WO2015083649A1 - Method for producing polyimide, and polyimide obtained using such production method - Google Patents

Method for producing polyimide, and polyimide obtained using such production method Download PDF

Info

Publication number
WO2015083649A1
WO2015083649A1 PCT/JP2014/081647 JP2014081647W WO2015083649A1 WO 2015083649 A1 WO2015083649 A1 WO 2015083649A1 JP 2014081647 W JP2014081647 W JP 2014081647W WO 2015083649 A1 WO2015083649 A1 WO 2015083649A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
anhydride
polyamic acid
mixture
general formula
Prior art date
Application number
PCT/JP2014/081647
Other languages
French (fr)
Japanese (ja)
Inventor
利彦 松本
伸一 小松
Original Assignee
学校法人東京工芸大学
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人東京工芸大学, Jx日鉱日石エネルギー株式会社 filed Critical 学校法人東京工芸大学
Priority to KR1020167017532A priority Critical patent/KR20160096123A/en
Priority to CN201480066676.9A priority patent/CN105829400A/en
Publication of WO2015083649A1 publication Critical patent/WO2015083649A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a polyimide production method and a polyimide obtained by the production method.
  • polyimide is known as a light and flexible material having high heat resistance.
  • aromatic polyimide (trade name “Kapton” manufactured by DuPont) has a high degree of heat resistance while having sufficient flexibility as a polymer material. It is also known as an indispensable material for advanced industries such as aviation.
  • aromatic polyimide is synthesized by combining rigid and highly symmetric aromatic tetracarboxylic dianhydride and aromatic diamine, and is one of the highest class of heat resistance (glass transition) among polymer materials.
  • Temperature (Tg): 410 ° C.) see Engineering Plastics, Kyoritsu Shuppan, 1987, p88 (Non-patent Document 1)).
  • a polyamic acid is produced in a solvent by combining an alicyclic tetracarboxylic dianhydride and an aromatic diamine, and a polyamic acid ( After the polyamic acid) containing liquid (polyamic acid varnish) is obtained, the containing liquid is directly formed on a substrate or the like, dried, and then heated to a relatively high temperature ⁇ for example, the glass transition temperature as the heating temperature during imidization. It is common to employ the above high temperature (around 400 ° C.).
  • ⁇ Is used to produce polyimide by heating and imidization (so-called thermal imidization method).
  • alicyclic polyimides are structurally lower in decomposition temperature than aromatic polyimides and inferior in oxygen resistance, so high heating temperature causes coloring, and coloring is not possible in general alicyclic polyimide manufacturing methods. It was not always possible to produce a polyimide with sufficiently suppressed.
  • a chemical imidation method using a so-called imidizing agent can be employed as a method for producing an alicyclic polyimide.
  • a chemical imidization method from the viewpoint of heat resistance, when an alicyclic tetracarboxylic dianhydride having rigidity and good symmetry is used as a monomer, such alicyclic tetracarboxylic acid is used. Since acid dianhydride is low in solubility due to the molecular structure, usually, when a polyamic acid (polyamic acid) -containing liquid is obtained and an imidizing agent is added, the polyimide becomes uneven.
  • a system that can employ a chemical imidization method using a so-called imidizing agent in the production method of alicyclic polyimide is an acid dianhydride that is flexible and has lost symmetry as an alicyclic tetracarboxylic dianhydride.
  • the acid dianhydride and aromatic diamine are used in combination with a system having excellent solubility (for example, the latest revised polyimide: basics and applications, NTS Publishing, 2010, Chapter 4) , Polyimide film formation conditions and film properties, see p76 (Non-patent Document 2)).
  • the conventional alicyclic polyimide obtained by adopting a general chemical imidation method is limited to a usable monomer and is not necessarily sufficient in terms of heat resistance. .
  • Patent Document 1 As an alicyclic polyimide having high light transmittance and heat resistance and a method for producing the same, in International Publication 2011/099518 (Patent Document 1), a repeating unit described by a specific general formula is used.
  • the polyimide which has and its manufacturing method are disclosed.
  • a method of thermal imidization in which imidization is performed at a heating temperature of about 250 ° C. is employed.
  • a polyimide having sufficiently high light transmittance and sufficiently high heat resistance is efficiently and reliably manufactured by heating at a lower temperature. It was not always enough in terms.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and it becomes possible to produce an alicyclic polyimide having sufficiently high heat resistance while utilizing a chemical imidization method, Polyimide with sufficient flexibility can be produced by low-temperature heating, and it is possible to more reliably prevent polyimide coloring during production. Adopting a low-temperature heating temperature and sufficiently high light transmittance It is an object of the present invention to provide a polyimide production method capable of producing a polyimide having sufficiently high heat resistance and sufficient flexibility more efficiently and reliably, and a polyimide obtained by the production method. .
  • polyamic acid polyamic acid
  • an imidizing agent is added to polyamic acid (polyamic acid).
  • a chemical imidation method in which dehydration and ring closure is chemically performed.
  • the present inventors first studied using a chemical imidization method using a so-called imidizing agent from the viewpoint of producing polyimide by heating in a lower temperature range.
  • polyamic acid-containing solution when an imidizing agent is added to a solution containing polyamic acid (polyamic acid-containing solution), polyimide may be precipitated in some cases, resulting in a non-uniform solution or a uniform solution. (In this case, polyamic acid and polyimide may coexist in such a solution.)
  • heating at a relatively high temperature is required and a relatively low temperature is obtained.
  • polyimide having sufficient flexibility cannot be obtained under the above heating conditions, and the resulting polyimide is very brittle. Luo was heading.
  • the polyamic acid-containing liquid is a non-uniform solution, it is difficult to apply it to obtain a uniform colorless transparent film.
  • the polyamic acid-containing liquid (polyimide) after addition of the imidizing agent is difficult. Even when a partly contained solution becomes a uniform solution, it is difficult to obtain a film having sufficient flexibility by a casting method or the like by low-temperature heating, and industrial use of the resulting polyimide From the point of view, it is not always sufficient.
  • the heat resistance of polyimide when a rigid and symmetric alicyclic tetracarboxylic dianhydride is used as a monomer, even if a so-called imidizing agent is simply used, the polyimide is deposited.
  • the heating step In order to produce a polyimide having sufficient flexibility by imidizing by heating, it was found that heating at a relatively high temperature (for example, about 300 ° C. or more) is required in the heating step. And when such high temperature heating is performed, coloring of polyimide cannot necessarily be prevented sufficiently due to the heating temperature.
  • a relatively high temperature for example, about 300 ° C. or more
  • a rigid and symmetric alicyclic tetracarboxylic dianhydride is used as a monomer
  • a conventional imidizing agent for example, a polyamic acid-containing liquid after addition of the imidizing agent
  • the solution which contains a part of the polyimide
  • it is heated at a relatively low temperature (depending on the monomer, but for example, about 300 ° C. or less (more preferably about 250 ° C. or less, more preferably Under the heating conditions (about 200 ° C.
  • the heating temperature is, for example, less than 200 ° C. although it varies depending on the monomer.
  • a low temperature an equilibrium reaction in which the polyamic acid is decomposed into an acid dianhydride and an amine tends to be more advantageous than a reaction in which the polyamic acid (polyamic acid) is dehydrated and cyclized into a polyimide. Therefore, when only the thermal imidization method is used, it is necessary to perform a relatively high-temperature heating step as in the conventional method in order to more reliably produce a highly transparent and heat-resistant polyimide.
  • polyamic acid having a repeating unit represented by the following general formula (1), halogenated carboxylic acid anhydride, fat Surprisingly, by imidizing the polyamic acid using a mixture containing an aliphatic tertiary amine, an alicyclic polyimide having a sufficiently high heat resistance while utilizing a chemical imidization method It is possible to manufacture polyimide with sufficient flexibility by heating at a relatively low temperature, and it is possible to more reliably prevent polyimide coloring during manufacturing, and a lower heating temperature is adopted. And found that a polyimide having sufficiently high light transmittance, sufficiently high heat resistance, and sufficient flexibility can be produced more efficiently and reliably, and the present invention is completed. It led to.
  • the method for producing the polyimide of the present invention has the following general formula (1):
  • R 1 represents the following general formulas (I-1) to (I-10):
  • R 2 represents a group selected from the group of tetravalent substituents represented by the following general formulas (II-1) to (II-4):
  • each R 3 independently represents one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, and a fluorine atom
  • Q represents the formula: —O—, —S—, —CO—, —CONH—, —SO 2 —, —C (CF 3 ) 2 —, —C (CH 3 ) 2 —, —CH 2 —, —O—C 6 H 4 —C (CH 3 ) 2 —C 6 H 4 —O—, —O—C 6 H 4 —SO 2 —C 6 H 4 —O—, —C (CH 3 ) 2 —C 6 H 4 —C (CH 3 ) 2 —, — This represents one selected from the group consisting of O—C 6 H 4 —C 6 H 4 —O— and —O—C 6 H 4 —O—.
  • R 1 and R 2 are the same meanings as R 1 and R 2 in the general formula (1).
  • the step of imidizing the polyamic acid includes a step of heating the mixture at a temperature 80 to 300 ° C. lower than the glass transition temperature of the polyimide.
  • the content of the halogen-based carboxylic acid anhydride in the mixture is 0.01 to 4.0 mol with respect to 1 mol of the polyamic acid repeating unit. It is preferable.
  • the content of the aliphatic tertiary amine in the mixture is 0.01 to 4.0 mol with respect to 1 mol of the repeating unit of the polyamic acid. It is preferable.
  • R 1 has the same meaning as R 1 in the general formula (1).
  • R 2 has the same meaning as R 2 in the general formula (1).
  • the halogen-based carboxylic acid anhydride is trifluoroacetic anhydride, difluoroacetic anhydride, fluoroacetic anhydride, pentafluoropropionic anhydride, heptafluorobutyric anhydride, trichloroacetic anhydride, Dichloroacetic anhydride, chloroacetic anhydride, tribromoacetic anhydride, dibromoacetic anhydride, bromoacetic anhydride, chlorodifluoroacetic anhydride, chlorotetrafluoropropionic anhydride, chlorohexafluorobutyric anhydride and a mixed acid anhydride forming these anhydrides At least one selected from the group consisting of trifluoroacetic anhydride, pentafluoropropionic anhydride, heptafluorobutyric anhydride and a mixed acid anhydride of these anhydrides.
  • the aliphatic tertiary amine is represented by the following general formula (5):
  • each R 3 independently represents an alkyl group having 1 to 10 carbon atoms. ] It is preferable that it is the tertiary amine represented by these.
  • the polyimide of the present invention is a polyimide obtained by the above-described method for producing a polyimide of the present invention.
  • the present invention it is possible to produce an alicyclic polyimide having sufficiently high heat resistance while utilizing a chemical imidization method, and producing a polyimide having sufficient flexibility by heating at a relatively low temperature. It is possible to prevent the coloring of polyimide at the time of manufacture more reliably and adopt a lower heating temperature to have sufficiently high light transmittance, sufficiently high heat resistance and sufficient flexibility It becomes possible to provide a polyimide production method that makes it possible to produce polyimide more efficiently and reliably, and a polyimide obtained by the production method.
  • FIG. 2 is a graph showing an IR spectrum of components (reprecipitate) in the mixture obtained in Example 1.
  • FIG. 2 is a graph showing a 1 H-NMR spectrum of a component (reprecipitate) in a mixture obtained in Example 1.
  • FIG. 3 is an enlarged graph of the vicinity of 6 ppm to 13 ppm in the 1 H-NMR spectrum shown in FIG. 2 is a graph showing an IR spectrum of the polyimide (film) obtained in Example 1.
  • FIG. 1 is a graph showing a 1 H-NMR spectrum of a polyimide (film) obtained in Example 1.
  • 6 is an enlarged graph of the vicinity of 6 ppm to 13 ppm of the 1 H-NMR spectrum shown in FIG.
  • FIG. 3 is a graph showing an IR spectrum of components (reprecipitate) in the mixture obtained in Example 2.
  • FIG. 2 is a graph showing a 1 H-NMR spectrum of a component (reprecipitate) in a mixture obtained in Example 2.
  • FIG. 9 is an enlarged graph of the vicinity of 6 ppm to 13 ppm of the 1 H-NMR spectrum shown in FIG. 3 is a graph showing an IR spectrum of a polyimide (film) obtained in Example 2.
  • FIG. 2 is a graph showing a 1 H-NMR spectrum of a polyimide (film) obtained in Example 2.
  • FIG. 12 is an enlarged graph of the vicinity of 6 ppm to 13 ppm of the 1 H-NMR spectrum shown in FIG.
  • the manufacturing method of the polyimide of this invention contains a polyamic acid having a repeating unit represented by the general formula (1), a halogen-based carboxylic acid anhydride, and an aliphatic tertiary amine.
  • This is a method of obtaining a polyimide having a repeating unit represented by the general formula (2) by imidizing the polyamic acid using a mixture.
  • the halogenated carboxylic acid anhydride functions as a dehydrating agent in the mixture
  • the aliphatic A tertiary amine functions as a dehydration accelerator
  • partial imidization of the polyamic acid proceeds.
  • the mixture contains a solvent
  • the polyimide to be formed is soluble in the solvent used for the polymerization reaction. Does not occur and a uniform mixture is obtained.
  • the halogen-based carboxylic acid anhydride and the aliphatic tertiary amine in the mixture function catalytically, and in the mixture
  • the imidization of the polyamic acid proceeds efficiently, and a polyimide having desired properties (sufficient flexibility, sufficiently high light transmittance, and sufficiently high heat resistance) can be produced.
  • a polyimide having desired properties sufficient flexibility, sufficiently high light transmittance, and sufficiently high heat resistance
  • the case of forming a film-like polyimide is taken as an example, and the production of the polyimide will be briefly described.
  • a uniform mixture in which the polyamic acid (polyamic acid) is partially imidized is obtained. Then, the mixture can be cast uniformly (cast film formation).
  • a film (dry coating film) made of a mixture of uniform polyamic acid (polyamic acid) and polyimide having sufficiently high light transmittance is produced.
  • the halogenated carboxylic acid anhydride and the aliphatic tertiary amine remaining in the coating film function like a catalyst, so that imidization occurs even when heated at a low temperature. It will be possible to proceed sufficiently.
  • a polyimide having desired characteristics can be produced by a sufficiently simple method and a low-temperature heating step. .
  • partial imidization by the chemical imidization method that occurs in the mixture and subsequent imidization by the combined heat and chemical method by heating can be used, so that lower temperature heating is possible.
  • polyimide can be produced efficiently.
  • the method for producing the polyimide of the present invention is an excellent method from the viewpoints of industrialization and cost reduction (economic efficiency).
  • the polyimide production method of the present invention can provide the desired characteristics (sufficient flexibility, sufficiently high light transmittance and sufficient even when heating in a lower temperature range during production. The present inventors speculate that it is possible to efficiently produce a polyimide having high heat resistance.
  • polyamide acid The polyamic acid according to the present invention will be described.
  • Such polyamic acid has the following general formula (1):
  • R 1 represents the following general formulas (I-1) to (I-10):
  • Is a group selected from the group of tetravalent substituents represented by the formula:
  • R 1 from the viewpoints of heat resistance, transparency, linear expansion coefficient, and strength, the above-mentioned general formulas (I-1), (I-3), (I-9) and (I-10) A group selected from the above is preferable, and a group selected from the above general formulas (I-9) and (I-10) is more preferable.
  • R 2 represents the following general formulas (II-1) to (II-4):
  • each R 3 is independently one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms and a fluorine atom.
  • a hydrogen atom, a fluorine atom, a methyl group or an ethyl group is more preferable, and a hydrogen atom is particularly preferable.
  • Q is a group represented by the formula: —O—, —S—, —CO—, —CONH—, —SO 2 —, —C (CF 3 ) 2 —, —C ( CH 3 ) 2 —, —CH 2 —, —O—C 6 H 4 —C (CH 3 ) 2 —C 6 H 4 —O—, —O—C 6 H 4 —SO 2 —C 6 H 4 — O -, - C (CH 3 ) 2 -C 6 H 4 -C (CH 3) 2 -, - O-C 6 H 4 -C 6 H 4 -O- and -O-C 6 H 4 -O- It is 1 type selected from the group which consists of group represented by these.
  • the groups represented by the general formulas (II-1) to (II-4) that can be selected as R 2 in the general formula (1) can have a sufficiently high glass transition temperature.
  • the general formula (II-3) or (II-4) It is more preferable that it is group represented by these.
  • R 2 the group represented by the general formula (II-3) or the general formula (II) can be used from the viewpoint that the linear expansion coefficient can be made lower and higher heat resistance can be obtained.
  • II-4) and the group Q is represented by —CONH—, —COO—, —CO—, —C 6 H 4 — (more preferably a group represented by —CONH— or —COO—). And particularly preferably a group that is at least one of the groups represented by —CONH—.
  • the group represented by the general formula (II-1) or the general formula ( II-4) and Q is at least one group selected from —O—, —S—, —CH 2 —, —O—C 6 H 4 —O— (more preferably — It is preferably a group that is one of the groups represented by O— and —CH 2 —, more preferably a group represented by —O—.
  • the polyamic acid from the viewpoint that a sufficiently high glass transition temperature, a sufficiently low linear expansion coefficient, and sufficient flexibility (flexibility) can be imparted to the obtained polyimide in a balanced manner at a higher level. It is preferable to contain a plurality of (two or more) repeating units represented by the general formula (1) having different types of R 2 .
  • the polyamic acid having a repeating unit represented by the general formula (1) preferably has an intrinsic viscosity [ ⁇ ] of 0.05 to 3.0 dL / g, and preferably 0.2 to 2.0 dL / g. g is more preferable, and 0.4 to 1.5 dL / g is still more preferable.
  • the intrinsic viscosity [ ⁇ ] is smaller than 0.05 dL / g, when a film-like polyimide is produced using the intrinsic viscosity [ ⁇ ], the resulting film tends to be brittle, while 3.0 dL / g is reduced.
  • Such intrinsic viscosity [ ⁇ ] can be measured as follows. Specifically, first, a measurement sample (solution) in which N, N-dimethylacetamide is used as a solvent and the polyamic acid is dissolved in the N, N-dimethylacetamide so as to have a concentration of 0.5 g / dL. obtain. Next, using the measurement sample, the viscosity of the measurement sample is measured using a kinematic viscometer under a temperature condition of 30 ° C. (for example, as a temperature condition of 30 ° C.
  • the process for producing such a polyamic acid is not particularly limited, and a process capable of producing a polyamic acid having a repeating unit represented by the general formula (1) can be appropriately employed.
  • the organic solvent in the organic solvent, the following general formula (3):
  • R 1 has the same meaning as R 1 in the general formula (1).
  • R 2 has the same meaning as R 2 in the general formula (1).
  • the tetracarboxylic dianhydride used in the step of obtaining such polyamic acid is represented by the above general formula (3), and R 1 in the general formula (3) is the above general formula (1).
  • R 1 synonymous in (formula (3) suitable for R 1 in are also the same as the R 1 of the general formula (1).
  • Examples of the tetracarboxylic dianhydride represented by the general formula (3) include norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′′ -norbornane-5,5 ′.
  • tetracarboxylic dianhydride is not particularly limited, and a known method can be appropriately employed.
  • the method described in International Publication No. 2011/099518 is appropriately used. It may be adopted.
  • the aromatic diamine used in the step of obtaining the polyamic acid is represented by the general formula (4), and R 2 in the general formula (4) is R in the general formula (1).
  • R 2 in the general formula (4) is R in the general formula (1).
  • Examples of the aromatic diamine represented by the general formula (4) include 4,4′-diaminodiphenylmethane, 4,4 ′′ -diamino-p-terphenyl, 3,3′-diaminodiphenylmethane, 4 , 4'-diaminodiphenylethane, 3,3'-diaminodiphenylethane, 4,4'-diaminobiphenyl, 3,3'-diaminobiphenyl, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 2 , 2-bis
  • the method for producing such an aromatic diamine is not particularly limited, and a known method can be appropriately employed. Moreover, you may use a commercially available thing suitably as such aromatic diamine.
  • both a tetracarboxylic dianhydride represented by the general formula (3) and an aromatic diamine represented by the general formula (4) are used.
  • An organic solvent that can be dissolved is preferable.
  • organic solvents examples include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, ⁇ -butyrolactone, propylene carbonate, tetramethylurea, 1,3- Aprotic polar solvents such as dimethyl-2-imidazolidinone, hexamethylphosphoric triamide, pyridine; phenol solvents such as m-cresol, xylenol, phenol, halogenated phenol; tetrahydrofuran, dioxane, cellosolve, glyme And ether solvents such as benzene, toluene, xylene, 2-chloro-4-hydroxytoluene, and the like. Such organic solvents may be used singly or in combination of two or more.
  • the usage-amount in particular of the tetracarboxylic dianhydride represented by the said General formula (3) and the aromatic diamine represented by the said General formula (4) is not restrict
  • their molar ratio [tetracarboxylic dianhydride]: [aromatic diamine]) is 0.5: 1.0 to 1.0: 0.5 (more preferably 0.9: 1.0 to 1.0: 0.9) is preferable. If the amount of tetracarboxylic dianhydride used is less than the lower limit, the yield tends to decrease. On the other hand, even if the amount exceeds the upper limit, the yield tends to decrease.
  • the proportion of the tetracarboxylic dianhydride represented by the general formula (3) and the aromatic diamine represented by the general formula (4) is 0.2 to 2 equivalents relative to 1 equivalent of the amino group of the aromatic diamine represented by the formula (4). It is preferable to use 0.3 to 1.2 equivalents. When such a use ratio is less than the lower limit, the polymerization reaction does not proceed efficiently, and a high molecular weight polyamic acid tends not to be obtained. On the other hand, when the upper limit is exceeded, a high molecular weight polyamic acid is obtained as described above. It tends to be impossible.
  • the usage-amount of the said organic solvent in the process of obtaining the said polyamic acid the total amount of the aromatic diamine represented by the tetracarboxylic dianhydride represented by the said General formula (3) and the said General formula (4)
  • the amount is preferably 0.1 to 50% by mass (more preferably 10 to 30% by mass) with respect to the total amount of the reaction solution. If the amount of the organic solvent used is less than the lower limit, the polyamic acid tends not to be obtained efficiently. On the other hand, if it exceeds the upper limit, stirring tends to be difficult due to the increase in viscosity.
  • a reaction rate is obtained.
  • a base compound may be further added to the organic solvent.
  • such basic compounds include, but are not limited to, triethylamine, tributylamine, trihexylamine, 1,8-diazabicyclo [5.4.0] -undecene-7, pyridine, isoquinoline, N-methylpiperidine, ⁇ -picoline and the like can be mentioned.
  • the amount of such a base compound used is preferably 0.001 to 10 equivalents relative to 1 equivalent of the tetracarboxylic dianhydride represented by the general formula (6), More preferably, it is 0.1 equivalent. If the amount of such a basic compound used is less than the lower limit, the effect of addition tends to be lost. On the other hand, if it exceeds the upper limit, it tends to cause coloring or the like.
  • the reaction temperature when the tetracarboxylic dianhydride represented by the general formula (3) and the aromatic diamine represented by the general formula (4) are reacted is as follows:
  • the temperature may be appropriately adjusted to a temperature at which these compounds can be reacted, and is not particularly limited, but is preferably 80 ° C. or less, and preferably ⁇ 30 to 30 ° C.
  • a method of reacting the tetracarboxylic dianhydride represented by the above general formula (3) and the aromatic diamine represented by the above general formula (4) that can be employed in the step of obtaining such a polyamic acid is a method of reacting the tetracarboxylic dianhydride represented by the above general formula (3) and the aromatic diamine represented by the above general formula (4) that can be employed in the step of obtaining such a polyamic acid.
  • tetracarboxylic dianhydride represented by the above general formula (3) at the reaction temperature after dissolving the aromatic diamine in a solvent under an inert atmosphere such as nitrogen, helium or argon at atmospheric pressure
  • a method may be employed in which a product is added and then reacted for 10 to 48 hours. If the reaction temperature or reaction time is less than the lower limit, it tends to be difficult to cause sufficient reaction. On the other hand, if the upper limit is exceeded, the probability of mixing a substance (such as water vapor) that degrades the polymer increases and the molecular weight increases. It tends to decrease.
  • the tetracarboxylic dianhydride represented by the above general formula (3) with the aromatic diamine represented by the above general formula (4), it is represented by the above general formula (1).
  • a polyamic acid having at least one repeating unit can be obtained.
  • the polyamic acid having the repeating unit represented by the above general formula (1) thus obtained may be isolated and used as a component for forming the mixture according to the present invention.
  • the tetracarboxylic dianhydride represented by the general formula (3) and the general formula (3) in an organic solvent can be used.
  • reaction solution obtained by reacting with the aromatic diamine represented by 4) (the reaction solution containing the polyamic acid having the repeating unit represented by the general formula (1)) is used as it is.
  • isolating and using the polyamic acid which has a repeating unit represented by the said General formula (1) from the said reaction liquid it does not restrict
  • Such known methods can be employed as appropriate, and for example, a method of isolating as a reprecipitate may be employed.
  • Halogen carboxylic anhydride The halogen-based carboxylic acid anhydride according to the present invention will be described.
  • a halogen-based carboxylic acid anhydride is used in combination with an aliphatic tertiary amine.
  • the halogen-based carboxylic acid anhydride is a compound in which a carboxylic acid anhydride group and an aliphatic group containing at least one halogen atom are bonded ⁇ halogen-substituted aliphatic group (at least one hydrogen atom is a halogen atom).
  • the halogen-based carboxylic acid anhydride according to the present invention includes an aliphatic group in which at least one hydrogen atom is substituted with a halogen atom (from the viewpoint of moderate reactivity, moderate imide ring-closing activity, and volatility).
  • a compound in which a halogen atom-substituted aliphatic group) and a carboxylic acid anhydride group are bonded is used.
  • the halogen atom contained in such a halogen-based carboxylic acid anhydride is preferably a fluorine atom, a chloro atom, or a bromo atom from the viewpoint of moderate reactivity, moderate imide ring-closing activity, and volatility.
  • An atom and a chloro atom are more preferable, and a fluorine atom is particularly preferable.
  • the aliphatic group in the halogen atom-substituted aliphatic group is preferably a linear alkyl group having 1 to 5 carbon atoms or a branched alkyl group having 3 to 5 carbon atoms. A linear alkyl group of ⁇ 3 is more preferred.
  • halogen-based carboxylic acid anhydrides from the viewpoint of moderate reactivity, moderate imide ring-closing activity, and volatility, trifluoroacetic anhydride, difluoroacetic anhydride, fluoroacetic anhydride, pentafluoropropionic anhydride, Heptafluorobutyric anhydride, trichloroacetic anhydride, dichloroacetic anhydride, chloroacetic anhydride, tribromoacetic anhydride, dibromoacetic anhydride, bromoacetic anhydride, chlorodifluoroacetic anhydride, chlorotetrafluoropropionic anhydride, chlorohexafluorobutyric anhydride, and these Forming acids (trifluoroacetic acid, difluoroacetic acid, fluoroacetic acid, pentafluoropropionic acid, heptaful) that form anhydrides (trifluoroacetic anhydride
  • the “mixed acid anhydride” here refers to an acid anhydride obtained by dehydration condensation of two types of halogen-based carboxylic acids. Furthermore, among these halogen-based carboxylic anhydrides, trifluoroacetic anhydride, pentafluoropropionic anhydride, and heptafluorobutyric anhydride are more preferable, and trifluoroacetic anhydride and pentafluoropropionic anhydride are particularly preferable. In addition, such a halogen-type carboxylic anhydride may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the method for producing such a halogen-based carboxylic acid anhydride is not particularly limited, and a known method can be appropriately employed. Moreover, as such a halogen-type carboxylic acid anhydride, you may use a commercially available thing suitably.
  • the aliphatic tertiary amine according to the present invention will be described.
  • the aliphatic tertiary amine is used in combination with the halogenated carboxylic acid anhydride from the viewpoints of moderate reactivity, moderate imide ring-closing activity, and volatility. Even when such a compound other than an aliphatic tertiary amine is combined with the halogen-based carboxylic acid anhydride, it does not exhibit moderate reactivity, moderate imide ring-closing activity, and volatility, and is sufficiently flexible and light transmissive. High polyimide cannot be produced.
  • each R 3 independently represents an aliphatic group. ] It is preferable that it is a compound represented by these.
  • R 3 in the general formula (5) may be the same or different and each may be an aliphatic group.
  • the aliphatic group used as R 3 include a linear aliphatic group having 1 to 10 carbon atoms and a carbon number of 1 from the viewpoint of moderate reactivity, moderate imide ring-closing activity, and volatility. Ten branched aliphatic groups are preferred.
  • each R 3 is more preferably an alkyl group having 1 to 5 carbon atoms, and particularly preferably an alkyl group having 1 to 2 carbon atoms. In addition, when the carbon number of such an alkyl group exceeds the upper limit, there is a tendency that moderate reactivity, moderate imide ring-closing activity and volatility are not exhibited.
  • Examples of the aliphatic tertiary amine include trimethylamine, triethylamine, tripropylamine, triisopropylamine, diisopropylethylamine, tributylamine, tripentylamine, DBU, DBN, DABCO, and moderate reactivity. From the viewpoint of moderate imide ring-closing activity and volatility, trimethylamine, triethylamine, tripropylamine, triisopropylamine, and diisopropylethylamine are more preferable, and trimethylamine, triethylamine, and diisopropylethylamine are more preferable. In addition, such an aliphatic tertiary amine may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the method for producing such an aliphatic tertiary amine is not particularly limited, and a known method can be appropriately employed. Moreover, you may use a commercially available thing suitably as such an aliphatic type
  • the mixture concerning this invention is a mixture containing the polyamic acid which has a repeating unit represented by the said General formula (1), the said halogen-type carboxylic anhydride, and the said aliphatic tertiary amine.
  • the halogenated carboxylic acid anhydride and the aliphatic tertiary amine are selected and combined from so-called imidizing agents.
  • imidizing agents As described above, since the mixture is selected and used in combination with the halogenated carboxylic acid anhydride and the aliphatic tertiary amine, the reason is not necessarily clear, but the temperature is relatively low (depending on the monomer).
  • a low temperature of about 300 ° C. or lower preferably a low temperature of about 250 ° C. or lower, more preferably a low temperature of about 230 ° C. or lower, more preferably a low temperature of about 210 ° C. or lower.
  • the polyamic acid can be efficiently imidized, and an alicyclic polyimide having a sufficiently high light transmittance can be efficiently produced.
  • Such a mixture may contain an organic solvent from the viewpoint of easy application and improved processing performance.
  • an organic solvent it is preferable to use an organic solvent similar to that described as the organic solvent used in the step of obtaining the polyamic acid.
  • a step of obtaining the polyamic acid is adopted, and the above general formula (3) is used in an organic solvent.
  • a reaction liquid (containing a polyamic acid having a repeating unit represented by the above general formula (1) by reacting the tetracarboxylic dianhydride represented by the aromatic diamine represented by the above general formula (4). After the reaction solution is obtained, the reaction solution is used as it is, and the one obtained by adding the halogen-based carboxylic acid anhydride and the aliphatic tertiary amine to the reaction solution can be suitably used. .
  • the content of the halogen-based carboxylic acid anhydride in the mixture is 0.01 to 4.0 mol (more preferably, 0.00 mol) with respect to 1 mol of the polyamic acid repeating unit. 1 to 3.0, more preferably 0.2 to 2.0).
  • the content ratio of such a halogenated carboxylic acid anhydride is less than the lower limit, the effect obtained by adding the halogenated carboxylic acid anhydride tends to be insufficient (additional effect is reduced)
  • the upper limit is exceeded, polymer precipitation occurs in the mixture, and the mixture tends to be non-uniform. If the mixture is non-uniform, uniform casting (cast film formation) becomes impossible. And when such a cast-coated film is dried, it becomes impossible to produce a film (dried film) made of a mixture of uniform polyamic acid and polyimide, resulting in a transparent and uniform film. The film cannot be obtained.
  • the content of the aliphatic tertiary amine in the mixture is 0.01 to 4.0 mol (more preferably 0 mol) per mol of the polyamic acid repeating unit. 0.1 to 3.0, more preferably 0.2 to 2.0). If the content ratio of the aliphatic tertiary amine is less than the lower limit, the effect obtained by adding the aliphatic tertiary amine tends to be insufficient (addition effect is reduced), If the upper limit is exceeded, polymer precipitation occurs in the mixture, and the mixture tends to be non-uniform.
  • the content of the polyamic acid in the mixture is preferably 1 to 50% by mass, and preferably 10 to 30% by mass. If the content of such polyimide acid is less than the lower limit, the chemical imidation reaction tends not to proceed sufficiently in the mixture. On the other hand, even if the upper limit is exceeded, the chemical imidization reaction also proceeds sufficiently. It tends to disappear.
  • the method for producing such a mixture is not particularly limited, but adopting the step of obtaining the polyamic acid, the tetracarboxylic dianhydride represented by the above general formula (3) and the above general formula in an organic solvent.
  • the reaction liquid is Utilizing the method as it is, the method (A) of adding the halogenated carboxylic acid anhydride and the aliphatic tertiary amine to the reaction solution, or the step of obtaining the polyamic acid is adopted.
  • the Lysates obtained with a method may be adopted (B) of adding said halogen-containing carboxylic acid anhydride and the aliphatic tertiary amine in its solution.
  • the method (A) described above is preferably employed from the viewpoint of more efficiently producing polyimide.
  • the halogenated carboxylic acid anhydride and the aliphatic tertiary amine are added to the polyamic acid-containing liquid containing the polyamic acid (the reaction liquid or the solution).
  • the order of addition is not particularly limited and may be added at the same time.
  • the temperature condition for adding the halogenated carboxylic acid anhydride and the aliphatic tertiary amine is not particularly limited, but is ⁇ 30 ° C. to 80 ° C.
  • the temperature is 0 ° C. to 60 ° C.
  • the polyamic acid-containing solution (the reaction solution or the solution) is added to the polyamic acid-containing solution (the reaction solution or the solution) from the viewpoint of obtaining a more uniform mixture while partially generating polyimide in the mixture.
  • such mixing is performed under a temperature condition of less than 80 ° C. (more preferably, a temperature condition of ⁇ 30 to 60 ° C., particularly preferably a temperature condition of 0 ° C. to 40 ° C.).
  • the step of stirring is more preferable.
  • reaction time for performing the mixing step is preferably 1 to 50 hours, and more preferably 12 to 24 hours.
  • reaction time is less than the lower limit, in the mixture, the chemical imidation reaction does not proceed sufficiently, and there is a tendency that it is necessary to heat at a high temperature in the final thermal imidation.
  • the upper limit is exceeded, chemical imidization proceeds excessively, the mixture becomes non-uniform, and there is a tendency that a uniform film cannot be obtained.
  • the pressure conditions for producing the mixture are not particularly limited, but are preferably 0.01 MPa to 1 MPa, more preferably 0.1 MPa to 0.3 MPa. If the pressure is less than the lower limit, the solvent, the halogenated carboxylic acid anhydride, or the aliphatic tertiary amine tends to vaporize. On the other hand, if the pressure exceeds the upper limit, the polymerization operation or the halogenated Addition of a carboxylic acid anhydride or the aliphatic tertiary amine tends to be difficult.
  • the halogenated carboxylic acid anhydride and the aliphatic three-component solution are used for the polyamic acid-containing liquid (the reaction liquid containing the polyamic acid or the solution containing the polyamic acid). It is preferable to use a mixture obtained by mixing (stirring) under the temperature condition of less than 80 ° C. for 1 hour to 50 hours after adding the primary amine.
  • the imidization chemical imidation
  • the mixture after stirring has a repeating unit represented by the general formula (2) described later. It contains polyimide and the polyamic acid represented by the general formula (1).
  • the polyimide which has a repeating unit represented by this is obtained.
  • the above general formula (2), R 1 and R 2 are each the in formula (1) the same meaning as R 1 and R 2 in (also synonymous suitable.)
  • the imidization method is not particularly limited as long as it is a method capable of imidizing the polyamic acid using the mixture, and a known method can be appropriately employed, but the mixture is heated. It is preferable to include a process. Such a heating step allows the thermal imidization reaction to proceed efficiently. Further, as the mixture used in such a heating step, it is preferable to use a mixture obtained by partially advancing the chemical imidation reaction of the polyamic acid in the mixture. From this viewpoint, the polyamic acid-containing liquid is used.
  • the step of stirring (mixing) the mixture (the step of mixing (stirring) described in the above-described method for producing a mixture) and the mixture are heated. It is preferable to include a process. As a result, the chemical imidization reaction of the polyamic acid partially proceeds in the mixture, and then the mixture can be heated to allow the thermal imidization reaction to proceed. It is possible to manufacture polyimide well.
  • the step of heating such a mixture is performed at a temperature lower than the glass transition temperature (Tg) of the resulting polyimide by 80 to 300 ° C. (more preferably, from the viewpoint of preventing coloring of the polyimide by heating at a lower temperature.
  • the step is preferably a step of heating (firing) the mixture at a temperature 100 to 200 ° C. lower than Tg, more preferably a temperature 120 to 180 ° C. lower than Tg.
  • the “polyimide glass transition temperature (Tg)” can be determined by the following glass transition temperature (Tg) measurement method. That is, as a method for measuring the glass transition temperature (Tg), after forming a film-shaped polyimide and forming films each having a length of 20 mm, a width of 5 mm, and a thickness of 0.02 mm (20 ⁇ m), the film is formed. After vacuum drying (120 ° C., 1 hour (Hr)) and heat treatment in a nitrogen atmosphere at 200 ° C. for 1 hour (Hr) to obtain a sample (dry film), the sample is used as a thermomechanical measurement device.
  • Tg glass transition temperature
  • the change in the sample at 30 ° C. to 400 ° C. was measured under the nitrogen atmosphere, using the penetration mode and the heating rate of 10 ° C./min. Can be used.
  • the heating temperature is preferably 300 ° C. or less, more preferably 80 to 250 ° C., further preferably 100 to 230 ° C., ⁇ 210 ° C. is particularly preferred.
  • the heating temperature exceeds the upper limit, it becomes difficult to sufficiently reduce the cost due to an increase in the heating temperature, or it tends to be difficult to suppress coloring at a very high level.
  • the amount is less than the lower limit, the reaction proceeds slowly, and it tends to be difficult to produce a flexible polyimide efficiently.
  • a low temperature for example, 230 ° C. or lower
  • a polyimide having sufficient mechanical properties such as flexibility. Can also be manufactured.
  • the atmospheric conditions for carrying out the step of heating the mixture include an inert gas atmosphere such as nitrogen gas or under vacuum from the viewpoint of preventing coloring due to oxygen in the air and molecular weight reduction due to water vapor in the air.
  • the pressure condition for carrying out the step of heating the mixture is not particularly limited, but is preferably 0.01 hPa to 1 MPa, more preferably 0.1 hPa to 0.3 MPa. . If the pressure is less than the lower limit, the solvent, the halogenated carboxylic acid anhydride, and the aliphatic tertiary amine tend to be instantly vaporized to generate bubbles and voids, and on the other hand, exceed the upper limit. In addition, it tends to be difficult to remove the solvent, the halogen-based carboxylic acid anhydride, and the aliphatic tertiary amine.
  • the step of heating the mixture when the mixture includes a solvent (for example, in the case of a solution), it is preferable to perform a drying process before performing the heat treatment.
  • a drying treatment By such a drying treatment, the polyamic acid having the repeating unit represented by the general formula (1) is isolated in the form of a film or the like, and then heat treatment can be performed.
  • the temperature condition in such a drying process is preferably ⁇ 20 to 80 ° C., more preferably 0 to 60 ° C. If the temperature condition in such a drying process is less than the lower limit, the solvent tends to be unable to be removed when the mixture contains a solvent. On the other hand, if the mixture exceeds the upper limit, volatile components such as the solvent boil and bubbles are formed during film formation. And tends to be a film containing voids. Further, the atmosphere in such a drying treatment method is preferably an inert gas atmosphere (for example, a nitrogen atmosphere). From the viewpoint of more efficient drying, the pressure condition in such a drying process is preferably 0.01 hPa to 0.1 MPa. In this case, for example, in the case of producing a film-like polyimide, the mixture may be applied on a substrate, followed by the drying treatment and the heat treatment, and the film-like polyimide may be produced by a simple method. Is possible.
  • a film-like polyimide when manufacturing a film-like polyimide, it is not restrict
  • a base material for example, a glass plate or a metal plate
  • the application method is not particularly limited, and a known method (such as a casting method) can be appropriately employed.
  • a casting method a spin coating method, a spraying method can be used.
  • a coating method, a dip coating method, a dropping method, a gravure printing method, a screen printing method, a relief printing method, a die coating method, a curtain coating method, an ink jet method, and the like can also be appropriately employed.
  • the thickness of the coating film of the mixture is preferably 1 to 200 ⁇ m, more preferably 5 to 100 ⁇ m after drying. If the thickness of the coating film of such a mixture is less than the lower limit, mechanical strength tends to decrease and the film tends to be weakened. On the other hand, if the thickness exceeds the upper limit, film forming tends to be difficult.
  • the imidization method from the viewpoint of production efficiency, after carrying out the step of obtaining the polyamic acid, the tetracarboxylic dianhydride represented by the general formula (3) and the general A reaction solution obtained by reacting with an aromatic diamine represented by the formula (4) (a reaction solution containing a polyamic acid having a repeating unit represented by the above general formula (1)) is used as it is (the above general A polyamic acid having a repeating unit represented by the formula (1) is used without isolation), and the halogenated carboxylic acid anhydride and the aliphatic tertiary amine are added to the reaction solution to obtain a mixture
  • the said heat processing process of heating the said mixture
  • the polyimide obtained by the present invention may contain other repeating units in addition to the repeating unit represented by the general formula (2).
  • another tetracarboxylic dianhydride is used together with the tetracarboxylic dianhydride represented by the general formula (3), and these are combined with the aromatic diamine. What is necessary is just to make it react.
  • known tetracarboxylic dianhydrides can be appropriately used.
  • pyromellitic dianhydride 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenylsulfone tetracarboxylic dianhydride, 1,4, 5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyl ether tetracarboxylic dianhydride, 3,3 ', 4,4'-Dimethyldiphenylsilanetetracarboxylic dianhydride, 3,3', 4,4'-tetraphenylsilanetetracarboxylic dianhydride, 1,2,3,4-furantetracarboxylic acid dianhydride Anhydride, 4,4′-bis (3,4-dicarboxyphenoxy) diphenyl sulfide dianhydride, 4,4
  • the polyimide of this invention is a polyimide obtained by the manufacturing method of the polyimide of the said invention.
  • Such a polyimide preferably has a glass transition temperature (Tg) of 250 ° C. or higher, more preferably 300 to 500 ° C. If the glass transition temperature (Tg) is less than the lower limit, sufficient heat resistance tends to be difficult to achieve, and if it exceeds the upper limit, it tends to be difficult to produce a polyimide having such characteristics. It is in.
  • the glass transition temperature (Tg) of such a polyimide can be determined by employing the above-described method for measuring the glass transition temperature (Tg).
  • the number average molecular weight (Mn) of such a polyimide is preferably 1,000 to 1,000,000, more preferably 10,000 to 100,000, in terms of polystyrene.
  • Mn number average molecular weight
  • the number average molecular weight is less than the lower limit, sufficient heat resistance tends to be difficult to achieve, and when it exceeds the upper limit, processing tends to be difficult.
  • the weight average molecular weight (Mw) of such a polyimide is preferably 1000 to 5000000 in terms of polystyrene.
  • a weight average molecular weight (Mw) it is more preferable that it is 1000, It is still more preferable that it is 5000, It is especially preferable that it is 10,000.
  • an upper limit of the numerical range of a weight average molecular weight (Mw) it is more preferable that it is 5000000, It is further more preferable that it is 500000, It is especially preferable that it is 50000. If the weight average molecular weight is less than the lower limit, sufficient heat resistance tends to be difficult to achieve, and if it exceeds the upper limit, processing tends to be difficult.
  • the molecular weight distribution (Mw / Mn) of such a polyimide is preferably 1.1 to 5.0, and more preferably 1.5 to 3.0. If the molecular weight distribution is less than the lower limit, it tends to be difficult to produce, while if it exceeds the upper limit, it tends to be difficult to obtain a uniform film.
  • the molecular weight (Mw or Mn) and molecular weight distribution (Mw / Mn) of such polyimide are measured by gel permeation chromatography (GPC, manufactured by Tosoh Corporation, trade name: HLC-8020 / four columns).
  • TSK gel GMH HR Tosoh Co., Ltd., trade name: TSK gel GMH HR, etc.), and measured using polystyrene (THF), chloroform, N, N-dimethylformamide (DMF), etc. as a solvent, and converted to polystyrene. be able to.
  • such a polyimide preferably has a linear expansion coefficient of ⁇ 10 to 100 ppm / ° C. (more preferably 0 to 80 ppm / ° C.). If the linear expansion coefficient is less than the lower limit, distortion tends to occur when compounding with other materials such as metals, metal oxides, and glass or other inorganic substances, and on the other hand, exceeding the upper limit is less than the lower limit. In the same manner as above, distortion tends to occur when compounding with other materials such as metals, metal oxides and inorganic substances such as glass.
  • the linear expansion coefficient of such a polyimide is 20 mm in length, 5 mm in width, and 0.02 mm (20 ⁇ m) in thickness.
  • a thermomechanical analyzer (trade name “TMA8310” manufactured by Rigaku) is used as a measuring device. Utilizing a tensile mode (49 mN) under a nitrogen atmosphere and a temperature rising rate of 5 ° C./min, the change in the length of the sample in the vertical direction at 50 ° C. to 200 ° C. is measured. A value obtained by obtaining an average value of changes in length per 1 ° C. in a temperature range of from 0 ° C. to 200 ° C. can be adopted.
  • the glass transition temperature and the linear expansion coefficient of the polyimide may be appropriately changed from one of R 1 to R 2 in the general formula (2) or a plurality of repeating units represented by the general formula (2). By containing seeds (two or more), it can be within the above numerical range.
  • Such polyimide is preferably highly transparent, and has an average transmittance of light in the wavelength region of 400 to 800 nm of 80% or more (more preferably 85% or more, particularly preferably 87% or more). Is more preferable.
  • Such average transmittance can be sufficiently achieved by lowering the heating temperature during production.
  • a value measured using a trade name “UV-visible near-infrared spectrophotometer V-570” manufactured by JASCO Corporation can be adopted as a measuring apparatus.
  • Such a polyimide preferably has a thermal decomposition temperature (Td) of 450 ° C. or higher, more preferably 480 to 600 ° C. If such a thermal decomposition temperature (Td) is less than the lower limit, sufficient heat resistance tends to be difficult to achieve, and if it exceeds the upper limit, it is difficult to produce a polyimide having such characteristics. There is a tendency.
  • Td thermal decomposition temperature
  • Td uses a TG / DTA220 thermogravimetric analyzer (manufactured by SII Nano Technology Co., Ltd.), in a nitrogen stream (200 mL / min), and a temperature rising rate of 10 ° C. / min. It can be determined by measuring the temperature at the intersection of the tangent lines drawn on the decomposition curve before and after thermal decomposition under the conditions of
  • Such a polyimide preferably has a 5% weight loss temperature of 400 ° C. or higher, more preferably 450 to 550 ° C. If such a 5% weight loss temperature is less than the lower limit, sufficient heat resistance tends to be difficult to achieve, and if it exceeds the upper limit, it tends to be difficult to produce a polyimide having such characteristics. It is in.
  • 5% weight reduction temperature is obtained by gradually heating from room temperature (25 ° C.) while flowing nitrogen gas in a nitrogen gas atmosphere and measuring the temperature at which the weight of the used sample is reduced by 5%. Can be sought. In addition, as such a sample, it is preferable to prepare and use five films of 2 mm in length, 2 mm in width, and 20 micrometers in thickness.
  • the polyimide of the present invention is obtained by adopting the above-described method for producing the polyimide of the present invention, coloring is sufficiently prevented, sufficiently high level of light transmission and sufficiently high level of transparency. It has heat resistance. Moreover, since the polyimide of this invention is obtained by employ
  • the glass transition temperature (Tg) is obtained after forming films each having a length of 20 mm, a width of 5 mm, and a thickness of 0.02 mm (20 ⁇ m) from the polyimide (film-shaped polyimide) obtained in each of Examples and Comparative Examples.
  • the sample was dried in a vacuum (120 ° C., 1 hour (Hr)) and heat-treated at 200 ° C. for 1 hour (Hr) in a nitrogen atmosphere. Change of the sample between 30 ° C. and 400 ° C. by using a chemical analyzer (trade name “TMA8310” manufactured by Rigaku), employing a penetration mode and a heating rate of 10 ° C./min in a nitrogen atmosphere. It was measured.
  • the 5% weight loss temperatures of the polyimides obtained in the examples and comparative examples were respectively set to 5 TG / DTA7200 as a measuring device by placing 5 film-shaped samples having a length of 2 mm, a width of 2 mm, and a thickness of 20 ⁇ m in an aluminum sample pan. Using a thermogravimetric analyzer (manufactured by SII Nano Technology Co., Ltd.), the sample was heated under conditions of 10 ° C / min in the range of room temperature (25 ° C) to 600 ° C while flowing nitrogen gas. was determined by measuring the temperature at which the weight of the product decreased by 5%.
  • the intrinsic viscosity [ ⁇ ] of the polyamic acid obtained as an intermediate in the production of films and the like in the examples and comparative examples was determined by using an automatic viscosity measuring device (trade name “VMC-252”) manufactured by Koiso Co., Ltd. Using N, dimethylacetamide as a solvent, a polyamic acid measurement sample having a concentration of 0.5 g / dL was prepared and measured under a temperature condition of 30 ° C.
  • the linear expansion coefficient was determined by forming a film having a length of 20 mm, a width of 5 mm, and a thickness of 0.02 mm (20 ⁇ m) from the polyimide (film-shaped polyimide) obtained in each example and each comparative example, and then the film.
  • TMA8310 manufactured by Rigaku
  • a tension mode 49 mN
  • a temperature rising rate 5 ° C./min
  • the length of the sample at 50 ° C. to 200 ° C. was measured, and the average value of the change in length per 1 ° C. in the temperature range of 100 ° C. to 200 ° C. was measured.
  • the average transmittance of light in the wavelength region of 400 to 800 nm of the polyimide (film-shaped polyimide) obtained in each example and each comparative example is a product name “UV-visible near-infrared spectrophotometer manufactured by JASCO Corporation as a measuring device.
  • the transmittance was measured using a “total V-570”, and then the average value of the transmittance of light in the wavelength region of 400 to 800 nm was obtained.
  • Example 1 Preparation of polyamic acid> In a three-necked flask, 3,4′-diaminodiphenyl ether (0.40052 g, 2.000 mmol, hereinafter referred to as “3,4” -DDE ”) and N, N-dimethylacetamide (2.00 g, hereinafter, In some cases, it is referred to as “DMAc”), and the mixture was stirred with a mechanical stirrer for 10 minutes under a nitrogen stream under a temperature of 20 ° C. and a pressure of 0.1 MPa to obtain a solution.
  • DMAc N, N-dimethylacetamide
  • 0.76879 g (2.00 mmol, hereinafter referred to as “acid dianhydride (A)” in some cases) represented by the following formula was introduced using a funnel.
  • the tetracarboxylic dianhydride adhering to the funnel was poured in with DMAc (2.00 g), and the whole amount (0.76879 g) was introduced into the solution.
  • the solution into which the tetracarboxylic dianhydride has been introduced is continuously stirred for 17 hours at a stirring speed of 30 rpm with a mechanical stirrer under a nitrogen atmosphere, a temperature of 20 ° C., and a pressure of 0.1 MPa.
  • the tetracarboxylic dianhydride and 3,4'-DDE were reacted to produce a polyamic acid to obtain a reaction solution containing the polyamic acid.
  • the obtained polyamic acid is a polyamic acid having a repeating unit represented by the general formula (1).
  • R 1 in the formula (1) is represented by the above general formula (I-9).
  • R 2 is represented by the following general formula (II-4-1) or (II-4-2):
  • the viscosity of the polyamic acid thus obtained, a part of the liquid was sampled from the reaction liquid (a liquid containing 0.25 g of polyamic acid was sampled) and diluted with DMAc. A polyamic acid solution of 0.5 g / dL was prepared. Then, the intrinsic viscosity [ ⁇ ] was determined by employing the above-described method for measuring the intrinsic viscosity [ ⁇ ].
  • FIG. 3 shows an enlarged view of the vicinity of 6 ppm to 13 ppm of the 1 H-NMR spectrum shown in FIG. From the results of such measurements (results shown in FIGS. 1 to 3), the protons (around 12 ppm) of carboxylic acid (—COOH) derived from polyamic acid and the protons (around 10 ppm) derived from amide (NHCO) are found. It was observed that the ring closure rate was 32% from the integrated intensity of the polyamic acid. From these results, it was found that the polyamic acid in the mixture was partially imidized. In the above mixture, polyimide did not precipitate and was a sufficiently uniform solution.
  • —COOH carboxylic acid
  • NHCO amide
  • the Tg of the obtained polyimide (film) is 333 ° C. Met.
  • the CTE of the obtained polyimide (film) was 56 ppm / K. .
  • the average transmittance and the 5% weight reduction temperature were determined by the measurement method described above, the average transmittance of light in the wavelength region of 400 to 800 nm of the obtained polyimide (film) was 88%, which was 5% weight.
  • the decrease temperature was 488 ° C.
  • Example 2 ⁇ Preparation of polyamic acid> A method similar to the method of “Preparation of polyamic acid” employed in Example 1 was employed to obtain a reaction solution containing polyamic acid.
  • the mixture was stirred at a speed to obtain a mixture containing the polyamic acid, triethylamine, and trifluoroacetic anhydride.
  • the obtained mixture became a uniform and transparent light yellow solution.
  • Example 2 In order to confirm the structure of the components in the mixture after stirring, IR and 1 H-NMR spectra were measured in the same manner as in Example 1. Among the obtained results, the IR spectrum of the component (the reprecipitate) in the mixture is shown in FIG. 7, the 1 H-NMR spectrum of the component (the reprecipitate) in the mixture is shown in FIG. FIG. 9 shows an enlarged view of the vicinity of 6 ppm to 13 ppm of the 1 H-NMR spectrum shown in FIG. From the results of such measurements (results shown in FIGS. 8 to 9), in the re-precipitate, the carboxylic acid (—COOH) protons (around 12 ppm) derived from polyamic acid and the amide (NHCO) are derived.
  • —COOH carboxylic acid
  • NHCO amide
  • a polyimide (film) is employed by adopting the same method as the “preparation of polyimide” employed in Example 1, except that the mixture obtained by the above-described mixture preparation step is used as the mixture.
  • the obtained film was a flexible transparent film having sufficient strength (mechanical strength).
  • Example 2 To identify the structure of the components forming such a film, and IR and 1 H-NMR spectrum in the same manner as in Example 1. Of the obtained results, the IR spectrum of the constituent components of the film is shown in FIG. 10, the 1 H-NMR spectrum of the constituent components of the film is shown in FIG. 11, and around 6 ppm of the 1 H-NMR spectrum shown in FIG. An enlarged view of around 13 ppm is shown in FIG. From the results of such measurements (results shown in FIGS.
  • the obtained film is a repeating unit represented by the general formula (2) (in the formula (2), R 1 is a group represented by the general formula (I-9), and R 2 is a group having a general formula (II-4-1) or (II-4-2) below).
  • the obtained polyimide (film) had a glass transition temperature (Tg), a coefficient of linear expansion (CTE), an average transmittance of light in the wavelength region of 400 to 800 nm, and a 5% weight reduction temperature.
  • Tg glass transition temperature
  • CTE coefficient of linear expansion
  • the average transmittance was 88%
  • the 5% weight loss temperature was 484 ° C.
  • Example 3 Preparation of polyamic acid> Instead of using 3,4′-diaminodiphenyl ether (0.40052 g, 2.000 mmol), 4,4′-diaminodiphenyl ether (4,4′-DDE, 0.40053 g, 2.000 mmol) was used, and acid dianhydride A method similar to the method of “Preparation of polyamic acid” employed in Example 1, except that the amount of (A) used was changed from 0.76879 g (2.00 mmol) to 0.75878 g (2.00 mmol). Was used to obtain a reaction solution containing polyamic acid.
  • the obtained polyamic acid is a polyamic acid having a repeating unit represented by the general formula (1), and in the repeating unit, R 1 in the formula (1) is represented by the above general formula (I-9). And R 2 is represented by the following general formula (II-4-3):
  • the intrinsic viscosity [ ⁇ ] of the polyamic acid obtained in the same manner as in Example 1 was determined using the above-described method for measuring the intrinsic viscosity [ ⁇ ]
  • the intrinsic viscosity [ ⁇ ] was 0.87 dL / g. Met.
  • a polyimide (film) is employed by adopting the same method as the “preparation of polyimide” employed in Example 1, except that the mixture obtained by the above-described mixture preparation step is used as the mixture.
  • the obtained film was a flexible transparent film having sufficient strength (mechanical strength).
  • IR and 1 H-NMR spectra were measured in the same manner as in Example 1. Based on the measurement results of the IR and 1 H-NMR spectra, when the ring closure rate of the polyamic acid in the obtained film was measured, protons of carboxylic acid (—COOH) derived from amic acid and amide (NHCO) From the fact that no proton derived from was observed, it was clarified that it was completely imidized. From these results, the obtained film is a repeating unit represented by the general formula (2) (in the formula (2), R 1 is a group represented by the general formula (I-9), and And R 2 is a group represented by the general formula (II-4-3)).
  • the obtained polyimide (film) had a glass transition temperature (Tg), a coefficient of linear expansion (CTE), an average transmittance of light in the wavelength region of 400 to 800 nm, and a 5% weight reduction temperature.
  • Tg glass transition temperature
  • CTE coefficient of linear expansion
  • the average transmittance was 87%
  • the 5% weight loss temperature was 468 ° C.
  • Example 4 Preparation of polyamic acid> 4,4′-Diaminobenzanilide (0.45452 g, 2.000 mmol, hereinafter referred to as “4,4′-DABA”) and DMAc (2.00 g) were added to a three-necked flask under a nitrogen stream. The solution was stirred for about 10 minutes with a mechanical stirrer under the conditions of temperature: 20 ° C. and pressure of 0.1 MPa. Next, 0.76878 g (2.00 mmol: acid dianhydride (A)) of the tetracarboxylic dianhydride represented by the above general formula (6) is added to the three-necked flask into which the solution is introduced. It was introduced using a funnel. The tetracarboxylic dianhydride adhering to the funnel was poured in with DMAc (2.90 g), and the entire amount (0.76878 g) was introduced into the solution.
  • 4,4′-Diaminobenzanilide 0.45452 g
  • the solution into which the tetracarboxylic dianhydride has been introduced is continuously stirred for 18 hours at a stirring speed of 30 rpm with a mechanical stirrer under a nitrogen atmosphere, a temperature of 20 ° C., and a pressure of 0.1 MPa.
  • the tetracarboxylic dianhydride and 4,4′-DABA were reacted to produce a polyamic acid to obtain a reaction liquid containing the polyamic acid.
  • the obtained polyamic acid is a polyamic acid having a repeating unit represented by the general formula (1).
  • R 1 in the formula (1) is represented by the above general formula (I-9).
  • R 2 is represented by the following general formula (II-4-4):
  • the intrinsic viscosity [ ⁇ ] of the polyamic acid obtained in the same manner as in Example 1 was determined by employing the above-described method for measuring the intrinsic viscosity [ ⁇ ]
  • the intrinsic viscosity [ ⁇ ] was 0.77 dL / g. Met.
  • a polyimide (film) is employed by adopting the same method as the “preparation of polyimide” employed in Example 1, except that the mixture obtained by the above-described mixture preparation step is used as the mixture.
  • the obtained film was a flexible transparent film having sufficient strength (mechanical strength).
  • IR and 1 H-NMR spectra were measured in the same manner as in Example 1. Based on the measurement results of the IR and 1 H-NMR spectra, when the ring closure rate of the polyamic acid in the obtained film was measured, protons of carboxylic acid (—COOH) derived from amic acid and amide (NHCO) From the fact that no proton derived from was observed, it was clarified that it was completely imidized. From these results, the obtained film is a repeating unit represented by the general formula (2) (in the formula (2), R 1 is a group represented by the general formula (I-9), and And R 2 is a group represented by the above general formula (II-4-4)).
  • the obtained polyimide (film) had a glass transition temperature (Tg), a coefficient of linear expansion (CTE), an average transmittance of light in the wavelength region of 400 to 800 nm, and a 5% weight reduction temperature.
  • Tg glass transition temperature
  • CTE coefficient of linear expansion
  • the average transmittance was 87%
  • the 5% weight loss temperature was 481 ° C.
  • the reaction solution containing the polyamic acid obtained in the polyamic acid preparation step was used (with triethylamine and trifluoroacetic anhydride.
  • the polyimide preparation step the polyimide was prepared in the same manner as in Example 1 except that the temperature condition during the heat treatment of the dried coating film was changed from 200 ° C. to 300 ° C. Film) was prepared. However, a flexible film was not obtained, and the obtained film was brittle.
  • Example 2 A polyimide (film) was obtained in the same manner as in Comparative Example 1 except that the temperature condition during the heat treatment of the dried coating film was changed from 300 ° C to 350 ° C.
  • the obtained film was a flexible transparent film.
  • the obtained polyimide (film) had a glass transition temperature (Tg), a linear expansion coefficient (CTE), an average transmittance of light in the wavelength range of 400 to 800 nm, and a 5% weight loss temperature.
  • Tg glass transition temperature
  • CTE linear expansion coefficient
  • the average transmittance was 84%
  • the 5% weight loss temperature was 484 ° C.
  • Comparative Example 4 A polyimide (film) was prepared in the same manner as in Comparative Example 3 except that the temperature condition during the heat treatment of the dried coating film was changed from 200 ° C. to 350 ° C. in the polyimide preparation step. However, a flexible film was not obtained, and the obtained film was brittle.
  • Comparative Example 6 In the polyimide preparation step, a polyimide (film) was prepared in the same manner as in Comparative Example 5 except that the temperature condition during the heat treatment of the dried coating film was changed from 200 ° C to 300 ° C. However, a flexible film was not obtained, and the obtained film was brittle.
  • Example 7 A polyimide (film) was prepared in the same manner as in Comparative Example 5 except that the temperature condition during the heat treatment of the dried coating film was changed from 200 ° C. to 350 ° C. in the polyimide preparation step.
  • the obtained film was a flexible transparent film.
  • the obtained polyimide (film) had a glass transition temperature (Tg), a linear expansion coefficient (CTE), an average transmittance of light in the wavelength range of 400 to 800 nm, and a 5% weight loss temperature.
  • Tg glass transition temperature
  • CTE linear expansion coefficient
  • the average transmittance was 85%
  • the 5% weight loss temperature was 484 ° C.
  • the average transmittance of the obtained polyimide (film) was Both were 87% or more, and it was confirmed that coloring during production was sufficiently suppressed, and Tg of the obtained polyimide (film) was 330 ° C. or more, and The 5% weight loss temperature was 460 ° C. or higher, and it was confirmed that the product had sufficiently high heat resistance.
  • an alicyclic polyimide having a sufficiently high heat resistance while utilizing a chemical imidization method, and is sufficiently flexible by heating at a relatively low temperature. It is possible to manufacture a polyimide having the property, and it is possible to more reliably prevent the polyimide from being colored at the time of manufacture. Adopting a lower heating temperature, sufficiently high light transmittance and sufficiently high heat resistance and sufficient It is possible to provide a polyimide production method that makes it possible to more efficiently and reliably produce a polyimide having such flexibility, and a polyimide obtained by the production method.
  • the polyimide production method of the present invention enables thermal imidization at a low temperature, which has been difficult in the past, and can suppress coloring to a minimum, so that a polyimide having extremely excellent transparency can be imparted. It becomes possible.
  • the polyimide production method of the present invention is, for example, a polyimide for a liquid crystal alignment film that requires a very high degree of transparency; for a transparent electrode substrate of organic EL (bottom emission type, top emission type, see-through type, etc.) Polyimide for organic EL lighting; polyimide for transparent electrode substrate of touch panel; polyimide for transparent electrode substrate of solar cell; polyimide for transparent electrode substrate of electronic paper; polyimide for transparent polyimide belt for copying machine; Various gas barrier film substrate materials; polyimide for flexible wiring substrates; polyimide for heat-resistant insulating tape; polyimide for wire enamel; polyimide for semiconductor protective coating; FPC, optical waveguide, image sensor, LED reflector, LED lighting Cover, skeleton type FPC, cover Ray film, chip-on film, high ductility composite substrate, liquid crystal alignment film, polyimide coating material (DRAM, flash memory, buffer coating material for next generation LSI, etc.), resist for semiconductor, various electrical materials, etc.

Abstract

Provided is a method for producing a polyimide, which obtains a polyimide having a repeating unit represented by general formula (2) [in the formula, R1 and R2 are synonymous with R1 and R2 in general formula (1)] by imidizing a poly(amic acid) having a repeating unit represented by general formula (1) [in the formula, R1 denotes a specific group, and R2 denotes a specific group] by using a mixture that contains this poly(amic acid), a halogen-based carboxylic acid anhydride and an aliphatic tertiary amine.

Description

ポリイミドの製造方法及びその製造方法により得られるポリイミドPolyimide manufacturing method and polyimide obtained by the manufacturing method
 本発明は、ポリイミドの製造方法、並びに、その製造方法により得られるポリイミドに関する。 The present invention relates to a polyimide production method and a polyimide obtained by the production method.
 近年、スマートフォンやタブレット端末等のモバイル機器の開発が活発に行なわれており、市場成長が期待されている。このようなスマートフォンやタブレット端末等のモバイル機器の分野においては、衝撃や落下によってディスプレイ等に利用したガラス基板が割れるといった問題があり、かかる問題はモバイル機器の普及とともに見過ごせないものとなってきている。そして、このような問題の解決のために、モバイル機器のガラス基板をより割れ難いガラスにより製造して利用することや、ガラス基板自体をより厚くして強度を上げること等といった対応が検討されている。しかしながら、これらの対応では、ガラスの加工時の歩留まりの低下や、厚み増大によるモバイル機器の重量の増加(携帯性の低下)、更には、バッテリー占有体積の狭小化による連続稼働時間(駆動時間)の短縮化、等といった問題が生じてしまう。このような状況の下、モバイル機器等のガラス基板を利用する分野においては、ガラスのように光透過性が高くかつ十分に高度な耐熱性を有し、しかも樹脂フィルムの様に軽くて柔軟な素材の出現が求められてきた。 In recent years, mobile devices such as smartphones and tablet terminals have been actively developed, and market growth is expected. In the field of mobile devices such as smartphones and tablet terminals, there is a problem that a glass substrate used for a display or the like breaks due to an impact or a drop, and such a problem cannot be overlooked with the spread of mobile devices. . And in order to solve such a problem, measures such as manufacturing and using a glass substrate of a mobile device with glass that is harder to break, increasing the strength by making the glass substrate itself thicker, etc. have been studied. Yes. However, with these measures, the yield during processing of glass decreases, the weight of mobile devices increases due to the increase in thickness (decrease in portability), and the continuous operating time (driving time) due to the reduction in the battery occupied volume. Problems, such as shortening of the system, will occur. Under these circumstances, in the field of using glass substrates for mobile devices, etc., it has a high light transmission like glass and a sufficiently high heat resistance, and it is light and flexible like a resin film. The emergence of materials has been demanded.
 ここで、高度な耐熱性を有し、かつ、軽くて柔軟な素材としては、ポリイミドが知られている。そして、このようなポリイミドの中でも、例えば、芳香族ポリイミド(DuPont社製の商品名「カプトン」)は、高分子材料として十分な柔軟性を有しつつ高度な耐熱性を有しており、宇宙、航空用途などの先端産業に欠かせない素材としても知られている。このような芳香族ポリイミドは、剛直で、かつ、対称性のよい芳香族テトラカルボン酸二無水物と、芳香族ジアミンとを組み合わせて合成され、高分子材料の中でも最高クラスの耐熱性(ガラス転移温度(Tg):410℃)を示すものである(エンジニアリングプラスチック、共立出版、1987年、p88(非特許文献1)参照)。しかしながら、このような芳香族ポリイミドは、芳香環系のテトラカルボン酸二無水物ユニットと、芳香環系のジアミンユニットとの間で電荷移動(CT)が起きるため、褐色を呈し、光透過性が必要とされるガラス代替用途や光学用途等に使用できるものではなかった。そのため、十分に高度な耐熱性とともに、ガラス代替用途等に使用可能な十分な光透過性を有するポリイミドの出現が求められており、分子内CTが生じることがない脂環式ポリイミドの開発が着目されている。 Here, polyimide is known as a light and flexible material having high heat resistance. Among such polyimides, for example, aromatic polyimide (trade name “Kapton” manufactured by DuPont) has a high degree of heat resistance while having sufficient flexibility as a polymer material. It is also known as an indispensable material for advanced industries such as aviation. Such aromatic polyimide is synthesized by combining rigid and highly symmetric aromatic tetracarboxylic dianhydride and aromatic diamine, and is one of the highest class of heat resistance (glass transition) among polymer materials. Temperature (Tg): 410 ° C.) (see Engineering Plastics, Kyoritsu Shuppan, 1987, p88 (Non-patent Document 1)). However, such an aromatic polyimide has a brown color due to the occurrence of charge transfer (CT) between the aromatic ring-based tetracarboxylic dianhydride unit and the aromatic ring-based diamine unit. It could not be used for required glass replacement or optical applications. Therefore, the emergence of polyimide with sufficiently high heat resistance and sufficient light transmission that can be used for glass replacement applications, etc., is focused on the development of alicyclic polyimide that does not cause intramolecular CT. Has been.
 このような脂環式ポリイミドを製造するための方法としては、一般的には、脂環式テトラカルボン酸二無水物と芳香族ジアミンとを組み合わせて溶媒中でポリアミド酸を生成し、ポリアミド酸(ポリアミック酸)の含有液(ポリアミド酸ワニス)を得た後、その含有液をそのまま基板等に製膜し、乾燥した後、比較的高温{例えば、イミド化の際の加熱温度としてはガラス転移温度以上の高温(400℃前後)を採用することが一般的である。}で加熱してイミド化してポリイミドを製造する方法(いわゆる熱イミド化法)が採用されている。しかしながら、脂環式ポリイミドは、構造的に芳香族ポリイミドよりも分解温度が低く、酸素耐性に劣るため、高温の加熱温度が着色の原因になり、一般的な脂環式ポリイミドの製造方法では着色を十分に抑制したポリイミドを必ずしも製造することができなかった。 As a method for producing such an alicyclic polyimide, generally, a polyamic acid is produced in a solvent by combining an alicyclic tetracarboxylic dianhydride and an aromatic diamine, and a polyamic acid ( After the polyamic acid) containing liquid (polyamic acid varnish) is obtained, the containing liquid is directly formed on a substrate or the like, dried, and then heated to a relatively high temperature {for example, the glass transition temperature as the heating temperature during imidization. It is common to employ the above high temperature (around 400 ° C.). } Is used to produce polyimide by heating and imidization (so-called thermal imidization method). However, alicyclic polyimides are structurally lower in decomposition temperature than aromatic polyimides and inferior in oxygen resistance, so high heating temperature causes coloring, and coloring is not possible in general alicyclic polyimide manufacturing methods. It was not always possible to produce a polyimide with sufficiently suppressed.
 また、脂環式ポリイミドの製造方法としては、いわゆるイミド化剤を利用する化学イミド化法も採用し得る。しかしながら、このような化学イミド化法に、耐熱性の観点から、剛直でかつ対称性のよい脂環式テトラカルボン酸二無水物をモノマーとして用いた場合においては、そのような脂環式テトラカルボン酸二無水物が分子構造に起因して溶解性が低いものであることから、通常、ポリアミド酸(ポリアミック酸)の含有液を得て、イミド化剤を添加した場合に、ポリイミドが不均一に析出してイミド化が進行し、不均一なポリイミドの含有液(ポリイミドワニス)が形成されてしまうという問題があった。そのため、脂環式ポリイミドの製造方法に、いわゆるイミド化剤を利用する化学イミド化法を採用し得る系は、脂環式テトラカルボン酸二無水物として柔軟かつ対称性が崩れた酸二無水物を用い、該酸二無水物と芳香族ジアミンとを組み合わせて用いる溶解性に優れた系に限られていた(例えば、新訂最新ポリイミド~基礎と応用~、NTS出版、2010年、第4章、ポリイミドのフィルム化条件と膜物性、p76(非特許文献2)参照)。このように、一般的な化学イミド化法を採用して得られる従来の脂環式ポリイミドは、利用できるモノマーが柔軟なものに限られ、耐熱性の点で必ずしも十分なものとはならなかった。 Also, as a method for producing an alicyclic polyimide, a chemical imidation method using a so-called imidizing agent can be employed. However, in such a chemical imidization method, from the viewpoint of heat resistance, when an alicyclic tetracarboxylic dianhydride having rigidity and good symmetry is used as a monomer, such alicyclic tetracarboxylic acid is used. Since acid dianhydride is low in solubility due to the molecular structure, usually, when a polyamic acid (polyamic acid) -containing liquid is obtained and an imidizing agent is added, the polyimide becomes uneven. There is a problem in that imidization proceeds due to precipitation and a non-uniform polyimide-containing liquid (polyimide varnish) is formed. Therefore, a system that can employ a chemical imidization method using a so-called imidizing agent in the production method of alicyclic polyimide is an acid dianhydride that is flexible and has lost symmetry as an alicyclic tetracarboxylic dianhydride. And the acid dianhydride and aromatic diamine are used in combination with a system having excellent solubility (for example, the latest revised polyimide: basics and applications, NTS Publishing, 2010, Chapter 4) , Polyimide film formation conditions and film properties, see p76 (Non-patent Document 2)). As described above, the conventional alicyclic polyimide obtained by adopting a general chemical imidation method is limited to a usable monomer and is not necessarily sufficient in terms of heat resistance. .
 一方、高度な光透過性と耐熱性とを有する脂環式のポリイミド及びその製造方法としては、国際公開2011/099518号パンフレット(特許文献1)において、特定の一般式で記載される繰り返し単位を有するポリイミド及びその製造方法が開示されている。なお、このような特許文献1に記載の実施例の欄においては250℃程度の加熱温度でイミド化する熱イミド化の方法が採用されている。しかしながら、このような特許文献1に記載の製造方法においても、十分に高度な光透過性と十分に高度な耐熱性とを有するポリイミドを、より低温での加熱で効率よくかつ確実に製造するといった点では必ずしも十分なものではなかった。 On the other hand, as an alicyclic polyimide having high light transmittance and heat resistance and a method for producing the same, in International Publication 2011/099518 (Patent Document 1), a repeating unit described by a specific general formula is used. The polyimide which has and its manufacturing method are disclosed. In the column of Examples described in Patent Document 1, a method of thermal imidization in which imidization is performed at a heating temperature of about 250 ° C. is employed. However, even in the manufacturing method described in Patent Document 1, a polyimide having sufficiently high light transmittance and sufficiently high heat resistance is efficiently and reliably manufactured by heating at a lower temperature. It was not always enough in terms.
国際公開2011/099518号パンフレットInternational Publication 2011/099518 Pamphlet
 本発明は、前記従来技術の有する課題に鑑みてなされたものであり、化学イミド化法を利用しながら十分に高度な耐熱性を有する脂環式のポリイミドを製造することが可能となり、比較的低温の加熱で十分な柔軟性を有するポリイミドを製造でき、製造時のポリイミドの着色をより確実に防止することが可能であり、より低温の加熱温度を採用して十分に高度な光透過性と十分に高い耐熱性と十分な柔軟性とを有するポリイミドをより効率よくかつ確実に製造することを可能とするポリイミドの製造方法、及び、その製造方法により得られるポリイミドを提供することを目的とする。 The present invention has been made in view of the above-mentioned problems of the prior art, and it becomes possible to produce an alicyclic polyimide having sufficiently high heat resistance while utilizing a chemical imidization method, Polyimide with sufficient flexibility can be produced by low-temperature heating, and it is possible to more reliably prevent polyimide coloring during production. Adopting a low-temperature heating temperature and sufficiently high light transmittance It is an object of the present invention to provide a polyimide production method capable of producing a polyimide having sufficiently high heat resistance and sufficient flexibility more efficiently and reliably, and a polyimide obtained by the production method. .
 本発明者らは、前記目的を達成すべく鋭意研究を重ねた結果、先ず、以下のような知見を得た。すなわち、一般的なポリイミドの製造方法には、上述のように、ポリアミド酸(ポリアミック酸)を熱で脱水閉環しポリイミドを得る熱イミド化法と、ポリアミド酸(ポリアミック酸)にイミド化剤を添加し、化学的に脱水閉環する化学イミド化法がある。本発明者らは、先ず、より低温域の加熱でポリイミドを製造するといった観点から、いわゆるイミド化剤を利用する化学イミド化法を利用することを検討した。しかしながら、耐熱性を得るために、剛直でかつ対称性のよい脂環式テトラカルボン酸二無水物をモノマーとして用いた場合、従来のイミド化剤(例えば、無水酢酸やピリジンなど)をそのまま利用してポリイミドの形成を試みても、基本的には、溶液中でポリイミドの析出が生じ、イミド化が進行して、不均一なポリイミドの含有液(不均一なポリイミドワニス)となってしまう。そのため、剛直でかつ対称性のよい脂環式テトラカルボン酸二無水物をモノマーとして用いる場合に用いるイミド化剤の種類等を更に検討したところ、例えば、イミド化剤として一般的に用いられる無水酢酸及び/又はピリジンを用いる系では、ポリアミド酸を含有する溶液(ポリアミド酸含有液)にイミド化剤を添加すると、場合によりポリイミドの析出が生じて不均一な溶液となったり、あるいは、均一な溶液(この場合、かかる溶液にはポリアミド酸とポリイミドが共存する場合がある。)が得られる場合においても、十分なイミド化を図るためには、比較的高温での加熱が必要となり、比較的低温の加熱条件では十分な柔軟性を有するポリイミドが得られず、得られるポリイミドは非常に脆いものとなってしまうということを本発明者らは見出した。なお、ポリアミド酸含有液が不均一な溶液である場合には、それを塗布して均一な無色透明フィルムを得ることは困難であり、他方、イミド化剤添加後のポリアミド酸含有液(ポリイミドを一部含有するもの)が均一な溶液となった場合であっても、低温の加熱ではキャスト法などにより十分な柔軟性を有するフィルムを得ることは困難であり、得られるポリイミドの工業的な利用の観点でも必ずしも十分なものとはいえない。このように、ポリイミドの耐熱性の観点から、剛直でかつ対称性のよい脂環式テトラカルボン酸二無水物をモノマーとして用いる場合において、いわゆるイミド化剤を単純に利用しても、ポリイミドの析出により均一な無色透明フィルムを得ることは基本的に困難であり、また、イミド化剤添加後のポリアミド酸含有液(ポリイミドを一部含有)が均一な溶液となる場合であっても、加熱工程によりイミド化させて十分な柔軟性を有するポリイミドを製造するためには、その加熱工程において比較的高温(例えば、300℃超程度)での加熱が必要となってしまうことが分かった。そして、そのような高温の加熱を施した場合には、その加熱温度に起因してポリイミドの着色を必ずしも十分に防止できない。このように、剛直でかつ対称性のよい脂環式テトラカルボン酸二無水物をモノマーとして用いる場合において、従来のイミド化剤を単純に利用した場合、例えイミド化剤添加後のポリアミド酸含有液(ポリイミドを一部含有)が均一な溶液となっても、比較的低温の加熱条件(モノマーによっても異なるものではあるが、例えば、300℃以下程度(より好ましくは250℃以下程度、更に好ましくは200℃以下程度)の加熱条件)では、イミド化が必ずしも十分に進行せず、得られるポリイミドが脆く、柔軟性のないものとなってしまう傾向にあり、所望の特性(十分な柔軟性、十分に高い光透過性及び十分に高い耐熱性)を有するポリイミドを必ずしも製造することはできないことが分かった。 As a result of intensive studies to achieve the above object, the present inventors first obtained the following knowledge. That is, in general polyimide production methods, as described above, polyamic acid (polyamic acid) is thermally dehydrated and cyclized to obtain polyimide, and an imidizing agent is added to polyamic acid (polyamic acid). However, there is a chemical imidation method in which dehydration and ring closure is chemically performed. The present inventors first studied using a chemical imidization method using a so-called imidizing agent from the viewpoint of producing polyimide by heating in a lower temperature range. However, when rigid and symmetric alicyclic tetracarboxylic dianhydrides are used as monomers in order to obtain heat resistance, conventional imidizing agents (for example, acetic anhydride, pyridine, etc.) can be used as they are. Even if an attempt is made to form polyimide, basically, precipitation of polyimide occurs in the solution, and imidization proceeds, resulting in a non-uniform polyimide-containing liquid (non-uniform polyimide varnish). For this reason, the types of imidizing agents used in the case of using rigid and symmetric alicyclic tetracarboxylic dianhydrides as monomers were further examined. For example, acetic anhydride generally used as an imidizing agent. In addition, in a system using pyridine, when an imidizing agent is added to a solution containing polyamic acid (polyamic acid-containing solution), polyimide may be precipitated in some cases, resulting in a non-uniform solution or a uniform solution. (In this case, polyamic acid and polyimide may coexist in such a solution.) In order to obtain sufficient imidization, heating at a relatively high temperature is required and a relatively low temperature is obtained. In the present invention, polyimide having sufficient flexibility cannot be obtained under the above heating conditions, and the resulting polyimide is very brittle. Luo was heading. When the polyamic acid-containing liquid is a non-uniform solution, it is difficult to apply it to obtain a uniform colorless transparent film. On the other hand, the polyamic acid-containing liquid (polyimide) after addition of the imidizing agent is difficult. Even when a partly contained solution becomes a uniform solution, it is difficult to obtain a film having sufficient flexibility by a casting method or the like by low-temperature heating, and industrial use of the resulting polyimide From the point of view, it is not always sufficient. Thus, from the viewpoint of the heat resistance of polyimide, when a rigid and symmetric alicyclic tetracarboxylic dianhydride is used as a monomer, even if a so-called imidizing agent is simply used, the polyimide is deposited. It is basically difficult to obtain a more uniform colorless and transparent film, and even if the polyamic acid-containing liquid (containing a part of the polyimide) after the addition of the imidizing agent becomes a uniform solution, the heating step In order to produce a polyimide having sufficient flexibility by imidizing by heating, it was found that heating at a relatively high temperature (for example, about 300 ° C. or more) is required in the heating step. And when such high temperature heating is performed, coloring of polyimide cannot necessarily be prevented sufficiently due to the heating temperature. Thus, in the case where a rigid and symmetric alicyclic tetracarboxylic dianhydride is used as a monomer, when a conventional imidizing agent is simply used, for example, a polyamic acid-containing liquid after addition of the imidizing agent Even if the solution (which contains a part of the polyimide) becomes a uniform solution, it is heated at a relatively low temperature (depending on the monomer, but for example, about 300 ° C. or less (more preferably about 250 ° C. or less, more preferably Under the heating conditions (about 200 ° C. or less), imidization does not always proceed sufficiently, and the resulting polyimide tends to be brittle and inflexible, and desired characteristics (sufficient flexibility, sufficient It has been found that it is not always possible to produce a polyimide having a high light transmittance and a sufficiently high heat resistance.
 なお、耐熱性の高い脂環式ポリイミドを得るために、イミド化剤を利用せず、熱イミド化法のみを利用した場合、加熱温度として、例えば、モノマーによっても異なるものではあるが200℃未満程度の低温を採用すると、ポリアミド酸(ポリアミック酸)が脱水閉環してポリイミドになる反応よりも、ポリアミド酸が酸二無水物とアミンに分解する平衡反応が有利になる傾向にある。そのため、熱イミド化法のみを利用した場合、透明性や耐熱性の高いポリイミドをより確実に製造するためには、従来法のように、比較的高温の加熱工程を施す必要がある。 In addition, in order to obtain an alicyclic polyimide having high heat resistance, when using only a thermal imidization method without using an imidizing agent, the heating temperature is, for example, less than 200 ° C. although it varies depending on the monomer. When a low temperature is used, an equilibrium reaction in which the polyamic acid is decomposed into an acid dianhydride and an amine tends to be more advantageous than a reaction in which the polyamic acid (polyamic acid) is dehydrated and cyclized into a polyimide. Therefore, when only the thermal imidization method is used, it is necessary to perform a relatively high-temperature heating step as in the conventional method in order to more reliably produce a highly transparent and heat-resistant polyimide.
 このような知見に基づいて、本発明者らが、更に、鋭意研究を重ねたところ、下記一般式(1)で表される繰り返し単位を有するポリアミド酸と、ハロゲン系カルボン酸無水物と、脂肪族系三級アミンとを含有する混合物を用いて、前記ポリアミド酸をイミド化することにより、驚くべきことに、化学イミド化法を利用しながら十分に高度な耐熱性を有する脂環式のポリイミドを製造することが可能となり、比較的低温の加熱で十分な柔軟性を有するポリイミドを製造でき、製造時のポリイミドの着色をより確実に防止することが可能となり、より低温の加熱温度を採用して十分に高度な光透過性と十分に高い耐熱性と十分な柔軟性とを有するポリイミドをより効率よくかつ確実に製造することが可能となることを見出し、本発明を完成するに至った。 Based on such knowledge, the present inventors have further conducted extensive research. As a result, polyamic acid having a repeating unit represented by the following general formula (1), halogenated carboxylic acid anhydride, fat Surprisingly, by imidizing the polyamic acid using a mixture containing an aliphatic tertiary amine, an alicyclic polyimide having a sufficiently high heat resistance while utilizing a chemical imidization method It is possible to manufacture polyimide with sufficient flexibility by heating at a relatively low temperature, and it is possible to more reliably prevent polyimide coloring during manufacturing, and a lower heating temperature is adopted. And found that a polyimide having sufficiently high light transmittance, sufficiently high heat resistance, and sufficient flexibility can be produced more efficiently and reliably, and the present invention is completed. It led to.
 すなわち、本発明のポリイミドの製造方法は、下記一般式(1): That is, the method for producing the polyimide of the present invention has the following general formula (1):
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
[式(1)中、Rは下記一般式(I-1)~(I-10): [In the formula (1), R 1 represents the following general formulas (I-1) to (I-10):
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
で表される4価の置換基群の中から選択される基を示し、Rは下記一般式(II-1)~(II-4): R 2 represents a group selected from the group of tetravalent substituents represented by the following general formulas (II-1) to (II-4):
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式中のRはそれぞれ独立に、水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、Qは、式:-O-、-S-、-CO-、-CONH-、-SO-、-C(CF-、-C(CH-、-CH-、-O-C-C(CH-C-O-、-O-C-SO-C-O-、-C(CH-C-C(CH-、-O-C-C-O-及び-O-C-O-で表される基よりなる群から選択される1種を示す。)
で表される2価の置換基群の中から選択される基を示す。]
で表される繰り返し単位を有するポリアミド酸と、ハロゲン系カルボン酸無水物と、脂肪族系三級アミンとを含有する混合物を用いて、前記ポリアミド酸をイミド化することにより、下記一般式(2):
(In the formula, each R 3 independently represents one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, and a fluorine atom, and Q represents the formula: —O—, —S—, —CO—, —CONH—, —SO 2 —, —C (CF 3 ) 2 —, —C (CH 3 ) 2 —, —CH 2 —, —O—C 6 H 4 —C (CH 3 ) 2 —C 6 H 4 —O—, —O—C 6 H 4 —SO 2 —C 6 H 4 —O—, —C (CH 3 ) 2 —C 6 H 4 —C (CH 3 ) 2 —, — This represents one selected from the group consisting of O—C 6 H 4 —C 6 H 4 —O— and —O—C 6 H 4 —O—.)
A group selected from the group of divalent substituents represented by the formula: ]
When the polyamic acid is imidized using a mixture containing a polyamic acid having a repeating unit represented by formula (II), a halogen-based carboxylic acid anhydride, and an aliphatic tertiary amine, the following general formula (2 ):
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
[式(2)中、R及びRはそれぞれ前記一般式(1)中のR及びRと同義である。]
で表される繰り返し単位を有するポリイミドを得る、方法である。
[In the formula (2), R 1 and R 2 are the same meanings as R 1 and R 2 in the general formula (1). ]
It is the method of obtaining the polyimide which has a repeating unit represented by these.
 上記本発明のポリイミドの製造方法においては、前記ポリアミド酸をイミド化する工程に、前記ポリイミドのガラス転移温度よりも80~300℃低い温度で前記混合物を加熱する工程を含むことが好ましい。 In the polyimide production method of the present invention, it is preferable that the step of imidizing the polyamic acid includes a step of heating the mixture at a temperature 80 to 300 ° C. lower than the glass transition temperature of the polyimide.
 また、上記本発明のポリイミドの製造方法においては、前記混合物中の前記ハロゲン系カルボン酸無水物の含有割合が、前記ポリアミド酸の繰り返し単位1モルに対して0.01~4.0モルであることが好ましい。 In the polyimide production method of the present invention, the content of the halogen-based carboxylic acid anhydride in the mixture is 0.01 to 4.0 mol with respect to 1 mol of the polyamic acid repeating unit. It is preferable.
 さらに、上記本発明のポリイミドの製造方法においては、前記混合物中の前記脂肪族系三級アミンの含有割合が、前記ポリアミド酸の繰り返し単位1モルに対して0.01~4.0モルであることが好ましい。 Further, in the polyimide production method of the present invention, the content of the aliphatic tertiary amine in the mixture is 0.01 to 4.0 mol with respect to 1 mol of the repeating unit of the polyamic acid. It is preferable.
 また、上記本発明のポリイミドの製造方法においては、有機溶媒中で下記一般式(3): Further, in the polyimide production method of the present invention, the following general formula (3):
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[式(3)中、Rは前記一般式(1)中のRと同義である。]
で表されるテトラカルボン酸二無水物と、下記一般式(4):
[In Formula (3), R 1 has the same meaning as R 1 in the general formula (1). ]
A tetracarboxylic dianhydride represented by the following general formula (4):
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
[式(4)中、Rは前記一般式(1)中のRと同義である。]
で表される芳香族ジアミンとを反応せしめることにより前記ポリアミド酸を得る工程を更に含むことが好ましい。
Wherein (4), R 2 has the same meaning as R 2 in the general formula (1). ]
It is preferable to further include a step of obtaining the polyamic acid by reacting with an aromatic diamine represented by the formula:
 また、上記本発明のポリイミドの製造方法においては、前記ハロゲン系カルボン酸無水物が、無水トリフルオロ酢酸、無水ジフルオロ酢酸、無水フルオロ酢酸、無水ペンタフルオロプロピオン酸、無水ヘプタフルオロ酪酸、無水トリクロロ酢酸、無水ジクロロ酢酸、無水クロロ酢酸、無水トリブロモ酢酸、無水ジブロモ酢酸、無水ブロモ酢酸、無水クロロジフルオロ酢酸、無水クロロテトラフルオロプロピオン酸、無水クロロヘキサフルオロ酪酸及びこれらの無水物を形成する酸の混合酸無水物の中から選択される少なくとも1種であることが好ましく、無水トリフルオロ酢酸、無水ペンタフルオロプロピオン酸、無水ヘプタフルオロ酪酸及びこれらの無水物を形成する酸の混合酸無水物の中から選択される少なくとも1種であることがより好ましい。 In the polyimide production method of the present invention, the halogen-based carboxylic acid anhydride is trifluoroacetic anhydride, difluoroacetic anhydride, fluoroacetic anhydride, pentafluoropropionic anhydride, heptafluorobutyric anhydride, trichloroacetic anhydride, Dichloroacetic anhydride, chloroacetic anhydride, tribromoacetic anhydride, dibromoacetic anhydride, bromoacetic anhydride, chlorodifluoroacetic anhydride, chlorotetrafluoropropionic anhydride, chlorohexafluorobutyric anhydride and a mixed acid anhydride forming these anhydrides At least one selected from the group consisting of trifluoroacetic anhydride, pentafluoropropionic anhydride, heptafluorobutyric anhydride and a mixed acid anhydride of these anhydrides. It should be at least one Preferred.
 また、上記本発明のポリイミドの製造方法においては、前記脂肪族系三級アミンが、下記一般式(5): Further, in the above-described polyimide production method of the present invention, the aliphatic tertiary amine is represented by the following general formula (5):
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
[式(5)中、Rはそれぞれ独立に炭素数1~10のアルキル基を示す。]
で表される三級アミンであることが好ましい。
[In Formula (5), each R 3 independently represents an alkyl group having 1 to 10 carbon atoms. ]
It is preferable that it is the tertiary amine represented by these.
 本発明のポリイミドは、上記本発明のポリイミドの製造方法により得られたポリイミドである。 The polyimide of the present invention is a polyimide obtained by the above-described method for producing a polyimide of the present invention.
 本発明によれば、化学イミド化法を利用しながら十分に高度な耐熱性を有する脂環式のポリイミドを製造することが可能となり、比較的低温の加熱で十分な柔軟性を有するポリイミドを製造でき、製造時のポリイミドの着色をより確実に防止することが可能であり、より低温の加熱温度を採用して十分に高度な光透過性と十分に高い耐熱性と十分な柔軟性とを有するポリイミドをより効率よくかつ確実に製造することを可能とするポリイミドの製造方法、及び、その製造方法により得られるポリイミドを提供することが可能となる。 According to the present invention, it is possible to produce an alicyclic polyimide having sufficiently high heat resistance while utilizing a chemical imidization method, and producing a polyimide having sufficient flexibility by heating at a relatively low temperature. It is possible to prevent the coloring of polyimide at the time of manufacture more reliably and adopt a lower heating temperature to have sufficiently high light transmittance, sufficiently high heat resistance and sufficient flexibility It becomes possible to provide a polyimide production method that makes it possible to produce polyimide more efficiently and reliably, and a polyimide obtained by the production method.
実施例1で得られた混合物中の成分(再沈殿物)のIRスペクトルを示すグラフである。2 is a graph showing an IR spectrum of components (reprecipitate) in the mixture obtained in Example 1. FIG. 実施例1で得られた混合物中の成分(再沈殿物)のH-NMRスペクトルを示すグラフである。2 is a graph showing a 1 H-NMR spectrum of a component (reprecipitate) in a mixture obtained in Example 1. FIG. 図2に示すH-NMRスペクトルの6ppm~13ppm付近を拡大したグラフである。3 is an enlarged graph of the vicinity of 6 ppm to 13 ppm in the 1 H-NMR spectrum shown in FIG. 実施例1で得られたポリイミド(フィルム)のIRスペクトルを示すグラフである。2 is a graph showing an IR spectrum of the polyimide (film) obtained in Example 1. FIG. 実施例1で得られたポリイミド(フィルム)のH-NMRスペクトルを示すグラフである。1 is a graph showing a 1 H-NMR spectrum of a polyimide (film) obtained in Example 1. 図5に示すH-NMRスペクトルの6ppm~13ppm付近を拡大したグラフである。6 is an enlarged graph of the vicinity of 6 ppm to 13 ppm of the 1 H-NMR spectrum shown in FIG. 実施例2で得られた混合物中の成分(再沈殿物)のIRスペクトルを示すグラフである。3 is a graph showing an IR spectrum of components (reprecipitate) in the mixture obtained in Example 2. FIG. 実施例2で得られた混合物中の成分(再沈殿物)のH-NMRスペクトルを示すグラフである。2 is a graph showing a 1 H-NMR spectrum of a component (reprecipitate) in a mixture obtained in Example 2. FIG. 図8に示すH-NMRスペクトルの6ppm~13ppm付近を拡大したグラフである。FIG. 9 is an enlarged graph of the vicinity of 6 ppm to 13 ppm of the 1 H-NMR spectrum shown in FIG. 実施例2で得られたポリイミド(フィルム)のIRスペクトルを示すグラフである。3 is a graph showing an IR spectrum of a polyimide (film) obtained in Example 2. FIG. 実施例2で得られたポリイミド(フィルム)のH-NMRスペクトルを示すグラフである。2 is a graph showing a 1 H-NMR spectrum of a polyimide (film) obtained in Example 2. FIG. 図11に示すH-NMRスペクトルの6ppm~13ppm付近を拡大したグラフである。12 is an enlarged graph of the vicinity of 6 ppm to 13 ppm of the 1 H-NMR spectrum shown in FIG.
 以下、本発明をその好適な実施形態に即して詳細に説明する。 Hereinafter, the present invention will be described in detail on the basis of preferred embodiments thereof.
 [ポリイミドの製造方法]
 本発明のポリイミドの製造方法について説明する。本発明のポリイミドの製造方法は、上述のように、前記一般式(1)で表される繰り返し単位を有するポリアミド酸と、ハロゲン系カルボン酸無水物と、脂肪族系三級アミンとを含有する混合物を用いて、前記ポリアミド酸をイミド化することにより、前記一般式(2)で表される繰り返し単位を有するポリイミドを得る、方法である。
[Production method of polyimide]
The manufacturing method of the polyimide of this invention is demonstrated. As described above, the method for producing a polyimide of the present invention contains a polyamic acid having a repeating unit represented by the general formula (1), a halogen-based carboxylic acid anhydride, and an aliphatic tertiary amine. This is a method of obtaining a polyimide having a repeating unit represented by the general formula (2) by imidizing the polyamic acid using a mixture.
 なお、このような本発明のポリイミドの製造方法により、製造時に、より低温の温度域の加熱であっても、所望の特性(十分な柔軟性、十分に高い光透過性及び十分に高い耐熱性)を有するポリイミドを効率よく製造することが可能となる理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、本発明においては、先ず、前記ハロゲン系カルボン酸無水物と、前記脂肪族系三級アミンとを組み合わせて利用する。このように前記ハロゲン系カルボン酸無水物と、前記脂肪族系三級アミンとを組み合わせて利用することにより、混合物中において、前記ハロゲン系カルボン酸無水物が脱水剤として機能し、前記脂肪族系三級アミンが脱水促進剤として機能して、前記ポリアミド酸(ポリアミック酸)の部分的なイミド化が進行する。なお、このような部分的なイミド化が進行しても、前記混合物が溶媒を含む場合においては、形成されるポリイミドが重合反応に用いる前記溶媒に可溶となるため、ポリイミドの析出(沈殿)が生じず、均一な混合物が得られる。そして、このような均一な混合物を低温の条件で加熱した場合には、混合物中の前記ハロゲン系カルボン酸無水物と前記脂肪族系三級アミンとが触媒的に機能して、前記混合物中において効率よく前記ポリアミド酸のイミド化が進行し、所望の特性(十分な柔軟性、十分に高い光透過性及び十分に高い耐熱性)を有するポリイミドを製造できる。ここで、フィルム状のポリイミドを形成する場合を例に挙げてポリイミドの製造について簡単に説明すると、前述のように前記ポリアミド酸(ポリアミック酸)が部分的にイミド化された均一な混合物が得られると、前記混合物を均一に流延(キャスト製膜)することが可能となる。そして、そのようなキャスト製膜後の塗膜を乾燥した場合には、光透過性が十分に高い均一なポリアミド酸(ポリアミック酸)とポリイミドの混合物よりなるフィルム(乾燥塗膜)を製造することが可能となる。そして、そのような乾燥塗膜においては、塗膜中に残存する前記ハロゲン系カルボン酸無水物と前記脂肪族系三級アミンが触媒のように機能するため、低温で加熱してもイミド化を十分に進行せしめることが可能となる。このように、本発明においては、十分に簡便な方法で、しかも低温の加熱工程により所望の特性(十分な柔軟性、十分に高い光透過性及び十分に高い耐熱性)を有するポリイミドを製造できる。このように、本発明においては、混合物中で生じる化学イミド化法による部分的なイミド化と、それに続く加熱による熱・化学併用法によるイミド化とを利用することができるため、より低温の加熱で、ポリイミドを効率よく製造することができる。そして、本発明においては、製造時に、より低温の加熱でポリイミドを製造することが可能となるため、より簡便な工程で、かつ、より簡易な製造設備を利用してポリイミドを製造することもできる。そのため、本発明のポリイミドの製造方法は、工業化、コストの低下(経済性)の観点からも優れた方法であるといえる。また、前記混合物を用いてポリイミドを製造することにより、着色の原因となる比較的高温(例えば300℃超)での加熱工程を必ずしも施す必要(従来の熱イミド化法を採用する必要)がないことから、得られるポリイミドの着色を、より十分にかつより確実に防止することもできる。そのため、前記混合物を用いる場合には、十分に高い光透過性を有するポリイミドのフィルムを効率よく製造することができる。このような観点から、本発明のポリイミドの製造方法により、製造時に、より低温の温度域の加熱を施す場合であっても、所望の特性(十分な柔軟性、十分に高い光透過性及び十分に高い耐熱性)を有するポリイミドを効率よく製造することが可能となるものと本発明者らは推察する。 In addition, with such a method for producing a polyimide according to the present invention, desired characteristics (sufficient flexibility, sufficiently high light transmittance, and sufficiently high heat resistance can be obtained even when heating at a lower temperature range during production. The reason why it is possible to efficiently produce a polyimide having) is not necessarily clear, but the present inventors speculate as follows. That is, in the present invention, first, the halogen-based carboxylic acid anhydride and the aliphatic tertiary amine are used in combination. Thus, by utilizing the halogenated carboxylic acid anhydride and the aliphatic tertiary amine in combination, the halogenated carboxylic acid anhydride functions as a dehydrating agent in the mixture, and the aliphatic A tertiary amine functions as a dehydration accelerator, and partial imidization of the polyamic acid (polyamic acid) proceeds. Even when such partial imidization proceeds, when the mixture contains a solvent, the polyimide to be formed is soluble in the solvent used for the polymerization reaction. Does not occur and a uniform mixture is obtained. When such a uniform mixture is heated under low temperature conditions, the halogen-based carboxylic acid anhydride and the aliphatic tertiary amine in the mixture function catalytically, and in the mixture The imidization of the polyamic acid proceeds efficiently, and a polyimide having desired properties (sufficient flexibility, sufficiently high light transmittance, and sufficiently high heat resistance) can be produced. Here, the case of forming a film-like polyimide is taken as an example, and the production of the polyimide will be briefly described. As described above, a uniform mixture in which the polyamic acid (polyamic acid) is partially imidized is obtained. Then, the mixture can be cast uniformly (cast film formation). And when the coating film after such cast film formation is dried, a film (dry coating film) made of a mixture of uniform polyamic acid (polyamic acid) and polyimide having sufficiently high light transmittance is produced. Is possible. In such a dry coating film, the halogenated carboxylic acid anhydride and the aliphatic tertiary amine remaining in the coating film function like a catalyst, so that imidization occurs even when heated at a low temperature. It will be possible to proceed sufficiently. As described above, in the present invention, a polyimide having desired characteristics (sufficient flexibility, sufficiently high light transmittance and sufficiently high heat resistance) can be produced by a sufficiently simple method and a low-temperature heating step. . As described above, in the present invention, partial imidization by the chemical imidization method that occurs in the mixture and subsequent imidization by the combined heat and chemical method by heating can be used, so that lower temperature heating is possible. Thus, polyimide can be produced efficiently. And in this invention, since it becomes possible to manufacture a polyimide by a lower temperature heating at the time of manufacture, it can also manufacture a polyimide by a simpler process and using a simpler manufacturing equipment. . Therefore, it can be said that the method for producing the polyimide of the present invention is an excellent method from the viewpoints of industrialization and cost reduction (economic efficiency). Further, by producing polyimide using the mixture, it is not always necessary to perform a heating step at a relatively high temperature (for example, higher than 300 ° C.) that causes coloring (the conventional thermal imidization method is not required). Therefore, coloring of the resulting polyimide can be prevented more sufficiently and more reliably. Therefore, when using the said mixture, the polyimide film which has sufficiently high light transmittance can be manufactured efficiently. From this point of view, the polyimide production method of the present invention can provide the desired characteristics (sufficient flexibility, sufficiently high light transmittance and sufficient even when heating in a lower temperature range during production. The present inventors speculate that it is possible to efficiently produce a polyimide having high heat resistance.
 以下、先ず、本発明において用いる各成分について説明する。 Hereinafter, first, each component used in the present invention will be described.
 (ポリアミド酸)
 本発明にかかるポリアミド酸について説明する。このようなポリアミド酸は、下記一般式(1):
(Polyamide acid)
The polyamic acid according to the present invention will be described. Such polyamic acid has the following general formula (1):
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
で表されるものである。 It is represented by
 このような一般式(1)中、Rは下記一般式(I-1)~(I-10): In such general formula (1), R 1 represents the following general formulas (I-1) to (I-10):
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
で表される4価の置換基群の中から選択される基である。このようなRとしては、耐熱性、透明性、線膨張係数、強度の観点から、上記一般式(I-1)、(I-3)、(I-9)及び(I-10)の中から選択される基であることが好ましく、上記一般式(I-9)及び(I-10)の中から選択される基であることがより好ましい。 Is a group selected from the group of tetravalent substituents represented by the formula: As such R 1 , from the viewpoints of heat resistance, transparency, linear expansion coefficient, and strength, the above-mentioned general formulas (I-1), (I-3), (I-9) and (I-10) A group selected from the above is preferable, and a group selected from the above general formulas (I-9) and (I-10) is more preferable.
 また、上記一般式(1)中、Rは下記一般式(II-1)~(II-4): In the general formula (1), R 2 represents the following general formulas (II-1) to (II-4):
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
で表される2価の置換基群の中から選択される基である。 Is a group selected from the group of divalent substituents represented by the formula:
 このような一般式(II-3)中、Rはそれぞれ独立に、水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種である。このようなRとしては、耐熱性の観点から、水素原子、フッ素原子、メチル基又はエチル基がより好ましく、水素原子が特に好ましい。 In such general formula (II-3), each R 3 is independently one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms and a fluorine atom. As such R 3 , from the viewpoint of heat resistance, a hydrogen atom, a fluorine atom, a methyl group or an ethyl group is more preferable, and a hydrogen atom is particularly preferable.
 また、上記一般式(II-4)において、Qは、式:-O-、-S-、-CO-、-CONH-、-SO-、-C(CF-、-C(CH-、-CH-、-O-C-C(CH-C-O-、-O-C-SO-C-O-、-C(CH-C-C(CH-、-O-C-C-O-及び-O-C-O-で表される基よりなる群から選択される1種である。このようなQとしては、耐熱性と溶解性のバランスという観点から、式:-O-C-O-、-O-、-C(CH-、-CH-、又は-O-C-C(CH-C-O-、で表される基が好ましく、式:-O-C-O-又は-O-で表される基が特に好ましい。 In the general formula (II-4), Q is a group represented by the formula: —O—, —S—, —CO—, —CONH—, —SO 2 —, —C (CF 3 ) 2 —, —C ( CH 3 ) 2 —, —CH 2 —, —O—C 6 H 4 —C (CH 3 ) 2 —C 6 H 4 —O—, —O—C 6 H 4 —SO 2 —C 6 H 4 O -, - C (CH 3 ) 2 -C 6 H 4 -C (CH 3) 2 -, - O-C 6 H 4 -C 6 H 4 -O- and -O-C 6 H 4 -O- It is 1 type selected from the group which consists of group represented by these. As such Q, from the viewpoint of balance between heat resistance and solubility, the formula: —O—C 6 H 4 —O—, —O—, —C (CH 3 ) 2 —, —CH 2 —, or A group represented by —O—C 6 H 4 —C (CH 3 ) 2 —C 6 H 4 —O— is preferred, represented by the formula: —O—C 6 H 4 —O— or —O—. Are particularly preferred.
 また、上記一般式(1)中のRとして選択され得る一般式(II-1)~(II-4)で表される基としては、ガラス転移温度を十分に高い温度とすることができるとともに線膨張係数を十分に低い値とすることができ、これらの特性のバランスが向上し、より高度な耐熱性が得られるという観点からは、一般式(II-3)又は(II-4)で表される基であることがより好ましい。 Further, the groups represented by the general formulas (II-1) to (II-4) that can be selected as R 2 in the general formula (1) can have a sufficiently high glass transition temperature. In addition, from the viewpoint that the linear expansion coefficient can be made sufficiently low, the balance of these characteristics is improved, and higher heat resistance can be obtained, the general formula (II-3) or (II-4) It is more preferable that it is group represented by these.
 さらに、Rの中でも、線膨張係数をより低いものとすることができ、更に高度な耐熱性が得られるという観点から、一般式(II-3)で表される基、又は、一般式(II-4)で表され且つ前記Qが-CONH-、-COO-、-CO-、-C-で表される基(より好ましくは-CONH-又は-COO-で表される基、特に好ましくは-CONH-で表される基)のうちの少なくとも1種である基であることが好ましい。 Furthermore, among R 2, the group represented by the general formula (II-3) or the general formula (II) can be used from the viewpoint that the linear expansion coefficient can be made lower and higher heat resistance can be obtained. II-4) and the group Q is represented by —CONH—, —COO—, —CO—, —C 6 H 4 — (more preferably a group represented by —CONH— or —COO—). And particularly preferably a group that is at least one of the groups represented by —CONH—.
 また、Rとしては、得られるポリイミドに、より高度なフレキシブル性(柔軟性)を付与することができるという観点からは、一般式(II-1)で表される基、又は、一般式(II-4)で表され且つ前記Qが-O-、-S-、-CH-、-O-C-O-で表される基のうちの少なくとも1種(より好ましくは-O-、-CH-で表される基のうちの1種、更に好ましくは-O-で表される基)である基であることが好ましい。 In addition, as R 2 , from the viewpoint that a higher degree of flexibility (flexibility) can be imparted to the obtained polyimide, the group represented by the general formula (II-1) or the general formula ( II-4) and Q is at least one group selected from —O—, —S—, —CH 2 —, —O—C 6 H 4 —O— (more preferably — It is preferably a group that is one of the groups represented by O— and —CH 2 —, more preferably a group represented by —O—.
 前記ポリアミド酸としては、得られるポリイミドに、十分に高いガラス転移温度と、十分に低い線膨張係数と、十分なフレキシブル性(柔軟性)とを、より高度な水準でバランスよく付与できるといった観点から、Rの種類が異なる一般式(1)で表される繰り返し単位を複数種(2種以上)含有することが好ましい。 As the polyamic acid, from the viewpoint that a sufficiently high glass transition temperature, a sufficiently low linear expansion coefficient, and sufficient flexibility (flexibility) can be imparted to the obtained polyimide in a balanced manner at a higher level. It is preferable to contain a plurality of (two or more) repeating units represented by the general formula (1) having different types of R 2 .
 このような一般式(1)で表される繰り返し単位を有するポリアミド酸としては、固有粘度[η]が0.05~3.0dL/gであることが好ましく、0.2~2.0dL/gであることがより好ましく、0.4~1.5dL/gであることが更に好ましい。このような固有粘度[η]が0.05dL/gより小さいと、これを用いてフィルム状のポリイミドを製造した際に、得られるフィルムが脆くなる傾向にあり、他方、3.0dL/gを超えると、粘度が高すぎて加工性が低下し、例えばフィルムを製造した場合に均一なフィルムを得ることが困難となる傾向にある。また、このような固有粘度[η]は、以下のようにして測定することができる。すなわち、先ず、溶媒としてN,N-ジメチルアセトアミドを用い、そのN,N-ジメチルアセトアミド中に前記ポリアミド酸を濃度が0.5g/dLとなるようにして溶解している測定試料(溶液)を得る。次に、前記測定試料を用いて、30℃の温度条件下において(例えば30℃の恒温槽を用いて30℃の温度条件として)、動粘度計を用いて、前記測定試料の粘度を測定し、求められた値を固有粘度[η]として採用する。なお、このような動粘度計としては、離合社製の自動粘度測定装置(商品名「VMC-252」)を用いる。 The polyamic acid having a repeating unit represented by the general formula (1) preferably has an intrinsic viscosity [η] of 0.05 to 3.0 dL / g, and preferably 0.2 to 2.0 dL / g. g is more preferable, and 0.4 to 1.5 dL / g is still more preferable. When the intrinsic viscosity [η] is smaller than 0.05 dL / g, when a film-like polyimide is produced using the intrinsic viscosity [η], the resulting film tends to be brittle, while 3.0 dL / g is reduced. If it exceeds, the viscosity is too high and the processability is lowered, and for example, when a film is produced, it tends to be difficult to obtain a uniform film. Such intrinsic viscosity [η] can be measured as follows. Specifically, first, a measurement sample (solution) in which N, N-dimethylacetamide is used as a solvent and the polyamic acid is dissolved in the N, N-dimethylacetamide so as to have a concentration of 0.5 g / dL. obtain. Next, using the measurement sample, the viscosity of the measurement sample is measured using a kinematic viscometer under a temperature condition of 30 ° C. (for example, as a temperature condition of 30 ° C. using a thermostatic bath of 30 ° C.). The obtained value is adopted as the intrinsic viscosity [η]. In addition, as such a kinematic viscometer, an automatic viscosity measuring device (trade name “VMC-252”) manufactured by Koiso Co., Ltd. is used.
 また、このようなポリアミド酸を製造するための工程は特に制限されず、上記一般式(1)で表される繰り返し単位を有するポリアミド酸を製造することが可能な工程を適宜採用することができるが、中でも、有機溶媒中で下記一般式(3): Moreover, the process for producing such a polyamic acid is not particularly limited, and a process capable of producing a polyamic acid having a repeating unit represented by the general formula (1) can be appropriately employed. However, among these, in the organic solvent, the following general formula (3):
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
[式(3)中、Rは前記一般式(1)中のRと同義である。]
で表されるテトラカルボン酸二無水物と、下記一般式(4):
[In Formula (3), R 1 has the same meaning as R 1 in the general formula (1). ]
A tetracarboxylic dianhydride represented by the following general formula (4):
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
[式(4)中、Rは前記一般式(1)中のRと同義である。]
で表される芳香族ジアミンとを反応せしめることにより前記ポリアミド酸を得る工程を採用することが好ましい。すなわち、本発明のポリイミドの製造方法においては、前記一般式(3)で表されるテトラカルボン酸二無水物と、前記一般式(4)で表される芳香族ジアミンとを反応せしめることにより前記ポリアミド酸を得る工程を更に含むことが好ましい。
Wherein (4), R 2 has the same meaning as R 2 in the general formula (1). ]
It is preferable to employ a step of obtaining the polyamic acid by reacting with an aromatic diamine represented by the formula: That is, in the method for producing a polyimide of the present invention, the tetracarboxylic dianhydride represented by the general formula (3) is reacted with the aromatic diamine represented by the general formula (4). It is preferable to further include a step of obtaining a polyamic acid.
 このようなポリアミド酸を得る工程において用いるテトラカルボン酸二無水物は、上記一般式(3)で表されるものであり、かかる一般式(3)中のRは、前記一般式(1)中のRと同義である(式(3)中のRの好適なものも一般式(1)中のRと同様のものである。)
 このような一般式(3)で表されるテトラカルボン酸二無水物としては、例えば、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物、ノルボルナン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロヘキサンテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、3,5,6-トリカルボキシノルボルナン-2-酢酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-c]-フラン-1,3-ジオン、1,3,3a,4,5,9b-ヘキサヒドロ-5-メチル-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-c]-フラン-1,3-ジオン、1,3,3a,4,5,9b-ヘキサヒドロ-8-メチル-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-c]-フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸二無水物、ビシクロ[2,2,2]-オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ジシクロヘキシル-3,3’,4,4’-テトラカルボン酸二無水物、ビシクロ[2,2,1]-ヘプタン-2,3,5,6-テトラカルボン酸二無水物、デカハイドロジメタノナフタレン-2,3,6,7-テトラカルボン酸二無水物、ドデカハイドロ-1,4:5,8-ジメタノアントラセン-9,10-ジオン-2,3:6,7-テトラカルボン酸二無水物等が挙げられる。
The tetracarboxylic dianhydride used in the step of obtaining such polyamic acid is represented by the above general formula (3), and R 1 in the general formula (3) is the above general formula (1). R 1 synonymous in (formula (3) suitable for R 1 in are also the same as the R 1 of the general formula (1).)
Examples of the tetracarboxylic dianhydride represented by the general formula (3) include norbornane-2-spiro-α-cyclopentanone-α′-spiro-2 ″ -norbornane-5,5 ′. ', 6,6''-tetracarboxylic dianhydride, norbornane-2-spiro-α-cyclohexanone-α'-spiro-2 ″ -norbornane-5,5 ″, 6,6 ″ -tetracarboxylic Acid dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic acid Dianhydride, 1,2,3,4-cyclohexanetetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride, 3,5,6-tricarboxynorbornane-2-acetic acid dianhydride 2,3,4,5-tetrahydrofuran Lacarboxylic dianhydride, 1,3,3a, 4,5,9b-hexahydro-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-c] -furan-1,3 -Dione, 1,3,3a, 4,5,9b-hexahydro-5-methyl-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-c] -furan-1, 3-dione, 1,3,3a, 4,5,9b-hexahydro-8-methyl-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-c] -furan-1 , 3-dione, 5- (2,5-dioxotetrahydrofural) -3-methyl-3-cyclohexene-1,2-dicarboxylic dianhydride, bicyclo [2,2,2] -oct-7-ene -2,3,5,6-tetracarboxylic dianhydride, dicyclohexyl-3,3 ', 4,4'-tetracar Boronic acid dianhydride, bicyclo [2,2,1] -heptane-2,3,5,6-tetracarboxylic dianhydride, decahydrodimethanonaphthalene-2,3,6,7-tetracarboxylic acid dianhydride Anhydrides, dodecahydro-1,4: 5,8-dimethanoanthracene-9,10-dione-2,3: 6,7-tetracarboxylic dianhydride and the like.
 また、このようなテトラカルボン酸二無水物の製造方法は特に制限されず、公知の方法を適宜採用することができ、例えば、国際公開第2011/099518号パンフレットに記載されている方法等を適宜採用してもよい。また、このようなテトラカルボン酸二無水物としては市販のものを利用してもよい。 Further, the production method of such tetracarboxylic dianhydride is not particularly limited, and a known method can be appropriately employed. For example, the method described in International Publication No. 2011/099518 is appropriately used. It may be adopted. Moreover, you may utilize a commercially available thing as such a tetracarboxylic dianhydride.
 また、前記ポリアミド酸を得る工程において用いる芳香族ジアミンは、上記一般式(4)で表されるものであり、かかる一般式(4)中のRは、前記一般式(1)中のRと同義である(式(4)中のRの好適なものも一般式(1)中のRと同様のものである。)
 このような一般式(4)で表される芳香族ジアミンとしては、例えば、4,4’-ジアミノジフェニルメタン、4,4''-ジアミノ-p-ターフェニル、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエタン、3,3’-ジアミノジフェニルエタン、4,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、2,2-ビス(4-アミノフェノキシフェニル)プロパン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、9,9-ビス(4-アミノフェニル)フルオレン、p-ジアミノベンゼン(別名:p-フェニレンジアミン)、m-ジアミノベンゼン、o-ジアミノベンゼン、4,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、3,4’-ジアミノビフェニル、2,6-ジアミノナフタレン、1,4-ジアミノナフタレン、1,5-ジアミノナフタレン、4,4’-[1,3-フェニレンビス(1-メチル-エチリデン)]ビスアニリン、4,4’-[1,4-フェニレンビス(1-メチル-エチリデン)]ビスアニリン、2,2’-ジメチル-4,4’-ジアミノビフェニル(別名:o-トリジン)、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ジアミノベンズアニリド、4,4’-ジアミノフェニルベンゾエート(別名:4,4’-ジアミノジフェニルエステル)、9,9’-ビス(4-アミノフェニル)フルオレン、o-トリジンスルホン、1,3’-ビス(4-アミノフェノキシ)-2,2-ジメチルプロパン、2,3,5,6-テトラメチル-1,4-フェニレンジアミン、3,3’,5,5’-テトラメチルベンジジン、1,5-ビス(4-アミノフェノキシ)ペンタン、ジエチルトルエンジアミン、アミノベンジルアミン、ビスアニリンM、ビスアニリンP等が挙げられる。
The aromatic diamine used in the step of obtaining the polyamic acid is represented by the general formula (4), and R 2 in the general formula (4) is R in the general formula (1). 2 synonymous (formula (4) suitable for R 2 in also is the same as R 2 in the general formula (1).)
Examples of the aromatic diamine represented by the general formula (4) include 4,4′-diaminodiphenylmethane, 4,4 ″ -diamino-p-terphenyl, 3,3′-diaminodiphenylmethane, 4 , 4'-diaminodiphenylethane, 3,3'-diaminodiphenylethane, 4,4'-diaminobiphenyl, 3,3'-diaminobiphenyl, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 2 , 2-bis (4-aminophenoxyphenyl) propane, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, bis [4- (4-aminophenoxy) phenyl ] Sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, 2,2′-bis (trifluoromethyl) -4,4 ′ -Diaminobiphenyl, 3,4'-diaminodiphenyl ether, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 9,9-bis (4-aminophenyl) fluorene, p-diaminobenzene (alias: p- Phenylenediamine), m-diaminobenzene, o-diaminobenzene, 4,4′-diaminobiphenyl, 3,3′-diaminobiphenyl, 2,2′-diaminobiphenyl, 3,4′-diaminobiphenyl, 2,6- Diaminonaphthalene, 1,4-diaminonaphthalene, 1,5-diaminonaphthalene, 4,4 ′-[1,3-phenylenebis (1-methyl-ethylidene)] bisaniline, 4,4 ′-[1,4-phenylene Bis (1-methyl-ethylidene)] bisaniline, 2,2′-dimethyl-4,4′-diaminobiphenyl : O-tolidine), 3,3′-dimethyl-4,4′-diaminobiphenyl, 3,3′-diaminodiphenyl sulfone, 4,4′-diaminodiphenyl sulfone, 4,4′-diaminodiphenyl sulfide, 4-bis (4-aminophenoxy) benzene, 4,4'-bis (4-aminophenoxy) biphenyl, 4,4'-diaminobenzanilide, 4,4'-diaminophenylbenzoate (also known as 4,4'-) Diaminodiphenyl ester), 9,9′-bis (4-aminophenyl) fluorene, o-tolidine sulfone, 1,3′-bis (4-aminophenoxy) -2,2-dimethylpropane, 2,3,5, 6-tetramethyl-1,4-phenylenediamine, 3,3 ′, 5,5′-tetramethylbenzidine, 1,5-bis (4-aminophenoxy) pentane Diethyl toluene diamine, amino benzylamine, bisaniline M, bisaniline P, and the like.
 また、このような芳香族ジアミンを製造するための方法としては特に制限されず、公知の方法を適宜採用することができる。また、このような芳香族ジアミンとしては市販のものを適宜用いてもよい。 Further, the method for producing such an aromatic diamine is not particularly limited, and a known method can be appropriately employed. Moreover, you may use a commercially available thing suitably as such aromatic diamine.
 さらに、前記ポリアミド酸を得る工程において用いる有機溶媒としては、上記一般式(3)で表されるテトラカルボン酸二無水物と、上記一般式(4)で表される芳香族ジアミンとの両者を溶解することが可能な有機溶媒であることが好ましい。このような有機溶媒としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、γ-ブチロラクトン、プロピレンカーボネート、テトラメチル尿素、1,3-ジメチル-2-イミダゾリジノン、ヘキサメチルホスホリックトリアミド、ピリジンなどの非プロトン系極性溶媒;m-クレゾール、キシレノール、フェノール、ハロゲン化フェノールなどのフェノール系溶媒;テトラハイドロフラン、ジオキサン、セロソルブ、グライムなどのエーテル系溶媒;ベンゼン、トルエン、キシレン、2-クロル-4-ヒドロキシトルエンなどの芳香族系溶媒;などが挙げられる。このような有機溶媒は、1種を単独であるいは2種以上を混合して使用してもよい。 Furthermore, as an organic solvent used in the step of obtaining the polyamic acid, both a tetracarboxylic dianhydride represented by the general formula (3) and an aromatic diamine represented by the general formula (4) are used. An organic solvent that can be dissolved is preferable. Examples of such organic solvents include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, γ-butyrolactone, propylene carbonate, tetramethylurea, 1,3- Aprotic polar solvents such as dimethyl-2-imidazolidinone, hexamethylphosphoric triamide, pyridine; phenol solvents such as m-cresol, xylenol, phenol, halogenated phenol; tetrahydrofuran, dioxane, cellosolve, glyme And ether solvents such as benzene, toluene, xylene, 2-chloro-4-hydroxytoluene, and the like. Such organic solvents may be used singly or in combination of two or more.
 また、前記ポリアミド酸を得る工程においては、上記一般式(3)で表されるテトラカルボン酸二無水物と、上記一般式(4)で表される芳香族ジアミンとの使用量は特に制限されないが、これらのモル比([テトラカルボン酸二無水物]:[芳香族ジアミン])が0.5:1.0~1.0:0.5(より好ましくは0.9:1.0~1.0:0.9)となるようにすることが好ましい。このようなテトラカルボン酸二無水物の使用量が前記下限未満では収量が低下する傾向にあり、他方、前記上限を超えても収量が低下する傾向にある。 Moreover, in the process of obtaining the said polyamic acid, the usage-amount in particular of the tetracarboxylic dianhydride represented by the said General formula (3) and the aromatic diamine represented by the said General formula (4) is not restrict | limited. However, their molar ratio ([tetracarboxylic dianhydride]: [aromatic diamine]) is 0.5: 1.0 to 1.0: 0.5 (more preferably 0.9: 1.0 to 1.0: 0.9) is preferable. If the amount of tetracarboxylic dianhydride used is less than the lower limit, the yield tends to decrease. On the other hand, even if the amount exceeds the upper limit, the yield tends to decrease.
 また、前記ポリアミド酸を得る工程においては、上記一般式(3)で表されるテトラカルボン酸二無水物と、上記一般式(4)で表される芳香族ジアミンとの使用割合は、上記一般式(4)で表される芳香族ジアミンが有するアミノ基1当量に対して、上記一般式(3)で表されるテトラカルボン酸二無水物の酸無水物基を0.2~2当量とすることが好ましく、0.3~1.2当量とすることがより好ましい。このような使用割合が前記下限未満では重合反応が効率よく進行せず、高分子量のポリアミド酸が得られない傾向にあり、他方、前記上限を超えると前記と同様に高分子量のポリアミド酸が得られない傾向にある。 In the step of obtaining the polyamic acid, the proportion of the tetracarboxylic dianhydride represented by the general formula (3) and the aromatic diamine represented by the general formula (4) The acid anhydride group of the tetracarboxylic dianhydride represented by the general formula (3) is 0.2 to 2 equivalents relative to 1 equivalent of the amino group of the aromatic diamine represented by the formula (4). It is preferable to use 0.3 to 1.2 equivalents. When such a use ratio is less than the lower limit, the polymerization reaction does not proceed efficiently, and a high molecular weight polyamic acid tends not to be obtained. On the other hand, when the upper limit is exceeded, a high molecular weight polyamic acid is obtained as described above. It tends to be impossible.
 さらに、前記ポリアミド酸を得る工程における前記有機溶媒の使用量としては、上記一般式(3)で表されるテトラカルボン酸二無水物と上記一般式(4)で表される芳香族ジアミンの総量が、反応溶液の全量に対して0.1~50質量%(より好ましくは10~30質量%)になるような量であることが好ましい。このような有機溶媒の使用量が前記下限未満では効率よくポリアミド酸を得ることができなくなる傾向にあり、他方、前記上限を超えると高粘度化により攪拌が困難となる傾向にある。 Furthermore, as the usage-amount of the said organic solvent in the process of obtaining the said polyamic acid, the total amount of the aromatic diamine represented by the tetracarboxylic dianhydride represented by the said General formula (3) and the said General formula (4) However, the amount is preferably 0.1 to 50% by mass (more preferably 10 to 30% by mass) with respect to the total amount of the reaction solution. If the amount of the organic solvent used is less than the lower limit, the polyamic acid tends not to be obtained efficiently. On the other hand, if it exceeds the upper limit, stirring tends to be difficult due to the increase in viscosity.
 また、前記ポリアミド酸を得る工程においては、上記一般式(3)で表されるテトラカルボン酸二無水物と上記一般式(4)で表される芳香族ジアミンとを反応させる際に、反応速度向上と高重合度のポリアミド酸を得るという観点から、前記有機溶媒中に塩基化合物を更に添加してもよい。このような塩基性化合物としては特に制限されないが、例えば、トリエチルアミン、トリブチルアミン、トリヘキシルアミン、1,8-ジアザビシクロ[5.4.0]-ウンデセン-7、ピリジン、イソキノリン、N-メチルピペリジン、α-ピコリン等が挙げられる。また、このような塩基化合物の使用量は、上記一般式(6)で表されるテトラカルボン酸二無水物1当量に対して、0.001~10当量とすることが好ましく、0.01~0.1当量とすることがより好ましい。このような塩基化合物の使用量が前記下限未満では添加効果が見られなくなる傾向にあり、他方、前記上限を超えると着色等の原因になる傾向にある。 In the step of obtaining the polyamic acid, when the tetracarboxylic dianhydride represented by the general formula (3) is reacted with the aromatic diamine represented by the general formula (4), a reaction rate is obtained. From the viewpoint of improving and obtaining a polyamic acid having a high degree of polymerization, a base compound may be further added to the organic solvent. Examples of such basic compounds include, but are not limited to, triethylamine, tributylamine, trihexylamine, 1,8-diazabicyclo [5.4.0] -undecene-7, pyridine, isoquinoline, N-methylpiperidine, α-picoline and the like can be mentioned. The amount of such a base compound used is preferably 0.001 to 10 equivalents relative to 1 equivalent of the tetracarboxylic dianhydride represented by the general formula (6), More preferably, it is 0.1 equivalent. If the amount of such a basic compound used is less than the lower limit, the effect of addition tends to be lost. On the other hand, if it exceeds the upper limit, it tends to cause coloring or the like.
 また、前記ポリアミド酸を得る工程において、上記一般式(3)で表されるテトラカルボン酸二無水物と上記一般式(4)で表される芳香族ジアミンとを反応させる際の反応温度は、これらの化合物を反応させることが可能な温度に適宜調整すればよく、特に制限されないが、80℃以下とすることが好ましく、-30~30℃とすることが好ましい。また、このようなポリアミド酸を得る工程において採用し得る上記一般式(3)で表されるテトラカルボン酸二無水物と上記一般式(4)で表される芳香族ジアミンとを反応させる方法としては、テトラカルボン酸二無水物と芳香族ジアミンの重合反応を行うことが可能な公知の方法を適宜利用できる。例えば、大気圧中、窒素、ヘリウム、アルゴン等の不活性雰囲気下において、前記芳香族ジアミンを溶媒に溶解させた後、前記反応温度において上記一般式(3)で表されるテトラカルボン酸二無水物を添加し、その後、10~48時間反応させる方法を採用してもよい。このような反応温度や反応時間が前記下限未満では十分に反応させることが困難となる傾向にあり、他方、前記上限を超えると重合物を劣化させる物質(水蒸気等)の混入確率が高まり分子量が低下する傾向にある。 In the step of obtaining the polyamic acid, the reaction temperature when the tetracarboxylic dianhydride represented by the general formula (3) and the aromatic diamine represented by the general formula (4) are reacted is as follows: The temperature may be appropriately adjusted to a temperature at which these compounds can be reacted, and is not particularly limited, but is preferably 80 ° C. or less, and preferably −30 to 30 ° C. Moreover, as a method of reacting the tetracarboxylic dianhydride represented by the above general formula (3) and the aromatic diamine represented by the above general formula (4) that can be employed in the step of obtaining such a polyamic acid. Can appropriately utilize a known method capable of performing a polymerization reaction of tetracarboxylic dianhydride and aromatic diamine. For example, the tetracarboxylic dianhydride represented by the above general formula (3) at the reaction temperature after dissolving the aromatic diamine in a solvent under an inert atmosphere such as nitrogen, helium or argon at atmospheric pressure A method may be employed in which a product is added and then reacted for 10 to 48 hours. If the reaction temperature or reaction time is less than the lower limit, it tends to be difficult to cause sufficient reaction. On the other hand, if the upper limit is exceeded, the probability of mixing a substance (such as water vapor) that degrades the polymer increases and the molecular weight increases. It tends to decrease.
 このようにして、上記一般式(3)で表されるテトラカルボン酸二無水物と上記一般式(4)で表される芳香族ジアミンとを反応させることにより、上記一般式(1)で表される繰り返し単位を少なくとも1種有するポリアミド酸を得ることができる。また、このようにして得られる上記一般式(1)で表される繰り返し単位を有するポリアミド酸は、これを単離して、本発明にかかる混合物を形成するための成分として利用してもよく、あるいは、上記一般式(1)で表される繰り返し単位を有するポリアミド酸を単離することなく、有機溶媒中において上記一般式(3)で表されるテトラカルボン酸二無水物と上記一般式(4)で表される芳香族ジアミンとを反応させて得られた反応液(上記一般式(1)で表される繰り返し単位を有するポリアミド酸を含有する反応液)をそのまま利用して、該反応液中に存在する状態で、本発明にかかる混合物を形成するための成分として利用してもよい。なお、前記反応液から上記一般式(1)で表される繰り返し単位を有するポリアミド酸を単離して利用する場合、その単離方法としては特に制限されず、ポリアミド酸を単離することが可能な公知の方法を適宜採用することができ、例えば、再沈殿物として単離する方法などを採用してもよい。 In this way, by reacting the tetracarboxylic dianhydride represented by the above general formula (3) with the aromatic diamine represented by the above general formula (4), it is represented by the above general formula (1). Thus, a polyamic acid having at least one repeating unit can be obtained. Further, the polyamic acid having the repeating unit represented by the above general formula (1) thus obtained may be isolated and used as a component for forming the mixture according to the present invention. Alternatively, without isolating the polyamic acid having the repeating unit represented by the general formula (1), the tetracarboxylic dianhydride represented by the general formula (3) and the general formula (3) in an organic solvent can be used. 4) The reaction solution obtained by reacting with the aromatic diamine represented by 4) (the reaction solution containing the polyamic acid having the repeating unit represented by the general formula (1)) is used as it is. You may utilize as a component for forming the mixture concerning this invention in the state which exists in a liquid. In addition, when isolating and using the polyamic acid which has a repeating unit represented by the said General formula (1) from the said reaction liquid, it does not restrict | limit especially as an isolation method, It is possible to isolate a polyamic acid. Such known methods can be employed as appropriate, and for example, a method of isolating as a reprecipitate may be employed.
 (ハロゲン系カルボン酸無水物)
 本発明にかかるハロゲン系カルボン酸無水物について説明する。本発明においては、比較的低温の加熱で十分な柔軟性を有するポリイミドを製造するために、化学イミド化時には適度な反応性(縮合性)を示し、比較的低温での加熱時(キュアリング時)にイミド閉環活性を得るという観点から、ハロゲン系カルボン酸無水物を脂肪族系三級アミンと組み合わせて利用する。このようなハロゲン系カルボン酸無水物以外の化合物を脂肪族系三級アミンと組み合わせても化学イミド化時には適度な反応性(縮合性)を示さず、比較的低温での加熱時にイミド閉環活性を得ることが出来ず、十分に柔軟でかつ光透過性の高いポリイミドを製造することができなくなる。
(Halogen carboxylic anhydride)
The halogen-based carboxylic acid anhydride according to the present invention will be described. In the present invention, in order to produce a polyimide having sufficient flexibility by heating at a relatively low temperature, moderate reactivity (condensability) is exhibited during chemical imidization, and heating at a relatively low temperature (during curing) From the standpoint of obtaining imide ring-closing activity, a halogen-based carboxylic acid anhydride is used in combination with an aliphatic tertiary amine. Even when such compounds other than halogen-based carboxylic acid anhydrides are combined with aliphatic tertiary amines, they do not exhibit appropriate reactivity (condensation) during chemical imidization, and exhibit imide ring-closing activity when heated at relatively low temperatures. It is not possible to obtain a polyimide that is sufficiently flexible and highly light transmissive.
 ここで、ハロゲン系カルボン酸無水物とは、カルボン酸無水物基と、少なくとも1つのハロゲン原子を含有する脂肪族基とが結合した化合物{ハロゲン置換脂肪族基(少なくとも1つの水素原子がハロゲン原子に置換された脂肪族基)とカルボン酸無水物基とが結合した化合物}をいう。このように、本発明にかかるハロゲン系カルボン酸無水物としては、適度な反応性、適度なイミド閉環活性、揮発性の観点から、少なくとも1つの水素原子がハロゲン原子に置換された脂肪族基(ハロゲン原子置換脂肪族基)と、カルボン酸無水物基とが結合した化合物が用いられる。 Here, the halogen-based carboxylic acid anhydride is a compound in which a carboxylic acid anhydride group and an aliphatic group containing at least one halogen atom are bonded {halogen-substituted aliphatic group (at least one hydrogen atom is a halogen atom). A compound in which an aliphatic group substituted with a carboxylic acid anhydride group is bonded}. As described above, the halogen-based carboxylic acid anhydride according to the present invention includes an aliphatic group in which at least one hydrogen atom is substituted with a halogen atom (from the viewpoint of moderate reactivity, moderate imide ring-closing activity, and volatility). A compound in which a halogen atom-substituted aliphatic group) and a carboxylic acid anhydride group are bonded is used.
 また、このようなハロゲン系カルボン酸無水物中に含有されるハロゲン原子としては、適度な反応性、適度なイミド閉環活性、揮発性の観点から、フッ素原子、クロロ原子、ブロモ原子が好ましく、フッ素原子、クロロ原子がより好ましく、フッ素原子が特に好ましい。また、前記ハロゲン原子置換脂肪族基中の脂肪族基としては、炭素数が1~5の直鎖状のアルキル基、炭素数が3~5の分岐状のアルキル基が好ましく、炭素数が1~3の直鎖状のアルキル基がより好ましい。 In addition, the halogen atom contained in such a halogen-based carboxylic acid anhydride is preferably a fluorine atom, a chloro atom, or a bromo atom from the viewpoint of moderate reactivity, moderate imide ring-closing activity, and volatility. An atom and a chloro atom are more preferable, and a fluorine atom is particularly preferable. In addition, the aliphatic group in the halogen atom-substituted aliphatic group is preferably a linear alkyl group having 1 to 5 carbon atoms or a branched alkyl group having 3 to 5 carbon atoms. A linear alkyl group of ˜3 is more preferred.
 また、このようなハロゲン系カルボン酸無水物の中でも、適度な反応性、適度なイミド閉環活性、揮発性の観点から、無水トリフルオロ酢酸、無水ジフルオロ酢酸、無水フルオロ酢酸、無水ペンタフルオロプロピオン酸、無水ヘプタフルオロ酪酸、無水トリクロロ酢酸、無水ジクロロ酢酸、無水クロロ酢酸、無水トリブロモ酢酸、無水ジブロモ酢酸、無水ブロモ酢酸、無水クロロジフルオロ酢酸、無水クロロテトラフルオロプロピオン酸、無水クロロヘキサフルオロ酪酸、及び、これらの無水物(無水トリフルオロ酢酸、無水ジフルオロ酢酸、無水フルオロ酢酸、無水ペンタフルオロプロピオン酸、無水ヘプタフルオロ酪酸等)を形成する酸(トリフルオロ酢酸、ジフルオロ酢酸、フルオロ酢酸、ペンタフルオロプロピオン酸、ヘプタフルオロ酪酸等)の混合酸無水物の中から選択される少なくとも1種が好ましく、無水トリフルオロ酢酸、無水ペンタフルオロプロピオン酸、無水ヘプタフルオロ酪酸及びこれらの無水物を形成する酸の混合酸無水物の中から選択される少なくとも1種がより好ましく、無水トリフルオロ酢酸、無水ペンタフルオロプロピオン酸及びこれらの無水物を形成する酸の混合酸無水物の中から選択される少なくとも1種が更に好ましい。なお、ここにいう「混合酸無水物」とは、2種類のハロゲン系カルボン酸が脱水縮合することにより得られる酸無水物をいう。更に、これらのハロゲン系カルボン酸無水物の中でも、無水トリフルオロ酢酸、無水ペンタフルオロプロピオン酸、無水ヘプタフルオロ酪酸がより好ましく、無水トリフルオロ酢酸、無水ペンタフルオロプロピオン酸が特に好ましい。なお、このようなハロゲン系カルボン酸無水物は、1種を単独で利用してもよく、あるいは、2種以上を組み合わせて利用してもよい。 Among such halogen-based carboxylic acid anhydrides, from the viewpoint of moderate reactivity, moderate imide ring-closing activity, and volatility, trifluoroacetic anhydride, difluoroacetic anhydride, fluoroacetic anhydride, pentafluoropropionic anhydride, Heptafluorobutyric anhydride, trichloroacetic anhydride, dichloroacetic anhydride, chloroacetic anhydride, tribromoacetic anhydride, dibromoacetic anhydride, bromoacetic anhydride, chlorodifluoroacetic anhydride, chlorotetrafluoropropionic anhydride, chlorohexafluorobutyric anhydride, and these Forming acids (trifluoroacetic acid, difluoroacetic acid, fluoroacetic acid, pentafluoropropionic acid, heptaful) that form anhydrides (trifluoroacetic anhydride, difluoroacetic anhydride, fluoroacetic anhydride, pentafluoropropionic anhydride, heptafluorobutyric anhydride, etc.) At least one selected from mixed acid anhydrides of robutyric acid and the like, and trifluoroacetic anhydride, pentafluoropropionic anhydride, heptafluorobutyric anhydride, and mixed acid anhydrides of these acids forming these anhydrides More preferably, at least one selected from the group consisting of trifluoroacetic anhydride, pentafluoropropionic anhydride, and a mixed acid anhydride of acids forming these anhydrides is more preferable. The “mixed acid anhydride” here refers to an acid anhydride obtained by dehydration condensation of two types of halogen-based carboxylic acids. Furthermore, among these halogen-based carboxylic anhydrides, trifluoroacetic anhydride, pentafluoropropionic anhydride, and heptafluorobutyric anhydride are more preferable, and trifluoroacetic anhydride and pentafluoropropionic anhydride are particularly preferable. In addition, such a halogen-type carboxylic anhydride may be used individually by 1 type, or may be used in combination of 2 or more type.
 このようなハロゲン系カルボン酸無水物を製造するための方法としては特に制限されず、公知の方法を適宜採用することができる。また、このようなハロゲン系カルボン酸無水物としては市販のものを適宜用いてもよい。 The method for producing such a halogen-based carboxylic acid anhydride is not particularly limited, and a known method can be appropriately employed. Moreover, as such a halogen-type carboxylic acid anhydride, you may use a commercially available thing suitably.
 (脂肪族系三級アミン)
 本発明にかかる脂肪族系三級アミンについて説明する。本発明においては、適度な反応性、適度なイミド閉環活性、揮発性の観点から、前記脂肪族系三級アミンを前記ハロゲン系カルボン酸無水物と組み合わせて利用する。このような脂肪族系三級アミン以外の化合物を前記ハロゲン系カルボン酸無水物と組み合わせても、適度な反応性、適度なイミド閉環活性、揮発性を示さず、十分に柔軟でかつ光透過性の高いポリイミドを製造することができなくなる。
(Aliphatic tertiary amine)
The aliphatic tertiary amine according to the present invention will be described. In the present invention, the aliphatic tertiary amine is used in combination with the halogenated carboxylic acid anhydride from the viewpoints of moderate reactivity, moderate imide ring-closing activity, and volatility. Even when such a compound other than an aliphatic tertiary amine is combined with the halogen-based carboxylic acid anhydride, it does not exhibit moderate reactivity, moderate imide ring-closing activity, and volatility, and is sufficiently flexible and light transmissive. High polyimide cannot be produced.
 このような脂肪族系三級アミンとしては、下記一般式(5): As such an aliphatic tertiary amine, the following general formula (5):
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
[式(5)中、Rはそれぞれ独立に脂肪族基を示す。]
で表される化合物であることが好ましい。
[In Formula (5), each R 3 independently represents an aliphatic group. ]
It is preferable that it is a compound represented by these.
 このような一般式(5)中のRは同一であっても異なっていてもよく、それぞれが脂肪族基であればよい。このようなRとして利用される脂肪族基としては、適度な反応性、適度なイミド閉環活性、揮発性の観点から、炭素数1から10の直鎖状の脂肪族基、炭素数1から10の分岐状の脂肪族基が好ましい。また、Rはそれぞれ独立に、炭素数1~5のアルキル基であることがより好ましく、炭素数1~2のアルキル基であることが特に好ましい。なお、このようなアルキル基の炭素数が前記上限を超えると適度な反応性、適度なイミド閉環活性、揮発性を示さない傾向にある。 R 3 in the general formula (5) may be the same or different and each may be an aliphatic group. Examples of the aliphatic group used as R 3 include a linear aliphatic group having 1 to 10 carbon atoms and a carbon number of 1 from the viewpoint of moderate reactivity, moderate imide ring-closing activity, and volatility. Ten branched aliphatic groups are preferred. Further, each R 3 is more preferably an alkyl group having 1 to 5 carbon atoms, and particularly preferably an alkyl group having 1 to 2 carbon atoms. In addition, when the carbon number of such an alkyl group exceeds the upper limit, there is a tendency that moderate reactivity, moderate imide ring-closing activity and volatility are not exhibited.
 また、前記脂肪族系三級アミンとしては、例えば、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリイソプロピルアミン、ジイソプロピルエチルアミン、トリブチルアミン、トリペンチルアミン、DBU、DBN、DABCOが挙げられ、適度な反応性、適度なイミド閉環活性、揮発性の観点から、中でも、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリイソプロピルアミン、ジイソプロピルエチルアミンがより好ましく、トリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミンが更に好ましい。なお、このような脂肪族系三級アミンは、1種を単独で利用してもよく、あるいは、2種以上を組み合わせて利用してもよい。 Examples of the aliphatic tertiary amine include trimethylamine, triethylamine, tripropylamine, triisopropylamine, diisopropylethylamine, tributylamine, tripentylamine, DBU, DBN, DABCO, and moderate reactivity. From the viewpoint of moderate imide ring-closing activity and volatility, trimethylamine, triethylamine, tripropylamine, triisopropylamine, and diisopropylethylamine are more preferable, and trimethylamine, triethylamine, and diisopropylethylamine are more preferable. In addition, such an aliphatic tertiary amine may be used individually by 1 type, or may be used in combination of 2 or more type.
 このような脂肪族系三級アミンを製造するための方法としては特に制限されず、公知の方法を適宜採用することができる。また、このような脂肪族系三級アミンとしては市販のものを適宜用いてもよい。 The method for producing such an aliphatic tertiary amine is not particularly limited, and a known method can be appropriately employed. Moreover, you may use a commercially available thing suitably as such an aliphatic type | system | group tertiary amine.
 (混合物)
 次に、本発明にかかる混合物について説明する。本発明にかかる混合物は、前記一般式(1)で表される繰り返し単位を有するポリアミド酸と、前記ハロゲン系カルボン酸無水物と、前記脂肪族系三級アミンとを含有する混合物である。このように、本発明にかかる混合物においては、いわゆるイミド化剤の中から、前記ハロゲン系カルボン酸無水物と前記脂肪族系三級アミンとを選択して組み合わせて含有させている。このように、前記混合物が前記ハロゲン系カルボン酸無水物と前記脂肪族系三級アミンと選択して組み合わせて利用するものであるため、その理由は必ずしも定かではないが、比較的低温(モノマーによっても異なるものではあるが、例えば、300℃以下程度の低温、好ましくは250℃以下程度の低温、より好ましくは230℃以下程度の低温、更に好ましくは210℃以下程度の低温)の加熱であっても、前記ポリアミド酸を効率よくイミド化することが可能となり、光透過性が十分に高い脂環式のポリイミドを効率よく製造できる。
(blend)
Next, the mixture according to the present invention will be described. The mixture concerning this invention is a mixture containing the polyamic acid which has a repeating unit represented by the said General formula (1), the said halogen-type carboxylic anhydride, and the said aliphatic tertiary amine. Thus, in the mixture according to the present invention, the halogenated carboxylic acid anhydride and the aliphatic tertiary amine are selected and combined from so-called imidizing agents. As described above, since the mixture is selected and used in combination with the halogenated carboxylic acid anhydride and the aliphatic tertiary amine, the reason is not necessarily clear, but the temperature is relatively low (depending on the monomer). However, for example, a low temperature of about 300 ° C. or lower, preferably a low temperature of about 250 ° C. or lower, more preferably a low temperature of about 230 ° C. or lower, more preferably a low temperature of about 210 ° C. or lower). However, the polyamic acid can be efficiently imidized, and an alicyclic polyimide having a sufficiently high light transmittance can be efficiently produced.
 このような混合物は、塗布し易く、より加工性能が向上するといった観点から、有機溶媒を含むものとしてもよい。このような有機溶媒としては、前記ポリアミド酸を得る工程において用いる有機溶媒として説明したものと同様の有機溶媒を用いることが好ましい。また、このような混合物としては、特に制限されるものではないが、ポリイミドの製造効率の向上の観点から、前記ポリアミド酸を得る工程を採用して、有機溶媒中において上記一般式(3)で表されるテトラカルボン酸二無水物と上記一般式(4)で表される芳香族ジアミンとを反応させて反応液(上記一般式(1)で表される繰り返し単位を有するポリアミド酸を含有する反応液)を得た後、該反応液をそのまま利用して、前記反応液中に前記ハロゲン系カルボン酸無水物と前記脂肪族系三級アミンとを添加して得られるものを好適に利用できる。 Such a mixture may contain an organic solvent from the viewpoint of easy application and improved processing performance. As such an organic solvent, it is preferable to use an organic solvent similar to that described as the organic solvent used in the step of obtaining the polyamic acid. Further, such a mixture is not particularly limited, but from the viewpoint of improving the production efficiency of the polyimide, a step of obtaining the polyamic acid is adopted, and the above general formula (3) is used in an organic solvent. A reaction liquid (containing a polyamic acid having a repeating unit represented by the above general formula (1) by reacting the tetracarboxylic dianhydride represented by the aromatic diamine represented by the above general formula (4). After the reaction solution is obtained, the reaction solution is used as it is, and the one obtained by adding the halogen-based carboxylic acid anhydride and the aliphatic tertiary amine to the reaction solution can be suitably used. .
 また、このような混合物においては、該混合物中の前記ハロゲン系カルボン酸無水物の含有割合が、前記ポリアミド酸の繰り返し単位1モルに対して0.01~4.0モル(より好ましくは0.1~3.0、更に好ましくは0.2~2.0)であることが好ましい。このようなハロゲン系カルボン酸無水物の含有割合が前記下限未満では前記ハロゲン系カルボン酸無水物を添加することにより得られる効果が不十分となる(添加効果が低下する)傾向にあり、他方、前記上限を超えると、混合物中にポリマーの沈殿が生じる原因となり、混合物が不均一なものとなる傾向にある。なお、前記混合物が不均一なものとなると均一に流延(キャスト製膜)することが不可能となる。そして、そのようなキャスト製膜後の塗膜を乾燥した場合には、均一なポリアミック酸とポリイミドの混合物よりなるフィルム(乾燥塗膜)を製造することが不可能となり、結果として透明かつ均一なフィルムを得ることができなくなる。 In such a mixture, the content of the halogen-based carboxylic acid anhydride in the mixture is 0.01 to 4.0 mol (more preferably, 0.00 mol) with respect to 1 mol of the polyamic acid repeating unit. 1 to 3.0, more preferably 0.2 to 2.0). When the content ratio of such a halogenated carboxylic acid anhydride is less than the lower limit, the effect obtained by adding the halogenated carboxylic acid anhydride tends to be insufficient (additional effect is reduced), When the upper limit is exceeded, polymer precipitation occurs in the mixture, and the mixture tends to be non-uniform. If the mixture is non-uniform, uniform casting (cast film formation) becomes impossible. And when such a cast-coated film is dried, it becomes impossible to produce a film (dried film) made of a mixture of uniform polyamic acid and polyimide, resulting in a transparent and uniform film. The film cannot be obtained.
 また、本発明にかかる混合物においては、該混合物中の前記脂肪族系三級アミンの含有割合が、前記ポリアミド酸の繰り返し単位1モルに対して0.01~4.0モル(より好ましくは0.1~3.0、更に好ましくは0.2~2.0)であることが好ましい。このような脂肪族系三級アミンの含有割合が前記下限未満では前記脂肪族系三級アミンを添加することにより得られる効果が不十分となる(添加効果が低下する)傾向にあり、他方、前記上限を超えると混合物中にポリマーの沈殿が生じる原因となり、混合物が不均一なものとなる傾向にある。 In the mixture according to the present invention, the content of the aliphatic tertiary amine in the mixture is 0.01 to 4.0 mol (more preferably 0 mol) per mol of the polyamic acid repeating unit. 0.1 to 3.0, more preferably 0.2 to 2.0). If the content ratio of the aliphatic tertiary amine is less than the lower limit, the effect obtained by adding the aliphatic tertiary amine tends to be insufficient (addition effect is reduced), If the upper limit is exceeded, polymer precipitation occurs in the mixture, and the mixture tends to be non-uniform.
 また、このような混合物が有機溶媒を含有する場合には、前記混合物中の前記ポリアミド酸の含有量は、1~50質量%とすることが好ましく、10~30質量%とすることが好ましい。このようなポリイミド酸の含有量が前記下限未満では、混合物中において化学イミド化反応が十分に進行しなくなる傾向にあり、他方、前記上限を超えても、やはり化学イミド化反応が十分に進行しなくなる傾向にある。 In addition, when such a mixture contains an organic solvent, the content of the polyamic acid in the mixture is preferably 1 to 50% by mass, and preferably 10 to 30% by mass. If the content of such polyimide acid is less than the lower limit, the chemical imidation reaction tends not to proceed sufficiently in the mixture. On the other hand, even if the upper limit is exceeded, the chemical imidization reaction also proceeds sufficiently. It tends to disappear.
 また、このような混合物の製造方法としては特に制限されないが、前記ポリアミド酸を得る工程を採用して、有機溶媒中において上記一般式(3)で表されるテトラカルボン酸二無水物と上記一般式(4)で表される芳香族ジアミンとを反応させて反応液(上記一般式(1)で表される繰り返し単位を有するポリアミド酸を含有する反応液)を得た後、該反応液をそのまま利用して、前記反応液中に前記ハロゲン系カルボン酸無水物と前記脂肪族系三級アミンとを添加する方法(A)や、前記ポリアミド酸を得る工程を採用して上記一般式(1)で表される繰り返し単位を有するポリアミド酸を含有する反応液を得た後、前記反応液中から前記ポリアミド酸を単離し、その後、単離したポリアミド酸を有機溶媒に溶解して、ポリアミド酸を含有する溶解液を得て、その溶解液に前記ハロゲン系カルボン酸無水物と前記脂肪族系三級アミンとを添加する方法(B)を採用してもよい。なお、このような方法の中でも、ポリイミドをより効率よく製造するという観点からは、上述の方法(A)を採用することが好ましい。 In addition, the method for producing such a mixture is not particularly limited, but adopting the step of obtaining the polyamic acid, the tetracarboxylic dianhydride represented by the above general formula (3) and the above general formula in an organic solvent. After reacting with the aromatic diamine represented by the formula (4) to obtain a reaction liquid (reaction liquid containing a polyamic acid having a repeating unit represented by the general formula (1)), the reaction liquid is Utilizing the method as it is, the method (A) of adding the halogenated carboxylic acid anhydride and the aliphatic tertiary amine to the reaction solution, or the step of obtaining the polyamic acid is adopted. ) Is obtained, and then the polyamic acid is isolated from the reaction liquid, and then the isolated polyamic acid is dissolved in an organic solvent to obtain a polyamic acid. The Lysates obtained with a method may be adopted (B) of adding said halogen-containing carboxylic acid anhydride and the aliphatic tertiary amine in its solution. Of these methods, the method (A) described above is preferably employed from the viewpoint of more efficiently producing polyimide.
 また、このような混合物の製造方法においては、前記ポリアミド酸を含有するポリアミド酸含有液(前記反応液又は前記溶解液)に対して前記ハロゲン系カルボン酸無水物と前記脂肪族系三級アミンを添加する順序は、特に制限されるものではなく、同時に添加してもよいが、前記脂肪族系三級アミンを添加した後に、記ハロゲン系カルボン酸無水物を添加することが好ましい。このような順序で前記ハロゲン系カルボン酸無水物と前記脂肪族系三級アミンを添加することにより、化学イミド化時には適度な反応性(縮合性)を示し、比較的低温での加熱時(キュアリング時)にイミド閉環活性が得られ、結果として比較的低温の加熱で十分な柔軟性を有するポリイミドを製造することが可能となる。 In the method for producing such a mixture, the halogenated carboxylic acid anhydride and the aliphatic tertiary amine are added to the polyamic acid-containing liquid containing the polyamic acid (the reaction liquid or the solution). The order of addition is not particularly limited and may be added at the same time. However, it is preferable to add the halogenated carboxylic acid anhydride after adding the aliphatic tertiary amine. By adding the halogenated carboxylic acid anhydride and the aliphatic tertiary amine in this order, an appropriate reactivity (condensability) is exhibited during chemical imidization, and heating at a relatively low temperature (curing). Imide ring-closing activity is obtained at the time of ringing, and as a result, it becomes possible to produce a polyimide having sufficient flexibility by heating at a relatively low temperature.
 また、前記混合物の製造方法においては、前記ハロゲン系カルボン酸無水物と前記脂肪族系三級アミンを添加する際の雰囲気条件としては、特に制限されず、窒素等の不活性ガス下で実施する等、一般的な化学イミド化条件としてもよい。また、前記混合物の製造方法においては、前記ハロゲン系カルボン酸無水物と前記脂肪族系三級アミンを添加する際の温度条件としては、特に制限されるものではないが、-30℃~80℃とすることが好ましく、0℃~60℃とすることがより好ましい。このような温度条件が前記下限未満では粘度上昇や固化が起こり撹拌が不可能になる傾向にあり、他方、前記上限を超えるとポリイミド生成による沈殿発生に伴う不均一化や、ポリアミド酸のアミド結合切断による分子量低下が起こる傾向にある。なお、このような温度条件を満たすために、例えば、前記ポリアミド酸含有液(前記反応液又は前記溶解液)を氷浴で冷却しながら、前記ハロゲン系カルボン酸無水物と前記脂肪族系三級アミンとを添加してもよい。 Moreover, in the manufacturing method of the said mixture, it does not restrict | limit especially as atmospheric conditions at the time of adding the said halogen-type carboxylic anhydride and the said aliphatic tertiary amine, It implements under inert gas, such as nitrogen. It is good also as general chemical imidation conditions, such as. In the method for producing the mixture, the temperature condition for adding the halogenated carboxylic acid anhydride and the aliphatic tertiary amine is not particularly limited, but is −30 ° C. to 80 ° C. Preferably, the temperature is 0 ° C. to 60 ° C. If such temperature condition is less than the lower limit, viscosity tends to increase or solidify and stirring tends to be impossible.On the other hand, if the upper limit is exceeded, non-uniformity due to precipitation due to polyimide formation or amide bond of polyamic acid occurs. There is a tendency for molecular weight reduction due to cleavage. In order to satisfy such a temperature condition, for example, while cooling the polyamic acid-containing liquid (the reaction liquid or the solution) in an ice bath, the halogen-based carboxylic acid anhydride and the aliphatic tertiary class are used. An amine may be added.
 また、上述のような混合物の製造に際しては、前記ポリアミド酸含有液(前記反応液又は前記溶解液)に、前記ハロゲン系カルボン酸無水物と前記脂肪族系三級アミンとを添加することにより、化学イミド化により部分的にポリイミドを生成することが可能となる。そのため、上述のような混合物の製造に際しては、混合物中において、部分的にポリイミドを生成しながら、より均一な混合物を得るといった観点から、前記ポリアミド酸含有液(前記反応液又は前記溶解液)に対して、前記ハロゲン系カルボン酸無水物と前記脂肪族系三級アミンを添加した後に、該混合物を混合(撹拌)する工程を実施することが好ましい。また、このような混合(撹拌)する工程は、80℃未満の温度条件下(より好ましくは-30~60℃の温度条件下、特に好ましくは0℃~40℃の温度条件下)において混合(撹拌)する工程であることがより好ましい。このような混合(撹拌)する工程を実施することにより、いわゆる化学イミド化反応によって、混合物中において部分的にポリイミドを生成しつつ均一な混合物とすることができる。なお、本発明においては、前記ハロゲン系カルボン酸無水物と前記脂肪族系三級アミンを組み合わせて利用しているため、部分的にポリイミドが生成されても十分に均一性の高い混合物とすることが可能である。そのため、上記温度条件下において混合されて得られた混合物を加熱してイミド化する場合、比較的低温の加熱でポリイミドを製造することが可能となり、光透過性の十分に高いポリイミドをより効率よく製造することが可能となる傾向にある。ここにおいて、前記混合(撹拌)時の温度条件が前記下限未満では、前記混合物中において部分的な化学イミド化反応が十分に進行しなくなり、最終的なイミド化の際に高温での加熱が必要となる傾向にあり、他方、前記上限を超えると、イミド化が必要以上に進行することからポリマーの沈殿が析出し、前記混合物が不均一なものとなって、結果的に均一なフィルムは得られなくなる傾向にある。 Further, in the production of the mixture as described above, by adding the halogen-based carboxylic acid anhydride and the aliphatic tertiary amine to the polyamic acid-containing liquid (the reaction liquid or the solution), It is possible to partially produce polyimide by chemical imidization. Therefore, in producing the mixture as described above, the polyamic acid-containing solution (the reaction solution or the solution) is added to the polyamic acid-containing solution (the reaction solution or the solution) from the viewpoint of obtaining a more uniform mixture while partially generating polyimide in the mixture. On the other hand, it is preferable to carry out a step of mixing (stirring) the mixture after adding the halogen-based carboxylic acid anhydride and the aliphatic tertiary amine. In addition, such mixing (stirring) is performed under a temperature condition of less than 80 ° C. (more preferably, a temperature condition of −30 to 60 ° C., particularly preferably a temperature condition of 0 ° C. to 40 ° C.). The step of stirring) is more preferable. By carrying out such a step of mixing (stirring), it is possible to obtain a uniform mixture while partially generating polyimide in the mixture by a so-called chemical imidation reaction. In the present invention, since the halogenated carboxylic acid anhydride and the aliphatic tertiary amine are used in combination, even if a polyimide is partially formed, the mixture should be sufficiently uniform. Is possible. Therefore, when the mixture obtained by mixing under the above temperature conditions is heated and imidized, it becomes possible to produce polyimide by heating at a relatively low temperature, and a polyimide having sufficiently high light transmittance is more efficiently produced. It tends to be possible to manufacture. Here, if the temperature condition at the time of mixing (stirring) is less than the lower limit, the partial chemical imidization reaction does not proceed sufficiently in the mixture, and heating at a high temperature is necessary for final imidization. On the other hand, if the upper limit is exceeded, imidization proceeds more than necessary, so that the polymer precipitates and the mixture becomes non-uniform, resulting in a uniform film. There is a tendency to become impossible.
 また、このようにして、前記ポリアミド酸を含有する反応液又は前記ポリアミド酸を含有する溶解液に対して、前記ハロゲン系カルボン酸無水物と前記脂肪族系三級アミンを添加した後に混合する場合、その混合工程を施す時間(前記混合物中において化学イミド化反応を行う反応時間)は、1時間~50時間にすることが好ましく、12時間~24時間とすることがより好ましい。このような混合時間(反応時間)が前記下限未満では、混合物中において、化学イミド化反応が十分に進行しなくなり、最終的な熱イミド化の際に高温で加熱する必要が生じる傾向にあり、他方、前記上限を超えると、化学イミド化が進行し過ぎて、混合物が不均一なものとなり、均一なフィルムは得られなくなる傾向にある。 Further, when the halogenated carboxylic acid anhydride and the aliphatic tertiary amine are added to the reaction solution containing the polyamic acid or the solution containing the polyamic acid in this way and then mixed. The time for performing the mixing step (reaction time for performing the chemical imidization reaction in the mixture) is preferably 1 to 50 hours, and more preferably 12 to 24 hours. If such mixing time (reaction time) is less than the lower limit, in the mixture, the chemical imidation reaction does not proceed sufficiently, and there is a tendency that it is necessary to heat at a high temperature in the final thermal imidation, On the other hand, when the upper limit is exceeded, chemical imidization proceeds excessively, the mixture becomes non-uniform, and there is a tendency that a uniform film cannot be obtained.
 また、前記ハロゲン系カルボン酸無水物と前記脂肪族系三級アミンを添加した後に混合する際の雰囲気条件としては、空気中の酸素による着色防止、分子量を低下させる空気中の水蒸気の混入防止という観点から、窒素などの不活性ガス条件とすることや、乾燥条件とすること(例えばドライボックス中で混合を実施すること)が好ましい。また、混合物を製造する際の圧力条件としては特に制限されるものではないが、0.01MPa~1MPaであることが好ましく、0.1MPa~0.3MPaであることがより好ましい。このような圧力が前記下限未満では溶媒や前記ハロゲン系カルボン酸無水物や前記脂肪族系三級アミンが気化してしまう傾向にあり、他方、前記上限を超えると、重合操作や、前記ハロゲン系カルボン酸無水物や前記脂肪族系三級アミンの添加が困難になる傾向にある。 In addition, as atmospheric conditions when mixing after adding the halogen-based carboxylic acid anhydride and the aliphatic tertiary amine, the prevention of coloring due to oxygen in the air, the prevention of mixing of water vapor in the air to reduce the molecular weight From the viewpoint, it is preferable to use an inert gas condition such as nitrogen or a dry condition (for example, to perform mixing in a dry box). The pressure conditions for producing the mixture are not particularly limited, but are preferably 0.01 MPa to 1 MPa, more preferably 0.1 MPa to 0.3 MPa. If the pressure is less than the lower limit, the solvent, the halogenated carboxylic acid anhydride, or the aliphatic tertiary amine tends to vaporize. On the other hand, if the pressure exceeds the upper limit, the polymerization operation or the halogenated Addition of a carboxylic acid anhydride or the aliphatic tertiary amine tends to be difficult.
 このように、前記混合物としては、前記ポリアミド酸含有液(前記ポリアミド酸を含有する反応液又は前記ポリアミド酸を含有する溶解液)に対して、前記ハロゲン系カルボン酸無水物と前記脂肪族系三級アミンを添加した後に、80℃未満の温度条件下において1時間~50時間混合(撹拌)したものを利用することが好ましい。なお、このような撹拌後の混合物は、前述のように、混合物中において、部分的にイミド化(化学イミド化)が進行するため、後述の一般式(2)で表される繰り返し単位を有するポリイミドと、前記一般式(1)で表されるポリアミド酸とを含有するものとなる。 Thus, as the mixture, the halogenated carboxylic acid anhydride and the aliphatic three-component solution are used for the polyamic acid-containing liquid (the reaction liquid containing the polyamic acid or the solution containing the polyamic acid). It is preferable to use a mixture obtained by mixing (stirring) under the temperature condition of less than 80 ° C. for 1 hour to 50 hours after adding the primary amine. In addition, since the imidization (chemical imidation) proceeds partially in the mixture as described above, the mixture after stirring has a repeating unit represented by the general formula (2) described later. It contains polyimide and the polyamic acid represented by the general formula (1).
 (ポリアミド酸のイミド化工程)
 次に、ポリアミド酸のイミド化工程について説明する。本発明においては、前記混合物を用いて前記ポリアミド酸をイミド化することにより、下記一般式(2):
(Imidization process of polyamic acid)
Next, the imidization process of a polyamic acid is demonstrated. In the present invention, by imidizing the polyamic acid using the mixture, the following general formula (2):
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
で表される繰り返し単位を有するポリイミドを得る。なお、上記一般式(2)中、R及びRは、それぞれ前記一般式(1)中のR及びRと同義である(好適なものも同義である。)
 このようなイミド化の方法としては、前記混合物を用いて前記ポリアミド酸をイミド化し得る方法であればよく、特に制限されず、公知の方法を適宜採用することができるが、前記混合物を加熱する工程を含むことが好ましい。このような加熱工程により熱イミド化反応を効率よく進行させることが可能となる。また、このような加熱工程に利用する混合物としては、前記混合物中において前記ポリアミド酸の化学イミド化反応を部分的に進行せしめたものを利用することが好ましく、かかる観点から、前記ポリアミド酸含有液(前記ポリアミド酸を含有する反応液又は前記ポリアミド酸を含有する溶解液)に対して、前記ハロゲン系カルボン酸無水物と前記脂肪族系三級アミンを添加した後に混合(撹拌)したものを利用することがより好ましく、前記ポリアミド酸含有液に対して前記ハロゲン系カルボン酸無水物と前記脂肪族系三級アミンを添加した後に80℃未満の温度条件下において1時間~50時間混合(撹拌)したものを利用することが更に好ましい。すなわち、本発明においては、前記ポリアミド酸をイミド化する工程に、前記混合物を撹拌(混合)する工程(上述の混合物の製造方法において説明した混合(撹拌)する工程)と、前記混合物を加熱する工程とを含むことが好ましい。これにより、前記混合物中において前記ポリアミド酸の化学イミド化反応を部分的に進行せしめた後に、前記混合物を加熱して熱イミド化反応を進行せしめることが可能となり、より低温の加熱で、より効率よくポリイミドを製造することが可能となる。
The polyimide which has a repeating unit represented by this is obtained. The above general formula (2), R 1 and R 2 are each the in formula (1) the same meaning as R 1 and R 2 in (also synonymous suitable.)
The imidization method is not particularly limited as long as it is a method capable of imidizing the polyamic acid using the mixture, and a known method can be appropriately employed, but the mixture is heated. It is preferable to include a process. Such a heating step allows the thermal imidization reaction to proceed efficiently. Further, as the mixture used in such a heating step, it is preferable to use a mixture obtained by partially advancing the chemical imidation reaction of the polyamic acid in the mixture. From this viewpoint, the polyamic acid-containing liquid is used. Utilizing (mixing (stirring) after adding the halogenated carboxylic acid anhydride and the aliphatic tertiary amine to the reaction solution containing the polyamic acid or the solution containing the polyamic acid) More preferably, after adding the halogen-based carboxylic acid anhydride and the aliphatic tertiary amine to the polyamic acid-containing liquid, mixing (stirring) at a temperature of less than 80 ° C. for 1 hour to 50 hours It is more preferable to use the above. That is, in the present invention, in the step of imidizing the polyamic acid, the step of stirring (mixing) the mixture (the step of mixing (stirring) described in the above-described method for producing a mixture) and the mixture are heated. It is preferable to include a process. As a result, the chemical imidization reaction of the polyamic acid partially proceeds in the mixture, and then the mixture can be heated to allow the thermal imidization reaction to proceed. It is possible to manufacture polyimide well.
 また、このような混合物を加熱する工程は、より低温で加熱してポリイミドの着色を防止するといった観点から、得られるポリイミドのガラス転移温度(Tg)よりも80~300℃低い温度(より好ましくはTgよりも100~200℃低い温度、更に好ましくはTgよりも120~180℃低い温度)で前記混合物を加熱(焼成)する工程であることが好ましい。このような加熱温度が前記上限を超えるとポリイミドの着色を必ずしも十分に抑制することが困難となる傾向にあり、他方、前記下限未満では、イミド化が十分に進行しなくなる傾向にある。なお、このような加熱温度で加熱してイミド化することにより、比較的低温で加熱しながらも、NMR測定においてポリアミド酸に由来するカルボン酸(-COOH)のプロトンやアミド(NHCO)に由来するプロトンが観測されないような状態となるように、ポリアミド酸を十分にイミド化することも可能となる。また、本発明によれば、ポリイミドのガラス転移温度(Tg)よりも80~300℃低い低温での加熱によっても、柔軟性の高いポリイミドを製造することが可能である。 In addition, the step of heating such a mixture is performed at a temperature lower than the glass transition temperature (Tg) of the resulting polyimide by 80 to 300 ° C. (more preferably, from the viewpoint of preventing coloring of the polyimide by heating at a lower temperature. The step is preferably a step of heating (firing) the mixture at a temperature 100 to 200 ° C. lower than Tg, more preferably a temperature 120 to 180 ° C. lower than Tg. When such a heating temperature exceeds the upper limit, it tends to be difficult to sufficiently suppress the coloring of the polyimide. On the other hand, when the heating temperature is lower than the lower limit, imidation does not proceed sufficiently. By imidating by heating at such a heating temperature, it is derived from protons of carboxylic acid (—COOH) derived from polyamic acid or amide (NHCO) in NMR measurement while heating at a relatively low temperature. It is possible to sufficiently imidize the polyamic acid so that protons are not observed. Further, according to the present invention, it is possible to produce a highly flexible polyimide by heating at a low temperature that is 80 to 300 ° C. lower than the glass transition temperature (Tg) of the polyimide.
 また、本発明において「ポリイミドのガラス転移温度(Tg)」は、以下のようなガラス転移温度(Tg)の測定方法により求めることができる。すなわち、ガラス転移温度(Tg)の測定方法としては、フィルム形状のポリイミドを形成して、縦20mm、横5mm、厚み0.02mm(20μm)の大きさのフィルムをそれぞれ形成した後に、そのフィルムを真空乾燥(120℃、1時間(Hr))し、窒素雰囲気下、200℃で1時間(Hr)熱処理して試料(乾燥フィルム)を得た後、その試料を用い、測定装置として熱機械的分析装置(リガク製の商品名「TMA8310」)を利用して、窒素雰囲気下、ペネトレーションモード、昇温速度10℃/分の条件を採用して30℃~400℃における前記試料の変化を測定して求める方法を採用することができる。 In the present invention, the “polyimide glass transition temperature (Tg)” can be determined by the following glass transition temperature (Tg) measurement method. That is, as a method for measuring the glass transition temperature (Tg), after forming a film-shaped polyimide and forming films each having a length of 20 mm, a width of 5 mm, and a thickness of 0.02 mm (20 μm), the film is formed. After vacuum drying (120 ° C., 1 hour (Hr)) and heat treatment in a nitrogen atmosphere at 200 ° C. for 1 hour (Hr) to obtain a sample (dry film), the sample is used as a thermomechanical measurement device. Using an analyzer (trade name “TMA8310” manufactured by Rigaku), the change in the sample at 30 ° C. to 400 ° C. was measured under the nitrogen atmosphere, using the penetration mode and the heating rate of 10 ° C./min. Can be used.
 また、前記混合物を加熱して前記ポリアミド酸をイミド化する際には、工業化やコスト低下の観点から、より低温で加熱(焼成)することが望まれる。このような観点から、前記混合物を加熱する工程においては、加熱温度が300℃以下であることが好ましく、80~250℃であることがより好ましく、100~230℃であることが更に好ましく、100~210℃特に好ましい。このような加熱温度が前記上限を超えると、加熱温度の上昇によりコストの低減を十分に図ることが困難となったり、非常に高度な水準で着色を抑制することは困難となる傾向にあり、他方、前記下限未満では反応の進行が遅くなり、効率よく柔軟なポリイミドを製造することが困難となる傾向にある。なお、このような低温(例えば230℃以下)での加熱による熱イミド化であっても、本発明においては、前記混合物を用いているため、十分な柔軟性等の機械的な特性を有するポリイミドを製造することもできる。 Further, when imidizing the polyamic acid by heating the mixture, it is desired to heat (sinter) at a lower temperature from the viewpoint of industrialization and cost reduction. From such a viewpoint, in the step of heating the mixture, the heating temperature is preferably 300 ° C. or less, more preferably 80 to 250 ° C., further preferably 100 to 230 ° C., ˜210 ° C. is particularly preferred. When such a heating temperature exceeds the upper limit, it becomes difficult to sufficiently reduce the cost due to an increase in the heating temperature, or it tends to be difficult to suppress coloring at a very high level. On the other hand, if the amount is less than the lower limit, the reaction proceeds slowly, and it tends to be difficult to produce a flexible polyimide efficiently. Even in the case of thermal imidization by heating at such a low temperature (for example, 230 ° C. or lower), since the mixture is used in the present invention, a polyimide having sufficient mechanical properties such as flexibility. Can also be manufactured.
 また、前記混合物を加熱する工程を実施する際の雰囲気条件としては、空気中の酸素による着色や、空気中の水蒸気による分子量低下を防止する観点から、窒素ガスなどの不活性ガス雰囲気や真空下とすることが好ましい。また、前記混合物を加熱する工程を実施する際の圧力条件としては特に制限されるものではないが、0.01hPa~1MPaであることが好ましく、0.1hPa~0.3MPaであることがより好ましい。このような圧力が前記下限未満では、溶媒や前記ハロゲン系カルボン酸無水物や前記脂肪族系三級アミンが瞬時に気化してしまい気泡やボイドが発生する傾向にあり、他方、前記上限を超えると、溶媒や前記ハロゲン系カルボン酸無水物や前記脂肪族系三級アミンの除去が困難になる傾向にある。 In addition, the atmospheric conditions for carrying out the step of heating the mixture include an inert gas atmosphere such as nitrogen gas or under vacuum from the viewpoint of preventing coloring due to oxygen in the air and molecular weight reduction due to water vapor in the air. It is preferable that The pressure condition for carrying out the step of heating the mixture is not particularly limited, but is preferably 0.01 hPa to 1 MPa, more preferably 0.1 hPa to 0.3 MPa. . If the pressure is less than the lower limit, the solvent, the halogenated carboxylic acid anhydride, and the aliphatic tertiary amine tend to be instantly vaporized to generate bubbles and voids, and on the other hand, exceed the upper limit. In addition, it tends to be difficult to remove the solvent, the halogen-based carboxylic acid anhydride, and the aliphatic tertiary amine.
 また、前記混合物を加熱する工程を施す場合において、前記混合物が溶媒を含むものである場合(例えば、溶液状のものである場合)には、加熱処理を施す前に乾燥処理を施すことが好ましい。このような乾燥処理により、上記一般式(1)で表される繰り返し単位を有するポリアミド酸をフィルム状などの形態にして単離した後、加熱処理を施すことも可能となる。 In addition, in the case where the step of heating the mixture is performed, when the mixture includes a solvent (for example, in the case of a solution), it is preferable to perform a drying process before performing the heat treatment. By such a drying treatment, the polyamic acid having the repeating unit represented by the general formula (1) is isolated in the form of a film or the like, and then heat treatment can be performed.
 このような乾燥処理における温度条件としては-20~80℃であることが好ましく、0~60℃であることがより好ましい。このような乾燥処理における温度条件が前記下限未満では、混合物が溶媒を含む場合に溶媒が除去できない傾向にあり、他方、前記上限を超えると、溶媒などの揮発成分が沸騰し、製膜時に気泡やボイドを含むフィルムになる傾向にある。また、このような乾燥処理の方法における雰囲気としては、不活性ガス雰囲気(例えば窒素雰囲気)とすることが好ましい。また、より効率よく乾燥を行うという観点から、このような乾燥処理における圧力の条件としては、0.01hPa~0.1MPaであることが好ましい。この場合において、例えば、フィルム状のポリイミドを製造する場合においては、前記混合物を基材上に塗布し、前記乾燥処理及び加熱処理を施せばよく、簡便な方法でフィルム状のポリイミドを製造することが可能となる。 The temperature condition in such a drying process is preferably −20 to 80 ° C., more preferably 0 to 60 ° C. If the temperature condition in such a drying process is less than the lower limit, the solvent tends to be unable to be removed when the mixture contains a solvent. On the other hand, if the mixture exceeds the upper limit, volatile components such as the solvent boil and bubbles are formed during film formation. And tends to be a film containing voids. Further, the atmosphere in such a drying treatment method is preferably an inert gas atmosphere (for example, a nitrogen atmosphere). From the viewpoint of more efficient drying, the pressure condition in such a drying process is preferably 0.01 hPa to 0.1 MPa. In this case, for example, in the case of producing a film-like polyimide, the mixture may be applied on a substrate, followed by the drying treatment and the heat treatment, and the film-like polyimide may be produced by a simple method. Is possible.
 また、フィルム状のポリイミドを製造する場合において、前記混合物を塗布するための基材としては特に制限されず、目的とするポリイミドからなるフィルムの形状等に応じて、フィルムの形成に用いることが可能な公知の材料からなる基材(例えば、ガラス板や金属板)を適宜用いることができる。 Moreover, when manufacturing a film-like polyimide, it is not restrict | limited especially as a base material for apply | coating the said mixture, According to the shape etc. of the film which consists of the target polyimide, it can be used for film formation A base material (for example, a glass plate or a metal plate) made of any known material can be used as appropriate.
 また、このように混合物を基材に塗布する場合において、その塗布方法は特に制限されず、公知の方法(キャスト法など)を適宜採用することができ、例えば、キャスト法、スピンコート法、スプレーコート法、ディップコート法、滴下法、グラビア印刷法、スクリーン印刷法、凸版印刷法、ダイコート法、カーテンコート法、インクジェット法等を適宜採用することもできる。 In addition, when the mixture is applied to the substrate in this way, the application method is not particularly limited, and a known method (such as a casting method) can be appropriately employed. For example, a casting method, a spin coating method, a spraying method can be used. A coating method, a dip coating method, a dropping method, a gravure printing method, a screen printing method, a relief printing method, a die coating method, a curtain coating method, an ink jet method, and the like can also be appropriately employed.
 また、基材上に混合物を塗布する場合、かかる混合物の塗膜の厚みとしては、乾燥後の塗膜の厚みを1~200μmとすることが好ましく、5~100μmであることがより好ましい。このような混合物の塗膜の厚みが前記下限未満では機械的な強度が低下し、フィルムが弱くなる傾向にあり、他方、前記上限を超えると成膜加工が困難となる傾向にある。 Further, when the mixture is applied on the substrate, the thickness of the coating film of the mixture is preferably 1 to 200 μm, more preferably 5 to 100 μm after drying. If the thickness of the coating film of such a mixture is less than the lower limit, mechanical strength tends to decrease and the film tends to be weakened. On the other hand, if the thickness exceeds the upper limit, film forming tends to be difficult.
 また、前記イミド化の方法としては、製造効率の観点から、前記ポリアミド酸を得る工程を実施した後に、有機溶媒中において上記一般式(3)で表されるテトラカルボン酸二無水物と上記一般式(4)で表される芳香族ジアミンとを反応させて得られた反応液(上記一般式(1)で表される繰り返し単位を有するポリアミド酸を含有する反応液)をそのまま用い(上記一般式(1)で表される繰り返し単位を有するポリアミド酸を単離することなく用い)、前記反応液に対して前記ハロゲン系カルボン酸無水物と前記脂肪族系三級アミンとを添加して混合物を得た後、該混合物に対して乾燥処理を施して溶媒を除去した後、前記加熱処理(前記混合物を加熱する工程)を施すことが好ましい。なお、かかる混合物を得る工程においては、前述のように混合(撹拌)する工程を施すことが好ましい。 Further, as the imidization method, from the viewpoint of production efficiency, after carrying out the step of obtaining the polyamic acid, the tetracarboxylic dianhydride represented by the general formula (3) and the general A reaction solution obtained by reacting with an aromatic diamine represented by the formula (4) (a reaction solution containing a polyamic acid having a repeating unit represented by the above general formula (1)) is used as it is (the above general A polyamic acid having a repeating unit represented by the formula (1) is used without isolation), and the halogenated carboxylic acid anhydride and the aliphatic tertiary amine are added to the reaction solution to obtain a mixture It is preferable to perform the said heat processing (process of heating the said mixture), after giving a drying process with respect to this mixture and removing a solvent after obtaining this. In addition, in the process of obtaining this mixture, it is preferable to perform the process of mixing (stirring) as mentioned above.
 また、本発明によって得られるポリイミドは、上記一般式(2)で表される繰り返し単位以外にも他の繰り返し単位を含有するものとしてもよい。この場合には、例えば、前記ポリアミド酸を得る工程において、上記一般式(3)で表されるテトラカルボン酸二無水物とともに他のテトラカルボン酸二無水物を用い、これらを前記芳香族ジアミンと反応させればよい。このような上記一般式(3)で表されるテトラカルボン酸二無水物以外の他のテトラカルボン酸二無水物としては、公知のテトラカルボン酸二無水物を適宜利用することができる。例えば、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ジメチルジフェニルシランテトラカルボン酸二無水物、3,3’,4,4’-テトラフェニルシランテトラカルボン酸二無水物、1,2,3,4-フランテトラカルボン酸二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルホン二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルプロパン二無水物、3,3’,4,4’-パーフルオロイソプロピリデンジフタル酸二無水物、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、ビス(フタル酸)フェニルホスフィンオキサイド二無水物、p-フェニレン-ビス(トリフェニルフタル酸)二無水物、m-フェニレン-ビス(トリフェニルフタル酸)二無水物、ビス(トリフェニルフタル酸)-4,4’-ジフェニルエーテル二無水物、ビス(トリフェニルフタル酸)-4,4’-ジフェニルメタン二無水物などの芳香族テトラカルボン酸二無水物等が挙げられる。なお、このような芳香族テトラカルボン酸を使用する場合は、CTによる着色を防止するため、その使用量は得られるポリイミドが十分な透明性を有することが可能となるような範囲内で適宜変更することが好ましい。 Moreover, the polyimide obtained by the present invention may contain other repeating units in addition to the repeating unit represented by the general formula (2). In this case, for example, in the step of obtaining the polyamic acid, another tetracarboxylic dianhydride is used together with the tetracarboxylic dianhydride represented by the general formula (3), and these are combined with the aromatic diamine. What is necessary is just to make it react. As other tetracarboxylic dianhydrides other than the tetracarboxylic dianhydride represented by the above general formula (3), known tetracarboxylic dianhydrides can be appropriately used. For example, pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenylsulfone tetracarboxylic dianhydride, 1,4, 5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyl ether tetracarboxylic dianhydride, 3,3 ', 4,4'-Dimethyldiphenylsilanetetracarboxylic dianhydride, 3,3', 4,4'-tetraphenylsilanetetracarboxylic dianhydride, 1,2,3,4-furantetracarboxylic acid dianhydride Anhydride, 4,4′-bis (3,4-dicarboxyphenoxy) diphenyl sulfide dianhydride, 4,4′-bis (3,4-dicarboxyphenoxy) diphenylsulfone dianhydride, 4,4′- Bis (3,4-dicarboxyphenoxy ) Diphenylpropane dianhydride, 3,3 ′, 4,4′-perfluoroisopropylidene diphthalic dianhydride, 4,4 ′-(2,2-hexafluoroisopropylidene) diphthalic dianhydride, 3 , 3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, bis (phthalic acid) phenylphosphine oxide dianhydride, p-phenylene -Bis (triphenylphthalic acid) dianhydride, m-phenylene-bis (triphenylphthalic acid) dianhydride, bis (triphenylphthalic acid) -4,4'-diphenyl ether dianhydride, bis (triphenylphthalic acid) Acid) -4,4′-diphenylmethane dianhydride, and the like. In addition, when using such aromatic tetracarboxylic acid, in order to prevent the coloring by CT, the usage-amount is suitably changed within the range in which the obtained polyimide can have sufficient transparency. It is preferable to do.
 [ポリイミド]
 本発明のポリイミドは、上記本発明のポリイミドの製造方法により得られたポリイミドである。
[Polyimide]
The polyimide of this invention is a polyimide obtained by the manufacturing method of the polyimide of the said invention.
 このようなポリイミドとしては、ガラス転移温度(Tg)が250℃以上のものが好ましく、300~500℃のものがより好ましい。このようなガラス転移温度(Tg)が前記下限未満では十分な耐熱性が達成困難となる傾向にあり、他方、前記上限を超えるとそのような特性を有するポリイミドを製造することが困難となる傾向にある。このようなポリイミドのガラス転移温度(Tg)は、前述のガラス転移温度(Tg)の測定方法を採用して求めることができる。 Such a polyimide preferably has a glass transition temperature (Tg) of 250 ° C. or higher, more preferably 300 to 500 ° C. If the glass transition temperature (Tg) is less than the lower limit, sufficient heat resistance tends to be difficult to achieve, and if it exceeds the upper limit, it tends to be difficult to produce a polyimide having such characteristics. It is in. The glass transition temperature (Tg) of such a polyimide can be determined by employing the above-described method for measuring the glass transition temperature (Tg).
 さらに、このようなポリイミドの数平均分子量(Mn)としては、ポリスチレン換算で1000~1000000であることが好ましく、10000~100000であることがより好ましい。このような数平均分子量が前記下限未満では十分な耐熱性が達成困難となる傾向にあり、他方、前記上限を超えると加工が困難となる傾向にある。 Furthermore, the number average molecular weight (Mn) of such a polyimide is preferably 1,000 to 1,000,000, more preferably 10,000 to 100,000, in terms of polystyrene. When the number average molecular weight is less than the lower limit, sufficient heat resistance tends to be difficult to achieve, and when it exceeds the upper limit, processing tends to be difficult.
 また、このようなポリイミドの重量平均分子量(Mw)としては、ポリスチレン換算で1000~5000000であることが好ましい。また、このような重量平均分子量(Mw)の数値範囲の下限値としては、1000であることがより好ましく、5000であることが更に好ましく、10000であることが特に好ましい。また、重量平均分子量(Mw)の数値範囲の上限値としては、5000000であることがより好ましく、500000であることが更に好ましく、50000であることが特に好ましい。このような重量平均分子量が前記下限未満では十分な耐熱性が達成困難となる傾向にあり、他方、前記上限を超えると加工が困難となる傾向にある。 In addition, the weight average molecular weight (Mw) of such a polyimide is preferably 1000 to 5000000 in terms of polystyrene. Moreover, as a lower limit of the numerical range of such a weight average molecular weight (Mw), it is more preferable that it is 1000, It is still more preferable that it is 5000, It is especially preferable that it is 10,000. Moreover, as an upper limit of the numerical range of a weight average molecular weight (Mw), it is more preferable that it is 5000000, It is further more preferable that it is 500000, It is especially preferable that it is 50000. If the weight average molecular weight is less than the lower limit, sufficient heat resistance tends to be difficult to achieve, and if it exceeds the upper limit, processing tends to be difficult.
 さらに、このようなポリイミドの分子量分布(Mw/Mn)は1.1~5.0であることが好ましく、1.5~3.0であることがより好ましい。このような分子量分布が前記下限未満では製造することが困難となる傾向にあり、他方、前記上限を超えると均一なフィルムを得にくい傾向にある。なお、このようなポリイミドの分子量(Mw又はMn)や分子量の分布(Mw/Mn)は、測定装置としてゲルパーミエーションクロマトグラフィー(GPC、東ソー株式会社製、商品名:HLC-8020/カラム4本:東ソー株式会社製、商品名:TSK gel GMHHRなど)を用い、溶媒としてテトラヒドロフラン(THF)、クロロホルム、N,N-ジメチルホルムアミド(DMF)等を用いて測定したデータをポリスチレンで換算して求めることができる。 Further, the molecular weight distribution (Mw / Mn) of such a polyimide is preferably 1.1 to 5.0, and more preferably 1.5 to 3.0. If the molecular weight distribution is less than the lower limit, it tends to be difficult to produce, while if it exceeds the upper limit, it tends to be difficult to obtain a uniform film. The molecular weight (Mw or Mn) and molecular weight distribution (Mw / Mn) of such polyimide are measured by gel permeation chromatography (GPC, manufactured by Tosoh Corporation, trade name: HLC-8020 / four columns). : Tosoh Co., Ltd., trade name: TSK gel GMH HR, etc.), and measured using polystyrene (THF), chloroform, N, N-dimethylformamide (DMF), etc. as a solvent, and converted to polystyrene. be able to.
 また、このようなポリイミドは、線膨張係数が-10~100ppm/℃(更に好ましくは0~80ppm/℃)であることがより好ましい。このような線膨張係数が前記下限未満では金属、金属酸化物やガラス等の無機物質など他材料との複合化を行なう場合に歪みが発生する傾向にあり、他方、前記上限を超えると下限未満と同様に金属、金属酸化物やガラス等の無機物質など他材料との複合化を行なう場合に歪みが発生する傾向にある。 Further, such a polyimide preferably has a linear expansion coefficient of −10 to 100 ppm / ° C. (more preferably 0 to 80 ppm / ° C.). If the linear expansion coefficient is less than the lower limit, distortion tends to occur when compounding with other materials such as metals, metal oxides, and glass or other inorganic substances, and on the other hand, exceeding the upper limit is less than the lower limit. In the same manner as above, distortion tends to occur when compounding with other materials such as metals, metal oxides and inorganic substances such as glass.
 このようなポリイミドの線膨張係数は、縦20mm、横5mm、厚み0.02mm(20μm)の大きさの試料を用い、測定装置として熱機械的分析装置(リガク製の商品名「TMA8310」)を利用して、窒素雰囲気下、引張りモード(49mN)、昇温速度5℃/分の条件を採用して、50℃~200℃における前記試料の縦方向の長さの変化を測定して、100℃~200℃の温度範囲における1℃あたりの長さの変化の平均値を求めることにより得られる値を採用することができる。なお、前記ポリイミドのガラス転移温度や線膨張係数は、前記一般式(2)中のR~Rの種類等を適宜変更したり、前記一般式(2)で表される繰り返し単位を複数種(2種以上)含有したりすることによって前記数値範囲内のものとすることができる。 The linear expansion coefficient of such a polyimide is 20 mm in length, 5 mm in width, and 0.02 mm (20 μm) in thickness. A thermomechanical analyzer (trade name “TMA8310” manufactured by Rigaku) is used as a measuring device. Utilizing a tensile mode (49 mN) under a nitrogen atmosphere and a temperature rising rate of 5 ° C./min, the change in the length of the sample in the vertical direction at 50 ° C. to 200 ° C. is measured. A value obtained by obtaining an average value of changes in length per 1 ° C. in a temperature range of from 0 ° C. to 200 ° C. can be adopted. The glass transition temperature and the linear expansion coefficient of the polyimide may be appropriately changed from one of R 1 to R 2 in the general formula (2) or a plurality of repeating units represented by the general formula (2). By containing seeds (two or more), it can be within the above numerical range.
 また、このようなポリイミドは、透明性が高いものが好ましく、400~800nmの波長域の光の平均透過率が80%以上(更に好ましくは85%以上、特に好ましくは87%以上)であるものがより好ましい。このような平均透過率は、製造時の加熱温度をより低温とすることにより、十分に達成することができる。なお、このような透過率としては、測定装置として、日本分光製の商品名「紫外可視近赤外分光光度計V-570」を用いて測定した値を採用することができる。 Such polyimide is preferably highly transparent, and has an average transmittance of light in the wavelength region of 400 to 800 nm of 80% or more (more preferably 85% or more, particularly preferably 87% or more). Is more preferable. Such average transmittance can be sufficiently achieved by lowering the heating temperature during production. As such transmittance, a value measured using a trade name “UV-visible near-infrared spectrophotometer V-570” manufactured by JASCO Corporation can be adopted as a measuring apparatus.
 また、このようなポリイミドとしては、熱分解温度(Td)が450℃以上のものが好ましく、480~600℃のものがより好ましい。このような熱分解温度(Td)が前記下限未満では十分な耐熱性が達成困難となる傾向にあり、他方、前記上限を超えると、そのような特性を有するポリイミドを製造することが困難となる傾向にある。なお、このような熱分解温度(Td)は、TG/DTA220熱重量分析装置(エスアイアイ・ナノテクノロジー株式会社製)を使用して、窒素気流中(200mL/min)、昇温速度10℃/min.の条件で熱分解前後の分解曲線にひいた接線の交点となる温度を測定することにより求めることができる。 Such a polyimide preferably has a thermal decomposition temperature (Td) of 450 ° C. or higher, more preferably 480 to 600 ° C. If such a thermal decomposition temperature (Td) is less than the lower limit, sufficient heat resistance tends to be difficult to achieve, and if it exceeds the upper limit, it is difficult to produce a polyimide having such characteristics. There is a tendency. In addition, such a thermal decomposition temperature (Td) uses a TG / DTA220 thermogravimetric analyzer (manufactured by SII Nano Technology Co., Ltd.), in a nitrogen stream (200 mL / min), and a temperature rising rate of 10 ° C. / min. It can be determined by measuring the temperature at the intersection of the tangent lines drawn on the decomposition curve before and after thermal decomposition under the conditions of
 このようなポリイミドとしては、5%重量減少温度が400℃以上のものが好ましく、450~550℃のものがより好ましい。このような5%重量減少温度が前記下限未満では十分な耐熱性が達成困難となる傾向にあり、他方、前記上限を超えると、そのような特性を有するポリイミドを製造することが困難となる傾向にある。なお、このような5%重量減少温度は、窒素ガス雰囲気下、窒素ガスを流しながら室温(25℃)から徐々に加熱して、用いた試料の重量が5%減少する温度を測定することにより求めることができる。なお、このような試料としては、縦2mm、横2mm、厚み20μmのフィルムを5枚準備して用いることが好ましい。 Such a polyimide preferably has a 5% weight loss temperature of 400 ° C. or higher, more preferably 450 to 550 ° C. If such a 5% weight loss temperature is less than the lower limit, sufficient heat resistance tends to be difficult to achieve, and if it exceeds the upper limit, it tends to be difficult to produce a polyimide having such characteristics. It is in. Such 5% weight reduction temperature is obtained by gradually heating from room temperature (25 ° C.) while flowing nitrogen gas in a nitrogen gas atmosphere and measuring the temperature at which the weight of the used sample is reduced by 5%. Can be sought. In addition, as such a sample, it is preferable to prepare and use five films of 2 mm in length, 2 mm in width, and 20 micrometers in thickness.
 このように、本発明のポリイミドは、上記本発明のポリイミドの製造方法を採用して得られるものであるため、着色が十分に防止され、十分に高度な水準の光透過性と十分に高度な耐熱性とを有するものとなる。また、本発明のポリイミドは、上記本発明のポリイミドの製造方法を採用して得られるものであるため、十分な柔軟性を有するものとなる。そのため、本発明のポリイミドは、ガラスの代替に用いられる樹脂素材等に好適に利用可能であり、例えば、スマートフォンやタブレット端末等のモバイル機器の基板として用いられる透明樹脂材料からなる基板を作製するための材料等に好適に利用し得る。 Thus, since the polyimide of the present invention is obtained by adopting the above-described method for producing the polyimide of the present invention, coloring is sufficiently prevented, sufficiently high level of light transmission and sufficiently high level of transparency. It has heat resistance. Moreover, since the polyimide of this invention is obtained by employ | adopting the manufacturing method of the polyimide of the said invention, it has sufficient softness | flexibility. Therefore, the polyimide of the present invention can be suitably used as a resin material used in place of glass, for example, for producing a substrate made of a transparent resin material used as a substrate for mobile devices such as smartphones and tablet terminals. It can be suitably used for the material.
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to the following examples.
 先ず、各合成例、各実施例、各比較例で得られた化合物やフィルム等の特性の評価方法について説明する。 First, a method for evaluating properties of compounds, films and the like obtained in each synthesis example, each example, and each comparative example will be described.
 <分子構造の同定>
 各実施例等で得られた化合物の分子構造の同定は、赤外分光分析装置(日本分光株式会社製、FT/IR-460、FT/IR-4100、サーモフィッシャーサイエンティフィック株式会社製、NICOLET380FT-IR)及びNMR測定機(VARIAN社製、商品名:UNITY INOVA-600及び日本電子株式会社製JNM-Lambda500)を用いて、IR及びNMRスペクトルを測定することにより行った。
<Identification of molecular structure>
Identification of the molecular structure of the compound obtained in each example or the like was performed by infrared spectroscopy (manufactured by JASCO Corporation, FT / IR-460, FT / IR-4100, Thermo Fisher Scientific Co., Ltd., NICOLET 380FT). -IR) and an NMR measuring apparatus (trade name: UNITY INOVA-600 and JEOL Ltd. JNM-Lambda500, manufactured by VARIAN) were used to measure IR and NMR spectra.
 <ガラス転移温度(Tg)の測定>
 ガラス転移温度(Tg)は、各実施例及び各比較例で得られたポリイミド(フィルム形状のポリイミド)から縦20mm、横5mm、厚み0.02mm(20μm)の大きさのフィルムをそれぞれ形成した後に、そのフィルムを真空乾燥(120℃、1時間(Hr))し、窒素雰囲気下で200℃で1時間(Hr)熱処理して得られた試料(乾燥フィルム)をそれぞれ用い、測定装置として熱機械的分析装置(リガク製の商品名「TMA8310」)を利用して、窒素雰囲気下、ペネトレーションモード、昇温速度10℃/分の条件を採用して、30℃~400℃における前記試料の変化を測定した。
<Measurement of glass transition temperature (Tg)>
The glass transition temperature (Tg) is obtained after forming films each having a length of 20 mm, a width of 5 mm, and a thickness of 0.02 mm (20 μm) from the polyimide (film-shaped polyimide) obtained in each of Examples and Comparative Examples. The sample was dried in a vacuum (120 ° C., 1 hour (Hr)) and heat-treated at 200 ° C. for 1 hour (Hr) in a nitrogen atmosphere. Change of the sample between 30 ° C. and 400 ° C. by using a chemical analyzer (trade name “TMA8310” manufactured by Rigaku), employing a penetration mode and a heating rate of 10 ° C./min in a nitrogen atmosphere. It was measured.
 <5%重量減少温度の測定>
 実施例及び比較例で得られたポリイミドの5%重量減少温度は、それぞれ、縦2mm、横2mm、厚み20μmのフィルム形状の試料を5枚、アルミ製サンプルパンに入れ、測定装置としてTG/DTA7200熱重量分析装置(エスアイアイ・ナノテクノロジー株式会社製)を使用して、窒素ガスを流しながら、室温(25℃)から600℃の範囲で10℃/分の条件で加熱して、用いた試料の重量が5%減少する温度を測定することにより求めた。
<Measurement of 5% weight loss temperature>
The 5% weight loss temperatures of the polyimides obtained in the examples and comparative examples were respectively set to 5 TG / DTA7200 as a measuring device by placing 5 film-shaped samples having a length of 2 mm, a width of 2 mm, and a thickness of 20 μm in an aluminum sample pan. Using a thermogravimetric analyzer (manufactured by SII Nano Technology Co., Ltd.), the sample was heated under conditions of 10 ° C / min in the range of room temperature (25 ° C) to 600 ° C while flowing nitrogen gas. Was determined by measuring the temperature at which the weight of the product decreased by 5%.
 <固有粘度[η]の測定>
 実施例及び比較例でフィルム等を製造する際に中間体として得られたポリアミド酸の固有粘度[η]は、離合社製の自動粘度測定装置(商品名「VMC-252」)を用い、N,N-ジメチルアセトアミドを溶媒として、濃度0.5g/dLのポリアミド酸の測定試料を調製し、30℃の温度条件下において測定した。
<Measurement of intrinsic viscosity [η]>
The intrinsic viscosity [η] of the polyamic acid obtained as an intermediate in the production of films and the like in the examples and comparative examples was determined by using an automatic viscosity measuring device (trade name “VMC-252”) manufactured by Koiso Co., Ltd. Using N, dimethylacetamide as a solvent, a polyamic acid measurement sample having a concentration of 0.5 g / dL was prepared and measured under a temperature condition of 30 ° C.
 <線膨張係数(CTE)の測定>
 線膨張係数は、各実施例及び各比較例で得られたポリイミド(フィルム形状のポリイミド)から縦20mm、横5mm、厚み0.02mm(20μm)の大きさのフィルムをそれぞれ形成した後に、そのフィルムを真空乾燥(120℃、1時間(Hr))し、窒素雰囲気下で200℃で1時間(Hr)熱処理して得られた試料(乾燥フィルム)をそれぞれ用い、測定装置として熱機械的分析装置(リガク製の商品名「TMA8310」)を利用して、窒素雰囲気下、引張りモード(49mN)、昇温速度5℃/分の条件を採用して、50℃~200℃における前記試料の長さの変化を測定して、100℃~200℃の温度範囲における1℃あたりの長さの変化の平均値を求めることにより測定した。
<Measurement of linear expansion coefficient (CTE)>
The linear expansion coefficient was determined by forming a film having a length of 20 mm, a width of 5 mm, and a thickness of 0.02 mm (20 μm) from the polyimide (film-shaped polyimide) obtained in each example and each comparative example, and then the film. The sample (dry film) obtained by vacuum drying (120 ° C., 1 hour (Hr)) and heat treatment in a nitrogen atmosphere at 200 ° C. for 1 hour (Hr), respectively, is used as a measuring device. (Trade name “TMA8310” manufactured by Rigaku), using a tension mode (49 mN) under a nitrogen atmosphere, and a temperature rising rate of 5 ° C./min, the length of the sample at 50 ° C. to 200 ° C. Was measured, and the average value of the change in length per 1 ° C. in the temperature range of 100 ° C. to 200 ° C. was measured.
 <400~800nmの波長域の光の平均透過率の測定>
 各実施例及び各比較例で得られたポリイミド(フィルム形状のポリイミド)の400~800nmの波長域の光の平均透過率は、測定装置として日本分光製の商品名「紫外可視近赤外分光光度計V-570」を用いて透過率を測定した後、400~800nmの波長域の光の透過率の平均値を求めることにより測定した。
<Measurement of average transmittance of light in wavelength range of 400 to 800 nm>
The average transmittance of light in the wavelength region of 400 to 800 nm of the polyimide (film-shaped polyimide) obtained in each example and each comparative example is a product name “UV-visible near-infrared spectrophotometer manufactured by JASCO Corporation as a measuring device. The transmittance was measured using a “total V-570”, and then the average value of the transmittance of light in the wavelength region of 400 to 800 nm was obtained.
 <フィルムのフレキシブル性及び強度の測定>
 各実施例及び各比較例で得られたポリイミド(フィルム形状のポリイミド)のフレキシブル性及び強度(機械的な強度)について、縦50mm、横10mm、厚み0.02mm(20μm)の大きさのフィルムをそれぞれ形成した後に、市販の丸型鉛筆(φ[直径]:8mm)に巻き付けることを10回繰り返した際に(丸型鉛筆巻き付け試験)、フィルムが割れなかった場合には十分な強度を有するフレキシブル(柔軟)なフィルム(強度:十分、フレキシブル性:十分)であると判断し、反対に、フィルムを形成できなかった場合や、フィルムが形成できたとしても丸型鉛筆巻き付け試験でフィルムにクラックが入った場合にはフレキシブルなものではなく、脆い(ブリットル)フィルム(強度:脆い、フレキシブル性:不十分)であると判断した。
<Measurement of flexibility and strength of film>
About the flexibility and strength (mechanical strength) of the polyimide (film-shaped polyimide) obtained in each Example and each Comparative Example, a film having a size of 50 mm in length, 10 mm in width, and 0.02 mm (20 μm) in thickness. When each film is formed and then wound around a commercially available round pencil (φ [diameter]: 8 mm) 10 times (round pencil winding test), the flexible film has sufficient strength when the film does not break. Judging that it is a (flexible) film (strength: sufficient, flexibility: sufficient), conversely, if the film could not be formed, or even if the film could be formed, the film was cracked in the round pencil winding test. If it enters, it is not flexible and is a brittle film (strength: brittle, flexible: insufficient) It was judged.
 (実施例1)
 <ポリアミド酸の調製>
 三口フラスコに3,4’-ジアミノジフェニルエーテル(0.40052g、2.000mmol、以下、場合により「3,4’-DDE」と称する。)と、N,N-ジメチルアセトアミド(2.00g、以下、場合により「DMAc」と称する。)を加えて、窒素気流下、温度:20℃、圧力0.1MPaの条件下において、メカニカルスターラーで10分ほど撹拌して溶解液を得た。次に、前記溶解液が導入されている前記三口フラスコに、下記一般式(6):
Example 1
<Preparation of polyamic acid>
In a three-necked flask, 3,4′-diaminodiphenyl ether (0.40052 g, 2.000 mmol, hereinafter referred to as “3,4” -DDE ”) and N, N-dimethylacetamide (2.00 g, hereinafter, In some cases, it is referred to as “DMAc”), and the mixture was stirred with a mechanical stirrer for 10 minutes under a nitrogen stream under a temperature of 20 ° C. and a pressure of 0.1 MPa to obtain a solution. Next, the following general formula (6):
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
で表されるテトラカルボン酸二無水物0.76879g(2.00mmol、以下、場合により「酸二無水物(A)」と称する。)を、ロートを用いて導入した。なお、ロートに付着した前記テトラカルボン酸二無水物はDMAc(2.00g)で流し入れて、全量(0.76879g)を前記溶解液中に導入した。 In this manner, 0.76879 g (2.00 mmol, hereinafter referred to as “acid dianhydride (A)” in some cases) represented by the following formula was introduced using a funnel. The tetracarboxylic dianhydride adhering to the funnel was poured in with DMAc (2.00 g), and the whole amount (0.76879 g) was introduced into the solution.
 次いで、前記テトラカルボン酸二無水物が導入された前記溶解液を、窒素雰囲気、温度:20℃、圧力0.1MPaの条件下において、メカニカルスターラーで30rpmの撹拌速度で17時間撹拌を続けて、前記テトラカルボン酸二無水物と3,4’-DDEとを反応せしめてポリアミド酸を生成し、ポリアミド酸を含有する反応液を得た。なお、得られたポリアミド酸は、一般式(1)で表される繰り返し単位を有するポリアミド酸であり、かかる繰り返し単位は、式(1)中のRが上記一般式(I-9)で表される基であり、かつ、Rが下記一般式(II-4-1)又は(II-4-2): Next, the solution into which the tetracarboxylic dianhydride has been introduced is continuously stirred for 17 hours at a stirring speed of 30 rpm with a mechanical stirrer under a nitrogen atmosphere, a temperature of 20 ° C., and a pressure of 0.1 MPa. The tetracarboxylic dianhydride and 3,4'-DDE were reacted to produce a polyamic acid to obtain a reaction solution containing the polyamic acid. The obtained polyamic acid is a polyamic acid having a repeating unit represented by the general formula (1). In the repeating unit, R 1 in the formula (1) is represented by the above general formula (I-9). And R 2 is represented by the following general formula (II-4-1) or (II-4-2):
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
で表される基である。 It is group represented by these.
 なお、このようにして得られたポリアミド酸の粘度を測定するために、前記反応液から一部の液体をサンプリング(ポリアミド酸を0.25g含有する量の液体をサンプリング)し、DMAcで希釈して0.5g/dLのポリアミド酸溶液を調製した。そして、前述の固有粘度[η]の測定方法を採用して固有粘度[η]を求めた。すなわち、このようにして調製したポリアミド酸溶液を用い、かつ、30℃の恒温槽中でオストワルド型粘度計(離合社製の自動粘度測定装置(商品名「VMC-252」))を用いて、ポリアミド酸溶液の粘度(対数粘度)を測定した。その結果、得られたポリアミド酸の固有粘度[η]は0.46dL/gであった。 In order to measure the viscosity of the polyamic acid thus obtained, a part of the liquid was sampled from the reaction liquid (a liquid containing 0.25 g of polyamic acid was sampled) and diluted with DMAc. A polyamic acid solution of 0.5 g / dL was prepared. Then, the intrinsic viscosity [η] was determined by employing the above-described method for measuring the intrinsic viscosity [η]. That is, using the polyamic acid solution prepared in this manner, and using an Ostwald viscometer (automatic viscosity measuring device (trade name “VMC-252”) manufactured by Kogai Co., Ltd.) in a constant temperature bath at 30 ° C., The viscosity (logarithmic viscosity) of the polyamic acid solution was measured. As a result, the intrinsic viscosity [η] of the obtained polyamic acid was 0.46 dL / g.
 <混合物の調製>
 次に、前述のポリアミド酸の調製工程において得られたポリアミド酸を含有する反応液2.9g(ポリアミド酸の繰り返し単位のモル量(前記反応液中の前記繰り返し単位の総量):1.0mmol、前記反応液の約半量)を氷浴で冷却しながら、前記反応液にトリエチルアミン139μL(1.0mmol)を添加した。このようなトリエチルアミンの添加により前記反応液は粘度が一気に上昇し、一部が白く濁ったことから、前記反応液中では、ポリアミド酸のアミン塩が生成されたものと思われる。次いで、前記トリエチルアミンの添加後の前記反応液に対して、無水トリフルオロ酢酸86μL(0.6mmol)を添加した。なお、前記反応液は無水トリフルオロ酢酸の添加後20分ほどで粘度が下がり、均一で透明な淡黄色の溶液(混合物)になった。次いで、得られた淡黄色の溶液を、窒素雰囲気、温度:20℃、圧力0.1MPaの条件下において、30rpmの撹拌速度で12時間撹拌した。このようにして、前記ポリアミド酸とトリエチルアミンと無水トリフルオロ酢酸とを含有する混合物を得た。
<Preparation of mixture>
Next, 2.9 g of a reaction solution containing the polyamic acid obtained in the above-described preparation step of polyamic acid (molar amount of the polyamic acid repeating unit (total amount of the repeating unit in the reaction solution): 1.0 mmol, While cooling about half of the reaction solution) in an ice bath, 139 μL (1.0 mmol) of triethylamine was added to the reaction solution. Due to the addition of triethylamine, the viscosity of the reaction solution suddenly increased, and part of the reaction solution became white and cloudy. Thus, it is considered that an amine salt of polyamic acid was produced in the reaction solution. Next, 86 μL (0.6 mmol) of trifluoroacetic anhydride was added to the reaction solution after the addition of the triethylamine. The reaction solution decreased in viscosity about 20 minutes after addition of trifluoroacetic anhydride, and became a uniform and transparent light yellow solution (mixture). Next, the obtained pale yellow solution was stirred for 12 hours at a stirring speed of 30 rpm under the conditions of nitrogen atmosphere, temperature: 20 ° C., and pressure 0.1 MPa. In this way, a mixture containing the polyamic acid, triethylamine, and trifluoroacetic anhydride was obtained.
 なお、このような撹拌後の混合物中の成分の構造を確認するため、撹拌後に得られた混合物の一部を取り出し、メタノールに再沈殿させて白色の固体を得た後、これを乾燥してその一部をDMSO-dに溶解させてNMR用試料を調製した。そして、このような乾燥試料およびNMR用試料を利用し、上述の分子構造の同定の方法に記載されている方法を利用してIR及びH-NMRスペクトルを測定した。得られた結果のうち、前記混合物中の成分(前記再沈殿物)のIRスペクトルを図1に示し、前記混合物中の成分(前記再沈殿物)のH-NMRスペクトルを図2に示し、図2に示すH-NMRスペクトルの6ppm~13ppm付近の拡大図を図3に示す。このような測定の結果(図1~図3に示す結果)から、ポリアミド酸に由来するカルボン酸(-COOH)のプロトン(12ppm付近)と、アミド(NHCO)に由来するプロトン(10ppm付近)が観測され、ポリアミド酸の積分強度より閉環率が32%であることが確認された。このような結果から、前記混合物中のポリアミド酸は部分的にイミド化していることが分かった。なお、前記混合物においてはポリイミドは析出せず、十分に均一な溶液となっていた。 In order to confirm the structure of the components in the mixture after stirring, a part of the mixture obtained after stirring was taken out and reprecipitated in methanol to obtain a white solid, which was then dried. A part of the sample was dissolved in DMSO-d 6 to prepare a sample for NMR. Then, using such a dried sample and an NMR sample, IR and 1 H-NMR spectra were measured using the method described in the above-described molecular structure identification method. Among the obtained results, the IR spectrum of the component (the reprecipitate) in the mixture is shown in FIG. 1, the 1 H-NMR spectrum of the component (the reprecipitate) in the mixture is shown in FIG. FIG. 3 shows an enlarged view of the vicinity of 6 ppm to 13 ppm of the 1 H-NMR spectrum shown in FIG. From the results of such measurements (results shown in FIGS. 1 to 3), the protons (around 12 ppm) of carboxylic acid (—COOH) derived from polyamic acid and the protons (around 10 ppm) derived from amide (NHCO) are found. It was observed that the ring closure rate was 32% from the integrated intensity of the polyamic acid. From these results, it was found that the polyamic acid in the mixture was partially imidized. In the above mixture, polyimide did not precipitate and was a sufficiently uniform solution.
 <ポリイミドの調製>
 次に、前記混合物の調製工程により得られた混合物0.6mLを、ガラス基板の表面(縦75mm、横25mm)上に、流延することにより塗布(キャスト法により塗布)した後に、80℃の温度条件で、1hPaの圧力下、2時間静置することで溶媒(DMAc)を除去して乾燥させて、前記混合物の乾燥塗膜(厚み20μm)を得た。次に、前記混合物の乾燥塗膜を圧力1hPa、窒素雰囲気下、200℃の温度条件で1時間加熱処理してフィルムを得た。なお、得られたフィルムは、十分な強度(機械的な強度)を有するフレキシブルな透明フィルムであった。
<Preparation of polyimide>
Next, after applying 0.6 mL of the mixture obtained by the preparation step of the mixture onto the surface of the glass substrate (length 75 mm, width 25 mm) by casting (coating by a casting method), 80 ° C. The solvent (DMAc) was removed by allowing to stand for 2 hours under a pressure of 1 hPa under a temperature condition to obtain a dry coating film (thickness 20 μm) of the mixture. Next, the dried coating film of the mixture was heat-treated for 1 hour under a pressure condition of 1 hPa and a nitrogen atmosphere at 200 ° C. to obtain a film. The obtained film was a flexible transparent film having sufficient strength (mechanical strength).
 このようして得られたフィルムを形成する成分の構造を特定するため、得られたフィルムの一部を重クロロホルムに溶解させてNMR用試料を形成し、上記フィルムの一部を取り出したフィルム状試料(IR用試料)と、前述のようにして得られたNMR用試料とを利用し、上述の分子構造の同定の方法に記載されている方法を利用してIR及びH-NMRスペクトルを測定した。得られた結果のうち、前記フィルムの構成成分のIRスペクトルを図4に示し、前記フィルムの構成成分のH-NMRスペクトルを図5に示し、図5に示すH-NMRスペクトルの6ppm付近~13ppm付近の拡大図を図6に示す。このような測定の結果(図4~図6に示す結果)から、閉環率を測定すると、アミド酸に由来するカルボン酸(-COOH)のプロトン(12ppm付近)やアミド(NHCO)に由来するプロトン(10ppm付近)が全く観測されないことから、完全にイミド化していることが明らかとなった。このような結果から、得られたフィルムは前記一般式(2)で表される繰り返し単位(式(2)中、Rが上記一般式(I-9)で表される基であり、かつ、Rが下記一般式(II-4-1)又は(II-4-2)で表される基である。)を有するポリイミドからなるものであることが分かった。 In order to specify the structure of the components forming the film thus obtained, a part of the obtained film was dissolved in deuterated chloroform to form an NMR sample, and a part of the film was taken out. Using the sample (IR sample) and the NMR sample obtained as described above, IR and 1 H-NMR spectra were obtained using the method described in the above-mentioned molecular structure identification method. It was measured. Among the obtained results, the IR spectrum of the constituent components of the film is shown in FIG. 4, the 1 H-NMR spectrum of the constituent components of the film is shown in FIG. 5, and the vicinity of 6 ppm of the 1 H-NMR spectrum shown in FIG. An enlarged view around ˜13 ppm is shown in FIG. From the results of such measurements (results shown in FIGS. 4 to 6), when the cyclization rate is measured, protons of carboxylic acid (—COOH) derived from amic acid (around 12 ppm) and protons derived from amide (NHCO) Since it was not observed at all (around 10 ppm), it was clarified that imidization was complete. From these results, the obtained film is a repeating unit represented by the general formula (2) (in the formula (2), R 1 is a group represented by the general formula (I-9), and R 2 is a group having a general formula (II-4-1) or (II-4-2) below).
 また、このようにして得られたポリイミド(フィルム)のガラス転移温度を、上述のガラス転移温度(Tg)の測定方法を採用して測定した結果、得られたポリイミド(フィルム)のTgは333℃であった。また、得られたポリイミド(フィルム)の線膨張係数を、上述の線膨張係数(CTE)の測定方法を採用して測定した結果、得られたポリイミド(フィルム)のCTEは56ppm/Kであった。また、上述の測定方法により平均透過率及び5%重量減少温度の求めたところ、得られたポリイミド(フィルム)の400~800nmの波長域の光の平均透過率は88%であり、5%重量減少温度は488℃であった。 Moreover, as a result of measuring the glass transition temperature of the polyimide (film) thus obtained by adopting the measurement method of the glass transition temperature (Tg) described above, the Tg of the obtained polyimide (film) is 333 ° C. Met. Moreover, as a result of measuring the linear expansion coefficient of the obtained polyimide (film) by adopting the above-described method of measuring the linear expansion coefficient (CTE), the CTE of the obtained polyimide (film) was 56 ppm / K. . Further, when the average transmittance and the 5% weight reduction temperature were determined by the measurement method described above, the average transmittance of light in the wavelength region of 400 to 800 nm of the obtained polyimide (film) was 88%, which was 5% weight. The decrease temperature was 488 ° C.
 (実施例2)
 <ポリアミド酸の調製>
 実施例1で採用している「ポリアミド酸の調製」の方法と同様の方法を採用して、ポリアミド酸を含有する反応液を得た。
(Example 2)
<Preparation of polyamic acid>
A method similar to the method of “Preparation of polyamic acid” employed in Example 1 was employed to obtain a reaction solution containing polyamic acid.
 <混合物の調製>
 次に、前述のポリアミド酸の調製工程において得られたポリアミド酸を含有する反応液2.9g(ポリアミド酸の繰り返し単位のモル量:1.0mmol、前記反応液の約半量)を氷浴で冷却しながら、トリエチルアミン278μL(2.0mmol)と無水トリフルオロ酢酸287μL(2.0mmol)とを順次添加した後、窒素雰囲気、温度:20℃、圧力0.1MPaの条件下で23時間、30rpmの撹拌速度で撹拌し、前記ポリアミド酸とトリエチルアミンと無水トリフルオロ酢酸とを含有する混合物を得た。なお、このような撹拌の結果、得られた混合物は、均一で透明な淡黄色の溶液となった。
<Preparation of mixture>
Next, 2.9 g of the reaction solution containing the polyamic acid obtained in the above-described preparation step of the polyamic acid (molar amount of the polyamic acid repeating unit: 1.0 mmol, about half of the reaction solution) was cooled in an ice bath. Then, after sequentially adding 278 μL (2.0 mmol) of triethylamine and 287 μL (2.0 mmol) of trifluoroacetic anhydride, stirring was performed at 30 rpm for 23 hours under conditions of nitrogen atmosphere, temperature: 20 ° C., and pressure of 0.1 MPa. The mixture was stirred at a speed to obtain a mixture containing the polyamic acid, triethylamine, and trifluoroacetic anhydride. In addition, as a result of such stirring, the obtained mixture became a uniform and transparent light yellow solution.
 なお、撹拌後の混合物中の成分の構造を確認するため、実施例1と同様にしてIR及びH-NMRスペクトルを測定した。得られた結果のうち、前記混合物中の成分(前記再沈殿物)のIRスペクトルを図7に示し、前記混合物中の成分(前記再沈殿物)のH-NMRスペクトルを図8に示し、図8に示すH-NMRスペクトルの6ppm付近~13ppm付近の拡大図を図9に示す。このような測定の結果(図8~図9に示す結果)から、前記再沈殿物においては、ポリアミド酸に由来するカルボン酸(-COOH)のプロトン(12ppm付近)と、アミド(NHCO)に由来するプロトン(10ppm付近)が観測され、積分強度よりポリアミド酸の閉環率が40%であることが確認された。このような結果から、前記混合物中のポリアミド酸は部分的にイミド化していることが分かった。なお、前記混合物においてはポリイミドは析出せず、十分に均一な液体となっていた。 In order to confirm the structure of the components in the mixture after stirring, IR and 1 H-NMR spectra were measured in the same manner as in Example 1. Among the obtained results, the IR spectrum of the component (the reprecipitate) in the mixture is shown in FIG. 7, the 1 H-NMR spectrum of the component (the reprecipitate) in the mixture is shown in FIG. FIG. 9 shows an enlarged view of the vicinity of 6 ppm to 13 ppm of the 1 H-NMR spectrum shown in FIG. From the results of such measurements (results shown in FIGS. 8 to 9), in the re-precipitate, the carboxylic acid (—COOH) protons (around 12 ppm) derived from polyamic acid and the amide (NHCO) are derived. Protons (around 10 ppm) were observed, and it was confirmed from the integrated intensity that the ring closure rate of the polyamic acid was 40%. From these results, it was found that the polyamic acid in the mixture was partially imidized. In the mixture, polyimide did not precipitate and was a sufficiently uniform liquid.
 <ポリイミドの調製>
 次いで、前記混合物として、上述の混合物の調製工程により得られた混合物を用いる以外は、実施例1で採用している「ポリイミドの調製」の方法と同様の方法を採用して、ポリイミド(フィルム)を得た。なお、得られたフィルムは、十分な強度(機械的な強度)を有するフレキシブルな透明フィルムであった。
<Preparation of polyimide>
Next, a polyimide (film) is employed by adopting the same method as the “preparation of polyimide” employed in Example 1, except that the mixture obtained by the above-described mixture preparation step is used as the mixture. Got. The obtained film was a flexible transparent film having sufficient strength (mechanical strength).
 このようなフィルムを形成する成分の構造を特定するため、実施例1と同様にしてIR及びH-NMRスペクトルを測定した。得られた結果のうち、前記フィルムの構成成分のIRスペクトルを図10に示し、前記フィルムの構成成分のH-NMRスペクトルを図11に示し、図11に示すH-NMRスペクトルの6ppm付近~13ppm付近の拡大図を図12に示す。このような測定の結果(図10~図12に示す結果)から、閉環率を測定すると、アミド酸に由来するカルボン酸(-COOH)のプロトン(12ppm付近)やアミド(NHCO)に由来するプロトン(10ppm付近)が全く観測されないことから、完全にイミド化していることが明らかとなった。このような結果から、得られたフィルムは前記一般式(2)で表される繰り返し単位(式(2)中、Rが上記一般式(I-9)で表される基であり、かつ、Rが下記一般式(II-4-1)又は(II-4-2)で表される基である。)を有するポリイミドからなるものであることが分かった。 To identify the structure of the components forming such a film, and IR and 1 H-NMR spectrum in the same manner as in Example 1. Of the obtained results, the IR spectrum of the constituent components of the film is shown in FIG. 10, the 1 H-NMR spectrum of the constituent components of the film is shown in FIG. 11, and around 6 ppm of the 1 H-NMR spectrum shown in FIG. An enlarged view of around 13 ppm is shown in FIG. From the results of such measurements (results shown in FIGS. 10 to 12), when the cyclization rate was measured, protons of carboxylic acid (—COOH) derived from amic acid (around 12 ppm) and protons derived from amide (NHCO) Since it was not observed at all (around 10 ppm), it was clarified that imidization was complete. From these results, the obtained film is a repeating unit represented by the general formula (2) (in the formula (2), R 1 is a group represented by the general formula (I-9), and R 2 is a group having a general formula (II-4-1) or (II-4-2) below).
 また、実施例1と同様に、得られたポリイミド(フィルム)のガラス転移温度(Tg)、線膨張係数(CTE)、400~800nmの波長域の光の平均透過率、5%重量減少温度を求めたところ、Tgは333℃であり、CTEは57ppm/Kであり、前記平均透過率は88%であり、5%重量減少温度は484℃であった。 Similarly to Example 1, the obtained polyimide (film) had a glass transition temperature (Tg), a coefficient of linear expansion (CTE), an average transmittance of light in the wavelength region of 400 to 800 nm, and a 5% weight reduction temperature. As a result, Tg was 333 ° C., CTE was 57 ppm / K, the average transmittance was 88%, and the 5% weight loss temperature was 484 ° C.
 (実施例3)
 <ポリアミド酸の調製>
 3,4’-ジアミノジフェニルエーテル(0.40052g、2.000mmol)を用いる代わりに4,4’-ジアミノジフェニルエーテル(4,4’-DDE、0.40053g、2.000mmol)を用い、酸二無水物(A)の使用量を0.76879g(2.00mmol)から0.76878g(2.00mmol)に変更した以外は、実施例1で採用している「ポリアミド酸の調製」の方法と同様の方法を採用して、ポリアミド酸を含有する反応液を得た。
Example 3
<Preparation of polyamic acid>
Instead of using 3,4′-diaminodiphenyl ether (0.40052 g, 2.000 mmol), 4,4′-diaminodiphenyl ether (4,4′-DDE, 0.40053 g, 2.000 mmol) was used, and acid dianhydride A method similar to the method of “Preparation of polyamic acid” employed in Example 1, except that the amount of (A) used was changed from 0.76879 g (2.00 mmol) to 0.75878 g (2.00 mmol). Was used to obtain a reaction solution containing polyamic acid.
 なお、得られたポリアミド酸は、前記一般式(1)で表される繰り返し単位を有するポリアミド酸であり、かかる繰り返し単位は、式(1)中のRが上記一般式(I-9)で表される基であり、かつ、Rが下記一般式(II-4-3): The obtained polyamic acid is a polyamic acid having a repeating unit represented by the general formula (1), and in the repeating unit, R 1 in the formula (1) is represented by the above general formula (I-9). And R 2 is represented by the following general formula (II-4-3):
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
で表される基である。また、前述の固有粘度[η]の測定方法を採用して、実施例1と同様に得られたポリアミド酸の固有粘度[η]を求めたところ、固有粘度[η]は0.87dL/gであった。 It is group represented by these. Further, when the intrinsic viscosity [η] of the polyamic acid obtained in the same manner as in Example 1 was determined using the above-described method for measuring the intrinsic viscosity [η], the intrinsic viscosity [η] was 0.87 dL / g. Met.
 <混合物の調製>
 次に、上述のようにして得られたポリアミド酸を含有する反応液を用いた以外は、実施例1で採用している「混合物の調製」の方法と同様の方法を採用して、混合物を得た。なお、撹拌後の混合物中の成分の構造を実施例1と同様にして測定した結果、H-NMRスペクトルにおいて、アミド酸に由来するカルボン酸(-COOH)のプロトンとアミド(NHCO)に由来するプロトンが観測され、積分強度より求められるポリアミド酸の閉環率が40%であることが確認された。このような結果から、前記混合物中のポリアミド酸は部分的にイミド化していることが分かった。なお、前記混合物においてはポリイミドは析出せず、十分に均一な溶液となっていた。
<Preparation of mixture>
Next, except that the reaction solution containing the polyamic acid obtained as described above was used, a method similar to the method of “Preparation of the mixture” employed in Example 1 was adopted, Obtained. The structure of the components in the mixture after stirring was measured in the same manner as in Example 1. As a result, in the 1 H-NMR spectrum, it was derived from the proton of carboxylic acid (—COOH) derived from amic acid and amide (NHCO). Protons were observed, and it was confirmed that the ring closure rate of the polyamic acid obtained from the integrated intensity was 40%. From these results, it was found that the polyamic acid in the mixture was partially imidized. In the above mixture, polyimide did not precipitate and was a sufficiently uniform solution.
 <ポリイミドの調製>
 次いで、前記混合物として、上述の混合物の調製工程により得られた混合物を用いる以外は、実施例1で採用している「ポリイミドの調製」の方法と同様の方法を採用して、ポリイミド(フィルム)を得た。なお、得られたフィルムは、十分な強度(機械的な強度)を有するフレキシブルな透明フィルムであった。
<Preparation of polyimide>
Next, a polyimide (film) is employed by adopting the same method as the “preparation of polyimide” employed in Example 1, except that the mixture obtained by the above-described mixture preparation step is used as the mixture. Got. The obtained film was a flexible transparent film having sufficient strength (mechanical strength).
 このようなフィルムを形成する成分の構造を特定するため、実施例1と同様にしてIR及びH-NMRスペクトルを測定した。このようなIR及びH-NMRスペクトルの測定結果に基づいて、得られたフィルム中のポリアミド酸の閉環率を測定すると、アミド酸に由来するカルボン酸(-COOH)のプロトンやアミド(NHCO)に由来するプロトンが全く観測されないことから、完全にイミド化していることが明らかとなった。このような結果から、得られたフィルムは前記一般式(2)で表される繰り返し単位(式(2)中、Rが上記一般式(I-9)で表される基であり、かつ、Rが上記一般式(II-4-3)で表される基である。)を有するポリイミドからなるものであることが分かった。 In order to specify the structure of the components forming such a film, IR and 1 H-NMR spectra were measured in the same manner as in Example 1. Based on the measurement results of the IR and 1 H-NMR spectra, when the ring closure rate of the polyamic acid in the obtained film was measured, protons of carboxylic acid (—COOH) derived from amic acid and amide (NHCO) From the fact that no proton derived from was observed, it was clarified that it was completely imidized. From these results, the obtained film is a repeating unit represented by the general formula (2) (in the formula (2), R 1 is a group represented by the general formula (I-9), and And R 2 is a group represented by the general formula (II-4-3)).
 また、実施例1と同様に、得られたポリイミド(フィルム)のガラス転移温度(Tg)、線膨張係数(CTE)、400~800nmの波長域の光の平均透過率、5%重量減少温度を求めたところ、Tgは354℃であり、CTEは49ppm/Kであり、前記平均透過率は87%であり、5%重量減少温度は468℃であった。 Similarly to Example 1, the obtained polyimide (film) had a glass transition temperature (Tg), a coefficient of linear expansion (CTE), an average transmittance of light in the wavelength region of 400 to 800 nm, and a 5% weight reduction temperature. As a result, Tg was 354 ° C., CTE was 49 ppm / K, the average transmittance was 87%, and the 5% weight loss temperature was 468 ° C.
 (実施例4)
 <ポリアミド酸の調製>
 三口フラスコに4,4’-ジアミノベンズアニリド(0.45452g、2.000mmol、以下、場合により「4,4’-DABA」と称する。)とDMAc(2.00g)を加えて、窒素気流下、温度:20℃、圧力0.1MPaの条件で、メカニカルスターラーで10分ほど撹拌して溶解液を得た。次に、前記溶解液が導入されている前記三口フラスコに、上記一般式(6)で表されるテトラカルボン酸二無水物0.76878g(2.00mmol:酸二無水物(A))を、ロートを用いて導入した。なお、ロートに付着した前記テトラカルボン酸二無水物はDMAc(2.90g)で流し入れて、全量(0.76878g)を前記溶解液中に導入した。
Example 4
<Preparation of polyamic acid>
4,4′-Diaminobenzanilide (0.45452 g, 2.000 mmol, hereinafter referred to as “4,4′-DABA”) and DMAc (2.00 g) were added to a three-necked flask under a nitrogen stream. The solution was stirred for about 10 minutes with a mechanical stirrer under the conditions of temperature: 20 ° C. and pressure of 0.1 MPa. Next, 0.76878 g (2.00 mmol: acid dianhydride (A)) of the tetracarboxylic dianhydride represented by the above general formula (6) is added to the three-necked flask into which the solution is introduced. It was introduced using a funnel. The tetracarboxylic dianhydride adhering to the funnel was poured in with DMAc (2.90 g), and the entire amount (0.76878 g) was introduced into the solution.
 次いで、前記テトラカルボン酸二無水物が導入された前記溶解液を、窒素雰囲気、温度:20℃、圧力0.1MPaの条件下において、メカニカルスターラーで30rpmの撹拌速度で18時間撹拌を続けて、前記テトラカルボン酸二無水物と4,4’-DABAとを反応せしめてポリアミド酸を生成し、ポリアミド酸を含有する反応液を得た。なお、得られたポリアミド酸は、一般式(1)で表される繰り返し単位を有するポリアミド酸であり、かかる繰り返し単位は、式(1)中のRが上記一般式(I-9)で表される基であり、かつ、Rが下記一般式(II-4-4): Next, the solution into which the tetracarboxylic dianhydride has been introduced is continuously stirred for 18 hours at a stirring speed of 30 rpm with a mechanical stirrer under a nitrogen atmosphere, a temperature of 20 ° C., and a pressure of 0.1 MPa. The tetracarboxylic dianhydride and 4,4′-DABA were reacted to produce a polyamic acid to obtain a reaction liquid containing the polyamic acid. The obtained polyamic acid is a polyamic acid having a repeating unit represented by the general formula (1). In the repeating unit, R 1 in the formula (1) is represented by the above general formula (I-9). And R 2 is represented by the following general formula (II-4-4):
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
で表される基である。また、前述の固有粘度[η]の測定方法を採用して、実施例1と同様に得られたポリアミド酸の固有粘度[η]を求めたところ、固有粘度[η]は0.77dL/gであった。 It is group represented by these. Further, when the intrinsic viscosity [η] of the polyamic acid obtained in the same manner as in Example 1 was determined by employing the above-described method for measuring the intrinsic viscosity [η], the intrinsic viscosity [η] was 0.77 dL / g. Met.
 <混合物の調製>
 次に、前述のポリアミド酸の調製工程において得られたポリアミド酸を含有する反応液3.1g(ポリアミド酸繰り返し単位の量:1.0mmol、前記反応液の約半量)を6.0gのDMAcで希釈した後、氷浴で冷却しながら、前記反応液にトリエチルアミン139μL(1.0mmol)を添加した。このようなトリエチルアミンの添加により前記反応液は粘度が一気に上昇し、一部ゲル状のものが生成したが、20℃の温度条件で3時間ほど撹拌したところ、均一な溶液が得られた。次に、前記溶液を氷浴で冷却しながら、前記溶液に無水トリフルオロ酢酸86μL(0.6mmol)を添加した。なお、前記溶液は無水トリフルオロ酢酸の添加後20分ほどで粘度が下がり、均一で透明な溶液になった。次いで、得られた透明な溶液を窒素雰囲気、温度:20℃、圧力0.1MPaの条件下において、30rpmの撹拌速度で12時間撹拌した。このようにして、前記ポリアミド酸とトリエチルアミンと無水トリフルオロ酢酸とを含有する混合物を得た。
<Preparation of mixture>
Next, 3.1 g of the reaction solution containing the polyamic acid obtained in the above-described preparation step of the polyamic acid (amount of polyamic acid repeating unit: 1.0 mmol, about half of the reaction solution) was added with 6.0 g of DMAc. After dilution, 139 μL (1.0 mmol) of triethylamine was added to the reaction solution while cooling in an ice bath. By adding such triethylamine, the viscosity of the reaction solution suddenly increased and a part of the gel was formed, but when stirred for about 3 hours at a temperature of 20 ° C., a uniform solution was obtained. Next, 86 μL (0.6 mmol) of trifluoroacetic anhydride was added to the solution while cooling the solution in an ice bath. The solution decreased in viscosity about 20 minutes after the addition of trifluoroacetic anhydride, and became a uniform and transparent solution. Next, the obtained transparent solution was stirred for 12 hours at a stirring speed of 30 rpm under a nitrogen atmosphere, a temperature of 20 ° C., and a pressure of 0.1 MPa. In this way, a mixture containing the polyamic acid, triethylamine, and trifluoroacetic anhydride was obtained.
 なお、撹拌後の混合物中の成分の構造を実施例1と同様にして測定した結果、H-NMRスペクトルにおいて、アミド酸に由来するカルボン酸(-COOH)のプロトンとアミド(NHCO)に由来するプロトンが観測され、積分強度より求められるポリアミド酸の閉環率が40%であることが確認された。このような結果から、前記混合物中のポリアミド酸は部分的にイミド化していることが分かった。なお、前記混合物においてはポリイミドは析出せず、十分に均一な溶液となっていた。 The structure of the components in the mixture after stirring was measured in the same manner as in Example 1. As a result, in the 1 H-NMR spectrum, it was derived from the proton of carboxylic acid (—COOH) derived from amic acid and amide (NHCO). Protons were observed, and it was confirmed that the ring closure rate of the polyamic acid obtained from the integrated intensity was 40%. From these results, it was found that the polyamic acid in the mixture was partially imidized. In the above mixture, polyimide did not precipitate and was a sufficiently uniform solution.
 <ポリイミドの調製>
 次いで、前記混合物として、上述の混合物の調製工程により得られた混合物を用いる以外は、実施例1で採用している「ポリイミドの調製」の方法と同様の方法を採用して、ポリイミド(フィルム)を得た。なお、得られたフィルムは、十分な強度(機械的な強度)を有するフレキシブルな透明フィルムであった。
<Preparation of polyimide>
Next, a polyimide (film) is employed by adopting the same method as the “preparation of polyimide” employed in Example 1, except that the mixture obtained by the above-described mixture preparation step is used as the mixture. Got. The obtained film was a flexible transparent film having sufficient strength (mechanical strength).
 このようなフィルムを形成する成分の構造を特定するため、実施例1と同様にしてIR及びH-NMRスペクトルを測定した。このようなIR及びH-NMRスペクトルの測定結果に基づいて、得られたフィルム中のポリアミド酸の閉環率を測定すると、アミド酸に由来するカルボン酸(-COOH)のプロトンやアミド(NHCO)に由来するプロトンが全く観測されないことから、完全にイミド化していることが明らかとなった。このような結果から、得られたフィルムは前記一般式(2)で表される繰り返し単位(式(2)中、Rが上記一般式(I-9)で表される基であり、かつ、Rが上記一般式(II-4-4)で表される基である。)を有するポリイミドからなるものであることが分かった。 In order to specify the structure of the components forming such a film, IR and 1 H-NMR spectra were measured in the same manner as in Example 1. Based on the measurement results of the IR and 1 H-NMR spectra, when the ring closure rate of the polyamic acid in the obtained film was measured, protons of carboxylic acid (—COOH) derived from amic acid and amide (NHCO) From the fact that no proton derived from was observed, it was clarified that it was completely imidized. From these results, the obtained film is a repeating unit represented by the general formula (2) (in the formula (2), R 1 is a group represented by the general formula (I-9), and And R 2 is a group represented by the above general formula (II-4-4)).
 また、実施例1と同様に、得られたポリイミド(フィルム)のガラス転移温度(Tg)、線膨張係数(CTE)、400~800nmの波長域の光の平均透過率、5%重量減少温度を求めたところ、Tgは400℃以上であり、CTEは15ppm/Kであり、前記平均透過率は87%であり、5%重量減少温度は481℃であった。 Similarly to Example 1, the obtained polyimide (film) had a glass transition temperature (Tg), a coefficient of linear expansion (CTE), an average transmittance of light in the wavelength region of 400 to 800 nm, and a 5% weight reduction temperature. As a result, Tg was 400 ° C. or higher, CTE was 15 ppm / K, the average transmittance was 87%, and the 5% weight loss temperature was 481 ° C.
 (比較例1)
 混合物の調製工程を実施せず、ポリイミドの調製工程において、前記混合物を用いる代わりに、前記ポリアミド酸の調製工程において得られたポリアミド酸を含有する反応液を用い(トリエチルアミンと無水トリフルオロ酢酸とを添加していない前記反応液を用い)、かつ、ポリイミドの調製工程において、乾燥塗膜の加熱処理時の温度条件を200℃から300℃に変更した以外は、実施例1と同様にしてポリイミド(フィルム)を調製した。しかしながら、フレキシブルなフィルムは得られず、得られたフィルムは脆い(ブリットル)ものとなった。
(Comparative Example 1)
Instead of using the mixture in the polyimide preparation step without using the mixture preparation step, the reaction solution containing the polyamic acid obtained in the polyamic acid preparation step was used (with triethylamine and trifluoroacetic anhydride. In the polyimide preparation step, the polyimide was prepared in the same manner as in Example 1 except that the temperature condition during the heat treatment of the dried coating film was changed from 200 ° C. to 300 ° C. Film) was prepared. However, a flexible film was not obtained, and the obtained film was brittle.
 (比較例2)
 乾燥塗膜の加熱処理時の温度条件を300℃から350℃に変更した以外は、比較例1と同様にして、ポリイミド(フィルム)を得た。得られたフィルムは、フレキシブルな透明フィルムであった。なお、実施例1と同様に、得られたポリイミド(フィルム)のガラス転移温度(Tg)、線膨張係数(CTE)、400~800nmの波長域の光の平均透過率、5%重量減少温度を求めたところ、Tgは333℃であり、CTEは57ppm/Kであり、前記平均透過率は84%であり、5%重量減少温度は484℃であった。
(Comparative Example 2)
A polyimide (film) was obtained in the same manner as in Comparative Example 1 except that the temperature condition during the heat treatment of the dried coating film was changed from 300 ° C to 350 ° C. The obtained film was a flexible transparent film. As in Example 1, the obtained polyimide (film) had a glass transition temperature (Tg), a linear expansion coefficient (CTE), an average transmittance of light in the wavelength range of 400 to 800 nm, and a 5% weight loss temperature. As a result, Tg was 333 ° C., CTE was 57 ppm / K, the average transmittance was 84%, and the 5% weight loss temperature was 484 ° C.
 (比較例3)
 <ポリアミド酸の調製>
 実施例1で採用している「ポリアミド酸の調製」の方法と同様の方法を採用して、ポリアミド酸を含有する反応液を得た。
(Comparative Example 3)
<Preparation of polyamic acid>
A method similar to the method of “Preparation of polyamic acid” employed in Example 1 was employed to obtain a reaction solution containing polyamic acid.
 <混合物の調製>
 次に、前述のポリアミド酸の調製工程において得られたポリアミド酸を含有する反応液2.9g(ポリアミド酸の繰り返し単位のモル量:1.0mmol、前記反応液の約半量)を用い、前記反応液にトリエチルアミン139μL(1.0mmol)を添加する代わりにピリジン81μL(1.0mmol)を添加した以外は、実施例1で採用している「混合物の調製」の方法と同様の方法を採用して、ポリアミド酸2.9g(繰り返し単位の量として1.0mmol)とピリジン81μL(1.0mmol)と無水トリフルオロ酢酸86μL(0.6mmol)とを含有する混合物を得た。
<Preparation of mixture>
Next, 2.9 g of the reaction solution containing the polyamic acid obtained in the above-described preparation step of the polyamic acid (molar amount of the repeating unit of polyamic acid: 1.0 mmol, about half of the reaction solution) was used for the reaction. A method similar to the “preparation of mixture” employed in Example 1 was employed except that 139 μL (1.0 mmol) of triethylamine was added to the solution, and 81 μL (1.0 mmol) of pyridine was added. A mixture containing 2.9 g of polyamic acid (1.0 mmol as the amount of the repeating unit), 81 μL (1.0 mmol) of pyridine and 86 μL (0.6 mmol) of trifluoroacetic anhydride was obtained.
 <ポリイミドの調製>
 次いで、前記混合物として、上述の混合物の調製工程により得られた混合物を用いる以外は、実施例1で採用している「ポリイミドの調製」の方法と同様の方法(加熱温度:200℃)を採用して、ポリイミド(フィルム)を調製した。しかしながら、フレキシブルなフィルムは得られず、得られたフィルムは脆い(ブリットル)ものとなった。
<Preparation of polyimide>
Subsequently, the same method (heating temperature: 200 ° C.) as the method of “preparation of polyimide” employed in Example 1 is employed except that the mixture obtained by the above-described mixture preparation step is used as the mixture. Thus, a polyimide (film) was prepared. However, a flexible film was not obtained, and the obtained film was brittle.
 (比較例4)
 ポリイミドの調製工程において、乾燥塗膜の加熱処理時の温度条件を200℃から350℃に変更した以外は、比較例3と同様にして、ポリイミド(フィルム)を調製した。しかしながら、フレキシブルなフィルムは得られず、得られたフィルムは脆い(ブリットル)ものとなった。
(Comparative Example 4)
A polyimide (film) was prepared in the same manner as in Comparative Example 3 except that the temperature condition during the heat treatment of the dried coating film was changed from 200 ° C. to 350 ° C. in the polyimide preparation step. However, a flexible film was not obtained, and the obtained film was brittle.
 (比較例5)
 <ポリアミド酸の調製>
 実施例1で採用している「ポリアミド酸の調製」の方法と同様の方法を採用して、ポリアミド酸を含有する反応液を得た。
(Comparative Example 5)
<Preparation of polyamic acid>
A method similar to the method of “Preparation of polyamic acid” employed in Example 1 was employed to obtain a reaction solution containing polyamic acid.
 <混合物の調製>
 次に、前述のポリアミド酸の調製工程において得られたポリアミド酸を含有する反応液2.9g(ポリアミド酸の繰り返し単位のモル量:1.0mmol、前記反応液の約半量)を用い、反応液中に無水トリフルオロ酢酸86μL(0.6mmol)を添加する代わりに無水酢酸57μL(0.6mmol)を添加した以外は、実施例1で採用している「混合物の調製」の方法と同様の方法を採用して、ポリアミド酸2.9g(繰り返し単位の量として1.0mmol)とトリエチルアミン139μL(1.0mmol)と無水酢酸57μL(0.6mmol)とを含有する混合物を得た。
<Preparation of mixture>
Next, 2.9 g of the reaction solution containing the polyamic acid obtained in the above-described preparation step of the polyamic acid (molar amount of the polyamic acid repeating unit: 1.0 mmol, approximately half of the reaction solution) was used, and the reaction solution was used. A method similar to the method of “Preparation of mixture” employed in Example 1, except that 57 μL (0.6 mmol) of acetic anhydride was added instead of 86 μL (0.6 mmol) of trifluoroacetic anhydride. To obtain a mixture containing 2.9 g of polyamic acid (1.0 mmol as the amount of repeating units), 139 μL (1.0 mmol) of triethylamine and 57 μL (0.6 mmol) of acetic anhydride.
 <ポリイミドの調製>
 次いで、前記混合物として、上述の混合物の調製工程により得られた混合物を用いる以外は、実施例1で採用している「ポリイミドの調製」の方法と同様の方法(加熱温度:200℃)を採用して、ポリイミド(フィルム)を調製した。しかしながら、フレキシブルなフィルムは得られず、得られたフィルムは脆い(ブリットル)ものとなった。
<Preparation of polyimide>
Subsequently, the same method (heating temperature: 200 ° C.) as the method of “preparation of polyimide” employed in Example 1 is employed except that the mixture obtained by the above-described mixture preparation step is used as the mixture. Thus, a polyimide (film) was prepared. However, a flexible film was not obtained, and the obtained film was brittle.
 (比較例6)
 ポリイミドの調製工程において、乾燥塗膜の加熱処理時の温度条件を200℃から300℃に変更した以外は、比較例5と同様にして、ポリイミド(フィルム)を調製した。しかしながら、フレキシブルなフィルムは得られず、得られたフィルムは脆い(ブリットル)ものとなった。
(Comparative Example 6)
In the polyimide preparation step, a polyimide (film) was prepared in the same manner as in Comparative Example 5 except that the temperature condition during the heat treatment of the dried coating film was changed from 200 ° C to 300 ° C. However, a flexible film was not obtained, and the obtained film was brittle.
 (比較例7)
 ポリイミドの調製工程において、乾燥塗膜の加熱処理時の温度条件を200℃から350℃に変更した以外は、比較例5と同様にして、ポリイミド(フィルム)を調製した。得られたフィルムは、フレキシブルな透明フィルムであった。なお、実施例1と同様に、得られたポリイミド(フィルム)のガラス転移温度(Tg)、線膨張係数(CTE)、400~800nmの波長域の光の平均透過率、5%重量減少温度を求めたところ、Tgは333℃であり、CTEは57ppm/Kであり、前記平均透過率は85%であり、5%重量減少温度は484℃であった。
(Comparative Example 7)
A polyimide (film) was prepared in the same manner as in Comparative Example 5 except that the temperature condition during the heat treatment of the dried coating film was changed from 200 ° C. to 350 ° C. in the polyimide preparation step. The obtained film was a flexible transparent film. As in Example 1, the obtained polyimide (film) had a glass transition temperature (Tg), a linear expansion coefficient (CTE), an average transmittance of light in the wavelength range of 400 to 800 nm, and a 5% weight loss temperature. As a result, Tg was 333 ° C., CTE was 57 ppm / K, the average transmittance was 85%, and the 5% weight loss temperature was 484 ° C.
 (比較例8)
 <ポリアミド酸の調製>
 実施例1で採用している「ポリアミド酸の調製」の方法と同様の方法を採用して、ポリアミド酸を含有する反応液を得た。
(Comparative Example 8)
<Preparation of polyamic acid>
A method similar to the method of “Preparation of polyamic acid” employed in Example 1 was employed to obtain a reaction solution containing polyamic acid.
 <混合物の調製>
 次に、前述のポリアミド酸の調製工程において得られたポリアミド酸を含有する反応液2.9g(ポリアミド酸繰り返し単位の量:1.0mmol、前記反応液の約半量)を用い、前記反応液にトリエチルアミン139μL(1.0mmol)を添加する代わりにピリジン81μL(1.0mmol)を添加し、更に、前記反応液に無水トリフルオロ酢酸86μL(0.6mmol)を添加する代わりに無水酢酸57μL(0.6mmol)を添加した以外は、実施例1で採用している「混合物の調製」の方法と同様の方法を採用して、ポリアミド酸2.9g(1.0mmol)とピリジン81μL(1.0mmol)と無水酢酸57μL(0.6mmol)とを含有する混合物を得た。しかしながら、得られた混合物は、均一なものとはならず、かかる混合物中にDMAcに不溶なゲルが生成されたため、ガラス基板にキャストすることが出来ず、フィルムを形成することができなかった。
<Preparation of mixture>
Next, 2.9 g of the reaction solution containing the polyamic acid obtained in the above-described preparation step of the polyamic acid (amount of polyamic acid repeating unit: 1.0 mmol, about half of the reaction solution) is used in the reaction solution. Instead of adding 139 μL (1.0 mmol) of triethylamine, 81 μL (1.0 mmol) of pyridine was added. Furthermore, instead of adding 86 μL (0.6 mmol) of trifluoroacetic anhydride to the reaction solution, 57 μL (0. Except for the addition of 6 mmol), 2.9 g (1.0 mmol) of polyamic acid and 81 μL (1.0 mmol) of pyridine were employed in the same manner as in “Preparation of the mixture” employed in Example 1. And 57 μL (0.6 mmol) of acetic anhydride was obtained. However, the obtained mixture was not uniform, and a gel insoluble in DMAc was generated in the mixture, so that it could not be cast on a glass substrate and a film could not be formed.
 以下、各実施例及び各比較例に関して、ポリアミド酸(ポリアミック酸)の調製に用いた原料化合物等を表1に示し、各実施例及び各比較例において調製した混合物の特性及び調製条件を表2に示し、各実施例及び各比較例において調製したポリイミドの特性を表3に示す。 Hereinafter, with respect to each Example and each Comparative Example, the raw material compounds and the like used for the preparation of the polyamic acid (polyamic acid) are shown in Table 1, and the characteristics and preparation conditions of the mixtures prepared in each Example and each Comparative Example are shown in Table 2. Table 3 shows the characteristics of the polyimides prepared in each Example and each Comparative Example.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 表1~3に示した結果から明らかなように、ハロゲン系カルボン酸無水物(無水トリフルオロ酢酸)と、脂肪族系三級アミン(トリエチルアミン)とをイミド化剤として組み合わせて利用した場合、すなわち、前記ポリアミド酸とハロゲン系カルボン酸無水物(無水トリフルオロ酢酸)と脂肪族系三級アミン(トリエチルアミン)とを含有する混合物を用いた場合(実施例1~4)においては、その混合物を200℃という十分に低い温度で加熱(焼成)しているにもかかわらず、十分な強度(機械的な強度)を有するフレキシブルなポリイミドが製造されていることが確認された。また、前記ポリアミド酸とハロゲン系カルボン酸無水物と脂肪族系三級アミンとを含有する混合物を用いた場合(実施例1~4)には、得られたポリイミド(フィルム)の平均透過率がいずれも87%以上となっており、製造時の着色が十分に抑制されていることが確認されるとともに、得られたポリイミド(フィルム)のTgがいずれも330℃以上になっており、更には、5%重量減少温度が460℃以上になっており、十分に高度な耐熱性を有することが確認された。このような結果から、本発明(実施例1~4)においては、イミド化剤を用いる化学イミド化法を利用して、200℃という十分に低温の加熱で、十分な柔軟性、十分に高度な光透過性及び十分に高い耐熱性を有するポリイミドを効率よく製造することが可能であることが分かった。 As is apparent from the results shown in Tables 1 to 3, when a halogenated carboxylic acid anhydride (trifluoroacetic anhydride) and an aliphatic tertiary amine (triethylamine) are used in combination as an imidizing agent, that is, In the case where a mixture containing the polyamic acid, the halogenated carboxylic acid anhydride (trifluoroacetic anhydride) and the aliphatic tertiary amine (triethylamine) was used (Examples 1 to 4), the mixture was 200 It was confirmed that a flexible polyimide having sufficient strength (mechanical strength) was produced despite being heated (baked) at a sufficiently low temperature of ° C. Further, when the mixture containing the polyamic acid, the halogen-based carboxylic acid anhydride, and the aliphatic tertiary amine was used (Examples 1 to 4), the average transmittance of the obtained polyimide (film) was Both were 87% or more, and it was confirmed that coloring during production was sufficiently suppressed, and Tg of the obtained polyimide (film) was 330 ° C. or more, and The 5% weight loss temperature was 460 ° C. or higher, and it was confirmed that the product had sufficiently high heat resistance. From these results, in the present invention (Examples 1 to 4), by using a chemical imidization method using an imidizing agent, heating at a sufficiently low temperature of 200 ° C., sufficient flexibility, sufficiently high It has been found that it is possible to efficiently produce polyimide having excellent light transmittance and sufficiently high heat resistance.
 これに対して、イミド化剤を何ら利用せず、300℃(Tgよりも低い温度)の温度条件で加熱して熱イミド化を図った場合(比較例1)には、得られるポリイミドは脆く、強度が十分なものではなく、フィルムとして利用できるものとはならなかった。なお、このような結果は、300℃の熱イミド化のみでは、ガラス転移温度よりも熱イミド化温度が低いため、ポリアミド酸の分子鎖が動くことができず、分子量の向上とイミド化率の向上とを達成し得ないことに起因するものと本発明者らは推察する。また、イミド化剤を何ら利用せず、350℃(Tgよりも高い温度)の温度条件で加熱して熱イミド化を図った場合(比較例2)には、十分な強度(機械的な強度)を有するフレキシブルなポリイミドは得られたものの、透過率が84%となっており、光透過性の点で必ずしも十分なものとはならなかった。このように、イミド化剤を何ら利用せず、350℃の温度条件で加熱して熱イミド化を図った場合(比較例2)には、必ずしも十分に着色を抑制することができず、十分に高度な光透過性を有するポリイミドを製造することはできないことが分かった。このような比較例1及び2の結果から、上述の比較例で採用しているようなイミド化剤を何ら利用しない系では、300℃、1時間程度の加熱では十分な柔軟性を有するポリイミドを得ることができず、十分な柔軟性を有するポリイミドを得るためには、より高温の加熱(比較例2では350℃の加熱を採用)を施す必要があり、ポリイミドの製造時の加熱温度を十分に低減することはできないことが分かった。 On the other hand, when the thermal imidization is attempted by heating at 300 ° C. (temperature lower than Tg) without using any imidizing agent (Comparative Example 1), the resulting polyimide is brittle. The strength was not sufficient and it could not be used as a film. In addition, such a result shows that the thermal imidization temperature is lower than the glass transition temperature only by thermal imidation at 300 ° C., the molecular chain of the polyamic acid cannot move, and the molecular weight is improved and the imidization rate is increased. The present inventors speculate that this is because the improvement cannot be achieved. In addition, when thermal imidization is performed by heating at 350 ° C. (temperature higher than Tg) without using any imidizing agent (Comparative Example 2), sufficient strength (mechanical strength) ) Was obtained, but the transmittance was 84%, which was not always sufficient in terms of light transmittance. As described above, when the thermal imidization is performed by heating at a temperature of 350 ° C. without using any imidizing agent (Comparative Example 2), it is not always possible to sufficiently suppress the coloration. It has been found that it is impossible to produce a polyimide having a high light transmittance. From the results of Comparative Examples 1 and 2, in a system that does not use any imidizing agent as employed in the above Comparative Examples, a polyimide having sufficient flexibility when heated at 300 ° C. for about 1 hour is used. In order to obtain a polyimide that cannot be obtained and has sufficient flexibility, it is necessary to perform heating at a higher temperature (adopting heating at 350 ° C. in Comparative Example 2). It was found that it was not possible to reduce it.
 また、上述のような結果から、イミド化剤を用いる場合であっても、ピリジンとハロゲン系カルボン酸無水物(無水トリフルオロ酢酸)とを組み合わせて利用した場合(比較例3及び4)においては、350℃という高温で加熱した場合であっても、十分な強度を有するフレキシブルなポリイミドを形成することができないことも分かった。更に、イミド化剤を用いる場合であっても、脂肪族系三級アミン(トリエチルアミン)と無水酢酸とを組み合わせて利用した場合(比較例5~7)においては、200℃や300℃の加熱温度(比較例5及び6)では、形成されたポリイミドが脆くなり、フレキシブルなフィルムは得られず、比較例7で採用しているような350℃という高温の加熱温度によって、はじめてフレキシブルなフィルムが得られた。なお、350℃という加熱温度は、通常の熱イミド化において採用される加熱温度と同様の温度である。また、350℃の温度条件で加熱して熱イミド化を図った場合(比較例7)に、得られたポリイミドの平均透過率が85%となっていたことから、350℃の加熱温度条件を採用した場合(比較例7)には、特に、ポリイミドの製造に同じモノマーを用いる実施例1~2(200℃の加熱温度条件を採用)と比較して、必ずしも十分に着色を抑制することができず、十分に高度な光透過性を有するポリイミドを必ずしも製造することはできないことも分かった。また、イミド化剤を用いる場合であっても、ピリジン、無水酢酸を組み合わせて利用する系(比較例8)では、混合物を塗布することすらできず、フィルム状のポリイミドを製造することすらできなかった。 Further, from the above results, even when an imidizing agent is used, in the case of using a combination of pyridine and a halogenated carboxylic acid anhydride (trifluoroacetic anhydride) (Comparative Examples 3 and 4), It was also found that a flexible polyimide having sufficient strength cannot be formed even when heated at a high temperature of 350 ° C. Further, even when an imidizing agent is used, when a combination of an aliphatic tertiary amine (triethylamine) and acetic anhydride is used (Comparative Examples 5 to 7), a heating temperature of 200 ° C. or 300 ° C. In (Comparative Examples 5 and 6), the formed polyimide becomes brittle, and a flexible film cannot be obtained. A flexible film is obtained only by a heating temperature as high as 350 ° C. as used in Comparative Example 7. It was. The heating temperature of 350 ° C. is the same temperature as the heating temperature employed in normal thermal imidization. In addition, when heat imidization was attempted by heating at a temperature condition of 350 ° C. (Comparative Example 7), the average transmittance of the obtained polyimide was 85%. When employed (Comparative Example 7), in particular, coloring is not necessarily sufficiently suppressed as compared with Examples 1 and 2 (using a heating temperature condition of 200 ° C.) using the same monomer for the production of polyimide. It has also been found that it is not always possible to produce a polyimide having a sufficiently high light transmittance. Further, even when an imidizing agent is used, in a system using a combination of pyridine and acetic anhydride (Comparative Example 8), it is not possible to even apply the mixture and even to produce a film-like polyimide. It was.
 このような比較例1~8に記載の製造例の結果を考慮すれば、イミド化剤を用いる場合であっても、ハロゲン系カルボン酸無水物と、脂肪族系三級アミンとを組み合わせて利用していない比較例1~8の系を採用した場合においては、化学イミド化を必ずしも十分に活用することができず、十分な柔軟性を有するポリイミドを製造するためには、比較的高温(例えば300℃よりも高い温度)での加熱が必要となることが分かる。 Considering the results of the production examples described in Comparative Examples 1 to 8, even when an imidizing agent is used, a combination of a halogen-based carboxylic acid anhydride and an aliphatic tertiary amine is used. In the case where the systems of Comparative Examples 1 to 8 that are not used are employed, chemical imidization cannot be fully utilized, and in order to produce a polyimide having sufficient flexibility, a relatively high temperature (for example, It can be seen that heating at a temperature higher than 300 ° C. is required.
 以上説明したように、本発明によれば、化学イミド化法を利用しながら十分に高度な耐熱性を有する脂環式のポリイミドを製造することが可能となり、比較的低温の加熱で十分な柔軟性を有するポリイミドを製造でき、製造時のポリイミドの着色をより確実に防止することが可能であり、より低温の加熱温度を採用して十分に高度な光透過性と十分に高い耐熱性と十分な柔軟性とを有するポリイミドをより効率よくかつ確実に製造することを可能とするポリイミドの製造方法、及び、その製造方法により得られるポリイミドを提供することが可能となる。 As described above, according to the present invention, it is possible to produce an alicyclic polyimide having a sufficiently high heat resistance while utilizing a chemical imidization method, and is sufficiently flexible by heating at a relatively low temperature. It is possible to manufacture a polyimide having the property, and it is possible to more reliably prevent the polyimide from being colored at the time of manufacture. Adopting a lower heating temperature, sufficiently high light transmittance and sufficiently high heat resistance and sufficient It is possible to provide a polyimide production method that makes it possible to more efficiently and reliably produce a polyimide having such flexibility, and a polyimide obtained by the production method.
 このように、本発明のポリイミドの製造方法によって、従来では困難であった低温での熱イミド化が可能となり、着色を最小限に抑制できることから、極めて透明性に優れたポリイミドを付与することが可能となる。そのため、本発明のポリイミドの製造方法は、例えば、非常に高度な透明性が要求される液晶配向膜用のポリイミド;有機EL(ボトムエミッション型、トップエミッション型、シースルー型等)の透明電極基板用のポリイミド;有機EL照明用のポリイミド;タッチパネルの透明電極基板用のポリイミド;太陽電池の透明電極基板用のポリイミド;電子ペーパーの透明電極基板用のポリイミド;複写機用の透明ポリイミドベルト向けのポリイミド;各種のガスバリアフィルム基板材料;フレキシブル配線基板用のポリイミド;耐熱絶縁テープ用のポリイミド;電線エナメル用のポリイミド;半導体の保護コーティング用のポリイミド;FPC、光導波路、イメージセンサー、LED反射板、LED照明用カバー、スケルトン型FPC、カバーレイフィルム、チップオンフィルム、高延性複合体基板、液晶配向膜、ポリイミドコーティング材(DRAM、フラッシュメモリ、次世代LSIなどのバッファーコート材)、半導体向けレジスト、各種の電材等の用途に用いるフィルムの形成用の材料としてのポリイミド;リチウムイオン電池等の各種バッテリーの材料等を製造するための原料化合物(原料モノマー)としてのポリイミド等に用いる素材(ポリイミド)を製造する方法等として特に有用である。 As described above, the polyimide production method of the present invention enables thermal imidization at a low temperature, which has been difficult in the past, and can suppress coloring to a minimum, so that a polyimide having extremely excellent transparency can be imparted. It becomes possible. Therefore, the polyimide production method of the present invention is, for example, a polyimide for a liquid crystal alignment film that requires a very high degree of transparency; for a transparent electrode substrate of organic EL (bottom emission type, top emission type, see-through type, etc.) Polyimide for organic EL lighting; polyimide for transparent electrode substrate of touch panel; polyimide for transparent electrode substrate of solar cell; polyimide for transparent electrode substrate of electronic paper; polyimide for transparent polyimide belt for copying machine; Various gas barrier film substrate materials; polyimide for flexible wiring substrates; polyimide for heat-resistant insulating tape; polyimide for wire enamel; polyimide for semiconductor protective coating; FPC, optical waveguide, image sensor, LED reflector, LED lighting Cover, skeleton type FPC, cover Ray film, chip-on film, high ductility composite substrate, liquid crystal alignment film, polyimide coating material (DRAM, flash memory, buffer coating material for next generation LSI, etc.), resist for semiconductor, various electrical materials, etc. Polyimide as a forming material; particularly useful as a method for producing a raw material (polyimide) used as a raw material compound (raw material monomer) for producing various battery materials such as lithium ion batteries.

Claims (8)

  1.  下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、Rは下記一般式(I-1)~(I-10):
    Figure JPOXMLDOC01-appb-C000002
    で表される4価の置換基群の中から選択される基を示し、Rは下記一般式(II-1)~(II-4):
    Figure JPOXMLDOC01-appb-C000003
    (式中のRはそれぞれ独立に、水素原子、炭素数1~10のアルキル基及びフッ素原子よりなる群から選択される1種を示し、Qは、式:-O-、-S-、-CO-、-CONH-、-SO-、-C(CF-、-C(CH-、-CH-、-O-C-C(CH-C-O-、-O-C-SO-C-O-、-C(CH-C-C(CH-、-O-C-C-O-及び-O-C-O-で表される基よりなる群から選択される1種を示す。)
    で表される2価の置換基群の中から選択される基を示す。]
    で表される繰り返し単位を有するポリアミド酸と、ハロゲン系カルボン酸無水物と、脂肪族系三級アミンとを含有する混合物を用いて、前記ポリアミド酸をイミド化することにより、下記一般式(2):
    Figure JPOXMLDOC01-appb-C000004
    [式(2)中、R及びRはそれぞれ前記一般式(1)中のR及びRと同義である。]
    で表される繰り返し単位を有するポリイミドを得る、ポリイミドの製造方法。
    The following general formula (1):
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (1), R 1 represents the following general formulas (I-1) to (I-10):
    Figure JPOXMLDOC01-appb-C000002
    R 2 represents a group selected from the group of tetravalent substituents represented by the following general formulas (II-1) to (II-4):
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, each R 3 independently represents one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, and a fluorine atom, and Q represents the formula: —O—, —S—, —CO—, —CONH—, —SO 2 —, —C (CF 3 ) 2 —, —C (CH 3 ) 2 —, —CH 2 —, —O—C 6 H 4 —C (CH 3 ) 2 —C 6 H 4 —O—, —O—C 6 H 4 —SO 2 —C 6 H 4 —O—, —C (CH 3 ) 2 —C 6 H 4 —C (CH 3 ) 2 —, — This represents one selected from the group consisting of O—C 6 H 4 —C 6 H 4 —O— and —O—C 6 H 4 —O—.)
    A group selected from the group of divalent substituents represented by the formula: ]
    When the polyamic acid is imidized using a mixture containing a polyamic acid having a repeating unit represented by formula (II), a halogen-based carboxylic acid anhydride, and an aliphatic tertiary amine, the following general formula (2 ):
    Figure JPOXMLDOC01-appb-C000004
    [In the formula (2), R 1 and R 2 are the same meanings as R 1 and R 2 in the general formula (1). ]
    The manufacturing method of a polyimide which obtains the polyimide which has a repeating unit represented by these.
  2.  前記ポリアミド酸をイミド化する工程に、前記ポリイミドのガラス転移温度よりも80~300℃低い温度で前記混合物を加熱する工程を含む、請求項1に記載のポリイミドの製造方法。 The method for producing a polyimide according to claim 1, wherein the step of imidizing the polyamic acid includes a step of heating the mixture at a temperature 80 to 300 ° C lower than the glass transition temperature of the polyimide.
  3.  前記混合物中の前記ハロゲン系カルボン酸無水物の含有割合が、前記ポリアミド酸の繰り返し単位1モルに対して0.01~4.0モルである、請求項1又は2に記載のポリイミドの製造方法。 The method for producing a polyimide according to claim 1 or 2, wherein a content ratio of the halogen-based carboxylic acid anhydride in the mixture is 0.01 to 4.0 moles with respect to 1 mole of the repeating unit of the polyamic acid. .
  4.  前記混合物中の前記脂肪族系三級アミンの含有割合が、前記ポリアミド酸の繰り返し単位1モルに対して0.01~4.0モルである、請求項1~3のうちのいずれか一項に記載のポリイミドの製造方法。 The content of the aliphatic tertiary amine in the mixture is 0.01 to 4.0 moles per mole of the polyamic acid repeating unit. The manufacturing method of the polyimide as described in.
  5.  有機溶媒中で下記一般式(3):
    Figure JPOXMLDOC01-appb-C000005
    [式(3)中、Rは前記一般式(1)中のRと同義である。]
    で表されるテトラカルボン酸二無水物と、下記一般式(4):
    Figure JPOXMLDOC01-appb-C000006
    [式(4)中、Rは前記一般式(1)中のRと同義である。]
    で表される芳香族ジアミンとを反応せしめることにより前記ポリアミド酸を得る工程を更に含む、請求項1~4のうちのいずれか一項に記載のポリイミドの製造方法。
    The following general formula (3) in an organic solvent:
    Figure JPOXMLDOC01-appb-C000005
    [In Formula (3), R 1 has the same meaning as R 1 in the general formula (1). ]
    A tetracarboxylic dianhydride represented by the following general formula (4):
    Figure JPOXMLDOC01-appb-C000006
    Wherein (4), R 2 has the same meaning as R 2 in the general formula (1). ]
    The method for producing a polyimide according to any one of claims 1 to 4, further comprising a step of obtaining the polyamic acid by reacting with an aromatic diamine represented by the formula:
  6.  前記ハロゲン系カルボン酸無水物が、無水トリフルオロ酢酸、無水ジフルオロ酢酸、無水フルオロ酢酸、無水ペンタフルオロプロピオン酸、無水ヘプタフルオロ酪酸、無水トリクロロ酢酸、無水ジクロロ酢酸、無水クロロ酢酸、無水トリブロモ酢酸、無水ジブロモ酢酸、無水ブロモ酢酸、無水クロロジフルオロ酢酸、無水クロロテトラフルオロプロピオン酸、無水クロロヘキサフルオロ酪酸及びこれらの無水物を形成する酸の混合酸無水物の中から選択される少なくとも1種である、請求項1~5のうちのいずれか一項に記載のポリイミドの製造方法。 The halogen-based carboxylic acid anhydride is trifluoroacetic anhydride, difluoroacetic anhydride, fluoroacetic anhydride, pentafluoropropionic anhydride, heptafluorobutyric anhydride, trichloroacetic anhydride, dichloroacetic anhydride, chloroacetic anhydride, tribromoacetic anhydride, anhydrous At least one selected from dibromoacetic acid, bromoacetic anhydride, chlorodifluoroacetic anhydride, chlorotetrafluoropropionic anhydride, chlorohexafluorobutyric anhydride, and mixed acid anhydrides of these anhydrides; The method for producing polyimide according to any one of claims 1 to 5.
  7.  前記脂肪族系三級アミンが、下記一般式(5):
    Figure JPOXMLDOC01-appb-C000007
    [式(5)中、Rはそれぞれ独立に炭素数1~10のアルキル基を示す。]
    で表される三級アミンである、請求項1~6のうちのいずれか一項に記載のポリイミドの製造方法。
    The aliphatic tertiary amine is represented by the following general formula (5):
    Figure JPOXMLDOC01-appb-C000007
    [In Formula (5), each R 3 independently represents an alkyl group having 1 to 10 carbon atoms. ]
    The method for producing a polyimide according to any one of claims 1 to 6, which is a tertiary amine represented by the formula:
  8.  請求項1~7のうちのいずれか一項に記載のポリイミドの製造方法により得られたポリイミドである、ポリイミド。 A polyimide, which is a polyimide obtained by the method for producing a polyimide according to any one of claims 1 to 7.
PCT/JP2014/081647 2013-12-05 2014-11-28 Method for producing polyimide, and polyimide obtained using such production method WO2015083649A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167017532A KR20160096123A (en) 2013-12-05 2014-11-28 Method for producing polyimide, and polyimide obtained using such production method
CN201480066676.9A CN105829400A (en) 2013-12-05 2014-11-28 Method for producing polyimide, and polyimide obtained using such production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-252258 2013-12-05
JP2013252258A JP2015108092A (en) 2013-12-05 2013-12-05 Polyimide production method and polyimide obtained by the same

Publications (1)

Publication Number Publication Date
WO2015083649A1 true WO2015083649A1 (en) 2015-06-11

Family

ID=53273412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081647 WO2015083649A1 (en) 2013-12-05 2014-11-28 Method for producing polyimide, and polyimide obtained using such production method

Country Status (5)

Country Link
JP (1) JP2015108092A (en)
KR (1) KR20160096123A (en)
CN (1) CN105829400A (en)
TW (1) TW201533096A (en)
WO (1) WO2015083649A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017030019A1 (en) * 2015-08-14 2017-02-23 Jxエネルギー株式会社 Tetracarboxylic dianhydride, carbonyl compound, polyamic acid and polyimide and methods respectively for producing these compounds, solution prepared using polyamic acid, and film produced using polyimide
JP6690057B1 (en) * 2019-02-01 2020-04-28 ウィンゴーテクノロジー株式会社 Polyimide compound and molded article containing the polyimide compound
CN111499901A (en) * 2020-04-29 2020-08-07 东莞东阳光科研发有限公司 Preparation method of fluorine-containing polymer/polyimide composite film
JP2021138952A (en) * 2016-05-31 2021-09-16 宇部興産株式会社 Polyimide precursor, polyimide, polyimide film, substrate, and tetracarboxylic acid dianhydride used for producing polyimide

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI682969B (en) * 2014-10-23 2020-01-21 日商宇部興產股份有限公司 Polyimide film, polyimide precursor, and polyimide
US20170313821A1 (en) * 2014-10-23 2017-11-02 Ube Industries, Ltd. Polyimide precursor, polyimide, and polyimide film
KR101856727B1 (en) 2016-06-21 2018-05-10 주식회사 엘지화학 Liquid crystal alignment composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film using the same
CN106995603B (en) * 2017-05-02 2019-03-26 湖南峰业光电有限公司 A kind of transparent flame-retarding glass fiber reinforcement PC material and preparation method thereof and the application in liquid crystal material preparation
WO2021153379A1 (en) * 2020-01-31 2021-08-05 三菱瓦斯化学株式会社 Polyimide resin, polyimide varnish, and polyimide film
WO2021261177A1 (en) * 2020-06-23 2021-12-30 株式会社カネカ Poly(amic acid), poly(amic acid) solution, polyimide, polyimide film, layered product, method for producing layered product, and electronic device
CN112304365B (en) * 2020-09-25 2022-07-05 北京空间飞行器总体设计部 On-orbit micro space debris multi-parameter measuring probe and measuring method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0876128A (en) * 1994-09-08 1996-03-22 Japan Synthetic Rubber Co Ltd Liquid crystal orienting agent
CN103172887A (en) * 2013-04-17 2013-06-26 华威聚酰亚胺有限责任公司 Method for preparing polyimide film by carrying out chemical imidization on polyamic acid in bath mode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2535341B1 (en) 2010-02-09 2015-08-26 JX Nippon Oil & Energy Corporation Norbornane-2-spiro- a-cycloalkanone-a '-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic dianhydride, norbornane-2-spiro- a-cycloalkanone-a '-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic acid and ester thereof, method for producing norbornane-2-spiro- a-cycloalkanone-a '-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic dianhydride, polyimide obtained using same, and method for producing polyimide
CN101831175A (en) * 2010-04-01 2010-09-15 辽宁科技大学 Colorless and transparent polyimide nano-composite material membrane and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0876128A (en) * 1994-09-08 1996-03-22 Japan Synthetic Rubber Co Ltd Liquid crystal orienting agent
CN103172887A (en) * 2013-04-17 2013-06-26 华威聚酰亚胺有限责任公司 Method for preparing polyimide film by carrying out chemical imidization on polyamic acid in bath mode

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017030019A1 (en) * 2015-08-14 2017-02-23 Jxエネルギー株式会社 Tetracarboxylic dianhydride, carbonyl compound, polyamic acid and polyimide and methods respectively for producing these compounds, solution prepared using polyamic acid, and film produced using polyimide
CN107922367A (en) * 2015-08-14 2018-04-17 Jxtg能源株式会社 Tetracarboxylic dianhydride, carbonyls, polyamic acid, polyimides and their manufacture method, the solution using polyamic acid and the film using polyimides
JPWO2017030019A1 (en) * 2015-08-14 2018-05-31 Jxtgエネルギー株式会社 Tetracarboxylic acid dianhydride, carbonyl compound, polyamic acid, polyimide and production method thereof, solution using polyamic acid, and film using polyimide
JP2021138952A (en) * 2016-05-31 2021-09-16 宇部興産株式会社 Polyimide precursor, polyimide, polyimide film, substrate, and tetracarboxylic acid dianhydride used for producing polyimide
JP7173204B2 (en) 2016-05-31 2022-11-16 Ube株式会社 Polyimide precursors, polyimides, polyimide films and substrates, and tetracarboxylic dianhydrides used in the production of polyimides
JP6690057B1 (en) * 2019-02-01 2020-04-28 ウィンゴーテクノロジー株式会社 Polyimide compound and molded article containing the polyimide compound
WO2020157953A1 (en) * 2019-02-01 2020-08-06 ウィンゴーテクノロジー株式会社 Polyimide compound and molded article containing said polyimide compound
CN111499901A (en) * 2020-04-29 2020-08-07 东莞东阳光科研发有限公司 Preparation method of fluorine-containing polymer/polyimide composite film
CN111499901B (en) * 2020-04-29 2022-07-08 东莞东阳光科研发有限公司 Preparation method of fluorine-containing polymer/polyimide composite film

Also Published As

Publication number Publication date
CN105829400A (en) 2016-08-03
JP2015108092A (en) 2015-06-11
TW201533096A (en) 2015-09-01
KR20160096123A (en) 2016-08-12

Similar Documents

Publication Publication Date Title
WO2015083649A1 (en) Method for producing polyimide, and polyimide obtained using such production method
JP6820827B2 (en) Polyimide film with voids and its manufacturing method
CN111892708B (en) Resin precursor, resin composition containing the same, resin film and method for producing the same, and laminate and method for producing the same
JP2020090681A (en) Polyamide-imide precursor, polyamide-imide film and display device including the same
JP2018172685A (en) Polyimide precursor and polyimide
KR102430152B1 (en) Polyamic acid solution, transparent polyimide film and transparent substrate using the same
EP3252092B1 (en) Polyamide acid composition and polyimide composition
JP2016138280A (en) Copolymerized polyimide precursor and copolymerized polyimide
KR20110010009A (en) Manufacturing method of polyimide, polyimide manufactured by thereof and film manufactured using said polyimide
JP7203082B2 (en) Polyimide precursor resin composition
JP2014139302A (en) Polyimide precursor and resin composition containing the same, polyimide film and its manufacturing method, laminate and its manufacturing method
KR20110010008A (en) Manufacturing method of a novel polymer, a novel polymer manufactured by thereof and film manufactured using said polymer
JP6461470B2 (en) Polyimide precursor composition, polyimide production method, polyimide, polyimide film, and substrate
JP2022516282A (en) A method for producing a polyamic acid composition containing a novel dicarbonyl compound, a polyamic acid composition, a method for producing a polyamide-imide film using the same, and a polyamide-imide film produced by the method for producing the same.
KR101896537B1 (en) Polyimide copolymer, and production method for same
JP7050382B2 (en) Polyimide film and its manufacturing method
KR20160094551A (en) Polyamic acid composition and polyimide substrate
KR20160019466A (en) Resin composition for display substrates, resin thin film for display substrates, and method for producing resin thin film for display substrates
KR20100080301A (en) Polyamic acid and polyimide coating layer
JP6638744B2 (en) Polyimide precursor composition, method for producing polyimide, polyimide, polyimide film, and substrate
CN116057109A (en) Polymer composition, varnish, and polyimide film
JP2020193272A (en) Polyimide precursor composition and method for producing polyimide film
KR102472528B1 (en) Polyamic acid composition and polyimide comprising the same
KR102472532B1 (en) Polyamic acid composition and polyimide comprising the same
KR102472537B1 (en) Polyamic acid composition and polyimide comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14868057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167017532

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14868057

Country of ref document: EP

Kind code of ref document: A1