La aislación térmica que se ocupa hoy en el proceso de instalación de techos en los proyectos de edificación son: fibra de vidrio, aislapol, aluminio, espuma sellante, techo verde, etc. Estos mecanismos sustentables presentan algunos inconvenientes de efectividad en las distintas estaciones del año por su condición estática o no removible, además por estar en el interior, específicamente en el entre techo, hace que la carga térmica acumulada en verano sea transmitida al interior, y en invierno desperdicia esta misma carga calórica entregada por el sol en días despejados por la propiedad aislante que contiene, desperdiciando así la oportunidad de una mejor temperatura proporcionada de manera natural dentro de lugares habitados por usuarios.
Los Techos Verdes conocidos también como: azotea viva, azotea ajardinada, greenroof o skygarden, consiste en un sistema integral compuesto por varias capas de materiales diseñados para promover el crecimiento de vegetación en las azoteas, terrazas y áreas abiertas poco utilizadas. Para hacer efectiva esta técnica es necesario construir una infraestructura de mayor dimensión que lo habitual, para soportar el peso de los elementos necesarios que sustentan la vida de la vegetación, por lo tanto esta técnica es aplicable solo a construcciones nuevas dejando fuera las existentes. Por otra parte, la desventaja de este tipo de solución es la mantención de las estas terrazas, que son de alto costo, y la necesaria participación de grandes cantidades de agua, lo que limita el ahorro energético a ciertas zonas geográficas con precariedad de recurso hídrico. Si bien se puede entregar una solución térmica adecuada y agradable al edificio, claramente abusa de otro recurso natural (agua), convirtiendo esta modalidad en un proceso de costo-beneficio.
El techo bioclimático domótico es un sistema de construcción de cubierta dinámica para enfrentar las diferentes situaciones climáticas que se presentan en el país en diferentes estaciones del año y distintas zonas geográficas, innovador en la captación solar a través de una estructura dinámica tanto para el ahorro energético como para la aplicación a edificaciones existentes. Dicho dispositivo no estático puede ser activado de manera automática o manual, de esta forma consigue ser más efectivo contra las inclemencias climáticas, logrando también una disminución de energía, ya que existiría una mejora térmica en las construcciones donde se aplicaría esta protección.
Esta nueva técnica se relaciona de manera directa con la disminución del consumo energético, ahorro de los recursos técnicos, calidad de vida y protección del medio ambiente, ya que es una energía limpia, no contaminante e inagotable (producto que es una fuente natural de energía). Esta nueva forma de economizar energía, el desarrollo sustentable como país, entendiendo que la crisis energética irá en aumento con los años debido al incremento del precio de combustible fósiles donde representa el 72% del consumo energético en Chile. Por lo tanto, Chile al mejorar en la eficiencia energética con el uso de recursos naturales, permitirá un crecimiento económico sostenible y mayor competitividad.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1 : Representa la estructura base del Techo Bioclimático Domótico que se instala sobre el techo de la construcción.
Figura 2: Representa el kit de cubierta totalmente desplegada en función de la estructura base del Techo Bioclimático Domótico, el módulo.
Figura 3: Representa una vista en planta del módulo que al repetirlo formará el techo bioclimático domótico, con el kit de cubierta totalmente retraído y mostrando el motor instalado a un costado de la viga riel y el eje de la viga riel.
Figura 4: Representa un corte fugado del kit de cubierta, mostrando el panel que compone el kit, el espacio donde se mueve la corredera guía.
Figura 5: Representa una vista en elevación del kit de cubierta mostrando los elementos que la componen como paneles, correderas rieles y sus espacios para que se muevan y el eje de la misma.
Figura 6: Representa una vista en planta de la viga riel y sus componentes como el motor eléctrico que permite el movimiento del todo el mecanismo de cubierta desplegable mediante la correa de tracción.
Figura 7: Representa una vista en elevación de la viga riel junto con todo el mecanismo que la compone: el motor, la polea y la piola.
Figura 8: Representa una vista en perspectiva del motor eléctrico al costado de la viga riel con todo el sistema que implica, polea y piola.
Figura 9: Representa una vista en corte transversal de la viga riel, destacando la sección de la viga, de forma U semicerrada, junto con todo lo que compone a la viga.
Figura 10: Representa una vista en corte longitudinal de la viga riel evidenciando el sistema que la compone, la polea, correa de tracción, carro colgante doble contacto permitiendo el tránsito de las cubiertas y el eje cilindrico Figura 11 : Representa una vista en perspectiva de los posibles paneles para conformar el kit de cubierta teniendo como requisito fundamental que sus extremos longitudinales tengan un pliegue en ángulo invertido, en este caso demostrándolo en una cubierta de fibra de vidrio.
Figura 12: Representa una vista en perspectiva de otra materialidad de panel que podría componer el kit de cubierta, con los mismos requisitos ya mencionados, en este caso de zinc.
Figura 13: Representa un vista en perspectiva de otra materialidad que puede componer el kit de cubierta cumpliendo los mismos requerimientos ya expuestos, en este caso de panel solar.
Figura 14: Representa una vista en elevación de la corredera guía y su sección, conformada por una pletina con forma Z.
Figura 15: Representa una vista en perspectiva de la corredera guía, conformada por una pletina donde se muestra de mejor manera su sección con forma Z.
Figura 16: Representa una vista de la elevación posterior del gancho que tiene como función unir el sistema del kit de cubierta con el sistema de guía riel.
Figura 17: Representa una vista de la elevación lateral del gancho con sus componentes, el cuerpo del gancho, el perno unión y el carro colgante.
Figura 18: Representa una vista de la elevación frontal del gancho.
Figura 19: Representa un vista frontal en perspectiva del kit de cubierta en su forma totalmente retraída.
Figura 20: Representa una vista frontal en perspectiva del kit de cubierta en su forma semi-retraída.
Figura 21 : Representa una vista frontal en perspectiva del kit de cubierta en su forma totalmente desplegada.
Figura 22: Representa un vista en detalle de la unión del sistema de la viga riel y sus respectivos componentes con el kit de cubierta.
Figura 23: Representa una vista en perspectiva de los módulos conformados por la estructura base y el kit de cubierta dispuestos sobre el techo, el kit muestra dos de las tres formas de cómo se despliega en el techo, una totalmente desplegada y la otra totalmente retraída.
Figura 24: Representa un vista en detalle de la unión del sistema de la viga riel y sus respectivos componentes con el kit de cubierta. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
El techo bioclimático domótico consiste en primer lugar en la aplicación de una capa de pintura especial para captar la radiación solar, de color negro en la superficie a tratar (sobre la cubierta del techo de la edificación), la cual tiene como finalidad captar y concentrar gran parte de la carga térmica emitida por el sol, para luego ser aprovechada en el interior de dicho establecimiento en las estaciones frías del año.
Luego de la aplicación de la pintura ya expuesta, se instala sobre el techo pintado la estructura base (1 ) de material metálico liviano compuesta por la base de anclaje, pilares, tensores, vigas rieles (5) y el eje de la viga riel (28), de rápida instalación y desarme. Dicha estructura queda fija a la edificación base con un sistema de anclaje especial que transmite las cargas del techo bioclimático a la edificación. La viga riel (5) es de sección U semicerrada (6) que contiene en su interior una polea (8), un carro colgante de doble contacto (21 ), un eje cilindrico (22), una piola (23) y una correa de tracción (9), que permite el tránsito de uno de los extremos del kit de cubierta (4), ya que la cubierta superior queda fija a la estructura base (1 ), todo este sistema esta activado por un motor eléctrico (7) que se ubica a un costado de la viga riel (5).
Posteriormente de tener la estructura base (1 ) instalada se le agrega el kit de cubierta (4) que está compuesta por: paneles de materialidad según requerimiento del cliente, pudiendo ser utilizado paneles de fibra de vidrio (11 ), de zinc (12) o paneles solares (29), teniendo todos como requerimiento común y fundamental que sus extremos longitudinales tengan un pliegue en ángulo invertido; una corredera guía (13), con su respectivo espacio para transitar (3), el cual está conformado por una pletina (13) de sección Z, que a la vez, tiene ganchos (15) compuesto por pernos de unión (16) y un carro colgante (17) permitiendo así la unión de los panales (11 ) o (12)o(29) unos con otros, y su libre tránsito por la viga riel (5).
Cada uno de estos elementos descritos permite la característica dinámica del techo bioclimático, mostrando así las tres diferentes posiciones que pueden tener los paneles (11 ) o (12) o (29), totalmente retraída (20), semi-retraída (19) y totalmente desplegada (18).
El motor eléctrico (7) adosado al costado exterior de la viga riel (5), es controlado por un circuito computarizado o domótico (24) que dispone de aplicaciones informáticas a través mecanismos como sensores de viento (25), sensor de temperatura (26) y sensor de lluvia (27), todo circuito es energizado por paneles solares voltaicos que se instalan en las partes superiores de las cubiertas.
Todo este sistema puede ser activado vía forma domótico (24), eléctrico o manual según requerimiento del cliente.

Claims

REIVINDICACIONES
1. - Techo Bioclimático Domótico para uso eficiente de ahorro energético, para ser instalado fácilmente sobre construcciones existentes que permite el control óptimo de las variables climáticas de un recinto CARACTERIZADO porque comprende uno o más módulos, con cada módulo configurado por medio de una estructura base (1) dispuesto sobre el techo original, que sostiene un conjunto de paneles (4) retráctiles, la estructura base comprende una viga-riel (5), que interiormente contiene un mecanismo de tracción de paneles; donde dichos elementos interactúan por medio de un sistema digitallzado.
2. - Techo Bioclimático Domótico de acuerdo a la reivindicación 1 , CARACTERIZADO, porque la viga-riel posee una sección en U semicerrada. (6)
3. - Techo Bioclimático Domótico de acuerdo a la reivindicación 1 , CARACTERIZADO, porque la viga-riel (5) en su costado posee un motor (7) en conexión con una polea (8) y una correa de tracción (9).
4. - Techo Bioclimático Domótico de acuerdo a la reivindicación 1 , CARACTERIZADO, porque los paneles poseen en sus extremos longitudinales un pliegue en ángulo invertido (10) uno respecto al otro.
5. - Techo Bioclimático Domótico de acuerdo a la reivindicación 4, CARACTERIZADO, los paneles (4) en cada extremo poseen una corredera-guía (13) de sección Z que permite conectar un panel con otro por medio de su eje (14).
6. - Techo Bioclimático Domótico de acuerdo a la reivindicación anteriores, CARACTERIZADO, porque los paneles (4) y la viga-riel (5) están conectados a través de un gancho (15) que por medio de un perno de unión (16) conecta con un carro colgante (17), con dicho carro colgante dispuesto dentro de una guía-riel.
7- Techo Bioclimático Domótico de acuerdo a la reivindicación 6, CARACTERIZADO, porque cada módulo (18) comprende un carro colgante de doble contacto (21 ) unido al eje cilindrico (22) dispuesto en una sección de una piola (23) que se conecta con la polea (8).
8.- Techo Bioclimático Domótico de acuerdo a la reivindicación 1 , CARACTERIZADO, porque el sistema digitalizado y que permite desplegar o retraer los paneles, comprende un circuito PLC (24) que posee sensores de viento (25), temperatura (26) y precipitación (27)
PCT/CL2013/000088 2013-12-10 2013-12-10 Techo bioclimático domótico WO2015085442A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CL2013/000088 WO2015085442A1 (es) 2013-12-10 2013-12-10 Techo bioclimático domótico

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2013/000088 WO2015085442A1 (es) 2013-12-10 2013-12-10 Techo bioclimático domótico

Publications (1)

Publication Number Publication Date
WO2015085442A1 true WO2015085442A1 (es) 2015-06-18

Family

ID=53370419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2013/000088 WO2015085442A1 (es) 2013-12-10 2013-12-10 Techo bioclimático domótico

Country Status (1)

Country Link
WO (1) WO2015085442A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019006566A1 (es) * 2017-07-04 2019-01-10 Hermosilla Salazar Guillermo David Aparato y sistema para uso eficiente de ahorro energético en climatización
WO2019238942A1 (fr) * 2018-06-15 2019-12-19 Agrivolta Ombrière ajustable entraînée par poulies

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB530008A (en) * 1939-06-12 1940-12-03 John Crighton An improved shutter for use in connection with the roof windows of buildings
GB533863A (en) * 1939-12-06 1941-02-21 Thomas Crawford Lochhead Improvements in or relating to screens for roof lights and other windows
DE3107404A1 (de) * 1981-02-27 1982-09-16 Siegfried 7410 Reutlingen Bauer "abdeckvorrichtung, insbesondere fuer schraege dachflaechenfenster"
WO1995016100A1 (en) * 1993-12-08 1995-06-15 Openbaar Lichaam Werkvoorzieningsschap Marrelân Groep Sun protection
FR2974378A1 (fr) * 2011-04-21 2012-10-26 Helio Oikos Maison bioclimatique
WO2013008043A2 (en) * 2011-07-08 2013-01-17 Papanaklis Andreas Photovoltaic panel pergola with sliding modules
US20130305634A1 (en) * 2012-05-15 2013-11-21 King Fahd University Of Petroleum And Minerals Roof reflector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB530008A (en) * 1939-06-12 1940-12-03 John Crighton An improved shutter for use in connection with the roof windows of buildings
GB533863A (en) * 1939-12-06 1941-02-21 Thomas Crawford Lochhead Improvements in or relating to screens for roof lights and other windows
DE3107404A1 (de) * 1981-02-27 1982-09-16 Siegfried 7410 Reutlingen Bauer "abdeckvorrichtung, insbesondere fuer schraege dachflaechenfenster"
WO1995016100A1 (en) * 1993-12-08 1995-06-15 Openbaar Lichaam Werkvoorzieningsschap Marrelân Groep Sun protection
FR2974378A1 (fr) * 2011-04-21 2012-10-26 Helio Oikos Maison bioclimatique
WO2013008043A2 (en) * 2011-07-08 2013-01-17 Papanaklis Andreas Photovoltaic panel pergola with sliding modules
US20130305634A1 (en) * 2012-05-15 2013-11-21 King Fahd University Of Petroleum And Minerals Roof reflector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019006566A1 (es) * 2017-07-04 2019-01-10 Hermosilla Salazar Guillermo David Aparato y sistema para uso eficiente de ahorro energético en climatización
WO2019238942A1 (fr) * 2018-06-15 2019-12-19 Agrivolta Ombrière ajustable entraînée par poulies
FR3082540A1 (fr) * 2018-06-15 2019-12-20 Agrivolta Ombriere ajustable entrainee par poulies
US11653602B2 (en) 2018-06-15 2023-05-23 Ombrea Adjustable shade house driven by pulleys

Similar Documents

Publication Publication Date Title
EP2339910B1 (en) Greenhouse
US20030177705A1 (en) Panel assembly for use with reflective roof and methods of use
ES2394022T3 (es) Módulo fotovoltaico con marcos fabricados a partir de perfiles de marco de aluminio
US20110290305A1 (en) Cabled matrix for cantilevered photovoltaic solar panel arrays, apparatus and deployment systems
EP2396480A2 (en) Innovative, modular, highly-insulating panel and method of use thereof
ES2958136T3 (es) Garajes abiertos de seguimiento solar
WO2011012755A1 (es) Seguidor solar para módulos solares fotovoltaicos de alta concentración de tipo giratorio para cubierta y huertos solares
WO2015085442A1 (es) Techo bioclimático domótico
CN103988733A (zh) 整体采光屋面为圆弧拱形的日光温室
US10156069B1 (en) Roof truss for solar application
CN203879064U (zh) 前采光屋面为圆弧拱形的日光温室
CN203872681U (zh) 整体采光屋面为圆弧拱形的日光温室
CN208201608U (zh) 一种多功能的连廊天桥
CN202406650U (zh) 太阳能光伏温室大棚
CN219261875U (zh) 一种渐变灯光风动长廊
KR20120060792A (ko) 도로 조립용 태양광 발전블럭
CN205502422U (zh) 一种光伏发电阳光房
CN203701461U (zh) 光伏建筑一体化屋面
TWI555901B (zh) 太陽能板架設構造
CN215563733U (zh) 光伏一体化节能钢构厂房屋面结构
CN203296231U (zh) 一种屋面电动遮阳装置
CN204090867U (zh) 一种光伏电站驱鸟装置
WO2019006566A1 (es) Aparato y sistema para uso eficiente de ahorro energético en climatización
KR20190034792A (ko) 도로상 또는 철도상 폭방향으로 확장가능한 태양광 발전장치 및 발전방법
CN201722948U (zh) 冬暖夏凉抗震防洪节能环保太阳能风电住宅

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13899014

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/12/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13899014

Country of ref document: EP

Kind code of ref document: A1