WO2015081781A1 - 镁基储氢薄膜及其制备方法 - Google Patents

镁基储氢薄膜及其制备方法 Download PDF

Info

Publication number
WO2015081781A1
WO2015081781A1 PCT/CN2014/090449 CN2014090449W WO2015081781A1 WO 2015081781 A1 WO2015081781 A1 WO 2015081781A1 CN 2014090449 W CN2014090449 W CN 2014090449W WO 2015081781 A1 WO2015081781 A1 WO 2015081781A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
layer
hydrogen storage
based hydrogen
hydrogen
Prior art date
Application number
PCT/CN2014/090449
Other languages
English (en)
French (fr)
Inventor
程宇婷
卓之久
郑兴才
方章建
陶磊明
周欢欢
Original Assignee
中盈长江国际新能源投资有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中盈长江国际新能源投资有限公司 filed Critical 中盈长江国际新能源投资有限公司
Publication of WO2015081781A1 publication Critical patent/WO2015081781A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0026Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof of one single metal or a rare earth metal; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/087Oxides of copper or solid solutions thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the invention relates to a film for storing energy, in particular to a magnesium-based hydrogen storage film and a preparation method thereof.
  • Metal hydride hydrogen storage some transition metals, alloys, intermetallic compounds due to its special lattice structure, etc., under certain conditions, hydrogen atoms are more likely to enter the tetrahedral or octahedral gap of the metal lattice to form metal Hydride.
  • the hydrogen storage bulk density is as high as 100 kg/m 3 , but the mass is large, and the conditions in the hydrogen discharge are severe, so the cost is high. Therefore, it is necessary to develop a material that is light and cheap, does not require excessive temperature during the hydrogen release process, and can repeatedly absorb and release hydrogen.
  • Magnesium is a good hydrogen storage material that can absorb and release hydrogen under certain conditions. However, it is widely used, and its harsh hydrogen absorption and desorption conditions and high hydrogen storage cost make it prohibitive. The study found that there are three most effective ways to change its harsh conditions:
  • the alloy of magnesium with other elements can further change the thermodynamic performance of the hydrogen absorption and desorption reaction.
  • Hydrogen storage alloys need to have an element that has a strong adsorption force for hydrogen and can combine with hydrogen molecules to form a complex state.
  • Hydrogen storage alloys mainly include: rare earth metals, titanium, zinc and magnesium, or several atomic ratios classified as the above main constituent elements: AB, A 2 B, AB 2 , AB 5 , A x B, AB x (A is a binding element of hydrogen, and B is an element having a catalytic action or other special action).
  • Magnesium-based intermetallic compounds are a typical alloy. Magnesium is used as a substrate in combination with a second element, and some even combine multiple elements.
  • the magnesium-based intermetallic compound is mainly used as a hydrogen storage material in combination with Ni, Ti, V, Cu, and the like.
  • Catalytic materials also with anti-corrosion function
  • hydrogen-absorbing materials have been in the process of continuous testing.
  • the two methods commonly used are: wet chemical method and mechanical ball milling method, using precursor addition as transition metal. Compound or elemental transition metal powder.
  • wet chemical method easily leads to a decrease in the actual hydrogen storage capacity.
  • the organic ligand is added, the whole catalytic system is susceptible to hydrocarbons contaminating the hydrogen source during the heating process; in the ball milling process, it is difficult to obtain an ideal catalytic phase composite structure, Good hydrogen storage kinetics.
  • the physical deposition method has its unique advantages, and can easily make the catalytic layer reach the nanometer level, and can also obtain the nanometer magnesium-based alloy, and the method is simple and easy, and has low-cost characteristics, for preparing hydrogen storage materials. , is a good choice. And through a series of verifications, the hydrogen storage performance of the catalyst and the hydrogen storage material is significantly increased with the decrease of its size. When the particle size of the hydrogen storage material reaches the nanometer level, the hydrogen release temperature is greatly reduced, and the improvement is effectively improved. The hydrogen storage performance of the hydrogen storage material. However, due to the nature of the film itself, if the substrate material is not removed, the effective hydrogen storage capacity is very low, even less than 1%.
  • the thickness of the film has a great advantage in the hydrogen storage mass ratio, it is also caused by the fact that the sputtering film has a low hydrogen storage capacity and a small number of cycles.
  • magnesium-based hydrogen storage materials require materials having catalytic and diffusion functions in order to improve hydrogen storage efficiency, so that hydrogen can be stored and discharged more quickly and efficiently, but the more metal materials required, the more time the target is prepared. The more difficult it is, and the problem of uneven mixing of the target material is easily caused, and the final effective hydrogen storage amount is also low.
  • the hydrogen storage reaction material, the catalytic material, and the diffusion material are layered and sputtered, these problems are avoided, so that each A material is effective in its function and can significantly increase the actual hydrogen storage capacity of the material.
  • Microwave heat treatment is generally used to treat inorganic non-metals or high-molecular polymers.
  • the catalytic effect of metal alloys, especially metal catalysts is improved, and microwave heat treatment is also effective.
  • the interaction between the catalytic layer and the reaction layer can be enhanced, thereby significantly increasing the catalytic effect of the metal catalyst.
  • the microwave heat treatment method can be used to enhance the interaction between the hydrogen storage film material layer and the layer.
  • the technical problem to be solved by the present invention is to provide a nano-magnesium-based hydrogen storage film which can significantly increase the temperature at a lower temperature by reducing the reaction temperature during hydrogen absorption and desorption and increasing the hydrogen storage mass fraction of the magnesium-based alloy. The rate of hydrogen release, thereby increasing the efficiency of hydrogen storage.
  • the invention also provides a preparation method of a magnesium-based hydrogen storage film, which organically combines a physical deposition method and a microwave heat treatment method to prepare a nano magnesium-based hydrogen storage film, and combines the advantages of the two methods, thereby improving not only The surface area of the material, material saving, and the hydrogen storage efficiency can be improved, and the hydrogen storage performance is remarkably improved.
  • the present invention provides a magnesium-based hydrogen storage film having a five-layer structure in which a magnesium-based hydrogen storage layer is laminated, and a diffusion layer is respectively combined on both sides of the magnesium-based hydrogen storage layer.
  • a catalytic layer is respectively laminated on the outside of the diffusion layer;
  • the catalytic layer is any one or more of a catalytically active transition metal, a metal oxide, and an intermetallic compound;
  • the chemical composition of the diffusion layer is Fe, or an alloy of Fe and Li, and the rest are inevitable impurities;
  • the chemical composition of the magnesium-based hydrogen storage layer is any one or more of Mg, Mg alloy, and Mg coordination compound.
  • the transition metal is any one or more of Pd, La, Zr, Ce, Pt, V, Ti, Ni, Cr, and Y
  • the metal oxide is in ZnO, CuO, and TiO 2
  • Any one or more of the intermetallic compounds are any one or more of ZrV 2 , LaNi 5 , FeTi, Ti x V y and Zr x Pd y .
  • the Mg alloy is any one or more of an alloy of Mg and Al, Li, Ni, Ce, and La;
  • the Mg coordination compound is Mg x Ni y , Mg x La y , Mg x Any one or more of Pa y , Mg x Al y Ni, Mg x V y Tiz, Mg x Li y Ti z , Mg x Li y Ni z and Mg x Al y Ni z .
  • the magnesium-based hydrogen storage layer has a Mg content of 60% or more.
  • the catalytic layer has a thickness of 1 to 10 nm
  • the diffusion layer has a thickness of 1 to 10 nm
  • the magnesium-based hydrogen storage layer has a thickness of 10 to 50 nm.
  • the thickness ratio of the catalytic layer to the magnesium-based hydrogen storage layer is 1:10-20; the thickness ratio of the diffusion layer to the magnesium-based hydrogen storage layer is 1:10-20.
  • the invention also provides a preparation method of a magnesium-based hydrogen storage film, comprising the following steps:
  • a film material which is a catalytic layer, a diffusion layer, and a magnesium-based hydrogen storage layer. , a diffusion layer and a catalytic layer;
  • the film material and the organic solution are centrifuged at 10,000 to 25,000 rpm for 20 to 60 minutes. After layering, the upper layer solution is filtered off, and then the corresponding organic solvent is added to wash the residual soluble organic matter on the film material, and then centrifugation is continued. The upper layer solution is filtered again, and the process is repeated 2 to 5 times;
  • the film material is dried in a vacuum room temperature environment to remove the residual liquid thereon; hydrogen gas is introduced thereto, and microwave heat treatment is performed at 250 to 350 ° C for 2 to 10 minutes, and finally cooled to room temperature in a hydrogen atmosphere to obtain Magnesium-based hydrogen storage film material.
  • the easily soluble organic substance is any one or more of polyimide, polyethylene terephthalate, polymethacrylic acid and photoresist.
  • the gas pressure is maintained at 2.0 to 3.0 kPa, and the microwave power is 150 to 250 W.
  • a readily soluble organic substance (polymethyl methacrylate (PMMA), polyimide (PI), polyethylene terephthalate (PET), photoresist) is used as the magnetron sputtering.
  • the substrate has such a property that it is easily soluble in certain organic substances, so that the substrate can be easily peeled off from the target sputtering film, and the influence of film peeling and the like can be avoided, thereby improving the effective hydrogen storage quality of the hydrogen storage material.
  • the prepared film material is further subjected to microwave heat treatment to better combine the catalytic layer particles with the diffusion layer and the hydrogen storage layer, thereby improving the interaction between the hydrogen storage phase of the hydrogen storage material and the diffusion inner layer and the catalytic layer, and obtaining the activity.
  • the magnesium-based hydrogen storage film prepared by the invention is a five-layer film material such as a catalytic layer, a diffusion layer, a magnesium-based hydrogen storage layer (a core layer having a hydrogen storage function), a diffusion layer and a catalytic layer.
  • the five-layer structure speeds up hydrogen absorption.
  • the catalytic layer of the surface layer effectively prevents the oxidation of the magnesium-based metal of the reaction layer, and can accelerate the decomposition of hydrogen into hydrogen atoms
  • the Fe metal element of the diffusion layer can promote the diffusion of hydrogen atoms
  • the surface of Li can enhance the adsorption of hydrogen. Further assisting the diffusion of hydrogen atoms, thereby improving the hydrogen storage performance of the magnesium-based film of the reaction layer.
  • the physical deposition method is used in the preparation method of the present invention. Compared with the conventional ball milling method, the method can rapidly decompose hydrogen into hydrogen atoms under the catalyst catalysis, and then the diffusion layer can be more quickly and uniformly Magnesium-based metals react more thoroughly and improve hydrogen storage efficiency. It has been verified that the smaller the particle size of the hydrogen storage material, the better the hydrogen storage performance, and the physical deposition method can control the thickness of each layer, so that the film hydrogen storage material has higher performance.
  • the magnesium-based metal thin film material is treated by the microwave heat treatment method, so that the interaction force between the layer of the catalytic layer, the diffusion layer and the reaction layer is stronger, and the layer and the layer are The inter-compound structure is denser, which facilitates the diffusion of hydrogen and further reacts with the magnesium-based material for hydrogen absorption and desorption.
  • the magnesium-based hydrogen storage film of the present invention can reversibly absorb and release hydrogen at a low temperature, and the hydrogen absorption can be carried out at a normal temperature, and the hydrogen storage mass fraction can reach 6.5 wt%, and the hydrogen release can be 1 MPa in a short time. At 100 ° C, the hydrogen storage efficiency is significantly improved.
  • FIG. 1 is a schematic structural view of a magnesium-based hydrogen storage film of the present invention.
  • FIG. 2 is a hydrogen absorption curve of a Ti-Mg/Al/Fe-Ti nano-magnesium hydrogen storage film subjected to microwave heat treatment and a microwave-heat-treated material at 1 MPa and temperatures of 25 ° C and 100 ° C, respectively.
  • 3 is a micro-magnesium-based hydrogen storage film of Ti-Mg/Al/Fe-Ti subjected to microwave heat treatment and without microwave heat treatment, and a nano-MgH 2 powder (30 nm) without microwave heat treatment at 100 ° C, 1 MPa. Release hydrogen curve.
  • catalytic layer 1 diffusion layer 2, magnesium-based hydrogen storage layer 3.
  • a method for preparing a magnesium-based hydrogen storage film comprises the following steps:
  • a thin film material which is a catalytic layer 1, a diffusion layer 2, a magnesium-based hydrogen storage layer 3, a diffusion layer 2, and a catalytic layer 1
  • the thickness of the catalytic layer 1 is 10 nm
  • the thickness of the diffusion layer 2 is 5 nm
  • the thickness of the magnesium-based hydrogen storage layer 3 is 20 nm;
  • the tin foil After removing the film material together with the base material, the tin foil is immersed in an acetone solution for 90 s, and after the PMMA is completely dissolved, the tin foil is removed;
  • a method for preparing a magnesium-based hydrogen storage film comprises the following steps:
  • a film material which in turn is a catalytic layer 1, a diffusion layer 2, a magnesium-based hydrogen storage layer 3, a diffusion layer 2, and a catalytic layer 1;
  • the thickness of the catalytic layer 1 is 5 nm
  • the thickness of the diffusion layer 2 is 2 nm
  • the thickness of the magnesium-based hydrogen storage layer 3 is 10 nm;
  • the tin foil After removing the film material together with the base material, the tin foil is immersed in an acetone solution for 75 s, and after the PMMA is completely dissolved, the tin foil is removed;
  • the hydrogen absorption curve is shown in Figure 2, and its hydrogen release curve is shown in Figure 3. It can be seen from the figure that the nano-magnesium-based hydrogen storage film material after microwave heat treatment has a more obvious advantage in hydrogen storage efficiency.
  • the nano-magnesium-based powder hydrogen storage powder is a hydrogen release curve of MgH2 (30nm) powder prepared by ball milling under the same hydrogen release conditions. It can be seen from the figure that the magnesium-based hydrogen storage material prepared by ball milling
  • the ultra-thin nano-magnesium-based hydrogen storage materials prepared by physical deposition sputtering have significant differences in hydrogen release efficiency when subjected to microwave treatment, and physical deposition methods have better hydrogen storage properties.
  • a method for preparing a magnesium-based hydrogen storage film comprises the following steps:
  • the tin foil is wrapped on the substrate, and the PET is spin-coated on the tin foil at a rotation speed of 4500 rpm, and after being spin-coated for 30 seconds, it is completely cured for 20 hours to form a film to obtain a base material;
  • a film material which in turn is a catalytic layer 1, a diffusion layer 2, a magnesium-based hydrogen storage layer 3, a diffusion layer 2, and a catalytic layer 1; wherein, the catalyst
  • the thickness of layer 1 is 3 nm
  • the thickness of diffusion layer 2 is 3 nm
  • the thickness of magnesium-based hydrogen storage layer 3 is 30 nm.
  • a method for preparing a magnesium-based hydrogen storage film comprises the following steps:
  • the tin foil is wrapped on the substrate, and the PI and the photoresist are spin-coated on the tin foil at a speed of 4000 rpm, and after 60 seconds of spin coating, the film is completely cured for 30 hours to form a base material; wherein the PI and the photoresist are prepared.
  • the weight ratio is 1:1;
  • a film material which in turn is a catalytic layer 1, a diffusion layer 2, a magnesium-based hydrogen storage layer 3, a diffusion layer 2, and a catalytic layer 1; wherein, the catalyst
  • the thickness of layer 1 is 2 nm
  • the thickness of diffusion layer 2 is 2 nm
  • the thickness of magnesium-based hydrogen storage layer 3 is 40 nm.
  • the preparation method is the same as the above method, except that:
  • LaNi 5 and ZrV 2 are weighed as raw materials of the catalytic layer 1, and an alloy of Fe and Li is weighed as a raw material of the diffusion layer 2, and Mg, MgAlH 4 and Mg 2 Ni are weighed as raw materials of the magnesium-based hydrogen storage layer 3, Wherein the weight ratio of LaNi 5 and ZrV 2 is 1:1, the weight ratio of Fe to Li in the alloy of Fe and Li is 1:1, and the weight ratio of Mg, MgAlH 4 and Mg 2 Ni is 2..1:1.
  • the three raw materials are respectively made into corresponding targets;
  • a film material which in turn is a catalytic layer 1, a diffusion layer 2, a magnesium-based hydrogen storage layer 3, a diffusion layer 2, and a catalytic layer 1; wherein, the catalyst
  • the thickness of the layer 1 was 10 nm
  • the thickness of the diffusion layer 2 was 10 nm
  • the thickness of the magnesium-based hydrogen storage layer 3 was 50 nm.
  • the preparation method is the same as the above method, except that:
  • a film material which in turn is a catalytic layer 1, a diffusion layer 2, a magnesium-based hydrogen storage layer 3, a diffusion layer 2, and a catalytic layer 1; wherein, the catalyst
  • the thickness of the layer 1 was 1 nm
  • the thickness of the diffusion layer 2 was 1 nm
  • the thickness of the magnesium-based hydrogen storage layer 3 was 30 nm.
  • the preparation method is the same as the above method, except that:
  • Ni is weighed as a raw material of the catalytic layer 1
  • an alloy of Fe and Li is weighed as a raw material of the diffusion layer 2
  • a MgLi alloy is weighed as a raw material of the magnesium-based hydrogen storage layer 3, wherein Fe and Fe in the alloy of Fe and Li
  • the weight ratio of Li is 1:2, and the weight ratio of Mg to Li is 3:1.
  • the three raw materials are respectively made into corresponding targets;
  • a film material which in turn is a catalytic layer 1, a diffusion layer 2, a magnesium-based hydrogen storage layer 3, a diffusion layer 2, and a catalytic layer 1; wherein, the catalyst
  • the thickness of the layer 1 was 1 nm
  • the thickness of the diffusion layer 2 was 1 nm
  • the thickness of the magnesium-based hydrogen storage layer 3 was 50 nm.
  • the preparation method is the same as the above method, except that:
  • a film material which in turn is a catalytic layer 1, a diffusion layer 2, a magnesium-based hydrogen storage layer 3, a diffusion layer 2, and a catalytic layer 1; wherein, the catalyst
  • the thickness of the layer 1 was 5 nm
  • the thickness of the diffusion layer 2 was 5 nm
  • the thickness of the magnesium-based hydrogen storage layer 3 was 40 nm.
  • the preparation method is the same as the above method, except that:
  • the three raw materials are respectively made into corresponding targets;
  • a film material which in turn is a catalytic layer 1, a diffusion layer 2, a magnesium-based hydrogen storage layer 3, a diffusion layer 2, and a catalytic layer 1; wherein, the catalyst
  • the thickness of layer 1 was 2 nm
  • the thickness of diffusion layer 2 was 2 nm
  • the thickness of magnesium-based hydrogen storage layer 3 was 45 nm.
  • Table 1 shows the hydrogen absorption mass fraction (wt%) of the first, second, third, fourth, fifth, sixth, seventh, eighth, and ninth examples at 150 ° C, 150 s, 300 s, and 600 s, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Physical Vapour Deposition (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

一种镁基储氢薄膜及其制备方法,该薄膜具有五层结构,其中间为镁基储氢层,镁基储氢层两面分别复合有扩散层,扩散层外面分别复合有催化层;该方法将锡箔包裹在基板上,将易溶性有机物旋转涂布在锡箔上,静置待其完全固化成膜;通过物理沉积法将上述三种靶材依次沉积得到薄膜材料,将薄膜材料与基底材料一起取下后,放入相对应的有机溶剂中浸泡,待易溶性有机物完全溶解后,将薄膜材料微波热处理,得到镁基储氢薄膜材料。该镁基储氢薄膜可以在低温下进行可逆吸放氢,吸氢可以在常温下进行,并且储氢质量分数可达6.5wt%,在短时间内放氢可以在1MPa、100℃下进行,储放氢效率显著提高。

Description

镁基储氢薄膜及其制备方法 技术领域
本发明涉及一种用于储存能量的薄膜,具体地指一种镁基储氢薄膜及其制备方法。
背景技术
化石燃料的替代能源已经受到越来越多的关注,社会、政府、企业以及科研机构都逐步认识到其重要性,而氢能作为一个可不断再生、安全、清洁的可替代能源,从安全、方便以及能量密度的角度考虑,储氢材料更倾向于利用金属吸附氢从而形成一个不易爆炸的金属氢化物固体。美国能源部已经推出了关于对低温储氢合金和储氢碳材料的相关研究任务。使用氢能源燃料电池作为汽车的动力,要求储氢系统的储氢容量达到6.5wt%或者60kg/m3,并且储氢系统的一次形成要超过350英里。
金属氢化物储氢,某些过渡金属、合金、金属间化合物由于其特殊的晶格结构等原因,在一定条件下,氢原子比较容易进入金属晶格的四面体或者八面体间隙中,形成金属氢化物。其储氢体积密度大,可达100kg/m3,但质量较大,并且在放氢时的条件严苛,因而成本较高。所以开发出一个又轻又便宜,放氢过程不需要过高的温度,并且能够多次循环吸放氢的材料是十分必要的。
镁是一种良好的储氢材料,在一定的条件下能够吸放氢,但是要被广泛应用,其苛刻的吸放氢条件、高昂的储氢成本让人对其望而却步。研究发现,有三种最有效的方法能够改变其苛刻条件:
1、加入催化金属层,使氢气更容易分解为氢原子;
2、降低镁的颗粒尺寸,比如纳米结构能够显著增加镁的氢化速度,我们可以认为是比表面积增大,加速金属镁与氢原子的氢化反应速率;
3、镁与其它元素(例如Ni等)的合金可以进一步转变吸放氢反应的热动力学性能。
所以研究一种能同时满足以上三点条件,并且使用低成本的、资源丰富的原材料制备储氢材料,是十分有意义的。
储氢合金需要有一个对氢气具有强大吸附力的元素并且可以与氢分子结合成一个复合态。储氢合金主要包括:稀土金属、钛系、锌系和镁系,或者被归类于上述主要组成 元素的几种原子比例:AB、A2B、AB2、AB5、AxB、ABx(A是氢的结合元素,B是具有催化作用或者其它特殊作用的元素)。镁基金属间化合物是一种典型的合金,镁作为基底与第二种元素结合,有的甚至是多种元素相结合。镁基金属间化合物主要与Ni、Ti、V和Cu等结合用作储氢材料。
催化材料(同时具备防腐蚀功能)与吸放氢材料的融合方式也一直都处于不断试验的阶段,通常采用的两种方法是:湿化学法以及机械球磨法,采用前驱体添加项为过渡金属化合物或元素态过渡金属粉末。用上述方法虽然可行,但是催化体系在成分构成或催化相复合结构等方面却有诸多问题。湿化学法易导致实际储氢量降低并且在加入有机配体时,在加热过程中整个催化体系易受到碳氢化合物影响污染氢源;在球磨过程中,难于获得理想的催化相复合结构,没有良好的储放氢动力学性能。
物理沉积法有其独特的优势,可以简易地使催化层达到纳米级,而也可以得到纳米级的镁基合金,并且此方法简便易行,具有低成本的特性,对于制备储氢材料来说,是一种尚佳的选择。并且通过一系列的验证得出,催化剂以及储氢材料的储氢性能随其尺寸的减小而显著提高,当储氢材料的颗粒尺寸达到纳米级时,其放氢温度大幅降低,有效地改进了储氢材料的储氢性能。但是由于薄膜本身的特性,若是没有除去基底物质,那么其有效储氢量非常低,甚至不足1%。虽然薄膜的厚度在储氢质量比上有很大的优势,但也正因溅射薄膜而导致了其有效储氢量低,循环次数少等缺点。一般镁基储氢材料为了提高储氢效率,需要其中有催化与扩散功能的材料,从而可以更快且更高效地储放氢,但是所需金属材料越多,那么在制备靶材的时候就越困难,并且容易导致靶材混合不均匀的问题,也造成了最终有效储氢量低,而将储放氢反应材料、催化材料、扩散材料分层溅射,就会避免这些问题,使得每一个材料都有效的发挥其功能,并且可以显著提高材料的实际储氢量。
微波热处理法,一般常见于处理无机非金属或者高分子聚合物,但是在进行一系列的条件设置后,发现对于金属合金,特别是金属催化剂的催化效果的提升,微波热处理法也是有显著的效果的,可以增强催化层与反应层之间的相互作用,从而显著提高金属催化剂的催化效果。而为了使储氢材料所需要的催化层、扩散层以及反应层之间发挥更好的储氢效果,选择用微波热处理法可以加强储氢薄膜材料层与层之间的互相作用。
目前,还没有关于将物理沉积法和微波热处理法联合处理的报道。
发明内容
本发明所要解决的技术问题就是要提供一种纳米镁基储氢薄膜,其通过降低吸放氢过程中的反应温度、以及提高镁基合金的储氢质量分数,能显著提高在较低温度下的放氢速度,从而提高储氢效率。
本发明还提供一种镁基储氢薄膜的制备方法,该方法将物理沉积法和微波热处理法有机地结合在一起制备所需的纳米镁基储氢薄膜,结合两种方法的优势,不仅提高材料的表面积、节省材料,而且可以提高储氢效率,显著提高其储氢性能。
为解决上述技术问题,本发明提供了一种镁基储氢薄膜,该薄膜具有五层结构,其中间为镁基储氢层,所述镁基储氢层两面分别复合有扩散层,所述扩散层外面分别复合有催化层;其中,
所述催化层为具有催化活性的过渡金属、金属氧化物和金属间化合物中的任意一种或几种;
所述扩散层的化学成分为Fe、或Fe与Li的合金,其余为不可避免的杂质;
所述镁基储氢层的化学成分为Mg、Mg合金和Mg配位化合物中的任意一种或几种。
进一步地,所述过渡金属为Pd、La、Zr、Ce、Pt、V、Ti、Ni、Cr和Y中的任意一种或几种,所述金属氧化物为ZnO、CuO和TiO2中的任意一种或几种,所述金属间化合物为ZrV2、LaNi5、FeTi、TixVy和ZrxPdy中的任意一种或几种。
再进一步地,所述Fe与Li合金中的重量份数配比为:Fe:Li=1:1~4。
再进一步地,所述Mg合金为Mg与Al、Li、Ni、Ce、La的合金中的任意一种或几种;所述Mg配位化合物为MgxNiy、MgxLay、MgxPay、MgxAlyNi、MgxVyTiz、MgxLiyTiz、MgxLiyNiz和MgxAlyNiz中的任意一种或几种。
再进一步地,所述镁基储氢层中Mg含量大于等于60%。
再进一步地,所述催化层的厚度为1~10nm、扩散层的厚度为1~10nm、镁基储氢层的厚度为10~50nm。
再进一步地,所述催化层与镁基储氢层的厚度比为1:10~20;所述扩散层与镁基储氢层的厚度比为1:10~20。
本发明还提供了一种镁基储氢薄膜的制备方法,包括以下步骤:
1)将锡箔包裹在基板上,将易溶性有机物在2500~4500rpm的转速下旋转涂布在锡 箔上,静置待其完全固化成膜,制得基底材料;
2)按所述配比称取催化层、扩散层和镁基储氢层所需的原料,并制备成靶材;
3)通过物理沉积法将上述三种靶材按所述的层次沉积在步骤1)所制得的基底材料上,得到薄膜材料,该薄膜材料依次为催化层、扩散层、镁基储氢层、扩散层和催化层;
4)将该薄膜材料与基底材料一起取下后,揉搓锡箔后,放入相对应的有机溶剂中浸泡20~120s,待易溶性有机物完全溶解后,取走锡箔;
5)将该薄膜材料和有机溶液在10000~25000rpm转速下离心20~60min,待分层后滤去上层溶液,再加入相对应的有机溶剂洗涤薄膜材料上残留的易溶性有机物,继续离心,然后再滤去上层溶液,循环反复此过程2~5次;
6)将该薄膜材料置于真空室温环境下干燥,除去其上的残留液;再通入氢气,并在250~350℃条件下微波热处理2~10min,最后在氢气环境中冷却至室温,得到镁基储氢薄膜材料。
作为优选方案,所述步骤1)中,易溶性有机物为聚酰亚胺、聚对苯二甲酸乙二醇酯、聚甲基丙烯酸和光刻胶中的任意一种或几种。
作为优选方案,所述步骤5)中,通入氢气后,气压保持为2.0~3.0kPa,微波功率为150~250W。
本发明的有益效果在于:
1、本发明中使用易溶性有机物(聚甲基丙烯酸甲酯(PMMA)、聚酰亚胺(PI)、聚对苯二甲酸乙二醇酯(PET)、光刻胶)作为磁控溅射的基底,此种有机物具有易溶于某些有机物的特性,从而可以简易地将基底剥离靶材溅射薄膜,并且避免薄膜脱落等影响,进而可以提高储氢材料的有效储氢质量。将制备好的薄膜材料再通过微波热处理,使催化层粒子更好地与扩散层和储氢层结合,因此能够提高储氢材料的储氢相与其扩散内层、催化层的相互作用,获得活性更高同时催化性能更好的镁基储氢材料。
2、本发明制备得到镁基储氢薄膜为催化层、扩散层、镁基储氢层(具有储氢功能的核心层)、扩散层和催化层这样的五层薄膜材料。该五层结构可以加快吸氢的速度。其中:表层的催化层有效地阻止了反应层镁基金属的氧化,并且可以加快氢气分解为氢原子;扩散层Fe金属元素可以促进氢原子的扩散,而Li的表面可以加强对氢的吸附,进一步帮助氢原子的扩散,从而可以提高反应层镁基薄膜的储氢性能。
3、本发明的制备方法中使用了物理沉积法,该方法与传统的球磨方法相比,它可以使氢气在催化剂催化下快速分解为氢原子,而后加之扩散层就可以更加快速并且均匀地与镁基金属反应得更彻底,提高储氢效率。经验证,储氢材料粒径越小,其储氢性能越好,而物理沉积方法可以控制每一层的厚度,使薄膜储氢材料有更高的性能。
4、本发明经过物理沉积薄膜以后,再通过微波热处理法对镁基金属薄膜材料进行处理,使催化层、扩散层、反应层的层与层之间的相互作用力更强,层与层之间的复合结构更致密,有利于氢气的扩散,并进一步与镁基材料进行吸放氢反应。
5、本发明中的镁基储氢薄膜可以在低温下进行可逆吸放氢,吸氢可以在常温下进行,并且储氢质量分数可达6.5wt%,在短时间内放氢可以在1MPa、100℃下进行,储放氢效率显著提高。
附图说明
图1为本发明镁基储氢薄膜的结构示意图;
图2为Ti-Mg/Al/Fe-Ti的纳米镁基储氢薄膜经过微波热处理和未经过微波热处理的材料在1MPa,温度分别为25℃、100℃下的吸氢曲线。
图3为Ti-Mg/Al/Fe-Ti的纳米镁基储氢薄膜经过微波热处理和未经过微波热处理以及一种纳米MgH2粉末(30nm)未经过微波热处理的材料在100℃、1MPa下的放氢曲线。
图中:催化层1、扩散层2、镁基储氢层3。
具体实施方式
为了更好地解释本发明,以下结合具体实施例进一步阐明本发明的主要内容,但本发明的内容不仅仅局限于以下实施例。
实施例1
一种镁基储氢薄膜的制备方法,包括以下步骤:
1)将锡箔包裹在基板上,将PMMA在4000rpm的转速下旋转涂布在锡箔上,旋涂45s后静置24h完全固化成膜,制得基底材料;
2)称取Ti作为催化层1的原料,称取纯Fe作为扩散层2的原料,称取Mg-Al合金作为镁基储氢层3的原料,其中Mg-Al的重量份比为2:1,将三种原料分别制成相应 的靶材;
3)通过采用真空离子电镀技术(PVD)将上述三种靶材依次沉积得到薄膜材料,该薄膜材料依次为催化层1,扩散层2、镁基储氢层3、扩散层2和催化层1;其中,催化层1的厚度为10nm,扩散层2厚度为5nm,镁基储氢层3的厚度为20nm;
4)将薄膜材料与基底材料一起取下后,揉搓锡箔后,放入丙酮溶液中浸泡90s,待PMMA完全溶解后,取走锡箔;
5)将薄膜材料和有机溶液放入50ml离心管中,在15000rpm转速下离心30min,待分层后,滤去上层溶液,再加入丙酮溶液洗涤薄膜材料上残留的PAMM,继续离心,然后再滤去上层溶液,循环反复此过程2~5次,最后将所得固体薄膜材料在真空室温环境下干燥后,所获得的固体薄膜材料放入抽真空石英管中;
6)向放有固体薄膜材料的真空石英管中通入氢气,气压保持为2.5kPa,并在300℃,微波功率为200W微波热处理5min,并继续通入氢气,冷却至室温,得到镁基储氢薄膜材料。
实施例2
一种镁基储氢薄膜的制备方法,包括以下步骤:
1)将锡箔包裹在基板上,将PMMA在4000rpm的转速下旋转涂布在锡箔上,旋涂45s后静置24h完全固化成膜,制得基底材料;
2)称取Ti作为催化层1的原料,称取纯Fe作为扩散层2的原料,称取Mg-Al合金作为镁基储氢层3的原料,其中Mg-Al的重量份比为2:1,将三种原料分别制成相应的靶材;
3)通过真空离子电镀技术(PVD)将上述三种靶材依次沉积得到薄膜材料,薄膜材料依次为催化层1,扩散层2、镁基储氢层3、扩散层2和催化层1;其中,催化层1的厚度为5nm,扩散层2厚度为2nm,镁基储氢层3的厚度为10nm;
4)将薄膜材料与基底材料一起取下后,揉搓锡箔后,放入丙酮溶液中浸泡75s,待PMMA完全溶解后,取走锡箔;
5)将薄膜材料和有机溶液放入50ml离心管中,在15000rpm转速下离心30min,待分层后,滤去上层溶液,再加入丙酮溶液洗涤薄膜材料上残留的PAMM,继续离心,然后再滤去上层溶液,循环反复此过程2~5次,最后将所得固体薄膜材料在真空室温环境 下干燥后,所获得的固体薄膜材料放入抽真空石英管中;
6)向放有固体薄膜材料的真空石英管中通入氢气,气压保持为2.5kPa,并在300℃条件下,微波功率为150W的微波热处理3min,关闭微波源,并继续通入氢气,冷却至室温,得到镁基储氢薄膜材料。
其吸氢曲线如图2所示,其放氢曲线如图3所示。由图可知,经过微波热处理后的纳米镁基储氢薄膜材料在储氢效率上有更加明显的优势。图三中纳米镁基粉末储氢粉末为一种通过球磨法制备的MgH2(30nm)粉末在同样的放氢条件下的放氢曲线图,由图可知,通过球磨法制备的镁基储氢材料与物理沉积溅射法制备的超薄纳米镁基储氢材料在为经过微波处理时的放氢效率上有明显的差异,物理沉积法制备有更好的储氢性能。
实施例3
一种镁基储氢薄膜的制备方法,包括以下步骤:
1)将锡箔包裹在基板上,将PET在4500rpm的转速下旋转涂布在锡箔上,旋涂30s后静置20h完全固化成膜,制得基底材料;
2)称取Ti和Ni作为催化层1的原料,称取Fe和Li的合金作为扩散层2的原料,称取纯Mg合金作为镁基储氢层3的原料,其中Ti和Ni的重量份比为3:1,Fe和Li的合金中Fe和Li的重量份比1:2,将三种原料分别制成相应的靶材;
3)通过磁控溅射法将上述三种靶材依次沉积得到薄膜材料,薄膜材料依次为催化层1,扩散层2、镁基储氢层3、扩散层2和催化层1;其中,催化层1的厚度为3nm,扩散层2厚度为3nm,镁基储氢层3的厚度为30nm
4)将薄膜材料与基底材料一起取下后,揉搓锡箔后,放入丙酮溶液中浸泡120s,待PET完全溶解后,取走锡箔;
5)将薄膜材料和有机溶液放入50ml离心管中,在10000rpm转速下离心60min,待分层后,滤去上层溶液,再加入丙酮溶液洗涤薄膜材料上残留的PET,继续离心,然后再滤去上层溶液,循环反复此过程2~5次,最后将所得固体薄膜材料在真空室温环境下干燥后,所获得的固体薄膜材料放入抽真空石英管中;
6)向放有固体薄膜材料的真空石英管中通入氢气,气压保持为2.0kPa,并在350℃条件下,微波功率为250W的微波热处理2min,关闭微波源,并继续通入氢气,冷却至室温,得到镁基储氢薄膜材料。
实施例4
一种镁基储氢薄膜的制备方法,包括以下步骤:
1)将锡箔包裹在基板上,将PI和光刻胶在4000rpm的转速下旋转涂布在锡箔上,旋涂60s后静置30h完全固化成膜,制得基底材料;其中PI和光刻胶的重量比为1:1;
2)称取Ti、LaNi5和ZnO作为催化层1的原料,称取Fe和Li的合金作为扩散层2的原料,称取纯Mg作为镁基储氢层3的原料,其中Ti、LaNi5和ZnO的重量份比为1:1:1,Fe和Li的合金中Fe和Li的重量份比1:4,将三种原料分别制成相应的靶材;
3)通过磁控溅射法将上述三种靶材依次沉积得到薄膜材料,薄膜材料依次为催化层1,扩散层2、镁基储氢层3、扩散层2和催化层1;其中,催化层1的厚度为2nm,扩散层2厚度为2nm,镁基储氢层3的厚度为40nm
4)将薄膜材料与基底材料一起取下后,揉搓锡箔后,放入丙酮溶液中浸泡20s,待PI完全溶解后,取走锡箔;
5)将薄膜材料和有机溶液放入50ml离心管中,在10000rpm转速下离心60min,待分层后,滤去上层溶液,再加入丙酮溶液洗涤薄膜材料上残留的PI,继续离心,然后再滤去上层溶液,循环反复此过程2~5次,最后将所得固体薄膜材料在真空室温环境下干燥后,所获得的固体薄膜材料放入抽真空石英管中;
6)向放有固体薄膜材料的真空石英管中通入氢气,气压保持为3.0kPa,并在250℃条件下,微波功率为350W的微波热处理10min,关闭微波源,并继续通入氢气,冷却至室温,得到镁基储氢薄膜材料。
实施例5
该制备方法与上述方法相同,不同之处在于:
2)称取LaNi5和ZrV2作为催化层1的原料,称取Fe和Li的合金作为扩散层2的原料,称取Mg、MgAlH4和Mg2Ni作为镁基储氢层3的原料,其中LaNi5和ZrV2的重量份比为1:1,Fe和Li的合金中Fe和Li的重量份比1:1,Mg、MgAlH4和Mg2Ni的重量比为2︰1:1,将三种原料分别制成相应的靶材;
3)通过磁控溅射法将上述三种靶材依次沉积得到薄膜材料,薄膜材料依次为催化层1,扩散层2、镁基储氢层3、扩散层2和催化层1;其中,催化层1的厚度为10nm,扩散层2厚度为10nm,镁基储氢层3的厚度为50nm。
实施例6
该制备方法与上述方法相同,不同之处在于:
2)称取ZnO、CuO和TiO2作为催化层1的原料,称取Fe和Li的合金作为扩散层2的原料,称取MgLi合金作为镁基储氢层3的原料,其中,ZnO、CuO和TiO2的重量份比为1:1:1,Fe和Li的合金中Fe和Li的重量份比1:2,Mg和Li的重量比为3:1,将三种原料分别制成相应的靶材;
3)通过磁控溅射法将上述三种靶材依次沉积得到薄膜材料,薄膜材料依次为催化层1,扩散层2、镁基储氢层3、扩散层2和催化层1;其中,催化层1的厚度为1nm,扩散层2厚度为1nm,镁基储氢层3的厚度为30nm。
实施例7
该制备方法与上述方法相同,不同之处在于:
2)称取Ni作为催化层1的原料,称取Fe和Li的合金作为扩散层2的原料,称取MgLi合金作为镁基储氢层3的原料,其中,Fe和Li的合金中Fe和Li的重量份比1:2,Mg和Li的重量比为3:1
将三种原料分别制成相应的靶材;
3)通过磁控溅射法将上述三种靶材依次沉积得到薄膜材料,薄膜材料依次为催化层1,扩散层2、镁基储氢层3、扩散层2和催化层1;其中,催化层1的厚度为1nm,扩散层2厚度为1nm,镁基储氢层3的厚度为50nm。
实施例8
该制备方法与上述方法相同,不同之处在于:
2)称取CuO作为催化层1的原料,称取纯Fe作为扩散层2的原料,称取纯Mg作为镁基储氢层3的原料,将三种原料分别制成相应的靶材;
3)通过磁控溅射法将上述三种靶材依次沉积得到薄膜材料,薄膜材料依次为催化层1,扩散层2、镁基储氢层3、扩散层2和催化层1;其中,催化层1的厚度为5nm,扩散层2厚度为5nm,镁基储氢层3的厚度为40nm。
实施例9
该制备方法与上述方法相同,不同之处在于:
2)称取ZnO作为催化层1的原料,称取FeLi合金作为扩散层2的原料,称取Mg 和MgAl作为镁基储氢层3的原料,其中,Fe和Li的合金中Fe和Li的重量份比1:3,Mg和MgAl的重量比为6:1
将三种原料分别制成相应的靶材;
3)通过磁控溅射法将上述三种靶材依次沉积得到薄膜材料,薄膜材料依次为催化层1,扩散层2、镁基储氢层3、扩散层2和催化层1;其中,催化层1的厚度为2nm,扩散层2厚度为2nm,镁基储氢层3的厚度为45nm。
表1为比较实施例一、二、三、四、五、六、七、八、九在100℃下,分别在150s、300s、600s时的吸氢质量分数(wt%),由表可知,随着沉积溅射薄膜的厚度变化,以及催化层1、扩散层2和储氢层之间厚度的比例的不同,还有主要所选用的靶材成分的选取,这些都对储氢效率有着一定的影响。
表1
样品 150s吸氢量(wt%) 300s吸氢量(wt%) 600s吸氢量(wt%)
实施例一 4.0 4.9 6.0
实施例二 4.7 5.8 6.4
实施例三 4.0 4.9 5.5
实施例四 3.6 4.4 5.2
实施例五 3.0 4.2 5
实施例六 3.0 3.7 4.2
实施例七 2.1 2.8 4.0
实施例八 3.5 4.1 5.2
实施例九 3.0 4.0 4.8
其它未详细说明的部分均为现有技术。尽管上述实施例对本发明做出了详尽的描述,但它仅仅是本发明的一部分实施例,而不是全部实施例,人们还可以根据上述实施例在不经创造性前提下获得其他实施例,这些实施例都属于本发明的保护范围。

Claims (10)

  1. 一种镁基储氢薄膜,其特征在于:该薄膜具有五层结构,其中间为镁基储氢层(3),所述镁基储氢层(3)两面分别复合有扩散层(2),所述扩散层(2)外面分别复合有催化层(1);其中,
    所述催化层(1)为具有催化活性的过渡金属、金属氧化物和金属间化合物中的任意一种或几种;
    所述扩散层(2)的化学成分为Fe、或Fe与Li的合金,其余为不可避免的杂质;
    所述镁基储氢层(3)的化学成分为Mg、Mg合金和Mg配位化合物中的任意一种或几种。
  2. 根据权利要求1所述的镁基储氢薄膜,其特征在于:所述过渡金属为Pd、La、Zr、Ce、Pt、V、Ti、Ni、Cr和Y中的任意一种或几种,所述金属氧化物为ZnO、CuO和TiO2中的任意一种或几种,所述金属间化合物为ZrV2、LaNi5、FeTi、TixVy和ZrxPdy中的任意一种或几种。
  3. 根据权利要求1或2所述的镁基储氢薄膜,其特征在于:所述Fe与Li合金中的重量份数配比为:Fe:Li=1:1~4。
  4. 根据权利要求1或2所述的镁基储氢薄膜,其特征在于:所述Mg合金为Mg与Al、Li、Ni、Ce、La的合金中的任意一种或几种;所述Mg配位化合物为MgxNiy、MgxLay、MgxPay、MgxAlyNi、MgxVyTiz、MgxLiyTiz、MgxLiyNiz和MgxAlyNiz中的任意一种或几种。
  5. 根据权利要求1或2所述的镁基储氢薄膜,其特征在于:所述镁基储氢层(3)中Mg含量大于等于60%。
  6. 根据权利要求1或2所述的镁基储氢薄膜,其特征在于:所述催化层(1)的厚度为1~10nm、扩散层(2)的厚度为1~10nm、镁基储氢层(3)的厚度为10~50nm。
  7. 根据权利要求6所述的镁基储氢薄膜,其特征在于:所述催化层(1)与镁基储氢层(3)的厚度比为1:10~20;所述扩散层(2)与镁基储氢层(3)的厚度比为1:10~20。
  8. 一种权利要求1所述镁基储氢薄膜的制备方法,其特征在于:包括以下步骤:
    1)将锡箔包裹在基板上,将易溶性有机物在2500~4500rpm的转速下旋转涂布在锡箔上,静置待其完全固化成膜,制得基底材料;
    2)按所述配比称取催化层(1)、扩散层(2)和镁基储氢层(3)所需的原料,并制备成靶材;
    3)通过物理沉积法将上述三种靶材按所述的层次沉积在步骤1)所制得的基底材料上,得到薄膜材料,该薄膜材料依次为催化层(1)、扩散层(2)、镁基储氢层(3)、扩散层(2)和催化层(1);
    4)将该薄膜材料与基底材料一起取下后,揉搓锡箔后,放入相对应的有机溶剂中浸泡20~120s,待易溶性有机物完全溶解后,取走锡箔;
    5)将该薄膜材料和有机溶液在10000~25000rpm转速下离心20~60min,待分层后滤去上层溶液,再加入相对应的有机溶剂洗涤薄膜材料上残留的易溶性有机物,继续离心,然后再滤去上层溶液,循环反复此过程2~5次;
    6)将该薄膜材料置于真空室温环境下干燥,除去其上的残留液;再通入氢气,并在250~350℃条件下微波热处理2~10min,最后在氢气环境中冷却至室温,得到镁基储氢薄膜材料。
  9. 根据权利要求8所述镁基储氢薄膜的制备方法,其特征在于:所述步骤1)中,易溶性有机物为聚酰亚胺、聚对苯二甲酸乙二醇酯、聚甲基丙烯酸和光刻胶中的任意一种或几种。
  10. 根据权利要求8或9所述镁基储氢薄膜的制备方法,其特征在于:所述步骤5)中,通入氢气后,气压保持为2.0~3.0kPa,微波功率为150~250W。
PCT/CN2014/090449 2013-12-05 2014-11-06 镁基储氢薄膜及其制备方法 WO2015081781A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310652616.2 2013-12-05
CN201310652616.2A CN103668070A (zh) 2013-12-05 2013-12-05 镁基储氢薄膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2015081781A1 true WO2015081781A1 (zh) 2015-06-11

Family

ID=50306831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090449 WO2015081781A1 (zh) 2013-12-05 2014-11-06 镁基储氢薄膜及其制备方法

Country Status (2)

Country Link
CN (1) CN103668070A (zh)
WO (1) WO2015081781A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110863174A (zh) * 2019-11-20 2020-03-06 有研工程技术研究院有限公司 一种无需激活的钛基吸氢材料及其制备方法
CN112624038A (zh) * 2020-12-18 2021-04-09 长沙理工大学 一种调控Mg-Y-Zn镁合金储氢性能的方法
CN116200742A (zh) * 2023-04-25 2023-06-02 鑫鹏源(聊城)智能科技有限公司 钛合金基体用阻氢渗透的复合玻璃质壁垒层及其制备方法和应用

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103668070A (zh) * 2013-12-05 2014-03-26 中盈长江国际新能源投资有限公司 镁基储氢薄膜及其制备方法
CN105289588A (zh) * 2014-07-28 2016-02-03 中国科学院上海硅酸盐研究所 一种钯合金催化薄膜材料及其制备方法
CN104532175B (zh) * 2015-01-16 2017-05-10 中国计量学院 一种用于制氢的铝合金生产方法
CN108584870B (zh) * 2018-07-18 2020-08-18 江苏兴贤高新材料股份有限公司 一种环保储氢材料的制备方法
CN109680254B (zh) * 2019-02-28 2020-11-03 中国工程物理研究院化工材料研究所 一种镁铝合金载氢薄膜材料及其制备方法
CN110718704A (zh) * 2019-10-17 2020-01-21 江苏集萃安泰创明先进能源材料研究院有限公司 配套燃料电池系统的金属氢化物储氢瓶在线活化供氢装置
CN110699649A (zh) * 2019-11-10 2020-01-17 中电国基南方集团有限公司 一种用于电子封装的吸氢材料及其制备方法
CN110804705B (zh) * 2019-11-28 2021-04-30 黄山金石木塑料科技有限公司 一种抗氧化性的聚酰亚胺-Mg基复合储氢材料及其制法
CN111892014B (zh) * 2020-07-30 2023-10-31 钢铁研究总院 一种吸气薄膜及其制备方法
CN115367700B (zh) * 2022-08-31 2024-04-05 理工清科(重庆)先进材料研究院有限公司 锌铜双金属MOF催化的MgH2储氢材料、其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105576A (ja) * 2000-09-29 2002-04-10 Univ Hiroshima 水素吸蔵積層構造体
CN101151208A (zh) * 2005-03-31 2008-03-26 丰田自动车株式会社 储氢结构
CN102774808A (zh) * 2012-07-11 2012-11-14 复旦大学 一种无基板Mg基储氢薄膜及其制备方法
CN103668070A (zh) * 2013-12-05 2014-03-26 中盈长江国际新能源投资有限公司 镁基储氢薄膜及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4479221B2 (ja) * 2003-11-05 2010-06-09 株式会社ブリヂストン 薄膜の処理方法
JP2006272167A (ja) * 2005-03-29 2006-10-12 Japan Steel Works Ltd:The 水素透過膜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105576A (ja) * 2000-09-29 2002-04-10 Univ Hiroshima 水素吸蔵積層構造体
CN101151208A (zh) * 2005-03-31 2008-03-26 丰田自动车株式会社 储氢结构
CN102774808A (zh) * 2012-07-11 2012-11-14 复旦大学 一种无基板Mg基储氢薄膜及其制备方法
CN103668070A (zh) * 2013-12-05 2014-03-26 中盈长江国际新能源投资有限公司 镁基储氢薄膜及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110863174A (zh) * 2019-11-20 2020-03-06 有研工程技术研究院有限公司 一种无需激活的钛基吸氢材料及其制备方法
CN112624038A (zh) * 2020-12-18 2021-04-09 长沙理工大学 一种调控Mg-Y-Zn镁合金储氢性能的方法
CN116200742A (zh) * 2023-04-25 2023-06-02 鑫鹏源(聊城)智能科技有限公司 钛合金基体用阻氢渗透的复合玻璃质壁垒层及其制备方法和应用

Also Published As

Publication number Publication date
CN103668070A (zh) 2014-03-26

Similar Documents

Publication Publication Date Title
WO2015081781A1 (zh) 镁基储氢薄膜及其制备方法
Durgun et al. Transition-metal-ethylene complexes as high-capacity hydrogen-storage media
Zhao et al. Preparation and hydrogen storage of Pd/MIL-101 nanocomposites
Jeon et al. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts
Shao et al. Nanotechnology in Mg-based materials for hydrogen storage
CA2242555C (en) Nanocrystalline composite for hydrogen storage
Wang et al. Metal-organic framework-based materials as platforms for energy applications
CA2363456C (en) Hydrogen storage using carbon-metal hybrid compositions
CN110155940B (zh) 一种室温吸氢的镁基储氢材料及其制备方法
Zhao et al. Synthesis and characterization of Pt-N-doped activated biocarbon composites for hydrogen storage
Hu et al. Highly effective Li2O/Li3N with ultrafast kinetics for H2 storage
CN108626569A (zh) 一种氢气吸附存储释放系统及其应用
Klyamkin et al. High‐pressure hydrogen storage on modified MIL‐101 metal–organic framework
Lillo-Ródenas et al. Effects of carbon-supported nickel catalysts on MgH2 decomposition
Yang et al. Improvement of Mg‐based hydrogen storage materials by metal catalysts: review and summary
CN101121116A (zh) 不可逆吸氢材料、制品及制备方法
Zadorozhnyy et al. Deposition of polymer coating on metallic powder through ball milling: Application to hydrogen storage intermetallics
Fujimoto et al. Hydrogen storage property of materials composed of Mg nanoparticles and Ni nanoparticles fabricated by gas evaporation method
Cuevas et al. Intermetallic alloys as hydrogen getters
Shanmugam et al. Metal–organic frameworks (MOFs) for energy production and gaseous fuel and electrochemical energy storage applications
CN114293086A (zh) 一种储氢高熵合金及其制备方法
Wang et al. Density functional study of hydrogen spillover on direct Pd-doped metal-organic frameworks IRMOF-1
Tan et al. Catalytic and inhibitive effects of Pd and Pt decorated MWCNTs on the dehydrogenation behavior of LiAlH4
Qu et al. Hydrogen absorption–desorption, optical transmission properties and annealing effect of Mg thin films prepared by magnetron sputtering
Juarez et al. H2 storage using Zr‐CMK‐3 developed by a new synthesis method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14867547

Country of ref document: EP

Kind code of ref document: A1