WO2015083500A1 - Method for producing metal oxide film, metal oxide film, thin-film transistor, display device, image sensor, and x-ray sensor - Google Patents

Method for producing metal oxide film, metal oxide film, thin-film transistor, display device, image sensor, and x-ray sensor Download PDF

Info

Publication number
WO2015083500A1
WO2015083500A1 PCT/JP2014/079768 JP2014079768W WO2015083500A1 WO 2015083500 A1 WO2015083500 A1 WO 2015083500A1 JP 2014079768 W JP2014079768 W JP 2014079768W WO 2015083500 A1 WO2015083500 A1 WO 2015083500A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
film
oxide film
metal
substrate
Prior art date
Application number
PCT/JP2014/079768
Other languages
French (fr)
Japanese (ja)
Inventor
真宏 高田
田中 淳
鈴木 真之
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020167012845A priority Critical patent/KR101897375B1/en
Publication of WO2015083500A1 publication Critical patent/WO2015083500A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02614Transformation of metal, e.g. oxidation, nitridation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1296Multistep manufacturing methods adapted to increase the uniformity of device parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • H01L27/14676X-ray, gamma-ray or corpuscular radiation imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14687Wafer level processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14692Thin film technologies, e.g. amorphous, poly, micro- or nanocrystalline silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Definitions

  • the present invention relates to a method for producing a metal oxide film, a metal oxide film, a thin film transistor, a display device, an image sensor, and an X-ray sensor.
  • a metal oxide semiconductor film has been put into practical use in the production by a vacuum film forming method and is currently attracting attention.
  • research and development have been actively conducted on the production of metal oxide films by a liquid phase process for the purpose of easily forming metal oxide films having high semiconductor properties at low temperatures and atmospheric pressure. ing.
  • a method for producing a metal oxide film is disclosed in which a gel thin film is irradiated with ultraviolet light having a wavelength of 360 nm or less to crystallize the metal oxide gel by repeating the process a plurality of times (Japanese Patent Laid-Open No. 2000). -247608).
  • a step of forming a film containing an organometallic compound and / or an organometallic complex, irradiating the film with energy rays, decomposing an organic component contained in the film located at the irradiation site, and metal and / or metal oxide has been disclosed (see Japanese Patent Application Laid-Open No. 2005-213567).
  • TFT Thin Film Transistor
  • the present invention relates to a metal oxide film manufacturing method and metal oxide film capable of manufacturing a dense metal oxide film at a relatively low temperature and atmospheric pressure, and a thin film transistor and a display device having high mobility.
  • An object is to provide an image sensor and an X-ray sensor.
  • ⁇ 1> Applying a solution containing metal nitrate on a substrate, drying the coating film to form a metal oxide precursor film, and converting the metal oxide precursor film into a metal oxide film Including repeating two or more times alternately, Metal that converts a metal oxide precursor film into a metal oxide film by converting the metal oxide precursor film into a metal oxide film in at least two steps of converting the metal oxide precursor film into a metal oxide film with a maximum substrate temperature of 120 ° C. to 250 ° C. Manufacturing method of oxide film.
  • the maximum reached temperature of the substrate is set to 120 ° C.
  • ⁇ 5> Any one of ⁇ 1> to ⁇ 4>, wherein the step of forming the metal oxide precursor film and the step of converting the metal oxide precursor film into the metal oxide film are alternately repeated four times or more.
  • ⁇ 6> The method for producing a metal oxide film according to any one of ⁇ 1> to ⁇ 5>, wherein the solution containing the metal nitrate contains at least indium nitrate.
  • the solution containing indium nitrate further contains a compound containing at least one metal atom selected from zinc, tin, gallium, and aluminum.
  • ⁇ 8> The method for producing a metal oxide film according to any one of ⁇ 1> to ⁇ 7>, wherein the metal molar concentration of the solution containing the metal nitrate is 0.01 mol / L or more and 0.5 mol / L or less. . ⁇ 9>
  • the average thickness of the metal oxide film obtained by performing the process of forming the metal oxide precursor film and the process of converting the metal oxide precursor film into a metal oxide film once is 6 nm or less.
  • the average film thickness of the metal oxide film obtained by performing the process of forming the metal oxide precursor film and the process of converting the metal oxide precursor film into a metal oxide film once is 2 nm or less.
  • ⁇ 9> The method for producing a metal oxide film according to the above.
  • ⁇ 11> The method for producing a metal oxide film according to any one of ⁇ 1> to ⁇ 10>, wherein the solution containing the metal nitrate contains methanol or methoxyethanol.
  • the step of converting the metal oxide precursor film into the metal oxide film includes a step of irradiating the metal oxide precursor film with ultraviolet light having a wavelength of 300 nm or less at an intensity of 10 mW / cm 2 or more ⁇ 4
  • ⁇ 13> The method for producing a metal oxide film according to ⁇ 12>, wherein the light source used when the metal oxide precursor film is irradiated with ultraviolet rays is a low-pressure mercury lamp.
  • ⁇ 14> The metal according to any one of ⁇ 1> to ⁇ 13>, wherein in the step of forming the metal oxide precursor film, the temperature of the substrate when the coating film is dried is 35 ° C.
  • a solution containing a metal nitrate is applied by at least one application method selected from an inkjet method, a dispenser method, a relief printing method, and an intaglio printing method ⁇ 1
  • ⁇ 16> A metal oxide film produced using the method for producing a metal oxide film according to any one of ⁇ 1> to ⁇ 15>.
  • the metal oxide film according to ⁇ 16> which is a metal oxide semiconductor film.
  • ⁇ 18> A thin film transistor having an active layer including the metal oxide film according to ⁇ 17>, a source electrode, a drain electrode, a gate insulating film, and a gate electrode.
  • a display device comprising the thin film transistor according to ⁇ 18>.
  • An image sensor comprising the thin film transistor according to ⁇ 18>.
  • An X-ray sensor comprising the thin film transistor according to ⁇ 18>.
  • FIG. 1 is a schematic view showing a configuration of an example (bottom gate-bottom contact type) thin film transistor manufactured according to the present invention.
  • FIG. It is a schematic sectional drawing which shows a part of liquid crystal display device of embodiment. It is a schematic block diagram of the electrical wiring of the liquid crystal display device shown in FIG. It is a schematic sectional drawing which shows a part of organic EL display apparatus of embodiment.
  • FIG. It is a schematic block diagram of the electrical wiring of the organic electroluminescence display shown in FIG. It is a schematic sectional drawing which shows a part of X-ray sensor array of embodiment. It is a schematic block diagram of the electrical wiring of the X-ray sensor array shown in FIG. It is a diagram showing, V g -I d characteristics of the simplified TFT fabricated in Examples 1-4 and Comparative Example 1. It is a figure which shows the relationship between the repetition frequency of a precursor film
  • the inventors conducted a plurality of times by alternately applying a solution using a metal nitrate and forming a metal oxide precursor film by drying and converting it into a metal oxide film by heating a plurality of times. It has been found that an effect of improving the density can be obtained.
  • a metal oxide semiconductor film by the method of the present invention, a thin film transistor having high transport properties can be produced at a relatively low temperature under atmospheric pressure. Therefore, a display device such as a thin film liquid crystal display or an organic EL, particularly a flexible display. Can be provided.
  • the method for producing a metal oxide film of the present invention includes a step of applying a solution containing a metal nitrate on a substrate, drying the applied film to form a metal oxide precursor film, and forming the metal oxide precursor film into a metal.
  • the metal oxide precursor film is converted into a metal oxide film at a temperature lower than the temperature.
  • a dense metal oxide film can be formed by the present invention.
  • the metal oxide precursor film is converted into the metal oxide film, the nitric acid component and the component coordinated to the metal are desorbed from the film.
  • the solution is impregnated in the detached part, and as a result, a new metal-oxygen bond is formed, and a dense metal oxide film is formed. .
  • Step A First, prepare a solution containing a metal nitrate for forming a metal oxide film and a substrate for forming a metal oxide film, apply a solution containing the metal nitrate on the substrate, and dry the applied film. A metal oxide precursor film is formed.
  • the structure of the substrate may be a single layer structure or a laminated structure.
  • the material constituting the substrate is not particularly limited, and a substrate made of glass, an inorganic material such as YSZ (Yttria-Stabilized Zirconia), a resin, a resin composite material, or the like can be used.
  • a resin substrate or a substrate made of a resin composite material (resin composite material substrate) is preferable in terms of light weight and flexibility.
  • Inorganic materials contained in the composite material of inorganic material and resin include inorganic particles such as silicon oxide particles, metal nanoparticles, inorganic oxide nanoparticles, and inorganic nitride nanoparticles, carbon fibers such as carbon fibers and carbon nanotubes. Examples thereof include glass materials such as materials, glass ferkes, glass fibers, and glass beads. Also, composite plastic material of resin and clay mineral, composite plastic material of resin and particles having mica-derived crystal structure, laminated plastic material having at least one bonding interface between resin and thin glass, inorganic layer and organic Examples include a composite material having barrier performance having at least one bonding interface by alternately laminating layers.
  • a stainless steel substrate or a metal multilayer substrate in which different metals are laminated with stainless steel, an aluminum substrate, an aluminum substrate with an oxide film whose surface insulation is improved by subjecting the surface to an oxidation treatment (for example, anodization treatment), or the like is used.
  • the resin substrate or the resin composite material substrate is preferably excellent in heat resistance, dimensional stability, solvent resistance, electrical insulation, workability, low air permeability, low moisture absorption, and the like.
  • the resin substrate or the resin composite material substrate may include a gas barrier layer for preventing permeation of moisture, oxygen, and the like, an undercoat layer for improving the flatness of the substrate and adhesion with the lower electrode, and the like.
  • the thickness of the substrate used in the present invention is not particularly limited, but is preferably 50 ⁇ m or more and 500 ⁇ m or less.
  • the thickness of the substrate is 50 ⁇ m or more, the flatness of the substrate itself is further improved.
  • the thickness of the substrate is 500 ⁇ m or less, the flexibility of the substrate itself is further improved, and the use as a substrate for a flexible device becomes easier.
  • a solution containing a metal nitrate is obtained by weighing a solute such as a metal nitrate so that the solution has a desired concentration and stirring and dissolving in a solvent.
  • the stirring time is not particularly limited as long as the solute is sufficiently dissolved.
  • the metal nitrate contained in the solution may be selected according to the metal oxide film to be formed.
  • the metal molar concentration of the solution can be arbitrarily selected according to the viscosity and the film thickness to be obtained. Is preferred. If the metal molar concentration in the solution is 0.01 mol / L or more, the film density can be effectively improved. In addition, when a metal oxide precursor film is formed by applying a solution on the metal oxide film, the lower metal oxide film should be dissolved if the metal molar concentration in the solution is 0.5 mol / L or less. Is also preferable in that it can be effectively suppressed.
  • the metal molar concentration in the present invention means the total amount of molar concentrations (mol / L) of each metal.
  • the solution containing a metal nitrate may contain a metal atom-containing compound other than the metal nitrate.
  • the metal atom-containing compound include metal salts other than metal nitrates, metal halides, and organometallic compounds.
  • metal salts other than metal nitrates include sulfates, phosphates, carbonates, acetates, and oxalates.
  • metal halides include chlorides, iodides, bromides, and the like. Examples thereof include metal alkoxides, organic acid salts, and metal ⁇ -diketonates.
  • the solution containing metal nitrate preferably contains at least indium nitrate.
  • an indium-containing oxide film can be easily formed by using indium nitrate, and high electrical conductivity can be obtained.
  • the step of converting the metal oxide precursor film into the metal oxide film includes a step of irradiating ultraviolet rays, the precursor film can efficiently absorb ultraviolet light, and the indium-containing oxide film can be easily formed. Can be formed.
  • the solution containing a metal nitrate contains a compound containing any one or more metal atoms selected from zinc, tin, gallium, and aluminum as a metal element other than indium.
  • the threshold voltage of the obtained oxide semiconductor film can be controlled to a desired value, and the electrical stability of the film is also improved.
  • an oxide semiconductor containing a metal element other than indium and indium and an oxide conductor In—Ga—Zn—O (IGZO), In—Zn—O (IZO), and In—Ga—O (IGO) are used.
  • the solvent used for the solution containing the metal nitrate is not particularly limited as long as the metal atom-containing compound containing the metal nitrate to be used is dissolved.
  • Water, alcohol solvents methanol, ethanol, propanol, ethylene glycol, etc.
  • amide solvents N, N-dimethylformamide, etc.
  • ketone solvents acetone, N-methylpyrrolidone, sulfolane, N, N-dimethylimidazolidinone, etc.
  • ether solvents tetrahydrofuran, methoxyethanol, etc.
  • nitrile solvents acetonitrile, etc.
  • examples include heteroatom-containing solvents other than those described above. In particular, from the viewpoint of solubility and paintability, it is preferable to use methanol, methoxyethanol or the like.
  • the method of applying a solution containing metal nitrate (coating solution for forming a metal oxide film) on the substrate is not particularly limited. Spray coating method, spin coating method, blade coating method, dip coating method, casting method, roll coating method , Bar coating method, die coating method, mist method, ink jet method, dispenser method, screen printing method, relief printing method, and intaglio printing method.
  • the coating film is dried to obtain a first metal oxide precursor film.
  • the fluidity of the coating film can be reduced, and the flatness of the finally obtained oxide film can be improved.
  • an appropriate drying temperature for example, the substrate temperature is 35 ° C. or higher and 100 ° C. or lower
  • a denser metal oxide film can be finally obtained.
  • the method of heat treatment for drying is not particularly limited, and can be selected from hot plate heating, electric furnace heating, infrared heating, microwave heating, and the like. Drying is preferably started within 5 minutes after coating from the viewpoint of keeping the flatness of the film uniform.
  • the drying time is not particularly limited, but is preferably 15 seconds or longer and 10 minutes or shorter from the viewpoint of film uniformity and productivity. Moreover, there is no restriction
  • the metal oxide precursor film obtained by drying is converted into a metal oxide film.
  • the method for converting the metal oxide precursor film into the metal oxide film is not particularly limited as long as the maximum temperature of the substrate can be 120 ° C. or more and 250 ° C. or less, such as a heater such as a hot plate, an electric furnace, plasma, A technique using ultraviolet light, microwaves, or the like can be given. If the maximum temperature of the substrate in the conversion step is less than 120 ° C., the effect of improving the film density is insufficient, and if it exceeds 250 ° C., the manufacturing cost increases. From the viewpoint of conversion to a metal oxide film at a lower temperature, a method using ultraviolet (UV) is preferable. Examples of the ultraviolet light source include a UV lamp and a laser, and a UV lamp is preferable from the viewpoint of performing ultraviolet irradiation with a cheap facility uniformly over a large area.
  • UV ultraviolet
  • UV lamps include excimer lamps, deuterium lamps, low pressure mercury lamps, high pressure mercury lamps, ultra high pressure mercury lamps, metal halide lamps, helium lamps, carbon arc lamps, cadmium lamps, electrodeless discharge lamps, etc.
  • Use of a lamp is preferable because conversion from a metal oxide precursor film to a metal oxide film can be easily performed.
  • the film surface of the metal oxide precursor film is preferably irradiated with ultraviolet light having a wavelength of 300 nm or less at an illuminance of 10 mW / cm 2 or more.
  • ultraviolet light having a wavelength of 300 nm or less at an illuminance of 10 mW / cm 2 or more.
  • the illuminance of ultraviolet rays applied to the metal oxide precursor film can be measured using, for example, an ultraviolet light meter (manufactured by Oak Manufacturing Co., Ltd., UV-M10, photoreceiver UV-25).
  • atmosphere in the conversion step there is no limitation on the atmosphere in the conversion step, and it may be under atmospheric pressure or under vacuum, and may be in the air or in any gas, but it is easy to convert. To atmospheric pressure.
  • the maximum temperature reached by the substrate in the conversion step is preferably 200 ° C. or lower. If it is 200 degrees C or less, application to a resin substrate with low heat resistance will become easy. Note that the maximum temperature reached by the substrate in the conversion step can be measured by a thermo label.
  • the temperature of the substrate is not particularly limited as long as it is a method that can be controlled within the above-described temperature range, and the substrate temperature may be controlled by a heater such as a hot plate, an electric furnace, or microwave heating, and from a light source such as an ultraviolet lamp.
  • the radiant heat may be used.
  • the substrate temperature can be controlled by adjusting the lamp-substrate distance and the lamp output.
  • the ultraviolet irradiation time depends on the illuminance of the ultraviolet rays, it is preferably 5 seconds or longer and 120 minutes or shorter from the viewpoint of productivity.
  • Step A and step B After the metal oxide precursor film is converted into a metal oxide film, a solution containing metal nitrate is again applied and dried on the metal oxide film to form a metal oxide precursor thin film, and the metal oxide precursor film A metal oxide film is further formed on the metal oxide film by converting to a metal oxide film.
  • the metal oxide precursor film formation step (step A) and the conversion step to the metal oxide film (step B) are alternately repeated twice or more, and the metal oxide films are stacked and formed integrally.
  • a metal oxide film having a high film density can be obtained.
  • the process A and the process B do not need to be performed continuously and the process A and the process B are the process A.
  • another process such as formation of an electrode or an insulating film may be included between the process B and the process B.
  • the metal oxide precursor film may be converted into a metal oxide film by setting the maximum temperature of the film to 120 ° C. or higher and 250 ° C. or lower. For example, when the formation of the metal oxide precursor film and the conversion to the metal oxide film are alternately repeated three times, the maximum temperature of the substrate is set to 120 ° C. or more and 250 ° C.
  • the maximum temperature of the substrate may be less than 120 ° C.
  • the maximum temperature of the substrate is less than 120 ° C
  • the maximum temperature of the substrate is reached. It is good also as 120 to 250 degreeC.
  • the maximum temperature of the substrate may be 120 ° C. or higher and 250 ° C. or lower in the first conversion step and the third conversion step, and may be performed at less than 120 ° C. in the second conversion step.
  • the maximum reached temperature of the substrate is set to 120 ° C. or more and 250 ° C. or less to convert the metal oxide precursor film into the metal oxide film. Is preferred.
  • Step A and Step B it is preferable to repeat Step A and Step B four or more times alternately on the same substrate (that is, four or more sets of Step A and Step B).
  • Step A and Step B By repeating Step A and Step B alternately four or more times, a high-quality metal oxide film having a higher film density can be obtained.
  • the number of times of repeating the process A and the process B is not particularly limited as long as it is 2 times or more, and may be determined in consideration of the target thickness of the metal oxide film, etc., but is 10 times or less from the viewpoint of productivity. It is preferable to do.
  • FIG. 13 schematically shows an example of an apparatus for producing a metal oxide film according to the present invention.
  • This apparatus has a configuration in which a metal oxide film is formed by a roll-to-roll method, and an application part 2 (2A, 2B, 2C) by ink jet or the like, and a conversion part 3 (3A, 3B, 3C) by ultraviolet irradiation, Are arranged alternately and continuously, and are provided with a transport belt 4 and a transport roll 5 for transporting the substrate 1, a temperature control means 8 for controlling the temperature of the substrate 1, and the like.
  • the substrate 1 arranged at a predetermined interval on the conveyor belt 4 moves in the direction of the arrow A together with the conveyor belt 4 by the rotation of the conveyor roll 5, and the solution 6 containing metal nitrate is applied to the coating unit 2 ⁇ / b> A to apply metal oxidation.
  • a precursor precursor film is formed.
  • the conversion unit 3A is irradiated with ultraviolet rays, and the temperature control means 8 heats the substrate 1 to a maximum temperature of 120 ° C. or more and 250 ° C. or less to convert the metal oxide precursor film into a metal oxide film. .
  • formation of a metal oxide precursor film and conversion into a metal oxide film are repeatedly performed by the second coating part 2B and the conversion part 3B, and further by the third coating part 2C and the conversion part 3C. In this way, the process A and the process B can be repeated efficiently in a short time.
  • the average film thickness of the metal oxide film obtained by performing Step A and Step B once is preferably 6 nm or less, and more preferably 2 nm or less.
  • the average film thickness described here refers to a value obtained by dividing the film thickness of the metal oxide film produced by alternately repeating the process A and the process B a plurality of times by the number of times of application (the number of processes A).
  • the film thickness of the finally obtained metal oxide film can be evaluated by cross-sectional observation of the film with a transmission electron microscope (TEM).
  • Metal oxide film The metal oxide film produced by alternately repeating the process A and the process B a plurality of times becomes a film having a high film density.
  • the metal oxide film of the present invention preferably contains at least indium as a metal component.
  • indium high electrical conductivity can be obtained when a metal oxide semiconductor film or a metal oxide conductor film is formed.
  • the indium content of the metal oxide film is preferably 50 atom% or more of the total metal elements contained in the metal oxide film. If the indium content is 50 atom% or more, high electrical conductivity can be easily obtained at low temperatures.
  • the metal oxide film preferably contains at least one metal component selected from zinc, tin, gallium, and aluminum as a metal element other than indium. By including an appropriate amount of the metal element, an effect of improving electrical conductivity, controlling threshold voltage when an oxide semiconductor film is manufactured, and improving electrical stability can be obtained.
  • In—Ga—Zn—O In—Zn—O
  • IZO In—Zn—O
  • IGO In—Ga—O
  • ITO In—Sn— O
  • ITZO In—Sn—Zn—O
  • the average film density of the metal oxide film measured by X-ray reflectometry is 6 g / cm 3 or more.
  • XRR X-ray reflectometry
  • the average film density referred to here is a model of a plurality of layers having different densities when performing fitting from the XRR spectrum using the film thickness, film density, and surface roughness as parameters, and the film density of each layer is defined as the film density.
  • the first layer has a film density of 4 g / cm 3 , the film thickness is 1 nm, and the second layer has a film density of 5 g.
  • a dense metal oxide film can be obtained by a low-temperature process at 200 ° C. or lower under atmospheric pressure, and can be applied to the production of various devices. it can.
  • the device manufacturing cost can be greatly reduced because it is not necessary to use a large vacuum device, an inexpensive resin substrate having low heat resistance can be used, and the raw material is inexpensive.
  • the present invention can be applied to a resin substrate having low heat resistance, a flexible electronic device such as a flexible display can be manufactured at low cost.
  • the present invention can obtain a film having extremely high electron transfer characteristics, particularly when used for manufacturing a metal oxide semiconductor film or a metal oxide conductive film.
  • the metal oxide semiconductor film manufactured according to the embodiment of the present invention exhibits high semiconductor characteristics, it can be suitably used for an active layer (oxide semiconductor layer) of a thin film transistor (TFT).
  • TFT thin film transistor
  • an embodiment in which a metal oxide film produced by the production method of the present invention is used as an active layer of a thin film transistor will be described.
  • a top gate type thin film transistor is described as an embodiment, a thin film transistor using a metal oxide semiconductor film manufactured according to the present invention is not limited to a top gate type, and is a bottom gate type thin film transistor. Also good.
  • the element structure of the TFT according to the present invention is not particularly limited, and is either a so-called reverse stagger structure (also referred to as a bottom gate type) or a stagger structure (also referred to as a top gate type) based on the position of the gate electrode. Also good. Further, based on the contact portion between the active layer and the source and drain electrodes (referred to as “source / drain electrodes” as appropriate), either a so-called top contact type or bottom contact type may be used.
  • the top gate type is a form in which a gate electrode is disposed on the upper side of the gate insulating film and an active layer is formed on the lower side of the gate insulating film when the substrate on which the TFT is formed is the lowest layer.
  • the bottom gate type is a form in which a gate electrode is disposed below the gate insulating film and an active layer is formed above the gate insulating film.
  • the bottom contact type is a mode in which the source / drain electrodes are formed before the active layer and the lower surface of the active layer is in contact with the source / drain electrodes.
  • the active layer is formed before the source / drain electrodes, and the upper surface of the active layer is in contact with the source / drain electrodes.
  • FIG. 1 is a schematic diagram showing an example of a top contact type TFT according to the present invention having a top gate structure.
  • the above-described metal oxide film is laminated as an active layer 14 on one main surface of the substrate 12.
  • a source electrode 16 and a drain electrode 18 are disposed on the active layer 14 so as to be separated from each other, and a gate insulating film 20 and a gate electrode 22 are sequentially stacked thereon.
  • FIG. 2 is a schematic view showing an example of a bottom contact type TFT according to the present invention having a top gate structure.
  • the source electrode 16 and the drain electrode 18 are disposed on one main surface of the substrate 12 so as to be separated from each other. Then, the above-described metal oxide film, the gate insulating film 20, and the gate electrode 22 are sequentially stacked as the active layer.
  • FIG. 3 is a schematic view showing an example of a TFT according to the present invention having a bottom gate structure and a top contact type.
  • the gate electrode 22, the gate insulating film 20, and the above-described metal oxide film as the active layer 14 are sequentially stacked on one main surface of the substrate 12.
  • a source electrode 16 and a drain electrode 18 are disposed on the surface of the active layer 14 so as to be separated from each other.
  • FIG. 4 is a schematic view showing an example of a bottom contact type TFT according to the present invention having a bottom gate structure.
  • the gate electrode 22 and the gate insulating film 20 are sequentially stacked on one main surface of the substrate 12.
  • the source electrode 16 and the drain electrode 18 are provided on the surface of the gate insulating film 20 so as to be spaced apart from each other, and the above-described metal oxide semiconductor film is stacked as the active layer 14 thereon.
  • the top gate type thin film transistor 10 shown in FIG. 1 will be mainly described.
  • the thin film transistor of the present invention is not limited to the top gate type and may be a bottom gate type thin film transistor.
  • the thin film transistor 10 of this embodiment When the thin film transistor 10 of this embodiment is manufactured, first, a solution containing a metal nitrate is prepared, and the formation process of the metal oxide precursor film and the conversion process to the metal oxide film are alternately repeated twice or more to form the substrate 12. A metal oxide film is formed thereon.
  • the patterning of the metal oxide film may be performed by the above-described inkjet method, dispenser method, relief printing method, or intaglio printing method, and may be patterned by photolithography and etching after the formation of the metal oxide film.
  • a resist pattern is formed by photolithography on a portion to be left as the active layer 14, and then hydrochloric acid, nitric acid, dilute sulfuric acid, phosphoric acid, nitric acid
  • the pattern of the active layer 14 is formed by etching with an acid solution such as a mixed solution of acetic acid.
  • the thickness of the metal oxide film is preferably 5 nm or more and 50 nm or less from the viewpoint of film flatness and time required for film formation.
  • the indium content in the active layer 14 is preferably 50 atom% or more of the total metal elements contained in the active layer 14, and more preferably 80 atom% or more.
  • a protective layer (not shown) for protecting the active layer 14 is preferably formed on the active layer 14 when the source / drain electrodes 16 and 18 are etched.
  • the method for forming the protective layer is not particularly limited, and may be formed after the metal oxide film is formed and before the patterning, or after the metal oxide film is patterned. Further, the protective layer may be a metal oxide layer or an organic material such as a resin. The protective layer may be removed after the source electrode 15 and the drain electrode 18 (referred to as “source / drain electrodes” as appropriate) are formed.
  • Source / drain electrodes 16 and 18 are formed on the active layer 14 formed of a metal oxide semiconductor film.
  • the source / drain electrodes 16 and 18 have high conductivity so as to function as electrodes, respectively, and metals such as Al, Mo, Cr, Ta, Ti, Au, Au, Al—Nd, Ag alloy, tin oxide
  • metals such as Al, Mo, Cr, Ta, Ti, Au, Au, Al—Nd, Ag alloy, tin oxide
  • a metal oxide conductive film such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), or In—Ga—Zn—O can be used.
  • a wet method such as a printing method and a coating method, a physical method such as a vacuum deposition method, a sputtering method, and an ion plating method, a chemical method such as a CVD method and a plasma CVD method, etc.
  • the film may be formed according to a method appropriately selected in consideration of suitability with the material to be used.
  • the film thickness of the source / drain electrodes 16 and 18 is preferably 10 nm or more and 1000 nm or less, preferably 50 nm or more and 100 nm or less in consideration of film forming properties, patterning properties by etching or lift-off methods, conductivity, and the like. More preferred.
  • the source / drain electrodes 16 and 18 may be formed by patterning into a predetermined shape by, for example, etching or a lift-off method after forming a conductive film, or may be directly formed by an inkjet method or the like. At this time, it is preferable to pattern the source / drain electrodes 16 and 18 and wiring (not shown) connected to these electrodes simultaneously.
  • the gate insulating film 20 preferably has a high insulating property.
  • an insulating film such as SiO 2 , SiN x , SiON, Al 2 O 3 , Y 2 O 3 , Ta 2 O 5 , HfO 2 , or a compound thereof is used.
  • An insulating film including two or more kinds may be used.
  • the gate insulating film 20 is a material used from a wet method such as a printing method or a coating method, a physical method such as a vacuum deposition method, a sputtering method or an ion plating method, or a chemical method such as CVD or plasma CVD method.
  • the film may be formed according to a method appropriately selected in consideration of the suitability of
  • the gate insulating film 20 needs to have a thickness for reducing leakage current and improving voltage resistance. On the other hand, if the gate insulating film 20 is too thick, the driving voltage is increased.
  • the thickness of the gate insulating film 20 is preferably 10 nm to 10 ⁇ m, more preferably 50 nm to 1000 nm, and particularly preferably 100 nm to 400 nm.
  • the gate electrode 22 is made of highly conductive metal such as Al, Mo, Cr, Ta, Ti, Au, Au, Al—Nd, Ag alloy, tin oxide, zinc oxide, indium oxide, indium tin oxide ( It can be formed using a metal oxide conductive film such as ITO), zinc indium oxide (IZO), or IGZO. As the gate electrode 22, these conductive films can be used as a single layer structure or a stacked structure of two or more layers.
  • the gate electrode 22 is made of a material used from a wet method such as a printing method or a coating method, a physical method such as a vacuum deposition method, a sputtering method or an ion plating method, or a chemical method such as a CVD or plasma CVD method.
  • the film is formed according to a method appropriately selected in consideration of the suitability of the above.
  • the film thickness of the metal film for forming the gate electrode 22 is preferably 10 nm or more and 1000 nm or less, preferably 50 nm or more and 200 nm or less in consideration of film forming properties, patterning properties by etching or lift-off methods, conductivity, and the like. More preferably.
  • the gate electrode 22 may be formed by patterning into a predetermined shape by an etching or lift-off method, or the pattern may be directly formed by an inkjet method or the like. At this time, it is preferable to pattern the gate electrode 22 and the gate wiring (not shown) at the same time.
  • the application of the thin film transistor 10 of the present embodiment described above is not particularly limited. However, since it exhibits high transport characteristics, for example, an electro-optical device, specifically, a liquid crystal display device, an organic EL (Electro Luminescence) display device. It is suitable as a drive element in a display device such as an inorganic EL display device, and is particularly suitable for production of a flexible display using a resin substrate having low heat resistance. Further, the thin film transistor manufactured according to the present invention is suitably used as a driving element (driving circuit) in various electronic devices such as various sensors such as an X-ray sensor and an image sensor, and a micro electro mechanical system (MEMS).
  • driving element driving circuit
  • various electronic devices such as various sensors such as an X-ray sensor and an image sensor, and a micro electro mechanical system (MEMS).
  • MEMS micro electro mechanical system
  • FIG. 5 shows a schematic sectional view of a part of a liquid crystal display device according to an embodiment of the present invention
  • FIG. 6 shows a schematic configuration diagram of electrical wiring.
  • the liquid crystal display device 100 includes a top contact type TFT 10 having the top gate structure shown in FIG. 1 and a pixel lower electrode on the gate electrode 22 protected by the passivation layer 102 of the TFT 10. 104 and a liquid crystal layer 108 sandwiched between the counter upper electrode 106 and an R (red) G (green) B (blue) color filter 110 for developing different colors corresponding to each pixel.
  • the polarizing plate 112a and 112b are provided on the substrate 12 side and the RGB color filter 110, respectively.
  • the liquid crystal display device 100 of the present embodiment includes a plurality of gate wirings 112 parallel to each other and data wirings 114 intersecting with the gate wirings 112 and parallel to each other.
  • the gate wiring 112 and the data wiring 114 are electrically insulated.
  • the TFT 10 is provided in the vicinity of the intersection between the gate wiring 112 and the data wiring 114.
  • the gate electrode 22 of the TFT 10 is connected to the gate wiring 112, and the source electrode 16 of the TFT 10 is connected to the data wiring 114.
  • the drain electrode 18 of the TFT 10 is connected to the pixel lower electrode 104 through a contact hole 116 provided in the gate insulating film 20 (a conductor is embedded in the contact hole 116).
  • the pixel lower electrode 104 forms a capacitor 118 together with the grounded counter upper electrode 106.
  • FIG. 7 shows a schematic sectional view of a part of an active matrix organic EL display device according to an embodiment of the present invention
  • FIG. 8 shows a schematic configuration diagram of electrical wiring.
  • the active matrix organic EL display device 200 of the present embodiment includes the TFT 10 having the top gate structure shown in FIG. 1 as a driving TFT 10a and a switching TFT 10b on a substrate 12 having a passivation layer 202.
  • 10b is provided with an organic EL light emitting element 214 composed of an organic light emitting layer 212 sandwiched between a lower electrode 208 and an upper electrode 210, and the upper surface is also protected by a passivation layer 216.
  • the organic EL display device 200 includes a plurality of gate wirings 220 that are parallel to each other, and a data wiring 222 and a driving wiring 224 that are parallel to each other and intersect the gate wiring 220.
  • the gate wiring 220, the data wiring 222, and the drive wiring 224 are electrically insulated.
  • the gate electrode 22 of the switching TFT 10 b is connected to the gate wiring 220, and the source electrode 16 of the switching TFT 10 b is connected to the data wiring 222.
  • the drain electrode 18 of the switching TFT 10b is connected to the gate electrode 22 of the driving TFT 10a, and the driving TFT 10a is kept on by using the capacitor 226.
  • the source electrode 16 of the driving TFT 10 a is connected to the driving wiring 224, and the drain electrode 18 is connected to the organic EL light emitting element 214.
  • the upper electrode 210 may be a top emission type using a transparent electrode, or the bottom electrode 208 and each TFT electrode may be a transparent electrode.
  • FIG. 9 shows a schematic sectional view of a part of an X-ray sensor according to an embodiment of the present invention
  • FIG. 10 shows a schematic configuration diagram of its electrical wiring.
  • the X-ray sensor 300 of this embodiment includes the TFT 10 and the capacitor 310 formed on the substrate 12, the charge collection electrode 302 formed on the capacitor 310, the X-ray conversion layer 304, and the upper electrode 306. Composed.
  • a passivation film 308 is provided on the TFT 10.
  • the capacitor 310 has a structure in which an insulating film 316 is sandwiched between a capacitor lower electrode 312 and a capacitor upper electrode 314.
  • the capacitor upper electrode 314 is connected to one of the source electrode 16 and the drain electrode 18 (the drain electrode 18 in FIG. 9) of the TFT 10 through a contact hole 318 provided in the insulating film 316.
  • the charge collection electrode 302 is provided on the capacitor upper electrode 314 in the capacitor 310 and is in contact with the capacitor upper electrode 314.
  • the X-ray conversion layer 304 is a layer made of amorphous selenium, and is provided so as to cover the TFT 10 and the capacitor 310.
  • the upper electrode 306 is provided on the X-ray conversion layer 304 and is in contact with the X-ray conversion layer 304.
  • the X-ray sensor 300 of this embodiment includes a plurality of gate wirings 320 that are parallel to each other and a plurality of data wirings 322 that intersect with the gate wirings 320 and are parallel to each other.
  • the gate wiring 320 and the data wiring 322 are electrically insulated.
  • the TFT 10 is provided in the vicinity of the intersection between the gate wiring 320 and the data wiring 322.
  • the gate electrode 22 of the TFT 10 is connected to the gate wiring 320, and the source electrode 16 of the TFT 10 is connected to the data wiring 322.
  • the drain electrode 18 of the TFT 10 is connected to the charge collecting electrode 302, and the charge collecting electrode 302 is connected to the capacitor 310.
  • X-rays enter from the upper electrode 306 side in FIG. 9 and generate electron-hole pairs in the X-ray conversion layer 304.
  • the generated charge is accumulated in the capacitor 310 and read out by sequentially scanning the TFT 10.
  • a TFT having a top gate structure is provided in the liquid crystal display device 100, the organic EL display device 200, and the X-ray sensor 300 of the above embodiment.
  • the TFT is not limited to this, and FIGS. A TFT having the structure shown in FIG.
  • Example 1 Comparative Example 1> The following evaluation devices were produced and evaluated. Indium nitrate (In (NO 3 ) 3 ⁇ H 2 O, 4N, manufactured by High Purity Chemical Research Laboratories) was dissolved in 2-methoxyethanol (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) and shown in Table 1 below. Solutions with different indium nitrate concentrations were prepared.
  • In (NO 3 ) 3 ⁇ H 2 O, 4N manufactured by High Purity Chemical Research Laboratories
  • 2-methoxyethanol special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.
  • a simple TFT using a thermal oxide film as a gate insulating film was prepared using a p-type Si substrate with a thermal oxide film (film thickness 100 nm) as the substrate.
  • Each of the prepared solutions was spin-coated on a p-type Si 1 inch square substrate with a thermal oxide film at a rotational speed of 1500 rpm for 30 seconds, and then dried on a hot plate heated to 60 ° C. for 1 minute to obtain a metal oxide.
  • a semiconductor precursor film was obtained.
  • the obtained metal oxide semiconductor precursor film was converted into a metal oxide semiconductor film by heat treatment by ultraviolet irradiation under the following conditions.
  • a UV ozone cleaner manufactured by Filgen, UV253H
  • a low-pressure mercury lamp was used as an ultraviolet irradiation device.
  • the sample was set on a glass plate having a thickness of 40 mm, and the distance between the lamp and the sample was 5 mm.
  • the ultraviolet illuminance at the sample position at a wavelength of 254 nm was measured using an ultraviolet light meter (manufactured by Oak Manufacturing Co., Ltd., UV-M10, photoreceiver UV-25). The maximum value was reached in 3 minutes after the lamp was turned on, and was 15 mW / cm 2 .
  • ultraviolet irradiation was performed for 90 minutes. During UV irradiation, nitrogen was always flowed at 6 L / min. When the substrate temperature at the time of ultraviolet irradiation treatment was monitored with a thermolabel, it showed 160 ° C.
  • the source / drain electrodes were formed by vapor deposition on the obtained oxide semiconductor film.
  • the source / drain electrodes were formed by pattern deposition using a metal mask, and Ti was deposited to a thickness of 50 nm.
  • the source / drain electrode size was 1 mm square, and the distance between the electrodes was 0.2 mm.
  • the measurement of the V g -I d characteristic is performed by fixing the drain voltage (V d ) to +1 V, changing the gate voltage (V g ) within a range of ⁇ 15 V to +15 V, and drain current (I d ) at each gate voltage. It was performed by measuring.
  • Figure 11 shows a, V g -I d characteristics of the Examples 1 to 4 and Comparative Example 1. Also, the linear mobility was estimated from, V g -I d characteristics of the Examples 1 to 4 and Comparative Example 1 (hereinafter, sometimes referred to as "mobility”.) Shown in Table 2.
  • FIG. 12 shows a plot of the relationship between the number of repetitions and mobility. The effect of improving the characteristics can be obtained when the number of repetitions is 2 times or more. Particularly, in Examples 2 to 4 in which the number of repetitions is 4 times or more, the characteristics of 5 times or more are obtained as compared with Comparative Example 1 of 1 time.
  • Example 5 Using the solution A, the spin coat rotation speed is increased and repeated twice> A simple TFT using a solution A, a p-type Si substrate with a thermal oxide film (film thickness 100 nm) as a substrate, and using the thermal oxide film as a gate insulating film was fabricated.
  • a solution A is spin-coated at a rotational speed of 5000 rpm for 30 seconds on a p-type Si 1 inch square substrate with a thermal oxide film, and then dried for 1 minute on a hot plate heated to 60 ° C. A precursor film was obtained.
  • the obtained metal oxide semiconductor precursor film was converted into a metal oxide semiconductor film by performing an ultraviolet irradiation treatment under the following conditions.
  • an ultraviolet irradiation device a UV ozone cleaner (manufactured by Filgen, UV253H) using a low-pressure mercury lamp was used.
  • the sample was set on a glass plate having a thickness of 40 mm, and the distance between the lamp and the sample was 5 mm.
  • the ultraviolet illuminance at the sample position at a wavelength of 254 nm was measured using an ultraviolet light meter (manufactured by Oak Manufacturing Co., Ltd., UV-M10, photoreceiver UV-25). The maximum value was reached in 3 minutes after the lamp was turned on, and was 15 mW / cm 2 .
  • ultraviolet irradiation was performed for 90 minutes. During UV irradiation, nitrogen was always flowed at 6 L / min. When the substrate temperature at the time of ultraviolet irradiation treatment was monitored with a thermolabel, it showed 160 ° C.
  • a source / drain electrode was formed on the obtained oxide semiconductor film by vapor deposition.
  • the source / drain electrodes were formed by pattern deposition using a metal mask, and Ti was deposited to a thickness of 50 nm.
  • the source / drain electrode size was 1 mm square, and the distance between the electrodes was 0.2 mm.
  • V g -I d characteristics transistor characteristics (V g -I d characteristics).
  • the measurement of the V g -I d characteristic is performed by fixing the drain voltage (V d ) to +1 V, changing the gate voltage (V g ) within a range of ⁇ 15 V to +15 V, and drain current (I d ) at each gate voltage. It was performed by measuring.
  • Example 5 The mobility of Example 5 is 1.9 cm 2 / Vs, and even when the same solution A as in Comparative Example 1 is used, formation of a metal oxide semiconductor precursor film by coating and drying of a solution containing metal nitrate The transistor characteristic improvement effect was confirmed by performing the process and the process of converting the metal oxide semiconductor precursor film into the metal oxide semiconductor film a plurality of times.
  • ⁇ Comparative Example 2 Application / drying once using solution A, and UV irradiation treatment twice> A simple TFT using a solution A, a p-type Si substrate with a thermal oxide film (film thickness 100 nm) as a substrate, and using the thermal oxide film as a gate insulating film was fabricated.
  • a solution A is spin-coated for 30 seconds at a rotational speed of 1500 rpm on this p-type Si 1 inch square substrate with a thermal oxide film, and then dried for 1 minute on a hot plate heated to 60 ° C. A precursor film was obtained.
  • the obtained metal oxide semiconductor precursor film was converted into a metal oxide semiconductor film by performing an ultraviolet irradiation treatment under the following conditions.
  • an ultraviolet irradiation device a UV ozone cleaner (manufactured by Filgen, UV253H) using a low-pressure mercury lamp was used.
  • the sample was set on a glass plate having a thickness of 40 mm, and the distance between the lamp and the sample was 5 mm.
  • the ultraviolet illuminance at the sample position at a wavelength of 254 nm was measured using an ultraviolet light meter (manufactured by Oak Manufacturing Co., Ltd., UV-M10, photoreceiver UV-25). The maximum value was reached in 3 minutes after the lamp was turned on, and was 15 mW / cm 2 .
  • ultraviolet irradiation was performed for 90 minutes. During UV irradiation, nitrogen was always flowed at 6 L / min. When the substrate temperature at the time of ultraviolet irradiation treatment was monitored with a thermolabel, it showed 160 ° C.
  • the ultraviolet irradiation treatment was again performed under the same conditions.
  • the film thickness of the metal oxide semiconductor film of the comparative example 2 was confirmed by cross-sectional TEM observation, it was 10.2 nm, and it was confirmed that there was no big difference in film thickness with respect to the Example and the comparative example mentioned above.
  • a source / drain electrode was formed on the obtained oxide semiconductor film by vapor deposition.
  • the source / drain electrodes were formed by pattern deposition using a metal mask, and Ti was deposited to a thickness of 50 nm.
  • the source / drain electrode size was 1 mm square, and the distance between the electrodes was 0.2 mm.
  • V g -I d characteristics transistor characteristics (V g -I d characteristics).
  • the measurement of the V g -I d characteristic is performed by fixing the drain voltage (V d ) to +1 V, changing the gate voltage (V g ) within a range of ⁇ 15 V to +15 V, and drain current (I d ) at each gate voltage. It was performed by measuring.
  • the mobility of Comparative Example 2 was 0.5 cm 2 / Vs, and it was confirmed that the effect of improving the characteristics could not be obtained even if the coating / drying was performed once and the ultraviolet irradiation treatment was performed several times.
  • the obtained metal oxide semiconductor precursor film was converted into a metal oxide semiconductor film by performing an ultraviolet irradiation treatment under the following conditions.
  • an ultraviolet irradiation device a UV ozone cleaner (manufactured by Filgen, UV253H) using a low-pressure mercury lamp was used.
  • the sample was set on a glass plate having a thickness of 40 mm, and the distance between the lamp and the sample was 5 mm.
  • the ultraviolet illuminance at the sample position at a wavelength of 254 nm was measured using an ultraviolet light meter (manufactured by Oak Manufacturing Co., Ltd., UV-M10, photoreceiver UV-25). The maximum value was reached in 3 minutes after the lamp was turned on, and was 15 mW / cm 2 .
  • ultraviolet irradiation was performed for 90 minutes. During UV irradiation, nitrogen was always flowed at 6 L / min. When the substrate temperature at the time of ultraviolet irradiation treatment was monitored with a thermolabel, it showed 160 ° C. When the film thickness of the metal oxide semiconductor film of the comparative example 3 was confirmed by cross-sectional TEM observation, it was 5.2 nm.
  • the source / drain electrodes were formed by vapor deposition on the obtained oxide semiconductor film.
  • the source / drain electrodes were formed by pattern deposition using a metal mask, and Ti was deposited to a thickness of 50 nm.
  • the source / drain electrode size was 1 mm square, and the distance between the electrodes was 0.2 mm.
  • V g -I d characteristics transistor characteristics (V g -I d characteristics).
  • the measurement of the V g -I d characteristic is performed by fixing the drain voltage (V d ) to +1 V, changing the gate voltage (V g ) within a range of ⁇ 15 V to +15 V, and drain current (I d ) at each gate voltage. It was performed by measuring.
  • the mobility of Comparative Example 3 was 0.2 cm 2 / Vs, and it was confirmed that even if a low-concentration solution was used, the effect of improving the characteristics could not be obtained unless coating / drying and ultraviolet irradiation treatment were performed alternately several times. It was done.
  • Example 1-5 XRR analysis was performed on the metal oxide semiconductor films of Example 1-5 and Comparative Example 1-3.
  • the measurement was carried out with ATX-G manufactured by Rigaku Corporation, a scanning speed of 0.2 ° / min and a step width of 0.001 °.
  • the range of 0.3 to 4.0 ° of the obtained XRR spectrum was set as the analysis range.
  • Example 1-5 and Comparative Example 1-3 have good R values of 0.01 or less by fitting using model simulation results in which the indium oxide layer has 3 to 5 layers. Showed a match.
  • Table 3 below shows the average film density of Example 1-5 and Comparative Example 1-3.
  • Example 6> Using the solution F (indium nitrate concentration: 0.035 mol / L), a p-type Si substrate with a thermal oxide film (film thickness 100 nm) was used as a substrate, and a simple TFT using a thermal oxide film as a gate insulating film was produced. .
  • a solution F is spin-coated for 30 seconds at a rotation speed of 1500 rpm on this p-type Si 1 inch square substrate with a thermal oxide film, and then dried for 1 minute on a hot plate heated to 60 ° C. A precursor film was obtained.
  • the obtained metal oxide semiconductor precursor film was converted into a metal oxide semiconductor film by performing an ultraviolet irradiation treatment under the following conditions.
  • a UV ozone cleaner manufactured by Filgen, UV253H
  • a low-pressure mercury lamp was used as an ultraviolet irradiation device.
  • the sample was set on a glass plate having a thickness of 40 mm, and the distance between the lamp and the sample was 5 mm.
  • the ultraviolet illuminance at the sample position at a wavelength of 254 nm was measured using an ultraviolet light meter (manufactured by Oak Manufacturing Co., Ltd., UV-M10, photoreceiver UV-25). The maximum value was reached in 3 minutes after the lamp was turned on, and was 15 mW / cm 2 .
  • ultraviolet irradiation was performed for 90 minutes. During UV irradiation, nitrogen was always flowed at 6 L / min. When the substrate temperature at the time of ultraviolet irradiation treatment was monitored with a thermolabel, it showed 160 ° C. After the application and drying of the solution F and the conversion to the metal oxide semiconductor film by UV irradiation are repeated twice, the solution F is further applied and dried under the condition that the maximum substrate temperature is 100 ° C. Conversion to a metal oxide semiconductor film by ultraviolet irradiation was performed. A source / drain electrode was formed on the obtained oxide semiconductor film by vapor deposition.
  • the source / drain electrodes were formed by pattern deposition using a metal mask, and Ti was deposited to a thickness of 50 nm.
  • the source / drain electrode size was 1 mm square, and the distance between the electrodes was 0.2 mm.
  • the mobility of Example 6 was 2.5 cm 2 / Vs.
  • Example 7 Using the solution F (indium nitrate concentration: 0.035 mol / L), a p-type Si substrate with a thermal oxide film (film thickness 100 nm) was used as a substrate, and a simple TFT using a thermal oxide film as a gate insulating film was produced. .
  • a solution F is spin-coated for 30 seconds at a rotation speed of 1500 rpm on this p-type Si 1 inch square substrate with a thermal oxide film, and then dried for 1 minute on a hot plate heated to 60 ° C. A precursor film was obtained.
  • the obtained metal oxide semiconductor precursor film was converted into a metal oxide semiconductor film by performing an ultraviolet irradiation treatment under the following conditions.
  • a UV ozone cleaner manufactured by Filgen, UV253H
  • a low-pressure mercury lamp was used as an ultraviolet irradiation device.
  • the sample was set on a glass plate having a thickness of 40 mm, and the distance between the lamp and the sample was 5 mm.
  • the ultraviolet illuminance at the sample position at a wavelength of 254 nm was measured using an ultraviolet light meter (manufactured by Oak Manufacturing Co., Ltd., UV-M10, photoreceiver UV-25). The maximum value was reached in 3 minutes after the lamp was turned on, and was 15 mW / cm 2 .
  • UV irradiation After flowing nitrogen at 6 L / min for 10 minutes in the ultraviolet irradiation treatment chamber, ultraviolet irradiation was performed for 90 minutes. During UV irradiation, nitrogen was always flowed at 6 L / min. When the substrate temperature at the time of ultraviolet irradiation treatment was monitored with a thermolabel, it showed 160 ° C. Application / drying of the solution F and conversion to a metal oxide semiconductor film by ultraviolet irradiation were repeated three times alternately. A source / drain electrode was formed on the obtained oxide semiconductor film by vapor deposition. The source / drain electrodes were formed by pattern deposition using a metal mask, and Ti was deposited to a thickness of 50 nm. The source / drain electrode size was 1 mm square, and the distance between the electrodes was 0.2 mm. The mobility of Example 7 was 3.0 cm 2 / Vs.
  • ⁇ Comparative example 4> Using the solution F (indium nitrate concentration: 0.035 mol / L), a p-type Si substrate with a thermal oxide film (film thickness 100 nm) was used as a substrate, and a simple TFT using a thermal oxide film as a gate insulating film was produced. . A solution F is spin-coated for 30 seconds at a rotation speed of 1500 rpm on this p-type Si 1 inch square substrate with a thermal oxide film, and then dried for 1 minute on a hot plate heated to 60 ° C. A precursor film was obtained. The obtained metal oxide semiconductor precursor film was converted into a metal oxide semiconductor film by performing an ultraviolet irradiation treatment under the following conditions.
  • solution F indium nitrate concentration: 0.035 mol / L
  • a solution F is spin-coated for 30 seconds at a rotation speed of 1500 rpm on this p-type Si 1 inch square substrate with a thermal oxide film, and then dried for 1 minute on a hot plate heated to 60
  • a UV ozone cleaner manufactured by Filgen, UV253H
  • a low-pressure mercury lamp was used as an ultraviolet irradiation device.
  • the sample was set on a glass plate having a thickness of 40 mm, and the distance between the lamp and the sample was 5 mm.
  • the ultraviolet illuminance at the sample position at a wavelength of 254 nm was measured using an ultraviolet light meter (manufactured by Oak Manufacturing Co., Ltd., UV-M10, photoreceiver UV-25). The maximum value was reached in 3 minutes after the lamp was turned on, and was 15 mW / cm 2 .
  • ultraviolet irradiation was performed for 30 minutes. During UV irradiation, nitrogen was always flowed at 6 L / min. When the substrate temperature at the time of ultraviolet irradiation treatment was monitored with a thermolabel, it showed 100 ° C. After the application and drying of the solution F and the conversion to the metal oxide semiconductor film by ultraviolet irradiation were repeated twice, the solution F was further applied and dried, under the condition that the maximum substrate temperature reached 160 ° C. Conversion to a metal oxide semiconductor film by ultraviolet irradiation was performed. A source / drain electrode was formed on the obtained oxide semiconductor film by vapor deposition.
  • the source / drain electrodes were formed by pattern deposition using a metal mask, and Ti was deposited to a thickness of 50 nm.
  • the source / drain electrode size was 1 mm square, and the distance between the electrodes was 0.2 mm.
  • the mobility of Comparative Example 4 was 0.5 cm 2 / Vs.
  • Table 4 below shows the average film densities of Examples 6 and 7 and Comparative Example 4.
  • a simple TFT using a thermal oxide film as a gate insulating film was prepared using a p-type Si substrate with a thermal oxide film (film thickness 100 nm) as the substrate.
  • the prepared solution A was spin-coated on a p-type Si 1 inch square substrate with a thermal oxide film at a rotational speed of 1500 rpm for 30 seconds, and then dried for 1 minute on a hot plate heated to 60 ° C.
  • a semiconductor precursor film was obtained.
  • the obtained metal oxide semiconductor precursor film was converted into a metal oxide semiconductor film by performing a heat treatment with a hot plate at 250 ° C. for 90 minutes in the air.
  • a source / drain electrode was formed on the obtained oxide semiconductor film by vapor deposition.
  • the source / drain electrodes were formed by pattern deposition using a metal mask, and Ti was deposited to a thickness of 50 nm.
  • the source / drain electrode size was 1 mm square, and the distance between the electrodes was 0.2 mm.
  • V g -I d characteristics transistor characteristics (V g -I d characteristics).
  • the measurement of the V g -I d characteristic is performed by fixing the drain voltage (V d ) to +1 V, changing the gate voltage (V g ) within a range of ⁇ 15 V to +15 V, and drain current (I d ) at each gate voltage. It was performed by measuring.
  • the mobility of Comparative Example 5 was 0.5 cm 2 / Vs.
  • Example 8> A simple TFT using a thermal oxide film as a gate insulating film was prepared using a p-type Si substrate with a thermal oxide film (film thickness 100 nm) as the substrate.
  • the prepared solution E was spin-coated at a rotational speed of 1500 rpm for 30 seconds on a p-type Si 1 inch square substrate with a thermal oxide film, and then dried for 1 minute on a hot plate heated to 60 ° C.
  • a semiconductor precursor film was obtained.
  • the obtained metal oxide semiconductor precursor film was converted into a metal oxide semiconductor film by performing a heat treatment with a hot plate at 250 ° C. for 90 minutes in the air.
  • the application / drying of the solution and the conversion to the metal oxide semiconductor film were alternately repeated 12 times.
  • a source / drain electrode was formed on the obtained oxide semiconductor film by vapor deposition.
  • the source / drain electrodes were formed by pattern deposition using a metal mask, and Ti was deposited to a thickness of 50 nm.
  • the source / drain electrode size was 1 mm square, and the distance between the electrodes was 0.2 mm.
  • V g -I d characteristics transistor characteristics (V g -I d characteristics).
  • the measurement of the V g -I d characteristic is performed by fixing the drain voltage (V d ) to +1 V, changing the gate voltage (V g ) within a range of ⁇ 15 V to +15 V, and drain current (I d ) at each gate voltage. It was performed by measuring.
  • the mobility of Example 8 was 8.3 cm 2 / Vs.
  • Table 5 shows the average film density of Example 8 and Comparative Example 5.

Abstract

The present invention provides a method for producing a metal oxide film by alternatingly repeating the following steps two or more times: a step for coating a substrate with a solution containing a metal nitrate, and forming a metal oxide precursor film by drying the coated film; and a step for changing the metal oxide precursor film into a metal oxide film. During the steps performed two or more times for changing the metal oxide precursor film into the metal oxide film, the metal oxide precursor film is changed into the metal oxide film with a maximum attained substrate temperature of 120-250°C. The present invention further provides a metal oxide film produced by this method, and a device provided with the same.

Description

金属酸化物膜の製造方法、金属酸化物膜、薄膜トランジスタ、表示装置、イメージセンサ及びX線センサMetal oxide film manufacturing method, metal oxide film, thin film transistor, display device, image sensor, and X-ray sensor
 本発明は、金属酸化物膜の製造方法、金属酸化物膜、薄膜トランジスタ、表示装置、イメージセンサ及びX線センサに関する。 The present invention relates to a method for producing a metal oxide film, a metal oxide film, a thin film transistor, a display device, an image sensor, and an X-ray sensor.
 金属酸化物半導体膜は真空成膜法による製造において実用化がなされ、現在注目を集めている。
 一方で、簡便に、低温で、かつ大気圧下で高い半導体特性を有する金属酸化物膜を形成することを目的とした、液相プロセスによる金属酸化物膜の作製に関して研究開発が盛んに行われている。
A metal oxide semiconductor film has been put into practical use in the production by a vacuum film forming method and is currently attracting attention.
On the other hand, research and development have been actively conducted on the production of metal oxide films by a liquid phase process for the purpose of easily forming metal oxide films having high semiconductor properties at low temperatures and atmospheric pressure. ing.
 例えば、硝酸塩等の金属塩を含む溶液を塗布し、金属酸化物半導体層を形成する手法が開示されている(国際公開第2009/081862号参照)。 For example, a method of applying a solution containing a metal salt such as nitrate to form a metal oxide semiconductor layer is disclosed (see International Publication No. 2009/081862).
 また、金属アルコキシド又は金属塩を主原料として得られる金属酸化物の前駆体ゾルを被塗布物の表面に塗布して被塗布物表面に金属酸化物ゲルの薄膜を形成する工程と、金属酸化物ゲルの薄膜に対して波長が360nm以下である紫外光を照射して金属酸化物ゲルを結晶化させる工程とを複数回繰り返して行う金属酸化物膜の製造方法が開示されている(特開2000-247608号公報参照)。 A step of applying a metal oxide precursor sol obtained from a metal alkoxide or metal salt as a main raw material to the surface of the object to be coated to form a metal oxide gel thin film on the surface of the object to be coated; A method for producing a metal oxide film is disclosed in which a gel thin film is irradiated with ultraviolet light having a wavelength of 360 nm or less to crystallize the metal oxide gel by repeating the process a plurality of times (Japanese Patent Laid-Open No. 2000). -247608).
 また、有機金属化合物および/または有機金属錯体を含む膜を形成する工程、前記膜にエネルギー線を照射し、照射部位に位置する膜に含まれる有機成分を分解して金属および/または金属酸化物を析出させる工程、を含む方法が開示されている(特開2005-213567号公報参照)。 Also, a step of forming a film containing an organometallic compound and / or an organometallic complex, irradiating the film with energy rays, decomposing an organic component contained in the film located at the irradiation site, and metal and / or metal oxide Has been disclosed (see Japanese Patent Application Laid-Open No. 2005-213567).
 また、溶液を基板上に塗布し、紫外線を用いることで150℃以下の低温で高い輸送特性を有する薄膜トランジスタ(TFT:Thin Film Transistor)を製造する手法が報告されている(Nature, 489 (2012) 128.参照)。 In addition, a method of manufacturing a thin film transistor (TFT: Thin Film Transistor) having a high transport property at a low temperature of 150 ° C. or lower by applying a solution on a substrate and using ultraviolet rays has been reported (Nature, 489 (2012)). 128.).
 本発明は、緻密な金属酸化物膜を比較的低温で、かつ大気圧下で製造することができる金属酸化物膜の製造方法及び金属酸化物膜、並びに、高い移動度を有する薄膜トランジスタ、表示装置、イメージセンサ及びX線センサを提供することを目的とする。 The present invention relates to a metal oxide film manufacturing method and metal oxide film capable of manufacturing a dense metal oxide film at a relatively low temperature and atmospheric pressure, and a thin film transistor and a display device having high mobility. An object is to provide an image sensor and an X-ray sensor.
 上記目的を達成するため、以下の発明が提供される。
<1> 金属硝酸塩を含む溶液を基板上に塗布し、塗布膜を乾燥させて金属酸化物前駆体膜を形成する工程と、金属酸化物前駆体膜を金属酸化物膜に転化する工程とを交互に2回以上繰り返すことを含み、
 金属酸化物前駆体膜を金属酸化物膜に転化する少なくとも2回の工程において、基板の最高到達温度を120℃以上250℃以下にして金属酸化物前駆体膜を金属酸化物膜に転化する金属酸化物膜の製造方法。
<2> 金属酸化物前駆体膜を金属酸化物膜に転化する全ての工程において、基板の最高到達温度を120℃以上にして金属酸化物前駆体膜を金属酸化物膜に転化する<1>に記載の金属酸化物膜の製造方法。
<3> 金属酸化物前駆体膜を金属酸化物膜に転化する全ての工程において、基板の最高到達温度を200℃以下にする<1>又は<2>に記載の金属酸化物膜の製造方法。
<4> 金属酸化物前駆体膜を金属酸化物膜に転化する工程が、金属酸化物前駆体膜に紫外線を照射する工程を含む<1>~<3>のいずれか1つに記載の金属酸化物膜の製造方法。
<5> 金属酸化物前駆体膜を形成する工程と、金属酸化物前駆体膜を金属酸化物膜に転化する工程とを交互に4回以上繰り返す<1>~<4>のいずれか1つに記載の金属酸化物膜の製造方法。
<6> 金属硝酸塩を含む溶液が、少なくとも硝酸インジウムを含む<1>~<5>のいずれか1つに記載の金属酸化物膜の製造方法。
<7> 硝酸インジウムを含む溶液が、亜鉛、錫、ガリウム及びアルミニウムから選ばれる少なくとも1つの金属原子を含む化合物をさらに含有する<6>に記載の金属酸化物膜の製造方法。
<8> 金属硝酸塩を含む溶液の金属モル濃度が、0.01mol/L以上0.5mol/L以下である<1>~<7>のいずれか1つに記載の金属酸化物膜の製造方法。
<9> 金属酸化物前駆体膜を形成する工程と、金属酸化物前駆体膜を金属酸化物膜に転化する工程とを各々1回行って得られる金属酸化物膜の平均膜厚が6nm以下である<1>~<8>のいずれか1つに記載の金属酸化物膜の製造方法。
<10> 金属酸化物前駆体膜を形成する工程と、金属酸化物前駆体膜を金属酸化物膜に転化する工程とを各々1回行って得られる金属酸化物膜の平均膜厚が2nm以下である<9>に記載の金属酸化物膜の製造方法。
<11> 金属硝酸塩を含む溶液が、メタノール又はメトキシエタノールを含む<1>~<10>のいずれか1つに記載の金属酸化物膜の製造方法。
<12> 金属酸化物前駆体膜を金属酸化物膜に転化する工程が、金属酸化物前駆体膜に対し、波長300nm以下の紫外線を10mW/cm以上の強度で照射する工程を含む<4>~<11>のいずれか1つに記載の金属酸化物膜の製造方法。
<13> 金属酸化物前駆体膜に紫外線を照射する際に用いる光源が、低圧水銀ランプである<12>に記載の金属酸化物膜の製造方法。
<14> 金属酸化物前駆体膜を形成する工程において、塗布膜を乾燥させる際の基板の温度が35℃以上100℃以下である<1>~<13>のいずれか1つに記載の金属酸化物膜の製造方法。
<15> 金属酸化物前駆体膜を形成する工程において、金属硝酸塩を含む溶液を、インクジェット法、ディスペンサー法、凸版印刷法、及び凹版印刷法から選択される少なくとも一種の塗布法により塗布する<1>~<14>のいずれか1つに記載の金属酸化物膜の製造方法。
In order to achieve the above object, the following invention is provided.
<1> Applying a solution containing metal nitrate on a substrate, drying the coating film to form a metal oxide precursor film, and converting the metal oxide precursor film into a metal oxide film Including repeating two or more times alternately,
Metal that converts a metal oxide precursor film into a metal oxide film by converting the metal oxide precursor film into a metal oxide film in at least two steps of converting the metal oxide precursor film into a metal oxide film with a maximum substrate temperature of 120 ° C. to 250 ° C. Manufacturing method of oxide film.
<2> In all steps of converting a metal oxide precursor film into a metal oxide film, the maximum reached temperature of the substrate is set to 120 ° C. or higher to convert the metal oxide precursor film into a metal oxide film <1> The manufacturing method of the metal oxide film as described in 2.
<3> The method for producing a metal oxide film according to <1> or <2>, wherein the maximum temperature reached by the substrate is 200 ° C. or lower in all steps of converting the metal oxide precursor film into the metal oxide film. .
<4> The metal according to any one of <1> to <3>, wherein the step of converting the metal oxide precursor film into the metal oxide film includes a step of irradiating the metal oxide precursor film with ultraviolet rays. Manufacturing method of oxide film.
<5> Any one of <1> to <4>, wherein the step of forming the metal oxide precursor film and the step of converting the metal oxide precursor film into the metal oxide film are alternately repeated four times or more. The manufacturing method of the metal oxide film as described in 2.
<6> The method for producing a metal oxide film according to any one of <1> to <5>, wherein the solution containing the metal nitrate contains at least indium nitrate.
<7> The method for producing a metal oxide film according to <6>, wherein the solution containing indium nitrate further contains a compound containing at least one metal atom selected from zinc, tin, gallium, and aluminum.
<8> The method for producing a metal oxide film according to any one of <1> to <7>, wherein the metal molar concentration of the solution containing the metal nitrate is 0.01 mol / L or more and 0.5 mol / L or less. .
<9> The average thickness of the metal oxide film obtained by performing the process of forming the metal oxide precursor film and the process of converting the metal oxide precursor film into a metal oxide film once is 6 nm or less. The method for producing a metal oxide film according to any one of <1> to <8>, wherein
<10> The average film thickness of the metal oxide film obtained by performing the process of forming the metal oxide precursor film and the process of converting the metal oxide precursor film into a metal oxide film once is 2 nm or less. <9> The method for producing a metal oxide film according to the above.
<11> The method for producing a metal oxide film according to any one of <1> to <10>, wherein the solution containing the metal nitrate contains methanol or methoxyethanol.
<12> The step of converting the metal oxide precursor film into the metal oxide film includes a step of irradiating the metal oxide precursor film with ultraviolet light having a wavelength of 300 nm or less at an intensity of 10 mW / cm 2 or more <4 The method for producing a metal oxide film according to any one of> to <11>.
<13> The method for producing a metal oxide film according to <12>, wherein the light source used when the metal oxide precursor film is irradiated with ultraviolet rays is a low-pressure mercury lamp.
<14> The metal according to any one of <1> to <13>, wherein in the step of forming the metal oxide precursor film, the temperature of the substrate when the coating film is dried is 35 ° C. or more and 100 ° C. or less. Manufacturing method of oxide film.
<15> In the step of forming a metal oxide precursor film, a solution containing a metal nitrate is applied by at least one application method selected from an inkjet method, a dispenser method, a relief printing method, and an intaglio printing method <1 The method for producing a metal oxide film according to any one of> to <14>.
<16> <1>~<15>のいずれか1つに記載の金属酸化物膜の製造方法を用いて作製された金属酸化物膜。
<17> 金属酸化物半導体膜である<16>に記載の金属酸化物膜。
<18> <17>に記載の金属酸化物膜を含む活性層と、ソース電極と、ドレイン電極と、ゲート絶縁膜と、ゲート電極とを有する薄膜トランジスタ。
<19> <18>に記載の薄膜トランジスタを備えた表示装置。
<20> <18>に記載の薄膜トランジスタを備えたイメージセンサ。
<21> <18>に記載の薄膜トランジスタを備えたX線センサ。
<16> A metal oxide film produced using the method for producing a metal oxide film according to any one of <1> to <15>.
<17> The metal oxide film according to <16>, which is a metal oxide semiconductor film.
<18> A thin film transistor having an active layer including the metal oxide film according to <17>, a source electrode, a drain electrode, a gate insulating film, and a gate electrode.
<19> A display device comprising the thin film transistor according to <18>.
<20> An image sensor comprising the thin film transistor according to <18>.
<21> An X-ray sensor comprising the thin film transistor according to <18>.
 本発明によれば、緻密な金属酸化物膜を比較的低温で、かつ大気圧下で製造することができる金属酸化物膜の製造方法及び金属酸化物膜、並びに、高い移動度を有する薄膜トランジスタ、表示装置、イメージセンサ及びX線センサが提供される。 According to the present invention, a metal oxide film manufacturing method and a metal oxide film capable of manufacturing a dense metal oxide film at a relatively low temperature and atmospheric pressure, and a thin film transistor having high mobility, A display device, an image sensor, and an X-ray sensor are provided.
本発明により製造される薄膜トランジスタの一例(トップゲート-トップコンタクト型)の構成を示す概略図である。It is the schematic which shows the structure of an example (top gate-top contact type) of the thin-film transistor manufactured by this invention. 本発明により製造される薄膜トランジスタの一例(トップゲート-ボトムコンタクト型)の構成を示す概略図である。It is the schematic which shows the structure of an example (top gate-bottom contact type) of the thin-film transistor manufactured by this invention. 本発明により製造される薄膜トランジスタの一例(ボトムゲート-トップコンタクト型)の構成を示す概略図である。It is the schematic which shows the structure of an example (bottom gate-top contact type) of the thin-film transistor manufactured by this invention. 本発明により製造される薄膜トランジスタの一例(ボトムゲート-ボトムコンタクト型)の構成を示す概略図である。1 is a schematic view showing a configuration of an example (bottom gate-bottom contact type) thin film transistor manufactured according to the present invention. FIG. 実施形態の液晶表示装置の一部分を示す概略断面図である。It is a schematic sectional drawing which shows a part of liquid crystal display device of embodiment. 図5に示す液晶表示装置の電気配線の概略構成図である。It is a schematic block diagram of the electrical wiring of the liquid crystal display device shown in FIG. 実施形態の有機EL表示装置の一部分を示す概略断面図である。It is a schematic sectional drawing which shows a part of organic EL display apparatus of embodiment. 図7に示す有機EL表示装置の電気配線の概略構成図である。It is a schematic block diagram of the electrical wiring of the organic electroluminescence display shown in FIG. 実施形態のX線センサアレイの一部分を示す概略断面図である。It is a schematic sectional drawing which shows a part of X-ray sensor array of embodiment. 図9に示すX線センサアレイの電気配線の概略構成図である。It is a schematic block diagram of the electrical wiring of the X-ray sensor array shown in FIG. 実施例1~4及び比較例1で作製した簡易型TFTのV-I特性を示す図である。It is a diagram showing, V g -I d characteristics of the simplified TFT fabricated in Examples 1-4 and Comparative Example 1. 前駆体膜形成工程及び転化工程の繰り返し回数と、TFTの移動度との関係を示す図である。It is a figure which shows the relationship between the repetition frequency of a precursor film | membrane formation process and a conversion process, and the mobility of TFT. 本発明によって金属酸化物膜を製造する装置の一例を示す概略図である。It is the schematic which shows an example of the apparatus which manufactures a metal oxide film by this invention.
 以下、添付の図面を参照しながら、本発明の金属酸化物膜の製造方法、並びに本発明により製造される金属酸化物膜及びそれを備えた薄膜トランジスタ、表示装置、X線センサ等について具体的に説明する。
 なお、図中、同一又は対応する機能を有する部材(構成要素)には同じ符号を付して適宜説明を省略する。また、本明細書において「~」の記号により数値範囲を示す場合、下限値及び上限値として記載されている数値が含まれる。
 また、本発明に係る金属酸化物膜の導電性は限定されず、本発明は、酸化物半導体膜、酸化物導電膜、又は酸化物絶縁膜の製造に適用することができるが、代表例として、TFTの活性層(半導体層)に適用することができる金属酸化物半導体膜の製造方法について主に説明する。
Hereinafter, a method for producing a metal oxide film of the present invention, a metal oxide film produced by the present invention, a thin film transistor including the same, a display device, an X-ray sensor, and the like will be specifically described with reference to the accompanying drawings. explain.
In the drawings, members (components) having the same or corresponding functions are denoted by the same reference numerals and description thereof is omitted as appropriate. In the present specification, when a numerical range is indicated by the symbol “˜”, numerical values described as the lower limit and the upper limit are included.
Further, the conductivity of the metal oxide film according to the present invention is not limited, and the present invention can be applied to the manufacture of an oxide semiconductor film, an oxide conductive film, or an oxide insulating film. A method for manufacturing a metal oxide semiconductor film that can be applied to an active layer (semiconductor layer) of a TFT will be mainly described.
 本発明者らは詳細な研究を通して、金属硝酸塩を用いた溶液の塗布及び乾燥による金属酸化物前駆体膜の形成と加熱による金属酸化物膜への転化を交互に複数回実施することにより、膜密度の向上効果が得られることを見出した。
 特に、本発明の方法によって金属酸化物半導体膜を作製することにより、高い輸送特性を有する薄膜トランジスタを大気圧下、比較的低温で作製できることから薄膜液晶ディスプレイや有機EL等の表示装置、特にフレキシブルディスプレイを提供することが可能となる。
Through detailed research, the inventors conducted a plurality of times by alternately applying a solution using a metal nitrate and forming a metal oxide precursor film by drying and converting it into a metal oxide film by heating a plurality of times. It has been found that an effect of improving the density can be obtained.
In particular, by producing a metal oxide semiconductor film by the method of the present invention, a thin film transistor having high transport properties can be produced at a relatively low temperature under atmospheric pressure. Therefore, a display device such as a thin film liquid crystal display or an organic EL, particularly a flexible display. Can be provided.
<金属酸化物膜の製造方法>
 本発明の金属酸化物膜の製造方法は、金属硝酸塩を含む溶液を基板上に塗布し、塗布膜を乾燥させて金属酸化物前駆体膜を形成する工程と、金属酸化物前駆体膜を金属酸化物膜に転化する工程とを交互に2回以上繰り返すことを含み、金属酸化物前駆体膜を金属酸化物膜に転化する少なくとも2回の工程において、基板の最高到達温度を120℃以上250℃以下にして金属酸化物前駆体膜を金属酸化物膜に転化する。
<Method for producing metal oxide film>
The method for producing a metal oxide film of the present invention includes a step of applying a solution containing a metal nitrate on a substrate, drying the applied film to form a metal oxide precursor film, and forming the metal oxide precursor film into a metal. The step of converting to an oxide film alternately and twice or more, and in at least two steps of converting the metal oxide precursor film to the metal oxide film, the maximum temperature of the substrate is 120 ° C. or more and 250 ° C. The metal oxide precursor film is converted into a metal oxide film at a temperature lower than the temperature.
 本発明によって緻密な金属酸化物膜を形成することができる理由は定かでないが、以下のように推測される。
 金属酸化物前駆体膜が金属酸化物膜に転化される際に、膜中から硝酸成分や金属に配位している成分が脱離する。その状態で再度溶液を塗布することで、脱離した部分に溶液が含浸し、結果として新たに金属と酸素の結合が形成されることにより緻密な金属酸化物膜が形成されるものと考えられる。
The reason why a dense metal oxide film can be formed by the present invention is not clear, but is presumed as follows.
When the metal oxide precursor film is converted into the metal oxide film, the nitric acid component and the component coordinated to the metal are desorbed from the film. By applying the solution again in this state, the solution is impregnated in the detached part, and as a result, a new metal-oxygen bond is formed, and a dense metal oxide film is formed. .
[金属酸化物前駆体膜の形成工程(工程A)]
 まず、金属酸化物膜を形成するための金属硝酸塩を含む溶液と、金属酸化物膜を形成するための基板を用意し、金属硝酸塩を含む溶液を基板上に塗布し、塗布膜を乾燥させて金属酸化物前駆体膜を形成する。
[Formation Step of Metal Oxide Precursor Film (Step A)]
First, prepare a solution containing a metal nitrate for forming a metal oxide film and a substrate for forming a metal oxide film, apply a solution containing the metal nitrate on the substrate, and dry the applied film. A metal oxide precursor film is formed.
(基板)
 基板の形状、構造、大きさ等については特に制限はなく、目的に応じて適宜選択することができる。基板の構造は単層構造であってもよいし、積層構造であってもよい。
(substrate)
There is no restriction | limiting in particular about the shape of a board | substrate, a structure, a magnitude | size, It can select suitably according to the objective. The structure of the substrate may be a single layer structure or a laminated structure.
 基板を構成する材料としては特に限定はなく、ガラス、YSZ(Yttria-Stabilized Zirconia;イットリウム安定化ジルコニウム)等の無機材料、樹脂、樹脂複合材料等からなる基板を用いることができる。中でも軽量である点、可撓性を有する点から樹脂基板又は樹脂複合材料からなる基板(樹脂複合材料基板)が好ましい。
 具体的には、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリスチレン、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリアリレート、アリルジグリコールカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリベンズアゾール、ポリフェニレンサルファイド、ポリシクロオレフィン、ノルボルネン樹脂、ポリクロロトリフルオロエチレン等のフッ素樹脂、液晶ポリマー、アクリル樹脂、エポキシ樹脂、シリコーン樹脂、アイオノマー樹脂、シアネート樹脂、架橋フマル酸ジエステル、環状ポリオレフィン、芳香族エーテル、マレイミド・オレフィン、セルロース、エピスルフィド化合物等の合成樹脂基板が挙げられる。
 また、無機材料と樹脂との複合材料に含まれる無機材料としては、酸化珪素粒子、金属ナノ粒子、無機酸化物ナノ粒子、無機窒化物ナノ粒子等の無機粒子、カーボン繊維、カーボンナノチューブ等の炭素材料、ガラスフェレーク、ガラスファイバー、ガラスビーズ等のガラス材料が挙げられる。
 また、樹脂と粘土鉱物との複合プラスチック材料、樹脂と雲母派生結晶構造を有する粒子との複合プラスチック材料、樹脂と薄いガラスとの間に少なくとも1つの接合界面を有する積層プラスチック材料、無機層と有機層を交互に積層することで少なくとも1つの接合界面を有するバリア性能を有する複合材料等が挙げられる。
 また、ステンレス基板又はステンレスと異種金属を積層した金属多層基板、アルミニウム基板又は表面に酸化処理(例えば陽極酸化処理)を施すことで表面の絶縁性を向上させた酸化皮膜付きのアルミニウム基板等を用いることもできる。
 また、樹脂基板又は樹脂複合材料基板は、耐熱性、寸法安定性、耐溶剤性、電気絶縁性、加工性、低通気性、及び低吸湿性等に優れていることが好ましい。樹脂基板又は樹脂複合材料基板は、水分、酸素等の透過を防止するためのガスバリア層や、基板の平坦性や下部電極との密着性を向上するためのアンダーコート層等を備えていてもよい。
The material constituting the substrate is not particularly limited, and a substrate made of glass, an inorganic material such as YSZ (Yttria-Stabilized Zirconia), a resin, a resin composite material, or the like can be used. Of these, a resin substrate or a substrate made of a resin composite material (resin composite material substrate) is preferable in terms of light weight and flexibility.
Specifically, polybutylene terephthalate, polyethylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polystyrene, polycarbonate, polysulfone, polyethersulfone, polyarylate, allyl diglycol carbonate, polyamide, polyimide, polyamideimide, polyetherimide, Fluorine resin such as polybenzazole, polyphenylene sulfide, polycycloolefin, norbornene resin, polychlorotrifluoroethylene, liquid crystal polymer, acrylic resin, epoxy resin, silicone resin, ionomer resin, cyanate resin, crosslinked fumaric acid diester, cyclic polyolefin, Synthetic resin substrates such as aromatic ether, maleimide / olefin, cellulose, episulfide compounds, etc. .
Inorganic materials contained in the composite material of inorganic material and resin include inorganic particles such as silicon oxide particles, metal nanoparticles, inorganic oxide nanoparticles, and inorganic nitride nanoparticles, carbon fibers such as carbon fibers and carbon nanotubes. Examples thereof include glass materials such as materials, glass ferkes, glass fibers, and glass beads.
Also, composite plastic material of resin and clay mineral, composite plastic material of resin and particles having mica-derived crystal structure, laminated plastic material having at least one bonding interface between resin and thin glass, inorganic layer and organic Examples include a composite material having barrier performance having at least one bonding interface by alternately laminating layers.
In addition, a stainless steel substrate or a metal multilayer substrate in which different metals are laminated with stainless steel, an aluminum substrate, an aluminum substrate with an oxide film whose surface insulation is improved by subjecting the surface to an oxidation treatment (for example, anodization treatment), or the like is used. You can also.
The resin substrate or the resin composite material substrate is preferably excellent in heat resistance, dimensional stability, solvent resistance, electrical insulation, workability, low air permeability, low moisture absorption, and the like. The resin substrate or the resin composite material substrate may include a gas barrier layer for preventing permeation of moisture, oxygen, and the like, an undercoat layer for improving the flatness of the substrate and adhesion with the lower electrode, and the like. .
 本発明で用いる基板の厚みに特に制限はないが、50μm以上500μm以下であることが好ましい。基板の厚みが50μm以上であると、基板自体の平坦性がより向上する。また、基板の厚みが500μm以下であると、基板自体の可撓性がより向上し、フレキシブルデバイス用基板としての使用がより容易となる。 The thickness of the substrate used in the present invention is not particularly limited, but is preferably 50 μm or more and 500 μm or less. When the thickness of the substrate is 50 μm or more, the flatness of the substrate itself is further improved. Further, when the thickness of the substrate is 500 μm or less, the flexibility of the substrate itself is further improved, and the use as a substrate for a flexible device becomes easier.
(金属硝酸塩を含む溶液)
 金属硝酸塩を含む溶液は、金属硝酸塩等の溶質を、溶液が所望の濃度となるように秤量し、溶媒中で攪拌して溶解させて得られる。攪拌を行う時間は溶質が十分に溶解されれば特に制限はない。
(Solution containing metal nitrate)
A solution containing a metal nitrate is obtained by weighing a solute such as a metal nitrate so that the solution has a desired concentration and stirring and dissolving in a solvent. The stirring time is not particularly limited as long as the solute is sufficiently dissolved.
 溶液に含まれる金属硝酸塩としては、形成する金属酸化物膜に応じて選択すればよく、例えば、硝酸インジウム、硝酸マグネシウム、硝酸アルミニウム、硝酸カルシウム、硝酸スカンジウム、硝酸クロム、硝酸マンガン、硝酸鉄、硝酸コバルト、硝酸ニッケル、硝酸銅、硝酸亜鉛、硝酸ガリウム、硝酸ストロンチウム、硝酸イットリウム、硝酸バリウム、硝酸ランタン、硝酸セリウム、硝酸プラセオジウム、硝酸ネオジウム、硝酸サマリウム、硝酸ユーロピウム、硝酸ガドリニウム、硝酸テルビウム、硝酸ジスプロシウム、硝酸ホルミウム、硝酸エルビウム、硝酸ツリウム、硝酸イッテルビウム、硝酸ルテチウム、硝酸ビスマスが挙げられる。金属硝酸塩は水和物であってもよい。 The metal nitrate contained in the solution may be selected according to the metal oxide film to be formed. For example, indium nitrate, magnesium nitrate, aluminum nitrate, calcium nitrate, scandium nitrate, chromium nitrate, manganese nitrate, iron nitrate, nitric acid Cobalt, nickel nitrate, copper nitrate, zinc nitrate, gallium nitrate, strontium nitrate, yttrium nitrate, barium nitrate, lanthanum nitrate, cerium nitrate, praseodymium nitrate, neodymium nitrate, samarium nitrate, europium nitrate, gadolinium nitrate, terbium nitrate, dysprosium nitrate, Examples include holmium nitrate, erbium nitrate, thulium nitrate, ytterbium nitrate, lutetium nitrate, and bismuth nitrate. The metal nitrate may be a hydrate.
 溶液の金属モル濃度は、粘度や得たい膜厚に応じて任意に選択することができるが、膜の平坦性及び生産性の観点から0.01mol/L以上0.5mol/L以下であることが好ましい。溶液中の金属モル濃度が0.01mol/L以上であれば膜密度を効果的に向上させることができる。また、金属酸化物膜上に溶液を塗布して金属酸化物前駆体膜を形成する場合、溶液中の金属モル濃度が0.5mol/L以下であれば下の金属酸化物膜を溶解することを効果的に抑制することができる点でも好ましい。 The metal molar concentration of the solution can be arbitrarily selected according to the viscosity and the film thickness to be obtained. Is preferred. If the metal molar concentration in the solution is 0.01 mol / L or more, the film density can be effectively improved. In addition, when a metal oxide precursor film is formed by applying a solution on the metal oxide film, the lower metal oxide film should be dissolved if the metal molar concentration in the solution is 0.5 mol / L or less. Is also preferable in that it can be effectively suppressed.
 なお、金属硝酸塩を含む溶液が複数種の金属を含む場合は、本発明における金属モル濃度は、各金属のモル濃度(mol/L)の合計量を意味する。 In addition, when the solution containing a metal nitrate contains multiple types of metals, the metal molar concentration in the present invention means the total amount of molar concentrations (mol / L) of each metal.
 金属硝酸塩を含む溶液は、金属硝酸塩以外の他の金属原子含有化合物を含んでいてもよい。金属原子含有化合物としては金属硝酸塩以外の金属塩、金属ハロゲン化物、有機金属化合物を挙げることができる。
 金属硝酸塩以外の金属塩としては、硫酸塩、燐酸塩、炭酸塩、酢酸塩、蓚酸塩等が挙げられ、金属ハロゲン化物としては、塩化物、ヨウ化物、臭化物等が挙げられ、有機金属化合物としては、金属アルコキシド、有機酸塩、金属βジケトネート等が挙げられる。
The solution containing a metal nitrate may contain a metal atom-containing compound other than the metal nitrate. Examples of the metal atom-containing compound include metal salts other than metal nitrates, metal halides, and organometallic compounds.
Examples of metal salts other than metal nitrates include sulfates, phosphates, carbonates, acetates, and oxalates. Examples of metal halides include chlorides, iodides, bromides, and the like. Examples thereof include metal alkoxides, organic acid salts, and metal β-diketonates.
 金属硝酸塩を含む溶液は、少なくとも硝酸インジウムを含むことが好ましい。酸化物半導体膜又は酸化物導体膜を形成する場合、硝酸インジウムを用いることで、容易にインジウム含有酸化物膜を形成することができ、高い電気伝導性が得られる。
 また、金属酸化物前駆体膜を金属酸化物膜に転化する工程が紫外線を照射する工程を含む場合、前駆体膜が紫外光を効率よく吸収することができ、インジウム含有酸化物膜を容易に形成することができる。
The solution containing metal nitrate preferably contains at least indium nitrate. In the case of forming an oxide semiconductor film or an oxide conductor film, an indium-containing oxide film can be easily formed by using indium nitrate, and high electrical conductivity can be obtained.
Further, when the step of converting the metal oxide precursor film into the metal oxide film includes a step of irradiating ultraviolet rays, the precursor film can efficiently absorb ultraviolet light, and the indium-containing oxide film can be easily formed. Can be formed.
 また、金属硝酸塩を含む溶液にインジウム以外の金属元素として、亜鉛、錫、ガリウム、及びアルミニウムから選ばれるいずれか1つ以上の金属原子を含む化合物を含有することが好ましい。インジウムとインジウム以外の前記金属元素を適量含むことにより、得られる酸化物半導体膜の閾値電圧を所望の値に制御することができ、且つ膜の電気的安定性も向上する。
 なお、インジウムとインジウム以外の前記金属元素を含む酸化物半導体及び酸化物導電体として、In-Ga-Zn-O(IGZO)、In-Zn-O(IZO)、In-Ga-O(IGO)、In-Sn-O(ITO)、In-Sn-Zn-O(ITZO)等が挙げられる。
Moreover, it is preferable that the solution containing a metal nitrate contains a compound containing any one or more metal atoms selected from zinc, tin, gallium, and aluminum as a metal element other than indium. By containing an appropriate amount of indium and the metal element other than indium, the threshold voltage of the obtained oxide semiconductor film can be controlled to a desired value, and the electrical stability of the film is also improved.
Note that as an oxide semiconductor containing a metal element other than indium and indium and an oxide conductor, In—Ga—Zn—O (IGZO), In—Zn—O (IZO), and In—Ga—O (IGO) are used. In-Sn-O (ITO), In-Sn-Zn-O (ITZO), and the like.
 金属硝酸塩を含む溶液に用いる溶媒は、用いる金属硝酸塩を含む金属原子含有化合物が溶解するものであれば特に制限されず、水、アルコール溶媒(メタノール、エタノール、プロパノール、エチレングリコール等)、アミド溶媒(N,N-ジメチルホルムアミド等)、ケトン溶媒(アセトン、N-メチルピロリドン、スルホラン、N,N-ジメチルイミダゾリジノン等)、エーテル溶媒(テトラヒドロフラン、メトキシエタノール等)、ニトリル溶媒(アセトニトリル等)、その他上記以外のヘテロ原子含有溶媒等が挙げられる。特に溶解性、塗れ性の観点からメタノール、メトキシエタノール等を用いることが好ましい。 The solvent used for the solution containing the metal nitrate is not particularly limited as long as the metal atom-containing compound containing the metal nitrate to be used is dissolved. Water, alcohol solvents (methanol, ethanol, propanol, ethylene glycol, etc.), amide solvents ( N, N-dimethylformamide, etc.), ketone solvents (acetone, N-methylpyrrolidone, sulfolane, N, N-dimethylimidazolidinone, etc.), ether solvents (tetrahydrofuran, methoxyethanol, etc.), nitrile solvents (acetonitrile, etc.), etc. Examples include heteroatom-containing solvents other than those described above. In particular, from the viewpoint of solubility and paintability, it is preferable to use methanol, methoxyethanol or the like.
(塗布)
 金属硝酸塩を含む溶液(金属酸化物膜形成用塗布液)を基板上に塗布する方法は特に限定されず、スプレーコート法、スピンコート法、ブレードコート法、ディップコート法、キャスト法、ロールコート法、バーコート法、ダイコート法、ミスト法、インクジェット法、ディスペンサー法、スクリーン印刷法、凸版印刷法、及び凹版印刷法等が挙げられる。特に、微細パターンを容易に形成する観点から、インクジェット法、ディスペンサー法、凸版印刷法、及び凹版印刷法から選択される少なくとも一種の塗布法を用いることが好ましい。
(Application)
The method of applying a solution containing metal nitrate (coating solution for forming a metal oxide film) on the substrate is not particularly limited. Spray coating method, spin coating method, blade coating method, dip coating method, casting method, roll coating method , Bar coating method, die coating method, mist method, ink jet method, dispenser method, screen printing method, relief printing method, and intaglio printing method. In particular, from the viewpoint of easily forming a fine pattern, it is preferable to use at least one coating method selected from an inkjet method, a dispenser method, a relief printing method, and an intaglio printing method.
(乾燥)
 金属酸化物膜形成用塗布液を基板上に塗布した後、塗布膜を乾燥させ、第1の金属酸化物前駆体膜を得る。乾燥によって、塗布膜の流動性を低減させ、最終的に得られる酸化物膜の平坦性を向上させることができる。
 適切な乾燥温度(例えば、基板の温度が35℃以上100℃以下)を選択することにより、最終的により緻密な金属酸化物膜を得ることができる。乾燥のための加熱処理の方法は特に限定されず、ホットプレート加熱、電気炉加熱、赤外線加熱、マイクロ波加熱等から選択することができる。
 乾燥は膜の平坦性を均一に保つ観点から、塗布後、5分以内に開始することが好ましい。
 乾燥を行う時間は特に制限はないが、膜の均一性、生産性の観点から15秒以上10分以下であることが好ましい。
 また、乾燥における雰囲気に特に制限はないが、製造コスト等の観点から大気圧下、大気中で行うことが好ましい。
(Dry)
After the metal oxide film forming coating solution is applied onto the substrate, the coating film is dried to obtain a first metal oxide precursor film. By drying, the fluidity of the coating film can be reduced, and the flatness of the finally obtained oxide film can be improved.
By selecting an appropriate drying temperature (for example, the substrate temperature is 35 ° C. or higher and 100 ° C. or lower), a denser metal oxide film can be finally obtained. The method of heat treatment for drying is not particularly limited, and can be selected from hot plate heating, electric furnace heating, infrared heating, microwave heating, and the like.
Drying is preferably started within 5 minutes after coating from the viewpoint of keeping the flatness of the film uniform.
The drying time is not particularly limited, but is preferably 15 seconds or longer and 10 minutes or shorter from the viewpoint of film uniformity and productivity.
Moreover, there is no restriction | limiting in particular in the atmosphere in drying, but it is preferable to carry out in air | atmosphere under atmospheric pressure from viewpoints, such as manufacturing cost.
[金属酸化物膜への転化工程(工程B)]
 次いで、乾燥して得た金属酸化物前駆体膜を金属酸化物膜に転化する。金属酸化物前駆体膜を金属酸化物膜に転化する方法は、基板の最高到達温度を120℃以上250℃以下にすることができれば特に制限はなく、ホットプレート等のヒーター、電気炉、プラズマ、紫外光、マイクロ波等を用いる手法が挙げられる。
 転化工程における基板の最高到達温度が120℃未満であると膜密度の向上効果が不十分であり、250℃を超えると製造コストが増大する。
 より低温で金属酸化物膜への転化を行う観点から、紫外線(UV:Ultraviolet)を用いる手法が好ましい。紫外線の光源としては、UVランプやレーザーが挙げられるが、大面積に均一に、安価な設備で紫外線照射を行う観点からUVランプが好ましい。
[Conversion Step to Metal Oxide Film (Step B)]
Next, the metal oxide precursor film obtained by drying is converted into a metal oxide film. The method for converting the metal oxide precursor film into the metal oxide film is not particularly limited as long as the maximum temperature of the substrate can be 120 ° C. or more and 250 ° C. or less, such as a heater such as a hot plate, an electric furnace, plasma, A technique using ultraviolet light, microwaves, or the like can be given.
If the maximum temperature of the substrate in the conversion step is less than 120 ° C., the effect of improving the film density is insufficient, and if it exceeds 250 ° C., the manufacturing cost increases.
From the viewpoint of conversion to a metal oxide film at a lower temperature, a method using ultraviolet (UV) is preferable. Examples of the ultraviolet light source include a UV lamp and a laser, and a UV lamp is preferable from the viewpoint of performing ultraviolet irradiation with a cheap facility uniformly over a large area.
 UVランプとしては、エキシマランプ、重水素ランプ、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、ヘリウムランプ、カーボンアークランプ、カドミウムランプ、無電極放電ランプ等が挙げられ、特に低圧水銀ランプを用いると金属酸化物前駆体膜から金属酸化物膜への転化が容易に行えることから好ましい。 Examples of UV lamps include excimer lamps, deuterium lamps, low pressure mercury lamps, high pressure mercury lamps, ultra high pressure mercury lamps, metal halide lamps, helium lamps, carbon arc lamps, cadmium lamps, electrodeless discharge lamps, etc. Use of a lamp is preferable because conversion from a metal oxide precursor film to a metal oxide film can be easily performed.
 転化工程において、金属酸化物前駆体膜の膜面には波長300nm以下の紫外光を10mW/cm以上の照度で照射することが好ましい。上記波長範囲の紫外光を上記照度範囲で照射することでより短い時間で金属酸化物前駆体膜から金属酸化物膜への転化を行うことができる。
 なお、金属酸化物前駆体膜に照射する紫外線の照度は、例えば、紫外線光量計(オーク製作所社製、UV-M10、受光器UV-25)を用いて測定することができる。
In the conversion step, the film surface of the metal oxide precursor film is preferably irradiated with ultraviolet light having a wavelength of 300 nm or less at an illuminance of 10 mW / cm 2 or more. By irradiating ultraviolet light in the above wavelength range within the above illuminance range, conversion from the metal oxide precursor film to the metal oxide film can be performed in a shorter time.
Note that the illuminance of ultraviolet rays applied to the metal oxide precursor film can be measured using, for example, an ultraviolet light meter (manufactured by Oak Manufacturing Co., Ltd., UV-M10, photoreceiver UV-25).
 転化工程における雰囲気に制限はなく、大気圧下であっても真空下であってもよく、また、大気中であっても、任意のガス中であってもよいが、簡便に転化を行う観点から大気圧下で行うことが好ましい。 There is no limitation on the atmosphere in the conversion step, and it may be under atmospheric pressure or under vacuum, and may be in the air or in any gas, but it is easy to convert. To atmospheric pressure.
 転化工程における基板の最高到達温度は200℃以下であることが好ましい。200℃以下であれば耐熱性の低い樹脂基板への適用が容易となる。なお、転化工程における基板の最高到達温度はサーモラベルによって測定することができる。 The maximum temperature reached by the substrate in the conversion step is preferably 200 ° C. or lower. If it is 200 degrees C or less, application to a resin substrate with low heat resistance will become easy. Note that the maximum temperature reached by the substrate in the conversion step can be measured by a thermo label.
 基板の温度は、前述した温度範囲に制御可能な手法であれば特に限定されず、ホットプレート等のヒーター、電気炉、マイクロ波加熱で基板温度を制御してもよく、紫外線ランプ等、光源からの輻射熱を用いてもよい。光源からの輻射熱を用いる際には、ランプ-基板間距離やランプ出力を調整することで基板温度を制御することができる。
 紫外線照射時間は紫外線の照度にもよるが、生産性の観点から、5秒以上120分以下であることが好ましい。
The temperature of the substrate is not particularly limited as long as it is a method that can be controlled within the above-described temperature range, and the substrate temperature may be controlled by a heater such as a hot plate, an electric furnace, or microwave heating, and from a light source such as an ultraviolet lamp. The radiant heat may be used. When radiant heat from the light source is used, the substrate temperature can be controlled by adjusting the lamp-substrate distance and the lamp output.
Although the ultraviolet irradiation time depends on the illuminance of the ultraviolet rays, it is preferably 5 seconds or longer and 120 minutes or shorter from the viewpoint of productivity.
[工程Aと工程Bの繰り返し]
 金属酸化物前駆体膜を金属酸化物膜に転化した後、金属酸化物膜上に金属硝酸塩を含む溶液を再度塗布・乾燥して金属酸化物前駆体薄膜を形成し、金属酸化物前駆体膜を金属酸化物膜に転化することによって金属酸化物膜上に更に金属酸化物膜を形成する。
 このようにして金属酸化物前駆体膜の形成工程(工程A)と金属酸化物膜への転化工程(工程B)を交互に2回以上繰り返して金属酸化物膜を重ねて一体的に形成することで、膜密度が高い金属酸化物膜を得ることができる。
 尚、工程Aと工程Bは、工程Aと工程Bの順がA→B→A→Bの関係になっていればよく、工程Aと工程Bは連続して行わなくてもよく、工程Aと工程Bの間に例えば電極や絶縁膜の形成など別の工程が入っていてもよい。
[Repeat step A and step B]
After the metal oxide precursor film is converted into a metal oxide film, a solution containing metal nitrate is again applied and dried on the metal oxide film to form a metal oxide precursor thin film, and the metal oxide precursor film A metal oxide film is further formed on the metal oxide film by converting to a metal oxide film.
In this manner, the metal oxide precursor film formation step (step A) and the conversion step to the metal oxide film (step B) are alternately repeated twice or more, and the metal oxide films are stacked and formed integrally. Thus, a metal oxide film having a high film density can be obtained.
In addition, as long as the order of the process A and the process B has become the relationship of A->B->A-> B, the process A and the process B do not need to be performed continuously and the process A and the process B are the process A. For example, another process such as formation of an electrode or an insulating film may be included between the process B and the process B.
 また、金属酸化物前駆体膜を形成する工程と、金属酸化物前駆体膜を金属酸化物膜に転化する工程を交互にN回(Nは2以上の整数)繰り返す場合、金属酸化物前駆体膜を金属酸化物膜に転化するN回の転化工程全てにおいて基板の最高到達温度を120℃以上250℃以下にする必要はなく、N回の転化工程のうち少なくとも2回の転化工程において、基板の最高到達温度を120℃以上250℃以下にして金属酸化物前駆体膜を金属酸化物膜に転化すればよい。例えば、金属酸化物前駆体膜の形成と金属酸化物膜への転化を交互に3回繰り返す場合、1回目と2回目の転化工程では基板の最高到達温度を120℃以上250℃以下とし、3回目の転化工程では基板の最高到達温度を120℃未満としてもよいし、1回目の転化工程では基板の最高到達温度を120℃未満とし、2回目と3回目の転化工程では基板の最高到達温度を120℃以上250℃以下としもよい。あるいは1回目の転化工程と3回目の転化工程では基板の最高到達温度を120℃以上250℃以下とし、2回目の転化工程では120℃未満で行ってもよい。
 ただし、金属酸化物前駆体膜を金属酸化物膜に転化する全ての工程において、基板の最高到達温度を120℃以上250℃以下にして金属酸化物前駆体膜を金属酸化物膜に転化することが好ましい。
When the step of forming the metal oxide precursor film and the step of converting the metal oxide precursor film into the metal oxide film are repeated N times (N is an integer of 2 or more), the metal oxide precursor It is not necessary to set the maximum temperature of the substrate to 120 ° C. or more and 250 ° C. or less in all N conversion steps for converting the film into a metal oxide film, and in at least two conversion steps among the N conversion steps, The metal oxide precursor film may be converted into a metal oxide film by setting the maximum temperature of the film to 120 ° C. or higher and 250 ° C. or lower. For example, when the formation of the metal oxide precursor film and the conversion to the metal oxide film are alternately repeated three times, the maximum temperature of the substrate is set to 120 ° C. or more and 250 ° C. or less in the first and second conversion steps. In the second conversion process, the maximum temperature of the substrate may be less than 120 ° C. In the first conversion process, the maximum temperature of the substrate is less than 120 ° C, and in the second and third conversion processes, the maximum temperature of the substrate is reached. It is good also as 120 to 250 degreeC. Alternatively, the maximum temperature of the substrate may be 120 ° C. or higher and 250 ° C. or lower in the first conversion step and the third conversion step, and may be performed at less than 120 ° C. in the second conversion step.
However, in all the steps for converting the metal oxide precursor film into the metal oxide film, the maximum reached temperature of the substrate is set to 120 ° C. or more and 250 ° C. or less to convert the metal oxide precursor film into the metal oxide film. Is preferred.
 本発明の金属酸化物膜の製造方法は、工程Aと工程Bを同一基板上で交互に4回以上(すなわち、工程Aと工程Bのセットを4セット以上)繰り返すことが好ましい。工程Aと工程Bを交互に4回以上繰り返すことで、膜密度がより高い良質な金属酸化物膜を得ることができる。
 なお、工程Aと工程Bを繰り返す回数は2回以上であれば特に制限されず、目標とする金属酸化物膜の厚み等を考慮して決めればよいが、生産性の観点から10回以下とすることが好ましい。
In the method for producing a metal oxide film of the present invention, it is preferable to repeat Step A and Step B four or more times alternately on the same substrate (that is, four or more sets of Step A and Step B). By repeating Step A and Step B alternately four or more times, a high-quality metal oxide film having a higher film density can be obtained.
In addition, the number of times of repeating the process A and the process B is not particularly limited as long as it is 2 times or more, and may be determined in consideration of the target thickness of the metal oxide film, etc., but is 10 times or less from the viewpoint of productivity. It is preferable to do.
 工程A及び工程Bを交互に2回以上繰り返して金属酸化物膜を形成する好ましい製造形態として、例えば以下のような形態が挙げられる。図13は本発明によって金属酸化物膜を製造する装置の一例を概略的に示している。この装置はロールツーロール方式にて金属酸化物膜を形成する構成を有し、インクジェット等による塗布部2(2A,2B,2C)と、紫外線照射による転化部3(3A,3B,3C)とが交互に連続して配置され、基板1を搬送する搬送ベルト4及び搬送ロール5、基板1の温度を制御する温度制御手段8などを備えている。搬送ベルト4上に所定の間隔で配置された基板1は、搬送ロール5の回転によって搬送ベルト4とともに矢印Aの方向に移動し、塗布部2Aにおいて金属硝酸塩を含む溶液6が付与されて金属酸化物前駆体膜が形成される。次いで、転化部3Aにおいて紫外線照射されるとともに温度制御手段8により基板1の最高到達温度が120℃以上250℃以下の範囲に加熱されて金属酸化物前駆体膜が金属酸化物膜に転化される。同様にして2番目の塗布部2Bと転化部3B、さらに3番目の塗布部2Cと転化部3Cによって金属酸化物前駆体膜の形成と金属酸化物膜への転化が繰り返し行われる。このようにして工程Aと工程Bの繰り返しを短時間で効率的に行うことが可能となる。 As a preferable production form in which the metal oxide film is formed by alternately repeating the process A and the process B twice or more, the following forms are exemplified. FIG. 13 schematically shows an example of an apparatus for producing a metal oxide film according to the present invention. This apparatus has a configuration in which a metal oxide film is formed by a roll-to-roll method, and an application part 2 (2A, 2B, 2C) by ink jet or the like, and a conversion part 3 (3A, 3B, 3C) by ultraviolet irradiation, Are arranged alternately and continuously, and are provided with a transport belt 4 and a transport roll 5 for transporting the substrate 1, a temperature control means 8 for controlling the temperature of the substrate 1, and the like. The substrate 1 arranged at a predetermined interval on the conveyor belt 4 moves in the direction of the arrow A together with the conveyor belt 4 by the rotation of the conveyor roll 5, and the solution 6 containing metal nitrate is applied to the coating unit 2 </ b> A to apply metal oxidation. A precursor precursor film is formed. Next, the conversion unit 3A is irradiated with ultraviolet rays, and the temperature control means 8 heats the substrate 1 to a maximum temperature of 120 ° C. or more and 250 ° C. or less to convert the metal oxide precursor film into a metal oxide film. . Similarly, formation of a metal oxide precursor film and conversion into a metal oxide film are repeatedly performed by the second coating part 2B and the conversion part 3B, and further by the third coating part 2C and the conversion part 3C. In this way, the process A and the process B can be repeated efficiently in a short time.
 工程Aと工程Bを各々1回ずつ行って得られる金属酸化物膜の平均膜厚が6nm以下であることが好ましく、2nm以下であることがより好ましい。工程Aと工程Bを各々1回ずつ行って得られる金属酸化物膜の平均膜厚を6nm以下にすることによって、最終的に得られる膜密度が高い金属酸化物膜を得ることができ、2nm以下であればその効果がより高く得られる。尚、ここで述べる平均膜厚とは、工程A及び工程Bを交互に複数回繰り返して作製した金属酸化物膜の膜厚を塗布回数(工程Aの回数)で除した値を指す。例えば工程A及び工程Bを交互に2回繰り返し、最終的に得られる膜厚が10nmの場合、平均膜厚は10/2=5nmとなる。最終的に得られる金属酸化物膜の膜厚は膜の透過型電子顕微鏡(Transmission Electron Microscoe:TEM)による断面観察によって評価することができる。 The average film thickness of the metal oxide film obtained by performing Step A and Step B once is preferably 6 nm or less, and more preferably 2 nm or less. By making the average film thickness of the metal oxide film obtained by performing Step A and Step B once each 6 nm or less, a metal oxide film having a high film density finally obtained can be obtained. The effect will be higher if it is below. The average film thickness described here refers to a value obtained by dividing the film thickness of the metal oxide film produced by alternately repeating the process A and the process B a plurality of times by the number of times of application (the number of processes A). For example, when the step A and the step B are alternately repeated twice and the finally obtained film thickness is 10 nm, the average film thickness is 10/2 = 5 nm. The film thickness of the finally obtained metal oxide film can be evaluated by cross-sectional observation of the film with a transmission electron microscope (TEM).
<金属酸化物膜>
 上記工程A及び工程Bを交互に複数回繰り返して製造された金属酸化物膜は、膜密度が高い膜となる。
<Metal oxide film>
The metal oxide film produced by alternately repeating the process A and the process B a plurality of times becomes a film having a high film density.
 本発明の金属酸化物膜は金属成分として少なくともインジウムを含むことが好ましい。インジウムを含むことで金属酸化物半導体膜や金属酸化物導電体膜とした際に高い電気伝導性が得られる。
 金属酸化物膜のインジウムの含有量が、金属酸化物膜に含まれる全金属元素の50atom%以上であることが好ましい。インジウム含有量が50atom%以上であれば低温で容易に高い電気伝導性が得られる。
 金属酸化物膜は、インジウム以外の金属元素として、亜鉛,錫,ガリウム及びアルミニウムから選ばれる少なくとも1種の金属成分を含むことが好ましい。金属元素を適量含むことにより、電気伝導性の向上や、酸化物半導体膜を作製した際の閾値電圧制御や電気的安定性の向上効果が得られる。インジウムと前記金属元素を含む酸化物半導体及び酸化物導電体として、In-Ga-Zn-O(IGZO)、In-Zn-O(IZO)、In-Ga-O(IGO)、In-Sn-O(ITO)、In-Sn-Zn-O(ITZO)等が挙げられる。
The metal oxide film of the present invention preferably contains at least indium as a metal component. By containing indium, high electrical conductivity can be obtained when a metal oxide semiconductor film or a metal oxide conductor film is formed.
The indium content of the metal oxide film is preferably 50 atom% or more of the total metal elements contained in the metal oxide film. If the indium content is 50 atom% or more, high electrical conductivity can be easily obtained at low temperatures.
The metal oxide film preferably contains at least one metal component selected from zinc, tin, gallium, and aluminum as a metal element other than indium. By including an appropriate amount of the metal element, an effect of improving electrical conductivity, controlling threshold voltage when an oxide semiconductor film is manufactured, and improving electrical stability can be obtained. As an oxide semiconductor and an oxide conductor containing indium and the above metal elements, In—Ga—Zn—O (IGZO), In—Zn—O (IZO), In—Ga—O (IGO), In—Sn— O (ITO), In—Sn—Zn—O (ITZO), and the like can be given.
 金属酸化物膜のX線反射率法(X-ray Reflectometer:XRR)によって測定した平均膜密度が6g/cm以上であることが好ましい。上記平均膜密度の範囲であれば金属酸化物半導体膜又は金属酸化物導電体膜とした際に高い電気伝導性が得られる。ここで言うところの平均膜密度とはXRRスペクトルから膜厚、膜密度、表面ラフネスをパラメータとしてフィッティングを行う際に、金属酸化物膜を密度の異なる複数層のモデルとし、各層の膜密度を膜厚で乗じた値を加算した後に、金属酸化物膜の全膜厚で除した値をいう。例えば、金属酸化物膜を3層とした場合にシミュレーション結果と良い一致を示す金属酸化物膜であって、1層目が膜密度4g/cmで膜厚1nm、2層目が膜密度5g/cmで膜厚8nm、3層目が膜密度4g/cmで膜厚1nmとすると、この金属酸化物膜の平均膜密度は(4×1+5×8+4×1)/(1+8+1)=4.8g/cmとなる。尚、実測スペクトルとシミュレーション結果が良い一致を示すか否かは信頼性因子(R値)で見積もることができ、良い一致を示すものは、R値が0.015以下であることを意味する。 It is preferable that the average film density of the metal oxide film measured by X-ray reflectometry (XRR) is 6 g / cm 3 or more. When the average film density is within the above range, high electrical conductivity can be obtained when a metal oxide semiconductor film or a metal oxide conductor film is used. The average film density referred to here is a model of a plurality of layers having different densities when performing fitting from the XRR spectrum using the film thickness, film density, and surface roughness as parameters, and the film density of each layer is defined as the film density. A value obtained by adding the value multiplied by the thickness and then dividing by the total thickness of the metal oxide film. For example, when the metal oxide film has three layers, the metal oxide film shows a good agreement with the simulation result. The first layer has a film density of 4 g / cm 3 , the film thickness is 1 nm, and the second layer has a film density of 5 g. When the film thickness is 8 nm at / cm 3 and the film density of the third layer is 4 g / cm 3 and the film thickness is 1 nm, the average film density of this metal oxide film is (4 × 1 + 5 × 8 + 4 × 1) / (1 + 8 + 1) = 4 8 g / cm 3 . Whether or not the measured spectrum and the simulation result show a good match can be estimated by a reliability factor (R value). A good match means that the R value is 0.015 or less.
 本発明の金属酸化物膜の製造方法を用いることで、例えば、大気圧下、200℃以下の低温プロセスで緻密な金属酸化物膜を得ることができ、種々のデバイスの作製に適用することができる。本発明では、大掛かりな真空装置を用いる必要がない点、耐熱性の低い安価な樹脂基板を用いることができる点、原料が安価である点等からデバイス作製コストを大幅に低減可能となる。
 また、本発明は、耐熱性の低い樹脂基板に適用できることからフレキシブルディスプレイ等のフレキシブル電子デバイスを安価に作製することが可能となる。本発明は、特に金属酸化物半導体膜や金属酸化物導電膜の作製に用いた際に極めて電子伝達特性が高い膜を得ることができる。
By using the method for producing a metal oxide film of the present invention, for example, a dense metal oxide film can be obtained by a low-temperature process at 200 ° C. or lower under atmospheric pressure, and can be applied to the production of various devices. it can. In the present invention, the device manufacturing cost can be greatly reduced because it is not necessary to use a large vacuum device, an inexpensive resin substrate having low heat resistance can be used, and the raw material is inexpensive.
In addition, since the present invention can be applied to a resin substrate having low heat resistance, a flexible electronic device such as a flexible display can be manufactured at low cost. The present invention can obtain a film having extremely high electron transfer characteristics, particularly when used for manufacturing a metal oxide semiconductor film or a metal oxide conductive film.
<薄膜トランジスタ>
 本発明の実施形態により作製された金属酸化物半導体膜は高い半導体特性を示すことから、薄膜トランジスタ(TFT)の活性層(酸化物半導体層)に好適に用いることができる。以下、本発明の製造方法により作製された金属酸化物膜を薄膜トランジスタの活性層として用いる実施形態について説明する。
 尚、実施形態としてはトップゲート型の薄膜トランジスタについて記述するが、本発明により製造される金属酸化物半導体膜を用いた薄膜トランジスタはトップゲート型に限定されることなく、ボトムゲート型の薄膜トランジスタであってもよい。
<Thin film transistor>
Since the metal oxide semiconductor film manufactured according to the embodiment of the present invention exhibits high semiconductor characteristics, it can be suitably used for an active layer (oxide semiconductor layer) of a thin film transistor (TFT). Hereinafter, an embodiment in which a metal oxide film produced by the production method of the present invention is used as an active layer of a thin film transistor will be described.
Although a top gate type thin film transistor is described as an embodiment, a thin film transistor using a metal oxide semiconductor film manufactured according to the present invention is not limited to a top gate type, and is a bottom gate type thin film transistor. Also good.
 本発明に係るTFTの素子構造は特に限定されず、ゲート電極の位置に基づいた、いわゆる逆スタガ構造(ボトムゲート型とも呼ばれる)及びスタガ構造(トップゲート型とも呼ばれる)のいずれの態様であってもよい。また、活性層とソース電極及びドレイン電極(適宜、「ソース・ドレイン電極」という。)との接触部分に基づき、いわゆるトップコンタクト型、ボトムコンタクト型のいずれの態様であってもよい。
 トップゲート型とは、TFTが形成されている基板を最下層としたときに、ゲート絶縁膜の上側にゲート電極が配置され、ゲート絶縁膜の下側に活性層が形成された形態である。ボトムゲート型とは、ゲート絶縁膜の下側にゲート電極が配置され、ゲート絶縁膜の上側に活性層が形成された形態である。また、ボトムコンタクト型とは、ソース・ドレイン電極が活性層よりも先に形成されて活性層の下面がソース・ドレイン電極に接触する形態である。トップコンタクト型とは、活性層がソース・ドレイン電極よりも先に形成されて活性層の上面がソース・ドレイン電極に接触する形態である。
The element structure of the TFT according to the present invention is not particularly limited, and is either a so-called reverse stagger structure (also referred to as a bottom gate type) or a stagger structure (also referred to as a top gate type) based on the position of the gate electrode. Also good. Further, based on the contact portion between the active layer and the source and drain electrodes (referred to as “source / drain electrodes” as appropriate), either a so-called top contact type or bottom contact type may be used.
The top gate type is a form in which a gate electrode is disposed on the upper side of the gate insulating film and an active layer is formed on the lower side of the gate insulating film when the substrate on which the TFT is formed is the lowest layer. The bottom gate type is a form in which a gate electrode is disposed below the gate insulating film and an active layer is formed above the gate insulating film. The bottom contact type is a mode in which the source / drain electrodes are formed before the active layer and the lower surface of the active layer is in contact with the source / drain electrodes. In the top contact type, the active layer is formed before the source / drain electrodes, and the upper surface of the active layer is in contact with the source / drain electrodes.
 図1は、トップゲート構造でトップコンタクト型の本発明に係るTFTの一例を示す模式図である。図1に示すTFT10では、基板12の一方の主面上に活性層14として上述の金属酸化物膜が積層されている。そして、活性層14上にソース電極16及びドレイン電極18が互いに離間して設置され、更にこれらの上にゲート絶縁膜20と、ゲート電極22とが順に積層されている。 FIG. 1 is a schematic diagram showing an example of a top contact type TFT according to the present invention having a top gate structure. In the TFT 10 shown in FIG. 1, the above-described metal oxide film is laminated as an active layer 14 on one main surface of the substrate 12. A source electrode 16 and a drain electrode 18 are disposed on the active layer 14 so as to be separated from each other, and a gate insulating film 20 and a gate electrode 22 are sequentially stacked thereon.
 図2は、トップゲート構造でボトムコンタクト型の本発明に係るTFTの一例を示す模式図である。図2に示すTFT30では、基板12の一方の主面上にソース電極16及びドレイン電極18が互いに離間して設置されている。そして、活性層14として上述の金属酸化物膜と、ゲート絶縁膜20と、ゲート電極22と、が順に積層されている。 FIG. 2 is a schematic view showing an example of a bottom contact type TFT according to the present invention having a top gate structure. In the TFT 30 shown in FIG. 2, the source electrode 16 and the drain electrode 18 are disposed on one main surface of the substrate 12 so as to be separated from each other. Then, the above-described metal oxide film, the gate insulating film 20, and the gate electrode 22 are sequentially stacked as the active layer.
 図3は、ボトムゲート構造でトップコンタクト型の本発明に係るTFTの一例を示す模式図である。図3に示すTFT40では、基板12の一方の主面上にゲート電極22と、ゲート絶縁膜20と、活性層14として上述の金属酸化物膜と、が順に積層されている。そして、活性層14の表面上にソース電極16及びドレイン電極18が互いに離間して設置されている。 FIG. 3 is a schematic view showing an example of a TFT according to the present invention having a bottom gate structure and a top contact type. In the TFT 40 shown in FIG. 3, the gate electrode 22, the gate insulating film 20, and the above-described metal oxide film as the active layer 14 are sequentially stacked on one main surface of the substrate 12. A source electrode 16 and a drain electrode 18 are disposed on the surface of the active layer 14 so as to be separated from each other.
 図4は、ボトムゲート構造でボトムコンタクト型の本発明に係るTFTの一例を示す模式図である。図4に示すTFT50では、基板12の一方の主面上にゲート電極22と、ゲート絶縁膜20と、が順に積層されている。そして、ゲート絶縁膜20の表面上にソース電極16及びドレイン電極18が互いに離間して設置され、更にこれらの上に、活性層14として上述の金属酸化物半導体膜が積層されている。 FIG. 4 is a schematic view showing an example of a bottom contact type TFT according to the present invention having a bottom gate structure. In the TFT 50 shown in FIG. 4, the gate electrode 22 and the gate insulating film 20 are sequentially stacked on one main surface of the substrate 12. Then, the source electrode 16 and the drain electrode 18 are provided on the surface of the gate insulating film 20 so as to be spaced apart from each other, and the above-described metal oxide semiconductor film is stacked as the active layer 14 thereon.
 以下の実施形態としては図1に示すトップゲート型の薄膜トランジスタ10について主に説明するが、本発明の薄膜トランジスタはトップゲート型に限定されることなく、ボトムゲート型の薄膜トランジスタであってもよい。 In the following embodiment, the top gate type thin film transistor 10 shown in FIG. 1 will be mainly described. However, the thin film transistor of the present invention is not limited to the top gate type and may be a bottom gate type thin film transistor.
(活性層)
 本実施形態の薄膜トランジスタ10を製造する場合、まず、金属硝酸塩を含む溶液を準備し、金属酸化物前駆体膜の形成工程及び金属酸化物膜への転化工程を交互に2回以上繰り返して基板12上に金属酸化物膜を形成する。
 金属酸化物膜のパターンニングは前述したインクジェット法、ディスペンサー法、凸版印刷法、又は凹版印刷法によって行ってもよく、金属酸化物膜の形成後にフォトリソグラフィー及びエッチングによりパターニングを行ってもよい。
 フォトリソグラフィー及びエッチングによりパターン形成を行うには、金属酸化物膜を形成した後、活性層14として残存させる部分にフォトリソグラフィーによりレジストパターンを形成した後、塩酸、硝酸、希硫酸、又は燐酸、硝酸及び酢酸の混合液等の酸溶液によりエッチングすることにより活性層14のパターンを形成する。
(Active layer)
When the thin film transistor 10 of this embodiment is manufactured, first, a solution containing a metal nitrate is prepared, and the formation process of the metal oxide precursor film and the conversion process to the metal oxide film are alternately repeated twice or more to form the substrate 12. A metal oxide film is formed thereon.
The patterning of the metal oxide film may be performed by the above-described inkjet method, dispenser method, relief printing method, or intaglio printing method, and may be patterned by photolithography and etching after the formation of the metal oxide film.
In order to form a pattern by photolithography and etching, after forming a metal oxide film, a resist pattern is formed by photolithography on a portion to be left as the active layer 14, and then hydrochloric acid, nitric acid, dilute sulfuric acid, phosphoric acid, nitric acid The pattern of the active layer 14 is formed by etching with an acid solution such as a mixed solution of acetic acid.
 金属酸化物膜の膜厚は膜の平坦性及び膜形成に要する時間の観点から5nm以上50nm以下であることが好ましい。 The thickness of the metal oxide film is preferably 5 nm or more and 50 nm or less from the viewpoint of film flatness and time required for film formation.
 また、高い移動度を得る観点から、活性層14におけるインジウムの含有量は、活性層14に含まれる全金属元素の50atom%以上であることが好ましく、80atom%以上であることがより好ましい。 Further, from the viewpoint of obtaining high mobility, the indium content in the active layer 14 is preferably 50 atom% or more of the total metal elements contained in the active layer 14, and more preferably 80 atom% or more.
(保護層)
 活性層14上にはソース・ドレイン電極16,18のエッチング時に活性層14を保護するための保護層(不図示)を形成することが好ましい。保護層の成膜方法に特に限定はなく、金属酸化物膜を形成した後、パターニングする前に形成してもよいし、金属酸化物膜のパターニング後に形成してもよい。
 また、保護層としては金属酸化物層であってもよく、樹脂のような有機材料であってもよい。なお、保護層はソース電極15及びドレイン電極18(適宜「ソース・ドレイン電極」と記す)の形成後に除去しても構わない。
(Protective layer)
A protective layer (not shown) for protecting the active layer 14 is preferably formed on the active layer 14 when the source / drain electrodes 16 and 18 are etched. The method for forming the protective layer is not particularly limited, and may be formed after the metal oxide film is formed and before the patterning, or after the metal oxide film is patterned.
Further, the protective layer may be a metal oxide layer or an organic material such as a resin. The protective layer may be removed after the source electrode 15 and the drain electrode 18 (referred to as “source / drain electrodes” as appropriate) are formed.
(ソース・ドレイン電極)
 金属酸化物半導体膜で形成される活性層14上にソース・ドレイン電極16,18を形成する。ソース・ドレイン電極16,18はそれぞれ電極として機能するように高い導電性を有するものを用い、Al,Mo,Cr,Ta,Ti,Au,Au等の金属、Al-Nd、Ag合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)、In-Ga-Zn-O等の金属酸化物導電膜等を用いて形成することができる。
(Source / drain electrodes)
Source / drain electrodes 16 and 18 are formed on the active layer 14 formed of a metal oxide semiconductor film. The source / drain electrodes 16 and 18 have high conductivity so as to function as electrodes, respectively, and metals such as Al, Mo, Cr, Ta, Ti, Au, Au, Al—Nd, Ag alloy, tin oxide Alternatively, a metal oxide conductive film such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), or In—Ga—Zn—O can be used.
 ソース・ドレイン電極16,18を形成する場合、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式等の中から使用する材料との適性を考慮して適宜選択した方法に従って成膜すればよい。 When the source / drain electrodes 16 and 18 are formed, a wet method such as a printing method and a coating method, a physical method such as a vacuum deposition method, a sputtering method, and an ion plating method, a chemical method such as a CVD method and a plasma CVD method, etc. The film may be formed according to a method appropriately selected in consideration of suitability with the material to be used.
 ソース・ドレイン電極16,18の膜厚は、成膜性、エッチング又はリフトオフ法によるパターンニング性、導電性等を考慮すると、10nm以上1000nm以下とすることが好ましく、50nm以上100nm以下とすることがより好ましい。 The film thickness of the source / drain electrodes 16 and 18 is preferably 10 nm or more and 1000 nm or less, preferably 50 nm or more and 100 nm or less in consideration of film forming properties, patterning properties by etching or lift-off methods, conductivity, and the like. More preferred.
 ソース・ドレイン電極16,18は、導電膜を形成した後、例えば、エッチング又はリフトオフ法により所定の形状にパターンニングして形成してもよく、インクジェット法等により直接パターン形成してもよい。この際、ソース・ドレイン電極16,18及びこれらの電極に接続する配線(不図示)を同時にパターンニングすることが好ましい。 The source / drain electrodes 16 and 18 may be formed by patterning into a predetermined shape by, for example, etching or a lift-off method after forming a conductive film, or may be directly formed by an inkjet method or the like. At this time, it is preferable to pattern the source / drain electrodes 16 and 18 and wiring (not shown) connected to these electrodes simultaneously.
(ゲート絶縁膜)
 ソース・ドレイン電極16,18及び配線(不図示)を形成した後、ゲート絶縁膜20を形成する。ゲート絶縁膜20は高い絶縁性を有するものが好ましく、例えばSiO、SiN、SiON、Al、Y、Ta、HfO等の絶縁膜、又はこれらの化合物を2種以上含む絶縁膜としてもよい。
 ゲート絶縁膜20は、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式等の中から使用する材料との適性を考慮して適宜選択した方法に従って成膜すればよい。
(Gate insulation film)
After the source / drain electrodes 16 and 18 and the wiring (not shown) are formed, the gate insulating film 20 is formed. The gate insulating film 20 preferably has a high insulating property. For example, an insulating film such as SiO 2 , SiN x , SiON, Al 2 O 3 , Y 2 O 3 , Ta 2 O 5 , HfO 2 , or a compound thereof is used. An insulating film including two or more kinds may be used.
The gate insulating film 20 is a material used from a wet method such as a printing method or a coating method, a physical method such as a vacuum deposition method, a sputtering method or an ion plating method, or a chemical method such as CVD or plasma CVD method. The film may be formed according to a method appropriately selected in consideration of the suitability of
 尚、ゲート絶縁膜20はリーク電流の低下及び電圧耐性の向上のための厚みを有する必要がある一方、ゲート絶縁膜20の厚みが大きすぎると駆動電圧の上昇を招いてしまう。ゲート絶縁膜20は材質にもよるが、ゲート絶縁膜20の厚みは10nm以上10μm以下が好ましく、50nm以上1000nm以下がより好ましく、100nm以上400nm以下が特に好ましい。 The gate insulating film 20 needs to have a thickness for reducing leakage current and improving voltage resistance. On the other hand, if the gate insulating film 20 is too thick, the driving voltage is increased. Although the gate insulating film 20 depends on the material, the thickness of the gate insulating film 20 is preferably 10 nm to 10 μm, more preferably 50 nm to 1000 nm, and particularly preferably 100 nm to 400 nm.
(ゲート電極)
 ゲート絶縁膜20を形成した後、ゲート電極22を形成する。ゲート電極22は高い導電性を有するものを用い、Al,Mo,Cr,Ta,Ti,Au,Au等の金属、Al-Nd、Ag合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)、IGZO等の金属酸化物導電膜等を用いて形成することができる。ゲート電極22としてはこれらの導電膜を単層構造又は2層以上の積層構造として用いることができる。
(Gate electrode)
After forming the gate insulating film 20, a gate electrode 22 is formed. The gate electrode 22 is made of highly conductive metal such as Al, Mo, Cr, Ta, Ti, Au, Au, Al—Nd, Ag alloy, tin oxide, zinc oxide, indium oxide, indium tin oxide ( It can be formed using a metal oxide conductive film such as ITO), zinc indium oxide (IZO), or IGZO. As the gate electrode 22, these conductive films can be used as a single layer structure or a stacked structure of two or more layers.
 ゲート電極22は、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式等の中から使用する材料との適性を考慮して適宜選択した方法に従って成膜する。
 ゲート電極22を形成するための金属膜の膜厚は、成膜性、エッチングやリフトオフ法によるパターンニング性、導電性等を考慮すると、10nm以上1000nm以下とすることが好ましく、50nm以上200nm以下とすることがより好ましい。
 成膜後、エッチング又はリフトオフ法により所定の形状にパターンニングすることにより、ゲート電極22を形成してもよく、インクジェット法等により直接パターン形成してもよい。この際、ゲート電極22及びゲート配線(不図示)を同時にパターンニングすることが好ましい。
The gate electrode 22 is made of a material used from a wet method such as a printing method or a coating method, a physical method such as a vacuum deposition method, a sputtering method or an ion plating method, or a chemical method such as a CVD or plasma CVD method. The film is formed according to a method appropriately selected in consideration of the suitability of the above.
The film thickness of the metal film for forming the gate electrode 22 is preferably 10 nm or more and 1000 nm or less, preferably 50 nm or more and 200 nm or less in consideration of film forming properties, patterning properties by etching or lift-off methods, conductivity, and the like. More preferably.
After the film formation, the gate electrode 22 may be formed by patterning into a predetermined shape by an etching or lift-off method, or the pattern may be directly formed by an inkjet method or the like. At this time, it is preferable to pattern the gate electrode 22 and the gate wiring (not shown) at the same time.
 以上で説明した本実施形態の薄膜トランジスタ10の用途には特に限定はないが、高い輸送特性を示すことから、例えば電気光学装置、具体的には、液晶表示装置、有機EL(Electro Luminescence)表示装置、無機EL表示装置等の表示装置における駆動素子として好適であり、耐熱性の低い樹脂基板を用いたフレキシブルディスプレイの作製に特に好適である。
 更に本発明により製造される薄膜トランジスタは、X線センサ、イメージセンサ等の各種センサ、MEMS(Micro Electro Mechanical System)等、種々の電子デバイスにおける駆動素子(駆動回路)として好適に用いられる。
The application of the thin film transistor 10 of the present embodiment described above is not particularly limited. However, since it exhibits high transport characteristics, for example, an electro-optical device, specifically, a liquid crystal display device, an organic EL (Electro Luminescence) display device. It is suitable as a drive element in a display device such as an inorganic EL display device, and is particularly suitable for production of a flexible display using a resin substrate having low heat resistance.
Further, the thin film transistor manufactured according to the present invention is suitably used as a driving element (driving circuit) in various electronic devices such as various sensors such as an X-ray sensor and an image sensor, and a micro electro mechanical system (MEMS).
<液晶表示装置>
 本発明の一実施形態である液晶表示装置について、図5にその一部分の概略断面図を示し、図6に電気配線の概略構成図を示す。
<Liquid crystal display device>
FIG. 5 shows a schematic sectional view of a part of a liquid crystal display device according to an embodiment of the present invention, and FIG. 6 shows a schematic configuration diagram of electrical wiring.
 図5に示すように、本実施形態の液晶表示装置100は、図1に示したトップゲート構造でトップコンタクト型のTFT10と、TFT10のパッシベーション層102で保護されたゲート電極22上に画素下部電極104およびその対向上部電極106で挟まれた液晶層108と、各画素に対応させて異なる色を発色させるためのR(赤)G(緑)B(青)のカラーフィルタ110とを備え、TFT10の基板12側およびRGBカラーフィルタ110上にそれぞれ偏光板112a、112bを備えた構成である。 As shown in FIG. 5, the liquid crystal display device 100 according to the present embodiment includes a top contact type TFT 10 having the top gate structure shown in FIG. 1 and a pixel lower electrode on the gate electrode 22 protected by the passivation layer 102 of the TFT 10. 104 and a liquid crystal layer 108 sandwiched between the counter upper electrode 106 and an R (red) G (green) B (blue) color filter 110 for developing different colors corresponding to each pixel. The polarizing plate 112a and 112b are provided on the substrate 12 side and the RGB color filter 110, respectively.
 また、図6に示すように、本実施形態の液晶表示装置100は、互いに平行な複数のゲート配線112と、該ゲート配線112と交差する、互いに平行なデータ配線114とを備えている。ここでゲート配線112とデータ配線114は電気的に絶縁されている。ゲート配線112とデータ配線114との交差部付近に、TFT10が備えられている。 Further, as shown in FIG. 6, the liquid crystal display device 100 of the present embodiment includes a plurality of gate wirings 112 parallel to each other and data wirings 114 intersecting with the gate wirings 112 and parallel to each other. Here, the gate wiring 112 and the data wiring 114 are electrically insulated. The TFT 10 is provided in the vicinity of the intersection between the gate wiring 112 and the data wiring 114.
 TFT10のゲート電極22は、ゲート配線112に接続されており、TFT10のソース電極16はデータ配線114に接続されている。また、TFT10のドレイン電極18はゲート絶縁膜20に設けられたコンタクトホール116を介して(コンタクトホール116に導電体が埋め込まれて)画素下部電極104に接続されている。この画素下部電極104は、接地された対向上部電極106とともにキャパシタ118を構成している。 The gate electrode 22 of the TFT 10 is connected to the gate wiring 112, and the source electrode 16 of the TFT 10 is connected to the data wiring 114. The drain electrode 18 of the TFT 10 is connected to the pixel lower electrode 104 through a contact hole 116 provided in the gate insulating film 20 (a conductor is embedded in the contact hole 116). The pixel lower electrode 104 forms a capacitor 118 together with the grounded counter upper electrode 106.
<有機EL表示装置>
 本発明の一実施形態に係るアクティブマトリックス方式の有機EL表示装置について、図7に一部分の概略断面図を示し、図8に電気配線の概略構成図を示す。
<Organic EL display device>
FIG. 7 shows a schematic sectional view of a part of an active matrix organic EL display device according to an embodiment of the present invention, and FIG. 8 shows a schematic configuration diagram of electrical wiring.
 本実施形態のアクティブマトリックス方式の有機EL表示装置200は、図1に示したトップゲート構造のTFT10が、パッシベーション層202を備えた基板12上に、駆動用TFT10aおよびスイッチング用TFT10bとして備えられ、TFT10a,10b上に下部電極208および上部電極210に挟まれた有機発光層212からなる有機EL発光素子214を備え、上面もパッシベーション層216により保護された構成となっている。 The active matrix organic EL display device 200 of the present embodiment includes the TFT 10 having the top gate structure shown in FIG. 1 as a driving TFT 10a and a switching TFT 10b on a substrate 12 having a passivation layer 202. , 10b is provided with an organic EL light emitting element 214 composed of an organic light emitting layer 212 sandwiched between a lower electrode 208 and an upper electrode 210, and the upper surface is also protected by a passivation layer 216.
 また、図8に示すように、本実施形態の有機EL表示装置200は、互いに平行な複数のゲート配線220と、該ゲート配線220と交差する、互いに平行なデータ配線222および駆動配線224とを備えている。ここで、ゲート配線220とデータ配線222、駆動配線224とは電気的に絶縁されている。スイッチング用TFT10bのゲート電極22は、ゲート配線220に接続されており、スイッチング用TFT10bのソース電極16はデータ配線222に接続されている。また、スイッチング用TFT10bのドレイン電極18は駆動用TFT10aのゲート電極22に接続されるとともに、キャパシタ226を用いることで駆動用TFT10aをオン状態に保つ。駆動用TFT10aのソース電極16は駆動配線224に接続され、ドレイン電極18は有機EL発光素子214に接続される。 As shown in FIG. 8, the organic EL display device 200 according to the present embodiment includes a plurality of gate wirings 220 that are parallel to each other, and a data wiring 222 and a driving wiring 224 that are parallel to each other and intersect the gate wiring 220. I have. Here, the gate wiring 220, the data wiring 222, and the drive wiring 224 are electrically insulated. The gate electrode 22 of the switching TFT 10 b is connected to the gate wiring 220, and the source electrode 16 of the switching TFT 10 b is connected to the data wiring 222. The drain electrode 18 of the switching TFT 10b is connected to the gate electrode 22 of the driving TFT 10a, and the driving TFT 10a is kept on by using the capacitor 226. The source electrode 16 of the driving TFT 10 a is connected to the driving wiring 224, and the drain electrode 18 is connected to the organic EL light emitting element 214.
 なお、図7に示した有機EL表示装置において、上部電極210を透明電極としてトップエミッション型としてもよいし、下部電極208およびTFTの各電極を透明電極とすることによりボトムエミッション型としてもよい。 In the organic EL display device shown in FIG. 7, the upper electrode 210 may be a top emission type using a transparent electrode, or the bottom electrode 208 and each TFT electrode may be a transparent electrode.
<X線センサ>
 本発明の一実施形態であるX線センサについて、図9にその一部分の概略断面図を示し、図10にその電気配線の概略構成図を示す。
<X-ray sensor>
FIG. 9 shows a schematic sectional view of a part of an X-ray sensor according to an embodiment of the present invention, and FIG. 10 shows a schematic configuration diagram of its electrical wiring.
 本実施形態のX線センサ300は基板12上に形成されたTFT10およびキャパシタ310と、キャパシタ310上に形成された電荷収集用電極302と、X線変換層304と、上部電極306とを備えて構成される。TFT10上にはパッシベーション膜308が設けられている。 The X-ray sensor 300 of this embodiment includes the TFT 10 and the capacitor 310 formed on the substrate 12, the charge collection electrode 302 formed on the capacitor 310, the X-ray conversion layer 304, and the upper electrode 306. Composed. A passivation film 308 is provided on the TFT 10.
 キャパシタ310は、キャパシタ用下部電極312とキャパシタ用上部電極314とで絶縁膜316を挟んだ構造となっている。キャパシタ用上部電極314は絶縁膜316に設けられたコンタクトホール318を介し、TFT10のソース電極16およびドレイン電極18のいずれか一方(図9においてはドレイン電極18)と接続されている。 The capacitor 310 has a structure in which an insulating film 316 is sandwiched between a capacitor lower electrode 312 and a capacitor upper electrode 314. The capacitor upper electrode 314 is connected to one of the source electrode 16 and the drain electrode 18 (the drain electrode 18 in FIG. 9) of the TFT 10 through a contact hole 318 provided in the insulating film 316.
 電荷収集用電極302は、キャパシタ310におけるキャパシタ用上部電極314上に設けられており、キャパシタ用上部電極314に接している。
 X線変換層304はアモルファスセレンからなる層であり、TFT10およびキャパシタ310を覆うように設けられている。
 上部電極306はX線変換層304上に設けられており、X線変換層304に接している。
The charge collection electrode 302 is provided on the capacitor upper electrode 314 in the capacitor 310 and is in contact with the capacitor upper electrode 314.
The X-ray conversion layer 304 is a layer made of amorphous selenium, and is provided so as to cover the TFT 10 and the capacitor 310.
The upper electrode 306 is provided on the X-ray conversion layer 304 and is in contact with the X-ray conversion layer 304.
 図10に示すように、本実施形態のX線センサ300は、互いに平行な複数のゲート配線320と、ゲート配線320と交差する、互いに平行な複数のデータ配線322とを備えている。ここでゲート配線320とデータ配線322は電気的に絶縁されている。ゲート配線320とデータ配線322との交差部付近に、TFT10が備えられている。 As shown in FIG. 10, the X-ray sensor 300 of this embodiment includes a plurality of gate wirings 320 that are parallel to each other and a plurality of data wirings 322 that intersect with the gate wirings 320 and are parallel to each other. Here, the gate wiring 320 and the data wiring 322 are electrically insulated. The TFT 10 is provided in the vicinity of the intersection between the gate wiring 320 and the data wiring 322.
 TFT10のゲート電極22は、ゲート配線320に接続されており、TFT10のソース電極16はデータ配線322に接続されている。また、TFT10のドレイン電極18は電荷収集用電極302に接続されており、さらに電荷収集用電極302は、キャパシタ310に接続されている。 The gate electrode 22 of the TFT 10 is connected to the gate wiring 320, and the source electrode 16 of the TFT 10 is connected to the data wiring 322. The drain electrode 18 of the TFT 10 is connected to the charge collecting electrode 302, and the charge collecting electrode 302 is connected to the capacitor 310.
 本実施形態のX線センサ300において、X線は図9中、上部電極306側から入射してX線変換層304で電子-正孔対を生成する。X線変換層304に上部電極306によって高電界を印加しておくことにより、生成した電荷はキャパシタ310に蓄積され、TFT10を順次走査することによって読み出される。 In the X-ray sensor 300 of this embodiment, X-rays enter from the upper electrode 306 side in FIG. 9 and generate electron-hole pairs in the X-ray conversion layer 304. By applying a high electric field to the X-ray conversion layer 304 by the upper electrode 306, the generated charge is accumulated in the capacitor 310 and read out by sequentially scanning the TFT 10.
 なお、上記実施形態の液晶表示装置100、有機EL表示装置200、及びX線センサ300においては、トップゲート構造のTFTを備えるものとしたが、TFTはこれに限定されず、図2~図4に示す構造のTFTであってもよい。 In the liquid crystal display device 100, the organic EL display device 200, and the X-ray sensor 300 of the above embodiment, a TFT having a top gate structure is provided. However, the TFT is not limited to this, and FIGS. A TFT having the structure shown in FIG.
 以下に実施例を説明するが、本発明はこれら実施例により何ら限定されるものではない。
<実施例1~4、比較例1>
 以下のような評価用デバイスを作製し、評価を行った。
 硝酸インジウム(In(NO・xHO、4N、高純度化学研究所社製)を2-メトキシエタノール(試薬特級、和光純薬工業社製)中に溶解させ、下記表1に示す硝酸インジウム濃度の異なる溶液を作製した。
Examples will be described below, but the present invention is not limited to these examples.
<Examples 1 to 4, Comparative Example 1>
The following evaluation devices were produced and evaluated.
Indium nitrate (In (NO 3 ) 3 × H 2 O, 4N, manufactured by High Purity Chemical Research Laboratories) was dissolved in 2-methoxyethanol (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) and shown in Table 1 below. Solutions with different indium nitrate concentrations were prepared.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 基板として熱酸化膜(膜厚100nm)付p型Si基板を用い、熱酸化膜をゲート絶縁膜として用いる簡易型のTFTを作製した。
 熱酸化膜付p型Si 1inch角の基板上に、作製した各溶液を1500rpmの回転速度で30秒スピンコートした後、60℃に加熱されたホットプレート上で1分間乾燥を行い、金属酸化物半導体前駆体膜を得た。
A simple TFT using a thermal oxide film as a gate insulating film was prepared using a p-type Si substrate with a thermal oxide film (film thickness 100 nm) as the substrate.
Each of the prepared solutions was spin-coated on a p-type Si 1 inch square substrate with a thermal oxide film at a rotational speed of 1500 rpm for 30 seconds, and then dried on a hot plate heated to 60 ° C. for 1 minute to obtain a metal oxide. A semiconductor precursor film was obtained.
 得られた金属酸化物半導体前駆体膜に対し、下記条件で紫外線照射による加熱処理を行うことで金属酸化物半導体膜への転化を行った。
 紫外線照射装置としては、低圧水銀ランプを用いたUVオゾンクリーナー(フィルジェン社製、UV253H)を用いた。試料を厚さ40mmのガラス板上にセットし、ランプ-試料間距離を5mmとした。試料位置での波長254nmの紫外照度は、紫外線光量計(オーク製作所社製、UV-M10、受光器UV-25)を用いて測定した。ランプ点灯から3分間で最大値に達し、15mW/cmであった。
 紫外線照射処理室内に窒素を6L/minで10分間フローさせた後、90分間、紫外線照射を行った。紫外線照射中は常に6L/minで窒素をフローさせた。紫外線照射処理時の基板温度をサーモラベルでモニターしたところ、160℃を示した。
The obtained metal oxide semiconductor precursor film was converted into a metal oxide semiconductor film by heat treatment by ultraviolet irradiation under the following conditions.
As an ultraviolet irradiation device, a UV ozone cleaner (manufactured by Filgen, UV253H) using a low-pressure mercury lamp was used. The sample was set on a glass plate having a thickness of 40 mm, and the distance between the lamp and the sample was 5 mm. The ultraviolet illuminance at the sample position at a wavelength of 254 nm was measured using an ultraviolet light meter (manufactured by Oak Manufacturing Co., Ltd., UV-M10, photoreceiver UV-25). The maximum value was reached in 3 minutes after the lamp was turned on, and was 15 mW / cm 2 .
After flowing nitrogen at 6 L / min for 10 minutes in the ultraviolet irradiation treatment chamber, ultraviolet irradiation was performed for 90 minutes. During UV irradiation, nitrogen was always flowed at 6 L / min. When the substrate temperature at the time of ultraviolet irradiation treatment was monitored with a thermolabel, it showed 160 ° C.
 溶液Aを用いたものは上記溶液の塗布・乾燥及び紫外線照射による金属酸化物半導体膜への転化を各1回行った(比較例1)。 In the case of using the solution A, the above solution was applied and dried and converted into a metal oxide semiconductor film by ultraviolet irradiation once (Comparative Example 1).
 上記溶液の塗布・乾燥及び紫外線照射による金属酸化物半導体膜への転化を、溶液Bを用いたものは交互に各2回(実施例1)、溶液Cを用いたものは交互に各4回(実施例2)、溶液Dを用いたものは交互に各7回(実施例3)、溶液Eを用いたものは交互に各12回(実施例4)それぞれ繰り返した。 Application and drying of the above solution and conversion to a metal oxide semiconductor film by ultraviolet irradiation are performed twice each for the solution B using the solution B (Example 1) and four times each for the solution C using the solution C. (Example 2), those using the solution D were alternately repeated 7 times each (Example 3), and those using the solution E were alternately repeated 12 times (Example 4).
 実施例1~4及び比較例1の金属酸化物半導体膜の膜厚を断面TEM観察によって確認したところ、全て10.5nm±1.0nmの範囲に収まっており、試料間で膜厚に大きな差がないことが確認された。また、全ての試料において、膜中に明瞭な界面層は確認されなかった。 When the film thicknesses of the metal oxide semiconductor films of Examples 1 to 4 and Comparative Example 1 were confirmed by cross-sectional TEM observation, they were all within the range of 10.5 nm ± 1.0 nm, and there was a large difference in film thickness between samples. It was confirmed that there was no. In all samples, no clear interface layer was observed in the film.
 上記得られた酸化物半導体膜上にソース・ドレイン電極を蒸着により成膜した。ソース・ドレイン電極はメタルマスクを用いたパターン成膜にて作製し、Tiを50nmの厚さに成膜した。ソース・ドレイン電極サイズは各々1mm角とし、電極間距離は0.2mmとした。 The source / drain electrodes were formed by vapor deposition on the obtained oxide semiconductor film. The source / drain electrodes were formed by pattern deposition using a metal mask, and Ti was deposited to a thickness of 50 nm. The source / drain electrode size was 1 mm square, and the distance between the electrodes was 0.2 mm.
 上記で得られた簡易型TFTについて、半導体パラメータ・アナライザー4156C(アジレントテクノロジー社製)を用い、トランジスタ特性(V-I特性)の測定を行った。 For simplified TFT obtained above, using a semiconductor parameter analyzer 4156C (manufactured by Agilent Technologies), it was measured transistor characteristics (V g -I d characteristics).
 V-I特性の測定は、ドレイン電圧(V)を+1Vに固定し、ゲート電圧(V)を-15V~+15Vの範囲内で変化させ、各ゲート電圧におけるドレイン電流(I)を測定することにより行った。 The measurement of the V g -I d characteristic is performed by fixing the drain voltage (V d ) to +1 V, changing the gate voltage (V g ) within a range of −15 V to +15 V, and drain current (I d ) at each gate voltage. It was performed by measuring.
 図11に実施例1~4及び比較例1のV-I特性を示す。また、実施例1~4及び比較例1のV-I特性から見積もった線形移動度(以下、「移動度」と記す場合がある。)を表2に示す。 Figure 11 shows a, V g -I d characteristics of the Examples 1 to 4 and Comparative Example 1. Also, the linear mobility was estimated from, V g -I d characteristics of the Examples 1 to 4 and Comparative Example 1 (hereinafter, sometimes referred to as "mobility".) Shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 金属硝酸塩を含む溶液の塗布・乾燥による金属酸化物半導体前駆体膜形成工程と、金属酸化物半導体前駆体膜を金属酸化物半導体膜に転化する工程を交互に複数回行うことで、低温で、高いトランジスタ動作が確認された。
 図12に繰り返し回数と移動度の関係のプロットを示す。繰り返し回数が2回以上で特性向上効果が得られ、特に4回以上の実施例2~4では1回の比較例1と比較して5倍以上の特性が得られる。
By performing a metal oxide semiconductor precursor film forming step by applying and drying a solution containing a metal nitrate and a step of converting the metal oxide semiconductor precursor film into a metal oxide semiconductor film alternately several times, at a low temperature, High transistor operation was confirmed.
FIG. 12 shows a plot of the relationship between the number of repetitions and mobility. The effect of improving the characteristics can be obtained when the number of repetitions is 2 times or more. Particularly, in Examples 2 to 4 in which the number of repetitions is 4 times or more, the characteristics of 5 times or more are obtained as compared with Comparative Example 1 of 1 time.
<実施例5:溶液Aを用いてスピンコート回転数を上げて繰り返し2回>
 溶液Aを用い、基板として熱酸化膜(膜厚100nm)付p型Si基板を用い、熱酸化膜をゲート絶縁膜として用いる簡易型のTFTを作製した。
 この熱酸化膜付p型Si 1inch角の基板上に、溶液Aを5000rpmの回転速度で30秒スピンコートした後、60℃に加熱されたホットプレート上で1分間乾燥を行い、金属酸化物半導体前駆体膜を得た。
<Example 5: Using the solution A, the spin coat rotation speed is increased and repeated twice>
A simple TFT using a solution A, a p-type Si substrate with a thermal oxide film (film thickness 100 nm) as a substrate, and using the thermal oxide film as a gate insulating film was fabricated.
A solution A is spin-coated at a rotational speed of 5000 rpm for 30 seconds on a p-type Si 1 inch square substrate with a thermal oxide film, and then dried for 1 minute on a hot plate heated to 60 ° C. A precursor film was obtained.
 得られた金属酸化物半導体前駆体膜に対し、下記条件で紫外線照射処理を行うことで金属酸化物半導体膜への転化を行った。
 紫外線照射装置としては、低圧水銀ランプを用いたUVオゾンクリーナー(フィルジェン社製、UV253H)を用いた。試料を厚さ40mmのガラス板上にセットし、ランプ-試料間距離を5mmとした。試料位置での波長254nmの紫外照度は、紫外線光量計(オーク製作所製、UV-M10、受光器UV-25)を用いて測定した。ランプ点灯から3分間で最大値に達し、15mW/cmであった。
 紫外線照射処理室内に窒素を6L/minで10分間フローさせた後、90分間、紫外線照射を行った。紫外線照射中は常に6L/minで窒素をフローさせた。紫外線照射処理時の基板温度をサーモラベルでモニターしたところ、160℃を示した。
The obtained metal oxide semiconductor precursor film was converted into a metal oxide semiconductor film by performing an ultraviolet irradiation treatment under the following conditions.
As an ultraviolet irradiation device, a UV ozone cleaner (manufactured by Filgen, UV253H) using a low-pressure mercury lamp was used. The sample was set on a glass plate having a thickness of 40 mm, and the distance between the lamp and the sample was 5 mm. The ultraviolet illuminance at the sample position at a wavelength of 254 nm was measured using an ultraviolet light meter (manufactured by Oak Manufacturing Co., Ltd., UV-M10, photoreceiver UV-25). The maximum value was reached in 3 minutes after the lamp was turned on, and was 15 mW / cm 2 .
After flowing nitrogen at 6 L / min for 10 minutes in the ultraviolet irradiation treatment chamber, ultraviolet irradiation was performed for 90 minutes. During UV irradiation, nitrogen was always flowed at 6 L / min. When the substrate temperature at the time of ultraviolet irradiation treatment was monitored with a thermolabel, it showed 160 ° C.
 上記溶液Aの塗布・乾燥及び紫外線照射による金属酸化物半導体膜への転化を交互に2回繰り返した。実施例5の金属酸化物半導体膜の膜厚を断面TEM観察によって確認したところ、10.7nmであり、前述した実施例1~4及び比較例1に対して膜厚に大きな差がないことが確認された。また、膜中に明瞭な界面層は確認されなかった。
 上記得られた酸化物半導体膜上にソース・ドレイン電極を蒸着により成膜した。ソース・ドレイン電極はメタルマスクを用いたパターン成膜にて作製し、Tiを50nmの厚さに成膜した。ソース・ドレイン電極サイズは各々1mm角とし、電極間距離は0.2mmとした。
Application / drying of the solution A and conversion to a metal oxide semiconductor film by ultraviolet irradiation were alternately repeated twice. When the film thickness of the metal oxide semiconductor film of Example 5 was confirmed by cross-sectional TEM observation, it was 10.7 nm, and there was no significant difference in film thickness with respect to Examples 1 to 4 and Comparative Example 1 described above. confirmed. Further, a clear interface layer was not confirmed in the film.
A source / drain electrode was formed on the obtained oxide semiconductor film by vapor deposition. The source / drain electrodes were formed by pattern deposition using a metal mask, and Ti was deposited to a thickness of 50 nm. The source / drain electrode size was 1 mm square, and the distance between the electrodes was 0.2 mm.
 上記で得られた簡易型TFTについて、半導体パラメータ・アナライザー4156C(アジレントテクノロジー社製)を用い、トランジスタ特性(V-I特性)の測定を行った。
 V-I特性の測定は、ドレイン電圧(V)を+1Vに固定し、ゲート電圧(V)を-15V~+15Vの範囲内で変化させ、各ゲート電圧におけるドレイン電流(I)を測定することにより行った。
For simplified TFT obtained above, using a semiconductor parameter analyzer 4156C (manufactured by Agilent Technologies), it was measured transistor characteristics (V g -I d characteristics).
The measurement of the V g -I d characteristic is performed by fixing the drain voltage (V d ) to +1 V, changing the gate voltage (V g ) within a range of −15 V to +15 V, and drain current (I d ) at each gate voltage. It was performed by measuring.
 実施例5の移動度は1.9cm/Vsであり、比較例1と同じ溶液Aを用いた場合であっても、金属硝酸塩を含む溶液の塗布・乾燥による金属酸化物半導体前駆体膜形成工程と、金属酸化物半導体前駆体膜を金属酸化物半導体膜に転化する工程を複数回行うことで、トランジスタ特性向上効果が確認された。 The mobility of Example 5 is 1.9 cm 2 / Vs, and even when the same solution A as in Comparative Example 1 is used, formation of a metal oxide semiconductor precursor film by coating and drying of a solution containing metal nitrate The transistor characteristic improvement effect was confirmed by performing the process and the process of converting the metal oxide semiconductor precursor film into the metal oxide semiconductor film a plurality of times.
<比較例2:溶液Aを用いて塗布・乾燥を1回、紫外線照射処理を2回>
 溶液Aを用い、基板として熱酸化膜(膜厚100nm)付p型Si基板を用い、熱酸化膜をゲート絶縁膜として用いる簡易型のTFTを作製した。
 この熱酸化膜付p型Si 1inch角の基板上に、溶液Aを1500rpmの回転速度で30秒スピンコートした後、60℃に加熱されたホットプレート上で1分間乾燥を行い、金属酸化物半導体前駆体膜を得た。
<Comparative Example 2: Application / drying once using solution A, and UV irradiation treatment twice>
A simple TFT using a solution A, a p-type Si substrate with a thermal oxide film (film thickness 100 nm) as a substrate, and using the thermal oxide film as a gate insulating film was fabricated.
A solution A is spin-coated for 30 seconds at a rotational speed of 1500 rpm on this p-type Si 1 inch square substrate with a thermal oxide film, and then dried for 1 minute on a hot plate heated to 60 ° C. A precursor film was obtained.
 得られた金属酸化物半導体前駆体膜に対し、下記条件で紫外線照射処理を行うことで金属酸化物半導体膜への転化を行った。
 紫外線照射装置としては、低圧水銀ランプを用いたUVオゾンクリーナー(フィルジェン社製、UV253H)を用いた。試料を厚さ40mmのガラス板上にセットし、ランプ-試料間距離を5mmとした。試料位置での波長254nmの紫外照度は、紫外線光量計(オーク製作所製、UV-M10、受光器UV-25)を用いて測定した。ランプ点灯から3分間で最大値に達し、15mW/cmであった。
 紫外線照射処理室内に窒素を6L/minで10分間フローさせた後、90分間、紫外線照射を行った。紫外線照射中は常に6L/minで窒素をフローさせた。紫外線照射処理時の基板温度をサーモラベルでモニターしたところ、160℃を示した。
The obtained metal oxide semiconductor precursor film was converted into a metal oxide semiconductor film by performing an ultraviolet irradiation treatment under the following conditions.
As an ultraviolet irradiation device, a UV ozone cleaner (manufactured by Filgen, UV253H) using a low-pressure mercury lamp was used. The sample was set on a glass plate having a thickness of 40 mm, and the distance between the lamp and the sample was 5 mm. The ultraviolet illuminance at the sample position at a wavelength of 254 nm was measured using an ultraviolet light meter (manufactured by Oak Manufacturing Co., Ltd., UV-M10, photoreceiver UV-25). The maximum value was reached in 3 minutes after the lamp was turned on, and was 15 mW / cm 2 .
After flowing nitrogen at 6 L / min for 10 minutes in the ultraviolet irradiation treatment chamber, ultraviolet irradiation was performed for 90 minutes. During UV irradiation, nitrogen was always flowed at 6 L / min. When the substrate temperature at the time of ultraviolet irradiation treatment was monitored with a thermolabel, it showed 160 ° C.
 紫外線照射処理後、再び同一条件で紫外線照射処理を実施した。比較例2の金属酸化物半導体膜の膜厚を断面TEM観察によって確認したところ、10.2nmであり、前述した実施例及び比較例に対して膜厚に大きな差がないことが確認された。
 上記得られた酸化物半導体膜上にソース・ドレイン電極を蒸着により成膜した。ソース・ドレイン電極はメタルマスクを用いたパターン成膜にて作製し、Tiを50nmの厚さに成膜した。ソース・ドレイン電極サイズは各々1mm角とし、電極間距離は0.2mmとした。
After the ultraviolet irradiation treatment, the ultraviolet irradiation treatment was again performed under the same conditions. When the film thickness of the metal oxide semiconductor film of the comparative example 2 was confirmed by cross-sectional TEM observation, it was 10.2 nm, and it was confirmed that there was no big difference in film thickness with respect to the Example and the comparative example mentioned above.
A source / drain electrode was formed on the obtained oxide semiconductor film by vapor deposition. The source / drain electrodes were formed by pattern deposition using a metal mask, and Ti was deposited to a thickness of 50 nm. The source / drain electrode size was 1 mm square, and the distance between the electrodes was 0.2 mm.
 上記で得られた簡易型TFTについて、半導体パラメータ・アナライザー4156C(アジレントテクノロジー社製)を用い、トランジスタ特性(V-I特性)の測定を行った。
 V-I特性の測定は、ドレイン電圧(V)を+1Vに固定し、ゲート電圧(V)を-15V~+15Vの範囲内で変化させ、各ゲート電圧におけるドレイン電流(I)を測定することにより行った。
 比較例2の移動度は0.5cm/Vsが得られ、塗布・乾燥を1回、紫外線照射処理を複数回行っても特性向上効果が得られないことが確認された。
For simplified TFT obtained above, using a semiconductor parameter analyzer 4156C (manufactured by Agilent Technologies), it was measured transistor characteristics (V g -I d characteristics).
The measurement of the V g -I d characteristic is performed by fixing the drain voltage (V d ) to +1 V, changing the gate voltage (V g ) within a range of −15 V to +15 V, and drain current (I d ) at each gate voltage. It was performed by measuring.
The mobility of Comparative Example 2 was 0.5 cm 2 / Vs, and it was confirmed that the effect of improving the characteristics could not be obtained even if the coating / drying was performed once and the ultraviolet irradiation treatment was performed several times.
<比較例3:溶液Bを用いて塗布・乾燥を1回、紫外線照射処理を1回>
 溶液Bを用い、基板として熱酸化膜(膜厚100nm)付p型Si基板を用い、熱酸化膜をゲート絶縁膜として用いる簡易型のTFTを作製した。
 この熱酸化膜付p型Si 1inch角の基板上に、溶液Bを1500rpmの回転速度で30秒スピンコートした後、60℃に加熱されたホットプレート上で1分間乾燥を行い、金属酸化物半導体前駆体膜を得た。
<Comparative Example 3: Application / drying once using solution B, and UV irradiation treatment once>
A simple TFT using a solution B, a p-type Si substrate with a thermal oxide film (film thickness 100 nm) as a substrate, and using the thermal oxide film as a gate insulating film was fabricated.
A solution B is spin-coated at a rotational speed of 1500 rpm for 30 seconds on the p-type Si 1 inch square substrate with the thermal oxide film, and then dried on a hot plate heated to 60 ° C. for 1 minute, thereby obtaining a metal oxide semiconductor. A precursor film was obtained.
 得られた金属酸化物半導体前駆体膜に対し、下記条件で紫外線照射処理を行うことで金属酸化物半導体膜への転化を行った。
 紫外線照射装置としては、低圧水銀ランプを用いたUVオゾンクリーナー(フィルジェン社製、UV253H)を用いた。試料を厚さ40mmのガラス板上にセットし、ランプ-試料間距離を5mmとした。試料位置での波長254nmの紫外照度は、紫外線光量計(オーク製作所製、UV-M10、受光器UV-25)を用いて測定した。ランプ点灯から3分間で最大値に達し、15mW/cmであった。
 紫外線照射処理室内に窒素を6L/minで10分間フローさせた後、90分間、紫外線照射を行った。紫外線照射中は常に6L/minで窒素をフローさせた。紫外線照射処理時の基板温度をサーモラベルでモニターしたところ、160℃を示した。
 比較例3の金属酸化物半導体膜の膜厚を断面TEM観察によって確認したところ、5.2nmであった。
The obtained metal oxide semiconductor precursor film was converted into a metal oxide semiconductor film by performing an ultraviolet irradiation treatment under the following conditions.
As an ultraviolet irradiation device, a UV ozone cleaner (manufactured by Filgen, UV253H) using a low-pressure mercury lamp was used. The sample was set on a glass plate having a thickness of 40 mm, and the distance between the lamp and the sample was 5 mm. The ultraviolet illuminance at the sample position at a wavelength of 254 nm was measured using an ultraviolet light meter (manufactured by Oak Manufacturing Co., Ltd., UV-M10, photoreceiver UV-25). The maximum value was reached in 3 minutes after the lamp was turned on, and was 15 mW / cm 2 .
After flowing nitrogen at 6 L / min for 10 minutes in the ultraviolet irradiation treatment chamber, ultraviolet irradiation was performed for 90 minutes. During UV irradiation, nitrogen was always flowed at 6 L / min. When the substrate temperature at the time of ultraviolet irradiation treatment was monitored with a thermolabel, it showed 160 ° C.
When the film thickness of the metal oxide semiconductor film of the comparative example 3 was confirmed by cross-sectional TEM observation, it was 5.2 nm.
 上記得られた酸化物半導体膜上にソース・ドレイン電極を蒸着により成膜した。ソース・ドレイン電極はメタルマスクを用いたパターン成膜にて作製し、Tiを50nmの厚さに成膜した。ソース・ドレイン電極サイズは各々1mm角とし、電極間距離は0.2mmとした。 The source / drain electrodes were formed by vapor deposition on the obtained oxide semiconductor film. The source / drain electrodes were formed by pattern deposition using a metal mask, and Ti was deposited to a thickness of 50 nm. The source / drain electrode size was 1 mm square, and the distance between the electrodes was 0.2 mm.
 上記で得られた簡易型TFTについて、半導体パラメータ・アナライザー4156C(アジレントテクノロジー社製)を用い、トランジスタ特性(V-I特性)の測定を行った。
 V-I特性の測定は、ドレイン電圧(V)を+1Vに固定し、ゲート電圧(V)を-15V~+15Vの範囲内で変化させ、各ゲート電圧におけるドレイン電流(I)を測定することにより行った。
 比較例3の移動度は0.2cm/Vsが得られ、低濃度の溶液を用いても塗布・乾燥及び紫外線照射処理を交互に複数回行わなければ特性向上効果が得られないことが確認された。
For simplified TFT obtained above, using a semiconductor parameter analyzer 4156C (manufactured by Agilent Technologies), it was measured transistor characteristics (V g -I d characteristics).
The measurement of the V g -I d characteristic is performed by fixing the drain voltage (V d ) to +1 V, changing the gate voltage (V g ) within a range of −15 V to +15 V, and drain current (I d ) at each gate voltage. It was performed by measuring.
The mobility of Comparative Example 3 was 0.2 cm 2 / Vs, and it was confirmed that even if a low-concentration solution was used, the effect of improving the characteristics could not be obtained unless coating / drying and ultraviolet irradiation treatment were performed alternately several times. It was done.
 次に実施例1-5及び比較例1-3の金属酸化物半導体膜についてXRR分析を行った。測定装置はリガク社製ATX-G、走査速度0.2°/min、ステップ幅0.001°で測定を行った。得られたXRRスペクトルの0.3~4.0°の範囲を解析範囲とした。 Next, XRR analysis was performed on the metal oxide semiconductor films of Example 1-5 and Comparative Example 1-3. The measurement was carried out with ATX-G manufactured by Rigaku Corporation, a scanning speed of 0.2 ° / min and a step width of 0.001 °. The range of 0.3 to 4.0 ° of the obtained XRR spectrum was set as the analysis range.
 実施例1-5及び比較例1-3の金属酸化物半導体膜は、酸化インジウム層を3~5層としたモデルのシミュレーション結果でフィッティングを行うことで、R値が全て0.01以下の良い一致を示した。下記表3に実施例1-5及び比較例1-3の平均膜密度を示す。 The metal oxide semiconductor films of Example 1-5 and Comparative Example 1-3 have good R values of 0.01 or less by fitting using model simulation results in which the indium oxide layer has 3 to 5 layers. Showed a match. Table 3 below shows the average film density of Example 1-5 and Comparative Example 1-3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 繰り返し回数が増えるほど、平均膜密度が高くなることが確認された。 It was confirmed that the average film density increased as the number of repetitions increased.
<実施例6>
 溶液F(硝酸インジウム濃度:0.035mol/L)を用い、基板として熱酸化膜(膜厚100nm)付p型Si基板を用い、熱酸化膜をゲート絶縁膜として用いる簡易型のTFTを作製した。
 この熱酸化膜付p型Si 1inch角の基板上に、溶液Fを1500rpmの回転速度で30秒スピンコートした後、60℃に加熱されたホットプレート上で1分間乾燥を行い、金属酸化物半導体前駆体膜を得た。
 得られた金属酸化物半導体前駆体膜に対し、下記条件で紫外線照射処理を行うことで金属酸化物半導体膜への転化を行った。
 紫外線照射装置としては、低圧水銀ランプを用いたUVオゾンクリーナー(フィルジェン社製、UV253H)を用いた。試料を厚さ40mmのガラス板上にセットし、ランプ-試料間距離を5mmとした。試料位置での波長254nmの紫外照度は、紫外線光量計(オーク製作所製、UV-M10、受光器UV-25)を用いて測定した。ランプ点灯から3分間で最大値に達し、15mW/cmであった。
 紫外線照射処理室内に窒素を6L/minで10分間フローさせた後、90分間、紫外線照射を行った。紫外線照射中は常に6L/minで窒素をフローさせた。紫外線照射処理時の基板温度をサーモラベルでモニターしたところ、160℃を示した。
 上記溶液Fの塗布・乾燥及び紫外線照射による金属酸化物半導体膜への転化を交互に2回繰り返した後、更に溶液Fの塗布・乾燥を実施し、基板最高到達温度が100℃となる条件で紫外線照射による金属酸化物半導体膜への転化を行った。
 上記得られた酸化物半導体膜上にソース・ドレイン電極を蒸着により成膜した。ソース・ドレイン電極はメタルマスクを用いたパターン成膜にて作製し、Tiを50nmの厚さに成膜した。ソース・ドレイン電極サイズは各々1mm角とし、電極間距離は0.2mmとした。
 実施例6の移動度は2.5cm/Vsであった。
<Example 6>
Using the solution F (indium nitrate concentration: 0.035 mol / L), a p-type Si substrate with a thermal oxide film (film thickness 100 nm) was used as a substrate, and a simple TFT using a thermal oxide film as a gate insulating film was produced. .
A solution F is spin-coated for 30 seconds at a rotation speed of 1500 rpm on this p-type Si 1 inch square substrate with a thermal oxide film, and then dried for 1 minute on a hot plate heated to 60 ° C. A precursor film was obtained.
The obtained metal oxide semiconductor precursor film was converted into a metal oxide semiconductor film by performing an ultraviolet irradiation treatment under the following conditions.
As an ultraviolet irradiation device, a UV ozone cleaner (manufactured by Filgen, UV253H) using a low-pressure mercury lamp was used. The sample was set on a glass plate having a thickness of 40 mm, and the distance between the lamp and the sample was 5 mm. The ultraviolet illuminance at the sample position at a wavelength of 254 nm was measured using an ultraviolet light meter (manufactured by Oak Manufacturing Co., Ltd., UV-M10, photoreceiver UV-25). The maximum value was reached in 3 minutes after the lamp was turned on, and was 15 mW / cm 2 .
After flowing nitrogen at 6 L / min for 10 minutes in the ultraviolet irradiation treatment chamber, ultraviolet irradiation was performed for 90 minutes. During UV irradiation, nitrogen was always flowed at 6 L / min. When the substrate temperature at the time of ultraviolet irradiation treatment was monitored with a thermolabel, it showed 160 ° C.
After the application and drying of the solution F and the conversion to the metal oxide semiconductor film by UV irradiation are repeated twice, the solution F is further applied and dried under the condition that the maximum substrate temperature is 100 ° C. Conversion to a metal oxide semiconductor film by ultraviolet irradiation was performed.
A source / drain electrode was formed on the obtained oxide semiconductor film by vapor deposition. The source / drain electrodes were formed by pattern deposition using a metal mask, and Ti was deposited to a thickness of 50 nm. The source / drain electrode size was 1 mm square, and the distance between the electrodes was 0.2 mm.
The mobility of Example 6 was 2.5 cm 2 / Vs.
<実施例7>
 溶液F(硝酸インジウム濃度:0.035mol/L)を用い、基板として熱酸化膜(膜厚100nm)付p型Si基板を用い、熱酸化膜をゲート絶縁膜として用いる簡易型のTFTを作製した。
 この熱酸化膜付p型Si 1inch角の基板上に、溶液Fを1500rpmの回転速度で30秒スピンコートした後、60℃に加熱されたホットプレート上で1分間乾燥を行い、金属酸化物半導体前駆体膜を得た。
 得られた金属酸化物半導体前駆体膜に対し、下記条件で紫外線照射処理を行うことで金属酸化物半導体膜への転化を行った。
 紫外線照射装置としては、低圧水銀ランプを用いたUVオゾンクリーナー(フィルジェン社製、UV253H)を用いた。試料を厚さ40mmのガラス板上にセットし、ランプ-試料間距離を5mmとした。試料位置での波長254nmの紫外照度は、紫外線光量計(オーク製作所製、UV-M10、受光器UV-25)を用いて測定した。ランプ点灯から3分間で最大値に達し、15mW/cmであった。
 紫外線照射処理室内に窒素を6L/minで10分間フローさせた後、90分間、紫外線照射を行った。紫外線照射中は常に6L/minで窒素をフローさせた。紫外線照射処理時の基板温度をサーモラベルでモニターしたところ、160℃を示した。
 上記溶液Fの塗布・乾燥及び紫外線照射による金属酸化物半導体膜への転化を交互に3回繰り返した。
 上記得られた酸化物半導体膜上にソース・ドレイン電極を蒸着により成膜した。ソース・ドレイン電極はメタルマスクを用いたパターン成膜にて作製し、Tiを50nmの厚さに成膜した。ソース・ドレイン電極サイズは各々1mm角とし、電極間距離は0.2mmとした。
 実施例7の移動度は3.0cm/Vsであった。
<Example 7>
Using the solution F (indium nitrate concentration: 0.035 mol / L), a p-type Si substrate with a thermal oxide film (film thickness 100 nm) was used as a substrate, and a simple TFT using a thermal oxide film as a gate insulating film was produced. .
A solution F is spin-coated for 30 seconds at a rotation speed of 1500 rpm on this p-type Si 1 inch square substrate with a thermal oxide film, and then dried for 1 minute on a hot plate heated to 60 ° C. A precursor film was obtained.
The obtained metal oxide semiconductor precursor film was converted into a metal oxide semiconductor film by performing an ultraviolet irradiation treatment under the following conditions.
As an ultraviolet irradiation device, a UV ozone cleaner (manufactured by Filgen, UV253H) using a low-pressure mercury lamp was used. The sample was set on a glass plate having a thickness of 40 mm, and the distance between the lamp and the sample was 5 mm. The ultraviolet illuminance at the sample position at a wavelength of 254 nm was measured using an ultraviolet light meter (manufactured by Oak Manufacturing Co., Ltd., UV-M10, photoreceiver UV-25). The maximum value was reached in 3 minutes after the lamp was turned on, and was 15 mW / cm 2 .
After flowing nitrogen at 6 L / min for 10 minutes in the ultraviolet irradiation treatment chamber, ultraviolet irradiation was performed for 90 minutes. During UV irradiation, nitrogen was always flowed at 6 L / min. When the substrate temperature at the time of ultraviolet irradiation treatment was monitored with a thermolabel, it showed 160 ° C.
Application / drying of the solution F and conversion to a metal oxide semiconductor film by ultraviolet irradiation were repeated three times alternately.
A source / drain electrode was formed on the obtained oxide semiconductor film by vapor deposition. The source / drain electrodes were formed by pattern deposition using a metal mask, and Ti was deposited to a thickness of 50 nm. The source / drain electrode size was 1 mm square, and the distance between the electrodes was 0.2 mm.
The mobility of Example 7 was 3.0 cm 2 / Vs.
<比較例4>
 溶液F(硝酸インジウム濃度:0.035mol/L)を用い、基板として熱酸化膜(膜厚100nm)付p型Si基板を用い、熱酸化膜をゲート絶縁膜として用いる簡易型のTFTを作製した。
 この熱酸化膜付p型Si 1inch角の基板上に、溶液Fを1500rpmの回転速度で30秒スピンコートした後、60℃に加熱されたホットプレート上で1分間乾燥を行い、金属酸化物半導体前駆体膜を得た。
 得られた金属酸化物半導体前駆体膜に対し、下記条件で紫外線照射処理を行うことで金属酸化物半導体膜への転化を行った。
 紫外線照射装置としては、低圧水銀ランプを用いたUVオゾンクリーナー(フィルジェン社製、UV253H)を用いた。試料を厚さ40mmのガラス板上にセットし、ランプ-試料間距離を5mmとした。試料位置での波長254nmの紫外照度は、紫外線光量計(オーク製作所製、UV-M10、受光器UV-25)を用いて測定した。ランプ点灯から3分間で最大値に達し、15mW/cmであった。
 紫外線照射処理室内に窒素を6L/minで10分間フローさせた後、30分間、紫外線照射を行った。紫外線照射中は常に6L/minで窒素をフローさせた。紫外線照射処理時の基板温度をサーモラベルでモニターしたところ、100℃を示した。
 上記溶液Fの塗布・乾燥及び紫外線照射による金属酸化物半導体膜への転化を交互に2回繰り返した後、更に溶液Fの塗布・乾燥を実施し、基板最高到達温度が160℃となる条件で紫外線照射による金属酸化物半導体膜への転化を行った。
 上記得られた酸化物半導体膜上にソース・ドレイン電極を蒸着により成膜した。ソース・ドレイン電極はメタルマスクを用いたパターン成膜にて作製し、Tiを50nmの厚さに成膜した。ソース・ドレイン電極サイズは各々1mm角とし、電極間距離は0.2mmとした。
 比較例4の移動度は0.5cm/Vsであった。
<Comparative example 4>
Using the solution F (indium nitrate concentration: 0.035 mol / L), a p-type Si substrate with a thermal oxide film (film thickness 100 nm) was used as a substrate, and a simple TFT using a thermal oxide film as a gate insulating film was produced. .
A solution F is spin-coated for 30 seconds at a rotation speed of 1500 rpm on this p-type Si 1 inch square substrate with a thermal oxide film, and then dried for 1 minute on a hot plate heated to 60 ° C. A precursor film was obtained.
The obtained metal oxide semiconductor precursor film was converted into a metal oxide semiconductor film by performing an ultraviolet irradiation treatment under the following conditions.
As an ultraviolet irradiation device, a UV ozone cleaner (manufactured by Filgen, UV253H) using a low-pressure mercury lamp was used. The sample was set on a glass plate having a thickness of 40 mm, and the distance between the lamp and the sample was 5 mm. The ultraviolet illuminance at the sample position at a wavelength of 254 nm was measured using an ultraviolet light meter (manufactured by Oak Manufacturing Co., Ltd., UV-M10, photoreceiver UV-25). The maximum value was reached in 3 minutes after the lamp was turned on, and was 15 mW / cm 2 .
After flowing nitrogen at 6 L / min for 10 minutes in the ultraviolet irradiation treatment chamber, ultraviolet irradiation was performed for 30 minutes. During UV irradiation, nitrogen was always flowed at 6 L / min. When the substrate temperature at the time of ultraviolet irradiation treatment was monitored with a thermolabel, it showed 100 ° C.
After the application and drying of the solution F and the conversion to the metal oxide semiconductor film by ultraviolet irradiation were repeated twice, the solution F was further applied and dried, under the condition that the maximum substrate temperature reached 160 ° C. Conversion to a metal oxide semiconductor film by ultraviolet irradiation was performed.
A source / drain electrode was formed on the obtained oxide semiconductor film by vapor deposition. The source / drain electrodes were formed by pattern deposition using a metal mask, and Ti was deposited to a thickness of 50 nm. The source / drain electrode size was 1 mm square, and the distance between the electrodes was 0.2 mm.
The mobility of Comparative Example 4 was 0.5 cm 2 / Vs.
 実施例6、7及び比較例4の平均膜密度を下記表4に示す。 Table 4 below shows the average film densities of Examples 6 and 7 and Comparative Example 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<比較例5>
 基板として熱酸化膜(膜厚100nm)付p型Si基板を用い、熱酸化膜をゲート絶縁膜として用いる簡易型のTFTを作製した。
 熱酸化膜付p型Si 1inch角の基板上に、作製した溶液Aを1500rpmの回転速度で30秒スピンコートした後、60℃に加熱されたホットプレート上で1分間乾燥を行い、金属酸化物半導体前駆体膜を得た。
 得られた金属酸化物半導体前駆体膜を、大気中、250℃で90分間、ホットプレートによる加熱処理を行うことで金属酸化物半導体膜への転化を行った。
 比較例5の金属酸化物半導体膜の膜厚を断面TEM観察によって確認したところ、11.4nmであった。
 上記得られた酸化物半導体膜上にソース・ドレイン電極を蒸着により成膜した。ソース・ドレイン電極はメタルマスクを用いたパターン成膜にて作製し、Tiを50nmの厚さに成膜した。ソース・ドレイン電極サイズは各々1mm角とし、電極間距離は0.2mmとした。
<Comparative Example 5>
A simple TFT using a thermal oxide film as a gate insulating film was prepared using a p-type Si substrate with a thermal oxide film (film thickness 100 nm) as the substrate.
The prepared solution A was spin-coated on a p-type Si 1 inch square substrate with a thermal oxide film at a rotational speed of 1500 rpm for 30 seconds, and then dried for 1 minute on a hot plate heated to 60 ° C. A semiconductor precursor film was obtained.
The obtained metal oxide semiconductor precursor film was converted into a metal oxide semiconductor film by performing a heat treatment with a hot plate at 250 ° C. for 90 minutes in the air.
When the film thickness of the metal oxide semiconductor film of the comparative example 5 was confirmed by cross-sectional TEM observation, it was 11.4 nm.
A source / drain electrode was formed on the obtained oxide semiconductor film by vapor deposition. The source / drain electrodes were formed by pattern deposition using a metal mask, and Ti was deposited to a thickness of 50 nm. The source / drain electrode size was 1 mm square, and the distance between the electrodes was 0.2 mm.
 上記で得られた簡易型TFTについて、半導体パラメータ・アナライザー4156C(アジレントテクノロジー社製)を用い、トランジスタ特性(V-I特性)の測定を行った。
 V-I特性の測定は、ドレイン電圧(V)を+1Vに固定し、ゲート電圧(V)を-15V~+15Vの範囲内で変化させ、各ゲート電圧におけるドレイン電流(I)を測定することにより行った。
 比較例5の移動度は0.5cm/Vsであった。
For simplified TFT obtained above, using a semiconductor parameter analyzer 4156C (manufactured by Agilent Technologies), it was measured transistor characteristics (V g -I d characteristics).
The measurement of the V g -I d characteristic is performed by fixing the drain voltage (V d ) to +1 V, changing the gate voltage (V g ) within a range of −15 V to +15 V, and drain current (I d ) at each gate voltage. It was performed by measuring.
The mobility of Comparative Example 5 was 0.5 cm 2 / Vs.
<実施例8>
 基板として熱酸化膜(膜厚100nm)付p型Si基板を用い、熱酸化膜をゲート絶縁膜として用いる簡易型のTFTを作製した。
 熱酸化膜付p型Si 1inch角の基板上に、作製した溶液Eを1500rpmの回転速度で30秒スピンコートした後、60℃に加熱されたホットプレート上で1分間乾燥を行い、金属酸化物半導体前駆体膜を得た。
 得られた金属酸化物半導体前駆体膜を、大気中、250℃で90分間、ホットプレートによる加熱処理を行うことで金属酸化物半導体膜への転化を行った。
 上記溶液の塗布・乾燥及び金属酸化物半導体膜への転化を、交互に各12回繰り返した。
 実施例8の金属酸化物半導体膜の膜厚を断面TEM観察によって確認したところ、10.3nmであった。
 上記得られた酸化物半導体膜上にソース・ドレイン電極を蒸着により成膜した。ソース・ドレイン電極はメタルマスクを用いたパターン成膜にて作製し、Tiを50nmの厚さに成膜した。ソース・ドレイン電極サイズは各々1mm角とし、電極間距離は0.2mmとした。
<Example 8>
A simple TFT using a thermal oxide film as a gate insulating film was prepared using a p-type Si substrate with a thermal oxide film (film thickness 100 nm) as the substrate.
The prepared solution E was spin-coated at a rotational speed of 1500 rpm for 30 seconds on a p-type Si 1 inch square substrate with a thermal oxide film, and then dried for 1 minute on a hot plate heated to 60 ° C. A semiconductor precursor film was obtained.
The obtained metal oxide semiconductor precursor film was converted into a metal oxide semiconductor film by performing a heat treatment with a hot plate at 250 ° C. for 90 minutes in the air.
The application / drying of the solution and the conversion to the metal oxide semiconductor film were alternately repeated 12 times.
It was 10.3 nm when the film thickness of the metal oxide semiconductor film of Example 8 was confirmed by cross-sectional TEM observation.
A source / drain electrode was formed on the obtained oxide semiconductor film by vapor deposition. The source / drain electrodes were formed by pattern deposition using a metal mask, and Ti was deposited to a thickness of 50 nm. The source / drain electrode size was 1 mm square, and the distance between the electrodes was 0.2 mm.
 上記で得られた簡易型TFTについて、半導体パラメータ・アナライザー4156C(アジレントテクノロジー社製)を用い、トランジスタ特性(V-I特性)の測定を行った。
 V-I特性の測定は、ドレイン電圧(V)を+1Vに固定し、ゲート電圧(V)を-15V~+15Vの範囲内で変化させ、各ゲート電圧におけるドレイン電流(I)を測定することにより行った。
 実施例8の移動度は8.3cm/Vsであった。
For simplified TFT obtained above, using a semiconductor parameter analyzer 4156C (manufactured by Agilent Technologies), it was measured transistor characteristics (V g -I d characteristics).
The measurement of the V g -I d characteristic is performed by fixing the drain voltage (V d ) to +1 V, changing the gate voltage (V g ) within a range of −15 V to +15 V, and drain current (I d ) at each gate voltage. It was performed by measuring.
The mobility of Example 8 was 8.3 cm 2 / Vs.
 実施例8及び比較例5の平均膜密度を下記表5に示す。 Table 5 shows the average film density of Example 8 and Comparative Example 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 日本特許出願2013-253190の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許、特許出願、および技術規格は、個々の文献、特許、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The entire disclosure of Japanese Patent Application 2013-253190 is incorporated herein by reference.
All documents, patents, patent applications, and technical standards mentioned in this specification are specifically and individually described as individual documents, patents, patent applications, and technical standards are incorporated by reference. To the same extent, it is incorporated herein by reference.

Claims (21)

  1.  金属硝酸塩を含む溶液を基板上に塗布し、塗布膜を乾燥させて金属酸化物前駆体膜を形成する工程と、前記金属酸化物前駆体膜を金属酸化物膜に転化する工程とを交互に2回以上繰り返すことを含み、
     前記金属酸化物前駆体膜を前記金属酸化物膜に転化する少なくとも2回の工程において、前記基板の最高到達温度を120℃以上250℃以下にして前記金属酸化物前駆体膜を前記金属酸化物膜に転化する金属酸化物膜の製造方法。
    A step of applying a solution containing a metal nitrate on a substrate and drying the coating film to form a metal oxide precursor film and a step of converting the metal oxide precursor film into a metal oxide film alternately Including repeating twice or more,
    In at least two steps of converting the metal oxide precursor film to the metal oxide film, a maximum reached temperature of the substrate is set to 120 ° C. or more and 250 ° C. or less to convert the metal oxide precursor film to the metal oxide. A method for producing a metal oxide film to be converted into a film.
  2.  前記金属酸化物前駆体膜を前記金属酸化物膜に転化する全ての工程において、前記基板の最高到達温度を120℃以上250℃以下にして前記金属酸化物前駆体膜を前記金属酸化物膜に転化する請求項1に記載の金属酸化物膜の製造方法。 In all the steps of converting the metal oxide precursor film into the metal oxide film, the substrate reaches a maximum temperature of 120 ° C. or more and 250 ° C. or less, and the metal oxide precursor film is converted into the metal oxide film. The method for producing a metal oxide film according to claim 1 to be converted.
  3.  前記金属酸化物前駆体膜を前記金属酸化物膜に転化する全ての工程において、前記基板の最高到達温度を200℃以下にする請求項1又は請求項2に記載の金属酸化物膜の製造方法。 3. The method for producing a metal oxide film according to claim 1, wherein a maximum temperature of the substrate is set to 200 ° C. or lower in all steps of converting the metal oxide precursor film to the metal oxide film. .
  4.  前記金属酸化物前駆体膜を前記金属酸化物膜に転化する工程が、前記金属酸化物前駆体膜に紫外線を照射する工程を含む請求項1~請求項3のいずれか一項に記載の金属酸化物膜の製造方法。 The metal according to any one of claims 1 to 3, wherein the step of converting the metal oxide precursor film into the metal oxide film includes a step of irradiating the metal oxide precursor film with ultraviolet rays. Manufacturing method of oxide film.
  5.  前記金属酸化物前駆体膜を形成する工程と、前記金属酸化物前駆体膜を前記金属酸化物膜に転化する工程とを交互に4回以上繰り返す請求項1~請求項4のいずれか一項に記載の金属酸化物膜の製造方法。 The step of forming the metal oxide precursor film and the step of converting the metal oxide precursor film into the metal oxide film are alternately repeated four times or more. The manufacturing method of the metal oxide film as described in 2.
  6.  前記金属硝酸塩を含む溶液が、少なくとも硝酸インジウムを含む請求項1~請求項5のいずれか一項に記載の金属酸化物膜の製造方法。 The method for producing a metal oxide film according to any one of claims 1 to 5, wherein the solution containing the metal nitrate contains at least indium nitrate.
  7.  前記硝酸インジウムを含む溶液が、亜鉛、錫、ガリウム及びアルミニウムから選ばれる少なくとも1つの金属原子を含む化合物をさらに含有する請求項6に記載の金属酸化物膜の製造方法。 The method for producing a metal oxide film according to claim 6, wherein the solution containing indium nitrate further contains a compound containing at least one metal atom selected from zinc, tin, gallium and aluminum.
  8.  前記金属硝酸塩を含む溶液の金属モル濃度が、0.01mol/L以上0.5mol/L以下である請求項1~請求項7のいずれか一項に記載の金属酸化物膜の製造方法。 The method for producing a metal oxide film according to any one of claims 1 to 7, wherein a metal molar concentration of the solution containing the metal nitrate is 0.01 mol / L or more and 0.5 mol / L or less.
  9.  前記金属酸化物前駆体膜を形成する工程と、前記金属酸化物前駆体膜を前記金属酸化物膜に転化する工程とを各々1回行って得られる金属酸化物膜の平均膜厚が6nm以下である請求項1~請求項8のいずれか一項に記載の金属酸化物膜の製造方法。 The average film thickness of the metal oxide film obtained by performing the process of forming the metal oxide precursor film and the process of converting the metal oxide precursor film into the metal oxide film once is 6 nm or less. The method for producing a metal oxide film according to any one of claims 1 to 8, wherein:
  10.  前記金属酸化物前駆体膜を形成する工程と、前記金属酸化物前駆体膜を前記金属酸化物膜に転化する工程とを各々1回行って得られる金属酸化物膜の平均膜厚が2nm以下である請求項9に記載の金属酸化物膜の製造方法。 The average film thickness of the metal oxide film obtained by performing the process of forming the metal oxide precursor film and the process of converting the metal oxide precursor film into the metal oxide film once is 2 nm or less. The method for producing a metal oxide film according to claim 9.
  11.  前記金属硝酸塩を含む溶液が、メタノール又はメトキシエタノールを含む請求項1~請求項10のいずれか一項に記載の金属酸化物膜の製造方法。 The method for producing a metal oxide film according to any one of claims 1 to 10, wherein the solution containing the metal nitrate contains methanol or methoxyethanol.
  12.  前記金属酸化物前駆体膜を前記金属酸化物膜に転化する工程が、前記金属酸化物前駆体膜に対し、波長300nm以下の紫外線を10mW/cm以上の強度で照射する工程を含む請求項4~請求項11のいずれか一項に記載の金属酸化物膜の製造方法。 The step of converting the metal oxide precursor film into the metal oxide film includes a step of irradiating the metal oxide precursor film with ultraviolet rays having a wavelength of 300 nm or less at an intensity of 10 mW / cm 2 or more. The method for producing a metal oxide film according to any one of claims 4 to 11.
  13.  前記金属酸化物前駆体膜に前記紫外線を照射する際に用いる光源が、低圧水銀ランプである請求項12に記載の金属酸化物膜の製造方法。 The method for producing a metal oxide film according to claim 12, wherein a light source used when irradiating the metal oxide precursor film with the ultraviolet light is a low-pressure mercury lamp.
  14.  前記金属酸化物前駆体膜を形成する工程において、前記塗布膜を乾燥させる際の前記基板の温度が35℃以上100℃以下である請求項1~請求項13のいずれか一項に記載の金属酸化物膜の製造方法。 The metal according to any one of claims 1 to 13, wherein in the step of forming the metal oxide precursor film, a temperature of the substrate when the coating film is dried is 35 ° C or more and 100 ° C or less. Manufacturing method of oxide film.
  15.  前記金属酸化物前駆体膜を形成する工程において、前記金属硝酸塩を含む溶液を、インクジェット法、ディスペンサー法、凸版印刷法、及び凹版印刷法から選択される少なくとも一種の塗布法により塗布する請求項1~請求項14のいずれか一項に記載の金属酸化物膜の製造方法。 2. In the step of forming the metal oxide precursor film, the solution containing the metal nitrate is applied by at least one application method selected from an inkjet method, a dispenser method, a relief printing method, and an intaglio printing method. The method for producing a metal oxide film according to any one of claims 14 to 14.
  16.  請求項1~請求項15のいずれか一項に記載の金属酸化物膜の製造方法を用いて作製された金属酸化物膜。 A metal oxide film produced using the method for producing a metal oxide film according to any one of claims 1 to 15.
  17.  金属酸化物半導体膜である請求項16に記載の金属酸化物膜。 The metal oxide film according to claim 16, which is a metal oxide semiconductor film.
  18.  請求項17に記載の金属酸化物膜を含む活性層と、ソース電極と、ドレイン電極と、ゲート絶縁膜と、ゲート電極とを有する薄膜トランジスタ。 A thin film transistor having an active layer including the metal oxide film according to claim 17, a source electrode, a drain electrode, a gate insulating film, and a gate electrode.
  19.  請求項18に記載の薄膜トランジスタを備えた表示装置。 A display device comprising the thin film transistor according to claim 18.
  20.  請求項18に記載の薄膜トランジスタを備えたイメージセンサ。 An image sensor comprising the thin film transistor according to claim 18.
  21.  請求項18に記載の薄膜トランジスタを備えたX線センサ。 An X-ray sensor comprising the thin film transistor according to claim 18.
PCT/JP2014/079768 2013-12-06 2014-11-10 Method for producing metal oxide film, metal oxide film, thin-film transistor, display device, image sensor, and x-ray sensor WO2015083500A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020167012845A KR101897375B1 (en) 2013-12-06 2014-11-10 Method for producing metal oxide film, metal oxide film, thin-film transistor, display device, image sensor, and x-ray sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013253190A JP6096102B2 (en) 2013-12-06 2013-12-06 Method for producing metal oxide semiconductor film
JP2013-253190 2013-12-06

Publications (1)

Publication Number Publication Date
WO2015083500A1 true WO2015083500A1 (en) 2015-06-11

Family

ID=53273271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079768 WO2015083500A1 (en) 2013-12-06 2014-11-10 Method for producing metal oxide film, metal oxide film, thin-film transistor, display device, image sensor, and x-ray sensor

Country Status (4)

Country Link
JP (1) JP6096102B2 (en)
KR (1) KR101897375B1 (en)
TW (1) TW201526071A (en)
WO (1) WO2015083500A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI567805B (en) * 2015-07-03 2017-01-21 友達光電股份有限公司 Thin film transistor and method for producing the same
JP2019098282A (en) * 2017-12-06 2019-06-24 株式会社Screenホールディングス Light irradiation device and thin film formation device
CN111088484A (en) * 2019-11-14 2020-05-01 Tcl华星光电技术有限公司 Method for preparing metal oxide film
CN115522184B (en) * 2022-10-09 2024-03-19 华能国际电力股份有限公司 YSZ coating, ferronickel-based superalloy and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156321A (en) * 1999-03-09 2001-06-08 Fuji Xerox Co Ltd Semiconductor device and its manufacturing method
WO2010044332A1 (en) * 2008-10-14 2010-04-22 コニカミノルタホールディングス株式会社 Thin-film transistor and method of manufacturing same
JP2010182852A (en) * 2009-02-05 2010-08-19 Konica Minolta Holdings Inc Metal oxide semiconductor, manufacturing method therefor, and thin-film transistor
JP2010263103A (en) * 2009-05-08 2010-11-18 Konica Minolta Holdings Inc Thin-film transistor, and method of manufacturing the same
WO2012014885A1 (en) * 2010-07-26 2012-02-02 日産化学工業株式会社 Precursor composition for forming amorphous metal oxide semiconductor layer, amorphous metal oxide semiconductor layer, method for producing same, and semiconductor device
JP2012228859A (en) * 2011-04-27 2012-11-22 Konica Minolta Holdings Inc Gas barrier film and method of manufacturing the same
WO2014148206A1 (en) * 2013-03-19 2014-09-25 富士フイルム株式会社 Metal oxide film, method for manufacturing same, thin film transistor, display apparatus, image sensor, and x-ray sensor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002073680A2 (en) * 2001-03-09 2002-09-19 Symetrix Corporation Method of making layered superlattice material with ultra-thin top layer
US7745989B2 (en) * 2005-06-30 2010-06-29 Semiconductor Energy Laboratory Co., Ltd Light emitting element, light emitting device, and electronic apparatus
JP5916761B2 (en) * 2011-01-28 2016-05-11 ノースウェスタン ユニバーシティ Low temperature fabrication of metal composite thin films derived from metal oxide thin films and nanomaterials
KR101301215B1 (en) * 2011-12-27 2013-08-29 연세대학교 산학협력단 A composition for oxide thin film, preparation method of the composition, methods for forming the oxide thin film using the composition, and an electrical device using the composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156321A (en) * 1999-03-09 2001-06-08 Fuji Xerox Co Ltd Semiconductor device and its manufacturing method
WO2010044332A1 (en) * 2008-10-14 2010-04-22 コニカミノルタホールディングス株式会社 Thin-film transistor and method of manufacturing same
JP2010182852A (en) * 2009-02-05 2010-08-19 Konica Minolta Holdings Inc Metal oxide semiconductor, manufacturing method therefor, and thin-film transistor
JP2010263103A (en) * 2009-05-08 2010-11-18 Konica Minolta Holdings Inc Thin-film transistor, and method of manufacturing the same
WO2012014885A1 (en) * 2010-07-26 2012-02-02 日産化学工業株式会社 Precursor composition for forming amorphous metal oxide semiconductor layer, amorphous metal oxide semiconductor layer, method for producing same, and semiconductor device
JP2012228859A (en) * 2011-04-27 2012-11-22 Konica Minolta Holdings Inc Gas barrier film and method of manufacturing the same
WO2014148206A1 (en) * 2013-03-19 2014-09-25 富士フイルム株式会社 Metal oxide film, method for manufacturing same, thin film transistor, display apparatus, image sensor, and x-ray sensor

Also Published As

Publication number Publication date
JP6096102B2 (en) 2017-03-15
TW201526071A (en) 2015-07-01
KR20160070185A (en) 2016-06-17
KR101897375B1 (en) 2018-09-10
JP2015111627A (en) 2015-06-18

Similar Documents

Publication Publication Date Title
JP6180908B2 (en) Metal oxide semiconductor film, thin film transistor, display device, image sensor and X-ray sensor
JP6117124B2 (en) Oxide semiconductor film and manufacturing method thereof
WO2015083500A1 (en) Method for producing metal oxide film, metal oxide film, thin-film transistor, display device, image sensor, and x-ray sensor
JP6181306B2 (en) Method for producing metal oxide film
US9779938B2 (en) Metal oxide thin film, method of producing same, and coating solution for forming metal oxide thin film used in said method
WO2016121230A1 (en) Method for producing oxide protective film, oxide protective film, method for manufacturing thin film transistor, thin film transistor and electronic device
JP6061831B2 (en) Method for producing metal oxide film and method for producing thin film transistor
JP6271760B2 (en) Method for producing metal oxide film and method for producing thin film transistor
JP6177711B2 (en) Metal oxide film manufacturing method, metal oxide film, thin film transistor, and electronic device
JP6195986B2 (en) Method for manufacturing metal oxide semiconductor film and method for manufacturing thin film transistor
JP6257799B2 (en) Metal oxide semiconductor film, thin film transistor, and electronic device
JP6086854B2 (en) Metal oxide film manufacturing method, metal oxide film, thin film transistor, display device, image sensor, and X-ray sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867214

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167012845

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14867214

Country of ref document: EP

Kind code of ref document: A1