WO2015081854A1 - 一种白蒺藜皂苷玻璃体腔注射给药系统及其应用 - Google Patents

一种白蒺藜皂苷玻璃体腔注射给药系统及其应用 Download PDF

Info

Publication number
WO2015081854A1
WO2015081854A1 PCT/CN2014/092821 CN2014092821W WO2015081854A1 WO 2015081854 A1 WO2015081854 A1 WO 2015081854A1 CN 2014092821 W CN2014092821 W CN 2014092821W WO 2015081854 A1 WO2015081854 A1 WO 2015081854A1
Authority
WO
WIPO (PCT)
Prior art keywords
intraocular pressure
group
gstt
high intraocular
ultrasound
Prior art date
Application number
PCT/CN2014/092821
Other languages
English (en)
French (fr)
Inventor
黄丽娜
申晓丽
曾平
廖明怡
李诺
Original Assignee
黄丽娜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黄丽娜 filed Critical 黄丽娜
Publication of WO2015081854A1 publication Critical patent/WO2015081854A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • A61K49/222Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
    • A61K49/223Microbubbles, hollow microspheres, free gas bubbles, gas microspheres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/06Antiglaucoma agents or miotics

Definitions

  • the present invention relates to the field of saponins containing saponins which can be administered by intravitreal injection for the treatment of ocular diseases.
  • White peony is the fruit of the genus Polygonaceae. Its main components are steroidal saponins, including spirulina and furfuryl alcohol. It also contains various chemical components such as flavonoids and alkaloids.
  • Gross Saponins from Tribulus Terrestris L (GSTT) is a saponin extract of Radix Paeoniae Alba. It is widely used in the treatment of hypertension, coronary heart disease, angina pectoris, cerebral infarction, diabetes, infertility syndrome, impotence, eye diseases and other diseases.
  • the current mode of administration of GSTT is divided into oral, intravenous and intramuscular injections, which can reach the ocular tissues through systemic circulation, which leads to the unsatisfactory treatment effect of GSTT in the eye, and after systemic metabolism. It also has side effects on other tissues and organs.
  • the reason may be that due to the particularity of the blood-eye barrier and the anatomy of the eye, the local effective concentration of the drug in the retina and optic nerve is low, resulting in poor efficacy, which makes its clinical application greatly restricted, so seek a A new type of drug delivery method that makes GSTT more effective and safer for local application to the retina and optic nerve has become an urgent need for clinical treatment of eye diseases.
  • the vitreous injection technique has the advantage of direct intraocular administration, which can avoid the side effects of other organs after systemic metabolism.
  • GSTT is a composite component, not a monomer component. Although the purity of GSTT can reach over 90%, there is no evidence of toxic damage to the retina and optic nerve after injection of a certain amount of GSTT into the vitreous cavity. There have been no reports of intravitreal injection of GSTT for the treatment of eye diseases at home and abroad.
  • the present invention aims to provide a solution for the injection of a saponin in a vitreous injection system to break the existing problem in view of the prior art GSTT treatment of ophthalmopathy, which has a therapeutic effect that is unsatisfactory and has a large side effect.
  • the method of administration, and the use of intravitreal injection of GSTT to treat eye diseases, this new mode of administration has the advantages of good therapeutic effect, safety and reliability.
  • the present invention provides a novel intravitreal injection system for in vitro injection of saponin, which comprises: a saponin and an ultrasound contrast agent.
  • the ultrasonic contrast agent is sulfur hexafluoride microbubbles.
  • the present invention also provides the use of a vitreous saponin vitreous injection system for the preparation of a medicament for the treatment of glaucomatous optic nerve damage, which is administered by intravitreal injection under ultrasound irradiation.
  • the medicament is administered by intravitreal injection at an ultrasonic sound intensity of 0.5 W/cm 2 and an irradiation time of 30 s to 60 s.
  • the drug is administered in an amount of 1-5 mg/kg of saponin.
  • the drug is injected at a dose of 5 mg/kg of saponin.
  • the drug is a stable suspension of chalk saponin and an ultrasound contrast agent.
  • the suspension contains 1:1 saponin mixed with the ultrasound contrast agent.
  • the present invention provides a novel ultrasonic microbubble-mediated GSTT ophthalmic local drug delivery system, which is administered by intravitreal injection to make the drug reach the eye more simple, without systemic metabolism.
  • It also reduces systemic toxic side effects, reduces the number of doses, delays or prevents the development of glaucomatous optic nerve damage, brings more effective treatment to glaucoma patients, reduces the blindness rate, and brings new hope for patient recovery. It broadens the vision of glaucoma optic nerve protection therapy and provides a new idea.
  • Figure 1 is a graph showing changes in intraocular pressure during different modeling periods.
  • Alccaine eye drops were anesthetized, and the compound tropicamide ocular drops were scattered. Under the operating microscope, a proper amount of aqueous humor was extracted from the transparent corneal area at the upper angle of the scleral margin. The upper limbus was 3 mm. The vertical sclera enters the needle and penetrates into the vitreous cavity. After the enlarged pupil is clear, the needle tip is placed in the vitreous cavity, and the above drug is slowly injected. The injection dose is 1-5 mg/kg of saponin. The cotton swab is pressed into the needle and the needle is withdrawn. Telibitide drops eye drops to prevent infection.
  • the coupling agent After closing the eyelid, the coupling agent is applied, and the ultrasonic probe is irradiated on the surface of the eyelid for ultrasonic irradiation, the ultrasonic sound intensity is 0.5 W/cm 2 , and the irradiation time is 30 s-60 s.
  • the invention provides a pharmacodynamic experiment for the treatment of glaucomatous optic nerve damage by a vitreous saponin vitreous injection system:
  • Healthy New Zealand white rabbits weigh 1.5kg, male or female, provided by Guangdong Medical Animal Experimental Center, with slit lamp, direct ophthalmoscopy, no obvious abnormalities in the anterior segment and fundus; Tono-pen tonometer for measuring intraocular pressure ⁇ 21mmHg Animals can be used.
  • Anesthetized animals were injected with 3% sodium pentobarbital (1 ml/kg) in the ear vein. After the surface anesthesia of ercaine eye drops, the sputum was opened and opened with a 1 ml syringe at 9 o'clock along the limbus. After withdrawing 0.2 ml of the anterior chamber water by 1 mm, 0.2 ml of a 0.3% compound carbomer solution was injected into the 1 mm anterior chamber of the contralateral limbus. The surgery will be eye-dropping. If intraocular pressure ⁇ 22 mmHg was found during the experimental period, the injection was repeated 1 time as described above after 7 days. The model of optic nerve damage in rabbits with high intraocular pressure was controlled by intraocular pressure >22 mmHg and maintained for 4 weeks. The intraocular pressure at the same time point was measured daily using a Tono-pen pen tonometer and recorded.
  • 7.5 g of GSTT powder was weighed and dissolved in 100 ml of physiological saline ((7.5 mg/0.1 ml), and a rabbit intravitreal injection of 5 mg/kg of GSTT solution was administered.
  • Intravitreal injection of PBS solution 0.1ml ercaine eye drops topical anesthesia, compound tropicamide eye drops eye drops fully dilated, open sputum opening, 3% iodophor wash conjunctival sac, aseptic conditions
  • a 1ml syringe to puncture the appropriate amount of aqueous humor in the transparent corneal area at the upper angle of the scleral margin, and then insert the needle into the vitreous cavity 3mm perpendicular to the sclera at the upper corner of the sclera. After the enlarged pupil, the tip of the needle is in the vitreous cavity.
  • a proper amount of aqueous humor was extracted from the tunnel, and then the needle was inserted into the vitreous cavity 3 mm perpendicular to the sclera at the upper corner of the sclera.
  • 0.1 ml of GSTT solution was slowly injected, and the cotton swab was pressed.
  • the needle is withdrawn, the intraocular pressure and the vascular filling of the eye are observed, the ofloxacin eye drops are given, and the dicoro eye ointment is applied to prevent infection.
  • the above operation was performed once a week for 3 weeks.
  • the intravitreal injection of GSTT method is the same as above. After the injection is completed, the rabbit eye is closed and the coupling agent is applied. The ultrasonic probe is placed on the eyeball at a frequency of 1 MHZ, and the sound intensity is 0.5 W/cm 2 to illuminate the eyeball for 60 s. The above operation is performed once a week for 3 times. week.
  • Rabbits were dilated and anesthetized in the same way as before. Use a 1ml syringe to penetrate the vitreous cavity 3mm away from the limbus. After the corresponding amount of vitreous humor is injected, 0.1 ml of GSTT solution is injected, the specific operation method is the same as above; then 0.1 ml of the microbubble suspension is injected from the same site, the rabbit eye is closed, and the coupling agent is applied, and the ultrasonic irradiation of the above parameters is given, weekly. 1 time for 3 weeks.
  • Blank control group rabbit cornea is transparent, anterior chamber depth is normal, aqueous humor is clear, iris texture is normal, pupil is 3 ⁇ 3mm, and the lens is transparent.
  • High intraocular pressure model group rabbit conjunctival mixed hyperemia, conjunctival vascular tortuosity, central corneal fog edema, anterior chamber deepening, aqueous humor is basically clear, iris texture is unclear, pupil dilated, the lens is still transparent.
  • High intraocular pressure model + vitreous cavity injection GSTT group or + ultrasound group and high intraocular pressure model + vitreous cavity injection
  • the GSTT+ultrasound+microbubble group the anterior segment of the rabbit eye was basically consistent with the high intraocular pressure model group.
  • the blank control group the retina of the rabbit's fundus was orange-red, the optic disc was elliptical, the boundary was clear, and the color was reddish; the cup was irregularly petal-shaped, and the disc edge was wider; a pair of accompanying retinal central motions were emitted from both sides of the optic disc. , vein, horizontal trend, arteriovenous ratio 1:2, peripheral blood vessels are radial.
  • High intraocular pressure model group faintly visible retina, pale, rabbit retina atrophy, a large number of granular and flaky pigmentation; optic disc edema, border is not clear, the color is light; the cup is obviously enlarged, the color is pale, the disc area is obvious Narrowed; the retinal blood vessels become thinner and climb out of the edge of the optic disc.
  • High intraocular pressure model + vitreous cavity injection GSTT group or + ultrasound group Compared with the high intraocular pressure model group, the rabbit retina has reddish color and mild retinal atrophy; the optic disc border is unclear, mild edema, and the color becomes reddish; The cup became smaller and the area along the disc was significantly wider; the retinal blood vessels were not significantly thinned.
  • High intraocular pressure model + vitreous cavity injection GSTT + ultrasound + microbubble group rabbit retina reddish color, clear disc border, color reddish; visual cup higher intraocular pressure model group significantly smaller, disc area significantly widened; retinal blood vessels The thickness and direction are basically normal.
  • the amplitude of N1-P1 in the high intraocular pressure model group was significantly lower than that in the blank control group, and the difference was statistically significant (P ⁇ 0.05); high intraocular pressure model + vitreous cavity injection GSTT group or + ultrasound group N1-P1 amplitude higher intraocular pressure model group significantly increased, the difference was statistically significant (P ⁇ 0.05); high intraocular pressure model + glass Intraocular injection GSTT+ultrasound+microbubble group N1-P1 amplitude higher intraocular pressure model+vitreous injection GSTT group or +ultrasound group increased the difference was also statistically significant (P ⁇ 0.05).
  • the average thickness of the retina of 1-5 rabbits measured by Cirrus OCT was 226.20 ⁇ 4.49, 194.00 ⁇ 5.40, 203.85 ⁇ 2.09, 205.60 ⁇ 2.18 and 211.85 ⁇ 2.04 ⁇ m, respectively.
  • the blank control group the layers of the rabbit retina are clear, arranged closely and neatly; the photoreceptor cells are arranged neatly in a regular brush shape; the outer nuclear layer has the largest number of cells, the nuclei are small, the staining is deep, and the arrangement is dense; Neat, large nuclei, slightly darker; inner plexiform layer and outer plexiform layer have obvious reticular structure; ganglion cell layer is arranged in a single layer, and the nucleus is large and stained lightly, round or oval. Cell boundary Clear.
  • High intraocular pressure model group the structure of the retina is disordered, loose, and the level is unclear; the photoreceptor cell layer is disorderly arranged; the outer nuclear layer cells are disorderly arranged and the thickness is thin; the inner layer cells are loosely arranged and disordered, and a large number of vacuolar cells are visible.
  • the inner plexiform layer and the outer plexiform layer are disordered, slightly thinned, and the ganglion cell layer is unclear; the number of ganglion cell layer cells is significantly reduced, showing vacuolization.
  • High intraocular pressure model + vitreous cavity injection GSTT group or + ultrasound group the layers of the retina are relatively intact, the layering is relatively clear; the photoreceptor cell layer is loosely arranged; the outer nuclear layer cells are under-arranged; the inner layer cells are slightly loosely arranged. It can be seen that the vacuolar cells are scattered; the thickness of the plexiform layer and the outer plexiform layer is thinner; the number of cells in the ganglion cell layer is higher than that in the intraocular pressure model group, and the cells scattered in the vacuole are still visible.
  • High intraocular pressure model + vitreous cavity injection GSTT + ultrasound + microbubble group the structure of the retina is relatively complete, the layering is clear; the junction of the inner and outer nodes of the photoreceptor cell layer is clear and neatly arranged; the inner and outer nuclear layer cells are arranged regularly.
  • the thickness is normal; the thickness of the plexiform layer and the outer plexiform layer is basically normal; the number of cells in the ganglion cell layer is obviously increased, the morphology is generally normal, and the vacuolar-like cells are even visible.
  • the mean values of the retinal thickness of the 1-5 rabbits were 289.30 ⁇ 2.39, 239.15 ⁇ 2.68, 254.85 ⁇ 2.31, 256.45 ⁇ 2.03 and 265.15 ⁇ 2.70 ⁇ m, respectively.
  • the RGCs were larger, the cytoplasm was filled with Nissl bodies, the nucleus was lightly stained, and the nucleolus was obvious; while the amacrine cells were relatively small, mostly round or oval. Shape, less cytoplasm, darker cell staining. Therefore, the two cells are roughly distinguished by the size and shape of the cells and the depth of nuclear staining.
  • the RGCs counts of rabbit retinas in groups 1-5 were 26.04 ⁇ 0.70, 14.97 ⁇ 1.30, 18.98 ⁇ 0.86, 19.65 ⁇ 0.80 and 23.87 ⁇ 0.72, respectively.
  • the nucleus In the Nissl staining of rabbit optic nerve, the nucleus is light blue, and the neuron cells are rich in Nissl. It is a basic substance in the cell, dark blue, plaque or granular. In the blank control group, more N-nose and dark optic axons stained deep blue were observed under light microscopy.
  • the axons of the axons were swollen, the number was decreased, the diameter of the optic nerve axons was increased, and the percentage of the optic nerve axons in the cross-sectional area of the optic nerve was decreased, which was significantly different from the blank control group (P ⁇ 0.05).
  • the blank control group photoreceptor cells (rods, cones) have a clear structure and neatly arranged; the nuclear regions of the photoreceptor cells constitute the outer nuclear layer of the retina, arranged neatly, with uniform nuclear chromatin distribution, containing more mitochondria and other organelles; The nuclear region of the polar cell constitutes the inner nuclear layer, arranged neatly, and the nuclear chromatin is uniform; the ganglion cells are round or oval, the nuclear membrane is clear, the chromatin is evenly distributed, the nucleolus is obvious, the organelle mitochondria, the rough endoplasmic reticulum, the Golgi apparatus Rich.
  • High intraocular pressure model group photoreceptor cells partially ruptured, outer membrane disc outline is blurred, mitochondria are swollen to varying degrees, vacuolar degeneration; outer nuclear layer cells are disordered, loose, nuclear chromatin is uneven, mitochondria are obviously swollen and vacuolar-like
  • the number of ganglion cells is reduced, swelling, pale, microfilaments, microtubule components are reduced, and organelles such as mitochondria, endoplasmic reticulum and Golgi are basically disappeared.
  • High intraocular pressure model + vitreous cavity injection GSTT group or + ultrasound group the photoreceptor extracellular membrane disc structure is still visible, the arrangement is light and disordered; the nuclear membrane of the outer nuclear layer is basically intact, the nuclear chromatin is relatively uniform, and the mitochondria have no obvious vacuolization.
  • the inner layer of the inner layer cells is slightly swollen, and the chromatin is set; the ganglion cell layer is clear, the nucleus is filled with uniform euchromatin, and the mitochondria are mildly vacuolated.
  • High intraocular pressure model + vitreous cavity injection GSTT + ultrasound + microbubble group photoreceptor cells are arranged neatly, mitochondria have no obvious swelling and vacuolization; outer nuclear nucleus chromatin is uniform; nuclear layer nuclear membrane is not clear, mitochondrial changes are not obvious Most ganglion cells have clear nuclear membrane, uniform chromatin distribution, obvious nucleoli, clear mitochondria, and rough endoplasmic reticulum.
  • the blank control group the optic nerve axon rule, the myelin sheath structure is intact; clear microtubules, microfilaments and mitochondria and other organelles can be seen in the axoplasma.
  • High intraocular pressure model group optic nerve myelin dissolution, loose; axon structure disorder, microtubule and microfilament structure disappeared, mitochondria swelling, vacuolar degeneration.
  • High intraocular pressure model + vitreous cavity injection GSTT + ultrasound group the myelin sheath of the optic nerve axon is thin, disordered and loose; microtubules and microfilaments are visible in the axons, and some mitochondrial vacuolar degeneration.
  • Bcl-2 mRNA in the high intraocular pressure model + intravitreal injection GSTT or + ultrasound group was increased, and the mRNA expression of the proapoptotic gene Bax was decreased.
  • Bcl-2 There was a statistically significant difference between the mRNA expression of Bax and Bax (P ⁇ 0.05), which indicated that GSTT played a role, and the expression levels of Bcl-2 and Bax changed, resulting in decreased apoptotic cells and increased viable cells.
  • the expression of Bcl-2 mRNA in the high intraocular pressure model + intravitreal injection GSTT+ultrasound+microbubble group was further increased, and the mRNA expression of the proapoptotic gene Bax was further decreased.
  • Bcl-2 There was a statistically significant difference between the mRNA expression of Bax and Bax (P ⁇ 0.05).
  • Glaucoma animal models are very important in the study of glaucoma. At present, many studies have proposed a variety of glaucoma animal models, the most ideal of which is laser ablation of trabecular meshwork to induce monkey high intraocular pressure model, but its price is expensive, the source is scarce, and it is impossible to conduct experiments in large quantities, which limits the application of research.
  • the early attempts of the researchers to make a glaucoma model began with the production of a rabbit eye glaucoma model. The rabbit eyes were large, easy to operate, and low in cost, but the intraocular inflammation was also severe. Rabbit eye glaucoma model generally chooses anterior chamber injection of chymotrypsin, methyl cellulose, compound carbomer, etc.
  • rabbit anterior chamber injection compound carbomer was selected for modeling.
  • the carbomer solution is gelatinous at a pH of 6 to 12, and the pH of the aqueous humor is about 7.
  • the carbomer changes from a solution state to a gel, which not only blocks the corner.
  • the trabecular meshwork prevents the discharge of aqueous humor, quickly becomes gelatinous and is not easy to flow back from the injection point.
  • the average intraocular pressure of the high intraocular pressure model group was 32-37 mmHg, and the high intraocular pressure lasted for more than 4 weeks. This is consistent with previous studies.
  • the injection of the compound carbomer solution in the anterior chamber is an ideal high. Intraocular pressure modeling method.
  • the visual evoked potential is an electrical response to the visual stimuli in the occipital region of the cerebral cortex. It is a sensitive means of evaluating the nerve damage caused by the retina receiving stimulation and conduction through the visual pathway to the occipital cortex.
  • the lesion between the retina and the visual cortex, the latency and amplitude of F-VEP mainly reflect the functional state of the optic nerve myelin and axon. Therefore, for this experiment, F-VEP is a better means to evaluate the function of the optic nerve.
  • the morphology of the retina of rabbit retina was found to be disordered, loose, and unclear in the layers of the high intraocular pressure model group; the photoreceptor cell layer was disordered; the outer nuclear layer cells were disordered and the thickness was thin; Loose, disordered, a large number of vacuolar cells can be seen; the inner plexiform layer and the outer plexiform layer are disordered, slightly thinned, and the ganglion cell layer is unclear; the number of ganglion cell layer cells Significantly reduced, showing a vacuolization. This indicates that the tissue structure of the retina is damaged under the action of chronic high intraocular pressure.
  • rabbit retinal RGCs count high intraocular pressure model group and the blank control group were statistically significant, indicating that chronic high intraocular pressure mainly acts on the ganglion cell layer, causing apoptosis and the number of ganglion cells to decrease.
  • rabbit optic axons may be damaged after continuous high intraocular pressure, the axons of the optic nerves are swollen, the number is decreased, the number of optic nerve axons in the high-eye membranous group is reduced, the diameter of the optic nerve axons is increased, and the axons of the optic nerve occupy the cross-sectional area of the optic nerve. The percentage was reduced and there was a statistically significant difference compared to the blank control group.
  • the ultrastructure of rabbit retina and optic nerve under high intraocular pressure was observed by transmission electron microscopy. It was found that the photoreceptor cell membrane profile of the high intraocular pressure model group was blurred, the mitochondria were swollen to varying degrees, and the vacuolar degeneration; the outer nuclear layer cells were disordered and loose. The nuclear chromatin is uneven, the mitochondria are obviously swollen and vacuolized. The number of ganglion cells is reduced, the swelling and color are light, the microfilament and microtubule components are reduced, and the organelles such as mitochondria, endoplasmic reticulum and Golgi are basically disappeared. The axons of the optic nerve are disordered, the myelin is dissolved, loose, the microtubules and microfilaments disappear, the mitochondria are swollen, and the vacuoles are degenerated.
  • this experiment confirmed the preparation of rabbit high-ocular optic nerve damage animal model from the aspects of structure and function, pathological histomorphology and ultrastructure, which laid the foundation for the next experiment.
  • the thickness of rabbit retina was measured by light histopathology and OCT.
  • the intraocular pressure of the intraocular lens was significantly thicker in the intraocular pressure model group, and the difference was statistically significant (P ⁇ 0.05).
  • saponin has a certain protective effect on high intraocular pressure optic nerve damage.
  • the light microscopic retinal thickness measurements of ultrasound microbubbles combined with intravitreal injection of saponins were significantly different from those of vitreous saponins or intravitreal injection of saponins alone (P ⁇ 0.05). This also indicates that ultrasonic blasting microbubbles can significantly increase the protective effect of saponins on the retina and optic nerve.
  • the ultrastructure of rabbit retina and optic nerve found that the photoreceptor cells of the ultrasound microbubbles combined with intravitreal injection of the saponin group were slightly disordered, the nuclear membrane of the inner nuclear layer was unclear, and the nucleus membrane of most ganglion cells was clear, and the chromatin was evenly distributed. It is obvious that the mitochondria have no obvious swelling and vacuolization.
  • the optic nerve myelin is densely packed and neat, showing microtubules, microfilaments and other structures. This indicates that ultrasonic microbubbles combined with saponins not only have protective effects on RGCs damage caused by high intraocular pressure, but also play a protective role on the photoreceptor layer and the inner and outer nuclear layers.
  • ultrasound microbubbles combined with paclitaxel have obvious protective effects on optic nerve damage in rabbits with high intraocular pressure.
  • This targeted drug delivery method allows the drug to reach the eye more easily, without systemic metabolism, to avoid the decomposition of the drug through the blood circulation and the interference and destruction process of the drug in the body environment, thereby maximizing It guarantees the concentration of the drug reaching the target organ and exerts the greatest therapeutic effect, which greatly broadens the field of vision of glaucoma optic nerve protection therapy and provides a new idea.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Ophthalmology & Optometry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Acoustics & Sound (AREA)
  • Radiology & Medical Imaging (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Botany (AREA)
  • Medical Informatics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)

Abstract

白蒺藜皂苷玻璃体腔注射给药系统及其在制备治疗青光眼性视神经损害的药物中的应用,该给药系统包含白蒺藜皂苷和超声造影剂,在超声辐照下经玻璃体腔注射给药。

Description

[根据细则37.2由ISA制定的发明名称] 一种白蒺藜皂苷玻璃体腔注射给药系统及其应用 技术领域
本发明涉及一种可通过玻璃体腔注射给药治疗眼病的含白蒺藜皂苷的药物领域。
背景技术
白蒺藜为蒺藜科植物蒺藜的果实,其主要成份是甾体皂苷,包括螺甾醇和呋甾醇,另外还含有黄酮类、生物碱等多种化学成份。白蒺藜皂苷(Gross Saponins from Tribulus Terrestris L,GSTT)是白蒺藜的皂苷类提取物,临床上多用于治疗高血压、冠心病、心绞痛、脑梗塞、糖尿病、不孕证、阳痿、眼疾等疾病。
对于眼疾的治疗,GSTT目前的给药方式分为口服、静脉注射和肌肉注射,均通过全身循环后才能到达眼部组织,这就导致GSTT在眼部的治疗效果不理想,同时经全身代谢后还会对其他组织器官产生副作用。究其原因可能是由于血眼屏障和眼部解剖的特殊性使药物在视网膜、视神经的局部有效浓度较低,导致疗效不佳,使得其在临床上的应用受到了很大的限制,因此寻求一种让GSTT更为有效、更安全地局部应用于视网膜和视神经的新型给药方式,成为了眼疾临床治疗的迫切需求。
由于血-眼屏障的存在使得眼球处于一个相对免疫赦免的状态,眼内注射外源抗体能最小程度引发潜在的免疫反应和炎症反应,因此眼球是局部治疗的一个理想器官。而玻璃体腔注射技术具有眼内直接给药的优势,可避免经全身代谢后对其它器官产生的副作用。但是,GSTT是复合成分,而不是单体成分,虽然GSTT的纯度可达90%以上,但眼玻璃体腔注射一定量的GSTT后对视网膜和视神经是否会产生毒性损害,目前仍无相关研究证据,国内外也尚未见到有关玻璃体腔注射GSTT治疗眼疾的任何报道。
发明内容
针对背景技术中提到的现有GSTT治疗眼病的给药方式存在的治疗效果不理想、副作用大的问题,本发明的目的在于提供一种白蒺藜皂苷玻璃体腔注射给药系统,以打破现有的给药方式,而采用玻璃体腔注射GSTT的方式治疗眼病,这种新的给药方式具有治疗效果好、安全可靠的优点。
为实现上述目的,本发明提供了这样一种新型白蒺藜皂苷玻璃体腔注射给药系统,其特征在于:包含白蒺藜皂苷和超声造影剂。
进一步地,所述超声造影剂为六氟化硫微泡。
本发明还提供了白蒺藜皂苷玻璃体腔注射给药系统在制备治疗青光眼性视神经损害的药物中的应用,所述药物用于在超声辐照下经玻璃体腔注射给药。
进一步地,所述药物用于在超声声强为0.5W/cm2,辐照时间为30s-60s下经玻璃体腔注射给药。
进一步地,所述药物的注射剂量为1-5mg/kg的白蒺藜皂苷。
更进一步地,所述药物的注射剂量为5mg/kg的白蒺藜皂苷。
进一步地,所述药物为白蒺藜皂苷与超声造影剂的稳定混悬剂。
更进一步地,所述混悬剂中白蒺藜皂苷与超声造影剂1:1混合。
有益效果:
与现有技术相比,本发明提供了一种新型超声微泡介导的GSTT眼科局部给药系统,通过玻璃体腔注射给药,让药物到达眼部的途径变得更单纯,不用经过全身代谢,避免药物经血液循环时所面临的分解及机体内环境对药物的干扰和破坏过程,从而最大限度地保证到达靶器官的药物浓度,发挥最大的治疗作用,提高视网膜局部的药物浓度的同时,也减少了全身毒副作用,减少了给药次数,延缓或阻止青光眼性视神经损害的发生发展,给青光眼患者带来更有效的治疗,减少其致盲率,为患者复明带来新的希望,大大拓宽了青光眼视神经保护治疗的视野,提供了一种新思路。
附图说明
图1是不同造模周期眼压变化曲线图。
具体实施方式
下面结合附图和具体实施例对本发明做进一步的详细说明,以下实施例是对本发明的解释,本发明并不局限于以下实施例。
白蒺藜皂苷玻璃体腔注射用药物:
六氟化硫微泡与白蒺藜皂苷1:1溶于生理盐水中得到的稳定混悬液
上述药物经玻璃体腔注射给药的方法:
爱尔卡因滴眼液表面麻醉,复方托吡卡胺滴眼液滴眼散瞳,在手术显微镜 下,于上方角巩膜缘处透明角膜区隧道穿刺抽出适量房水,于上方角巩膜缘3mm垂直巩膜进针,刺入玻璃体腔,经散大的瞳孔明确针尖在玻璃体腔后,缓慢注入上述药物,注射剂量为1-5mg/kg的白蒺藜皂苷,棉签按压进针处,抽出针头,给予泰利必妥滴眼液点眼预防感染。闭合眼睑后涂耦合剂,置超声探头于眼睑表面进行超声辐照,超声声强为0.5W/cm2,辐照时间为30s-60s。
本发明提供的白蒺藜皂苷玻璃体腔注射给药系统治疗青光眼性视神经损害的药效学实验:
本研究首先构建了兔眼高眼压视神经损害模型,然后将超声爆破微泡与白蒺藜皂苷联合,观察超声爆破微泡介导白蒺藜皂苷对高眼压兔视神经损害的治疗作用,并分析该给药系统的安全性、可行性和有效性,为临床治疗青光眼提供了一种新思路。
实验材料
一、主要试剂
Figure PCTCN2014092821-appb-000001
Figure PCTCN2014092821-appb-000002
二、主要设备和仪器
Figure PCTCN2014092821-appb-000003
Figure PCTCN2014092821-appb-000004
三、实验动物
健康新西兰白兔体重1.5kg,雌雄不限,由广东省医学动物实验中心提供,用裂隙灯、直接眼底镜检查眼前节及眼底无明显异常;Tono-pen笔试眼压计测量眼压<21mmHg的动物方可采用。
实验方法与步骤
一、实验动物分组
健康新西兰大白兔25只,随机分为5组,每组5只(10眼)。分组如下:
1、空白对照组
2、高眼压模型组
3、高眼压模型+玻璃体腔注射GSTT组
4、高眼压模型+玻璃体腔注射GSTT+超声组
5、高眼压模型+玻璃体腔注射GSTT+超声+微泡组
二、兔慢性高眼压模型的制备
耳缘静脉注射3%戊巴比妥钠(1ml/kg)麻醉动物,爱尔卡因滴眼液眼部表面麻醉后,开睑器开睑,用1ml注射器在9点位沿角巩膜缘内1mm抽出前房房水0.2ml后,然后在对侧的角巩膜缘内1mm前房注入0.3%复方卡波姆溶液0.2ml。术毕泰利必妥眼水滴眼。如在实验周期中发现眼压<22mmHg,7天后按上述方法重复注药1次。高眼压兔视神经损害模型以眼压>22mmHg,并能维持4周为标准。采用Tono-pen笔式眼压计测量每日相同时间点眼压并记录。
三、溶液的配制
(1)复方卡波姆溶液的配制
称取3.0g卡波姆-940和0.25g地塞米松,溶于1000ml的生理盐水中,PH为4。
(2)GSTT溶液的配制
称取7.5gGSTT粉末溶于100ml的生理盐水中((7.5mg/0.1ml),给予兔玻璃体腔注射5mg/kg的GSTT溶液。
(3)微泡混悬液的制备
用0.9%生理盐水5ml缓慢注入六氟化硫微泡冻干粉瓶内静置备用,使用前用力振摇以产生微泡,微泡浓度为2×108/ml,微泡平均直径2.5μm,90%的微泡直径<8μm,渗透压为290Osm/kg,与人体血浆等渗,配制的微泡溶液在6h内用完。
四、各组的处理
(1)空白对照组
玻璃体腔内注射PBS液0.1ml:爱尔卡因滴眼液表面麻醉,复方托吡卡胺滴眼液滴眼充分散瞳,开睑器开睑,3%碘伏冲洗结膜囊,无菌条件下用1ml注射器于上方角巩膜缘处透明角膜区隧道穿刺抽出适量房水,然后于上方角巩膜缘后3mm垂直巩膜进针,刺入玻璃体腔,经散大的瞳孔明确针尖在玻璃体腔后,缓慢注入0.1ml PBS液,棉签按压进针处,抽出针头,观察眼压及眼部血管充盈情况,给予氧氟沙星滴眼液点眼,迪可罗眼膏涂眼预防感染。上述操作每周1次,持续3周。
(2)高眼压模型组
不做处理。
(3)高眼压模型+玻璃体腔注射GSTT组
爱尔卡因滴眼液表面麻醉,复方托吡卡胺滴眼液滴眼充分散瞳,开睑器开睑,3%碘伏冲洗结膜囊,无菌条件下用1ml注射器于上方角巩膜缘处透明角膜区隧道穿刺抽出适量房水,然后于上方角巩膜缘后3mm垂直巩膜进针,刺入玻璃体腔,经散大的瞳孔明确针尖在玻璃体腔后,缓慢注入0.1mlGSTT溶液,棉签按压进针处,抽出针头,观察眼压及眼部血管充盈情况,给予氧氟沙星滴眼液点眼,迪可罗眼膏涂眼预防感染。上述操作每周1次,持续3周。
(4)高眼压模型+玻璃体腔注射GSTT+超声组
玻璃体腔注射GSTT方法同上,注射完毕后闭合兔眼后涂耦合剂,置超声探头于眼球上方立即用频率1MHZ,声强为0.5W/cm2照射眼球60s,上述操作每周1次,持续3周。
(5)高眼压模型+玻璃体腔注射GSTT+超声+微泡组
兔散瞳、麻醉方式同前,用1ml注射器距角巩膜缘3mm处刺入玻璃体腔吸 出相应量的玻璃体液后,注入0.1ml GSTT溶液,具体操作方法同上;再从相同部位注入0.1ml微泡混悬液,闭合兔眼后涂耦合剂,给予上述参数的超声辐照,每周1次,持续3周。
实验结果
一、眼压测量
如表1所示,造模前模型组眼压为15.0±2.0mmHg,对照组眼压为13.6±1.5mmHg,两者相比眼压差异无统计学意义(P=0.137);经独立样本t检验,模型组眼压在造模后1周、2周、4周的眼压值(33.4±2.8、34.1±2.5和34.8±2.2mmHg),与对照组眼压(13.6±1.8、13.4±1.7、13.3±1.4mmHg)相比差异具有显著统计学意义(P=0.000)。从图1可见,该模型所致眼压升高可维持在30mmHg以上达4周。
表1对照眼与模型眼不同造模时间眼压比较(
Figure PCTCN2014092821-appb-000005
mmHg)
Figure PCTCN2014092821-appb-000006
注:独立样本t检验
二、兔活体眼科检查
1、兔眼前节照相
空白对照组:兔角膜透明,前房深度正常,房水清,虹膜纹理色泽正常,瞳孔3×3mm,晶状体透明。
高眼压模型组:兔结膜混合性充血明显,结膜血管迂曲扩张,中央角膜雾状水肿,前房加深,房水基本清亮,虹膜纹理不清,瞳孔散大固定,晶状体尚透明。
高眼压模型+玻璃体腔注射GSTT组或+超声组和高眼压模型+玻璃体腔注 射GSTT+超声+微泡组:兔眼前节改变与高眼压模型组基本一致。
2、兔眼底照相形态学观察
空白对照组:兔眼底视网膜呈橘红色,视盘为椭圆形,边界清楚,颜色淡红;视杯呈不规则花瓣形,盘沿较宽;从视盘两侧分别发出一对伴行的视网膜中央动、静脉,水平走向,动静脉比例1:2,周边血管呈放射状。
高眼压模型组:隐约可见视网膜,色淡,兔视网膜萎缩,大量颗粒状和片状色素沉着;视盘水肿,边界欠清,颜色变淡;视杯明显增大,色苍白,盘沿面积明显变窄;视网膜血管变细,从视盘边缘呈屈膝状爬出。
高眼压模型+玻璃体腔注射GSTT组或+超声组:与高眼压模型组相比,兔视网膜色淡红,视网膜轻度萎缩;视盘边界欠清,轻度水肿,颜色变淡红;视杯变小,盘沿面积明显变宽;视网膜血管未见明显变细。
高眼压模型+玻璃体腔注射GSTT+超声+微泡组:兔视网膜色淡红,视盘边界清晰,颜色淡红;视杯较高眼压模型组明显变小,盘沿面积明显变宽;视网膜血管粗细和走向基本正常。
3、兔F-VEP的检测
各组F-VEP潜伏期和振幅的比较结果如表2所示。
经单因素方差分析,各组N1、P1、N2潜伏期的差异均具有显著统计学意义(P=0.000);经两两比较分析,高眼压模型组N1、P1、N2潜伏期较空白对照组明显延长,差异有显著统计学意义(P<0.05);高眼压模型+玻璃体腔注射GSTT组或+超声组N1、P1、N2潜伏期较高眼压模型组明显缩短,差异有显著统计学意义(P<0.05);高眼压模型+玻璃体腔注射GSTT+超声+微泡组N1、P1、N2潜伏期较高眼压模型+玻璃体腔注射GSTT组或+超声组缩短,差异也有显著统计学意义(P<0.05)。各组N1-P1振幅的差异均具有显著统计学意义(P=0.000);经两两比较分析,高眼压模型组N1-P1振幅较空白对照组明显降低,差异有显著统计学意义(P<0.05);高眼压模型+玻璃体腔注射GSTT组或+超声组N1-P1振幅较高眼压模型组明显升高,差异有显著统计学意义(P<0.05);高眼压模型+玻璃体腔注射GSTT+超声+微泡组N1-P1振幅较高眼压模型+玻璃体腔注射GSTT组或+超声组升高,差异也有显著统计学意义(P<0.05)。
表2各组F-VEP潜伏期(ms)和振幅(nV)的比较
Figure PCTCN2014092821-appb-000007
Figure PCTCN2014092821-appb-000008
注:单因素方差分析,△※表示组间两两比较无显著统计学差异(P>0.05),余组间两两比较有显著统计学差异(P<0.05)
4、Cirrus OCT测量兔视网膜厚度的比较
Cirrus OCT测量1-5组兔视网膜平均厚度值分别为226.20±4.49、194.00±5.40、203.85±2.09、205.60±2.18和211.85±2.04μm。
经单因素方差分析,各组兔视网膜平均厚度的差异具有统计学意义(P=0.000);经两两比较分析,高眼压模型组兔视网膜平均厚度明显薄于空白对照组,差异有显著统计学意义(P<0.05);高眼压模型+玻璃体腔注射GSTT组和高眼压模型+玻璃体腔注射GSTT+超声组兔视网膜平均厚度明显厚于高眼压模型组,差异有显著统计学意义(P<0.05),但3、4组比较无显著统计学意义(P>0.05);高眼压模型+玻璃体腔注射GSTT+超声+微泡组兔视网膜平均厚度明显厚于高眼压模型组,但仍较空白对照组变薄,差异有显著统计学意义(P<0.05)。
三、兔视网膜和视神经病理组织学检查
3.1兔视网膜光镜形态学观察
空白对照组:兔视网膜各层结构清晰,排列紧密、整齐;感光细胞层排列整齐呈规则的毛刷状;外核层细胞数量最多,胞核较小,染色深,排列较致密;内核层排列整齐,胞核较大,染色稍深;内丛状层和外丛状层呈明显的网状结构;神经节细胞层呈单层排列,胞核大而染色淡,呈圆形或椭圆形,细胞边界 清晰。
高眼压模型组:视网膜各层结构紊乱、疏松,层次不清;感光细胞层排列紊乱;外核层细胞排列紊乱,厚度变薄;内核层细胞排列疏松、紊乱,可见大量空泡变的细胞;内丛状层和外丛状层结构紊乱,轻度变薄,与神经节细胞层分界不清;神经节细胞层细胞数目明显减少,呈空泡样变。
高眼压模型+玻璃体腔注射GSTT组或+超声组:视网膜各层结构相对完整,分层相对清晰;感光细胞层排列较疏松;外核层细胞排列欠规则;内核层细胞排列轻度疏松,可见散在空泡变细胞;丛状层和外丛状层厚度变薄;神经节细胞层细胞数目较高眼压模型组增多,仍可见散在空泡样变的细胞。
高眼压模型+玻璃体腔注射GSTT+超声+微泡组:视网膜各层结构较完整,分层较清晰;感光细胞层内外节交界较清晰,排列较整齐;内、外核层细胞排列较规则,厚度较正常;丛状层和外丛状层厚度基本正常;神经节细胞层细胞数目明显增多,形态大致正常,偶可见空泡样变的细胞。
3.2光镜测量兔视网膜厚度和视网膜RGCs计数
3.2.1光镜测量各组兔视网膜厚度
1-5组兔视网膜厚度光镜测量平均值分别为289.30±2.39、239.15±2.68、254.85±2.31、256.45±2.03和265.15±2.70μm。
经单因素方差分析,光镜测量各组兔视网膜厚度的差异具有统计学意义(P=0.000);经两两比较分析,高眼压模型组兔视网膜厚度明显薄于空白对照组,差异具有统计学意义(P<0.05);高眼压模型+玻璃体腔注射GSTT组或+超声组兔视网膜厚度明显厚于高眼压模型组,差异具有统计学意义(P<0.05),但3、4组比较无显著统计学差异(P>0.05);高眼压模型+玻璃体腔注射GSTT+超声+微泡组兔视网膜厚度明显厚于高眼压模型+玻璃体腔注射GSTT或+超声组,但仍薄于空白对照组,差异具有统计学意义(P<0.05)。
3.2.2光镜测量各组兔视网膜RGCs计数
在视网膜铺片的甲苯胺蓝染色中,RGCs胞体较大,胞质内充满尼氏小体,核染色浅,核仁明显;而无长突细胞胞体相对较小,多呈圆形或卵圆形,胞质较少,细胞核染色较深。因此通过细胞的大小、形状规则及核染色深浅等来大致区别这两种细胞。
1-5组兔视网膜铺片RGCs计数分别为26.04±0.70、14.97±1.30、18.98±0.86、19.65±0.80和23.87±0.72个。
经单因素方差分析,各组兔RGCs计数的差异均具有统计学意义(P=0.002);经两两比较分析,高眼压模型组RGCs计数明显少于空白对照组,差异有统计学意义(P<0.05);高眼压模型+玻璃体腔注射GSTT组或+超声组RGCs计数明显高于高眼压模型组,差异有统计学意义(P<0.05),但3、4组比较无显著统计学差异(P>0.05);高眼压模型+玻璃体腔注射GSTT+超声+微泡组RGCs计数明显高于高眼压模型+玻璃体腔注射GSTT或+超声组,但仍低于空白对照组,差异有统计学意义(P<0.05)。
3.3兔视神经轴突光镜定量分析
兔视神经的尼氏染色中,细胞核呈淡蓝色,神经元细胞内含有丰富的尼氏体,它是细胞内一种噬碱性物质,深蓝色,呈斑块状或颗粒状。空白对照组在光镜下可见较多的染为深蓝色的尼氏体和粗大的视神经轴突。
1-5组兔视神经轴突定量图像分析结果如表3所示。
经单因素方差分析,各组兔视神经轴突数、视神经轴突直径、轴突占视神经面积百分比的差异具有统计学意义(P=0.000,0.001和0.02);经两两比较分析,高眼压模型组视神经轴突肿胀,数目减少,视神经轴突直径增大和视神经轴突占视神经横截面积百分比减少,与空白对照组相比具有显著统计学差异(P<0.05);玻璃体腔注射GSTT后,视神经轴突数增加,视神经轴突直径减小,视神经轴突占视神经横截面积百分比增大,与高眼压模型组相比具有显著性统计学差异(P<0.05);随着超声联合微泡的应用,视神经轴突髓鞘损失程度明显减轻,视神经轴突肿胀减轻,数目增多,与高眼压模型组、高眼压模型+玻璃体腔注射GSTT组或+超声组相比,具有显著性统计学差异(P<0.05)。
表3兔视神经轴突定量图像分析结果
Figure PCTCN2014092821-appb-000009
Figure PCTCN2014092821-appb-000010
注:单因素方差分析,△※表示组间两两比较无显著统计学差异(P>0.05),余组间两两比较有显著统计学差异(P<0.05)
四、透射电镜观察兔视网膜和视神经的超微结构
4.1兔视网膜超微结构观察
空白对照组:感光细胞(视杆、视锥细胞)结构清晰,排列整齐;感光细胞的细胞核区构成了视网膜的外核层,排列整齐,核染色质分布均匀,含有较多线粒体等细胞器;双极细胞核区构成内核层,排列整齐,核染色质均匀;神经节细胞呈圆形或卵圆形,核膜清晰,染色质分布均匀,核仁明显,细胞器线粒体、粗面内质网、高尔基体等丰富。
高眼压模型组:感光细胞部分断裂,外节膜盘轮廓模糊,线粒体不同程度肿胀、空泡变性;外核层细胞排列紊乱、疏松,核染色质不均匀,线粒体明显肿胀及空泡样变;神经节细胞数目减少,肿胀、色淡,微丝、微管成分减少,线粒体、内质网和高尔基体等细胞器基本消失。
高眼压模型+玻璃体腔注射GSTT组或+超声组:尚可见感光细胞外节膜盘结构,排列轻紊乱;外核层核膜基本完整,核染色质较均匀,线粒体未见明显空泡变;内核层细胞轻度肿胀,染色质边集;神经节细胞层包膜清晰,核内充满均匀的常染色质,线粒体轻度空泡变性。
高眼压模型+玻璃体腔注射GSTT+超声+微泡组:感光细胞排列整齐,线粒体未见明显肿胀及空泡样变;外核层核染色质均匀;内核层核膜欠清,线粒体改变不明显;大多数神经节细胞核膜清晰,染色质分布均匀,核仁明显,线粒体尚清晰,粗面内质网基本正常。
4.2兔视神经超微结构的观察
空白对照组:视神经轴突规则,髓鞘结构完整;轴浆内可见清晰的微管、微丝和线粒体等细胞器。
高眼压模型组:视神经髓鞘溶解、疏松;轴突结构紊乱,微管和微丝结构消失,线粒体肿胀、空泡变性。
高眼压模型+玻璃体腔注射GSTT组:视神经轴突大小不规则,排列紊乱,部分髓鞘变薄、疏松、分离;轴突内微管和微丝肿胀,但不消失,线粒体部分空泡变性。
高眼压模型+玻璃体腔注射GSTT+超声组:视神经轴突的髓鞘变薄,排列紊乱、疏松;轴突内可见微管和微丝,部分线粒体空泡变性。
高眼压模型+玻璃体腔注射GSTT+超声+微泡组:视神经髓鞘结构完整,排列致密,但欠整齐;轴突内微管、微丝结构清晰,未见明显线粒体空泡变性。
五、免疫组织化学染色法测定凋亡相关因子Bcl-2和Bax在细胞内的蛋白表达
空白对照组兔视网膜各层均未明显见呈棕黄色的Bcl-2和Bax表达;高眼压模型组兔视网膜内核层和神经节细胞层中可见较多呈棕黄色的Bax表达,而Bcl-2的表达减少;高眼压模型+玻璃体腔注射GSTT或+超声组兔视网膜内核层和神经节细胞层中可见较少呈棕黄色的Bax表达,而Bcl-2的表达增多;高眼压模型+玻璃体腔注射GSTT+超声+微泡组兔视网膜各层可见散在呈棕黄色的Bax表达,而Bcl-2的表达明显增多。
经单因素方差分析,由表4可见,高眼压模型组与空白对照组相比,抑凋亡基因Bcl-2的表达降低,促凋亡基因Bax的表达增加,Bcl-2/Bax比值下降,两组之间的Bcl-2、Bax和Bcl-2/Bax的基因蛋白表达有显著统计学差异(P<0.05),这说明在高眼压模型中促凋亡蛋白执行凋亡程序,细胞趋于凋亡。随着GSTT的应用,Bcl-2基因蛋白的表达开始升高,Bax基因蛋白的表达开始降低,Bcl-2/Bax比值增大,各组之间Bcl-2、Bax和Bcl-2/Bax的基因蛋白表达无显著统计学差异(P>0.05);但与高眼压模型组相比,Bcl-2、Bax和Bcl-2/Bax的基因蛋白表达有显著统计学差异(P<0.05),这说明GSTT发挥了神经保护作用,抑凋亡蛋白执行抑制凋亡程序,细胞趋于存活,而玻璃体腔注射GSTT后单纯给予超声辐照并没有显著使细胞凋亡减少。随着GSTT联合超声微泡的应 用,抑凋亡基因Bcl-2的表达明显增多,促凋亡基因Bax的表达明显减少,Bcl-2/Bax比值升高,与其他各组相比Bcl-2、Bax和Bcl-2/Bax的基因蛋白表达有显著统计学差异(P<0.05),这说明GSTT在超声微泡的介导下视神经保护作用明显增大,细胞存活明显增加。
表4免疫组织化学染色法和RT-PCR方法检测兔视网膜组织内Bcl-2、Bax的蛋白表达量和mRNA表达量
Figure PCTCN2014092821-appb-000011
Figure PCTCN2014092821-appb-000012
注:单因素方差分析,△※表示组间两两比较无显著统计学差异(P>0.05),余组间两两比较有显著统计学差异(P<0.05)
六、荧光定量PCR检测Bcl-2和Bax在细胞内的mRNA表达
经单因素方差分析,由表4可见,高眼压模型组抑凋亡基因Bcl-2的mRNA表达量降低,促凋亡基因Bax的mRNA表达量增加,与空白对照组相比,两组之间Bcl-2和Bax的mRNA表达量有显著统计学差异(P<0.05),这说明在高眼压状态下,Bcl-2和Bax的表达量发生变化,促凋亡基因执行凋亡程序,细胞趋于凋亡。高眼压模型+玻璃体腔注射GSTT或+超声组的抑凋亡基因Bcl-2的mRNA表达量增加,促凋亡基因Bax的mRNA表达量降低,与高眼压模型组相比,Bcl-2和Bax的mRNA表达量有显著统计学差异(P<0.05),这说明GSTT发挥了作用,Bcl-2和Bax的表达量发生变化,使得凋亡细胞减少,存活细胞增 多。高眼压模型+玻璃体腔注射GSTT+超声+微泡组抑凋亡基因Bcl-2的mRNA表达量进一步增加,促凋亡基因Bax的mRNA表达量进一步降低,与其他各组相比,Bcl-2和Bax的mRNA表达量有显著统计学差异(P<0.05)。
七、兔视网膜组织内NO、MDA、SOD含量检测
由表5可见,经单因素方差分析,空白对照组图视网膜NO含量为23.384±3.282umol/g、MDA含量为7.415±0.3444nmol/mgprot,余各组兔视网膜组织中NO、MDA的含量均升高,各组有显著统计学差异(P=0.000)。经两两比较分析,高眼压模型组兔视网膜中NO、MDA的含量显著升高,与空白对照组相比有显著统计学差异(P<0.05)。高眼压模型+玻璃体腔注射GSTT组或+超声组、高眼压模型+玻璃体腔注射GSTT+超声+微泡组兔视网膜中NO、MDA的含量两两比较均无显著统计学差异(P>0.05),但分别与空白对照组和高眼压模型组相比,有显著统计学差异(P<0.05)。
经单因素方差分析,空白对照组视网膜SOD的活性为75.147±2.375U/mgprot,余各组兔视网膜中SOD的活性均明显下降,各组有显著统计学差异(P=0.000)。经两两比较分析,高眼压模型组兔视网膜中SOD的活性下降明显,与各组比较有显著统计学差异(P<0.05)。高眼压模型+玻璃体腔注射GSTT组或+超声组、高眼压模型+玻璃体腔注射GSTT+超声+微泡组兔视网膜SOD活性较高眼压模型组升高,但3、4、5组两两比较均无显著统计学差异(P>0.05)。
表5各组兔视网膜NO、MDA和SOD的含量变化
Figure PCTCN2014092821-appb-000013
Figure PCTCN2014092821-appb-000014
Figure PCTCN2014092821-appb-000015
注:单因素方差分析,△※表示组间两两比较无显著统计学差异(P>0.05),余组间两两比较有显著统计学差异(P<0.05)
讨论
1、兔高眼压视神经损害模型的制备
青光眼动物模型在青光眼的研究过程中非常重要。目前已经很多研究提出许多种青光眼动物模型,其中最理想的是激光烧灼小梁网诱导猴高眼压模型,但其价格昂贵,来源稀少,不能大批量做实验,限制了研究的应用。研究者早期尝试制作青光眼模型就是从制作兔眼青光眼模型开始的,兔眼大,易于操作,成本低,但造成的眼内炎症反应亦重。兔眼青光眼模型一般选择前房注射糜蛋白酶、甲基纤维素、复方卡波姆等,本实验选择了兔前房注射复方卡波姆来造模。卡波姆水液在PH值6~12时成凝胶状,房水的PH值为7左右,将其注入前房后,卡波姆从溶液状态变成凝胶状,不但能阻塞房角和小梁网防碍房水的排出,迅速成为凝胶状又不易从注入点返流出来。本实验期间高眼压模型组平均眼压为32~37mmHg,高眼压可持续4周以上,这与以往的研究结果相一致,前房内注入复方卡波姆溶液是一种较理想的高眼压造模方法。
视觉诱发电位是视大脑皮质枕叶区对视刺激发生的电反应,是代表视网膜接受刺激,经视路传导至枕叶皮层而引起的电位变化,是一种评价神经损害的敏感手段,主要反映视网膜到视皮层之间的病变,F-VEP的潜伏期和振幅主要反映视神经髓鞘和轴索的功能状态。所以对于本实验来说,F-VEP是评价视神经功能的一个较好手段。本实验结果显示高眼压膜型组兔F-VEP的N1潜伏期、P1潜伏期、N2潜伏期较空白对照组明显延长,N1-P1波振幅明显降低,比较具有显著统计学差异。
OCT和光镜测量兔视网膜厚度结果显示,高眼压模型组兔视网膜厚度显著变薄,说明慢性高眼压对兔视网膜造成了一定的损伤,使得视网膜厚度整体变薄。本实验从兔视网膜病理组织形态学观察发现,高眼压模型组视网膜各层结构紊乱、疏松,层次不清;感光细胞层排列紊乱;外核层细胞排列紊乱,厚度变薄;内核层细胞排列疏松、紊乱,可见大量空泡变的细胞;内丛状层和外丛状层结构紊乱,轻度变薄,与神经节细胞层分界不清;神经节细胞层细胞数目 明显减少,呈空泡样变。这说明在慢性高眼压作用下视网膜各层组织结构发生了损害。兔视网膜RGCs计数高眼压模型组与空白对照组比较差异具有统计学意义,说明慢性高眼压主要作用于神经节细胞层,使神经节细胞发生凋亡,数目减少。另外兔视神经轴突在持续高眼压后可出现损害,视神经轴突肿胀,数目减少,高眼压膜型组的视神经轴突数减少,视神经轴突直径增大和视神经轴突占视神经横截面积百分比减少,与空白对照组相比具有显著统计学差异。
本实验还用透射电镜观察高眼压状态下兔视网膜和视神经的超微结构,发现高眼压模型组感光细胞膜盘轮廓模糊,线粒体不同程度肿胀、空泡变性;外核层细胞排列紊乱、疏松,核染色质不均匀,线粒体明显肿胀及空泡样变;神经节细胞数目减少,肿胀、色淡,微丝、微管成分减少,线粒体、内质网和高尔基体等细胞器基本消失。视神经轴突结构紊乱,髓鞘溶解、疏松,微管和微丝结构消失,线粒体肿胀、空泡变性。
综上所述,本实验从结构和功能方面,病理组织形态学和超微结构方面证实兔高眼压视神经损害动物模型制备成功,这为下一步实验奠定了基础。
2、超声微泡介导视白蒺藜皂苷对高眼压兔视神经损害的保护作用
我们将造模成功的高眼压兔进行分组处理,从兔视网膜和视神经的结构和功能,宏观和超微结构等方法进行观察,探讨超声微泡介导视白蒺藜皂苷对高眼压兔视神经损害的保护作用。本实验结果显示单纯玻璃体腔注射白蒺藜皂苷后F-VEP的N1、P1、N2潜伏期较高眼压膜型组缩短,N1-P1波振幅较高眼压膜型组升高,比较有显著统计学差异(P<0.05),说明单纯玻璃体腔注射白蒺藜皂苷对兔高眼压视神经损害有一定保护作用。玻璃体腔注射白蒺藜皂苷后单纯给予超声辐照,发现F-VEP的N1、P1、N2潜伏期和N1-P1波振幅与单纯玻璃体腔注射白蒺藜皂苷相比无显著统计学差异(P>0.05),这说明单纯给予超声辐照并不能增加白蒺藜皂苷的保护作用,这是因为只单纯给予超声辐照没有给予微泡,没有产生空化效应,没有增加视白蒺藜皂苷到达视网膜局部的药物浓度。超声微泡联合玻璃体腔注射白蒺藜皂苷,F-VEP的N1、P1、N2潜伏期明显缩短,N1-P1波振幅明显升高,与玻璃体腔注射白蒺藜皂苷后单纯给予超声辐照相比有显著统计学差异(P<0.05),这说明在超声爆破微泡的作用下,白蒺藜皂苷更有效促进高眼压导致视神经损害的功能恢复。
本实验通过光镜病理组织学和OCT测量兔视网膜厚度发现,玻璃体腔注射白蒺藜皂苷后兔视网膜厚度测量值较高眼压模型组明显增厚,比较具有显著统计学差异(P<0.05),这说明白蒺藜皂苷对高眼压性视神经损害起到一定的保护作用。超声微泡联合玻璃体腔注射白蒺藜皂苷的光镜视网膜厚度测量值与单纯玻璃体腔注射白蒺藜皂苷或玻璃体腔注射白蒺藜皂苷后单纯给予超声辐照相比有显著统计学差异(P<0.05),这也说明超声爆破微泡能显著增加白蒺藜皂苷对视网膜和视神经的保护作用。我们的研究结果显示,在高眼压作用下,兔视神经轴突结构紊乱,髓鞘发生不同程度的溶解、疏松,微管和微丝结构消失。经玻璃体腔注射白蒺藜皂苷后,其视神经轴突数增加,视神经轴突直径减小,视神经轴突占视神经横截面积百分比增大。超声微泡联合白蒺藜皂苷组的视神经轴突肿胀明显减轻,轴突直径减小,视神经轴突髓鞘损失程度明显减轻,轴突数目增多,与其它各组相比具有显著统计学差异(P<0.05)。另外,本实验还从视网膜和视神经的病理组织形态学和超微结构方面进行了观察,研究发现超声微泡联合玻璃体腔注射白蒺藜皂苷组的视网膜病理组织结构较完整,各层较清晰,RGCs数目增多,偶可见空泡样变的细胞。兔视网膜和视神经超微结构方面发现,超声微泡联合玻璃体腔注射白蒺藜皂苷组的感光细胞排列稍有紊乱,内核层核膜欠清,大多数神经节细胞核膜清晰,染色质分布均匀,核仁明显,线粒体未见明显肿胀及空泡样变。视神经髓鞘排列致密,整齐,可见微管、微丝等结构。这说明超声微泡联合白蒺藜皂苷不仅对高眼压导致的RGCs损害有保护作用,而且对感光细胞层和内、外核层都起到一定的保护作用。
综上所述,超声微泡联合白蒺藜皂苷对高眼压兔视神经损害有明显的保护作用。这种靶向给药方式,让药物到达眼部的途径变得更单纯,不用经过全身代谢,避免药物经血液循环时所面临的分解及机体内环境对药物的干扰和破坏过程,从而最大限度地保证到达靶器官的药物浓度,发挥最大的治疗作用,大大拓宽了青光眼视神经保护治疗的视野,提供了一种新思路。

Claims (8)

  1. 一种新型白蒺藜皂苷玻璃体腔注射给药系统,其特征在于:包含白蒺藜皂苷和超声造影剂。
  2. 根据权利要求1所述的给药系统,其特征在于:所述超声造影剂为六氟化硫微泡。
  3. 权利要求1或2所述的给药系统在制备治疗青光眼性视神经损害的药物中的应用,所述药物用于在超声辐照下经玻璃体腔注射给药。
  4. 根据权利要求3所述的应用,其特征在于:所述药物用于在超声声强为0.5W/cm2,辐照时间为30s-60s下经玻璃体腔注射给药。
  5. 根据权利要求3所述的应用,其特征在于:所述药物的注射剂量为1-5mg/kg的白蒺藜皂苷。
  6. 根据权利要求5所述的应用,其特征在于:所述药物的注射剂量为5mg/kg的白蒺藜皂苷。
  7. 根据权利要求3所述的应用,其特征在于:所述药物为白蒺藜皂苷与超声造影剂的稳定混悬剂。
  8. 根据权利要求7所述的应用,其特征在于:所述混悬剂中白蒺藜皂苷与超声造影剂1:1混合。
PCT/CN2014/092821 2013-12-02 2014-12-02 一种白蒺藜皂苷玻璃体腔注射给药系统及其应用 WO2015081854A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310634877.1A CN103705551A (zh) 2013-12-02 2013-12-02 一种新型白蒺藜皂苷玻璃体腔注射给药系统及其应用
CN201310634877.1 2013-12-02

Publications (1)

Publication Number Publication Date
WO2015081854A1 true WO2015081854A1 (zh) 2015-06-11

Family

ID=50399138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092821 WO2015081854A1 (zh) 2013-12-02 2014-12-02 一种白蒺藜皂苷玻璃体腔注射给药系统及其应用

Country Status (2)

Country Link
CN (1) CN103705551A (zh)
WO (1) WO2015081854A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103705551A (zh) * 2013-12-02 2014-04-09 黄丽娜 一种新型白蒺藜皂苷玻璃体腔注射给药系统及其应用
WO2017113289A1 (zh) * 2015-12-31 2017-07-06 黄丽娜 一种人参皂苷Rg1玻璃体腔注射给药系统及其应用
CN108938687B (zh) * 2018-09-03 2021-06-25 辽宁何氏医学院 蒺藜在制备预防和治疗视网膜损伤性疾病药物中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1678342A (zh) * 2002-07-02 2005-10-05 加州大学评议会 眼病症治疗
CN103705551A (zh) * 2013-12-02 2014-04-09 黄丽娜 一种新型白蒺藜皂苷玻璃体腔注射给药系统及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1678342A (zh) * 2002-07-02 2005-10-05 加州大学评议会 眼病症治疗
CN103705551A (zh) * 2013-12-02 2014-04-09 黄丽娜 一种新型白蒺藜皂苷玻璃体腔注射给药系统及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUANG, LI'NA ET AL.: "The Protective Effect of Gross Saponin of Tribulus Terrestris on Rat Retinal Ganglion Cells in Vitro", CHINA JOURNAL OF CHINESE OPHTHALMOLOGY, vol. 18, no. 02, 11 April 2008 (2008-04-11), pages 89 - 91 *
LI, WEI ET AL.: "Anti-Apoptosis Effect of Bcl-Xl on Retinal Ganglion Cells By Ultrasound-Mediated Microhubble Destruction", CHINESE JOURNAL OF MEDICAL IMAGING TECHNOLOGY, vol. 22, no. 08, 20 August 2006 (2006-08-20), pages 1147 - 1150 *
WANG, ZHENJUN: "Research Development of Activation Mechanism to Protect Optic Nerve in Glaucoma by Single Herb and Its Effective Constituent", HERALD OF MEDICINE, vol. 30, no. 01, 31 January 2011 (2011-01-31), pages 74 *

Also Published As

Publication number Publication date
CN103705551A (zh) 2014-04-09

Similar Documents

Publication Publication Date Title
Perez et al. Ophthalmic drug delivery using iontophoresis: recent clinical applications
ES2899597T3 (es) Colirio para tratar el ojo seco
Miki et al. Intraocular cannula for continuous, chronic drug delivery: histopathologic observations and function
WO2015081854A1 (zh) 一种白蒺藜皂苷玻璃体腔注射给药系统及其应用
RU2581495C1 (ru) Способ лечения синдрома сухого глаза
RU2368359C1 (ru) Способ лечения возрастной макулярной дегенерации
WO2015081850A1 (zh) 一种新型鼠神经生长因子玻璃体腔注射给药系统及其应用
CN102920722A (zh) 治疗眼底病的眼用制剂
RU2008107696A (ru) Неинвазивная система доставки лекарственного средства к ткани заднего сегмента глаза с применением твердой композиции
CN102512467A (zh) 一种三七总皂苷的眼用制剂及其制备方法
Tekko et al. Microneedles for ocular drug delivery and targeting: challenges and opportunities
RU2613426C1 (ru) Интраоперационный способ профилактики послеоперационного воспаления и отека роговицы в ходе энергетической экстракции твердой катаракты (Варианты)
CN105963319A (zh) 一种饱和氢气盐水洗液及其制备方法和应用
RU2472476C1 (ru) Способ лазерного лечения сливных друз при возрастной макулярной дегенерации
Wang et al. Accessing the suprachoroidal space for therapeutic delivery
Li et al. Effects of modified trabeculectomy combined with phacoemulsification and intraocular lens implantation on intraocular pressure and complications in patients with primary open angle glaucoma
WO2017113289A1 (zh) 一种人参皂苷Rg1玻璃体腔注射给药系统及其应用
Ke et al. [Retracted] Effects of Ultrasound Contrast Agent‐Mediated Nerve Growth Factor on Apoptosis of Retinal Ganglion Cells in Mice with Glaucoma
Chen et al. Application of silver nanoparticles in the treatment of central serous chorioretinopathy
Kumar et al. A SHORT REVIEW ON EYE DRUG ABSOPTION ROUTES
Vyas et al. A Review on In Situ Gelling System for Ophthalmic Drug Delivery
Shaw et al. Management of Stargardt’s disease through Ayurvedic Science
CN106389470A (zh) 一种干细胞制剂及其制备方法和应用
RU2632515C1 (ru) Способ терапии дистрофических процессов переднего отдела глазного яблока на основе проточной системы поступления лекарственного препарата или минеральной воды
RU2303457C1 (ru) Способ проведения энзимотерапии

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14868557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14868557

Country of ref document: EP

Kind code of ref document: A1