WO2015081687A1 - 一种室内分布系统及其实现方法、存储介质 - Google Patents

一种室内分布系统及其实现方法、存储介质 Download PDF

Info

Publication number
WO2015081687A1
WO2015081687A1 PCT/CN2014/080324 CN2014080324W WO2015081687A1 WO 2015081687 A1 WO2015081687 A1 WO 2015081687A1 CN 2014080324 W CN2014080324 W CN 2014080324W WO 2015081687 A1 WO2015081687 A1 WO 2015081687A1
Authority
WO
WIPO (PCT)
Prior art keywords
distribution system
area
indoor distribution
indoor
outdoor
Prior art date
Application number
PCT/CN2014/080324
Other languages
English (en)
French (fr)
Inventor
谢卫浩
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2015081687A1 publication Critical patent/WO2015081687A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • H04W16/20Network planning tools for indoor coverage or short range network deployment

Definitions

  • the present invention relates to an indoor signal coverage technology in mobile communication, and in particular to an indoor distribution system, an implementation method thereof, and a storage medium. Background technique
  • the received outdoor base station signal strength fluctuates greatly due to the following reasons: 1) The operator performs network optimization or capacity expansion planning, and the outdoor base station layout or engineering parameters will change. , making the outdoor signal received by the indoor window area difficult to predict or control; 2) different communication systems have different frequency bands, and the outdoor network is usually independently planned and designed, so even if the same window area, the signal strength of different system systems It is also different. Summary of the invention
  • embodiments of the present invention are intended to provide an indoor distribution system and an implementation method thereof, which can provide a high quality mobile communication signal for a coverage area of an indoor distribution system in a preferred manner.
  • An embodiment of the present invention provides an implementation method of an indoor distribution system, where the method includes: Dividing the coverage area of the indoor distribution system signal source into an inner area and an outer area; wherein the inner area is provided by a signal source of the indoor distribution system, and the outer area is controllably connected with the signal source of the indoor distribution system; The parameters connect or disconnect the outer zone to the indoor distribution system signal source.
  • An embodiment of the present invention provides an indoor distribution system, where the system includes: an indoor distribution system signal source, a controllable connector, and a monitoring server; wherein the indoor distribution system signal source is configured to cover the indoor distribution system signal source The area provides a communication signal; the controllable connector is configured to controlably connect the outer zone with the indoor distribution system signal source; the monitoring server is configured to divide the indoor distribution system signal source coverage area into an inner zone and an outer zone, The inner zone is provided with a signal from an indoor distribution system signal source; and is further configured to connect or disconnect the outer zone from the indoor distribution system signal source according to indoor and outdoor signal measurement parameters.
  • the embodiment of the invention further provides a storage medium, wherein the storage medium stores a computer program, and the computer program is configured to execute the foregoing implementation method of the indoor distribution system.
  • the indoor distribution system and the implementation method thereof provided by the embodiments of the present invention divide the signal source coverage area of the indoor distribution system into an inner area and an outer area, wherein the inner area is provided by a signal source of the indoor distribution system, and the outer area and the indoor distribution signal source Controllable connection; connecting or disconnecting the outer zone from the indoor distribution system signal source according to indoor and outdoor signal measurement parameters; thus, it can ensure that the high quality mobile communication signal is provided in a preferred manner for the coverage area of the indoor distribution system, especially the outer zone.
  • the controllable connector used is a passive device, which can eliminate quality problems that are easy to occur when using active devices for a long time, and can also reduce operation and maintenance costs;
  • the indoor distribution system provided by the embodiments of the present invention is mainly applied to indoor and outdoor frequency-sequence scenarios, and is more suitable for the current application environment.
  • FIG. 1 is a schematic flow chart of an implementation method of an indoor distribution system according to at least one embodiment of the present invention
  • FIG. 2 is a controllable connection of an indoor distribution system signal source according to at least one embodiment of the present invention
  • FIG. 3 is a schematic diagram of a second connection manner in which an indoor distribution system signal source is connected to an inner zone and an outer zone through a controllable connector according to at least one embodiment of the present invention
  • FIG. 4 is a schematic diagram of a third connection manner in which an indoor distribution system signal source is connected to an inner zone and an outer zone through a controllable connector according to at least one embodiment of the present invention
  • Figure 5 is a structural diagram of a controllable two-phase switch in accordance with at least one embodiment of the present invention.
  • FIG. 6 is a structural diagram of a controllable attenuator in at least one embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a manner of setting a frequency band splitter on a connection line between a signal source of a indoor distribution system and a controllable connector according to at least one embodiment of the present invention
  • FIG. 8 is a diagram showing an actual application example of a method of setting a frequency band splitter on a connection line between a signal source of a indoor distribution system and a controllable connector according to at least one embodiment of the present invention
  • FIG. 9 is a schematic structural diagram of an indoor distribution system according to at least one embodiment of the present invention. detailed description
  • the area covered by the signal source of the indoor distribution system is divided into an inner area and an outer area; wherein the inner area is provided by a signal source of the indoor distribution system, and the signal source of the outer area and the indoor distribution system is controllable Connection; Connect or disconnect the outer zone from the indoor distribution system signal source according to the indoor and outdoor signal measurement parameters.
  • At least one embodiment of the present invention provides an indoor distribution system implementation method. As shown in FIG. 1, the method includes the following steps:
  • Step 101 Divide the coverage area of the indoor distribution system signal source into an inner area and an outer area; wherein the inner area is provided by a signal source of the indoor distribution system, and the outer area is controllably connected with the signal source of the indoor distribution system;
  • the indoor area covered by the signal source of the indoor distribution system is first divided into an inner area and an outer area; where the inner area refers to a weak outdoor signal. That is, the area where the building penetration loss is greater than the specified threshold, the area where the received outdoor signal receiving strength is lower than the specified receiving intensity threshold by 15 ⁇ 25dB is generally divided into the inner area; in practical applications, the indoor close to the window area is generally received.
  • the intensity is used as the specified receiving intensity threshold, and the inner area is generally an area where the outdoor signal coverage is weak. Therefore, it is suitable to use the indoor distribution system signal source for coverage in the inner area; after that, other indoor areas except the inner area are used.
  • the outer zones are generally areas with strong outdoor signals, indoors close to doors and windows, and low penetration loss of buildings; preferably, according to the number of primary cells to which the outdoor signals received by the outer zones belong,
  • the outer zone is subdivided into a number of outer zone sub-partitions;
  • the outer zone may be divided into outer zone sub-zones equal to or larger than the number of the primary cell according to the number of primary cells to which the outdoor signal received by the outer zone belongs; for example, when If the outdoor signal received by the outer zone is only from one outdoor cell, the outer zone is divided into one or more outer zone sub-zones. If the outdoor signal received by the outer zone is from three outdoor cells, the outer zone is divided. Three or more outer zone sub-partitions, and so on;
  • the outer zone may be divided into and specified according to the size of the designated outer zone sub-partition. a number of outer sub-partitions of equal size of the outer sub-partition;
  • the outdoor signal receiving intensity can be measured by the tester carrying the road test terminal to measure the outdoor signal receiving power intensity of each area in the target area, and the outdoor signal receiving intensity of different areas is dynamically changed, and then the test result is recorded by using the road test software. And forming a geographical distribution map of the received signal strength, according to the change of the signal strength, according to the method described above, the indoor distribution system signal source coverage area is divided into an inner area and an outer area.
  • various types of mobile communication signals are usually used in indoor distribution systems.
  • the various mobile communication signals are combined by the frequency band combiner, they are transmitted by using a remote radio unit (RRU) of the mobile communication system to cover the indoor area; the indoor distribution system in at least one embodiment of the present invention
  • the signal source refers to the RRU; at present, there are also operators in the indoor distribution system to separately manage a type of mobile communication signal, that is, there are more than one signal source in the indoor distribution system; correspondingly, For each indoor distribution system signal source, the method provided by at least one embodiment of the present invention can be used to set the indoor distribution system.
  • the indoor distribution system signal source may be directly connected to the inner zone by wire, or the indoor distribution system signal source may be connected to the inner zone after passing through the power splitter or the coupler; that is, at least one of the present invention
  • the inner area with weak outdoor coverage is always covered by the indoor distribution system signal source; and for the outer area with better outdoor signal coverage, separate switching control is needed according to the indoor and outdoor signal measurement parameters.
  • At least one embodiment of the present invention further divides the outer zone into a plurality of outer zone sub-partitions, and implements separate control of the outer zone sub-partitions to achieve fine control of the signal coverage of the outer zone.
  • the indoor distribution system signal source is connected to the inner zone and the outer zone through a controllable connector, and may include, but is not limited to, the following three connection modes:
  • the indoor distribution system signal source is directly connected to the inner zone, and then the outer zone sub-partitions are connected through the inner zone.
  • the inner zone is respectively connected to each outer zone sub-zone through a controllable connector;
  • the first connection diagram is shown in Figure 2.
  • connection mode after the indoor distribution system signal source passes through the power splitter or the coupler, the signal is divided into two paths, namely signal 1 and signal 2, respectively, and then the signal 1 is directly connected to the inner zone, and The signals 2 are respectively connected to each outer sub-partition through a controllable connector;
  • Figure 3 A schematic diagram of the connection mode is shown in Figure 3.
  • the indoor distribution system signal source is directly connected to the inner zone, and is respectively connected to each outer zone sub-zone through a controllable connector; the third connection mode is shown in FIG.
  • the inner zone and the outer zone sub-partition, or each outer zone sub-zone and the indoor distribution system signal source are connected in a wired manner regardless of which of the above connection modes is adopted.
  • controllable connections described in at least one embodiment of the invention include, but are not limited to, the following two methods:
  • the first type is connected by a controllable two-phase switch.
  • the controllable two-phase switch and the indoor distribution system signal source can be turned on or off by switching the connection state of the switch in the controllable two-phase switch, and the controllable two-phase switch can be controlled.
  • the basic structure is as shown in FIG. 5; when the controllable two-phase switch is turned on, the switch is connected to the outer sub-partition direction, and the outer sub-partition is connected with the indoor distribution system signal source; when the controllable two-phase When the switch is closed, the switch is connected to the fixed matching load, and the outer zone sub-zone is disconnected from the indoor distribution system signal.
  • the controllable two-phase switch can be a mechanical switch or an electronically controlled switch; wherein the mechanical switch needs to be manually controlled, and the electronic control switch can be used for automatic control.
  • the basic structure of the controllable attenuator is as shown in FIG. 6.
  • the controllable attenuator When the controllable attenuator is turned on, the attenuation value of the signal of the indoor distribution system is the lowest (close to zero), and the outer zone sub-partition and indoor distribution The system signal is connected; when the controllable attenuator is turned off, the attenuation value of the indoor distribution system signal is the highest, and the outer zone sub-zone is completely disconnected from the indoor distribution system signal; the attenuator may be a mechanically controlled attenuator or an electron The attenuator is controlled, wherein the mechanically controlled attenuator requires manual control and the electronically controlled attenuator can be used for automatic control.
  • At least one embodiment of the present invention can also be controlled by setting a frequency screening circuit.
  • the outer zone sub-zone is connected to the indoor distribution system signals of different frequency bands; specifically, the frequency band splitter, the controllable connector and the frequency band combiner are arranged on the connection line between the indoor distribution system signal source and the outer zone sub-partition
  • the setting manner of the frequency band splitter, the controllable connector and the frequency band combiner is as shown in FIG. 7.
  • the signal from the indoor distribution system signal source forms two branches after passing through a frequency band splitter, respectively
  • the upper branch is the indoor distribution system signal of the specified frequency band
  • the lower branch is the signal of the other frequency band; after that, the signals of the upper branch and the lower branch are connected to the band combiner.
  • At least one embodiment of the present invention is applicable to various mobile communication systems, such as Code Division Multiple Access/Evolution Data Only (CDMA/EVDO), Universal Mobile Telecommunications System (UMTS, Universal Mobile Telecommunications System). ) 3 ⁇ 4 frequency division Farmer workers long Term Evolution (FDD-LTE, frequency division Duplexing -long Term Evolution) and so on.
  • CDMA/EVDO Code Division Multiple Access/Evolution Data Only
  • UMTS Universal Mobile Telecommunications System
  • FDD-LTE frequency division Duplexing -long Term Evolution
  • mobile communication operators usually operate multiple networks at the same time.
  • 2G/3G mobile communication systems adopt CDMA system in the 800MHz frequency band
  • 4G mobile communication systems use LTE in the 2.1GHz frequency band.
  • WLANs wireless local area networks
  • the three mobile communication networks share an indoor distribution system
  • the indoor distribution system signal source includes signals of three different mobile communication systems, and the three signals are combined by the frequency band combiner. It is sent out through the signal source; except for the WLAN, only the indoor network does not need controllable connector control, the frequency bands of CDMA and LTE systems are different, and the outdoor network topology may be different. It is recommended to control independently; therefore, the The structure is refined into the structure of FIG. 8, wherein the controllable connector A controls the connection of the LTE signal, and the controllable connector B controls the CDMA signal. Connection.
  • Step 102 Connect or disconnect the outer zone from the indoor distribution system signal source according to indoor and outdoor signal parameters
  • the indoor and outdoor signal parameters include: indoor pilot power, outdoor strongest cell pilot power, indoor distributed system covering edge field strength threshold, signal to noise ratio using only indoor distributed system signals, and letter using only outdoor signals Noise ratio
  • the connecting or disconnecting the outer zone from the indoor distribution system signal source according to the indoor and outdoor signal parameters includes:
  • the first case is a first case:
  • the outer sub-partition When the current status of the outer sub-partition is the outdoor signal, if the following conditions A1 and B1 are satisfied at the same time, the outer sub-partition is connected to the indoor distribution system signal source:
  • indoor pilot power> indoor distribution system covers the edge field strength threshold
  • condition B2 disconnect the outer sub-partition from the indoor distribution system signal source:
  • the outdoor strongest cell pilot power> indoor distribution system covers the edge field strength threshold
  • the above A1 and B1 may be used as the judgment condition for performing disconnection, and in other cases, the outer zone is kept in communication with the indoor distribution system signal source; or, the above A2 and B2 are used as the judgment conditions for performing the connection, and the remaining conditions are kept outside.
  • District and indoor distribution system The signal source is disconnected; therefore, the external zone is connected or disconnected from the indoor distribution system signal source according to indoor and outdoor signal parameters, and may also include the following second and third cases:
  • the second case is a first case
  • the outer zone When the current state of the outer zone is an outdoor signal, if the following conditions A1 and B1 are simultaneously satisfied, the outer zone is connected to the indoor distribution system signal source:
  • indoor pilot power> indoor distribution system covers the edge field strength threshold
  • the outer zone is kept disconnected from the indoor distribution system signal source.
  • the third case is a first case.
  • the outdoor strongest cell pilot power> indoor distribution system covers the edge field strength threshold
  • the outer zone is kept connected to the indoor distribution system signal source.
  • Y is not limited to the scope provided by the embodiment of the present invention; in practical applications, the value range of Y often needs to be adjusted according to the network optimization.
  • the indoor distribution system covers the edge field strength threshold which is one of the controllable connector state switching decision conditions is the basic coverage indicator when designing the indoor distribution system, for example,
  • the parameter value is usually characterized by the following reference signal received strength RSRP, which is about -105 dBm; for the EVDO system, the parameter value is usually characterized by the received power Rx, and the Rx is about -90 dBm;
  • the second of the decision conditions is the hysteresis parameter Y associated with the signal-to-noise ratio.
  • the value of the ⁇ value ranges from 1 to 4 dB.
  • the state of the controllable connector is periodically updated according to the change of the outdoor signal. At least one embodiment of the present invention provides the following two state update methods:
  • the first type is: manual periodic maintenance control: every other cycle, indoor road test is performed on the outer zone of the indoor distribution system, and the indoor and outdoor signal parameters in each outer zone sub-area are tested and tested; and then, according to the above-mentioned handover decision condition, Determine whether each of the outer sub-partitions turns on the indoor distribution system signal, and finally implements.
  • the second type is: automatic control: in each outer zone sub-area, one or more distributed automatic measurement reporting terminals are placed, and the terminals automatically report indoor and outdoor signal parameters to the monitoring server periodically, and the monitoring server determines the switching decision according to the above Conditions, control the state of each controllable connector.
  • FIG. 9 is a basic composition diagram of the system, the system includes: an indoor distribution system signal source 91, a controllable connector 92, and Monitoring server 93; wherein
  • the indoor distribution system signal source 91 is configured to provide a communication signal for the indoor distribution system signal source coverage area
  • the controllable connector 92 is configured to controllably connect the outer zone to the indoor distribution system signal source; where the controllable connector 92 is configured to controllably connect the outer zone to the indoor distribution system signal source, including: The controllable connector 92 is configured to controllably connect the outer zone and the inner zone, and connect the outer zone to the indoor distribution system signal source via the inner zone; or the controllable connector 92 is configured to directly distribute the outer zone and the interior The system signal source is controllably connected.
  • the outer zone is divided into a plurality of outer zone sub-partitions, and then the controllable connector 92 is configured to controllably connect the outer zone to the indoor distribution system signal source, including: the controllable connector configuration
  • the outer zone sub-partitions are connected to the indoor distribution system signal source via the inner zone; or the controllable connector is configured to directly separate each outer zone sub-zone with the indoor zone The distribution system signal source is connected; or the controllable connector is configured to The indoor distribution system signal source after the power splitter or coupler is connected to each of the outer zone sub-partitions.
  • controllable connector may be a controllable two-phase switch, or a controllable attenuator.
  • the monitoring server 93 is configured to divide the indoor distribution system signal source coverage area into an inner area and an outer area, wherein the inner area is provided by a signal of an indoor distribution system signal source, and the outer area and the indoor distribution system signal source may be Control connection; is also configured to connect or disconnect the outer zone from the indoor distribution system signal source according to indoor and outdoor signal measurement parameters.
  • the monitoring server 93 is configured to divide the coverage area of the indoor distribution system signal source into the inner area and the outer area, and the method includes: the monitoring server 93 is configured to set the received outdoor signal receiving strength to be lower than the specified receiving intensity threshold.
  • the area of ⁇ 25dB is divided into inner zones, and the coverage areas of other indoor indoor distribution system signal sources outside the inner zone are divided into outer zones.
  • the monitoring server 93 is further configured to divide the outer area into an outer sub-partition equal to or more than the outdoor main cell according to the number of outdoor primary cells to which the outdoor signal received by the outer zone belongs. Or, according to the size of the designated outer sub-partition, the outer area is divided into a plurality of outer sub-partitions having the same size as the designated outer sub-area; in actual applications, the monitoring server 93 further The plurality of outer sub-partitions may be divided according to factors such as actual needs or the coverage of the primary cell to which the outdoor signal belongs, so as to better provide high-quality communication signals corresponding to the primary cell to which an outdoor signal belongs.
  • the monitoring server 93 is further configured to connect or disconnect the outer zone from the indoor distribution system signal source according to indoor and outdoor signal parameters;
  • the indoor and outdoor signal measurement parameters include: indoor pilot power, indoor distribution system covering edge field strength threshold, signal to noise ratio of only using indoor distributed system signals, signal to noise ratio using only outdoor signals, and strongest cell guide in outdoor Frequency power
  • the connecting or disconnecting the outer zone from the indoor distribution system signal source according to the indoor and outdoor signal parameters includes: when the current state of the outer zone sub-partition is an outdoor signal, the monitoring server 93 is configured to determine Whether the indoor pilot power is greater than the indoor distribution system covering the edge field strength threshold, and determining whether the signal-to-noise ratio of the indoor distribution system signal is greater than the signal-to-noise ratio +Y of the outdoor signal only, where ⁇ is the hysteresis amount, and the value of ⁇
  • the range is l-4dB, the purpose is to avoid ping-pong switching.
  • the outer sub-partition is connected with the indoor distribution system signal source; when the outer sub-partition is using the indoor distribution system signal, the monitoring server 93 is configured to judge the outdoor most Whether the pilot power of the strong cell is larger than the threshold of the edge field strength of the indoor distribution system, and whether the signal-to-noise ratio of the outdoor signal is greater than the signal-to-noise ratio +Y of the signal of the indoor distribution system alone, where ⁇ is the hysteresis amount, and ⁇ is taken The value range is l-4dB, the purpose is to avoid ping-pong switching. If it is satisfied at the same time, the outer sub-partition is disconnected from the indoor distribution system signal source; or
  • the monitoring server is configured to determine whether the indoor pilot power is greater than the edge field strength threshold of the indoor distribution system, and determine whether the signal to noise ratio of the indoor distribution system signal is greater than the signal-to-noise ratio +Y of the outdoor signal only, where ⁇ is the hysteresis amount, The value range of ⁇ is l-4dB, the purpose is to avoid ping-pong switching.
  • the judgment is YES, the outer zone is connected with the indoor distribution system signal source; in other cases, the outer zone sub-partition is disconnected from the indoor distribution system signal source.
  • the monitoring server is configured to determine whether the most powerful cell pilot power in the outdoor is greater than the edge field strength threshold of the indoor distribution system, and determine whether the signal-to-noise ratio of the outdoor signal is greater than the signal-to-noise ratio +Y of the indoor distribution system signal only, where For the hysteresis amount, the value range of ⁇ is l-4dB.
  • the purpose is to avoid ping-pong switching.
  • the judgment is YES, the outer area is disconnected from the indoor distribution system signal source. In other cases, the outer area sub-partition and indoor distribution The system signal source is disconnected.
  • the indoor distribution system further includes: a frequency screening circuit 94, the frequency screening circuit 94 is disposed on a connection line between the indoor distribution system signal source and the outer zone sub-partition; the frequency screening circuit 94 includes: a frequency band splitter, Controllable connector and band combiner; wherein
  • the frequency band splitter is configured to split the signal from the indoor distribution system signal source into two branches: an upper branch and a lower split;
  • the upper split circuit is an indoor distributed system signal of a specified frequency band, and the lower
  • the signal on the sub-channel is the other frequency band;
  • the frequency band combiner is configured to combine the signal on the upper branch road and the signal on the lower branch road, and connect the combined signal to the outer zone sub-partition;
  • the controllable connector is disposed on the upper branch between the band splitter and the band combiner, and is configured to filter the indoor distribution system signals of the specified frequency band.
  • the indoor distribution system further includes a measurement reporting terminal 95 configured to periodically measure and automatically report indoor and outdoor signal measurement parameters to the monitoring server;
  • the indoor and outdoor signal measurement parameters include: indoor pilot power, indoor distribution system covering edge field strength threshold, signal to noise ratio of only using indoor distributed system signals, signal to noise ratio using only outdoor signals, and strongest cell guide in outdoor Frequency power and other parameters.
  • the embodiment of the invention further describes a storage medium, wherein the storage medium stores a computer program, and the computer program is configured to execute the implementation method of the indoor distribution system of the foregoing embodiment.
  • the controllable connector used in the present invention is a passive device, which can eliminate the quality problems that are easy to occur when the active device is used for a long time, and can also reduce the operation and maintenance cost.
  • the indoor distribution system provided by the present invention is mainly applied indoors. The same-frequency scene is more suitable for the current application environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种室内分布系统实现方法,将室内分布系统信号源覆盖区域划分为内区和外区;其中,所述内区由室内分布系统信号源提供信号,所述外区与室内分布系统信号源可控连接;根据室内外信号测量参数将外区与室内分布系统信号源连通或断开;本发明实施例同时还公开了一种室内分布系统及存储介质。

Description

一种室内分布系统及其实现方法、 存储介质 技术领域
本发明涉及移动通信中室内信号覆盖技术, 尤其涉及一种室内分布系 统及其实现方法、 存储介质。 背景技术
随着移动蜂窝通信技术的快速发展, 广大移动用户已不再满足于良好 的室外移动通信服务, 也要求在室内能享受优质的移动通信服务。
而现代建筑多以钢筋混凝土为骨架, 再加上全封闭式的外装修, 对无 线电信号的屏蔽衰减特别厉害。 为了解决这一问题, 目前最有效的方法是 在建筑物内安装室内分布系统。
在室内分布系统应用中的建筑物外围靠窗区域, 由于以下原因使接收 到的室外基站信号强度波动幅度很大: 1 )运营商进行网络优化或扩容规划, 室外基站布局或工程参数将发生变动, 使得室内靠窗区域接收到的室外信 号发生难以预测或控制的变化; 2 )不同通信系统的频段不同, 室外网络通 常独立规划设计, 所以即使相同的靠窗区域, 不同制式系统的信号强弱也 不同。 发明内容
为解决上述技术问题, 本发明实施例期望提供一种室内分布系统及其 实现方法, 能够以优选方式为室内分布系统的覆盖区域提供质量高的移动 通信信号。
本发明实施例的技术方案是这样实现的:
本发明实施例提供了一种室内分布系统的实现方法, 所述方法包括: 将室内分布系统信号源覆盖区域划分为内区和外区; 其中, 所述内区 由室内分布系统信号源提供信号, 所述外区与室内分布系统信号源可控连 接; 根据室内外信号测量参数将外区与室内分布系统信号源连通或断开。
本发明实施例提供了一种室内分布系统, 所述系统包括: 室内分布系 统信号源、 可控连接器以及监控服务器; 其中, 所述室内分布系统信号源, 配置为为室内分布系统信号源覆盖区域提供通信信号; 所述可控连接器, 配置为将外区与室内分布系统信号源可控连接; 所述监控服务器, 配置为 将室内分布系统信号源覆盖区域划分为内区和外区, 所述内区由室内分布 系统信号源提供信号; 还配置为根据室内外信号测量参数将外区与室内分 布系统信号源连通或断开。
本发明实施例还提供了一种存储介质, 所述存储介质中存储有计算机 程序, 所述计算机程序配置为执行前述的室内分布系统的实现方法。
本发明实施例所提供的室内分布系统及其实现方法, 将室内分布系统 信号源覆盖区域划分内区和外区, 其中, 内区由室内分布系统信号源提供 信号, 外区与室内分布信号源可控连接; 根据室内外信号测量参数将外区 与室内分布系统信号源连通或断开; 如此, 能够确保以优选方式为室内分 布系统的覆盖区域尤其是外区提供质量高的移动通信信号。
另外, 本发明实施例所提供的室内分布系统中, 所使用的可控连接器 为无源器件, 能够杜绝长期使用有源器件时容易出现的质量问题, 同时也 能降低运维成本; 而且, 本发明实施例所提供的室内分布系统主要应用于 室内外同频的场景, 更适用于目前的应用环境。 附图说明
图 1 为本发明至少一个实施例提供的室内分布系统实现方法的流程示 意图;
图 2为本发明至少一个实施例提供的室内分布系统信号源通过可控连 接器连接内区和外区的第一种连接方式示意图;
图 3 为本发明至少一个实施例提供的室内分布系统信号源通过可控连 接器连接内区和外区的第二种连接方式示意图;
图 4为本发明至少一个实施例提供的室内分布系统信号源通过可控连 接器连接内区和外区的第三种连接方式示意图;
图 5为本发明至少一个实施例中可控两相开关结构图;
图 6为本发明至少一个实施例中可控衰减器结构图;
图 7 为本发明至少一个实施例在室内分布系统信号源与可控连接器之 间的连接线路上设置频段分路器的方式示意图;
图 8为本发明至少一个实施例在室内分布系统信号源与可控连接器之 间的连接线路上设置频段分路器的方式的实际应用示例图;
图 9为本发明至少一个实施例提供的室内分布系统结构示意图。 具体实施方式
本发明实施例中, 将室内分布系统信号源覆盖的区域划分为内区和外 区; 其中, 所述内区由室内分布系统信号源提供信号, 所述外区与室内分 布系统信号源可控连接; 根据室内外信号测量参数将外区与室内分布系统 信号源连通或断开。
下面通过附图及具体实施例对本发明做优选地详细说明。
本发明至少一个实施例提供了一种室内分布系统实现方法, 如图 1 所 示, 该方法包括以下步骤:
步骤 101 : 将室内分布系统信号源覆盖区域划分为内区和外区; 其中, 所述内区由室内分布系统信号源提供信号, 所述外区与室内分布系统信号 源可控连接;
具体地, 在室内区域设置室内分布系统时, 先将室内分布系统信号源 覆盖的室内区域划分为内区和外区; 这里, 所述内区是指室外信号较弱, 即建筑物穿透损耗大于指定门限的区域, 通常将测量获得的室外信号接收 强度低于指定接收强度门限 15~25dB的区域划分为内区; 实际应用中, 一 般会将室内靠近窗口区域的接收强度作为所述指定接收强度门限, 内区一 般为室外信号覆盖较弱的区域, 因此, 在内区中适合一直使用室内分布系 统信号源进行覆盖; 之后, 将除了内区之外的室内其它区域划分为外区, 外区一般为室外信号较强、 室内靠近门窗、 建筑物穿透损耗较小的区域; 优选地, 根据外区所接收到的室外信号所归属的主小区个数, 可将外 区细分为若干个外区子分区;
具体地, 可以根据外区接收到的室外信号所归属的主小区个数为多少, 就将外区划分为与所述主小区个数相等或者更多个数的外区子分区; 例如, 当外区接收到的室外信号仅来自于一个室外小区, 则将外区划分为一个或 一个以上的外区子分区, 如果外区接收到的室外信号来自于三个室外小区, 则将外区划分为三个或者三个以上的外区子分区, 以此类推;
由于外区所接收到的室外信号所归属的主小区的个数是动态变化的, 且这种变化难以预测, 因此, 还可以根据指定的外区子分区面积大小, 将 外区划分为与指定外区子分区面积大小相等的若干个外区子分区;
在实际的应用中, 还可以综合考虑实际需要或室外信号所归属的主小 区覆盖范围等因素, 对应某个室外信号所归属的主小区划分多个外区子分 区, 以便更好地提供高质量的通信信号。
这里, 室外信号接收强度可以由测试人员携带路测终端对目标区域范 围内各个区域的室外信号接收功强度进行测量, 不同区域的室外信号接收 强度是动态变化的, 之后利用路测软件记录测试结果, 并形成接收信号强 度的地理化分布图, 根据信号强度的变化情况, 按照上面介绍的方法将室 内分布系统信号源覆盖区域划分为内区和外区。
在实际应用中, 室内分布系统中通常采用各种制式的移动通信信号, 各种移动通信信号通过频段合路器进行合路之后, 采用移动通信系统的远 端射频单元(RRU, Radio Remote Unit )进行发射, 覆盖至室内区域; 本发 明至少一个实施例中的室内分布系统信号源现阶段就是指所述 RRU; 目前, 也有运营商在室内分布系统中对一种制式的移动通信信号进行单独管理, 也就是说, 在室内分布系统中的信号源不只一个; 相应的, 对于各个室内 分布系统信号源都可以采用本发明至少一个实施例提供的方法进行室内分 布系统的设置。
本发明至少一个实施例中室内分布系统信号源可通过有线方式直接与 内区相连, 或者室内分布系统信号源经过功分器、 或耦合器之后与内区相 连; 也就是说, 本发明至少一个实施例中, 对于室外信号覆盖较弱的内区 一直采用室内分布系统信号源覆盖; 而对于室外信号覆盖较好的外区, 需 要根据室内外信号测量参数进行单独的切换控制。
优选地, 本发明至少一个实施例又将外区划分为多个外区子分区, 通 过对各个外区子分区实现单独控制, 来实现对外区的信号覆盖的精细化控 制。
本发明至少一个实施例中, 室内分布系统信号源通过可控连接器连接 内区和外区, 可以包括但不限于以下三种连接方式:
A ) 第一种连接方式
在第一种连接方式中, 室内分布系统信号源与内区直接相连, 然后通 过内区再连接各个外区子分区, 具体地, 内区分别通过可控连接器与各个 外区子分区相连; 第一种连接方式示意图如图 2所示。
B ) 第二种连接方式
在第二种连接方式中, 室内分布系统信号源通过功率分配器或耦合器 之后, 将信号分为两路, 分别为信号 1和信号 2, 然后将所述信号 1直接与 内区相连, 将所述信号 2分别通过可控连接器连接各个外区子分区; 第二 种连接方式示意图如图 3所示。
C )第三种连接方式
在第三种连接方式中, 室内分布系统信号源直接与内区相连, 并分别 通过可控连接器与各个外区子分区相连; 第三种连接方式示意图如图 4所 示。
具体地, 在本发明至少一个实施例中, 无论采用上述哪一种连接方式, 内区与外区子分区、 或者各个外区子分区与室内分布系统信号源之间均以 有线方式进行连接。
本发明至少一个实施例中所述的可控连接包括但不限于以下两种方 式:
第一种, 通过可控两相开关连接。 具体地, 通过可控两相开关连接时, 能够通过切换可控两相开关中开关的连接状态, 将可控两相开关与室内分 布系统信号源接通或者断开, 可控两相开关的基本结构如图 5 所示; 当所 述可控两相开关开启时, 所述开关连接到外区子分区方向, 则外区子分区 与室内分布系统信号源连通; 当所述可控两相开关关闭时, 所述开关连接 固定匹配负载, 则外区子分区与室内分布系统信号断开。 所述可控两相开 关可以为机械开关或电子控制开关; 其中, 机械开关需要由手动控制, 电 子控制开关可用于自动控制。
第二种, 通过可控衰减器连接。 具体地, 所述可控衰减器的基本结构 如图 6所示, 当所述可控衰减器开启时, 对室内分布系统信号的衰减值最 低(接近零), 则外区子分区与室内分布系统信号连通; 当所述可控衰减器 关闭时, 对室内分布系统信号的衰减值最高, 则外区子分区与室内分布系 统信号完全断开; 所述衰减器可以为机械控制衰减器或电子控制衰减器, 其中, 机械控制衰减器需要手动控制, 电子控制衰减器可用于自动控制。
优选地, 本发明至少一个实施例还可以通过设置频率筛选电路来控制 外区子分区与不同频段的室内分布系统信号相连通; 具体地, 在室内分布 系统信号源与外区子分区之间的连接线路上设置频段分路器、 可控连接器 以及频段合路器, 所述频段分路器、 可控连接器以及频段合路器的设置方 式如图 7 所示, 从室内分布系统信号源过来的信号, 经过一个频段分路器 之后形成两条分路, 分别为上分路和下分路, 上分路上为指定频段的室内 分布系统信号, 下分路上为其他频段的信号; 之后, 将上分路和下分路上 的信号汇接于频段合路器后连接于外区子分区; 在频段分路器和频段合路 器之间的上分路上设置可控连接器, 从而通过对可控连接器状态进行切换, 来控制为外区子分区提供的室内分布系统信号频段: 当可控连接器开启时, 外区子分区将接通所有频段的室内分布系统信号源信号; 当可控连接器关 闭时, 外区子分区仅与其它频段的室内分布系统信号相连通。
本发明至少一个实施例可应用于各种移动通信制式, 例如码分多址 /仅 演进数据 (CDMA/EVDO , Code Division Multiple Access/Evolution Data Only )、 通用移动通信系统 ( UMTS , Universal Mobile Telecommunications System) ¾频分默工长期演进 ( FDD-LTE, Frequency Division Duplexing-Long Term Evolution )等。 目前, 移动通信运营商通常同时运营多种网络, 例如, 某运营商经营的公众无线网络主要有三种: 2G/3G 移动通信系统采用 CDMA制式在 800MHz频段, 4G移动通信系统为 LTE在 2.1GHz频段, 还 有无线局域网 ( WLAN, Wireless Local Area Networks )在 2.4GHz频段。 结合图 7所述方案, 正常情况下, 这三种移动通信网络共用室内分布系统, 则室内分布系统信号源包含三种不同移动通信制式的信号, 这三种信号通 过频段合路器合路后通过信号源发送出去; 则除 WLAN仅有室内网络无需 可控连接器控制外, CDMA、 LTE 系统的频段差异较大, 室外网络拓朴也 可能不同, 建议独立控制; 因此, 可将图 7的结构细化为图 8的结构, 其 中, 可控连接器 A控制 LTE信号的连接, 可控连接器 B控制 CDMA信号 的连接。
步骤 102:才艮据室内外信号参数将外区与室内分布系统信号源连通或断 开;
这里, 所述室内外信号参数包括: 室内导频功率,室外最强小区导频功 率、 室内分布系统覆盖边缘场强门限、 仅使用室内分布系统信号的信噪比、 以及仅使用室外信号的信噪比;
具体地, 所述根据室内外信号参数将外区与室内分布系统信号源连通 或断开, 包括:
第一种情况:
当外区子分区当前状态为使用室外信号时, 如果同时满足以下条件 A1 和条件 B 1, 则将外区子分区与室内分布系统信号源连通:
A1、 室内导频功率>室内分布系统覆盖边缘场强门限;
B1、 仅使用室内分布系统信号的信噪比>仅使用室外信号的信噪比 +Y; 其中 Y为迟滞量, Y的取值范围 l-4dB, 目的是避免乒乓切换。
当外区子分区现状为使用室内分布系统信号, 如果同时满足以下条件
A2和条件 B2, 则将外区子分区与室内分布系统信号源断开:
A2、 室外最强小区导频功率>室内分布系统覆盖边缘场强门限;
B2、 仅使用室外信号的信噪比 >仅使用室内分布系统信号的信噪比 +Y; 其中, Y为迟滞量, Y的取值范围 l-4dB, 目的是避免乒乓切换,此时, 外区子分区仅使用室外信号;
另外, 由于室内分布系统的实际应用情况多种多样, 在实际实施中, 并不一定同时以上述 A1和 B 1作为执行断开的判断条件、 以上述 A2和 B2 作为执行连通的判断条件, 还可以仅以上述 A1和 B1作为执行断开的判断 条件, 其余情况下均保持外区与室内分布系统信号源连通; 或者, 以上述 A2和 B2作为执行连通的判断条件, 其余情况下均保持外区与室内分布系 统信号源断开; 因此, 所述根据室内外信号参数将外区与室内分布系统信 号源连通或断开, 还可以包括以下第二、 三种情况:
第二种情况:
当外区当前状态为使用室外信号时,如果同时满足以下条件 A1和条件 B1 , 则将外区与室内分布系统信号源连通:
A1、 室内导频功率>室内分布系统覆盖边缘场强门限;
B1、 仅使用室内分布系统信号的信噪比>仅使用室外信号的信噪比 +Y; 其中, Y为迟滞量, Y的取值范围 l-4dB, 目的是避免乒乓切换。
其余情况下均保持外区与室内分布系统信号源断开。
第三种情况:
当外区现状为使用室内分布系统信号,如果同时满足以下条件 A2和条 件 B2, 则将外区与室内分布系统信号源断开:
A2、 室外最强小区导频功率>室内分布系统覆盖边缘场强门限;
B2、 仅使用室外信号的信噪比 >仅使用室内分布系统信号的信噪比 +Y; 其中, Y为迟滞量, Y的取值范围 l-4dB, 目的是避免乒乓切换,此时, 外区仅使用室外信号;
其余情况下均保持外区与室内分布系统信号源连通。
需要说明的是, Y 的取值并不局限于本发明实施例提供的范围; 在实 际应用中, Y的取值范围往往需要根据网络优化的情况进行调整。
在实际应用中, 可控连接器状态切换判决条件之一的 "室内分布系统 覆盖边缘场强门限" 是室内分布系统设计时的基本覆盖指标, 例如, 对于
FDD-LTE系统, 该参数值通常以下行参考信号接收强度 RSRP进行表征, 所述 RSRP=-105dBm左右; 对于 EVDO 系统, 该参数值通常以接收功率 Rx进行表征, 所述 Rx=-90dBm左右; 切换判决条件之二与信噪比相关的 迟滞参数 Y, 是为了避免可控连接器的乒乓切换, Υ值取值范围为 l~4dB。 步骤 102 中需要艮据室外信号的变化情况, 周期性对可控连接器状态 进行更新, 本发明至少一个实施例提供了下述两种状态更新方法:
第一种是, 人工定期维护控制: 每隔一个周期, 对室内分布系统的外 区进行室内路测, 测试记录每个外区子分区内的室内外信号参数; 然后, 依据上述切换判决条件, 决定各个外区子分区是否开启室内分布系统信号, 最后实施。
第二种是, 自动控制: 在每个外区子分区内, 放置一个或多个分散分 布的自动测量上报终端, 这些终端周期性自动向监控服务器上报室内外信 号参数, 监控服务器依据上述切换判决条件, 对各个可控连接器的状态进 行控制。
为了实现上述方法, 本发明至少一个实施例提供了一种室内分布系统, 如图 9所示, 为该系统的基本组成示意图, 该系统包括: 室内分布系统信 号源 91、 可控连接器 92以及监控服务器 93; 其中,
所述室内分布系统信号源 91, 配置为为室内分布系统信号源覆盖区域 提供通信信号;
所述可控连接器 92, 配置为将外区与室内分布系统信号源可控连接; 这里, 所述可控连接器 92配置为将外区与室内分布系统信号源可控连 接, 包括: 所述可控连接器 92配置为将外区和内区可控连接, 使外区经由 内区与室内分布系统信号源相连; 或者, 所述可控连接器 92配置为直接将 外区与室内分布系统信号源可控连接。
优选地, 所述外区可划分为多个外区子分区, 那么, 所述可控连接器 92配置为将外区与室内分布系统信号源可控连接, 包括: 所述可控连接器 配置为将各个外区子分区分别与内区相连, 使各个外区子分区经由内区与 室内分布系统信号源相连; 或者, 所述可控连接器配置为直接将各个外区 子分区分别与室内分布系统信号源相连; 或者, 所述可控连接器配置为将 通过功率分配器或耦合器后的室内分布系统信号源与各个外区子分区相 连。
这里, 所述可控连接器可以采用可控两相开关、 或可控衰减器。
所述监控服务器 93, 配置为将室内分布系统信号源覆盖区域划分为内 区和外区, 其中, 所述内区由室内分布系统信号源提供信号, 所述外区与 室内分布系统信号源可控连接; 还配置为根据室内外信号测量参数将外区 与室内分布系统信号源连通或断开。
具体地, 所述监控服务器 93配置为将室内分布系统信号源覆盖区域划 分为内区和外区, 包括: 所述监控服务器 93配置为将测量获得的室外信号 接收强度低于指定接收强度门限 15~25dB的区域划分为内区, 将内区以外 的室内其它室内分布系统信号源覆盖区域划分为外区。
所述监控服务器 93, 还配置为根据外区接收到的室外信号所归属的室 外主小区个数, 将外区划分为与所述室外主小区个数相等或者更多个数的 外区子分区; 或者, 根据指定的外区子分区面积大小, 将外区划分为若干 个与所述指定的外区子分区面积大小相等的外区子分区; 在实际的应用中, 所述监控服务器 93还可以根据实际需要或室外信号所归属的主小区覆盖范 围等因素, 对应某个室外信号所归属的主小区划分多个外区子分区, 以便 更好地提供高质量的通信信号。
优选地, 所述监控服务器 93, 还配置为根据室内外信号参数将外区与 室内分布系统信号源连通或断开;
其中, 所述室内外信号测量参数包括: 室内导频功率、 室内分布系统 覆盖边缘场强门限、 仅使用室内分布系统信号的信噪比、 仅使用室外信号 的信噪比以及室外最强小区导频功率;
所述根据室内外信号参数将外区与室内分布系统信号源连通或断开, 包括: 当外区子分区当前状态为使用室外信号时, 监控服务器 93配置为判 断室内导频功率是否大于室内分布系统覆盖边缘场强门限, 并判断使用室 内分布系统信号的信噪比是否大于仅使用室外信号的信噪比 +Y, 其中 Υ为 迟滞量, Υ的取值范围 l-4dB, 目的是避免乒乓切换, 如果同时满足, 则将 外区子分区与室内分布系统信号源连通; 当外区子分区现状为使用室内分 布系统信号, 监控服务器 93配置为判断室外最强小区导频功率是否大于室 内分布系统覆盖边缘场强门限, 并判断仅使用室外信号的信噪比是否大于 仅使用室内分布系统信号的信噪比 +Y, 其中 Υ 为迟滞量, Υ 的取值范围 l-4dB, 目的是避免乒乓切换, 如果同时满足, 则将外区子分区与室内分布 系统信号源断开; 或者,
监控服务器配置为判断室内导频功率是否大于室内分布系统覆盖边缘 场强门限, 并判断使用室内分布系统信号的信噪比是否大于仅使用室外信 号的信噪比 +Y, 其中 Υ为迟滞量, Υ的取值范围 l-4dB, 目的是避免乒乓 切换, 判断同时为是时, 则将外区与室内分布系统信号源连通; 其余情况 下, 将外区子分区与室内分布系统信号源断开; 或者,
监控服务器配置为判断室外最强小区导频功率是否大于室内分布系统 覆盖边缘场强门限, 并判断仅使用室外信号的信噪比是否大于仅使用室内 分布系统信号的信噪比 +Y, 其中 Υ为迟滞量, Υ的取值范围 l-4dB, 目的 是避免乒乓切换, 判断同时为是时, 则将外区与室内分布系统信号源断开; 其余情况下, 将外区子分区与室内分布系统信号源断开。
上述室内分布系统还包括: 频率筛选电路 94, 所述频率筛选电路 94设 置于室内分布系统信号源与外区子分区之间的连接线路上; 所述频率筛选 电路 94包括: 频段分路器、 可控连接器以及频段合路器; 其中,
所述频段分路器, 配置为将从室内分布系统信号源过来的信号分成两 条分路: 上分路和下分路; 所述上分路上为指定频段的室内分布系统信号, 所述下分路上为其它频段的信号; 所述频段合路器, 配置为合并所述上分路上的信号和下分路上的信号, 并将合并后的信号连接于外区子分区;
所述可控连接器设置于频段分路器和频段合路器之间的上分路上, 配 置为对指定频段的室内分布系统信号进行筛选。
上述室内分布系统还包括测量上报终端 95, 配置为周期性测量并自动 向监控服务器上报室内外信号测量参数;
其中, 所述室内外信号测量参数包括: 室内导频功率、 室内分布系统 覆盖边缘场强门限、 仅使用室内分布系统信号的信噪比、 仅使用室外信号 的信噪比以及室外最强小区导频功率等参数。
本发明实施例还记载了一种存储介质, 所述存储介质中存储有计算机 程序, 所述计算机程序配置为执行前述实施例的室内分布系统的实现方法。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。
工业实用性
本发明所使用的可控连接器为无源器件, 能够杜绝长期使用有源器件 时容易出现的质量问题, 同时也能降低运维成本; 而且, 本发明所提供的 室内分布系统主要应用于室内外同频的场景, 更适用于目前的应用环境。

Claims

权利要求书
1、 一种室内分布系统的实现方法, 包括:
将室内分布系统信号源覆盖区域划分为内区和外区; 其中, 所述内区 由室内分布系统信号源提供信号, 所述外区与室内分布系统信号源可控连 接;
根据室内外信号测量参数将外区与室内分布系统信号源连通或断开。
2、根据权利要求 1所述的方法, 其中, 所述室内外信号测量参数包括: 室内导频功率、 室内分布系统覆盖边缘场强门限、 仅使用室内分布系统信 号的信噪比、 仅使用室外信号的信噪比以及室外最强小区导频功率。
3、 根据权利要求 2所述的方法, 其中, 所述根据室内外信号参数将外 区与室内分布系统信号源连通或断开, 包括:
判断室内导频功率是否大于室内分布系统覆盖边缘场强门限, 并判断 使用室内分布系统信号的信噪比是否大于仅使用室外信号的信噪比 +迟滞 量, 判断同时为是时, 将外区与室内分布系统信号源连通。
4、 根据权利要求 2或 3所述的方法, 其中, 所述根据室内外信号参数 将外区与室内分布系统信号源连通或断开, 包括:
判断室外最强小区导频功率是否大于室内分布系统覆盖边缘场强门 限, 并判断仅使用室外信号的信噪比是否大于仅使用室内分布系统信号的 信噪比 +迟滞量, 判断同时为是时, 将外区与室内分布系统信号源断开。
5、 根据权利要求 1所述的方法, 其中, 所述外区与室内分布系统信号 源可控连接, 包括:
将外区与内区可控连接, 使外区经由内区与室内分布系统信号源相连; 或者, 直接将外区与室内分布系统信号源可控连接。
6、 根据权利要求 1所述的方法, 其中, 所述将室内分布系统信号源覆 盖区域划分为内区和外区, 包括: 将测量获得的室外信号接收强度低于指定接收强度门限 15~25dB的区 域, 划分为内区; 将除内区外的其他区域划分为外区。
7、 根据权利要求 6所述的方法, 其中, 所述方法还包括: 根据外区接 收到的室外信号所归属的主小区个数, 将外区划分为与所述室外主小区个 数相等的外区子分区; 或者,
根据指定的外区子分区面积大小, 将外区划分为若干个与所述指定的 外区子分区面积大小相等的外区子分区。
8、 根据权利要求 7所述的方法, 其中, 所述外区与室内分布系统信号 源可控连接, 包括:
将各个外区子分区与内区可控连接, 使各个外区子分区经由内区与室 内分布系统信号源相连;
或者, 直接将各个外区子分区分别与室内分布系统信号源可控连接; 或者, 室内分布系统信号源通过功率分配器或耦合器后, 再与各个外 区子分区分别可控连接。
9、 根据权利要求 1所述的方法, 其中, 所述可控连接包括: 通过可控 两相开关连接、 或通过可控衰减器连接。
10、 一种室内分布系统, 包括: 室内分布系统信号源、 可控连接器以 及监控服务器; 其中,
所述室内分布系统信号源, 配置为为室内分布系统信号源覆盖区域提 供通信信号;
所述可控连接器, 配置为将外区与室内分布系统信号源可控连接; 所述监控服务器, 配置为将室内分布系统信号源覆盖区域划分为内区 和外区, 所述内区由室内分布系统信号源提供信号; 还配置为根据室内外 信号测量参数将外区与室内分布系统信号源连通或断开。
11、 根据权利要求 10所述的系统, 其中, 所述室内外信号参数包括: 室内导频功率、 室内分布系统覆盖边缘场强门限、 仅使用室内分布系统信 号的信噪比、 仅使用室外信号的信噪比以及室外最强小区导频功率。
12、 根据权利要求 11所述的系统, 其中, 所述监控服务器配置为根据 室内外信号参数将外区与室内分布系统信号源连通或断开, 包括:
监控服务器配置为判断室内导频功率是否大于室内分布系统覆盖边缘 场强门限, 并判断使用室内分布系统信号的信噪比是否大于仅使用室外信 号的信噪比 +迟滞量,判断同时为是时,将外区与室内分布系统信号源连通。
13、 根据权利要求 11或 12所述的系统, 其中, 所述监控服务器配置 为才艮据室内外信号参数将外区与室内分布系统信号源连通或断开, 包括: 监控服务器配置为判断室外最强小区导频功率是否大于室内分布系统 覆盖边缘场强门限, 并判断仅使用室外信号的信噪比是否大于仅使用室内 分布系统信号的信噪比 +迟滞量, 判断同时为是时, 将外区与室内分布系统 信号源断开。
14、 根据权利要求 10所述的系统, 其中, 所述可控连接器配置为将外 区与室内分布系统信号源可控连接, 包括:
所述可控连接器配置为将外区和内区可控连接, 使外区经由内区与室 内分布系统信号源相连; 或者, 所述可控连接器配置为直接将外区与室内 分布系统信号源可控连接。
15、 根据权利要求 10所述的系统, 其中, 所述监控服务器, 配置为将 室内分布系统信号源覆盖区域划分为内区和外区, 包括:
将测量获得的室外信号接收强度低于指定接收强度门限 15~25dB的区 域, 划分为内区; 将除内区外的其他区域划分为外区。
16、 根据权利要求 15所述的系统, 其中, 所述监控服务器还配置为根 据外区接收到的室外信号所归属的主小区个数, 将外区划分为与所述室外 主小区个数相等个数的外区子分区, 或者, 根据指定的外区子分区面积大小, 将外区划分为若干个与所述指定的 外区子分区面积大小相等的外区子分区。
17、 根据权利要求 16所述的系统, 其中, 所述可控连接器配置为将外 区与室内分布系统信号源可控连接, 包括:
所述可控连接器配置为将各个外区子分区分别与内区相连, 使各个外 区子分区经由内区与室内分布系统信号源相连;
或者, 所述可控连接器配置为直接将各个外区子分区分别与室内分布 系统信号源相连;
或者, 所述可控连接器配置为将通过功率分配器或耦合器后的室内分 布系统信号源与各个外区子分区相连。
18、 根据权利要求 10所述的系统, 其中, 所述可控连接器包括: 可控 两相开关、 或可控衰减器。
19、 根据权利要求 10所述的系统, 其中, 所述系统还包括: 测量上报 终端, 所述测量上报终端配置为周期性测量并自动向监控服务器上报室内 外信号测量参数。
20、 一种存储介质, 所述存储介质中存储有计算机程序, 所述计算机 程序配置为执行权利要求 1至 9任一项所述的室内分布系统的实现方法。
PCT/CN2014/080324 2013-12-05 2014-06-19 一种室内分布系统及其实现方法、存储介质 WO2015081687A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310655609.8 2013-12-05
CN201310655609.8A CN104703194A (zh) 2013-12-05 2013-12-05 一种室内分布系统及其实现方法

Publications (1)

Publication Number Publication Date
WO2015081687A1 true WO2015081687A1 (zh) 2015-06-11

Family

ID=53272820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080324 WO2015081687A1 (zh) 2013-12-05 2014-06-19 一种室内分布系统及其实现方法、存储介质

Country Status (2)

Country Link
CN (1) CN104703194A (zh)
WO (1) WO2015081687A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106714188A (zh) * 2015-11-13 2017-05-24 中兴通讯股份有限公司 一种信号覆盖方法和系统、分流覆盖终端及信号覆盖终端
CN109963289B (zh) * 2017-12-26 2020-11-24 中国移动通信集团公司 一种室内分布基站建立方法及装置
CN111278020B (zh) * 2019-11-11 2020-09-22 上海星地通讯工程研究所 基于5g通信技术的室内小基站布置方法
CN111770506B (zh) * 2020-07-08 2022-08-09 展讯通信(上海)有限公司 近端及远端控制合路单元、近端及远端子系统和室分系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101815307A (zh) * 2009-02-24 2010-08-25 中国移动通信集团山东有限公司 室内分布系统中主机运行控制方法及装置
CN101990212A (zh) * 2009-08-04 2011-03-23 中兴通讯股份有限公司 室内外分布系统组网的方法及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101150348A (zh) * 2006-03-28 2008-03-26 华为技术有限公司 一种室内分布系统及其组网方法
US8687608B2 (en) * 2007-01-05 2014-04-01 Qualcomm Incorporated Method and apparatus for supporting communication in pico networks
CN102065432B (zh) * 2009-11-13 2013-10-09 中国移动通信集团黑龙江有限公司 一种基于传播模型的网络覆盖修正方法及系统
CN203327240U (zh) * 2013-03-29 2013-12-04 京信通信系统(中国)有限公司 一种室内分布系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101815307A (zh) * 2009-02-24 2010-08-25 中国移动通信集团山东有限公司 室内分布系统中主机运行控制方法及装置
CN101990212A (zh) * 2009-08-04 2011-03-23 中兴通讯股份有限公司 室内外分布系统组网的方法及系统

Also Published As

Publication number Publication date
CN104703194A (zh) 2015-06-10

Similar Documents

Publication Publication Date Title
US8437764B2 (en) Determining an optimized configuration of a telecommunication network
CN102612071B (zh) 室内话务地图呈现方法及装置
CN101064860B (zh) 蜂窝移动通信系统无线参数自动配置方法
JP2010521088A (ja) ワイヤレス電気通信ネットワークにおける隣接セルの自己設定および最適化
KR20120138063A (ko) 스몰셀 액세스 제어를 위한 방법 및 스몰셀 기지국
WO2015081687A1 (zh) 一种室内分布系统及其实现方法、存储介质
CN102348211B (zh) 频谱检测及频率配置系统和方法
CN102082581A (zh) 移动通信终端及其实现不同通信系统共存的方法和系统
CN103686973A (zh) 一种射频拉远单元的功率调整方法及装置
Zhao et al. Design and performance tests in an integrated TD-LTE based train ground communication system
CN102547774B (zh) 无线室内优化方法和设备
US10142853B2 (en) Automated distributed antenna system self-configuration
CN102036327B (zh) 一种td-scdma中ue从室外基站向室内基站切换的方法
CN112911609A (zh) 一种有源室分系统的控制方法、电子设备及存储介质
CN111787578B (zh) 移动通信网络的组网系统、方法及终端接入方法
KR101657444B1 (ko) 모바일 핸드 오버 테스트 시스템
CN106686713B (zh) 一种上行干扰控制方法及装置
CN112929037B (zh) 信号合路系统及电子设备
KR20030035867A (ko) 이동 통신 시스템의 가변 섹터 변환 장치 및 그 방법
AU2018223147B2 (en) Automatic configuration of a digital DAS for signal dominance
Al-Husseiny et al. Enhancing LTE energy performance with antenna muting and dynamic psi-omni configuration
Odesanya et al. Self-Organizing Network Using The Reference Signal Received Power Measurement In Cellular Network
CN104540205A (zh) 一种基站发射功率配置方法及装置
CN114665996B (zh) 一种适用于数字室分系统的同频邻区动态识别方法
Petrović et al. LTE performance in a hybrid indoor DAS (Active vs. Passive)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14867951

Country of ref document: EP

Kind code of ref document: A1