WO2015083291A1 - Super-conducting wire material, production method therefor, and super-conducting coil using same - Google Patents

Super-conducting wire material, production method therefor, and super-conducting coil using same Download PDF

Info

Publication number
WO2015083291A1
WO2015083291A1 PCT/JP2013/082857 JP2013082857W WO2015083291A1 WO 2015083291 A1 WO2015083291 A1 WO 2015083291A1 JP 2013082857 W JP2013082857 W JP 2013082857W WO 2015083291 A1 WO2015083291 A1 WO 2015083291A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium diboride
superconducting
superconducting wire
diboride layer
cross
Prior art date
Application number
PCT/JP2013/082857
Other languages
French (fr)
Japanese (ja)
Inventor
菅野 周一
水上 貴彰
楠 敏明
田中 秀樹
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/082857 priority Critical patent/WO2015083291A1/en
Publication of WO2015083291A1 publication Critical patent/WO2015083291A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/20Permanent superconducting devices
    • H10N60/202Permanent superconducting devices comprising metal borides, e.g. MgB2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0856Manufacture or treatment of devices comprising metal borides, e.g. MgB2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor

Definitions

  • the present invention relates to a superconducting wire, a manufacturing method thereof, and a superconducting coil using the same.
  • Niobium-titanium alloys and the like are known as materials exhibiting superconducting properties.
  • a superconducting coil is manufactured by winding a superconducting wire composed of this niobium-titanium alloy or the like spirally around a coil bobbin or the like.
  • Such a superconducting coil is provided in medical diagnostic equipment such as a magnetic resonance imaging apparatus (MRI) and a nuclear magnetic resonance apparatus (NMR), and uses superconducting characteristics.
  • MRI magnetic resonance imaging apparatus
  • NMR nuclear magnetic resonance apparatus
  • magnesium diboride MgB 2
  • MgB 2 magnesium diboride
  • Jc critical current density
  • a powder-in-tube method is known as a method for producing magnesium diboride.
  • the powder-in-tube method is a method in which a raw material powder such as magnesium or boron is filled in a metal tube (sheath) and then drawn, and the metal tube is heat treated to generate magnesium diboride in the metal tube.
  • a superconducting wire in which magnesium diboride is filled in a metal tube is obtained, and it is known that a good critical current density is exhibited particularly in a low magnetic field of about 2 T or less.
  • the superconducting wire produced by the powder-in-tube method has room for improvement in the critical current density. Therefore, in order to obtain a superconducting wire having a good critical current density particularly in a high magnetic field, a method for obtaining a thin film of magnesium diboride has attracted attention.
  • a raw material such as magnesium or boron is vapor-deposited on a substrate by an electron beam or the like, and a magnesium diboride thin film is formed on the substrate.
  • Magnesium diboride thin film produced by this method exhibits a good critical current density in a high magnetic field, so it can be applied to high magnetic field applications such as medical diagnostic equipment such as high magnetic field MRI and superconducting equipment such as superconducting linear. There is expected.
  • Patent Document 1 A technique described in Patent Document 1 is known in relation to a technique for producing a superconducting coil using a thin film magnesium diboride.
  • Patent Document 1 describes a probe coil for a nuclear magnetic resonance apparatus formed by winding a magnesium diboride superconducting wire or a thin film.
  • the tape-shaped thin film is distorted due to the winding.
  • the smaller the coil bobbin being wound the greater the distortion. If such strain increases, the thin film may peel off from the substrate or the flow resistance in the thin film may increase, and the critical current density of the superconducting coil may decrease. Therefore, in the conventional technique, the advantage of the thin film-like magnesium diboride that exhibits a good critical current density even in a high magnetic field is not fully utilized.
  • the present invention has been made in view of such problems, and the problem to be solved by the present invention is a superconducting wire material that exhibits a better critical current density than the conventional one, a method for manufacturing the same, and a method using the same. It is to provide a superconducting coil.
  • the present inventors have arranged the superconducting material in which a magnesium diboride layer is formed on the surface of a base material in a superconducting wire in a predetermined direction. I found that it can be solved.
  • the present invention it is possible to provide a superconducting wire having a better critical current density than the conventional one, a manufacturing method thereof, and a superconducting coil using the same.
  • FIG. 1 is a view showing a cross section of the superconducting wire 10 of the present embodiment.
  • the superconducting wire 10 has a circular cross section as shown in FIG. 1, and includes a base material 1, a magnesium diboride layer 2 formed on the surface of the base material 1, and an insulator 3 for insulating and fixing them. Has been. Note that the cross section of the superconducting wire 10 is maintained in a circular shape by the insulator 3.
  • the superconducting wire 10 includes a protective film 5 (see FIG. 2) that covers the magnesium diboride layer 2.
  • the base material 1 and the magnesium diboride layer 2 formed on the surface of the base material 1 are collectively referred to as “superconducting material 4” as appropriate.
  • the substrate 1 has a surface on which a magnesium diboride layer 2 is formed, and also supports the magnesium diboride layer 2.
  • the substrate 1 is made of a thermodynamically stable (not easily thermally reacted) metal, such as stainless steel, aluminum, duralumin, copper, iron, or the like.
  • a ceramic material such as silicon is also suitable depending on the application of the superconducting wire 10.
  • the thickness of the substrate 1 is, for example, 10 ⁇ m or more and 1 mm or less.
  • the area of the magnesium diboride layer 2 in the cross section of the superconducting wire 10 becomes relatively small. Therefore, it is preferable that the base material 1 does not become excessively thick.
  • the magnesium diboride layer 2 is made of magnesium diboride, and is fixed (formed) on the surface of the substrate 1 by vapor deposition or the like.
  • a current flows in a direction perpendicular to the paper surface of FIG. 1.
  • a magnetic field is generated around the superconducting wire 10, and superconducting characteristics are exhibited.
  • the thickness of the magnesium diboride layer 2 is, for example, not less than 0.2 ⁇ m and not more than 30 ⁇ m. By setting the thickness of the magnesium diboride layer 2 within this range, the content of magnesium diboride in the superconducting wire 10 can be improved. Moreover, although it is preferable that the thickness of the magnesium diboride layer 2 is as thick as possible, the manufacturing time of the superconducting wire 10 can be shortened by setting it to 30 ⁇ m or less, for example.
  • the superconducting material 4 (more specifically, the magnesium diboride layer 2) is in a cross section perpendicular to the current flow direction (that is, a cross section extending in the vertical and horizontal directions in FIG. 1). They are arranged in at least two directions. That is, in the superconducting wire 10, in the cross section, the stacking direction (fixing direction, FIG. 1) of the magnesium diboride layer 2 that intersects the vertical direction and intersects the vertical direction (orthogonal in FIG. 1). Another superconducting material 4 is arranged in two directions (left and right direction).
  • a plurality of superconducting materials 4 are arranged in the vertical direction, and a plurality of superconducting materials 4 are arranged in the left-right direction orthogonal to the vertical direction.
  • the number of superconducting materials 4 arranged in the vertical direction is 7 including the superconducting material 4A when the superconducting material 4A of FIG. 1 is used as a reference (two on the upper side of the superconducting material 4A and four on the lower side). become.
  • the number of superconducting materials 4 arranged in the left-right direction is 7 including the superconducting material 4A (4 on the left side and 2 on the right side of the superconducting material 4A) with reference to the superconducting material 4A in FIG. )become.
  • the superconducting material 4 By arranging the superconducting material 4 in this way, the superconducting material 4 can be arranged not only in one direction but also in various directions. Therefore, the unevenness of the magnetic field formed around the superconducting wire 10 can be suppressed. Thereby, a good critical current density can be obtained.
  • the superconducting wire 10 having a vertically and horizontally symmetrical structure with respect to the center of the cross section of the superconducting wire 10 can be obtained. Thereby, the magnetic field formed around the superconducting wire 10 can be made uniform, and an even better critical current density can be obtained.
  • the superconducting wire 10 having a diameter L when the superconducting wire 10 having a diameter L is produced, not only one superconducting material 4 having a width (length in the vertical direction in FIG. 1) of the magnesium diboride layer 2 of L is used.
  • strain generated in the magnesium diboride layer 2 when wound around the coil bobbin 20 can be sufficiently suppressed. Thereby, the fall of a critical current density can be suppressed more reliably and a better critical current density can be obtained.
  • the cross sectional area of the magnesium diboride layer 2 is equal in each superconducting material 4 as shown in FIG.
  • the magnesium diboride layer 2 is densely formed on the surface of the substrate 1. That is, the magnesium diboride layer 2 has almost no pores. As a result, it is possible to suppress a decrease in the flow path of the current due to the presence of the pores, uniformize the current flowing through the magnesium diboride layer 2 and obtain a good critical current density. Whether or not the magnesium diboride layer 2 is densely formed can be determined by observing the cross section of the magnesium diboride layer 2 with an electron microscope or the like.
  • the magnesium diboride layer 2 is formed by fixing the magnesium diboride to the surface of the substrate 1 by vapor deposition or sputtering.
  • vapor deposition and sputtering include a pulse laser ablation (PLD) method, an electron beam method, an ion beam method, and the like.
  • the insulator 3 bundles the superconducting material 4 and is insulated from the outside. That is, the superconducting material 4 is covered with the insulator 3, whereby the insulator material 4 is turned into a wire.
  • the insulator 3 is, for example, enamel.
  • the superconducting material 4 constituting the superconducting wire 10 is covered with the insulator 3 so that the cross section of the superconducting wire 10 is circular. Thereby, when the superconducting wire 10 is wound around the coil bobbin 20 (see FIG. 3) in a coil shape, the strain applied to the superconducting wire 10 can be further reduced.
  • FIG. 2 is a diagram showing the superconducting material 4 included in the superconducting wire 10 of the present embodiment.
  • a protective film 5 is formed on the magnesium diboride layer 2 included in the superconducting material 4 so as to cover the entire surface of the magnesium diboride layer 2 in the vertical and horizontal directions. Since the magnesium diboride layer 2 is easy to oxidize, the protective film 5 is formed to block the contact of oxygen to the magnesium diboride layer 2 and to prevent the magnesium diboride layer 2 from being oxidized.
  • the protective film 5 is preferably made of a material that functions as a pinning center from the viewpoint of improving the critical current density. Specifically, nickel is mentioned from a viewpoint of exhibiting the function as a pinning center, preventing the oxidation of the magnesium diboride layer 2 as mentioned above.
  • the thickness of the protective film 5 depends on the thickness of the magnesium diboride layer 2 and cannot be generally specified, but is, for example, not less than 0.1 nm and not more than 0.3 nm. By making the thickness of the protective film 5 within this range, the thickness of the protective film 5 with respect to the magnesium diboride layer 2 can be set to a suitable thickness ratio, so that more reliable oxidation prevention can be achieved, and good A critical current density can be obtained. Moreover, when the superconducting wire 10 is wound around the coil bobbin 20, the deterioration associated with the mechanical operation of winding is more reliably prevented.
  • the superconducting wire 10 can be manufactured as follows, for example. First, the superconducting material 4 is obtained by forming the magnesium diboride layer 2 on the surface of the substrate 1 (superconducting material manufacturing step). As a method for forming the magnesium diboride layer 2, for example, a vapor deposition method or a sputtering method can be applied as described above. Moreover, the protective film 5 is formed by vapor deposition etc. as needed. And using the obtained superconducting material 4, at least two directions (two directions orthogonal in the example shown in FIG. 1) of the fixing direction of the magnesium diboride layer 2 with respect to the base material 1 and the direction crossing the fixing direction. ), The superconducting materials 4 having the same cross-sectional area of the magnesium diboride layer 2 are fixed by the insulator 3 to form a wire. Thereby, the superconducting wire 10 is obtained (wire material forming step).
  • the superconducting wire 10 can be produced as follows, for example. First, a magnesium diboride layer 2 is formed on a rectangular substrate (which becomes a base material 1 by being cut into a tape shape). Moreover, the protective film 5 is formed by vapor deposition etc. as needed. Next, the substrate on which the magnesium diboride layer 2 is formed is cut together with the magnesium diboride layer 2 so as to have a desired width, whereby the base material 1 on which the magnesium diboride layer 2 is formed (that is, A superconducting material 4) is obtained (superconducting material manufacturing step). Then, the superconducting wire 10 is obtained in the same manner as in the wire forming step.
  • the superconducting wire 10 can be manufactured as follows, for example. First, the raw material which comprises the magnesium diboride layer 2 is fixed with respect to a rectangular-shaped board
  • the superconductivity by which the magnesium diboride layer was formed in the base material 1 Material 4 is obtained. Thereafter, in the superconducting material 4, the magnesium diboride layer 2 having the same cross-sectional area is formed so that the magnesium diboride layer 2 is arranged in at least two directions (two directions orthogonal in the example shown in FIG. 1).
  • the base materials 1 thus fixed are fixed by the insulator 3. Thereby, the superconducting material 4 is turned into a wire in the same manner as in the wire forming step, and the superconducting wire 10 is obtained (superconducting material manufacturing step).
  • FIG. 3 is a diagram for explaining a superconducting coil 100 including the superconducting wire 10 of the present embodiment, where (a) is an overall view thereof, and (b) is an enlarged view of part A of (a).
  • the superconducting coil 100 has a superconducting wire 10 spirally wound around a coil bobbin 20, and a power source 30 is connected to the superconducting wire 100.
  • a magnetic field is generated along the central axis of the coil bobbin 20 by passing a current from the power supply 30 to the superconducting wire 10.
  • the superconducting wire 10 is wound around the coil bobbin 20 so that the superconducting material 4 faces the coil bobbin 20 in a predetermined direction. Specifically, in each superconducting material 4, the superconducting wire 10 is wound around the coil bobbin 20 so that the base material 1 constituting the superconducting material 4 is disposed on the coil bobbin 20 side. In other words, the superconducting wire 10 is wound around the coil bobbin 20 so that the magnesium diboride layer 2 is disposed outside the base material 1.
  • the strain of the magnesium diboride layer 2 accompanying the winding can be made as small as possible.
  • the magnesium diboride layer 2 is disposed on the outer side (the side far from the coil bobbin 20)
  • the wound two layers are compared with the case where the magnesium diboride layer 2 is disposed on the inner side (the side closer to the coil bobbin 20).
  • the radius of curvature of the magnesium boride layer 2 is increased. Therefore, the distortion accompanying winding can be reduced.
  • FIG. 3 schematically shows a winding, but in reality, the winding is actually performed many times. Therefore, by reducing the strain generated in the magnesium diboride layer 2 as much as possible, the magnesium diboride layer 2
  • the flow resistance can be made as small as possible. Thereby, a higher critical current density can be achieved.
  • the superconducting wire 10 is wound so that the central axis of the coil bobbin 20 and the base material 1 are parallel to each other.
  • the superconducting wire 10 may be wound so as to be inclined. That is, since the superconducting wire 10 is spirally wound around the coil bobbin 20, it is difficult to wind the superconducting wire 10 so as to be strictly parallel. Therefore, the strain of the magnesium diboride layer 2 can be further suppressed by winding the superconducting wire 10 so as to be slightly inclined from the parallel state.
  • FIG. 4 is a view showing a cross section of a modification (superconducting wire 11) of the superconducting wire 10 of the present embodiment.
  • the insulator 3 is covered with a metal.
  • the superconducting wire 11 includes a superconducting material 4 and an insulator 3 that fixes the superconducting material 4 in a metal tube 6.
  • the operation when fixing the superconducting material 4 with the insulator 3 becomes easy. Moreover, since the outer surface of the superconducting wire 11 is composed of the metal tube 6, the mechanical strength of the superconducting wire 11 can be further increased.
  • FIG. 5 is a view showing a cross section of another modified example (superconducting wire 12) of the superconducting wire 10 of the present embodiment.
  • the superconducting wire 12 as in the superconducting wire 10 of FIG. 1, the cross-sectional areas of the respective magnesium diboride layers 2 in the cross section are equal.
  • the dimensions of the magnesium diboride layer 2 of each superconducting material 4 are also equal, but in the superconducting wire 12 of FIG. 5, the magnesium diboride layer of each superconducting material 4. 2 have different dimensions (dimensions in the vertical and horizontal directions in FIG. 1).
  • the superconducting wire 12 is configured in this manner, a good critical current density can be obtained as in the superconducting wire 10 of FIG. Further, when the superconducting wire 12 is produced, even when the thickness of the magnesium diboride layer 2 formed on each base material 1 is uneven, the superconducting wires 4 having the same cross-sectional area of the magnesium diboride layer 2 are connected to each other. Can be used to obtain a superconducting wire 12 having a good critical current density. Further, when the superconducting material 4 is obtained by cutting, for example, a rectangular substrate on which the magnesium diboride layer 2 is formed, even if the thickness of the formed magnesium diboride layer 2 is uneven. The superconducting wire 12 having the superconducting material 4 having the same cross-sectional area can be obtained by cutting with a width corresponding to the thickness.
  • FIG. 6 is a view showing a cross section of still another modified example (superconducting wire 13) of the superconducting wire 10 of the present embodiment.
  • one magnesium diboride layer 2 is formed on one base material 1.
  • the magnesium diboride layer 2 is formed.
  • the superconducting wire 10 can be obtained by forming the rectangular magnesium diboride layer 2 on the rectangular substrate and then cutting these layers, and the superconducting wire 13 shown in FIG. Then, this cutting process can be omitted. Therefore, since no shear stress is applied to the magnesium diboride layer 2, it is possible to more reliably prevent the magnesium diboride 2 from being peeled from the substrate 1 in the vicinity of the cut surface.
  • a method of disposing the plurality of magnesium diboride layers 2 on the surface of the base material for example, after forming the magnesium diboride layer 2 on the entire surface of the base material 1, a plurality of diboride layers are formed by a method such as etching. What is necessary is just to divide into magnesium chloride 2. Since the magnesium diboride layer 2 is usually formed with a uniform thickness, the magnesium diboride layer 2 having the same thickness can be reliably formed on the surface of the single substrate 1.
  • FIG. 7 is a view showing a cross section of still another modified example (superconducting wire 14) of the superconducting wire 10 of the present embodiment.
  • the superconducting material 4 is arranged stepwise vertically and horizontally.
  • the superconducting material 4 is arranged vertically and horizontally and obliquely. . Even if the superconducting material 4 is arranged in this way, a good critical current density can be obtained. Therefore, when the superconducting wire 4 is fixed by the insulator 3, it is not necessary to strictly position and arrange the superconducting material 4, and the superconducting wire 14 can be easily manufactured while maintaining a good critical current density. .
  • FIG. 8 is a view showing a cross section of still another modified example (superconducting wire 15) of the superconducting wire 10 of the present embodiment.
  • the superconducting wire 10 in FIG. 1 has a circular cross section, but the superconducting wire 15 in FIG. 8 has a rectangular cross section.
  • the superconducting wire 15 having a rectangular cross section when winding on the coil bobbin 20 (see FIG. 3), the space can be wound more efficiently than when the cross section is circular. Thereby, the number of windings can be increased.
  • Example 1 The superconducting wire 10 of FIG. 1 was produced as follows. First, magnesium powder (purity 99.9% by mass) and granular boron (purity 99.5% by mass) are weighed so that the molar ratio of magnesium and boron is 1: 2, and 120 minutes using a roughing machine. Mixed. Subsequently, the obtained mixture was heat-treated at 900 ° C. for 10 hours in an argon atmosphere to obtain magnesium diboride.
  • a magnesium diboride layer 2 was formed on the surface of the duralumin plate (base material 1) by a pulse laser ablation method (PLD method). Specifically, the tablets obtained magnesium diboride and pressed obtained as a target in an argon atmosphere and irradiated with laser light of 1J / cm 2 ⁇ 5J / cm 2 at room temperature to this target. And the magnesium diboride was vapor-deposited on the surface of the 500-micrometer-thick duralumin board which attached the substrate holder with the vapor
  • PLD method pulse laser ablation method
  • the thickness represents the length in the left-right direction in FIG. 2
  • the width represents the length in the vertical direction in FIG. 2
  • the length represents the length in the direction perpendicular to the paper in FIG.
  • the same length is expressed.
  • the formed layer was composed of magnesium diboride. Moreover, when the critical current density was measured about the formed magnesium diboride layer 2, it was 1600 A / mm ⁇ 2 > in 5T and 20K.
  • the base material 1 on which the magnesium diboride layer 2 is formed is arranged in a stepped shape as shown in FIG. 1, and is fixed with an insulator 3 (enamel) so that the cross section has a circular shape with a diameter of about 1 cm.
  • a wire rod 10 was obtained. And in order to perform the characteristic evaluation of the superconducting coil using the obtained superconducting wire 10, the obtained superconducting wire 10 was transformed into a semicircular shape in a spiral shape. And when the superconducting wire 10 was energized and the critical current density was measured, it was 1500 A / mm 2 at 5T and 20K.
  • This value (1500 A / mm 2 ) is substantially the same value as the critical current density (1600 A / mm 2 ) of the magnesium diboride layer 2 formed on the surface of the substrate 1. Therefore, even when thin-film magnesium diboride is formed into a wire, sufficient connectivity between the magnesium diboride layers in the magnesium diboride layer 2 is ensured, and good criticality of the thin-film magnesium diboride is ensured. It was found that the current density can be maintained.
  • Example 1 the magnesium diboride layer 2 having a thickness of 30 ⁇ m, a width of 0.2 cm, and a length of 10 cm was formed on the duralumin plate. In Comparative Example 1, except that the width was 1 cm, it was carried out. The same magnesium diboride layer 2 as in Example 1 was formed. When the critical current density of the formed magnesium diboride layer 2 was measured, it was 1600 A / mm 2 at 5T and 20K.
  • This value (900A / mm 2), compared with the critical current density of the formed on the substrate 1 a magnesium diboride layer 2 (1600A / mm 2), and a value of about 50% to 60%. Therefore, it was found that the critical current density is reduced when the coil is arranged in one direction as in Comparative Example 1, when the coil is formed. This is presumably because the connectivity between the magnesium diboride layers in the magnesium diboride layer 2 was reduced by coiling.
  • Example 2 Superconducting material 4 and the like were placed in metal tube 6 to produce superconducting wire 11 shown in FIG. Specifically, the superconducting material 4 was produced in the same manner as in Example 1, and the superconducting wire 11 was produced by being housed in the nickel metal tube 6 together with the enamel as the insulator 3. And about the obtained superconducting wire 11, when the characteristic evaluation of the superconducting coil was performed like Example 1, the critical current density was 1550 A / mm ⁇ 2 > in 5T and 20K.
  • This value (1550 A / mm 2 ) is almost the same value as the critical current density (1600 A / mm 2 ) of the magnesium diboride layer 2 formed on the surface of the substrate 1. Therefore, even when the metal tube 6 is provided, it was found that the good critical current density of the thin film magnesium diboride can be maintained as in the first embodiment.
  • Example 3> A superconducting wire 12 was produced in the same manner as in Example 1 except that a superconducting material 4 having the same cross-sectional area but different dimensions of the magnesium diboride layer 2 as shown in FIG. 5 was used. And about the obtained superconducting wire 12, when the characteristic evaluation of the superconducting coil was performed like Example 1, the critical current density was 1500 A / mm ⁇ 2 > at 5T and 20K.
  • This value (1500 A / mm 2 ) is substantially the same value as the critical current density (1600 A / mm 2 ) of the magnesium diboride layer 2 formed on the surface of the substrate 1. Therefore, even if the dimensions of the magnesium diboride layer 2 are different, as long as the cross-sectional areas of the magnesium diboride layer 2 are equal, the good critical current density of the thin film magnesium diboride can be obtained as in the first embodiment. I found that it can be maintained.
  • Example 4> A superconducting wire 13 was produced in the same manner as in Example 1 except that a plurality of magnesium diboride layers 2 were formed on one base 1 as shown in FIG. And about the obtained superconducting wire 13, when the characteristic evaluation of the superconducting coil was performed like Example 1, the critical current density was 1500 A / mm ⁇ 2 > at 5T and 20K.
  • This value (1500 A / mm 2 ) is substantially the same value as the critical current density (1600 A / mm 2 ) of the magnesium diboride layer 2 formed on the surface of the substrate 1. Therefore, if the cross-sectional area of the magnesium diboride layer 2 is equal regardless of the number of the magnesium diboride layers 2 formed on one base material 1, as in the first embodiment, a thin-film magnesium diboride layer is formed. It was found that a good critical current density can be maintained.

Abstract

Provided are a super-conducting wire material accomplishing a more satisfactory critical current density than in prior art, a production method therefor, and a super-conducting coil using the same. In order to achieve this objective, a super-conducting wire material (10) is provided with a plurality of super-conducting materials (4), each comprising a magnesium diboride layer (2) immobilized on a substrate (1), in such a way that: in a cross-section orthogonal to the current-conduction direction, a plurality of the magnesium diboride layers (2) are disposed along at least two directions comprising an immobilization direction of the magnesium diboride layer (2) with respect to the substrate (1), and a direction intersecting with the immobilization direction; and the cross-sectional area of the magnesium diboride layer (2) that constitutes the super-conducting material (4) is the same among each of the super-conducting materials (4) in the cross-section.

Description

超電導線材並びにその製造方法及びそれを用いた超電導コイルSuperconducting wire, manufacturing method thereof and superconducting coil using the same
 本発明は、超電導線材並びにその製造方法及びそれを用いた超電導コイルに関する。 The present invention relates to a superconducting wire, a manufacturing method thereof, and a superconducting coil using the same.
 超電導特性を示す材料として、ニオブ-チタン合金等が知られている。このニオブ-チタン合金等により構成される超電導線材をらせん状にコイルボビン等に捲回することで超電導コイルが作製される。そして、このような超電導コイルが磁気共鳴画像装置(MRI)や核磁気共鳴装置(NMR)等の医療診断機器に備えられ、超電導特性が利用されている。 Niobium-titanium alloys and the like are known as materials exhibiting superconducting properties. A superconducting coil is manufactured by winding a superconducting wire composed of this niobium-titanium alloy or the like spirally around a coil bobbin or the like. Such a superconducting coil is provided in medical diagnostic equipment such as a magnetic resonance imaging apparatus (MRI) and a nuclear magnetic resonance apparatus (NMR), and uses superconducting characteristics.
 より高い臨界電流密度を奏する超電導線材を得る観点から、ニオブ-チタン合金よりも優れた材料が求められている。この点、21世紀に入り、二ホウ化マグネシウム(MgB)が40Kで超電導の特性を示すことが明らかになって以来、二ホウ化マグネシウムに関し様々な研究がなされている。特に、二ホウ化マグネシウムは、従来のニオブ-チタン合金に代わる材料として、安定磁場が特に要求される医療診断装置用の超電導材料として注目されている。二ホウ化マグネシウムの磁場異方性は十分に小さいことから、結晶方位と捲回方向とが揃っていなくても、良好な臨界電流密度(J)が得られる。 From the viewpoint of obtaining a superconducting wire having a higher critical current density, a material superior to a niobium-titanium alloy is required. In this regard, since the beginning of the 21st century, it has become clear that magnesium diboride (MgB 2 ) exhibits superconducting properties at 40K, and various studies have been conducted on magnesium diboride. In particular, magnesium diboride has attracted attention as a superconducting material for medical diagnostic devices that require a stable magnetic field as a material to replace conventional niobium-titanium alloys. Since the magnetic anisotropy of magnesium diboride is sufficiently small, a good critical current density ( Jc ) can be obtained even if the crystal orientation and the winding direction are not aligned.
 二ホウ化マグネシウムを作製する方法として、パウダーインチューブ法(PIT法)が知られている。パウダーインチューブ法は、マグネシウムやホウ素等の原料粉末を金属管(シース)に充填した後伸線化し、この金属管を熱処理して金属管内に二ホウ化マグネシウムを生成させる方法である。この方法により、金属管内に二ホウ化マグネシウムが充填された超電導線材が得られ、特に約2T以下の低磁場で良好な臨界電流密度を示すことが知られている。 A powder-in-tube method (PIT method) is known as a method for producing magnesium diboride. The powder-in-tube method is a method in which a raw material powder such as magnesium or boron is filled in a metal tube (sheath) and then drawn, and the metal tube is heat treated to generate magnesium diboride in the metal tube. By this method, a superconducting wire in which magnesium diboride is filled in a metal tube is obtained, and it is known that a good critical current density is exhibited particularly in a low magnetic field of about 2 T or less.
 しかし、高磁場(例えば5T~10T程度)においては、パウダーインチューブ法により作製される超電導線材は、臨界電流密度に改善の余地がある。そこで、特に高磁場において良好な臨界電流密度を奏する超電導線材を得るため、薄膜の二ホウ化マグネシウムを得る方法が注目されている。この方法は、基板上にマグネシウムやホウ素等の原料を電子ビーム等により蒸着させ、基板上に、二ホウ化マグネシウムの薄膜を形成する方法である。この方法により作製した二ホウ化マグネシウムの薄膜は、高磁場において良好な臨界電流密度を示すため、例えば高磁場MRI等の医療診断機器や、超電導リニア等の超電導機器等、高磁場用途への適用が期待される。 However, in a high magnetic field (for example, about 5T to 10T), the superconducting wire produced by the powder-in-tube method has room for improvement in the critical current density. Therefore, in order to obtain a superconducting wire having a good critical current density particularly in a high magnetic field, a method for obtaining a thin film of magnesium diboride has attracted attention. In this method, a raw material such as magnesium or boron is vapor-deposited on a substrate by an electron beam or the like, and a magnesium diboride thin film is formed on the substrate. Magnesium diboride thin film produced by this method exhibits a good critical current density in a high magnetic field, so it can be applied to high magnetic field applications such as medical diagnostic equipment such as high magnetic field MRI and superconducting equipment such as superconducting linear. There is expected.
 薄膜の二ホウ化マグネシウムを用いて超電導コイルを作製する技術に関連して、特許文献1に記載の技術が知られている。特許文献1には、二ホウ化マグネシウム超電導線又は薄膜を巻き回してなる核磁気共鳴装置用プローブコイルが記載されている。 A technique described in Patent Document 1 is known in relation to a technique for producing a superconducting coil using a thin film magnesium diboride. Patent Document 1 describes a probe coil for a nuclear magnetic resonance apparatus formed by winding a magnesium diboride superconducting wire or a thin film.
特開2004-327593号公報JP 2004-327593 A
 基板上に形成された薄膜を基板とともにテープ状に切断し、コイルボビンに捲回して超電導コイルを作製しようとすると、テープ状の薄膜には、捲回に伴うひずみが生じる。特に、捲回されるコイルボビンの径が小さくなればなるほど、そのひずみが大きくなる。このようなひずみが大きくなれば、薄膜が基板から剥離したり薄膜内の通流抵抗が大きくなったりして、超電導コイルの臨界電流密度が低下することがある。従って、従来の技術においては、高磁場でも良好な臨界電流密度を奏する薄膜状の二ホウ化マグネシウムの利点が十分に活かされていない。 When a thin film formed on a substrate is cut into a tape shape together with the substrate and wound on a coil bobbin to produce a superconducting coil, the tape-shaped thin film is distorted due to the winding. In particular, the smaller the coil bobbin being wound, the greater the distortion. If such strain increases, the thin film may peel off from the substrate or the flow resistance in the thin film may increase, and the critical current density of the superconducting coil may decrease. Therefore, in the conventional technique, the advantage of the thin film-like magnesium diboride that exhibits a good critical current density even in a high magnetic field is not fully utilized.
 本発明はこのような課題に鑑みて為されたものであり、本発明が解決しようとする課題は、従来よりも良好な臨界電流密度が奏される超電導線材並びにその製造方法及びそれを用いた超電導コイルを提供することである。 The present invention has been made in view of such problems, and the problem to be solved by the present invention is a superconducting wire material that exhibits a better critical current density than the conventional one, a method for manufacturing the same, and a method using the same. It is to provide a superconducting coil.
 本発明者らは、前記課題を解決するべく鋭意検討した結果、超電導線材において、二ホウ化マグネシウム層が基材表面に形成されてなる超電導材料を所定方向に向かって配置することで前記課題を解決できることを見出した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have arranged the superconducting material in which a magnesium diboride layer is formed on the surface of a base material in a superconducting wire in a predetermined direction. I found that it can be solved.
 本発明によれば、従来よりも良好な臨界電流密度が奏される超電導線材並びにその製造方法及びそれを用いた超電導コイルを提供することができる。 According to the present invention, it is possible to provide a superconducting wire having a better critical current density than the conventional one, a manufacturing method thereof, and a superconducting coil using the same.
本実施形態の超電導線材の断面を示す図である。It is a figure which shows the cross section of the superconducting wire of this embodiment. 本実施形態の超電導線材に含まれる超電導材料を示す図である。It is a figure which shows the superconducting material contained in the superconducting wire of this embodiment. 本実施形態の超電導線材を備える超電導コイルを説明する図であり、(a)はその全体図、(b)は(a)のA部拡大図である。It is a figure explaining the superconducting coil provided with the superconducting wire of this embodiment, (a) is the whole figure, (b) is the A section enlarged view of (a). 本実施形態の超電導線材についての変形例の断面を示す図である。It is a figure which shows the cross section of the modification about the superconducting wire of this embodiment. 本実施形態の超電導線材についての別の変形例の断面を示す図である。It is a figure which shows the cross section of another modification about the superconducting wire of this embodiment. 本実施形態の超電導線材についてのさらに別の変形例の断面を示す図である。It is a figure which shows the cross section of another modification about the superconducting wire of this embodiment. 本実施形態の超電導線材についてのさらに別の変形例の断面を示す図である。It is a figure which shows the cross section of another modification about the superconducting wire of this embodiment. 本実施形態の超電導線材についてのさらに別の変形例の断面を示す図である。It is a figure which shows the cross section of another modification about the superconducting wire of this embodiment.
 以下、本発明を実施するための形態(本実施形態)を説明する。 Hereinafter, modes for carrying out the present invention (the present embodiment) will be described.
 図1は、本実施形態の超電導線材10の断面を示す図である。超電導線材10は、図1に示すように断面円形状であり、基材1と、基材1表面に形成された二ホウ化マグネシウム層2と、それらを絶縁固定する絶縁体3を含んで構成されている。なお、この絶縁体3により、超電導線材10の断面が円形状に維持されている。また、図1では図示していないが、超電導線材10には、二ホウ化マグネシウム層2を覆う保護膜5(図2参照)が含まれている。以下、基材1と、基材1表面に形成された二ホウ化マグネシウム層2とをまとめて、適宜「超電導材料4」という。 FIG. 1 is a view showing a cross section of the superconducting wire 10 of the present embodiment. The superconducting wire 10 has a circular cross section as shown in FIG. 1, and includes a base material 1, a magnesium diboride layer 2 formed on the surface of the base material 1, and an insulator 3 for insulating and fixing them. Has been. Note that the cross section of the superconducting wire 10 is maintained in a circular shape by the insulator 3. Although not shown in FIG. 1, the superconducting wire 10 includes a protective film 5 (see FIG. 2) that covers the magnesium diboride layer 2. Hereinafter, the base material 1 and the magnesium diboride layer 2 formed on the surface of the base material 1 are collectively referred to as “superconducting material 4” as appropriate.
 基材1は、その表面に二ホウ化マグネシウム層2が形成されるものであり、二ホウ化マグネシウム層2を支持するものでもある。超電導線材10において、基材1は熱力学的に安定な(熱的に反応しにくい)金属により構成されており、例えばステンレス、アルミニウム、ジュラルミン、銅、鉄等である。なお、超電導線材10の用途によっては、ケイ素等のセラミックス材料も好適である。 The substrate 1 has a surface on which a magnesium diboride layer 2 is formed, and also supports the magnesium diboride layer 2. In the superconducting wire 10, the substrate 1 is made of a thermodynamically stable (not easily thermally reacted) metal, such as stainless steel, aluminum, duralumin, copper, iron, or the like. A ceramic material such as silicon is also suitable depending on the application of the superconducting wire 10.
 基材1の厚みは、例えば10μm以上1mm以下である。ただし、基材1の厚みが厚くなればなるほど、超電導線材10の断面における二ホウ化マグネシウム層2の面積が相対的に小さくなる。そのため、基材1は過度に厚くならないことが好ましい。 The thickness of the substrate 1 is, for example, 10 μm or more and 1 mm or less. However, as the thickness of the base material 1 increases, the area of the magnesium diboride layer 2 in the cross section of the superconducting wire 10 becomes relatively small. Therefore, it is preferable that the base material 1 does not become excessively thick.
 二ホウ化マグネシウム層2は、二ホウ化マグネシウムにより構成され、蒸着法等により、基材1表面に固定(形成)されている。超電導線材10においては、図1の紙面に垂直な方向に電流が通流するようになっている。二ホウ化マグネシウム層2に電流が通流することで超電導線材10の周辺に磁界が発生し、超電導特性が奏される。 The magnesium diboride layer 2 is made of magnesium diboride, and is fixed (formed) on the surface of the substrate 1 by vapor deposition or the like. In the superconducting wire 10, a current flows in a direction perpendicular to the paper surface of FIG. 1. When a current flows through the magnesium diboride layer 2, a magnetic field is generated around the superconducting wire 10, and superconducting characteristics are exhibited.
 二ホウ化マグネシウム層2の厚みは、例えば0.2μm以上30μm以下である。二ホウ化マグネシウム層2の厚みをこの範囲とすることで、超電導線材10における二ホウ化マグネシウムの含有量を良好なものにすることができる。また、二ホウ化マグネシウム層2の厚みはできるだけ厚いことが好ましいものの、例えば30μm以下とすることで、超電導線材10の製造時間を短縮化することができる。 The thickness of the magnesium diboride layer 2 is, for example, not less than 0.2 μm and not more than 30 μm. By setting the thickness of the magnesium diboride layer 2 within this range, the content of magnesium diboride in the superconducting wire 10 can be improved. Moreover, although it is preferable that the thickness of the magnesium diboride layer 2 is as thick as possible, the manufacturing time of the superconducting wire 10 can be shortened by setting it to 30 μm or less, for example.
 超電導線材10においては、電流の通流方向に垂直な方向の断面(即ち、図1の上下左右方向に拡がる断面)において、超電導材料4(より具体的には二ホウ化マグネシウム層2)は、少なくとも二方向に向かって配置されている。即ち、超電導線材10においては、当該断面において、上下方向と、当該上下方向と交差(図1では直交)する、二ホウ化マグネシウム層2の基材1への積層方向(固定方向、図1の左右方向)との二方向に向かって、他の超電導材料4が配置されている。 In the superconducting wire 10, the superconducting material 4 (more specifically, the magnesium diboride layer 2) is in a cross section perpendicular to the current flow direction (that is, a cross section extending in the vertical and horizontal directions in FIG. 1). They are arranged in at least two directions. That is, in the superconducting wire 10, in the cross section, the stacking direction (fixing direction, FIG. 1) of the magnesium diboride layer 2 that intersects the vertical direction and intersects the vertical direction (orthogonal in FIG. 1). Another superconducting material 4 is arranged in two directions (left and right direction).
 これをさらに換言すれば、図1の超電導線材10においては、上下方向に複数個の超電導材料4が配置されているとともに、上下方向に直交する左右方向に複数個の超電導材料4が配置されている。上下方向に配置されている超電導材料4の数は、図1の超電導材料4Aを基準としたときには、超電導材料4Aを含めて7個(超電導材料4Aの上側に2個、下側に4個)になる。また、左右方向に配置されている超電導材料4の数は、図1の超電導材料4Aを基準としたときには、超電導材料4Aを含めて7個(超電導材料4Aの左側に4個、右側に2個)になる。そして、このように超電導材料4を配置することで、一方向のみではなく、様々な方向に超電導材料4を配置することができる。そのため、超電導線材10の周囲に形成される磁界のムラを抑制することができる。これにより、良好な臨界電流密度を得ることができる。 In other words, in the superconducting wire 10 of FIG. 1, a plurality of superconducting materials 4 are arranged in the vertical direction, and a plurality of superconducting materials 4 are arranged in the left-right direction orthogonal to the vertical direction. Yes. The number of superconducting materials 4 arranged in the vertical direction is 7 including the superconducting material 4A when the superconducting material 4A of FIG. 1 is used as a reference (two on the upper side of the superconducting material 4A and four on the lower side). become. The number of superconducting materials 4 arranged in the left-right direction is 7 including the superconducting material 4A (4 on the left side and 2 on the right side of the superconducting material 4A) with reference to the superconducting material 4A in FIG. )become. By arranging the superconducting material 4 in this way, the superconducting material 4 can be arranged not only in one direction but also in various directions. Therefore, the unevenness of the magnetic field formed around the superconducting wire 10 can be suppressed. Thereby, a good critical current density can be obtained.
 また、超電導材料4が直交する二方向に向かって配置されていることで、超電導線材10の断面における中心を基準に上下左右が対称の構造を有する超電導線材10とすることができる。これにより、超電導線材10の周囲に形成される磁界を均一化することができ、よりいっそう良好な臨界電流密度を得ることができる。 In addition, since the superconducting material 4 is arranged in two orthogonal directions, the superconducting wire 10 having a vertically and horizontally symmetrical structure with respect to the center of the cross section of the superconducting wire 10 can be obtained. Thereby, the magnetic field formed around the superconducting wire 10 can be made uniform, and an even better critical current density can be obtained.
 また、例えば直径がLの超電導線材10を作製する際、二ホウ化マグネシウム層2の幅(図1の上下方向の長さ)がLの超電導材料4を一つのみ用いるのではなく、図1のように細かく区切った複数の超電導材料4を配置することで、コイルボビン20(図3参照)に捲回するときに二ホウ化マグネシウム層2に生じるひずみを十分に抑制することができる。これにより、臨界電流密度の低下をより確実に抑制し、より良好な臨界電流密度を得ることができる。 Further, for example, when the superconducting wire 10 having a diameter L is produced, not only one superconducting material 4 having a width (length in the vertical direction in FIG. 1) of the magnesium diboride layer 2 of L is used. By disposing a plurality of superconducting materials 4 finely divided as described above, strain generated in the magnesium diboride layer 2 when wound around the coil bobbin 20 (see FIG. 3) can be sufficiently suppressed. Thereby, the fall of a critical current density can be suppressed more reliably and a better critical current density can be obtained.
 さらには、前記の断面において、二ホウ化マグネシウム層2の断面積は、図1に示すように各超電導材料4において等しくなっている。このように二ホウ化マグネシウム層2を形成することで、各超電導線材4の通流抵抗を均一化し、各超電導線材4を通流する電流を等しくすることができる。これにより、良好な臨界電流密度を得ることができる。 Furthermore, in the cross section, the cross sectional area of the magnesium diboride layer 2 is equal in each superconducting material 4 as shown in FIG. By forming the magnesium diboride layer 2 in this way, the flow resistance of each superconducting wire 4 can be made uniform, and the current flowing through each superconducting wire 4 can be made equal. Thereby, a good critical current density can be obtained.
 また、超電導線材10においては、二ホウ化マグネシウム層2は、基材1表面で密に形成されている。即ち、二ホウ化マグネシウム層2においては、空孔が殆ど存在しない。これにより、空孔の存在による電流の流路減少を抑制し、二ホウ化マグネシウム層2を通流する電流を均一化して良好な臨界電流密度を得ることができる。なお、二ホウ化マグネシウム層2が密に形成されているか否かは、二ホウ化マグネシウム層2の断面を電子顕微鏡等により観察することで判断することができる。 Further, in the superconducting wire 10, the magnesium diboride layer 2 is densely formed on the surface of the substrate 1. That is, the magnesium diboride layer 2 has almost no pores. As a result, it is possible to suppress a decrease in the flow path of the current due to the presence of the pores, uniformize the current flowing through the magnesium diboride layer 2 and obtain a good critical current density. Whether or not the magnesium diboride layer 2 is densely formed can be determined by observing the cross section of the magnesium diboride layer 2 with an electron microscope or the like.
 二ホウ化マグネシウム層2を密に形成する方法としては、例えば、二ホウ化マグネシウムを蒸着法やスパッタ法等により基材1表面に固定することで、密な二ホウ化マグネシウム層2を形成することができる。蒸着法やスパッタ法等の具体的手法としては、パルスレーザーアブレーション(PLD)法、電子ビーム法、イオンビーム法等が挙げられる。 As a method for forming the magnesium diboride layer 2 densely, for example, the magnesium diboride layer 2 is formed by fixing the magnesium diboride to the surface of the substrate 1 by vapor deposition or sputtering. be able to. Specific methods such as vapor deposition and sputtering include a pulse laser ablation (PLD) method, an electron beam method, an ion beam method, and the like.
 絶縁体3は、超電導材料4を束ねるとともに、外部との間で絶縁を図るものである。即ち、超電導材料4は、絶縁体3により被覆されており、これにより、絶縁体材料4が線材化されていることになる。絶縁体3は例えばエナメルである。また、前記のように超電導線材10の断面が円形状になるように、超電導線材10を構成する超電導材料4が絶縁体3により被覆されている。これにより、超電導線材10がコイルボビン20(図3参照)に対してコイル状に捲回されたときに、超電導線材10にかかるひずみをより小さくすることができる。 The insulator 3 bundles the superconducting material 4 and is insulated from the outside. That is, the superconducting material 4 is covered with the insulator 3, whereby the insulator material 4 is turned into a wire. The insulator 3 is, for example, enamel. Further, as described above, the superconducting material 4 constituting the superconducting wire 10 is covered with the insulator 3 so that the cross section of the superconducting wire 10 is circular. Thereby, when the superconducting wire 10 is wound around the coil bobbin 20 (see FIG. 3) in a coil shape, the strain applied to the superconducting wire 10 can be further reduced.
 図2は、本実施形態の超電導線材10に含まれる超電導材料4を示す図である。超電導材料4に含まれる二ホウ化マグネシウム層2には、二ホウ化マグネシウム層2の全面を上下左右方向から覆うように、保護膜5が形成されている。二ホウ化マグネシウム層2は酸化しやすいため、保護膜5が形成されていることで二ホウ化マグネシウム層2への酸素の接触を遮断し、二ホウ化マグネシウム層2の酸化が防止される。 FIG. 2 is a diagram showing the superconducting material 4 included in the superconducting wire 10 of the present embodiment. A protective film 5 is formed on the magnesium diboride layer 2 included in the superconducting material 4 so as to cover the entire surface of the magnesium diboride layer 2 in the vertical and horizontal directions. Since the magnesium diboride layer 2 is easy to oxidize, the protective film 5 is formed to block the contact of oxygen to the magnesium diboride layer 2 and to prevent the magnesium diboride layer 2 from being oxidized.
 保護膜5は、臨界電流密度を向上させる観点から、ピンニングセンタとして機能する材料が好ましい。具体的には、前記のように二ホウ化マグネシウム層2の酸化を防止しつつピンニングセンタとしての機能を発揮させる観点からは、例えばニッケルが挙げられる。 The protective film 5 is preferably made of a material that functions as a pinning center from the viewpoint of improving the critical current density. Specifically, nickel is mentioned from a viewpoint of exhibiting the function as a pinning center, preventing the oxidation of the magnesium diboride layer 2 as mentioned above.
 また、保護膜5の厚さは、二ホウ化マグネシウム層2の厚さにもよるため一概にはいえないが、例えば0.1nm以上0.3nm以下である。保護膜5の厚さをこの範囲にすることで、二ホウ化マグネシウム層2に対する保護膜5の厚さを好適な厚さ割合にして、より確実な酸化防止を図ることができるとともに、良好な臨界電流密度を得ることができる。また、超電導線材10をコイルボビン20に捲回したときに、捲回という機械的操作に伴う劣化がより確実に防止される。 Further, the thickness of the protective film 5 depends on the thickness of the magnesium diboride layer 2 and cannot be generally specified, but is, for example, not less than 0.1 nm and not more than 0.3 nm. By making the thickness of the protective film 5 within this range, the thickness of the protective film 5 with respect to the magnesium diboride layer 2 can be set to a suitable thickness ratio, so that more reliable oxidation prevention can be achieved, and good A critical current density can be obtained. Moreover, when the superconducting wire 10 is wound around the coil bobbin 20, the deterioration associated with the mechanical operation of winding is more reliably prevented.
 超電導線材10は、例えば以下のようにして作製可能である。まず、基材1の表面に、二ホウ化マグネシウム層2を形成することで、超電導材料4が得られる(超電導材料作製工程)。二ホウ化マグネシウム層2の形成方法としては、前記のように、例えば蒸着法やスパッタ法が適用可能である。また、必要に応じて、保護膜5が蒸着等により形成される。そして、得られた超電導材料4を用いて、基材1に対する二ホウ化マグネシウム層2の固定方向と、当該固定方向に交差する方向との少なくとも二方向(図1に示す例では直交する二方向)に向かって、二ホウ化マグネシウム層2の断面積が等しい超電導材料4同士が絶縁体3により固定されて線材化される。これにより、超電導線材10が得られる(線材化工程)。 The superconducting wire 10 can be manufactured as follows, for example. First, the superconducting material 4 is obtained by forming the magnesium diboride layer 2 on the surface of the substrate 1 (superconducting material manufacturing step). As a method for forming the magnesium diboride layer 2, for example, a vapor deposition method or a sputtering method can be applied as described above. Moreover, the protective film 5 is formed by vapor deposition etc. as needed. And using the obtained superconducting material 4, at least two directions (two directions orthogonal in the example shown in FIG. 1) of the fixing direction of the magnesium diboride layer 2 with respect to the base material 1 and the direction crossing the fixing direction. ), The superconducting materials 4 having the same cross-sectional area of the magnesium diboride layer 2 are fixed by the insulator 3 to form a wire. Thereby, the superconducting wire 10 is obtained (wire material forming step).
 また、超電導線材10は、例えば以下のようにして作製することもできる。まず、矩形状の基板(テープ状に切断されることで基材1となる)に対し、二ホウ化マグネシウム層2が形成される。また、必要に応じて、保護膜5が蒸着等により形成される。次いで、二ホウ化マグネシウム層2が形成された基板を、二ホウ化マグネシウム層2とともに所望の幅となるように切断することで、二ホウ化マグネシウム層2が形成された基材1(即ち、超電導材料4)が得られる(超電導材料作製工程)。そして、前記の線材化工程と同様にして、超電導線材10が得られる。 Also, the superconducting wire 10 can be produced as follows, for example. First, a magnesium diboride layer 2 is formed on a rectangular substrate (which becomes a base material 1 by being cut into a tape shape). Moreover, the protective film 5 is formed by vapor deposition etc. as needed. Next, the substrate on which the magnesium diboride layer 2 is formed is cut together with the magnesium diboride layer 2 so as to have a desired width, whereby the base material 1 on which the magnesium diboride layer 2 is formed (that is, A superconducting material 4) is obtained (superconducting material manufacturing step). Then, the superconducting wire 10 is obtained in the same manner as in the wire forming step.
 さらには、超電導線材10は、例えば以下のようにしても作製することができる。まず、矩形状の基板(テープ状に切断されることで基材1となる)に対し、二ホウ化マグネシウム層2を構成する原料が固定される。原料としては、例えばマグネシウム粉末、ホウ素粉末、炭化ホウ素粉末等が挙げられる。次いで、基板を熱処理し、これにより、基板表面において二ホウ化マグネシウム層2が形成される。このときの熱処理温度としては、例えば500℃~900℃である。以上の操作により、二ホウ化マグネシウム層2が形成された基板が得られる。 Furthermore, the superconducting wire 10 can be manufactured as follows, for example. First, the raw material which comprises the magnesium diboride layer 2 is fixed with respect to a rectangular-shaped board | substrate (it becomes the base material 1 by being cut | disconnected in tape shape). Examples of the raw material include magnesium powder, boron powder, and boron carbide powder. Next, the substrate is heat-treated, whereby the magnesium diboride layer 2 is formed on the substrate surface. The heat treatment temperature at this time is, for example, 500 ° C. to 900 ° C. By the above operation, a substrate on which the magnesium diboride layer 2 is formed is obtained.
 そして、必要に応じて保護膜5を蒸着等により形成した後、二ホウ化マグネシウム層2の断面積が等しくなるように切断することで、基材1に二ホウ化マグネシウム層が形成された超電導材料4が得られる。その後、超電導材料4において、二ホウ化マグネシウム層2が少なくとも二方向(図1に示す例では直交する二方向)に向かって配置されるように、断面積が等しい二ホウ化マグネシウム層2が形成された基材1同士が絶縁体3により固定化される。これにより、前記の線材化工程と同様にして超電導材料4が線材化され、超電導線材10が得られる(超電導材料作製工程)。 And after forming the protective film 5 by vapor deposition etc. as needed, it cut | disconnects so that the cross-sectional area of the magnesium diboride layer 2 may become equal, The superconductivity by which the magnesium diboride layer was formed in the base material 1 Material 4 is obtained. Thereafter, in the superconducting material 4, the magnesium diboride layer 2 having the same cross-sectional area is formed so that the magnesium diboride layer 2 is arranged in at least two directions (two directions orthogonal in the example shown in FIG. 1). The base materials 1 thus fixed are fixed by the insulator 3. Thereby, the superconducting material 4 is turned into a wire in the same manner as in the wire forming step, and the superconducting wire 10 is obtained (superconducting material manufacturing step).
 図3は、本実施形態の超電導線材10を備える超電導コイル100を説明する図であり、(a)はその全体図、(b)は(a)のA部拡大図である。図3(a)に示すように、超電導コイル100は、超電導線材10がコイルボビン20にらせん状に捲回されてなり、超電導線材100には、電源30が接続されている。そして、電源30から超電導線材10に電流が通流されることで、コイルボビン20の中心軸に沿って磁界が発生するようになっている。 FIG. 3 is a diagram for explaining a superconducting coil 100 including the superconducting wire 10 of the present embodiment, where (a) is an overall view thereof, and (b) is an enlarged view of part A of (a). As shown in FIG. 3A, the superconducting coil 100 has a superconducting wire 10 spirally wound around a coil bobbin 20, and a power source 30 is connected to the superconducting wire 100. A magnetic field is generated along the central axis of the coil bobbin 20 by passing a current from the power supply 30 to the superconducting wire 10.
 また、超電導線材10は、図3(b)に示すように、超電導材料4をコイルボビン20に対して所定方向に向かせるようにして、コイルボビン20に捲回されている。具体的には、各超電導材料4において、超電導材料4を構成する基材1がコイルボビン20側に配置されるように、超電導線材10がコイルボビン20に捲回されている。これを換言すれば、超電導線材10は、二ホウ化マグネシウム層2が基材1よりも外側に配置されるように、コイルボビン20に捲回されている。 Further, as shown in FIG. 3B, the superconducting wire 10 is wound around the coil bobbin 20 so that the superconducting material 4 faces the coil bobbin 20 in a predetermined direction. Specifically, in each superconducting material 4, the superconducting wire 10 is wound around the coil bobbin 20 so that the base material 1 constituting the superconducting material 4 is disposed on the coil bobbin 20 side. In other words, the superconducting wire 10 is wound around the coil bobbin 20 so that the magnesium diboride layer 2 is disposed outside the base material 1.
 このような相対的位置関係になるように超電導線材10を捲回することで、捲回に伴う二ホウ化マグネシウム層2のひずみをできるだけ小さくすることができる。即ち、二ホウ化マグネシウム層2が外側(コイルボビン20から遠い側)に配置されているため、コイルボビン20に対して内側(コイルボビン20に近い側)に配置する場合と比べて、捲回された二ホウ化マグネシウム層2の曲率半径が大きくなる。そのため、捲回に伴うひずみを小さくすることができる。特に、図3では模式的に捲回して示しているが、現実には極めて多数回捲回されるため、二ホウ化マグネシウム層2に生じるひずみをできるだけ小さくすることで、二ホウ化マグネシウム層2の通流抵抗をできるだけ小さくすることができる。これにより、より高い臨界電流密度を図ることができる。 By winding the superconducting wire 10 so as to have such a relative positional relationship, the strain of the magnesium diboride layer 2 accompanying the winding can be made as small as possible. In other words, since the magnesium diboride layer 2 is disposed on the outer side (the side far from the coil bobbin 20), the wound two layers are compared with the case where the magnesium diboride layer 2 is disposed on the inner side (the side closer to the coil bobbin 20). The radius of curvature of the magnesium boride layer 2 is increased. Therefore, the distortion accompanying winding can be reduced. In particular, FIG. 3 schematically shows a winding, but in reality, the winding is actually performed many times. Therefore, by reducing the strain generated in the magnesium diboride layer 2 as much as possible, the magnesium diboride layer 2 The flow resistance can be made as small as possible. Thereby, a higher critical current density can be achieved.
 なお、図3(b)では、コイルボビン20の中心軸と基材1とが平行になるように超電導線材10を捲回しているが、基材1がこの中心軸に対して平行な状態から少し傾くようにして、超電導線材10を捲回してもよい。即ち、超電導線材10はコイルボビン20に対してらせん状に捲回されるため、厳密に平行になるように超電導線材10を捲回することは難しい。そこで、平行な状態から少し傾けるようにして超電導線材10を捲回することで、二ホウ化マグネシウム層2のひずみをより抑制することができる。 In FIG. 3B, the superconducting wire 10 is wound so that the central axis of the coil bobbin 20 and the base material 1 are parallel to each other. The superconducting wire 10 may be wound so as to be inclined. That is, since the superconducting wire 10 is spirally wound around the coil bobbin 20, it is difficult to wind the superconducting wire 10 so as to be strictly parallel. Therefore, the strain of the magnesium diboride layer 2 can be further suppressed by winding the superconducting wire 10 so as to be slightly inclined from the parallel state.
 図4は、本実施形態の超電導線材10についての変形例(超電導線材11)の断面を示す図である。超電導線材11においては、図1の超電導線材10とは異なり、絶縁体3が金属で被覆されている。具体的には、図4に示すように、超電導線材11は、超電導材料4とそれを固定する絶縁体3とを金属管6に収容してなる。 FIG. 4 is a view showing a cross section of a modification (superconducting wire 11) of the superconducting wire 10 of the present embodiment. In the superconducting wire 11, unlike the superconducting wire 10 of FIG. 1, the insulator 3 is covered with a metal. Specifically, as shown in FIG. 4, the superconducting wire 11 includes a superconducting material 4 and an insulator 3 that fixes the superconducting material 4 in a metal tube 6.
 このような形態の超電導線材11とすることで、絶縁体3で超電導材料4を固定するときの操作が容易になる。また、超電導線材11の外表面が金属管6により構成されるため、超電導線材11の機械的強度をより高めることができる。 By using the superconducting wire 11 having such a configuration, the operation when fixing the superconducting material 4 with the insulator 3 becomes easy. Moreover, since the outer surface of the superconducting wire 11 is composed of the metal tube 6, the mechanical strength of the superconducting wire 11 can be further increased.
 図5は、本実施形態の超電導線材10についての別の変形例(超電導線材12)の断面を示す図である。超電導線材12においては、図1の超電導線材10と同様に、その断面における各二ホウ化マグネシウム層2の断面積が等しくなっている。ただ、図1に示す超電導線材10において、各超電導材料4の二ホウ化マグネシウム層2の寸法も等しくなっているが、図5の超電導線材12においては、各超電導材料4の二ホウ化マグネシウム層2の寸法(図1の上下左右方向の寸法)がそれぞれ異なっている。 FIG. 5 is a view showing a cross section of another modified example (superconducting wire 12) of the superconducting wire 10 of the present embodiment. In the superconducting wire 12, as in the superconducting wire 10 of FIG. 1, the cross-sectional areas of the respective magnesium diboride layers 2 in the cross section are equal. However, in the superconducting wire 10 shown in FIG. 1, the dimensions of the magnesium diboride layer 2 of each superconducting material 4 are also equal, but in the superconducting wire 12 of FIG. 5, the magnesium diboride layer of each superconducting material 4. 2 have different dimensions (dimensions in the vertical and horizontal directions in FIG. 1).
 超電導線材12をこのように構成しても、図1の超電導線材10と同様に、良好な臨界電流密度を得ることができる。また、超電導線材12を作製するときに、各基材1に形成された二ホウ化マグネシウム層2の厚さにムラがある場合でも、二ホウ化マグネシウム層2の断面積が等しい超電導線材4同士を用いることで、良好な臨界電流密度を奏する超電導線材12を得ることができる。さらに、二ホウ化マグネシウム層2が形成された例えば矩形状の基板を切断して超電導材料4を得る場合には、もし、形成された二ホウ化マグネシウム層2の厚さにムラがある場合でも、その厚さに応じた幅で切断することで、断面積が等しい超電導材料4を備える超電導線材12とすることができる。 Even if the superconducting wire 12 is configured in this manner, a good critical current density can be obtained as in the superconducting wire 10 of FIG. Further, when the superconducting wire 12 is produced, even when the thickness of the magnesium diboride layer 2 formed on each base material 1 is uneven, the superconducting wires 4 having the same cross-sectional area of the magnesium diboride layer 2 are connected to each other. Can be used to obtain a superconducting wire 12 having a good critical current density. Further, when the superconducting material 4 is obtained by cutting, for example, a rectangular substrate on which the magnesium diboride layer 2 is formed, even if the thickness of the formed magnesium diboride layer 2 is uneven. The superconducting wire 12 having the superconducting material 4 having the same cross-sectional area can be obtained by cutting with a width corresponding to the thickness.
 図6は、本実施形態の超電導線材10についてのさらに別の変形例(超電導線材13)の断面を示す図である。図1の超電導線材10においては、一つの基材1に対して一つの二ホウ化マグネシウム層2が形成されていたが、図6の超電導線材13においては、一つの基材1に対して複数の二ホウ化マグネシウム層2が形成されている。 FIG. 6 is a view showing a cross section of still another modified example (superconducting wire 13) of the superconducting wire 10 of the present embodiment. In the superconducting wire 10 of FIG. 1, one magnesium diboride layer 2 is formed on one base material 1. However, in the superconducting wire 13 of FIG. The magnesium diboride layer 2 is formed.
 前記のように、矩形状の基板上に矩形状の二ホウ化マグネシウム層2を形成し、その後にこれらを切断することで超電導線材10を得ることができるが、図6に示す超電導線材13とすれば、この切断工程を省略することができる。そのため、二ホウ化マグネシウム層2に剪断応力がかかることがないため、切断面近傍における二ホウ化マグネシウム2の基板1からの剥離をより確実に防止することができる。 As described above, the superconducting wire 10 can be obtained by forming the rectangular magnesium diboride layer 2 on the rectangular substrate and then cutting these layers, and the superconducting wire 13 shown in FIG. Then, this cutting process can be omitted. Therefore, since no shear stress is applied to the magnesium diboride layer 2, it is possible to more reliably prevent the magnesium diboride 2 from being peeled from the substrate 1 in the vicinity of the cut surface.
 なお、基材1表面に複数の二ホウ化マグネシウム層2を配置する方法としては、例えば、基材1の全面に二ホウ化マグネシウム層2を形成した後、エッチング等の方法により複数の二ホウ化マグネシウム2に区切ればよい。二ホウ化マグネシウム層2は通常均一な厚さで形成されることから、同じ厚さの二ホウ化マグネシウム層2を単一の基材1表面により確実に形成することができる。 In addition, as a method of disposing the plurality of magnesium diboride layers 2 on the surface of the base material 1, for example, after forming the magnesium diboride layer 2 on the entire surface of the base material 1, a plurality of diboride layers are formed by a method such as etching. What is necessary is just to divide into magnesium chloride 2. Since the magnesium diboride layer 2 is usually formed with a uniform thickness, the magnesium diboride layer 2 having the same thickness can be reliably formed on the surface of the single substrate 1.
 図7は、本実施形態の超電導線材10についてのさらに別の変形例(超電導線材14)の断面を示す図である。図1の超電導線材10においては、超電導材料4が上下左右に階段状に配置されているが、図7の超電導線材14においては、超電導材料4が上下左右方向と斜め方向とに配置されている。超電導材料4をこのように配置しても、良好な臨界電流密度が得られる。従って、超電導線材4を絶縁体3で固定するときに超電導材料4を厳密に位置決めして配置する必要がなく、良好な臨界電流密度が維持された状態で、超電導線材14の作製が容易になる。 FIG. 7 is a view showing a cross section of still another modified example (superconducting wire 14) of the superconducting wire 10 of the present embodiment. In the superconducting wire 10 shown in FIG. 1, the superconducting material 4 is arranged stepwise vertically and horizontally. In the superconducting wire 14 shown in FIG. 7, the superconducting material 4 is arranged vertically and horizontally and obliquely. . Even if the superconducting material 4 is arranged in this way, a good critical current density can be obtained. Therefore, when the superconducting wire 4 is fixed by the insulator 3, it is not necessary to strictly position and arrange the superconducting material 4, and the superconducting wire 14 can be easily manufactured while maintaining a good critical current density. .
 図8は、本実施形態の超電導線材10についてのさらに別の変形例(超電導線材15)の断面を示す図である。図1の超電導線材10においては、その断面が円形状であったが、図8の超電導線材15においては、その断面が矩形状になっている。断面矩形状の超電導線材15とすることで、コイルボビン20(図3参照)に捲回するときに、断面円形状とする場合と比べてスペースを無駄なく捲回することができる。これにより、巻き数を増加させることができる。 FIG. 8 is a view showing a cross section of still another modified example (superconducting wire 15) of the superconducting wire 10 of the present embodiment. The superconducting wire 10 in FIG. 1 has a circular cross section, but the superconducting wire 15 in FIG. 8 has a rectangular cross section. By using the superconducting wire 15 having a rectangular cross section, when winding on the coil bobbin 20 (see FIG. 3), the space can be wound more efficiently than when the cross section is circular. Thereby, the number of windings can be increased.
 以下、実施例を挙げて、本実施形態をより具体的に説明する。 Hereinafter, the present embodiment will be described more specifically with reference to examples.
<実施例1及び比較例1>
(実施例1)
 図1の超電導線材10を以下のようにして作製した。
 まず、マグネシウム粉末(純度99.9質量%)と粒状ホウ素(純度99.5質量%)とを、マグネシウムとホウ素のモル比が1:2になるよう秤量し、らいかい機を用いて120分間混合した。次いで、得られた混合物をアルゴン雰囲気中900℃で10時間熱処理することで、二ホウ化マグネシウムを得た。
<Example 1 and Comparative Example 1>
Example 1
The superconducting wire 10 of FIG. 1 was produced as follows.
First, magnesium powder (purity 99.9% by mass) and granular boron (purity 99.5% by mass) are weighed so that the molar ratio of magnesium and boron is 1: 2, and 120 minutes using a roughing machine. Mixed. Subsequently, the obtained mixture was heat-treated at 900 ° C. for 10 hours in an argon atmosphere to obtain magnesium diboride.
 得られた二ホウ化マグネシウムを用い、パルスレーザーアブレーション法(PLD法)により、ジュラルミン板(基材1)表面に二ホウ化マグネシウム層2を形成した。具体的には、得られた二ホウ化マグネシウムをプレスして得られたタブレットをターゲットとして、アルゴン雰囲気中、このターゲットに室温で1J/cm~5J/cmのレーザ光を照射した。そして、発生した二ホウ化マグネシウムの蒸気により、基板ホルダを取り付けた厚さ500μmのジュラルミン板表面に、二ホウ化マグネシウムを蒸着させた。蒸着させた二ホウ化マグネシウムの厚さは30μm、幅は0.2cm、長さは10cmとした。ここで、厚さは図2の紙面左右方向の長さを表し、幅は図2の紙面上下方向の長さを表し、長さは図2の紙面に垂直な方向の長さを表す。以下、同様の表現を用いた場合には、同様の長さを表すものとする。蒸着後、300℃~800℃で温度を変化させながら1時間アニールし、室温まで冷却した。これにより、二ホウ化マグネシウム層2が表面に形成された基材1(即ち超電導材料4)を得た。 Using the obtained magnesium diboride, a magnesium diboride layer 2 was formed on the surface of the duralumin plate (base material 1) by a pulse laser ablation method (PLD method). Specifically, the tablets obtained magnesium diboride and pressed obtained as a target in an argon atmosphere and irradiated with laser light of 1J / cm 2 ~ 5J / cm 2 at room temperature to this target. And the magnesium diboride was vapor-deposited on the surface of the 500-micrometer-thick duralumin board which attached the substrate holder with the vapor | steam of the generated magnesium diboride. The thickness of the evaporated magnesium diboride was 30 μm, the width was 0.2 cm, and the length was 10 cm. Here, the thickness represents the length in the left-right direction in FIG. 2, the width represents the length in the vertical direction in FIG. 2, and the length represents the length in the direction perpendicular to the paper in FIG. Hereinafter, when the same expression is used, the same length is expressed. After vapor deposition, annealing was performed for 1 hour while changing the temperature from 300 ° C. to 800 ° C., and then cooled to room temperature. This obtained the base material 1 (namely, superconducting material 4) in which the magnesium diboride layer 2 was formed in the surface.
 X線回折測定により、明瞭な回折ピークではないが、形成させた層が二ホウ化マグネシウムにより構成されていることを確認した。また、形成した二ホウ化マグネシウム層2について臨界電流密度を測定したところ、5T、20Kで1600A/mmであった。 Although it was not a clear diffraction peak by X-ray diffraction measurement, it was confirmed that the formed layer was composed of magnesium diboride. Moreover, when the critical current density was measured about the formed magnesium diboride layer 2, it was 1600 A / mm < 2 > in 5T and 20K.
 二ホウ化マグネシウム層2が形成された基材1を図1に示すような階段状に配置し、断面が直径約1cmの円形状となるように絶縁体3(エナメル)で固定化して、超電導線材10を得た。そして、得られた超電導線材10を用いた超電導コイルの特性評価を行うため、得られた超電導線材10をらせん状に半円形状に変形させた。そして、超電導線材10に通電し、臨界電流密度を測定したところ、5T、20Kで1500A/mmであった。 The base material 1 on which the magnesium diboride layer 2 is formed is arranged in a stepped shape as shown in FIG. 1, and is fixed with an insulator 3 (enamel) so that the cross section has a circular shape with a diameter of about 1 cm. A wire rod 10 was obtained. And in order to perform the characteristic evaluation of the superconducting coil using the obtained superconducting wire 10, the obtained superconducting wire 10 was transformed into a semicircular shape in a spiral shape. And when the superconducting wire 10 was energized and the critical current density was measured, it was 1500 A / mm 2 at 5T and 20K.
 この値(1500A/mm)は、基材1表面に形成された二ホウ化マグネシウム層2の臨界電流密度(1600A/mm)とほぼ同じ値である。従って、薄膜状の二ホウ化マグネシウムを線材化した場合であっても、二ホウ化マグネシウム層2における二ホウ化マグネシウム同士のコネクティビティを十分に確保し、薄膜状の二ホウ化マグネシウムの良好な臨界電流密度を維持できることがわかった。 This value (1500 A / mm 2 ) is substantially the same value as the critical current density (1600 A / mm 2 ) of the magnesium diboride layer 2 formed on the surface of the substrate 1. Therefore, even when thin-film magnesium diboride is formed into a wire, sufficient connectivity between the magnesium diboride layers in the magnesium diboride layer 2 is ensured, and good criticality of the thin-film magnesium diboride is ensured. It was found that the current density can be maintained.
(比較例1)
 実施例1では、ジュラルミン板上に厚さが30μm、幅が0.2cm、長さが10cmの二ホウ化マグネシウム層2を形成したが、比較例1では、幅が1cmであること以外は実施例1と同じ二ホウ化マグネシウム層2を形成した。形成した二ホウ化マグネシウム層2について臨界電流密度を測定したところ、5T、20Kで1600A/mmであった。
(Comparative Example 1)
In Example 1, the magnesium diboride layer 2 having a thickness of 30 μm, a width of 0.2 cm, and a length of 10 cm was formed on the duralumin plate. In Comparative Example 1, except that the width was 1 cm, it was carried out. The same magnesium diboride layer 2 as in Example 1 was formed. When the critical current density of the formed magnesium diboride layer 2 was measured, it was 1600 A / mm 2 at 5T and 20K.
 そして、この二ホウ化マグネシウム層2が形成された基材1(超電導材料4)を、基材1に対する二ホウ化マグネシウム層2の形成方向にのみ(即ち一方向にのみ)10枚配置し、実施例1と同様にして超電導線材を得た。そして、実施例1と同様にして超電導コイルの特性評価を行ったところ、臨界電流密度は、5T、20Kで900A/mmであった。 Then, 10 base materials 1 (superconducting material 4) on which the magnesium diboride layer 2 is formed are arranged only in the formation direction of the magnesium diboride layer 2 with respect to the base material 1 (that is, only in one direction), A superconducting wire was obtained in the same manner as in Example 1. When the characteristics of the superconducting coil were evaluated in the same manner as in Example 1, the critical current density was 900 A / mm 2 at 5T and 20K.
 この値(900A/mm)は、基材1上に形成された二ホウ化マグネシウム層2の臨界電流密度(1600A/mm)と比べて、約50%~60%の値であった。従って、比較例1のように一方向にのみ配置した場合だと、コイル化した場合に臨界電流密度が低下することがわかった。これは、コイル化により、二ホウ化マグネシウム層2における二ホウ化マグネシウム同士のコネクティビティが低下したためであると考えられる。 This value (900A / mm 2), compared with the critical current density of the formed on the substrate 1 a magnesium diboride layer 2 (1600A / mm 2), and a value of about 50% to 60%. Therefore, it was found that the critical current density is reduced when the coil is arranged in one direction as in Comparative Example 1, when the coil is formed. This is presumably because the connectivity between the magnesium diboride layers in the magnesium diboride layer 2 was reduced by coiling.
<実施例2>
 金属管6内に超電導材料4等を配置し、図6に示す超電導線材11を作製した。具体的には、実施例1と同様にして超電導材料4を作製し、絶縁体3としてのエナメルとともにニッケル製の金属管6に収容して超電導線材11を作製した。そして、得られた超電導線材11について、実施例1と同様にして超電導コイルの特性評価を行ったところ、臨界電流密度は、5T、20Kで1550A/mmであった。
<Example 2>
Superconducting material 4 and the like were placed in metal tube 6 to produce superconducting wire 11 shown in FIG. Specifically, the superconducting material 4 was produced in the same manner as in Example 1, and the superconducting wire 11 was produced by being housed in the nickel metal tube 6 together with the enamel as the insulator 3. And about the obtained superconducting wire 11, when the characteristic evaluation of the superconducting coil was performed like Example 1, the critical current density was 1550 A / mm < 2 > in 5T and 20K.
 この値(1550A/mm)は、基材1表面に形成された二ホウ化マグネシウム層2の臨界電流密度(1600A/mm)とほぼ同じ値である。従って、金属管6を備える場合であっても、実施例1と同様に、薄膜状の二ホウ化マグネシウムの良好な臨界電流密度を維持できることがわかった。 This value (1550 A / mm 2 ) is almost the same value as the critical current density (1600 A / mm 2 ) of the magnesium diboride layer 2 formed on the surface of the substrate 1. Therefore, even when the metal tube 6 is provided, it was found that the good critical current density of the thin film magnesium diboride can be maintained as in the first embodiment.
<実施例3>
 図5に示すような、二ホウ化マグネシウム層2の寸法は異なるものの断面積が等しい超電導材料4を用いたこと以外は実施例1と同様にして、超電導線材12を作製した。そして、得られた超電導線材12について、実施例1と同様にして超電導コイルの特性評価を行ったところ、臨界電流密度は、5T、20Kで1500A/mmであった。
<Example 3>
A superconducting wire 12 was produced in the same manner as in Example 1 except that a superconducting material 4 having the same cross-sectional area but different dimensions of the magnesium diboride layer 2 as shown in FIG. 5 was used. And about the obtained superconducting wire 12, when the characteristic evaluation of the superconducting coil was performed like Example 1, the critical current density was 1500 A / mm < 2 > at 5T and 20K.
 この値(1500A/mm)は、基材1表面に形成された二ホウ化マグネシウム層2の臨界電流密度(1600A/mm)とほぼ同じ値である。従って、二ホウ化マグネシウム層2の寸法が異なっていても、二ホウ化マグネシウム層2の断面積が等しければ、実施例1と同様に、薄膜状の二ホウ化マグネシウムの良好な臨界電流密度を維持できることがわかった。 This value (1500 A / mm 2 ) is substantially the same value as the critical current density (1600 A / mm 2 ) of the magnesium diboride layer 2 formed on the surface of the substrate 1. Therefore, even if the dimensions of the magnesium diboride layer 2 are different, as long as the cross-sectional areas of the magnesium diboride layer 2 are equal, the good critical current density of the thin film magnesium diboride can be obtained as in the first embodiment. I found that it can be maintained.
<実施例4>
 図6に示すような、一つの基材1に複数の二ホウ化マグネシウム層2を形成したこと以外は実施例1と同様にして超電導線材13を作製した。そして、得られた超電導線材13について、実施例1と同様にして超電導コイルの特性評価を行ったところ、臨界電流密度は、5T、20Kで1500A/mmであった。
<Example 4>
A superconducting wire 13 was produced in the same manner as in Example 1 except that a plurality of magnesium diboride layers 2 were formed on one base 1 as shown in FIG. And about the obtained superconducting wire 13, when the characteristic evaluation of the superconducting coil was performed like Example 1, the critical current density was 1500 A / mm < 2 > at 5T and 20K.
 この値(1500A/mm)は、基材1表面に形成された二ホウ化マグネシウム層2の臨界電流密度(1600A/mm)とほぼ同じ値である。従って、一つの基材1に形成される二ホウ化マグネシウム層2の数によらず、二ホウ化マグネシウム層2の断面積が等しければ、実施例1と同様に、薄膜状の二ホウ化マグネシウムの良好な臨界電流密度を維持できることがわかった。 This value (1500 A / mm 2 ) is substantially the same value as the critical current density (1600 A / mm 2 ) of the magnesium diboride layer 2 formed on the surface of the substrate 1. Therefore, if the cross-sectional area of the magnesium diboride layer 2 is equal regardless of the number of the magnesium diboride layers 2 formed on one base material 1, as in the first embodiment, a thin-film magnesium diboride layer is formed. It was found that a good critical current density can be maintained.
1 基材
2 二ホウ化マグネシウム層
3 絶縁体
4 超電導材料
5 保護膜
6 金属管
10,11,12,13,14,15 超電導線材
20 コイルボビン
100 超電導コイル
DESCRIPTION OF SYMBOLS 1 Base material 2 Magnesium diboride layer 3 Insulator 4 Superconducting material 5 Protective film 6 Metal tube 10, 11, 12, 13, 14, 15 Superconducting wire 20 Coil bobbin 100 Superconducting coil

Claims (12)

  1.  基材に二ホウ化マグネシウム層が固定されてなる超電導材料を複数備え、
     電流の通流方向に垂直な方向の断面において、前記二ホウ化マグネシウム層は、前記基材に対する前記二ホウ化マグネシウム層の固定方向と、当該固定方向に交差する方向との少なくとも二方向に向かって配置され、
     前記断面において、前記超電導材料を構成する前記二ホウ化マグネシウム層の断面積が、各超電導材料で等しくなっていることを特徴とする、超電導線材。
    A plurality of superconducting materials in which a magnesium diboride layer is fixed to a base material,
    In a cross section perpendicular to the direction of current flow, the magnesium diboride layer faces in at least two directions: a fixing direction of the magnesium diboride layer with respect to the substrate and a direction intersecting the fixing direction. Arranged,
    A superconducting wire, wherein the cross-sectional area of the magnesium diboride layer constituting the superconducting material is equal in each of the superconducting materials.
  2.  前記断面において、少なくも二方向に向かって配置されている前記二ホウ化マグネシウム層のうちの少なくとも一部が、直交する方向に向かって配置されていることを特徴とする、請求項1に記載の超電導線材。 The at least one part of the said magnesium diboride layer arrange | positioned toward the two directions in the said cross section is arrange | positioned toward the orthogonal direction, It is characterized by the above-mentioned. Superconducting wire.
  3.  前記基材には、一つの二ホウ化マグネシウム層が固定されていることを特徴とする、請求項1又は2に記載の超電導線材。 The superconducting wire according to claim 1 or 2, wherein one magnesium diboride layer is fixed to the base material.
  4.  前記基材には、複数の二ホウ化マグネシウム層が固定されていることを特徴とする、請求項1又は2に記載の超電導線材。 The superconducting wire according to claim 1 or 2, wherein a plurality of magnesium diboride layers are fixed to the base material.
  5.  前記基材は、二ホウ化マグネシウム層に対して熱力学的に安定な金属により構成されていることを特徴とする、請求項1又は2に記載の超電導線材。 The superconducting wire according to claim 1 or 2, wherein the substrate is made of a metal that is thermodynamically stable with respect to the magnesium diboride layer.
  6.  前記二ホウ化マグネシウム層は保護膜により覆われていることを特徴とする、請求項1又は2に記載の超電導線材。 The superconducting wire according to claim 1 or 2, wherein the magnesium diboride layer is covered with a protective film.
  7.  前記二ホウ化マグネシウム層は、前記基材表面で密に形成されていることを特徴とする、請求項1又は2に記載の超電導線材。 The superconducting wire according to claim 1 or 2, wherein the magnesium diboride layer is densely formed on the surface of the base material.
  8.  基材表面に二ホウ化マグネシウム層を形成して超電導材料を得る超電導材料作製工程と、
     電流の通流方向に垂直な方向の断面において、前記基材に対する前記二ホウ化マグネシウム層の固定方向と、当該固定方向に交差する方向との少なくとも二方向に向かって、二ホウ化マグネシウム層の断面積が等しい前記超電導材料同士を固定して線材化する線材化工程と、を含むことを特徴とする、超電導線材の製造方法。
    Forming a superconducting material by forming a magnesium diboride layer on the substrate surface;
    In a cross-section in a direction perpendicular to the direction of current flow, the magnesium diboride layer is oriented in at least two directions: a fixing direction of the magnesium diboride layer with respect to the substrate and a direction intersecting the fixing direction. A superconducting wire manufacturing method, comprising: a step of forming a wire by fixing the superconducting materials having the same cross-sectional area to each other.
  9.  前記断面において、少なくも二方向に向かって配置されている前記二ホウ化マグネシウム層のうちの少なくとも一部が、直交する方向に向かって配置されていることを特徴とする、請求項8に記載の超電導線材の製造方法。 The at least part of the said magnesium diboride layer arrange | positioned toward the two directions in the said cross section is arrange | positioned toward the orthogonal direction, It is characterized by the above-mentioned. Manufacturing method of superconducting wire.
  10.  基材に二ホウ化マグネシウム層が固定されてなる超電導材料を複数備え、電流の通流方向に垂直な方向の断面において、前記二ホウ化マグネシウム層は、前記基材に対する前記二ホウ化マグネシウム層の固定方向と、当該固定方向に交差する方向との少なくとも二方向に向かって配置され、前記断面において、前記超電導材料を構成する前記二ホウ化マグネシウム層の断面積が、各超電導材料で等しくなっている超電導線材と、前記超電導線材が捲回されたコイルボビンと、を備えていることを特徴とする、超電導コイル。 A plurality of superconducting materials in which a magnesium diboride layer is fixed to a base material, and the cross section in a direction perpendicular to the direction of current flow, the magnesium diboride layer is the magnesium diboride layer with respect to the base material And the cross-sectional area of the magnesium diboride layer constituting the superconducting material is equal in each superconducting material in the cross section. A superconducting coil, comprising: a superconducting wire that is wound around and a coil bobbin around which the superconducting wire is wound.
  11.  前記断面において、少なくも二方向に向かって配置されている前記二ホウ化マグネシウム層のうちの少なくとも一部が、直交する方向に向かって配置されていることを特徴とする、請求項10に記載の超電導コイル。 The at least one part of the said magnesium diboride layer arrange | positioned toward two directions in the said cross section is arrange | positioned toward the orthogonal direction, It is characterized by the above-mentioned. Superconducting coil.
  12.  前記超電導線材を構成する前記基材が前記コイルボビン側に配置されるように、前記超電導線材が前記コイルボビンに捲回されていることを特徴とする、請求項10又は11に記載の超電導コイル。 The superconducting coil according to claim 10 or 11, wherein the superconducting wire is wound around the coil bobbin so that the base material constituting the superconducting wire is disposed on the coil bobbin side.
PCT/JP2013/082857 2013-12-06 2013-12-06 Super-conducting wire material, production method therefor, and super-conducting coil using same WO2015083291A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/082857 WO2015083291A1 (en) 2013-12-06 2013-12-06 Super-conducting wire material, production method therefor, and super-conducting coil using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/082857 WO2015083291A1 (en) 2013-12-06 2013-12-06 Super-conducting wire material, production method therefor, and super-conducting coil using same

Publications (1)

Publication Number Publication Date
WO2015083291A1 true WO2015083291A1 (en) 2015-06-11

Family

ID=53273083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082857 WO2015083291A1 (en) 2013-12-06 2013-12-06 Super-conducting wire material, production method therefor, and super-conducting coil using same

Country Status (1)

Country Link
WO (1) WO2015083291A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328870A (en) * 1986-07-21 1988-02-06 Mitsubishi Electric Corp Formation of superconductive thin strip
JPH04138621A (en) * 1990-09-29 1992-05-13 Toshiba Corp Superconducting member
JP2010287475A (en) * 2009-06-12 2010-12-24 Fujikura Ltd Mgb2 superconductor and its manufacturing method
JP2011076821A (en) * 2009-09-30 2011-04-14 Hitachi Ltd Magnesium diboride wire, and manufacturing method thereof
JP2013122981A (en) * 2011-12-12 2013-06-20 Hitachi Ltd Superconducting magnet and method for connecting superconducting wire rod

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328870A (en) * 1986-07-21 1988-02-06 Mitsubishi Electric Corp Formation of superconductive thin strip
JPH04138621A (en) * 1990-09-29 1992-05-13 Toshiba Corp Superconducting member
JP2010287475A (en) * 2009-06-12 2010-12-24 Fujikura Ltd Mgb2 superconductor and its manufacturing method
JP2011076821A (en) * 2009-09-30 2011-04-14 Hitachi Ltd Magnesium diboride wire, and manufacturing method thereof
JP2013122981A (en) * 2011-12-12 2013-06-20 Hitachi Ltd Superconducting magnet and method for connecting superconducting wire rod

Similar Documents

Publication Publication Date Title
JP4743150B2 (en) Superconducting coil and superconducting conductor used therefor
KR100409057B1 (en) Oxide superconducting wire, solenoid coil, magnetic field generator, and method of producing oxide superconducting wire
JP4716324B2 (en) Superconductor substrate and method for producing the same
JPWO2014141777A1 (en) Superconducting conductor manufacturing method and superconducting conductor
JPWO2018062409A1 (en) core
JP4227143B2 (en) Nb3Sn superconducting wire and precursor therefor
JP6668350B2 (en) Superconducting wire, superconducting coil, MRI and NMR
JP2006228797A (en) Permanent current switch using magnesium diboride and its manufacturing method
JP5671324B2 (en) Nb3Sn superconducting wire precursor, method for producing Nb3Sn superconducting wire precursor, Nb3Sn superconducting wire, and superconducting magnet system
JP6704589B2 (en) Precursor wire for Nb3Al superconducting wire and Nb3Al superconducting wire
WO2015083291A1 (en) Super-conducting wire material, production method therefor, and super-conducting coil using same
JP2011142303A (en) Oxide superconducting bulk magnet member
JP2010097902A (en) PRECURSOR FOR MANUFACTURING Nb3Sn SUPERCONDUCTIVE WIRE, AND Nb3Sn SUPERCONDUCTIVE WIRE
JP2016126950A (en) Multicore superconducting wire material
JP2008130255A (en) Superconducting wire and manufacturing method therefor
US10460862B2 (en) Magnesium diboride superconducting thin-film wire and method for producing same
JP2007081254A (en) Superconductive electromagnet and method for manufacturing the same
WO2020090259A1 (en) Superconducting wire, superconducting coil using same, and mri
JP5695632B2 (en) Oxide superconducting wire, manufacturing method thereof, superconducting coil and superconducting cable
JP2000090754A (en) MANUFACTURE OF Nb3Al COMPOUND SUPERCONDUCTIVE WIRE AND SUPERCONDUCTIVE WIRE OBTAINED BY SAME
KR101017779B1 (en) APPARATUS AND METHOD FOR MANUFACTURING MgB2 SUPERCONDUCTING MULTI-CORE WIRE/TAPES AND MgB2 SUPERCONDUCTING MULTI-CORE WIRE/TAPES THEREOF
JP7414837B2 (en) Core for high frequency acceleration cavity and high frequency acceleration cavity using the core
JP7460879B2 (en) Nuclear magnetic resonance magnetic field generating device and method for producing the same
JP2011076821A (en) Magnesium diboride wire, and manufacturing method thereof
WO2015177831A1 (en) Superconducting wire rod

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13898578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP