WO2015080273A1 - イソプレンモノマーの製造方法 - Google Patents

イソプレンモノマーの製造方法 Download PDF

Info

Publication number
WO2015080273A1
WO2015080273A1 PCT/JP2014/081645 JP2014081645W WO2015080273A1 WO 2015080273 A1 WO2015080273 A1 WO 2015080273A1 JP 2014081645 W JP2014081645 W JP 2014081645W WO 2015080273 A1 WO2015080273 A1 WO 2015080273A1
Authority
WO
WIPO (PCT)
Prior art keywords
isoprene
ptac
gene
strain
microorganism
Prior art date
Application number
PCT/JP2014/081645
Other languages
English (en)
French (fr)
Inventor
義教 田島
大貫 朗子
博昭 良知
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to JP2015551028A priority Critical patent/JPWO2015080273A1/ja
Priority to BR112016011677A priority patent/BR112016011677A2/pt
Priority to EP14865818.0A priority patent/EP3075843B1/en
Publication of WO2015080273A1 publication Critical patent/WO2015080273A1/ja
Priority to US15/165,362 priority patent/US20160340695A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/026Unsaturated compounds, i.e. alkenes, alkynes or allenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F136/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F136/02Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F136/04Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F136/08Isoprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/007Preparation of hydrocarbons or halogenated hydrocarbons containing one or more isoprene units, i.e. terpenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/03Phosphoric monoester hydrolases (3.1.3)
    • C12Y301/03081Diacylglycerol diphosphate phosphatase (3.1.3.81)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/03Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
    • C12Y402/03027Isoprene synthase (4.2.3.27)

Definitions

  • the present invention relates to an isoprene synthase-expressing microorganism having improved expression of pyrophosphate phosphatase, a method for producing an isoprene monomer using the isoprene synthase-expressing microorganism, and the like.
  • Natural rubber is a very important raw material in the tire industry and rubber industry. As demand increases in the future due to motorization centering on emerging countries, it is difficult to expand farms due to deforestation regulations and competition with palms, so it is difficult to expect an increase in the yield of natural rubber, and the supply-demand balance becomes tight. It is expected to go. Synthetic polyisoprene is an alternative material to natural rubber, but the raw material monomer (isoprene (2-methyl-1,3-butadiene)) is obtained mainly by extraction from the C5 fraction obtained by naphtha cracking. . However, in recent years, the production of isoprene has been decreasing due to the lightening of the cracker feed, and there is concern about its supply. In recent years, it is strongly affected by fluctuations in oil prices, and in order to stably secure isoprene monomers, establishment of a system for producing isoprene at low cost from non-petroleum resources is desired.
  • Non-patent Document 1 The reaction mechanism of isoprene synthase has also been clarified, and pyrophosphate and isoprene are produced using DMAPP (dimethylally pyrophosphate) as a substrate (Non-patent Document 1).
  • DMAPP dimethylally pyrophosphate
  • Non-patent Document 2 As an effect of the product pyrophosphate on the activity of isoprene synthase, it has been known that the enzyme activity of isoprene synthase derived from willow (Salix discol L.) is decreased by 1 mM sodium pyrophosphate (non- Patent Document 2).
  • An object of the present invention is to provide a biological method excellent in isoprene production.
  • the present inventors have found that, by improving the expression level of pyrophosphate phosphatase in an isoprene synthase-expressing microorganism, the ability to produce isoprene monomer is improved, and the present invention has been completed. It came to do.
  • the present invention is as follows.
  • the microorganism is a microorganism transformed with an isoprene synthase expression vector.
  • a method for producing isoprene monomer comprising culturing the isoprene synthase-expressing microorganism of any one of [1] to [12] in a culture medium to produce isoprene monomer.
  • a method for producing an isoprene polymer comprising the following (I) and (II): (I) producing an isoprene monomer by the method of [13]; (II) polymerizing isoprene monomers to produce isoprene polymers.
  • a rubber composition comprising the polymer of [15].
  • the isoprene synthase-expressing microorganism of the present invention is excellent in isoprene-producing ability and significantly improves the glucose yield.
  • the growth of the isoprene synthase-expressing microorganism of the present invention also improves as the expression of pyrophosphate phosphatase increases (eg, see FIG. 13).
  • FIG. 1 is a diagram showing an analysis of PPA expression by SDS-PAGE.
  • Controls in lanes 1 and 2 mean samples prepared from MG1655 Ptac-KKDyI strain.
  • Ptac-ppa in lanes 3 and 4 means a sample prepared from MG1655 Ptac-KKDyI Ptac-ppa strain.
  • M means protein molecular weight marker.
  • FIG. 2 is a graph showing the amount of isoprene generated per unit weight of the dried leaves of various plants.
  • FIG. 3 is a graph showing the amount of isoprene generated per total amount of protein extracted from leaves of various plants.
  • FIG. 4 is a diagram showing an overview of the downstream of the mevalonate pathway immobilized on the chromosome and the surrounding region.
  • FIG. 1 is a diagram showing an analysis of PPA expression by SDS-PAGE.
  • FIG. 5 is a diagram showing an outline of the downstream of the mevalonate pathway controlled by the tac promoter in the chromosome and its surrounding region.
  • FIG. 6 shows a map of the pAH162-Para-mvaES plasmid.
  • FIG. 7 is a diagram showing a map of pAH162-KKDyI-ispS (K).
  • FIG. 8 is a diagram showing a map of pAH162-Ptac-ispS (M) -mvk (Mma).
  • FIG. 9 is a diagram showing the construction of ⁇ ampC :: KKDyI-ispS (K) chromosome variant.
  • FIG. 10 is a diagram showing the construction of ⁇ ampH :: Para-mvaES chromosome variant.
  • A) shows ⁇ Red-dependent replacement of the ampH gene by the attLphi80-kan-attRphi80 PCR-generated DNA fragment.
  • FIG. 11 is a diagram showing the construction of a modified ⁇ crt :: KKDyI-ispS (K) of pEA320 megapramide.
  • A) is the result of P. elegans placed in the pEA320 megaplasmid. It is a figure which shows the structure of ananatis crt locus.
  • B) shows ⁇ Red dependent substitution of the crt operon by the attLphi80-kan-attRphi80 PCR generated DNA fragment.
  • FIG. 12 is a diagram showing the protein expression level of pyrophosphate phosphatase in the AG10265 strain.
  • Lane 1 Soluble protein derived from AG10265 strain
  • Lanes 2-4 Soluble protein derived from AG10265 Ptac- ⁇ 10-ppa1 strain
  • Lanes 5-6 Soluble protein derived from AG10265 Ptac- ⁇ 10-ppa2 strain
  • M Molecular weight marker.
  • FIG. 15 is a diagram showing a map of pAH162-mvaES.
  • FIG. 16 is a view showing a plasmid for immobilizing pAH162-MCS-mvaES chromosome.
  • Figure 17 is a diagram showing a set of chromosomes fixing plasmid carrying the mvaES gene under the transcriptional control of P PhOC.
  • FIG. 18 is a diagram showing the construction of a pAH162- ⁇ attL-KmR- ⁇ attR integration vector.
  • FIG. 19 is a diagram showing an expression vector incorporating pAH162-Ptac.
  • FIG. 20 is a diagram showing codon optimization in a chemically synthesized KDyI operon.
  • FIG. 21 shows the integrated plasmids of (A) pAH162-Tc-Ptac-KDyI and (B) pAH162-Km-Ptac-KDyI carrying the KDyI operon with optimized codons.
  • FIG. It is a figure which shows the integration type plasmid holding the mevalonate kinase gene derived from pallidcola.
  • FIG. 23 shows maps of genomic variants of (A) ⁇ ampC :: attB phi80 , (B) ⁇ ampH :: attB phi80 , and (C) ⁇ crt :: attB phi80 .
  • FIG. 24 shows maps of genomic variants of (A) ⁇ crt :: pAH162-P tac -mvk (X) and (B) ⁇ crt :: P tac -mvk (X).
  • FIG. 25 shows maps of chromosome modifications of (A) ⁇ ampH :: pAH162-Km-P tac -KDyI and (B) ⁇ ampC :: pAH162-Km-P tac -KDyI.
  • FIG. 24 shows maps of genomic variants of (A) ⁇ crt ::: pAH162-P tac -mvk (X) and (B) ⁇ crt :: P tac -mvk (X
  • FIG. 26 shows maps of chromosome modifications of (A) ⁇ ampH :: pAH162-Para-mvaES and (B) ⁇ ampC :: pAH162-Para-mvaES.
  • FIG. 27 is a diagram showing confirmation of PPA expression in SWITCH-PphoC-1 (S) ⁇ ydcI :: Ptac-MG-ppa. Cont represents a sample derived from a SWITCH-PphoC-1 (S) ⁇ ydcI strain, and MG-ppa represents a sample migrated from a SWITCH-PphoC-1 (S) ⁇ ydcI :: Ptac-MG-ppa strain.
  • the present invention provides an isoprene-expressing microorganism having improved expression of pyrophosphate phosphatase.
  • Pyrophosphate phosphatase is an enzyme that hydrolyzes pyrophosphate into two molecules of phosphate.
  • Examples of pyrophosphate phosphatase include pyrophosphate phosphatase derived from a microorganism described later as a host.
  • pyrophosphate phosphatase may be a protein consisting of the amino acid sequence of SEQ ID NO: 136, SEQ ID NO: 137, or SEQ ID NO: 138.
  • the pyrophosphate phosphatase is also a protein having an amino acid sequence showing 70% or more amino acid sequence identity to the amino acid sequence of SEQ ID NO: 136, SEQ ID NO: 137, or SEQ ID NO: 138, and having pyrophosphate phosphatase activity. Also good.
  • the amino acid sequence identity% may be, for example, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more.
  • Pyrophosphate phosphatase activity refers to the activity of hydrolyzing pyrophosphate into two molecules of phosphate.
  • the pyrophosphate phosphatase is a protein having an amino acid sequence in which one or several amino acid residues are mutated in the amino acid sequence of SEQ ID NO: 136, SEQ ID NO: 137, or SEQ ID NO: 138, and having pyrophosphate phosphatase activity. There may be.
  • amino acid residue mutations include deletion, substitution, addition and insertion of amino acid residues.
  • the mutation of one or several amino acid residues may be introduced into one region in the amino acid sequence, but may be introduced into a plurality of different regions.
  • the term “one or several” indicates a range in which the three-dimensional structure and activity of the protein are not significantly impaired. In the case of protein, the number “1 or several” indicates, for example, 1 to 50, preferably 1 to 40, more preferably 1 to 30, 1 to 20, 1 to 10, or 1 to Five.
  • the pyrophosphate phosphatase activity of the protein consisting of the amino acid sequence of SEQ ID NO: 136, SEQ ID NO: 137, or SEQ ID NO: 138 when measured under the same conditions (eg, buffer, concentration, temperature, reaction time) It is preferable to have an activity of 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, or 95% or more.
  • a mutation may be introduced into a site in the catalytic domain and a site other than the catalytic domain.
  • Those skilled in the art will know the positions of amino acid residues to which mutations can be introduced, which can retain the desired activity. Specifically, those skilled in the art 1) compare the amino acid sequences of a plurality of proteins having the same type of activity, 2) reveal a relatively conserved region and a relatively unconserved region, 3) From the relatively conserved region and the relatively unconserved region, it is possible to predict the region that can play an important role in the function and the region that can not play the important role in the function, respectively. Recognize the correlation between structure and function. Accordingly, those skilled in the art can identify the positions of amino acid residues to which mutations may be introduced in the amino acid sequence of pyrophosphate phosphatase.
  • substitutions of amino acid residues may be conservative substitutions.
  • conservative substitution refers to substitution of a given amino acid residue with an amino acid residue having a similar side chain. Families of amino acid residues with similar side chains are well known in the art.
  • such families include amino acids having basic side chains (eg, lysine, arginine, histidine), amino acids having acidic side chains (eg, aspartic acid, glutamic acid), amino acids having uncharged polar side chains (Eg, asparagine, glutamine, serine, threonine, tyrosine, cysteine), amino acids with non-polar side chains (eg, glycine, alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), ⁇ -branched side chain Amino acids (eg, threonine, valine, isoleucine), amino acids having aromatic side chains (eg, tyrosine, phenylalanine, tryptophan, histidine), amino acids having side groups containing hydroxyl groups (eg, alcoholic, phenolic) ( Example, serine, thread Nin, tyrosine), and amino acids (e.g.
  • the conservative substitution of amino acids is a substitution between aspartic acid and glutamic acid, a substitution between arginine and lysine and histidine, a substitution between tryptophan and phenylalanine, and between phenylalanine and valine. Or a substitution between leucine, isoleucine and alanine, and a substitution between glycine and alanine.
  • Improvement in the expression of pyrophosphate phosphatase in an isoprene synthase-expressing microorganism can be performed in any manner that increases the amount of pyrophosphate phosphatase expressed in the isoprene synthase-expressing microorganism.
  • the pyrophosphate phosphatase whose expression is to be improved in the isoprene synthase-expressing microorganism is a homologous or heterologous pyrophosphate phosphatase relative to the isoprene synthase and / or the isoprene synthase-expressing microorganism.
  • the homologous pyrophosphate phosphatase relative to the isoprene synthase expressing microorganism may be an pyrophosphate phosphatase inherent to the isoprene synthase expressing microorganism or may be a foreign pyrophosphate phosphatase. Good.
  • the pyrophosphate phosphatase whose expression is to be improved in the isoprene synthase-expressing microorganism may also be one or more (eg, 2 or 3).
  • Improved expression of pyrophosphate phosphatase in an isoprene synthase-expressing microorganism can be achieved, for example, by modifying the peripheral region of the pyrophosphate phosphatase gene unique to the isoprene synthase-expressing microorganism or by transforming an isoprene synthase-expressing microorganism with a pyrophosphate phosphatase expression vector. Then, the expression unit containing a polynucleotide encoding pyrophosphate phosphatase may be introduced into an isoprene synthase-expressing microorganism.
  • the expression vector used in the present invention may further contain one or more regions that allow homologous recombination with the host cell genome when introduced into the host cell.
  • an expression unit containing a predetermined polynucleotide is located between a pair of homologous regions (eg, homology arms homologous to a specific sequence in a host genome, loxP, FRT). May be designed.
  • An expression unit is a transcription of a polynucleotide, including a predetermined polynucleotide to be expressed and a promoter operably linked thereto (eg, a homologous promoter, a heterologous promoter), and thus a polypeptide encoded by the polynucleotide.
  • a unit that enables the production of The expression unit may further contain elements such as a terminator, a ribosome binding site, and a drug resistance gene.
  • Examples of the expression vector used in the present invention include a vector for expressing a protein in a host.
  • the expression vector may also be a plasmid, viral vector, phage, or artificial chromosome.
  • the expression vector may further be a DNA vector or an RNA vector.
  • the expression vector may be an integral vector or a non-integration vector.
  • An integrative vector may be a type of vector that is integrated entirely into the genome of the host cell. Alternatively, the integrative vector may be a vector in which only a part (eg, the above-mentioned expression unit) is integrated into the host cell genome.
  • the peripheral region to be modified for the pyrophosphate phosphatase gene includes, for example, a promoter region, a Shine-Dalgarno (SD) sequence, a spacer region between the RBS and the start codon (in particular, a sequence immediately upstream of the start codon (5 ′ -UTR)).
  • SD Shine-Dalgarno
  • the modification include substitution, insertion or deletion of one to plural (eg, 1 to 500, 1 to 300, 1 to 200, or 1 to 100) nucleotides in the peripheral region.
  • the modification of the surrounding region is a replacement of the promoter region and, if necessary, a replacement of the SD sequence.
  • promoter to be introduced after substitution examples include inducible promoters such as tac promoter (Ptac), trc promoter (Ptrc), and lac promoter (Plac).
  • sequence to be introduced after substitution of the SD sequence examples include RBS of gene 10 derived from phage T7 (Olins P. O. et al, Gene, 1988, 73, 227-235).
  • the activity is enhanced by increasing the number of copies of the pyrophosphate phosphatase gene on the chromosome. It is preferable that a plurality of copies, desirably 2 copies or more, more preferably 3 copies or more are mounted on the chromosome.
  • the increase in copy number can be achieved by introducing a plasmid carrying a pyrophosphate phosphatase gene into a host cell.
  • the increase in copy number can also be achieved by transferring the pyrophosphate phosphatase gene onto the host genome using a transposon, Mu phage, or the like.
  • An isoprene synthase-expressing microorganism is a microorganism that produces isoprene synthase.
  • the isoprene synthase-expressing microorganism is a microorganism obtained by transforming a host cell with an isoprene synthase expression vector and introducing an expression unit containing a polynucleotide encoding isoprene synthase into the host cell.
  • the expression unit and expression vector are as described above.
  • it is preferable that multiple copies, desirably 2 copies or more, more preferably 3 copies or more of isoprene synthase genes are mounted on the chromosome.
  • Such an isoprene synthase-expressing microorganism can be obtained by introducing an isoprene synthase expression vector into a host. Such an isoprene synthase-expressing microorganism can also be obtained by transferring an isoprene synthase gene onto the host genome using a transposon, Mu phage, or the like.
  • the host cell may be homologous or heterologous to isoprene synthase, but is preferably heterologous. Examples of the isoprene synthase gene contained in the isoprene synthase expression vector include kuzu (Pueraria montana var.
  • the isoprene synthase expression vector may be an integrated vector or a non-integrated vector.
  • the gene encoding isoprene synthase can be placed under the control of a constitutive promoter or an inducible promoter (eg, a growth promoter-independent promoter described below).
  • the gene encoding isoprene synthase can be placed under the control of a constitutive promoter.
  • constitutive promoter include tac promoter, lac promoter, trp promoter, trc promoter, T7 promoter, T5 promoter, T3 promoter, and SP6 promoter.
  • the isoprene synthase may be, for example, the following protein: 1) a full-length protein (amino acid sequence of SEQ ID NO: 8) that can be derived from Kuzu; 2) a protein from which the chloroplast translocation signal has been removed from the full-length protein of 1) above (an amino acid sequence from which amino acid residues 1 to 45 have been removed from the amino acid sequence of SEQ ID NO: 8); 3) Full-length protein that can be derived from poplar (amino acid sequence of SEQ ID NO: 11); 4) A protein from which the chloroplast translocation signal has been removed from the full-length protein of 3) above (an amino acid sequence from which amino acid residues 1 to 37 have been removed from the amino acid sequence of SEQ ID NO: 11); 5) a full-length protein that can be derived from Mucuna (amino acid sequence of SEQ ID NO: 7); and 6) a protein from which the chloroplast translocation signal has been removed from the full-length protein of 5) above (position
  • the isoprene synthase may be derived from kuzu. In another preferred embodiment, the isoprene synthase can be derived from poplar. In yet another preferred embodiment, the isoprene synthase can be derived from Mucuna.
  • the isoprene synthase is a protein having an amino acid sequence identity of 70% or more with respect to the amino acid sequences of the proteins 1) to 6) and having isoprene synthase activity.
  • the amino acid sequence identity% may be, for example, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more.
  • The% amino acid sequence identity can be determined as described above.
  • the isoprene synthase activity refers to the activity of producing isoprene from dimethylallyl diphosphate (DMAPP).
  • the isoprene synthase comprises an amino acid sequence in which one or several amino acid residues are mutated in the amino acid sequences of the proteins 1) to 6) above and has isoprene synthase activity. is there.
  • amino acid residue mutations include deletion, substitution, addition and insertion of amino acid residues.
  • the mutation of one or several amino acid residues may be introduced into one region in the amino acid sequence, but may be introduced into a plurality of different regions.
  • the term “one or several” indicates a range in which the three-dimensional structure and activity of the protein are not significantly impaired. In the case of protein, the number “1 or several” indicates, for example, 1 to 100, preferably 1 to 80, more preferably 1 to 50, 1 to 30, 1 to 20, 1 to 10 or 1 to 5.
  • the isoprene synthase activity is 50% or more, 60% or more, 70% or more of the isoprene synthase activity of the proteins 1) to 6) above when measured under the same conditions (eg, buffer, concentration, temperature, reaction time). 80% or more, preferably 90% or more, or preferably 95% or more.
  • isoprene synthase remains in a predetermined buffer (eg, 50 mM Tris-HCl (pH 8.0), 0.15 mM MgCl 2 solution) when stored at 4 ° C. for 48 hours.
  • the activity is preferably 30% or more, 40% or more, 50% or more, 60% or more, or 65% or more.
  • mutations may be introduced at sites in the catalytic domain and at sites other than the catalytic domain.
  • Those skilled in the art will know the positions of amino acid residues to which mutations can be introduced, which can retain the desired activity. Specifically, those skilled in the art 1) compare the amino acid sequences of a plurality of proteins having the same type of activity, 2) reveal a relatively conserved region and a relatively unconserved region, 3) From the relatively conserved region and the relatively unconserved region, it is possible to predict the region that can play an important role in the function and the region that can not play the important role in the function, respectively. Recognize the correlation between structure and function.
  • amino acid residue substitution may be a conservative substitution as described above.
  • the isoprene synthase-expressing microorganism may be a microorganism that expresses mevalonate kinase in addition to isoprene synthase. Therefore, the isoprene synthase-expressing microorganism may have a mevalonate kinase expression vector introduced into the host.
  • the mevalonate kinase gene to be introduced into the host by the mevalonate kinase expression vector include, for example, the genus of Methanosarcina, such as Methanosarcina mazei, and the genus of the genus Methanocarcina, such as Methanocella parodicola.
  • the mevalonate kinase expression vector may be an integrative vector or a non-integration vector.
  • the gene encoding mevalonate kinase can be placed under the control of a constitutive promoter as described above, or an inducible promoter (eg, a growth promoter-independent promoter described later).
  • the gene encoding mevalonate kinase can be placed under the control of a constitutive promoter.
  • the isoprene synthase-expressing microorganism used in the present invention, bacteria or fungi are preferable.
  • the bacterium may be a gram positive bacterium or a gram negative bacterium.
  • As the isoprene synthase-expressing microorganism a microorganism belonging to the family Enterobacteriaceae, particularly a microorganism belonging to the family Enterobacteriaceae among the microorganisms described later, is also preferable.
  • Gram-positive bacteria examples include Bacillus bacteria, Listeria bacteria, Staphylococcus bacteria, Streptococcus bacteria, Enterococcus bacteria, Clostridium bacteria, Clostridium bacteria, and Clostridium bacteria.
  • Examples include bacteria belonging to the genus Corynebacterium and bacteria belonging to the genus Streptomyces, and bacteria belonging to the genus Bacillus and bacteria belonging to the genus Corynebacterium are preferred.
  • Bacillus bacteria include Bacillus subtilis, Bacillus anthracis, Bacillus cereus, and the like, and Bacillus subtilis is more preferable.
  • bacteria belonging to the genus Corynebacterium include Corynebacterium glutamicum, Corynebacterium efficiens, Corynebacterium, and Corynebacterium. Is more preferable.
  • Examples of the gram-negative bacteria include Escherichia bacteria, Pantoea bacteria, Salmonella bacteria, Vibrio bacteria, Serratia bacteria, Enterobacter bacteria, and the like. Among them, Escherichia bacteria, Pantoea bacteria, Enterobacter bacteria are preferable. As the bacterium belonging to the genus Escherichia, Escherichia coli is preferable. Examples of the genus Pantoea include Pantoea ananatis, Pantoea stewartii, Pantoea agglomerans, Pantoea citrea, and Pantoea citrea Pantoea ananatis) and Pantoea citrea are preferred.
  • Pantoea bacterium strains exemplified in European Patent Application Publication No. 09522121 may be used.
  • strains of the genus Pantoea for example, Pantoea ananatis AJ13355 strain (FERM BP-6614), Pantoea ananatis AJ13356 strain (FERM BP-6615), and Pantoea Ananatis SC17 (0) strain.
  • SC17 (0) was published on 21st September 2005 in Russian National Collection of Industrial Microorganisms (VKPM), GNII Genetika (address:deteriorat, o17hd. 1) is deposited under the accession number VKPM B-9246.
  • Enterobacter bacteria examples include Enterobacter agglomerans, Enterobacter aerogenes, and the like, with Enterobacter aerogenes being preferred. Further, as the Enterobacter bacterium, a strain exemplified in European Patent Application Publication No. 09522121 may be used. Representative strains of Enterobacter bacteria include, for example, Enterobacter agglomerans ATCC 12287 strain, Enterobacter aerogenes ATCC 13048 strain, Enterobacter aerogenes NBRC 12010 strain (Biotechnol Bioeng. 2007 Mar 27; 98 (2): 340-348. ), Enterobacter aerogenes AJ11037 (FERM BP-10955) strain, and the like.
  • Enterobacter aerogenes AJ110737 strain was deposited on August 22, 2007 at the National Institute of Advanced Industrial Science and Technology, Patent Biological Depositary Center (1-6 Higashi 1-chome, 1-chome, Tsukuba, Ibaraki 305-8565, Japan) Deposited as FERM P-21348, transferred to an international deposit under the Budapest Treaty on March 13, 2008, and given the receipt number of FERM BP-10955.
  • fungi examples include the genus Saccharomyces, the genus Schizosaccharomyces, the genus Yarrowia, the genus Trichoderma, the genus Aspergillus, the genus Aspergillus, Preferred are microorganisms of the genus Saccharomyces, the genus Schizosaccharomyces, the genus Yarrowia, or the genus Trichoderma.
  • Saccharomyces The Saccharomyces (Saccharomyces) microorganisms of the genus, Saccharomyces carlsbergensis (Saccharomyces carlsbergensis), Saccharomyces cerevisiae (Saccharomyces cerevisiae), Saccharomyces Deer statics (Saccharomyces diastaticus), Saccharomyces Dougurashi (Saccharomyces douglasii), Saccharomyces Kuruibera (Saccharomyces reteyveri), Saccharomyces norbensis, Saccharomyces obiformis, and Saccharomyces s. -Saccharomyces cerevisiae is preferred.
  • Schizosaccharomyces As a microorganism belonging to the genus Schizosaccharomyces, Schizosaccharomyces pombe is preferable. As a microorganism belonging to the genus Yarrowia, Yarrowia lipolytica is preferable.
  • Trichoderma The Trichoderma (Trichoderma) microorganisms of the genus, Trichoderma Harujianumu (Ttichoderma harzianum), Trichoderma Koningi (Trichoderma koningii), Trichoderma Rongifurakiamu (Trichoderma longibrachiatum), Trichoderma reesei (Trichoderma reesei), Trichoderma viride (Trichoderma viride) are And Trichoderma reesei is preferred.
  • the pathway for synthesizing dimethylallyl diphosphate (DMAPP), which is a substrate for isoprene synthase may be further enhanced.
  • DMAPP dimethylallyl diphosphate
  • an isopentenyl diphosphate delta isomerase expression vector having the ability to convert isopentenyl diphosphate (IPP) to dimethylallyl diphosphate (DMAPP) is used as an isoprene synthase-expressing microorganism of the present invention. May be introduced.
  • an expression vector for one or more enzymes involved in the mevalonate pathway and / or methylerythritol phosphate pathway associated with the production of IPP and / or DMAPP may be introduced into the isoprene synthase-expressing microorganism of the present invention.
  • Such an enzyme expression vector may be an integrative vector or a non-integrative vector.
  • Such enzyme expression vectors further express together or individually a plurality of enzymes (eg, 1, 2, 3 or 4 or more) involved in the mevalonate pathway and / or the methylerythritol phosphate pathway.
  • it may be an expression vector for polycistronic mRNA.
  • the origin of one or more enzymes involved in the mevalonate pathway and / or the methylerythritol phosphate pathway may be homologous or heterologous to the host.
  • the origin of the enzyme involved in the mevalonate pathway and / or methylerythritol phosphate pathway is heterologous to the host, for example, the host is a bacterium as described above (eg, E. coli), and the mevalonate pathway
  • the enzyme involved may be derived from a fungus (eg, Saccharomyces cerevisiae).
  • the expression vector introduced into the host may express an enzyme involved in the mevalonate pathway.
  • isopentenyl diphosphate delta isomerase (EC: 5.3.3.2), for example, Idi1p (ACCESSION ID NP_015208), AT3G02780 (ACCESSION ID NP_186927), AT5G16440 (ACCESSION ID NP_197165N, ID_197165N, P_197165) ).
  • the gene encoding isopentenyl diphosphate delta isomerase may be placed under the control of a growth promoter reverse-dependent promoter described below.
  • Examples of enzymes involved in the mevalonate (MVA) pathway include, for example, mevalonate kinase (EC: 2.7.1.36; Example 1, Erg12p, ACCESSION ID NP — 013935; Example 2, AT5G27450, ACCESSION ID NP — 001190411), phosphomevalonic acid Kinase (EC: 2.7.4.2; Example 1, Erg8p, ACCESSION ID NP_013947; Example 2, AT1G31910, ACCESSION ID NP_001185124), diphosphomevalonate decarboxylase (EC: 4.1.1.33; Example 1, Mvd1p , ACCESSION ID NP_014441; Example 2, AT2G38700, ACCESSION ID NP_181404; Example 3, AT3G54250, A CESSION ID NP_566995), acetyl-CoA-C-acetyltransferase (EC: 2.3.1.9; Example 1, Erg10p,
  • one or more enzymes involved in the mevalonate (MVA) pathway eg, phosphomevalonate kinase, diphosphomevalonate decarboxylase, acetyl-CoA-C-acetyltransferase / hydroxymethylglutaryl-CoA reductase, hydroxymethylglutaryl
  • MVA mevalonate
  • the gene encoding -CoA synthase may be placed under the control of a growth promoter reverse-dependent promoter described below.
  • Examples of enzymes involved in the methylerythritol phosphate (MEP) pathway include 1-deoxy-D-xylulose-5-phosphate synthase (EC: 2.2.1.7, Example 1, Dxs, ACCESSION ID NP_414954; Example 2, AT3G21500, ACCESSION ID NP_566686; Example 3, AT4G15560, ACCESSION ID NP_193291; Example 4, AT5G11380, ACCESSION ID NP_001078570), 1-deoxy-D-xylulose-5-phosphate reductoisomerase (EC: 1.1.
  • Example 1 Dxr, ACCESSION ID NP_414715; Example 2, AT5G62790, ACCESSION ID NP_001190600), 4 Diphosphocytidyl-2-C-methyl-D-erythritol synthase (EC: 2.7.7.60; Example 1, IspD, ACCESSION ID NP_417227; Example 2, AT2G02500, ACCESSION ID NP_565286), 4-diphosphocytidyl-2-C- Methyl-D-erythritol kinase (EC: 2.7.1.148; Example 1, IspE, ACCESSION ID NP_415726; Example 2, AT2G26930, ACCESSION ID NP_180261), 2-C-methyl-D-erythritol-2,4- Cycloniphosphate synthase (EC: 4.6.1.12; Example 1, IspF, ACCESSION ID NP_417226;
  • Transformation of host cells with an expression vector into which a gene has been incorporated can be performed using a conventionally known method.
  • a competent cell method using microbial cells treated with calcium, an electroporation method, and the like can be mentioned.
  • a phage vector may be used to infect and introduce into a microbial cell.
  • a gene encoding a mevalonate pathway or methylerythritol phosphate pathway enzyme that synthesizes dimethylallyl diphosphate, which is a substrate of isoprene synthase may be introduced.
  • Such enzymes include 1-deoxy-D-xylose-5-phosphate synthase that converts pyruvate and D-glyceraldehyde-3-phosphate to 1-deoxy-D-xylose-5-phosphate; isopentenyl Examples include isopentyl diphosphate isomerase that converts diphosphate to dimethylallyl diphosphate.
  • a gene encoding an enzyme of the mevalonate pathway or the methylerythritol phosphate pathway that synthesizes dimethylallyl diphosphate is a constitutive promoter as described above, or an inducible promoter (e.g. It can be placed under the control of a dependent promoter).
  • DMAPP dimethylally phosphophosphate
  • isoprene is a precursor of peptidoglycan and electron acceptors (menaquinone, etc.) and is known to be essential for the growth of microorganisms (Fujisaki et al., J. Biochem. , 1986; 99: 1137-1146).
  • the isoprene synthase-expressing microorganism of the present invention is a step 1) corresponding to the growth phase of the microorganism (the isoprene-expressing microorganism is cultured in the presence of a sufficient concentration of a growth promoter,
  • the method of producing isoprene may be used, in which step 3) (culturing the isoprene-expressing microorganism to produce isoprene monomer) corresponding to the isoprene production phase is separated.
  • step 2) corresponding to the induction phase of production of isoprene (reducing the sufficient concentration of the growth promoter, isoprene-expressing microorganisms) Inducing the production of isoprene monomers by
  • the growth promoter is a factor essential for the growth of microorganisms or a factor having an action of promoting the growth of microorganisms, which can be consumed by microorganisms. It means that growth is lost or reduced. For example, if a certain amount of growth promoter is used, the microorganism will continue to grow until that amount of growth promoter is consumed, but once all of the growth promoter has been consumed, the microorganism cannot grow, or The growth rate can be reduced. Therefore, the degree of microbial growth can be controlled by the growth promoter.
  • Such a growth promoter examples include substances such as oxygen (gas); minerals such as ions of iron, magnesium, potassium, and calcium; phosphoric acid (eg, monophosphoric acid, diphosphoric acid, polyphosphoric acid) or salts thereof Phosphorus compounds; nitrogen compounds (gas) such as ammonia, nitric acid, nitrous acid, urea; sulfur compounds such as ammonium sulfate, thiosulfuric acid; vitamins (eg, vitamin A, vitamin D, vitamin E, vitamin K, vitamin B1, vitamin B2) , Vitamin B6, vitamin B12, niacin, pantothenic acid, biotin, ascorbic acid) and amino acids (eg, alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, leucine, isoleucine, lysine, methionine, Phenylalanine, proline Serine, threonine, tryptophan
  • the isoprene-expressing microorganism of the present invention may have the ability to grow depending on the growth promoting agent and the ability to produce isoprene depending on the growth promoting agent-independent promoter. .
  • the isoprene-producing microorganism can grow in the presence of a growth promoter at a concentration sufficient for the growth of the isoprene-producing microorganism.
  • “sufficient concentration” may mean that the growth promoter is used at a concentration effective for the growth of isoprene-producing microorganisms.
  • the expression “ability to produce isoprene depending on the growth promoter-independent promoter” means that in the presence of a relatively high concentration of growth promoter, isoprene cannot be produced or isoprene production efficiency is low. In the presence of a relatively low concentration of a growth promoter or in the absence of a growth promoter, it can mean that isoprene can be produced or that the production efficiency of isoprene is high. Therefore, the isoprene-producing microorganism used in the present invention can grow well in the presence of a sufficient concentration of the growth promoter, but cannot produce isoprene or has a low isoprene production efficiency. Isoprene-producing microorganisms can also not grow well in the presence of insufficient concentrations of growth promoters or in the absence of growth promoters, but can produce isoprene or have a high isoprene production efficiency.
  • the gene encoding the above-described enzyme can be under the control of a growth promoter reverse-dependent promoter.
  • the expression “growth promoter reverse-dependent promoter” means that in the presence of a relatively high concentration of growth promoter, it has no or low transcriptional activity, but a relatively low concentration of growth promoter. In the presence of or in the absence of a growth promoter, it may mean a promoter having transcription activity or having high transcription activity. Therefore, the growth promoter reverse-dependent promoter can suppress the expression of the gene encoding the enzyme described above in the presence of a growth promoter at a concentration sufficient for the growth of the isoprene-producing microorganism.
  • the expression of the gene encoding the above-described enzyme can be promoted.
  • the isoprene-producing microorganism is a microorganism transformed with an expression vector comprising a gene encoding the above-described enzyme under the control of a growth promoter reverse-dependent promoter.
  • a microaerobic inducible promoter when the growth promoter is oxygen, a microaerobic inducible promoter can be used.
  • the microaerobic inducible promoter may refer to a promoter that can promote the expression of a downstream gene under microaerobic conditions.
  • the saturated dissolved oxygen concentration is 7.22 ppm (atmospheric pressure of 760 mmHg, temperature 33 ° C., water vapor saturated with 20.9% oxygen).
  • the microaerobic condition may refer to a condition of (dissolved) oxygen concentration of 0.35 ppm or less.
  • the (dissolved) oxygen concentration under microaerobic conditions may be 0.30 ppm or less, 0.25 ppm or less, 0.20 ppm or less, 0.15 ppm or less, 0.10 ppm or less, or 0.05 ppm or less.
  • microaerobic inducible promoters include promoters for genes encoding D- or L-lactate dehydrogenase (eg, lld, ldhA), promoters for genes encoding alcohol dehydrogenase (eg, adhE), pyruvate formate lyase And the promoter of a gene (eg, budA) encoding ⁇ -acetolactoate decarboxylase.
  • a phosphorus deficiency inducible promoter when the growth promoter is a phosphorus compound, a phosphorus deficiency inducible promoter can be used.
  • the expression “phosphorus deficiency inducible promoter” may refer to a promoter that can promote the expression of downstream genes with low concentrations of phosphorus compounds.
  • a low concentration phosphorus compound may refer to conditions under a (free) phosphorus concentration of 100 mg / L.
  • the term “phosphorus” is synonymous with the term “phosphorus compound” and may be used interchangeably.
  • (Free) phosphorus concentration under phosphorus deficiency conditions may be 50 mg / L or less, 10 mg / L or less, 5 mg / L or less, 1 mg / L or less, 0.1 mg / L or less, or 0.01 mg / L or less Good.
  • Examples of the phosphorus deficiency inducible promoter include a promoter of a gene encoding alkaline phosphatase (eg, phoA), a promoter of a gene encoding acid phosphatase (eg, phoC), and a gene encoding sensor histidine kinase (eg, phoR) Promoter, a gene encoding a response regulator (eg, phoB), and a gene encoding a phosphorus uptake carrier (eg, pstS).
  • alkaline phosphatase eg, phoA
  • phoC promoter of a gene encoding acid phosphatase
  • sensor histidine kinase eg, phoR
  • a gene encoding a response regulator eg, phoB
  • a gene encoding a phosphorus uptake carrier eg, pstS
  • an amino acid deficiency inducible promoter can be used.
  • An amino acid deficiency-inducible promoter can refer to a promoter that can promote the expression of a downstream gene at a low amino acid concentration.
  • the low amino acid concentration may refer to a condition where the concentration of (free) amino acid or a salt thereof is 100 mg / L or less.
  • the concentration of (free) amino acid or its salt under amino acid deficiency conditions is 50 mg / L or less, 10 mg / L or less, 5 mg / L or less, 1 mg / L or less, 0.1 mg / L or less, or 0.01 mg / L or less It may be.
  • amino acid deficient promoter examples include a promoter of a gene encoding a tryptophan leader peptide (eg, trpL) and a promoter encoding a N-acetylglutamate synthase (eg, ArgA).
  • a promoter of a gene encoding a tryptophan leader peptide eg, trpL
  • a promoter encoding a N-acetylglutamate synthase eg, ArgA
  • the present invention provides a process for producing isoprene monomers.
  • the method for producing isoprene monomer of the present invention includes culturing the isoprene synthase-expressing microorganism of the present invention in a culture medium to produce isoprene monomer.
  • the production method of the isoprene monomer of the present invention can be performed by culturing the isoprene synthase-expressing microorganism of the present invention.
  • Dimethylallyl diphosphate as a raw material for the isoprene monomer is efficiently supplied from the carbon source in the medium by the isoprene synthase-expressing microorganism of the present invention. Since the isoprene synthase-expressing microorganism of the present invention produces isoprene monomer mainly as outgas from a carbon source in the medium, the isoprene monomer is recovered by collecting the gas generated from the transformant.
  • Dimethylallyl diphosphate which is a substrate for isoprene synthase, is synthesized by the mevalonate pathway or the methyl erythritol phosphate pathway in the host cell, with the carbon source in the medium as the basis.
  • the medium for culturing the isoprene synthase-expressing microorganism of the present invention preferably contains a carbon source for conversion to isoprene.
  • Examples of the carbon source include carbohydrates such as monosaccharides, disaccharides, oligosaccharides and polysaccharides; invert sugar obtained by hydrolyzing sucrose; glycerol; 1 carbon number such as methanol, formaldehyde, formate, carbon monoxide and carbon dioxide Compounds (hereinafter referred to as C1 compounds); oils such as corn oil, palm oil and soybean oil; acetates; animal fats; animal oils; fatty acids such as saturated fatty acids and unsaturated fatty acids; lipids; phospholipids; glycerolipids; Glycerin fatty acid esters such as glyceride, diglyceride, and the like; polypeptides such as microbial proteins and plant proteins; renewable carbon sources such as hydrolyzed biomass carbon sources; yeast extracts; or combinations thereof.
  • carbohydrates such as monosaccharides, disaccharides, oligosaccharides and polysaccharides
  • invert sugar obtained by hydrolyzing sucrose gly
  • inorganic ammonium salts such as ammonium sulfate, ammonium chloride and ammonium phosphate
  • organic nitrogen such as soybean hydrolysate, ammonia gas, aqueous ammonia and the like
  • it is desirable to contain an appropriate amount of a required substance such as vitamin B1, L-homoserine or a yeast extract.
  • a small amount of potassium phosphate, magnesium sulfate, iron ion, manganese ion or the like is added as necessary.
  • the medium used in the present invention may be a natural medium or a synthetic medium as long as it contains a carbon source, a nitrogen source, inorganic ions, and other organic trace components as required.
  • monosaccharides include trioses such as ketotriose (dihydroxyacetone) and aldtriose (glyceraldehyde); tetroses such as ketotetrose (erythrulose) and aldetetrose (erythrose and threose); ketopentose (ribulose and xylulose) Pentose such as ribose, arabinose, xylose, lyxose), deoxy sugar (deoxyribose); ketohexose (psicose, fructose, sorbose, tagatose), aldohexose (allose, altrose, glucose, mannose, gulose, idose, galactose, talose ), Deoxy sugars (fucose, fucrose, rhamnose) and other hexoses; heptose such as sedoheptulose; fructose, manno S
  • Examples of the disaccharide include sucrose, lactose, maltose, trehalose, tunulose, and cellobiose, and sucrose and lactose are preferable.
  • Examples of oligosaccharides include trisaccharides such as raffinose, melezitose, and maltotriose; tetrasaccharides such as acarbose and stachyose; and other oligosaccharides such as fructooligosaccharide (FOS), galactooligosaccharide (GOS), and mannan oligosaccharide (MOS).
  • Examples of the polysaccharide include glycogen, starch (amylose, amylopectin), cellulose, dextrin, and glucan ( ⁇ 1,3-glucan), and starch and cellulose are preferable.
  • Microbial proteins include polypeptides derived from yeast or bacteria.
  • plant proteins include polypeptides derived from soybean, corn, canola, jatropha, palm, peanut, sunflower, coconut, mustard, cottonseed, palm kernel oil, olive, safflower, sesame and flaxseed.
  • lipids include substances containing one or more saturated or unsaturated fatty acids of C4 or higher.
  • the oil contains one or more saturated or unsaturated fatty acids of C4 or higher, and is preferably a lipid that is liquid at room temperature.
  • Examples of the fatty acid include compounds represented by the formula RCOOH (“R” represents a hydrocarbon group).
  • the unsaturated fatty acid is a compound having at least one carbon-carbon double bond in “R”, and examples thereof include oleic acid, vaccenic acid, linoleic acid, palmitate acid, and arachidonic acid.
  • the saturated fatty acid is a compound in which “R” is a saturated aliphatic group, and examples thereof include docosanoic acid, icosanoic acid, octadecanoic acid, hexadecanoic acid, tetradecanoic acid, and dodecanoic acid.
  • fatty acids containing one or more C2 to C22 fatty acids are preferred, and those containing C12 fatty acids, C14 fatty acids, C16 fatty acids, C18 fatty acids, C20 fatty acids and C22 fatty acids are more preferred.
  • the carbon source include salts of these fatty acids, derivatives, and salts of derivatives.
  • the salt include lithium salt, potassium salt, sodium salt and the like.
  • examples of the carbon source include lipids, oils, fats and oils, fatty acids, combinations of glycerin fatty acid esters and carbohydrates such as glucose.
  • Biomass carbon sources include cellulosic substrates such as wood, paper, and pulp waste, foliate plants, and pulp; parts of plants such as stalks, grains, roots, and tubers.
  • Examples of plants used as biomass carbon sources include corn, wheat, rye, sorghum, triticate, rice, millet, barley, cassava, pea and other legumes, potato, sweet potato, banana, sugar cane, tapioca and the like.
  • pretreatment is preferably performed.
  • the pretreatment include enzymatic pretreatment, chemical pretreatment, and a combination of enzymatic pretreatment and chemical pretreatment. It is preferred to hydrolyze all or part of the renewable carbon source before adding it to the cell culture medium.
  • examples of the carbon source include yeast extract or a combination of yeast extract and another carbon source such as glucose, and a combination of yeast extract and C1 compound such as carbon dioxide or methanol is preferable.
  • cells are preferably cultured in a standard medium containing physiological saline and a nutrient source.
  • the culture medium is not particularly limited, and examples thereof include commercially available conventional culture media such as Luria Bertani (LB) broth, Sabouraud Dextrose (SD) broth, and Yeast medium (YM) broth.
  • LB Luria Bertani
  • SD Sabouraud Dextrose
  • YM Yeast medium
  • a medium suitable for culturing a specific host cell can be appropriately selected and used.
  • the cell culture medium includes suitable minerals, salts, cofactors, buffers, and ingredients known to those skilled in the art to be suitable for culture or to promote isoprene production. It is desirable.
  • the culture conditions of the isoprene synthase-expressing microorganism of the present invention are not particularly limited as long as the isoprene synthase-expressing microorganism can improve the isoprene-producing ability by improving the expression of pyrophosphate phosphatase, and standard cell culture conditions are used. be able to.
  • the culture temperature is preferably 20 ° C. to 37 ° C.
  • the gas composition is preferably a CO 2 concentration of about 6% to about 84%, and a pH of about 5 to about 9. Further, it is preferable to perform the culture under aerobic, anoxic, or anaerobic conditions depending on the properties of the host cell.
  • Examples of the culture method include a method of culturing the transformant using a known fermentation method such as a batch culture method, a fed-batch culture method, or a continuous culture method.
  • the batch culture method is a method in which a medium composition is prepared at the start of fermentation, host cells are inoculated into the medium, and transformants are cultured while controlling pH, oxygen concentration, and the like.
  • the transformant goes from a gentle induction phase to a logarithmic growth phase and finally to a stationary phase where the growth rate decreases or stops. Isoprene is produced by transformants in the logarithmic growth phase or stationary phase.
  • the fed-batch culture method is a method in which a carbon source is gradually added as the fermentation process proceeds in addition to the batch method described above.
  • the fed-batch culture method is effective when the metabolism of the transformant tends to be suppressed by catabolite suppression and it is preferable to limit the amount of the carbon source in the medium.
  • the fed-batch culture method can be performed using a limited or excessive amount of a carbon source such as glucose.
  • the continuous culture method is a culture method in which a predetermined amount of culture medium is continuously supplied to a bioreactor at a constant rate, and at the same time, the same amount of culture medium is withdrawn.
  • the culture can be kept at a constant high density, and the transformant in the culture solution is mainly in the logarithmic growth phase.
  • Examples of the promoter possessed by the expression vector introduced into the isoprene synthase-expressing microorganism of the present invention include the promoters described above.
  • an inducible promoter such as the lac promoter, IPTG (isopropyl- ⁇ -thiogalactopyranoside), for example, is added to the culture solution.
  • IPTG isopropyl- ⁇ -thiogalactopyranoside
  • Examples of the method for evaluating the production amount of isoprene monomer obtained by culturing the isoprene synthase-expressing microorganism of the present invention include a method in which a gas phase is collected by a headspace method and the gas phase is analyzed by a gas chromatography method. . Specifically, the isoprene monomer in the headspace when the culture medium containing the transformant is cultured while shaking in a sealed vial is analyzed using standard gas chromatography. Next, using the calibration curve, the area obtained from the gas chromatography measurement curve is converted into the isoprene monomer production amount of the transformant.
  • isoprene gas is continuously removed from the outgas.
  • isoprene gas can be removed by various methods, such as adsorption to a solid phase, separation into a liquid phase, or a method of directly condensing isoprene gas.
  • the recovery of isoprene monomer can be performed in one stage or in multiple stages.
  • the separation of the isoprene monomer from the outgas and the conversion of the isoprene monomer into a liquid phase are simultaneously performed.
  • Isoprene monomer can also be condensed directly from the outgas into a liquid phase.
  • the separation of the isoprene monomer from the off-gas and the conversion of the isoprene monomer into a liquid phase are sequentially performed.
  • a method in which isoprene monomer is adsorbed on a solid phase and extracted from the solid phase with a solvent can be mentioned.
  • the method for recovering the isoprene monomer may include a step of purifying the isoprene monomer.
  • the purification step include separation from a liquid phase extract by distillation and various chromatographies.
  • the present invention also provides a method for producing an isoprene polymer.
  • the method for producing the isoprene polymer of the present invention includes the following (I) and (II): (I) producing an isoprene monomer by the method of the present invention; (II) polymerizing isoprene monomers to produce isoprene polymers.
  • Step (I) can be performed in the same manner as the above-described method for producing the isoprene monomer of the present invention.
  • the polymerization of the isoprene monomer in the step (II) can be performed by any method known in the art (eg, organic chemical synthesis method), for example, addition polymerization.
  • the rubber composition of the present invention contains a polymer derived from isoprene produced by the method for producing isoprene of the present invention.
  • the polymer derived from isoprene can be a homogenous polymer (ie, isoprene polymer) or a heterogeneous polymer (eg, a copolymer such as a block copolymer) comprising one or more monomer units other than isoprene and isoprene.
  • the polymer derived from isoprene is the same kind of polymer (that is, isoprene polymer) produced by the production method of isoprene polymer of the present invention.
  • the rubber composition of the present invention may further contain one or more polymers other than the above polymer, one or more rubber components, and / or other components.
  • the rubber composition of the present invention can be produced using a polymer derived from isoprene.
  • the rubber composition of the present invention comprises a polymer derived from isoprene, one or more polymers other than the polymer, one or more rubber components, and / or other components (eg, reinforcing materials, cross-linking agents, vulcanization accelerators). And an antioxidant).
  • the tire of the present invention is manufactured by using the rubber composition of the present invention.
  • the rubber composition of the present invention is not limited and can be used in any part of a tire, and can be appropriately selected depending on the purpose.
  • the rubber composition of the present invention may be used in tire treads, base treads, sidewalls, side reinforcing rubbers, and bead fillers.
  • a method for producing a tire a conventional method can be used. For example, a carcass layer, a belt layer, a tread layer made of tire unvulcanized rubber, and other members used in normal tire manufacturing are sequentially laminated on a tire molding drum, and the drum is removed to obtain a green tire. To do. Then, a desired tire (eg, pneumatic tire) can be manufactured by heat vulcanizing the green tire according to a conventional method.
  • a desired tire eg, pneumatic tire
  • Example 1 Enhanced expression of ppa gene in MG1655 Ptac-KKDyI strain
  • E. coli strain a strain in which the intrinsic ppa gene (pyrophosphate phosphatase gene) was replaced with another strong promoter to enhance the expression of the endogenous ppa gene was prepared by the following procedure. First, see MG1655 Ptac-KKDyI strain (Reference Example 7-4). In addition, this stock is E. coli transformants. The competent cell for electroporation was prepared as follows. The MG1655 Ptac-KKDyI strain was subjected to shaking culture at 37 ° C. overnight in 5 mL of LB medium.
  • pKD46 was introduced into a competent cell of MG1655 Ptac-KKDyI strain by electroporation.
  • the electroporation method was introduced using GENE PULSER II (BioRad) under the conditions of an electric field strength of 18 kV / cm, a capacitor capacity of 25 ⁇ F, and a resistance value of 200 ⁇ .
  • 1 mL of SOC medium (bactotryptone 20 g / L, yeast extract 5 g / L, NaCl 0.5 g / L, glucose 10 g / L) is added to the cells into which pKD46 has been introduced by electroporation, at 30 ° C.
  • MG1655 Ptac-KKDyI / pKD46 strain competent cells for electroporation were prepared as follows. MG1655 Ptac-KKDyI / pKD46 strain was subjected to shaking culture at 30 ° C. overnight in 5 mL of LB medium containing 100 (mg / L) ampicillin. Thereafter, 50 ⁇ L of the culture solution was inoculated into 5 mL of LB medium containing 100 (mg / L) ampicillin, and shaking culture was performed at 30 ° C. until OD600 was around 0.6. Thereafter, the cells were collected, washed three times with ice-cooled 10% glycerol, and finally suspended in 0.3 mL of 10% glycerol to obtain competent cells.
  • a gene fragment for replacing the promoter region of the ppa gene on the chromosome was prepared.
  • the base sequence of the ppa gene and its promoter region can be obtained from an existing database (NCBI Reference Sequences NC_000913.2, ppa gene locus tag: b4225, Range: 4447145.4447475, complement).
  • Replacement of the promoter region of the ppa gene was performed by the ⁇ -red method.
  • a genomic fragment having ⁇ attL-Tet- ⁇ attR-Ptac was used as a PCR template. This includes the tac promoter (Ptac), tetracycline resistance drug marker (Tet), and ⁇ attL and ⁇ attR, which are attachment sites for ⁇ phage.
  • SEQ ID NO: 1 PCR reaction was performed using primers consisting of the nucleotide sequences shown in SEQ ID NO: 2 and SEQ ID NO: 3.
  • DNA polymerase LA-Taq polymerase sold by Takara Bio Inc. is used, and 92 ° C., 1 minute, (92 ° C., 10 seconds, 54 ° C., 20 seconds, 72 ° C., 2 minutes) ⁇ 40 cycles, 72 The reaction was carried out at 5 ° C. for 5 minutes.
  • ⁇ attL-Tet- ⁇ attR-Ptac and a gene fragment to which 60 bp upstream and 60 bp downstream of the promoter region of the ppa gene were respectively added were amplified.
  • This gene fragment was purified using Wizard PCR Prep DNA Purification System (Promega).
  • the obtained gene fragment is named Tet-Ptac-ppa.
  • Tet-Ptac-ppa was introduced into a competent cell of MG1655 Ptac-KKDyI / pKD46 strain by electroporation.
  • the electroporation method was introduced using GENE PULSER II (BioRad) under the conditions of an electric field strength of 18 kV / cm, a capacitor capacity of 25 ⁇ F, and a resistance value of 200 ⁇ .
  • 1 mL of SOC medium was added to the competence cell, and after shaking culture at 30 ° C. for 2 hours, the resultant was applied to an LB agar medium containing 25 (mg / L) tetracycline. After overnight culture at 37 ° C., the emerged colonies were purified using the same agar medium.
  • colony PCR was performed using primers consisting of the nucleotide sequences shown in SEQ ID NO: 4 and SEQ ID NO: 5, and it was confirmed that the promoter region of the ppa gene was replaced with the tac promoter.
  • the strain in which the promoter region of the ppa gene was replaced with the tac promoter was named MG1655 Ptac-KKDyI Ptac-ppa strain.
  • Example 2 Analysis of PPA expression in MG1655 Ptac-KKDyI Ptac-ppa strain
  • the protein expression level of pyrophosphate phosphatase (PPA) in the MG1655 Ptac-KKDyI Ptac-ppa strain was confirmed by SDS-PAGE.
  • the MG1655 Ptac-KKDyI strain and the MG1655 Ptac-KKDyI Ptac-ppa strain were subjected to shaking culture at 37 ° C. overnight in 5 mL of LB medium.
  • the collected cells are washed three times with ice-cooled 50 mM Tris buffer (Tris-HCl pH 8.0), and the bacteria are collected using an ultrasonic crusher (Bio-ruptor: 30 seconds ON, 30 seconds OFF 20 minutes). The body was crushed. The disrupted bacterial cell solution was centrifuged at 15000 rpm for 10 minutes to remove unbroken cells. The obtained supernatant fraction was handled as a soluble protein fraction. After quantifying the soluble protein fraction by the Bradford method, 5 ⁇ g of the soluble protein was subjected to electrophoresis using SDS-PAGE (NuPAGE: SDS-PAGE Gel System manufactured by Invitrogen). Thereafter, CBB staining and decolorization were performed according to a conventional method.
  • FIG. 1 shows a photograph of the gel near the amount of PPA protein.
  • Example 3 Construction of MG1655 Ptac-KKDyI Ptac-ppa / pSTV28-Ptac-ispSK / pMW-Para-mvaES strain
  • a competent cell for electroporation of the MG1655 Ptac-KKDyI Ptac-ppa strain was prepared as follows. did. The MG1655 Ptac-KKDyI Ptac-ppa strain was subjected to shaking culture overnight at 37 ° C. in 5 mL of LB medium. Thereafter, 50 ⁇ L of the culture solution was inoculated into a new 5 mL LB medium, and shaking culture was performed at 37 ° C. until the OD600 was around 0.6. Thereafter, the cells were collected, washed 3 times with ice-cooled 10% glycerol, and finally suspended in 0.5 mL of 10% glycerol to obtain competent cells.
  • the MG1655 Ptac-KKDyI Ptac-ppa strain competent cells were introduced with the kuzu-derived isoprene synthase expression plasmid, pSTV28-Ptac-ispSK (see Reference Example 3-5) by the electroporation method under the conditions described above. Thereafter, 1 mL of SOC medium was added to the competence cell, and after shaking culture at 30 ° C. for 2 hours, the resultant was applied to an LB agar medium containing 60 (mg / L) chloramphenicol.
  • MG1655 Ptac-KKDyI Ptac-ppa / pSTV28-Ptac-ispSK strain was introduced with pMW-Para-mvaES-TTrp (see Reference Example 7-3).
  • pMW-Para-mvaES-Ttrp was introduced by the electroporation method under the above conditions. Thereafter, 1 mL of SOC medium was added to the competence cell, and after shaking culture at 30 ° C.
  • a ppa expression enhanced strain the MG1655 Ptac-KKDyI Ptac-ppa / pSTV28-Ptac-ispSK / pMW-Para-mvaES-Ttrp strain in which the expression of the ppa gene is enhanced is referred to as a ppa expression enhanced strain.
  • Example 4 Evaluation of jar culture of ppa expression-enhanced strain Jar culture evaluation of the ppa expression-enhanced strain and the control strain (MG1655 Ptac-KKDyI / pSTV28-Ptac-ispSK / pMW-Para-mvaES-Ttrp strain) was performed. It was applied to an LB agar medium containing 60 (mg / L) chloramphenicol and 100 (mg / L) kanamycin, and cultured at 34 ° C. for 16 hours. Next, 0.3 L of glycol medium described in Table 1 was put into a fermentor having a volume of 1 L, and the cells of one well-grown plate were inoculated and cultured.
  • the culture conditions were pH 7.0 (controlled with ammonia gas), aeration at 30 ° C. and 150 mL / min, and stirring control was performed so that the oxygen concentration in the medium was 5% or more. After OD600 reached around 20, L-arabinose was added to the medium to a final concentration of 20 mM, and culturing was performed for 45 hours. During the culture, glucose prepared to 500 (g / L) was appropriately added so that the glucose concentration in the medium was 10 (g / L) or more. The exhaust gas was collected in a 1 L gas bag over time, and the concentration of isoprene gas contained in the exhaust gas was measured. The analysis conditions of isoprene gas are described below. The analysis conditions for gas chromatography are the same as those described in Reference Example 4-3).
  • Table 2 shows the amount of isoprene produced (mg / B) per jar after 45 hours of culturing in the control strain and the ppa expression-enhanced strain and the yield% of glucose consumption. It was confirmed that the ppa expression-enhanced strain had higher isoprene production (mg / B) per jar and higher glucose consumption yield (%) than the control strain.
  • Reference Example 1 Examination of Isoprene Production Ability in Plants 1-1) Measurement of Isoprene Production Amount per Unit Weight of Dry Leaf Product
  • isoprene production per gram of dry leaf weight in plants The amount was measured.
  • Mucuna, willow (weeping willow), Momijibahu, Ginkgo biloba, and kuzu were used.
  • a gas exchange desiccator (trade name: vacuum desiccator, manufactured by ASONE) was accommodated in an incubator (product name: growth chamber MLR-351 HSANYO) and installed in the gas exchange desiccator.
  • the incubator was set to high temperature induction conditions (40 ° C. at an illuminance of 100 ⁇ mol E / m 2 / s) while operating the gas stirring fan to stir the atmosphere in the space of the gas exchange desiccator.
  • the temperature of the atmosphere in the gas exchange desiccator reached 40 ° C.
  • the Mucuna plant planted in the planter was accommodated, and the gas exchange desiccator was kept in a sealed state for 3 hours.
  • the gas component released by Mucuna was sucked from the space in the gas exchange desiccator through a silicon tube, an adsorption tube, and a gas sampling tube by a suction pump.
  • the amount of isoprene generated per gram of dry leaf weight in the plant was determined by dividing the amount of isoprene generated from the whole Mucuna plant by the estimated dry weight of the leaves of the whole plant. As a result, it became clear that Mucuna was excellent in the amount of isoprene generated per unit weight of the dried leaf (FIG. 2).
  • a buffer solution 50 mM Tris-HCl, 20 mM MgCl, 5% Glycerol, 0.02% Triton-X100, pH 8.0
  • Benzamidine-HCl was added to 1 mM (each final concentration) and used as a protein extraction buffer.
  • the total (ammonium sulfate fraction) protein amount was determined by measuring the ammonium sulfate fraction by the Bradford method.
  • a calibration curve was prepared for the protein amount with respect to the absorbance at a wavelength of 595 nm measured with a spectrophotometer by reacting with Bradford reagent.
  • the absorbance at a wavelength of 595 nm was measured in the same manner for a 50-fold diluted ammonium sulfate fraction, and the total (ammonium sulfate fraction) protein amount was estimated from a standard protein calibration curve.
  • the amount of isoprene produced is 100 ⁇ l of crude extract or crude enzyme solution boiled at 100 ° C.
  • the amount generated after 0.5 hour, 1 hour and 2 hours with the crude enzyme was determined by subtracting the measured value of the crude enzyme solution boiled at 100 ° C. from the measured value. Enzyme activity (specific activity) per 1 mg of total protein was determined from the amount of isoprene generated per hour. The amount of isoprene generated was measured with a constant amount of DMAPP, which is a substrate for isoprene synthase. As a result, it was revealed that Mucuna was excellent in the amount of isoprene generated per total protein amount (FIG. 3, Table 3). From the above, it was shown that Mucuna is excellent in isoprene-producing ability.
  • Reference Example 2 Mucuna-derived isoprene synthase gene cloning 2-1) Examination of sampling time Sampled isoprene gas released from Mucuna leaves irradiated for 1, 2, 3, and 5 hours at a temperature of 40 ° C. When the amount of isoprene produced was quantified by gas chromatography, production of 4,8,12,10 ⁇ g isoprene / g DW leaf isoprene was confirmed, and the optimum light irradiation time was confirmed to be 3 hours. .
  • RNA lysate was extracted from Mucuna leaves by the following procedure. (1) Mucuna leaves irradiated for 3 hours at a temperature of 40 ° C. were sampled. (2) After 100 mg of leaf tissue was crushed in a mortar while quickly frozen with liquid nitrogen, the liquid nitrogen was dispensed into an RNase-free 2 ml Eppendorf tube to vaporize liquid nitrogen. (3) 450 ⁇ l of lysis buffer RLT (containing 2-mercaptoethanol) attached to RNeasy Plant Kit (manufactured by Qiagen) was added to this Eppendorf tube and vigorously mixed by vortex to obtain a leaf tissue lysate.
  • lysis buffer RLT containing 2-mercaptoethanol
  • RNeasy Plant Kit manufactured by Qiagen
  • This RNeasy spin column was set in a 2 ml collection tube attached to the RNeasy Plant Kit, centrifuged at 15000 rpm for 1 minute, and the filtrate was discarded.
  • This RNeasy spin column was set in a 1.5 ml collection tube attached to the RNeasy Plant Kit.
  • RNA lysis solution was checked for RNA quality using a bioanalyzer (Agilent Technologies) RNA nanochip, It was confirmed that there was no contamination with genomic DNA and RNA in the lysate was not degraded.
  • the total RNA was double-stranded using reverse transcriptase and then fragmented using a nebulizer.
  • the base sequence of 198179 fragments having a polyA sequence at the 3 ′ end was analyzed using a 454 Titanium FLX high-speed sequencer (Roche Applied Science). In the obtained fragment sequence, overlapping sequences were linked to obtain 13485 contig sequences.
  • Reference Example 3 Preparation of isoprene synthase expression plasmid derived from each plant species 3-1) Pueraria montana var. Chemical synthesis of isobarene synthase from Lovata montana var. The base sequence and amino acid sequence of isobarene synthase cDNA derived from lobata are already known (ACCESSION: AAQ84170: P. montana var. lobata (kudzu) isoprene synthase (IspS)). P. The amino acid sequence of montana-derived IspS protein and the base sequence of cDNA are shown in SEQ ID NO: 8 and SEQ ID NO: 9, respectively. The IspS gene was transformed into E. coli.
  • IspSK IspSK gene that was optimized for E. coli codon usage and further cleaved from the chloroplast translocation signal was designed and named IspSK.
  • the base sequence of IspSK is shown in SEQ ID NO: 10.
  • the IspSK gene was chemically synthesized and then cloned into pUC57 (GenScript), and the resulting plasmid was named pUC57-IspSK.
  • IspSP An IspS gene that was optimized for E. coli codon usage and further cleaved from the chloroplast translocation signal was designed and named IspSP.
  • the base sequence of IspSP is shown in SEQ ID NO: 13.
  • the IspSP gene was chemically synthesized and then cloned into pUC57 (GenScript), and the resulting plasmid was named pUC57-IspSP.
  • a DNA fragment having a BamHI site at the 3 ′ end (Ptac-Ttrp) was chemically synthesized (the base sequence of Ptac-Ttrp is shown in SEQ ID NO: 16).
  • the obtained Ptac-Ttrp DNA fragment was digested with KpnI and BamHI, and similarly ligated with pSTV28 (manufactured by Takara Bio Inc.) digested with KpnI and BamHI by a ligation reaction using DNA Ligase.
  • the obtained plasmid was named pSTV28-Ptac-Ttrp (the base sequence is shown in SEQ ID NO: 17).
  • the expression of the IspS gene can be amplified by cloning the IspS gene downstream of Ptac.
  • IspS gene expression plasmid derived from each plant species Plasmids for expressing the IspSK gene, IspSP gene, IspSM gene, and IspSM (L) gene in E. coli were constructed by the following procedure.
  • PCR was performed using Prime Star polymerase (manufactured by Takara Bio Inc.).
  • the reaction solution was prepared according to the composition attached to the kit, and 40 cycles of reaction at 98 ° C. for 10 seconds, 54 ° C. for 20 seconds, and 68 ° C. for 120 seconds were performed.
  • a PCR product containing an IspSK gene, an IspSP gene, an IspSM gene, and an IspSM (L) gene was obtained.
  • pSTV28-Ptac-Ttrp was subjected to PCR using Prime Star polymerase (manufactured by Takara Bio Inc.) using a synthetic oligonucleotide consisting of the nucleotide sequences of SEQ ID NO: 26 and SEQ ID NO: 27 as primers.
  • the reaction solution was prepared according to the composition attached to the kit, and 40 cycles of reaction at 98 ° C. for 10 seconds, 54 ° C. for 20 seconds, and 68 ° C. for 210 seconds were performed. As a result, a PCR product containing pSTV28-Ptac-Ttrp was obtained. Thereafter, the purified IspSK gene, IspSP gene, IspSM gene, and IspSM (L) gene fragment and the PCR product of pSTV28-Ptac-Ttrp were ligated using In-Fusion HD Cloning Kit (Clontech). .
  • the resulting IspSK gene expression plasmid was pSTV28-Ptac-IspSK
  • the IspSP gene expression plasmid was pSTV28-Ptac-IspSP
  • the IspSM gene expression plasmid was pSTV28-Ptac-IspSM
  • the IspSM (L) gene expression plasmid was pSTV28- It was named Ptac-IspSM (L).
  • coli MG1655 strain is a MG1655 / pSTV28-Ptac-Ttp strain
  • a strain in which pSTV28-Ptac-IspSK is introduced is a strain MG1655 / pSTV28-Ptac-IspSK, pSTVsp-SPac-SPac-SPt
  • the introduced strain was MG1655 / pSTV28-Ptac-IspSP strain
  • the strain into which pSTV28-Ptac-IspSM was introduced was the MG1655 / pSTV28-Ptac-IspSM strain
  • the strain into which pSTV28-Ptac-IspSM (L) was introduced was MG1655.
  • PSTV28-Ptac-IspSM (L) strain was introduced.
  • the cells of 1/6 plate were inoculated into a Sakaguchi flask filled with 20 ml of LB containing 60 (mg / L) chloramphenicol and cultured at 37 ° C. for 6 hours.
  • the cells are centrifuged from the culture solution at 5000 rpm, 4 ° C. for 5 minutes, and washed twice with ice-cooled isoprene synthase buffer (50 mM Tris-HCl (pH 8.0), 20 mM MgCl 2.5 % glycerol). did.
  • the washed cells were suspended in 1.8 ml of the same buffer.
  • Headspace Sampler (Turbo Matrix 40 manufactured by Perkin Elmer) Vial insulation temperature 40 ° C Vial incubation time 30 min Pressurization time 3.0min Injection time 0.02min Needle temperature 70 °C Transfer temperature 80 °C Carrier gas pressure (high purity helium) 124kPa
  • Reagent isoprene (specific gravity 0.681) was diluted 10, 100, 1000, 10000, and 100,000 times with cooled methanol to prepare a standard solution for addition. Thereafter, 1 ⁇ L of each standard solution for addition was added to a headspace vial containing 1 mL of water to prepare a standard sample.
  • Table 5 shows the amount of isoprene produced after 2 hours of reaction of each strain.
  • the isoprene production amounts are MG1655 / pSTV28-Ptac-IspSM strain MG1655 / pSTV28-Ptac-IspSM (L) strain, MG1655 / pSTV28-Ptac-IspSK strain in descending order, and MG1655 / pSTV28-Ptac-IspSP.
  • the MG1655 strain and the MG1655 / pSTV28-Ptac-TTrp strain had almost the same value. From the above results, the crude enzyme extract of the strain introduced with Mucuna-derived isoprene synthase showed the highest isoprene production activity.
  • Reference Example 5 E.I. Effect of introduction of isoprene synthase derived from each plant species in E. coli MG1655 strain From the result of the crude enzyme activity of Reference Example 4, the highest activity was confirmed with the isoprene synthase derived from Mucuna lacking the chloroplast translocation signal. Therefore, the isoprene-producing ability from glucose was compared for all isoprene synthase-introduced strains lacking the chloroplast translocation signal.
  • MG1655 / pSTV28-Ptac-Ttrp strain MG1655 / pSTV28-Ptac-IspSK strain, MG1655 / pSTV28-Ptac-IspSP strain, and MG1655 / pSTV28-Ptac-IspSM strain, 60 mg / L of chloramphenicol The resulting mixture was uniformly applied to the LB plate and cultured at 37 ° C. for 18 hours.
  • the isoprene concentration in the head space of the vial was measured by gas chromatography.
  • the OD value was measured at 600 nm with a spectrophotometer (HITACHI U-2900).
  • Table 7 shows the isoprene concentration and OD value at the end of the culture of each strain.
  • the isoprene production amount was in the descending order of MG1655 / pSTV28-Ptac-IspSM strain, MG1655 / pSTV28-Ptac-IspSK strain, MG1655 / pSTV28-Ptac-IspSP strain, and MG1655 / pSTV28-Ptac-Ttrp strain. became. From the above results, in the wild strain, the strain into which Mucuna-derived isoprene synthase was introduced showed the highest isoprene-producing ability.
  • E. coli with enhanced MEP (methylerythritol) pathway Effect of introduction of isoprene synthase derived from each plant species in E. coli MG1655 strain 6-1) Construction of dxs gene expression plasmid (pMW219-dxs) It has already been reported that when the expression of the dxs gene (1-deoxy-D-xylose-5-phosphate synthase) constituting the MEP pathway in E. coli is enhanced, the amount of isoprene produced is improved (Appl. Microbiol. Biotechnol. , (2011) 90, 1915-1922).
  • PCR was performed using Prime Star polymerase (manufactured by Takara Bio Inc.) using pMW219 as a template and a synthetic oligonucleotide consisting of the nucleotide sequences of SEQ ID NO: 30 and SEQ ID NO: 31 as primers.
  • the reaction solution was prepared according to the composition attached to the kit, and 40 cycles of reaction at 98 ° C. for 10 seconds, 54 ° C. for 20 seconds, and 68 ° C. for 240 seconds were performed.
  • a PCR product containing pMW219 was obtained. Thereafter, the purified dxs gene fragment and the PCR product of pMW219 were ligated using In-Fusion HD Cloning Kit (Clontech). The obtained plasmid for dxs gene expression was named pMW219-dxs.
  • the resulting mixture was uniformly applied to the LB plate and cultured at 37 ° C. for 18 hours. From the obtained plate, a transformant having resistance to chloramphenicol and kanamycin was obtained.
  • E. coli with enhanced expression of DXS Effects of introduction of isoprene synthase from each plant species in E. coli MG1655 strain
  • the isoprene production amounts are in descending order of MG1655 / pSTV28-Ptac-IspSM / pMW219-dxs strain, MG1655 / pSTV28-Ptac-IspSK / pMW219-dxs strain, MG1655 / pSTV28-Ptac-IspSP / dx219- And the strain MG1655 / pSTV28-Ptac-Ttrp / pMW219-dxs. From the above results, among the MEP pathway-enhanced strains, the strain into which Mucuna-derived isoprene synthase was introduced showed the highest isoprene-producing ability.
  • E. coli introduced MVA (mevalonic acid) pathway Effect of introduction of isoprene synthase derived from each plant species in E. coli MG1655 strain 7-1) Cloning of mevalonate pathway downstream gene derived from yeast The downstream region of the mevalonate pathway was obtained from Saccharomyces cerevisiae (WO2009076666, Saccharomyces Genome database: www.yeastgenome.org/# Nucleic Acids Res., Jan 2012; 40: D700-D705).
  • ERG12 gene encoding mevalonate kinase
  • ERG8 gene encoding phosphomevalonate kinase
  • ERG19 gene encoding diphosphomevalonate decarboxylase
  • IDI1 gene encoding isopentenyl diphosphate delta isomerase Amplification was carried out by PCR reaction using the indicated primers (Table 10).
  • PrimeSTAR MAX Premix sold by Takara Bio Inc. is used as a PCR enzyme, 98 ° C., 2 minutes, (98 ° C., 10 seconds, 55 ° C., 5 seconds, 72 ° C., 5 seconds / kb) ⁇ 30 cycles. The reaction was conducted under conditions.
  • the PCR fragment was inserted into the pSTV28-Ptac-Ttrp vector (SEQ ID NO: 17) treated with the restriction enzyme SmaI by the in-fusion cloning method, and cloning and expression vector construction were performed.
  • E. E. coli DH5 ⁇ was transformed, and clones having the expected sequence length of each gene were selected, followed by plasmid extraction according to a conventional method to confirm the sequence.
  • the base sequences of these amplified genes and the amino acid sequences of the enzymes encoded by the genes are described in Saccharomyces Genome database http: // www. yeastgenome. org / #.
  • PCR enzyme KOD plus sold by Toyobo is used, 94 ° C., 2 minutes, (94 ° C., 15 seconds, 45 ° C., 30 seconds, 68 ° C., 1 minute / kb) ⁇ 30 cycles, 68 ° C., The reaction was performed for 10 minutes.
  • the PCR fragment was inserted into the pUC118 vector treated with the restriction enzyme SmaI by the in-fusion cloning method, and cloning and expression vector construction were performed.
  • E. E. coli JM109 was transformed and a clone having the expected sequence length of each gene was selected, followed by plasmid extraction according to a conventional method to confirm the sequence.
  • the prepared plasmid was named pUC-mvk-pmk.
  • the nucleotide sequence of pUC-mvk-pmk is shown in SEQ ID NO: 40.
  • the PCR enzyme used is KOD plus sold by Toyobo, 94 ° C, 2 minutes, (94 ° C, 15 seconds, 45 ° C, 30 seconds, 68 ° C, 1 minute / kb) x 30 cycles, 68 ° C, The reaction was performed for 10 minutes.
  • the PCR fragment was inserted into the pTWV228 vector treated with the restriction enzyme SmaI by the in-fusion cloning method, and cloning and expression vector construction were performed.
  • E. E. coli DH5 ⁇ was transformed, and clones having the expected sequence length of each gene were selected, followed by plasmid extraction according to a conventional method to confirm the sequence.
  • the prepared plasmid was named pTWV-dmd-yidi.
  • the base sequence of pTWV-dmd-yidi is shown in SEQ ID NO: 45.
  • Carboxylase and isopentenyl diphosphate delta isomerase were amplified by PCR, and then cloned into pTrcHis2B vector by In-fusion cloning to construct an expression plasmid in which four enzyme genes were arranged in a linear form. .
  • PCR enzyme PrimeSTAR HS DNA polymerase sold by Takara Bio Inc. is used, 98 ° C., 2 minutes, (98 ° C., 10 seconds, 52 ° C., 5 seconds, 72 ° C., 1 minute / kb) ⁇ 30 cycles. The reaction was carried out at 72 ° C. for 10 minutes.
  • the PCR fragment was inserted into the pTrcHis2B vector treated with restriction enzymes NcoI and PstI by the in-fusion cloning method to construct an expression vector.
  • E. E. coli JM109 was transformed and a clone having the target sequence length was selected, followed by plasmid extraction according to a conventional method to confirm the sequence.
  • the constructed expression vector was named pTrc-KKDyI ( ⁇ ).
  • the base sequence of pTrc-KKDyI ( ⁇ ) is shown in SEQ ID NO: 50.
  • the Tn7 downstream region in the chromosome fixed region was amplified by PCR using the E. coli genome as a template.
  • PrimeSTAR HS DNA polymerase sold by Takara Bio Inc. is used as a PCR enzyme, 98 ° C., 2 minutes, (98 ° C., 10 seconds, 52 ° C., 5 seconds, 72 ° C., 1 minute / kb) ⁇ 30 cycles The reaction was carried out at 72 ° C. for 10 minutes.
  • the cat gene region containing the ⁇ phage attachment site was amplified by PCR using the pMW118-attL-Cm-attR plasmid as a template (WO2010-027022).
  • PrimeSTAR HS DNA polymerase sold by Takara Bio Inc. is used as the PCR enzyme, 95 ° C., 3 minutes, (95 ° C., 1 minute, 34 ° C., 30 seconds, 72 ° C., 40 seconds) ⁇ 2 cycles, The reaction was conducted under the conditions of 95 ° C., 30 seconds, 50 ° C., 30 seconds, 72 ° C., 40 seconds) ⁇ 25 cycles, 72 ° C., 5 minutes.
  • amplification of a downstream sequence of the mevalonate pathway (hereinafter abbreviated as KKDyI) to which a promoter and a transcription termination region had been added was performed by PCR using pTrc-KKDyI ( ⁇ ) as a template.
  • PrimeSTAR HS DNA polymerase sold by Takara Bio Inc. is used as a PCR enzyme, 98 ° C., 2 minutes, (98 ° C., 10 seconds, 52 ° C., 5 seconds, 72 ° C., 1 minute / kb) ⁇ 30 cycles The reaction was carried out at 72 ° C. for 10 minutes.
  • pMW219-KKDyI-TaspA The base sequence of pMW219-KKDyI-TaspA is shown in SEQ ID NO: 55.
  • the Tn7 upstream region was amplified in the chromosome fixed region by PCR using the E. coli genome as a template.
  • PrimeSTAR HS DNA polymerase sold by Takara Bio Inc. is used, 98 ° C., 2 minutes, (98 ° C., 10 seconds, 52 ° C., 5 seconds, 72 ° C., 1 minute / kb) ⁇ 30 cycles. The reaction was carried out at 72 ° C. for 10 minutes.
  • a vector was constructed by the In-Fusion cloning method using the PCR product and pMW219-KKDyI-TaspA treated with the restriction enzyme SalI. E. E.
  • coli JM109 was transformed and a clone having the target sequence length was selected, followed by plasmid extraction according to a conventional method to confirm the sequence.
  • the resulting plasmid was named pMW-Tn7-Pgi-KKDyI-TaspA-Tn7.
  • the sequence of the constructed plasmid is shown in SEQ ID NO: 56.
  • the chloramphenicol resistance gene, the glucose isomerase promoter, the mevalonate downstream operon, and the aspA gene transcription termination region were subjected to chromosome fixation.
  • the chromosome fixing fragment was prepared by extracting the plasmid pMW-Tn7-Pgi-KKDyI-TaspA-Tn7, treating it with restriction enzymes PvuI and SalI, and then purifying it.
  • E. coli MG1655 contains a plasmid pKD46 having a temperature-sensitive replication ability.
  • Plasmid pKD46 [Proc. Natl. Acad. Sci. USA, 2000, vol. 97, no. 12, p6640-6645] is a DNA fragment (GenBank / EMBL accession number J02459) of ⁇ phage including ⁇ Red system genes ( ⁇ , ⁇ , exo genes) controlled by the arabinose-inducible ParaB promoter (GenBank / EMBL accession number J02459). 31088th to 33241th). After electroporation, colonies that acquired chloramphenicol resistance were obtained.
  • genomic DNA was extracted, and it was confirmed that the target region was fixed to the chromosome by PCR using the primers shown in Table 16. Furthermore, the sequence of the target region was confirmed by confirming the sequence of the PCR fragment.
  • the base sequence of the downstream of the mevalonic acid pathway fixed on the chromosome and the surrounding region is shown in SEQ ID NO: 57, and the construction outline is shown in FIG.
  • the obtained mutant was named MG1655 cat-Pgi-KKDyI.
  • the drug marker of MG1655 cat-Pgi-KKDyI was removed by the following procedure. After creating competent cells of MG1655 cat-Pgi-KKDyI, pMW-int-xis was introduced. pMW-int-xis is a plasmid carrying a gene encoding lambda phage integrase (Int) and gene encoding exonase (Xis) and having temperature-sensitive replication ability (WO2007 / 037460, specially Open 2005-058827).
  • the chloramphenicol resistance gene located in the region sandwiched between attL and attR, which are attachment sites of ⁇ phage is dropped from the chromosome.
  • the host is known to lose chloramphenicol resistance. Therefore, a chloramphenicol sensitive strain was obtained from the obtained colonies. Thereafter, the cells were cultured at 42 degrees for 6 hours in the LB medium, and then applied to the LB plate medium to allow colonies to appear. Drug resistance was removed by selecting clones that lost ampicillin resistance from these.
  • the mutant thus obtained was named MG1655 Pgi-KKDyI.
  • the PCR enzyme uses LA-Taq polymerase sold by Takara Bio Inc., 92 ° C, 1 minute, (92 ° C, 10 seconds, 50 ° C, 20 seconds, 72 ° C, 1 minute / kb) x 40 cycles The reaction was conducted at 72 ° C. for 7 minutes.
  • the PCR product was purified and used to electroporate MG1655 Pgi-KKDyI (hereinafter referred to as MG1655 Pgi-KKDyI / pKD46) containing the plasmid pKD46 having temperature-sensitive replication ability. Plasmid pKD46 [Proc. Natl. Acad. Sci. USA, 2000, vol. 97, no.
  • p6640-6645 is a DNA fragment (GenBank / EMBL accession number J02459) of ⁇ phage containing ⁇ Red system genes ( ⁇ , ⁇ , exo genes) controlled by the arabinose-inducible ParaB promoter (GenBank / EMBL accession number J02459). 31088th to 33241th). Plasmid pKD46 is required to incorporate the PCR product into MG1655 Pgi-KKDyI.
  • a competent cell for electroporation was prepared as follows. MG1655 Pgi-KKDyI / pKD46 cultured overnight at 30 ° C. in LB medium containing 100 mg / L ampicillin was diluted 100-fold with 5 mL of LB medium containing ampicillin and L-arabinose (1 mM). The obtained dilution was allowed to grow until the OD600 was about 0.6 while aerated at 30 ° C., and then washed three times with an ice-cooled 10% glycerol solution so that it could be used for electroporation. Electroporation was performed using 50 ⁇ L of competent cells and approximately 100 ng of PCR product.
  • the cell after electroporation was 1 mL of SOC medium [Molecular Cloning: Laboratory Manual, Second Edition, Sambrook, J. et al. In addition, Cold Spring Harbor Press (1989)] was added and cultured at 37 ° C. for 1 hour, and then plated on LB agar medium at 37 ° C. to select a chloramphenicol resistant recombinant.
  • SOC medium Molecular Cloning: Laboratory Manual, Second Edition, Sambrook, J. et al. In addition, Cold Spring Harbor Press (1989)] was added and cultured at 37 ° C. for 1 hour, and then plated on LB agar medium at 37 ° C. to select a chloramphenicol resistant recombinant.
  • SOC medium Molecular Cloning: Laboratory Manual, Second Edition, Sambrook, J. et al. In addition, Cold Spring Harbor Press (1989)
  • pKD46 plasmid it was subcultured on an LB agar medium containing tetracycline at 37
  • pMW-int-xis is a plasmid carrying a gene encoding lambda phage integrase (Int) and gene encoding exonase (Xis) and having temperature-sensitive replication ability (WO2007 / 037460, specially Open 2005-058827).
  • pMW-int-xis the tetracycline resistance gene in the region sandwiched between attL and attR, which are attachment sites of ⁇ phage, is dropped from the chromosome.
  • a tetracycline sensitive strain was obtained from the obtained colony. Thereafter, the cells were cultured at 42 ° C. for 6 hours in LB medium, and then applied to LB plate medium to allow colonies to appear. Drug resistance was removed by selecting clones that lost ampicillin resistance from these.
  • the obtained mutant was named MG1655 Ptac-KKDyI.
  • SEQ ID NO: 69 The nucleotide sequence downstream of the mevalonate pathway controlled by the tac promoter on the chromosome and the surrounding region are shown in SEQ ID NO: 69, and the outline is shown in FIG.
  • a strain in which pSTV28-Ptac-Ttrp was introduced into the MG1655 Ptac-KKDyI strain was designated as MG1655 Ptac-KKDyI / pSTV28-Ptac-Ttrp strain, and a strain in which pSTV28-Ptac-IspSK was introduced into MG1655 Ptac-KKDySpKSTyPp / STKD-STP
  • the strain introduced with pSTV28-Ptac-IspSM was named MG1655 Ptac-KKDyI / pSTV28-Ptac-IspSM strain
  • the strain introduced with pSTV28-Ptac-IspSP was named MG1655 Ptac-KKDyI / pSTV28-Ptac-IspSP strain .
  • isoprene production in descending order is MG1655 Ptac-KKDyI / pSTV28-Ptac-IspSM strain, MG1655 Ptac-KKDyI / pSTV28-Ptac-IspSK strain, MG1655 Ptac-KKDyI / pSTVsp-SPtac-SPtac-SPt- It became MG1655 Ptac-KKDyI / pSTV28-Ptac-TTrp strain. From the above results, even in the MVA pathway-introduced strain, the strain into which Mucuna-derived isoprene synthase was introduced showed the highest isoprene-producing ability.
  • Example 5 P.I. Construction of ananatis AG10265 5-1) Construction of pMW-Para-mvaES-Ttrp 5-1-1) Chemical synthesis of enterococcus faecalis-derived mvaE gene And the amino acid sequence are already known (base sequence ACCESSION numbers: AF29009.1, (1479..3890), amino acid sequence ACCESSION number: AAG02439) (J. Bacteriol. 182 (15), 4319-4327 (2000). )). The amino acid sequence of Enterococcus faecalis-derived mvaE protein and the nucleotide sequence of the gene are shown in SEQ ID NO: 72 and SEQ ID NO: 73, respectively. The mvaE gene was transformed into E.
  • E. coli for efficient expression in E. coli.
  • An mvaE gene optimized for E. coli codon usage was designed and named EFmvaE. This base sequence is shown in SEQ ID NO: 74.
  • the mvaE gene was chemically synthesized and then cloned into pUC57 (GenScript), and the resulting plasmid was named pUC57-EFmvaE.
  • coli for efficient expression in E. coli.
  • An mvaS gene optimized for E. coli codon usage was designed and named EFmvaS. This base sequence is shown in SEQ ID NO: 77.
  • the mvaS gene was chemically synthesized and then cloned into pUC57 (GenScript), and the resulting plasmid was named pUC57-EFmvaS.
  • arabinose-inducible mevalonate pathway upstream gene expression vector was constructed by the following procedure. E. coli by PCR using the plasmid pKD46 as a template and the synthetic oligonucleotides shown in SEQ ID NO: 78 and SEQ ID NO: 79 as primers. A PCR fragment containing Para comprising the araC and araBAD promoter sequences from E. coli was obtained.
  • a PCR fragment containing the EFmvaE gene was obtained by PCR using the plasmid pUC57-EFmvaE as a template and the synthetic oligonucleotides shown in SEQ ID NO: 80 and SEQ ID NO: 81 as primers.
  • a PCR fragment containing the EFmvaS gene was obtained by PCR using the plasmid pUC57-EFmvaS as a template and the synthetic oligonucleotides shown in SEQ ID NO: 82 and SEQ ID NO: 83 as primers.
  • a PCR fragment containing the Ttrp sequence was obtained by PCR using the plasmid pSTV-Ptac-Ttrp as a template and the synthetic oligonucleotides shown in SEQ ID NO: 84 and SEQ ID NO: 85 as primers.
  • Prime Star polymerase (manufactured by Takara Bio Inc.) was used for PCR to obtain these four PCR fragments.
  • the reaction solution was prepared according to the composition attached to the kit, and 30 cycles of reaction at 98 ° C. for 10 seconds, 55 ° C. for 5 seconds, and 72 ° C. for 1 minute / kb were performed.
  • Synthetic oligonucleotides shown in SEQ ID NO: 78 and SEQ ID NO: 81 using a PCR product containing purified Para and a PCR product containing EFmvaE gene as a template SEQ ID NO: using a PCR product containing purified EFmvaS gene and a PCR product containing Ttrp as a template PCR was performed using 82 and the synthetic oligonucleotide shown in SEQ ID NO: 85 as primers.
  • PCR products containing Para and EFmvaE genes, EFmvaS and Ttrp were obtained.
  • Plasmid pMW219 (Nippon Gene) was digested with SmaI according to a conventional method.
  • a PCR product containing pMW219 and purified Para and EFmvaE genes, and a PCR product containing EFmvaS gene and Ttrp after SmaI digestion were ligated using In-Fusion HD Cloning Kit (Clontech).
  • the resulting plasmid was named pMW-Para-mvaES-TTrp.
  • PrimeSTAR HS DNA polymerase sold by Takara Bio Inc. is used as a PCR enzyme, 98 ° C., 2 minutes, (98 ° C., 10 seconds, 52 ° C., 5 seconds, 72 ° C., 1 minute / kb) ⁇ 30 cycles The reaction was carried out at 72 ° C. for 10 minutes.
  • the PCR fragment was inserted into the pTrcHis2B vector treated with restriction enzymes NcoI and PstI by the in-fusion cloning method to construct an expression vector.
  • E. E. coli JM109 was transformed and a clone having the target sequence length was selected, followed by plasmid extraction according to a conventional method to confirm the sequence.
  • the constructed expression vector was named pTrc-KKDyI ( ⁇ ).
  • the base sequence of pTrc-KKDyI ( ⁇ ) is shown in SEQ ID NO: 90.
  • pTrc-KKDyI-ispS (K) in which IspS (K) was added to the obtained pTrc-KKDyI ( ⁇ ) (SEQ ID NO: 90) was carried out by the following procedure.
  • pTrc-KKDyI ( ⁇ ) was digested with the restriction enzyme PstI (Takara Bio Inc.) to obtain pTrc-KKDyI ( ⁇ ) / PstI.
  • PCR was performed using Prime Star polymerase (manufactured by Takara Bio Inc.) with pUC57-ispSK as a template, pTrcKKDyIkSS_6083-10-1 (SEQ ID NO: 91) and pTrcKKDyIkSA_6083-10-2 (SEQ ID NO: 92) as primers.
  • the reaction solution was prepared according to the composition attached to the kit, and the reaction was carried out for 30 cycles of 98 ° C. for 10 seconds, 54 ° C. for 20 seconds, and 68 ° C. for 120 seconds. As a result, a PCR product containing the IspSK gene was obtained.
  • Mmamvk The base sequence of Mmamvk is shown in SEQ ID NO: 96.
  • the Mmamvk gene was chemically synthesized and then cloned into pUC57 (GenScript), and the resulting plasmid was named pUC57-Mmamvk.
  • a plasmid for expressing the IspSK gene and the Mmamvk gene in E. coli was constructed by the following procedure. PCR was performed using Prime Star polymerase (manufactured by Takara Bio Inc.) using pUC57-IspSK as a template and a synthetic oligonucleotide consisting of the nucleotide sequences of SEQ ID NO: 97 and SEQ ID NO: 98 as primers. The reaction solution was prepared according to the composition attached to the kit, and 40 cycles of reaction at 98 ° C. for 10 seconds, 54 ° C.
  • PCR product containing the IspSK gene was obtained.
  • pSTV28-Ptac-Ttrp was subjected to PCR using Prime Star polymerase (manufactured by Takara Bio Inc.) using a synthetic oligonucleotide consisting of the nucleotide sequences of SEQ ID NO: 99 and SEQ ID NO: 100 as a primer.
  • the reaction solution was prepared according to the composition attached to the kit, and 40 cycles of reaction at 98 ° C. for 10 seconds, 54 ° C. for 20 seconds, and 68 ° C. for 210 seconds were performed.
  • a PCR product containing pSTV28-Ptac-Ttrp was obtained. Thereafter, the purified IspSK gene fragment and the pSTV28-Ptac-Ttrp PCR product were ligated using In-Fusion HD Cloning Kit (Clontech). The obtained plasmid for expressing the IspSK gene was named pSTV28-Ptac-IspSK.
  • PCR was performed using Prime Star polymerase (manufactured by Takara Bio Inc.) using pUC57-Mmamvk as a template and a synthetic oligonucleotide consisting of the nucleotide sequences of SEQ ID NO: 101 and SEQ ID NO: 102 as primers.
  • the reaction solution was prepared according to the composition attached to the kit, and 30 cycles of reaction at 98 ° C. for 10 seconds, 55 ° C. for 5 seconds, and 72 ° C. for 1 minute / kb were performed. As a result, a PCR product containing the Mmamvk gene was obtained.
  • pSTV28-Ptac-IspSK was subjected to PCR using Prime Star polymerase (manufactured by Takara Bio Inc.) using a synthetic oligonucleotide consisting of the nucleotide sequences of SEQ ID NO: 103 and SEQ ID NO: 104 as a primer.
  • the reaction solution was prepared according to the composition attached to the kit, and 30 cycles of reaction at 98 ° C. for 10 seconds, 55 ° C. for 5 seconds, and 72 ° C. for 1 minute / kb were performed. As a result, a PCR product containing pSTV28-Ptac-IspSK was obtained.
  • the obtained plasmid for expression of IspSK gene and Mmamvk gene was named pSTV28-Ptac-ispSK-Mmamvk.
  • the KpnI-SalI fragment of pMW-Para-mvaES-Ttrp was cloned into the SphI-SalI recognition site of pAH162- ⁇ attL-TcR- ⁇ attR.
  • E.I. E. coli under the control of the Para Para promoter and repressor gene araC.
  • the pAH162-Para-mvaES plasmid carrying the faecalis-derived mvaES operon was constructed (FIG. 6).
  • the BglII-EcoRI fragment of pSTV28-Ptac-ispS-Mamvk containing the ispS (Mucuna) and mvk (M.mazei) genes under the control of Ptac is recognized by the BamHI-Ecl136II site of the integrating vector pAH162- ⁇ attL-TcR- ⁇ attR. Subcloned into. The resulting plasmid pAH162-Ptac-ispS (M) -mvk (Mma) is shown in FIG.
  • PMWattphi plasmid (Minaeva NI et al., BMC Biotechnol. 2008; 8:63) was used as a template in these reactions.
  • the resulting integrants were named SC17 (0) ⁇ ampC :: attLphi80-kan-attRphi80, SC17 (0) ⁇ amph :: attLphi80-kan-attRphi80, and SC17 (0) ⁇ crt :: attLphi80-kan-attRphi80.
  • Oligonucleotides 7 and 8, 9 and 10, and 11 and 12 were converted to SC17 (0) ⁇ ampC :: attLphi80-kan-attRphi80, SC17 (0) ⁇ ampHpH :: attLphi80-kan-attRphi80, and SC17, respectively.
  • (0) ⁇ crt :: attLphi80-kan-attRphi80 strain was used for verification by PCR.
  • the obtained SC17 (0) ⁇ ampC :: pAH162-KKDyI-ispS (K) strain was obtained by following the procedure described previously (Katashkina JI et al., BMC Mol Biol. 2009; 10:34). Using the pMWintxis-cat helper plasmid carrying the gene, the vector portion of pAH162-KKDyI-ispS (K) was cured. As a result, an SC17 (0) ⁇ ampC :: KKDyI-ispS (K) strain was obtained. Oligonucleotides 7 and 15 (Table 20) were used for PCR verification of kanamycin sensitive derivatives. The construction of SC17 (0) ⁇ ampC :: KKDyI-ispS (K) is shown in FIG.
  • Genomic DNA isolated from the SC17 (0) ⁇ amph :: attLphi80-kan-attRphi80 strain using the GeneElute bacterial genomic DNA kit (Sigma) was previously reported (Katashkina JI et al., BMC Mol Biol. 2009; 10: According to the method of chromosome electroporation of 34), the SC17 (0) ⁇ ampC :: KKDyI-ispS (K) strain was electroporated. Transfer of the ⁇ ampH :: attLphi80-kan-attRphi80 mutation was confirmed by PCR using primers 9 and 10.
  • the last strain was cured from the kanamycin resistance marker using the phi80 Int / Xis dependency method (Andreeva IG et al., FEMS Microbiol Lett. 2011; 318 (1): 55-60).
  • the ⁇ ampC :: KKDyI-ispS (K) variant was verified by PCR using primers 7 and 15, and then SC17 (0) ⁇ ampC :: KKDyI-ispS (K) ⁇ amppH :: attBphi80 A stock was selected.
  • the pAH162-Para-mvaES plasmid was transformed into SC17 (0) ⁇ ampC :: KKDyI-ispS using the pAH123-cat helper plasmid (Andreweva IG et al., FEMS Microbiol Lett. 2011; 318 (1): 55-60).
  • K Incorporated into ⁇ ampH :: attBphi80. Oligonucleotides 13 and 9 and oligonucleotides 14 and 10 (Table 20) were used for PCR verification of the resulting integrants.
  • Chromosome variant SC17 (0) ⁇ crt :: pAH162-Ptac-ispS (K) -mvk (Mma) thus constructed has been reported (Katashkina JI et al., BMC Mol Biol. 2009; 10:34).
  • the obtained integrant was transformed into pAH162-Ptac-ispS (K) -mvk (Mma) using the phage ⁇ Int / Xis dependent technology (Katashkina JI et al., BMC Mol Biol. 2009; 10:34). Cure from vector part.
  • the structure of the final construct ⁇ crt :: Ptac-ispS (K) -mvk (Mma) (FIG. 11) was confirmed by PCR using primers 11 and 17.
  • the ISP3-S strain without the marker (P. ananatis SC17 (0) ⁇ ampC :: attLphi80- KKDyI-ispS (K) -attRphi80 ⁇ ampH :: attLphi80-Para-mvaES-attRphi80 ⁇ crt :: attLphi80-Ptac-ispS (K) -mvk (Mma) -attRphi80) was obtained.
  • the constructed ⁇ crt :: pAH123-Ptac-mvk (M.palladicola) chromosomal variant was transformed into ISP3-S via electroporation of genomic DNA isolated from SC17 (0) ⁇ crt :: pAH162-Ptac-Mclmvk. Strain [see 5-7].
  • the resulting integrant was designated as AG10265 (P.
  • Example 6 Production of Pantoea strain with improved expression of ppa gene and production of isoprene by culture using the same In the ananatis strain, a strain in which the intrinsic ppa gene (pyrophosphate phosphatase gene) was replaced with another strong promoter and expression of the endogenous ppa gene was enhanced was prepared by the following procedure.
  • a strain in which the promoter sequence and SD sequence of the PAJ_2344 (ppa-1) gene and the PAJ_2736 (ppa-2) gene were substituted with Ptac and ⁇ 10, respectively, in the ananatis SC17 (0) strain was prepared by the ⁇ Red method.
  • the ⁇ Red method is described in BMC Mol Biol. 2009; 10:34.
  • Annotated P.P. Genomic sequence information for ananatis AJ13355 is available under GenBank accession numbers AP012032.1 and AP012033.1.
  • Genomic DNA was extracted from ananatis SC17 (0) strain Ptac-lacZ (RU application 2006134574, WO2008 / 090770, US20110062496) and used as a template for PCR.
  • P. In the ananatis SC17 (0) strain Ptac-lacZ, ⁇ attL-Km r - ⁇ attR-Ptac in which the Ptac promoter is linked downstream of ⁇ attL-Km r - ⁇ attR is incorporated upstream of the lacZ gene (WO2011 / 87139 A1 See).
  • the synthetic nucleotide comprising the nucleotide sequence shown in Table 21 of PAJ — 2344-F and PAJ — 2344-R was used as a primer, and the promoter region of the PAJ — 2736 (ppa-2) gene was replaced.
  • PCR was performed using PrimeSTAR MAX DNA polymerase (manufactured by Takara Bio Inc.) using the synthetic nucleotides consisting of the nucleotide sequences shown in PAJ — 2736-F and PAJ — 2736-R in Table 21 as primers.
  • the reaction solution was prepared according to the composition attached to the kit, and the reaction was carried out for 30 cycles of 98 ° C. for 10 seconds, 55 ° C. for 5 seconds, and 72 ° C. for 20 seconds. As a result, a promoter replacement fragment containing ⁇ attL-Km r - ⁇ attR- ⁇ 10 was obtained.
  • the RSF-Red-TER (US7919284B2) plasmid was introduced into SC17 (0) by electroporation according to a conventional method, and the resulting strain was named SC17 (0) / RSF-Red-TER.
  • the purified promoter replacement fragment containing ⁇ attL-Km r - ⁇ attR- ⁇ 10 was introduced by electroporation. After electroporation, colonies that acquired kanamycin resistance were obtained.
  • ppa_p1-F (Table 21) and ppa_p1-R (Table 21) indicate that a sequence derived from a PCR fragment was inserted into the upstream region of PAJ — 2344 (ppa-1) gene or the upstream region of PAJ — 2736 (ppa-2) gene.
  • ppa_p2-F (Table 21) and ppa_p2-R (Table 21) were confirmed by PCR using synthetic DNA primers, and a strain in which fragment insertion was confirmed was obtained.
  • the bacterial strain thus obtained is ananatis SC17 (0) Ptac- ⁇ 10-ppa1 and P. It was named ananatis SC17 (0) Ptac- ⁇ 10-ppa2.
  • Amplification was carried out by PCR using a synthetic nucleotide consisting of the base sequence shown by -R primer as a primer.
  • PrimeSTAR GXL DNA polymerase manufactured by Takara Bio Inc.
  • the reaction solution was prepared according to the composition attached to the kit, and the reaction was performed at 98 ° C. for 10 seconds, 60 ° C. for 15 seconds, and 68 ° C. for 5 minutes. For 40 cycles.
  • a fragment containing 1 kb upstream from 1 kb upstream of the PAJ — 2344 (ppa-1) gene or PAJ — 2736 (ppa-2) gene was obtained.
  • the obtained fragment was purified, and 600 ng of the PCR product was introduced into AG10265 by electroporation for transformation to obtain colonies that acquired kanamycin resistance.
  • the promoter of PAJ — 2344 (ppa-1) gene was replaced by colony PCR using a synthetic nucleotide consisting of the base sequence shown in Ppa_p1-F and Ppa_p1-R in Table 21 as a primer. confirmed.
  • substitution of the PAJ_2736 (ppa-2) gene promoter was confirmed by colony PCR using synthetic nucleotides composed of the base sequences shown in Table 21 Ppa_p2-F and Ppa_p2-R as primers.
  • the promoter region of the PAJ — 2344 (ppa-1) gene or the PAJ — 2736 (ppa-2) gene is replaced with Ptac- ⁇ 10.
  • One clone of each was selected and named AG10265 Ptac- ⁇ 10-ppa1 and AG10265 Ptac- ⁇ 10-ppa2.
  • the collected cells were washed twice with ice-cooled 50 mM Tris buffer (Tris-HCl pH 8.0), and multi-bead shocker (Yasui Kikai, Japan, 4 ° C., 60 seconds ON, 60 seconds OFF, 2500 rpm).
  • the cells were disrupted with 5 cycles).
  • the disrupted cell solution was centrifuged at 14000 rpm for 20 minutes to remove unbroken cells.
  • the obtained supernatant fraction was handled as a soluble protein fraction.
  • 5 ⁇ g of the soluble protein was subjected to electrophoresis using SDS-PAGE (NuPAGE: SDS-PAGE Gel System manufactured by Invitrogen).
  • FIG. 12 shows a photograph of the gel near the amount of PPA protein.
  • an increase in the expression level of the protein presumed to be PPA was confirmed in the AG10265 Ptac- ⁇ 10-ppa1 strain and the AG10265 Ptac- ⁇ 10-ppa2 strain, respectively.
  • the expression level of PPA protein in AG10265 Ptac- ⁇ 10-ppa1 strain and AG10265 Ptac- ⁇ 10-ppa2 strain is that of the original strain (AG10265). It was estimated to be about 1.5 to 2.0 times.
  • Isoprene production amount in jar culture AG10265 (Control), AG10265 PPA1, and AG10265 PPA2 were cultured under the above jar culture conditions, and the production amount of isoprene was measured.
  • FIG. 13 shows the profile of cell growth
  • FIG. 14 shows the results of measurement of isoprene production up to 71 hours after the start of culture. They were AG10265 PPA2, AG10265 PPA1, and AG10265 Control in descending order of total isoprene production (FIG. 3).
  • the total amount of isoprene produced was 2478 mg for AG10265 PPA2, 2365 mg for AG10265 PPA1, and 2013 mg for AG10265 (Control).
  • Ananatis isoprene-producing bacteria are P. aeruginosa that has not enhanced the expression level of pyrophosphate phosphatase.
  • the isoprene producing ability was superior to that of the ananatis isoprene producing bacterium.
  • MVA pathway upstream chromosome fixing plasmid pAH162-PphoC-mvaES was constructed as follows. (1-1) Construction of arabinose-induced enterococcus faecalis (E. faecalis) -derived mevalonate pathway upstream gene (mvaES (E. faecalis)) expression plasmid pMW-P ara -mvaES-Ttrp (1) -1-1) Chemical synthesis and cloning of mvaES (E.
  • mvaES gene encoding mevalonate pathway upstream gene (mvaES (E. faecalis)) from Enterococcus faecalis (E. faecalis) Nucleotide sequence (GenBank / EMBL / DDBJ accession ID AF29009.1) and amino acid sequence (mvaS, GenPe) t accession ID AAG02438.1, mvaE, GenPept accession ID AAG02439.1) are known (Wilding, EI et al., J. Bacteriol. 182 (15), see 4319-4327 (2000)). Based on these information, mvaE gene and mvaS gene optimized for codon usage of E.
  • coli were designed and named EFmvaE and EFmvaS, respectively.
  • the base sequence of EFmvaE is shown in SEQ ID NO: 139
  • the base sequence of EFmvaS is shown in SEQ ID NO: 140.
  • the DNA sequences of EFmvaE and EFmvaS prepared by chemical synthesis were cloned into an expression plasmid pUC57 (GenScript) by conventional methods, and the resulting plasmids were named pUC57-EFmvaE and pUC57-EFmvaS, respectively.
  • the nucleotide sequence of pUC57-EFmvaE is shown in SEQ ID NO: 141
  • the nucleotide sequence of pUC57-EFmvaS is shown in SEQ ID NO: 142.
  • Plasmid pMW219 (manufactured by Nippon Gene, product number: 310-02571) was digested with SmaI, and the digested plasmid was purified. The resulting plasmid was named pMW219 / SmaI.
  • a PCR reaction was performed using a plasmid pTrcHis2B having a P trc region as a template and a synthetic oligonucleotide consisting of the nucleotide sequences of SEQ ID NO: 143 and SEQ ID NO: 144 as primers. It was.
  • a PCR reaction was performed using plasmid pUC57-EFmvaE as a template and synthetic oligonucleotides consisting of the nucleotide sequences of SEQ ID NO: 145 and SEQ ID NO: 146 as primers.
  • PCR reaction was performed using plasmid pUC57-EFmvaS as a template and synthetic oligonucleotides consisting of the nucleotide sequences of SEQ ID NO: 146 and SEQ ID NO: 147 as primers.
  • a gene of the trp terminator (T trp ) region a plasmid pSTV-P tac -T trp having a T trp region as a template and a synthetic oligonucleotide consisting of the nucleotide sequences of SEQ ID NO: 148 and SEQ ID NO: 149 as primers are used.
  • PCR was performed.
  • Prime Star polymerase manufactured by Takara Bio Inc.
  • a reaction solution was prepared according to the instructions provided by the enzyme manufacturer.
  • the reaction conditions were 98 ° C .: 10 seconds, 55 ° C .: 5 seconds, 72 ° C .: 60 seconds / kb, and cycle number: 30.
  • cycle number 30.
  • a PCR product containing the gene in the P trc region and the mvaE gene and a PCR product containing the mvaS gene and the gene in the T trp region were obtained. Thereafter, a PCR product containing a gene in the P trc region and the mvaE gene, a PCR product containing the mvaS gene and a gene in the T trp region, and the digested plasmid pMW219 / SmaI were converted into an In-Fusion HD Cloning Kit. (Clontech) was used for connection. The resulting plasmid was named pMW-P trc -mvaES-T trp . The sequence of the obtained pMW-P trc -mvaES-T trp is shown in SEQ ID NO: 151.
  • PCR was performed using the plasmid pMW-P trc -mvaES-T trp prepared in (1-2-3) as a template and a synthetic oligonucleotide consisting of the nucleotide sequences of SEQ ID NO: 152 and SEQ ID NO: 153 as primers.
  • Gene P araC region as a template, araC gene, and P genes of the region containing the gene of araBAD region (hereinafter together referred to as "gene of P ara region") plasmid pKD46 containing (Proc. Natl. Acad. Sci . USA, 2000, vol. 97, No. 12, p6640-6645), and PCR was performed using synthetic oligonucleotides consisting of the nucleotide sequences of SEQ ID NO: 154 and SEQ ID NO: 155 as primers.
  • a PCR product containing the pMW plasmid and mvaES gene was obtained and a PCR product containing the gene for P ara region.
  • These purified PCR products were ligated to each other using In-Fusion HD Cloning Kit (Clontech).
  • the resulting arabinose-derived E. coli. faecalis-derived mevalonate pathway upstream gene (mvaES (E. faecalis)) the expression plasmid was designated pMW-P ara -mvaES-Ttrp.
  • the base sequence of pMW-P ara -mvaES-Ttrp is shown in SEQ ID NO: 156.
  • a set of plasmids for immobilizing chromosomes holding mvaES genes under the control of different promoters was constructed.
  • a polylinker containing I-SceI, XhoI, PstI and SphI recognition sites was inserted into the only HindIII recognition site located upstream of the mvaES gene.
  • annealing was performed using a synthetic oligonucleotide consisting of the nucleotide sequences of SEQ ID NO: 157 and SEQ ID NO: 158 and polynucleotide kinase, and the resulting fragment was ligated to pAH162-mvaES plasmid cleaved with HindIII.
  • the resulting pAH162-MCS-mvaES plasmid (FIG. 16) is convenient for cloning the promoter while maintaining the desired orientation in front of the mvaES gene.
  • a DNA fragment carrying the regulatory region of the phoC gene was isolated from P. cerevisiae.
  • genomic DNA of ananatis SC17 (0) strain (Katashkina JI et al. BMC Mol Biol. 2009; 10:34) as a template and oligonucleotides consisting of the nucleotide sequences of SEQ ID NO: 159 and SEQ ID NO: 160
  • the obtained plasmid is shown in FIG.
  • the cloned promoter fragment was sequenced and confirmed to correspond exactly to the expected nucleotide sequence.
  • the resulting plasmid was designated as pAH162-PphoC-mvaES.
  • a pAH162-Km-Ptac-KDyI-integrated plasmid was constructed as follows as a plasmid for fixing chromosomes downstream of the MVA pathway.
  • the AatII-ApaI fragment of pAH162- ⁇ attL-Tc R - ⁇ attR (Minaeva NI et al. BMC Biotechnol.
  • an integrative expression vector pAH162-P tac was constructed.
  • the cloned promoter fragment was sequenced.
  • a map of pAH162-P tac is shown in FIG. Chemically synthesized by ATG Service Gene ( Russian), S. cerevisiae having a substituted rare codon.
  • a DNA fragment carrying the cerevisiae-derived PMK, MVD and yldI genes was subcloned into the SphI-KpnI restriction endonuclease recognition site of the integrative vector pAH162-Ptac.
  • the DNA sequence containing the chemically synthesized KDyI operon is shown in SEQ ID NO: 184.
  • FIG. 21A The resulting plasmid pAH162-Tc-Ptac-KDyI carrying the Ptac-KDyI expression cassette is shown in FIG. 21A. Thereafter, the NotI-KpnI fragment of pAH162-Tc-P tac -KDyI carrying the tetAR gene was replaced with the corresponding fragment of pAH162- ⁇ attL-KmR- ⁇ attR. As a result, a pAH162-Km-Ptac-KDyI plasmid was obtained using the kanamycin resistance gene kan as a marker (FIG. 21B).
  • a synthetic oligonucleotide consisting of the nucleotide sequences of SEQ ID NO: 163 (primer 13) and SEQ ID NO: 164 (primer 14), and SEQ ID NO: 165 (primer 15) and SEQ ID NO: 166 ( Synthetic oligonucleotides consisting of the base sequence of primer 16) were used as primers to generate DNA fragments used for incorporation into the ampH and ampC genes, respectively.
  • a primer it was used for PCR verification of the obtained chromosome modification product.
  • a DNA fragment used for the replacement of the crt operon by attL phi80 -kan-attR phi80 was amplified by a PCR reaction using a synthetic oligonucleotide consisting of the nucleotide sequences of SEQ ID NO: 171 (primer 21) and SEQ ID NO: 172 (primer 22). .
  • the pMWattphi plasmid (Minaeva NI et al. BMC Biotechnol. 2008; 8:63) was used as a template in this reaction.
  • the resulting integrant was named SC17 (0) ⁇ crt :: attL phi80 -kan-attR phi80 .
  • a synthetic oligonucleotide consisting of the nucleotide sequences of SEQ ID NO: 173 (primer 23) and SEQ ID NO: 174 (primer 24) was converted into SC17 (0) ⁇ crt :: attL phi80 -kan-attR phi80 . It was used for PCR verification of the chromosomal structure. Removal of the kanamycin resistance marker from the constructed strain was performed using the pAH129-cat helper plasmid according to a previously reported technique (Andreweva IG et al. FEMS Microbiol Lett. 2011; 318 (1): 55-60).
  • the resulting maps of ⁇ ampC :: attB phi80 , ⁇ ampH :: attB phi80, and ⁇ crt :: attB phi80 genomic variants are shown in FIGS. 23A), 7B), and 7C), respectively.
  • the pAH162-Ptac-mvk (M. palidicola) plasmid was prepared according to a previously reported protocol (Andrewa IG et al. FEMS Microbiol Lett. 2011; 318 (1): 55-60) according to SC17 (0) ⁇ crt :: attB phi80 . Integrated into the genome. Polymerase using the synthetic oligonucleotide consisting of the nucleotide sequences of SEQ ID NO: 171 (primer 21) and SEQ ID NO: 173 (primer 23), SEQ ID NO: 172 (primer 22) and SEQ ID NO: 174 (primer 24) as primers for plasmid integration Confirmed by chain reaction.
  • SC17 (0) ⁇ crt :: pAH162-P tac -mvk (M.paludicola) to SC17 (0) via a genomic DNA electroporation procedure (Katashkina JI et al. BMC Mol Biol. 2009; 10:34).
  • ⁇ ampC :: attB phi80 Transfer into ⁇ ampH :: attB phi80 was performed.
  • the obtained strain was isolated from the previously reported pMW-intxis-cat helper plasmid [Katashkina JI et al. BMC Mol Biol. 2009; 10: 34] was cured from the vector portion of the pAH162-Ptac-mvk (M. palladicola) integrated plasmid.
  • SWITCH-PphoC stock The pAH162-Km-Ptac-KDyI plasmid was transformed into SC17 (0) ⁇ ampH :: attB ⁇ 80 ⁇ ampC :: tampC :: tamp according to a previously reported protocol (Andreweva IG et al. FEMS Microbiol Lett. 2011; 318 (1): 55-60). It was integrated into the chromosome of ⁇ 80 ⁇ crt :: P tac -mvk (M. palidicola) / pAH123-cat strain. After electrophoresis, cells were seeded on LB agar containing 50 mg / L kanamycin.
  • the propagated Km R clone was primered with a synthetic oligonucleotide consisting of the base sequences of SEQ ID NO: 163 (primer 13) and SEQ ID NO: 167 (primer 17), and SEQ ID NO: 163 (primer 13) and SEQ ID NO: 169 (primer 19).
  • the polymerase chain reaction was used.
  • Strains carrying the pAH162-Km-Ptac-KDyI plasmid integrated into ⁇ ampH :: attB ⁇ 80 or pC :: attB ⁇ 80 m were selected.
  • FIG. 25 A map of ⁇ ampH :: pAH162-Km-Ptac-KDyI and ⁇ ampC :: pAH162-Km-Ptac-KDyI chromosomal modifications is shown in FIG. 25 (A and B).
  • pAH162-PphoC-mvaES was prepared using a previously reported protocol [Andreeva IG et al. FEMS Microbiol Lett. 2011; 318 (1): 55-60] using the pAH123-cat helper plasmid with SC17 (0) ⁇ ampC :: pAH162-Km-P tac -KDyI ⁇ ampH :: attB phi80 ⁇ crt :: P tac -mvk (M .Paludicola) and SC17 (0) ⁇ ampC :: attB phi80 ⁇ ampH :: pAH162-Km-P tac -KDyI ⁇ crt :: P tac -mvk (M.palladicola) inserted into the chromosome of the recipient strain.
  • SWITCH-PphoC-1 and SWITCH-PphoC-2 were obtained.
  • a map of ⁇ ampH :: pAH162-PphoC-mvaES and ⁇ ampC :: pAH162-PphoC-mvaES chromosome modifications is shown in FIG.
  • SWITCH-PphoC-1 (S) strain Removal of tetracycline and kanamycin resistance markers from SWITCH-PphoC-1 was carried out by phage phi80 Int / Xis-dependent removal according to a previously reported method (Katashkina JI et al. BMC Mol. Biol. 2009; 10:34). The obtained strain was named SWITCH-PphoC-1 (S) strain.
  • Example 7 E. coli in the SWITCH-PphoC-1 (S) strain. production of Pantoea strain in which the ppa gene of E. coli MG1655 (b4226) is highly expressed, and isoprene production by culture using the same In the ananatis strain, A strain in which the expression of the E. coli MG1655 (b4226) ppa gene (pyrophosphate phosphatase gene) was enhanced with a strong promoter was prepared by the following procedure.
  • ppa gene (b4226) was isolated by PCR using the genomic DNA isolated from E. coli MG1655 strain as a template and a synthetic oligonucleotide consisting of the nucleotide sequences of SEQ ID NO: 175 and SEQ ID NO: 176 as primers, and the pSTV28Ptac-TTrp vector (reference)
  • the ppa gene isolated by PCR was introduced into the site cleaved with the restriction enzyme SmaI by the in-fusion method to construct plasmid pSTV28Ptac-MG-ppa-Trp.
  • a region containing the Tac promoter, ppa gene, and Trp terminator was isolated by PCR using this plasmid as a template and a synthetic oligonucleotide consisting of the nucleotide sequences of SEQ ID NO: 177 and SEQ ID NO: 178 as primers, and pAH162-Km-attLR was isolated.
  • the vector was introduced into the site cleaved with restriction enzymes BamHI and EcoRI using In-Fusion HD Cloning Kit (Clontech) to construct plasmid pAH162-Ptac-MG-ppa.
  • E.E. ... Coli MG1655 ppa gene construct expression enhanced isoprene production strain and the control strain
  • YdcI gene PAJ_1320, Hara Y et al, The complete genome sequence of Pantoea ananatis AJ13355, an organism with great biotechnological potential Appl Microbiol Biotechnol 2012 Jan; 93 (1): 331-41), which carries the attB site of phi80 phage.
  • Ananatis SC17 (0) derivative was constructed.
  • a synthetic oligonucleotide consisting of the nucleotide sequences of SEQ ID NO: 179 and SEQ ID NO: 180 was used as a primer.
  • Genomic DNA isolated from this strain was electroporated into SWITCH-PphoC-1 (S) strain according to the method of chromosomal electroporation described previously (Katashkina JI et al., BMC Mol Biol. 2009; 10:34). . It was verified by PCR that the ⁇ ydcI :: Ptac-MG-ppa variant was integrated into the chromosome of the SWITCH-PphoC-1 (S) strain using a primer consisting of the nucleotide sequences of SEQ ID NO: 182 and SEQ ID NO: 183. In this way, E.I.
  • Ptac-MG-ppa strain which is an isoprene-producing strain into which the ppa gene derived from coi MG1655 was introduced.
  • Genomic DNA was isolated from the ananatis SC17 (0) derivative, and the SWITCH-PphoC-1 (S) strain was prepared according to the method of chromosome electroporation described previously (Katashkina JI et al., BMC Mol Biol. 2009; 10:34). Electroporated.
  • a ⁇ ydcI variant was verified by PCR using primers having the nucleotide sequences of SEQ ID NO: 181 and SEQ ID NO: 182, and then a control isoprene-producing strain SWITCH-PphoC-1 (S) ⁇ ydcI was selected.
  • FIG. 27 shows a photograph of the gel near the amount of PPA protein.
  • SWITCH-PphoC-1 (S) ydcI The obtained isoprene-producing strains were named SWITCH-PphoC-1 (S) ydcI :: MG-PPA / ispSM, SWITCH-PphoC-1 (S) ⁇ ydcI / ispSM (Control), respectively.
  • SWITCH-PphoC-1 (S) ydcI Measurement of isoprene synthase activity
  • SWITCH-PphoC-1 (S) ydcI MG-PPA / ispSM strain
  • SWITCH-PphoC-1 (S) ⁇ ydcI / ispSM (Control) strain each contain chloramphenicol
  • the LB plate was evenly spread and cultured at 34 ° C. for 16-24 hours. From the resulting plate, 1 platinum loop of microbial cells is inoculated into 1 mL of PS medium in a headspace vial (22 mL CLEAR CLIMP TOP Vial cat # B0104236 manufactured by Perkin Elmer), with cap butyl rubber septum for headspace vial (Perkin Elmer). After sealing with CRIMPS cat # B0104240 manufactured by the company, the cells were cultured at 30 ° C. for 48 hours with a reciprocating shake culture apparatus (120 rpm).
  • composition of the PS medium is as described in Table 23.
  • Example 8 Production of polyisoprene Isoprene is recovered in a liquid nitrogen cold trap by passing through a fermentation exhaust. The recovered isoprene is placed in a well-dried 100 mL glass container under a nitrogen atmosphere with 35 g of hexane (Sigma-Aldrich), 10 g of silica gel (Sigma-Aldrich, catalog number 236772), and 10 g of alumina (Sigma-Aldrich). , Catalog number 267740). The resulting mixture is left at room temperature for 5 hours. The supernatant is then collected and added to a well-dried 50 mL glass container.
  • Example 9 Production of Rubber Composition A rubber composition formulated as shown in Table 25 is prepared and vulcanized at 145 ° C. for 35 minutes.
  • the isoprene synthase-expressing microorganism of the present invention is useful for the production of isoprene.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明は、イソプレン生産能を向上させる生物学的方法を提供する。具体的には、本発明は、ピロリン酸ホスファターゼの発現が向上したイソプレンシンターゼ発現微生物、および当該イソプレンシンターゼ発現微生物を培養培地中で培養してイソプレンモノマーを生成することを含む、イソプレンモノマーの製造方法を提供する。当該微生物は、メチルエリスリトールリン酸経路によるジメチルアリル二リン酸の合成能、またはメバロン酸経路によるジメチルアリル二リン酸の合成能を有していてもよい。

Description

イソプレンモノマーの製造方法
 本発明は、ピロリン酸ホスファターゼの発現が向上したイソプレンシンターゼ発現微生物、および当該イソプレンシンターゼ発現微生物を用いるイソプレンモノマーの製造方法などに関する。
 タイヤ業界及びゴム工業界において、天然ゴムは非常に重要な原材料である。新興国を中心とするモータリゼーションで今後需要が拡大していく中で、森林伐採規制やパームとの競合で農園拡大は容易でないことから天然ゴムの収量増加は見込みにくく、需給バランスはタイトになっていくことが予想される。天然ゴムに代わる材料として、合成ポリイソプレンがあるが、原料モノマー(イソプレン(2-メチル-1,3-ブタジエン))は、主にナフサのクラッキングにより得られたC5留分から抽出することで得られる。しかし近年、クラッカーのフィードのライト化に伴い、イソプレンの生産量は減少傾向にあり、供給が懸念されている。また、近年では石油価格の変動の影響も強く受けることから、イソプレンモノマーの安定した確保のために、非石油資源由来でイソプレンを安価に生産する系の確立が要望されている。
 このような要望に対して、単離された葛又はポプラ由来のイソプレンシンターゼ遺伝子及びこれらの変異体を発酵生産用の菌に組み込むことにより得られる形質転換体を用いて、イソプレンモノマーを生産する方法が開示されている(特許文献1~4参照)。
 イソプレンシンターゼの反応機構も既に明らかになっており、DMAPP(dimethylallyl pyrophosphate)を基質として、ピロリン酸とイソプレンを生成する(非特許文献1)。また、生成物であるピロリン酸がイソプレンシンターゼの活性に及ぼす影響として、柳由来(Salix discolor L.)のイソプレンシンターゼの酵素活性が、1mMのピロリン酸ナトリウムにより低下する事が知られていた(非特許文献2)。発酵生産菌として幅広く利用されているEscherichia coliの野生株などでは、ピロリン酸ホスファターゼ活性を有するタンパク質により、細胞内のピロリン酸濃度が0.5mM程度に維持されている事が知られている(非特許文献3)。
 しかしながら、イソプレンを過剰に生産する微生物内のピロリン酸濃度に関する知見は無い。したがって、このような微生物においてピロリン酸がイソプレンシンターゼの活性を低下させるかについては未知であり、また、イソプレン生産能に及ぼすピロリン酸の影響についても未知であった。
特表2011-505841号公報 特表2011-518564号公報 国際公開第2010/031076号 国際公開第2014/052054号
Gary M. Silver and Ray Fall, Plant Physiol.,(1991) 97:1588-1591 Mary C. wildermuth and Ray Fall, Plant Physiol.,(1998) 116:1111-1123 Kukko-Kalske E., et al., J.Bacteriol.,(1989) 171:4498-4500
 本発明は、イソプレン生産に優れる生物学的方法を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意研究した結果、イソプレンシンターゼ発現微生物においてピロリン酸ホスファターゼの発現量を向上させることにより、イソプレンモノマー生産能が向上することなどを見出し、本願発明を完成するに至った。
 すなわち、本発明は、以下のとおりである。
〔1〕ピロリン酸ホスファターゼの発現が向上した、イソプレンシンターゼ発現微生物。
〔2〕前記微生物が、イソプレンシンターゼ発現ベクターで形質転換された微生物である。〔1〕のイソプレンシンターゼ発現微生物。
〔3〕ピロリン酸ホスファターゼが前記微生物に対して同種である、〔1〕または〔2〕のイソプレンシンターゼ発現微生物。
〔4〕ピロリン酸ホスファターゼの発現の向上が、前記微生物に固有のピロリン酸ホスファターゼのプロモーター領域の改変によるものである、〔3〕のイソプレンシンターゼ発現微生物。
〔5〕ピロリン酸フォスファターゼの発現の向上が、ピロリン酸ホスファターゼ遺伝子の染色体でのコピー数の上昇によるものである、〔1〕~〔4〕のいずれかのイソプレンシンターゼ発現微生物。
〔6〕前記微生物が、腸内細菌科に属する微生物に由来する、〔1〕~〔5〕のいずれかのイソプレンシンターゼ発現微生物。
〔7〕前記微生物が、メチルエリスリトールリン酸経路によるジメチルアリル二リン酸の合成能を有する、〔1〕~〔6〕のいずれかのイソプレンシンターゼ発現微生物。
〔8〕前記微生物がエシェリヒア属細菌である、〔7〕のイソプレンシンターゼ発現微生物。
〔9〕前記エシェリヒア属細菌がエシェリヒア・コリである、〔8〕のイソプレンシンターゼ発現微生物。
〔10〕前記微生物が、メバロン酸経路によるジメチルアリル二リン酸の合成能を有する、〔1〕~〔7〕のいずれかのイソプレンシンターゼ発現微生物。
〔11〕前記微生物がパントエア属細菌である、〔1〕~〔7〕および〔10〕のいずれかのイソプレンシンターゼ発現微生物。
〔12〕前記パントエア属細菌がパントエア・アナナティスである、〔11〕のイソプレンシンターゼ発現微生物。
〔13〕〔1〕~〔12〕のいずれかのイソプレンシンターゼ発現微生物を培養培地中で培養してイソプレンモノマーを生成することを含む、イソプレンモノマーの製造方法。
〔14〕以下(I)および(II)を含む、イソプレンポリマーの製造方法:
(I)〔13〕の方法によりイソプレンモノマーを生成すること;
(II)イソプレンモノマーを重合してイソプレンポリマーを生成すること。
〔15〕〔13〕の方法により製造されるイソプレンモノマーに由来するポリマー。
〔16〕〔15〕のポリマーを含むゴム組成物。
〔17〕〔16〕のゴム組成物を使用することにより製造されるタイヤ。
 本発明のイソプレンシンターゼ発現微生物は、イソプレン生産能に優れ、また、グルコース収率も顕著に改善される。
 本発明のイソプレンシンターゼ発現微生物はまた、ピロリン酸ホスファターゼの発現の向上に伴って、その生育も改善される(例、図13を参照)。
図1は、SDS-PAGEによるPPAの発現解析を示す図である。レーン1,2のControlはMG1655 Ptac-KKDyI株から調製したサンプルを意味する。レーン3,4のPtac-ppaは、MG1655 Ptac-KKDyI Ptac-ppa株から調製したサンプルを意味する。Mはタンパク質分子量マーカーを意味する。 図2は、種々の植物の葉乾燥物の単位重量あたりのイソプレン発生量を示す図である。 図3は、種々の植物の葉から抽出された総タンパク質量あたりのイソプレン発生量を示す図である。 図4は、染色体固定したメバロン酸経路下流とその周辺領域の概要を示す図である。 図5は、染色体におけるtacプロモーターで支配されたメバロン酸経路下流とその周辺領域の概要を示す図である。 図6は、pAH162-Para-mvaES プラスミドのマップを示す図である。 図7は、pAH162-KKDyI-ispS(K)のマップを示す図である。 図8は、pAH162-Ptac-ispS(M)-mvk(Mma)のマップを示す図である。 図9は、ΔampC::KKDyI-ispS(K)染色体改変体の構築を示す図である。A)は、attLphi80-kan-attRphi80 PCR生成DNAフラグメントによるampC遺伝子のλRed依存性置換を示す。B)は、pAH162-KKDyI-ispS(K)プラスミドのphi80Int依存性組込みを示す。C)は、pAH162-KKDyI-ispS(K)のベクター部分のphi80Int/Xis依存性除去を示す。 図10は、ΔampH::Para-mvaES染色体改変体の構築を示す図である。A)は、attLphi80-kan-attRphi80 PCR生成DNAフラグメントによるampH遺伝子のλRed依存性置換を示す。B)は、pAH162-Para-mvaESプラスミドのphi80Int依存性組込みを示す。C)は、pAH162-Para-mvaESのベクター部分のphi80Int/Xis依存性除去を示す。 図11は、pEA320メガプラミドのΔcrt::KKDyI-ispS(K)改変体の構築を示す図である。A)は、pEA320メガプラスミド中に配置されたP. ananatis crtローカスの構造を示す図である。B)は、attLphi80-kan-attRphi80 PCR生成DNAフラグメントによるcrtオペロンのλRed依存性置換を示す。C)は、pAH162-Ptac-ispS(M)-mvk(Mma)プラスミドのphi80Int依存性組込みを示す。D)は、pAH162-Ptac-ispS(M)-mvk(Mma)のベクター部分のphi80Int/Xis依存性除去を示す。 図12は、AG10265株におけるピロリン酸ホスファターゼのタンパク質発現量を示す図である。21.7kDはPAJ_2344(ppa-1)遺伝子によりコードされるピロリン酸ホスファターゼの想定分子量を示し、19.8kDはPAJ_2736(ppa-2)遺伝子遺伝子によりコードされるピロリン酸ホスファターゼの想定分子量を示す。レーン1:AG10265株由来可溶性タンパク質;レーン2~4:AG10265 Ptac-φ10-ppa1株由来可溶性タンパク質;レーン5~6:AG10265 Ptac-φ10-ppa2株由来可溶性タンパク質;M:分子量マーカー。 図13は、P.ananatisイソプレン生産菌のジャー培養における生育変化を示す図である。 図14は、P.ananatisイソプレン生産菌のジャー培養におけるイソプレン生産量を示す図である。バッチ(Batch)当たりのイソプレン生産量(mg)を記す。 図15は、pAH162-mvaESのマップを示す図である。 図16は、pAH162-MCS-mvaES染色体固定用プラスミドを示す図である。 図17は、PphoCの転写制御下にあるmvaES遺伝子を保持する染色体固定用プラスミドのセットを示す図である。 図18は、pAH162-λattL-KmR-λattR組込み型ベクターの構築を示す図である。 図19は、pAH162-Ptac組込み型発現ベクターを示す図である。 図20は、化学合成KDyIオペロン中のコドン最適化を示す図である。 図21は、最適化コドンを有するKDyIオペロンを保持する、(A)pAH162-Tc-Ptac-KDyI、および(B)pAH162-Km-Ptac-KDyIの組込み型プラスミドを示す図である。 図22は、M.paludicola由来のメバロン酸キナーゼ遺伝子を保持する組込み型プラスミドを示す図である。 図23は、(A)ΔampC::attBphi80、(B)ΔampH::attBphi80、および(C)Δcrt::attBphi80のゲノム改変体のマップを示す図である。 図24は、(A)Δcrt::pAH162-Ptac-mvk(X)、および(B)Δcrt::Ptac-mvk(X)のゲノム改変物のマップを示す図である。 図25は、(A)ΔampH::pAH162-Km-Ptac-KDyI、及び(B)ΔampC::pAH162-Km-Ptac-KDyIの染色体改変物のマップを示す図である。 図26は、(A)ΔampH::pAH162-Para-mvaES、および(B)ΔampC::pAH162-Para-mvaESの染色体改変物のマップを示す図である。 図27は、SWITCH-PphoC-1(S)ΔydcI::Ptac-MG-ppaにおけるPPAの発現確認を示す図である。ContはSWITCH-PphoC-1(S)ΔydcI株由来サンプル、MG-ppaはSWITCH-PphoC-1(S)ΔydcI::Ptac-MG-ppa株由来サンプルを泳動したことを表す。
 本発明は、ピロリン酸ホスファターゼの発現が向上した、イソプレン発現微生物を提供する。
 ピロリン酸ホスファターゼは、ピロリン酸を2分子のリン酸に加水分解する酵素である。ピロリン酸ホスファターゼとしては、例えば、宿主として後述する微生物に由来するピロリン酸ホスファターゼが挙げられる。ピロリン酸ホスファターゼとしてはまた、腸内細菌科に属する微生物、特に、後述する微生物のうち腸内細菌科に属する微生物に由来するピロリン酸ホスファターゼも好ましい。
 具体的には、ピロリン酸ホスファターゼは、配列番号136、配列番号137、または配列番号138のアミノ酸配列からなるタンパク質であってもよい。
 ピロリン酸ホスファターゼはまた、配列番号136、配列番号137、または配列番号138のアミノ酸配列に対して70%以上のアミノ酸配列同一性を示すアミノ酸配列を含み、かつピロリン酸ホスファターゼ活性を有するタンパク質であってもよい。アミノ酸配列同一性%は、例えば、75%以上、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上または99%以上であってもよい。ピロリン酸ホスファターゼ活性とは、ピロリン酸を2分子のリン酸に加水分解する活性をいう。
 ピロリン酸ホスファターゼはさらに、配列番号136、配列番号137、または配列番号138のアミノ酸配列において1個もしくは数個のアミノ酸残基が変異しているアミノ酸配列を含み、かつピロリン酸ホスファターゼ活性を有するタンパク質であってもよい。アミノ酸残基の変異としては、例えば、アミノ酸残基の欠失、置換、付加および挿入が挙げられる。1個もしくは数個のアミノ酸残基の変異は、アミノ酸配列中の1つの領域に導入されてもよいが、複数の異なる領域に導入されてもよい。用語「1個もしくは数個」は、タンパク質の立体構造や活性を大きく損なわない範囲を示すものである。タンパク質の場合における用語「1もしくは数個」が示す数は、例えば、1~50個、好ましくは1~40個、より好ましくは1~30個、1~20個、1~10個または1~5個である。
 ピロリン酸ホスファターゼ活性は、同一条件(例、緩衝液、濃度、温度、反応時間)で測定された場合、配列番号136、配列番号137、または配列番号138のアミノ酸配列からなるタンパク質のピロリン酸ホスファターゼ活性の50%以上、60%以上、70%以上、80%以上、90%以上または95%以上の活性を有することが好ましい。
 アミノ酸配列の同一性は、例えばKarlinおよびAltschulによるアルゴリズムBLAST(Pro.Natl.Acad.Sci.USA,90,5873(1993))、PearsonによるFASTA(MethodsEnzymol.,183,63(1990))を用いて決定することができる。このアルゴリズムBLASTに基づいて、BLASTPとよばれるプログラムが開発されているので(http://www.ncbi.nlm.nih.gov参照)、これらのプログラムをデフォルト設定で用いて、アミノ酸配列の同一性を計算してもよい。また、アミノ酸配列の同一性としては、例えば、Lipman-Pearson法を採用している株式会社ゼネティックスのソフトウェアGENETYX Ver7.0.9を使用し、ORFにコードされるポリペプチド部分全長を用いて、Unit Size to Compare=2の設定でSimilarityをpercentage計算させた際の数値を用いてもよい。アミノ酸配列の同一性として、これらの計算で導き出される値のうち、最も低い値を採用してもよい。
 ピロリン酸ホスファターゼは、目的活性を保持し得る限り、触媒ドメイン中の部位、および触媒ドメイン以外の部位に変異が導入されていてもよい。目的活性を保持し得る、変異が導入されてもよいアミノ酸残基の位置は、当業者に自明である。具体的には、当業者は、1)同種の活性を有する複数のタンパク質のアミノ酸配列を比較し、2)相対的に保存されている領域、および相対的に保存されていない領域を明らかにし、次いで、3)相対的に保存されている領域および相対的に保存されていない領域から、それぞれ、機能に重要な役割を果たし得る領域および機能に重要な役割を果たし得ない領域を予測できるので、構造・機能の相関性を認識できる。したがって、当業者は、ピロリン酸ホスファターゼのアミノ酸配列において変異が導入されてもよいアミノ酸残基の位置を特定できる。
 アミノ酸残基の変異が置換である場合、アミノ酸残基のこのような置換は、保存的置換であってもよい。用語「保存的置換」とは、所定のアミノ酸残基を、類似の側鎖を有するアミノ酸残基で置換することをいう。類似の側鎖を有するアミノ酸残基のファミリーは、当該分野で周知である。例えば、このようなファミリーとしては、塩基性側鎖を有するアミノ酸(例、リジン、アルギニン、ヒスチジン)、酸性側鎖を有するアミノ酸(例、アスパラギン酸、グルタミン酸)、非荷電性極性側鎖を有するアミノ酸(例、アスパラギン、グルタミン、セリン、スレオニン、チロシン、システイン)、非極性側鎖を有するアミノ酸(例、グリシン、アラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトファン)、β位分岐側鎖を有するアミノ酸(例、スレオニン、バリン、イソロイシン)、芳香族側鎖を有するアミノ酸(例、チロシン、フェニルアラニン、トリプトファン、ヒスチジン)、ヒドロキシル基(例、アルコール性、フェノール性)含有側鎖を有するアミノ酸(例、セリン、スレオニン、チロシン)、および硫黄含有側鎖を有するアミノ酸(例、システイン、メチオニン)が挙げられる。好ましくは、アミノ酸の保存的置換は、アスパラギン酸とグルタミン酸との間での置換、アルギニンとリジンとヒスチジンとの間での置換、トリプトファンとフェニルアラニンとの間での置換、フェニルアラニンとバリンとの間での置換、ロイシンとイソロイシンとアラニンとの間での置換、およびグリシンとアラニンとの間での置換であってもよい。
 イソプレンシンターゼ発現微生物におけるピロリン酸ホスファターゼの発現の向上は、イソプレンシンターゼ発現微生物において発現されるピロリン酸ホスファターゼの量を増加させる任意の様式で行うことができる。イソプレンシンターゼ発現微生物において発現が向上されるべきピロリン酸ホスファターゼは、イソプレンシンターゼおよび/またはイソプレンシンターゼ発現微生物に対して同種(homologous)または異種(heterologous)のピロリン酸ホスファターゼである。イソプレンシンターゼ発現微生物に対して同種(homologous)のピロリン酸ホスファターゼは、イソプレンシンターゼ発現微生物に固有(inherent)のピロリン酸ホスファターゼであってもよく、または外来性(foreign)のピロリン酸ホスファターゼであってもよい。イソプレンシンターゼ発現微生物において発現が向上されるべきピロリン酸ホスファターゼはまた、1種または複数種(例、2または3個)であってもよい。
 イソプレンシンターゼ発現微生物におけるピロリン酸ホスファターゼの発現の向上は、例えば、イソプレンシンターゼ発現微生物に固有のピロリン酸ホスファターゼ遺伝子の周辺領域を改変することにより、またはピロリン酸ホスファターゼ発現ベクターでイソプレンシンターゼ発現微生物を形質転換して、ピロリン酸ホスファターゼをコードするポリヌクレオチドを含む発現単位をイソプレンシンターゼ発現微生物に導入することにより、行われてもよい。本発明で用いられる発現ベクターはまた、宿主細胞に導入された場合に、宿主細胞のゲノムとの相同組換えを可能にする1以上の領域をさらに含んでいてもよい。例えば、本発明で用いられる発現ベクターは、所定のポリヌクレオチドを含む発現単位が一対の相同領域(例、宿主ゲノム中の特定配列に対して相同なホモロジーアーム、loxP、FRT)間に位置するように設計されてもよい。発現単位とは、発現されるべき所定のポリヌクレオチドおよびそれに作動可能に連結されたプロモーター(例、同種プロモーター、異種プロモーター)を含む、当該ポリヌクレオチドの転写、ひいては当該ポリヌクレオチドによりコードされるポリペプチドの産生を可能にする単位をいう。発現単位は、ターミネーター、リボゾーム結合部位、および薬剤耐性遺伝子等のエレメントをさらに含んでいてもよい。
 本発明で用いられる発現ベクターとしては、例えば、宿主においてタンパク質を発現させるベクターが挙げられる。発現ベクターはまた、プラスミド、ウイルスベクター、ファージ、または人工染色体であってもよい。発現ベクターはさらに、DNAベクターまたはRNAベクターであってもよい。発現ベクターは、組込み型(integrative)ベクターであっても、非組込み型ベクターであってもよい。組込み型ベクターは、その全体が宿主細胞のゲノムに組み込まれるタイプのベクターであってもよい。あるいは、組込み型ベクターは、その一部(例、上述の発現単位)のみが宿主細胞のゲノムに組み込まれるタイプのベクターであってもよい。
 ピロリン酸ホスファターゼ遺伝子について改変されるべき周辺領域としては、例えば、プロモーター領域、シャインダルガノ(SD)配列、RBSと開始コドンとの間のスペーサー領域(特に、開始コドンのすぐ上流の配列(5’-UTR))が挙げられる。改変としては、例えば、上記周辺領域における1~複数個(例、1~500、1~300、1~200または1~100個)のヌクレオチドの置換、挿入または欠失が挙げられる。好ましくは、周辺領域の改変は、プロモーター領域の置換、および必要に応じてSD配列の置換である。置換後に導入されるべきプロモーターとしては、例えば、tacプロモーター(Ptac)、trcプロモーター(Ptrc)、lacプロモーター(Plac)等の誘導プロモーターが挙げられる。SD配列の置換後に導入されるべき配列としては、例えば、ファージT7由来の遺伝子10のRBSが挙げられる(Olins P. O. et al,Gene,1988,73,227-235)。
 本発明においては、ピロリン酸フォスファターゼ遺伝子の染色体でのコピー数が上昇することにより、活性が強化されていることが望ましい。染色体上に複数コピー、望ましくは2コピー以上、さらに好ましくは3コピー以上搭載されていることが好ましい。コピー数の上昇は、ピロリン酸フォスファターゼ遺伝子を搭載するプラスミドを宿主細胞に導入することにより達成できる。また、コピー数の上昇は、トランスポゾン、Muファ-ジ等を利用して、宿主のゲノム上にピロリン酸フォスファターゼ遺伝子を転移させることによっても達成できる。
 イソプレンシンターゼ発現微生物は、イソプレンシンターゼを産生する微生物である。好ましくは、イソプレンシンターゼ発現微生物は、イソプレンシンターゼ発現ベクターで宿主細胞を形質転換して、イソプレンシンターゼをコードするポリヌクレオチドを含む発現単位を宿主細胞に導入することにより得られる微生物である。発現単位および発現ベクターは、上述のとおりである。イソプレンシンターゼ発現微生物においては、複数コピー、望ましくは2コピー以上、さらに好ましくは3コピー以上のイソプレンシンターゼ遺伝子がその染色体上に搭載されていることが好ましい。このようなイソプレンシンターゼ発現微生物は、イソプレンシンターゼ発現ベクターを宿主に導入することにより得ることができる。また、このようなイソプレンシンターゼ発現微生物は、トランスポゾン、Muファ-ジ等を利用して、宿主のゲノム上にイソプレンシンターゼ遺伝子を転移させることによっても得ることができる。宿主細胞は、イソプレンシンターゼに対して同種であっても異種であってもよいが、異種であることが好ましい。イソプレンシンターゼ発現ベクター中に含まれるイソプレンシンターゼ遺伝子としては、例えば、葛(Pueraria montana var.lobata)、ポプラ(Populus alba x Populus tremula)、ムクナ(Mucuna bracteata)、ヤナギ(Salix)、ニセアカシア(Robinia pseudoacacia)、フジ(Wisterria)、ユーカリ(Eucalyptus globulus)、茶ノ木(Melaleuca alterniflora)由来イソプレンシンターゼ遺伝子等が挙げられる(例、Evolution 67 (4),1026-1040(2013)を参照)。イソプレンシンターゼ発現ベクターは、組込み型(integrative)ベクターであっても、非組込み型ベクターであってもよい。発現ベクターにおいて、イソプレンシンターゼをコードする遺伝子は、構成型プロモーターまたは誘導型プロモーター(例、後述の増殖促進剤逆依存プロモーター)の制御下に配置され得る。好ましくは、イソプレンシンターゼをコードする遺伝子は、構成型プロモーターの制御下に配置され得る。構成型プロモーターとしては、例えば、tacプロモーター、lacプロモーター、trpプロモーター、trcプロモーター、T7プロモーター、T5プロモーター、T3プロモーター、およびSP6プロモーターが挙げられる。
 一実施形態では、イソプレンシンターゼは、例えば、以下のタンパク質であってもよい:
1)葛に由来し得る全長タンパク質(配列番号8のアミノ酸配列);
2)上記1)の全長タンパク質から葉緑体移行シグナルが除去されたタンパク質(配列番号8のアミノ酸配列において1~45番目のアミノ酸残基が除去されたアミノ酸配列);
3)ポプラに由来し得る全長タンパク質(配列番号11のアミノ酸配列);
4)上記3)の全長タンパク質から葉緑体移行シグナルが除去されたタンパク質(配列番号11のアミノ酸配列において1~37番目のアミノ酸残基が除去されたアミノ酸配列);
5)ムクナに由来し得る全長タンパク質(配列番号7のアミノ酸配列);および
6)上記5)の全長タンパク質から葉緑体移行シグナルが除去されたタンパク質(配列番号146のアミノ酸配列において1~44番目のアミノ酸残基が除去されたアミノ酸配列)。
 好ましい実施形態では、イソプレンシンターゼは、葛に由来し得る。別の好ましい実施形態では、イソプレンシンターゼは、ポプラに由来し得る。さらに別の好ましい実施形態では、イソプレンシンターゼは、ムクナに由来し得る。
 別の実施形態では、イソプレンシンターゼは、上記1)~6)のタンパク質のアミノ酸配列に対して70%以上のアミノ酸配列同一性を示すアミノ酸配列を含み、かつイソプレンシンターゼ活性を有するタンパク質である。アミノ酸配列同一性%は、例えば、75%以上、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上または99%以上であってもよい。アミノ酸配列同一性%は、上述したとおり決定することができる。イソプレンシンターゼ活性とは、ジメチルアリル二リン酸(DMAPP)からイソプレンを生成する活性をいう。
 さらに別の実施形態では、イソプレンシンターゼは、上記1)~6)のタンパク質のアミノ酸配列において1個もしくは数個のアミノ酸残基が変異しているアミノ酸配列を含み、かつイソプレンシンターゼ活性を有するタンパク質である。アミノ酸残基の変異としては、例えば、アミノ酸残基の欠失、置換、付加および挿入が挙げられる。1個もしくは数個のアミノ酸残基の変異は、アミノ酸配列中の1つの領域に導入されてもよいが、複数の異なる領域に導入されてもよい。用語「1個もしくは数個」は、タンパク質の立体構造や活性を大きく損なわない範囲を示すものである。タンパク質の場合における用語「1もしくは数個」が示す数は、例えば、1~100個、好ましくは1~80個、より好ましくは1~50個、1~30個、1~20個、1~10個または1~5個である。
 イソプレンシンターゼ活性は、同一条件(例、緩衝液、濃度、温度、反応時間)で測定された場合、上記1)~6)のタンパク質のイソプレンシンターゼ活性の50%以上、60%以上、70%以上、80%以上、90%以上または95%以上の活性を有することが好ましい。また、イソプレンシンターゼは、安定性の観点から、所定の緩衝液〔例、50mM Tris-HCl(pH8.0)、0,15mM MgCl溶液〕中で4℃にて48時間保存した場合に、残存活性が30%以上、40%以上、50%以上、60%以上または65%以上であることが好ましい。
 イソプレンシンターゼは、目的活性を保持し得る限り、触媒ドメイン中の部位、および触媒ドメイン以外の部位に変異が導入されていてもよい。目的活性を保持し得る、変異が導入されてもよいアミノ酸残基の位置は、当業者に自明である。具体的には、当業者は、1)同種の活性を有する複数のタンパク質のアミノ酸配列を比較し、2)相対的に保存されている領域、および相対的に保存されていない領域を明らかにし、次いで、3)相対的に保存されている領域および相対的に保存されていない領域から、それぞれ、機能に重要な役割を果たし得る領域および機能に重要な役割を果たし得ない領域を予測できるので、構造・機能の相関性を認識できる。したがって、当業者は、イソプレンシンターゼのアミノ酸配列において変異が導入されてもよいアミノ酸残基の位置を特定できる。アミノ酸残基が置換により変異される場合、アミノ酸残基の置換は、上述したような保存的置換であってもよい。
 好ましくは、イソプレンシンターゼ発現微生物は、イソプレンシンターゼに加えて、メバロン酸キナーゼを発現する微生物であってもよい。したがって、イソプレンシンターゼ発現微生物は、メバロン酸キナーゼ発現ベクターが宿主に導入されていてもよい。メバロン酸キナーゼ発現ベクターにより宿主に導入されるべきメバロン酸キナーゼ遺伝子としては、例えば、メタノサルシナ・マゼイ(Methanosarcina mazei)等のメタノサルシナ(Methanosarcina)属、メタノセラ・パルディコラ(Methanocella paludicola)等のメタノセラ(Methanocella)属、コリネバクテリウム・ヴァリアビル(Corynebacterium variabile)等のコリネバクテリウム(Corynebacterium)属、メタノセタ・コンキリ(Methanosaeta concilii)等のメタノセタ(Methanosaeta)属、およびニトロソプミラス・マリチマス(Nitrosopumilus maritimus)等のニトロソプミラス(Nitrosopumilus)属に属する微生物の遺伝子が挙げられる。メバロン酸キナーゼ発現ベクターは、組込み型(integrative)ベクターであっても、非組込み型ベクターであってもよい。発現ベクターにおいて、メバロン酸キナーゼをコードする遺伝子は、上述したような構成型プロモーター、または誘導型プロモーター(例、後述の増殖促進剤逆依存プロモーター)の制御下に配置され得る。好ましくは、メバロン酸キナーゼをコードする遺伝子は、構成型プロモーターの制御下に配置され得る。
 本発明で用いられるイソプレンシンターゼ発現微生物(宿主細胞)としては、細菌又は真菌が好ましい。細菌としては、グラム陽性菌であってもグラム陰性菌であってもよい。イソプレンシンターゼ発現微生物としては、腸内細菌科に属する微生物、特に後述する微生物のうち腸内細菌科に属する微生物もまた好ましい。
 グラム陽性細菌としては、バシラス(Bacillus)属細菌、リステリア(Listeria)属細菌、スタフィロコッカス(Staphylococcus)属細菌、ストレプトコッカス(Streptococcus)属細菌、エンテロコッカス(Enterococcus)属細菌、クロストリジウム(Clostridium)属細菌、コリネバクテリウム(Corynebacterium)属細菌、ストレプトマイセス(Streptomyces)属細菌等が挙げられ、バシラス(Bacillus)属細菌、コリネバクテリウム(Corynebacterium)属細菌が好ましい。
 バシラス(Bacillus)属細菌としては、枯草菌(Bacillus subtilis)、炭疽菌(Bacillus anthracis)、セレウス菌(Bacillus cereus)等が挙げられ、枯草菌(Bacillus subtilis)がより好ましい。
 コリネバクテリウム(Corynebacterium)属細菌としては、コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)、コリネバクテリウム・エフィシエンス(Corynebacterium efficiens)、コリネバクテリウム・カルナエ(Corynebacterium callunae)等が挙げられ、コリネバクテリウム・グルタミカムがより好ましい。
 グラム陰性細菌としては、エシェリヒア(Escherichia)属細菌、パントエア(Pantoea)属細菌、サルモネラ(Salmonella)属細菌、ビブリオ(Vivrio)属細菌、セラチア(Serratia)属細菌、エンテロバクター(Enterobacter)属細菌等が挙げられ、エシェリヒア(Escherichia)属細菌、パントエア(Pantoea)属細菌、エンテロバクター(Enterobacter)属細菌が好ましい。
 エシェリヒア(Escherichia)属細菌としては、エシェリヒア・コリ(Escherichia coli)が好ましい。
 パントエア(Pantoea)属細菌としては、パントエア・アナナティス(Pantoea ananatis)、パントエア・スチューアルティ(Pantoea stewartii)、パントエア・アグロメランス(Pantoea agglomerans)、パントエア・シトレア(Pantoea citrea)等が挙げられ、パントエア・アナナティス(Pantoea ananatis)、パントエア・シトレア(Pantoea citrea)が好ましい。また、パントエア属細菌としては、欧州特許出願公開0952221号に例示された株を使用してもよい。パントエア属細菌の代表的な株としては、例えば、欧州特許出願公開0952221号に開示されるパントエア・アナナティスAJ13355株(FERM BP-6614)、パントエア・アナナティスAJ13356株(FERM BP-6615)、およびパントエア・アナナティスSC17(0)株が挙げられる。SC17(0)は、2005年9月21にロシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオーガニズム(Russian National Collection of Industrial Microorganisms(VKPM),GNII Genetika)(住所:Russia,117545 Moscow,1 Dorozhny proezd.1)に受託番号VKPM B-9246のもとに寄託されている。
 エンテロバクター(Enterobacter)属細菌としては、エンテロバクター・アグロメランス(Enterobacter agglomerans)、エンテロバクター・アエロゲネス(Enterobacter aerogenes)等が挙げられ、エンテロバクター・アエロゲネス(Engerobacter aerogenes)が好ましい。また、エンテロバクター属細菌としては、欧州特許出願公開0952221号に例示された菌株を使用してもよい。エンテロバクター属細菌の代表的な株としては、例えば、エンテロバクター・アグロメランスATCC12287株、エンテロバクター・アエロゲネスATCC13048株、エンテロバクター・アエロゲネスNBRC12010株(Biotechnol Bioeng. 2007 Mar 27;98(2):340-348)、エンテロバクター・アエロゲネスAJ110637(FERM BP-10955)株等が挙げられる。エンテロバクター・アエロゲネスAJ110637株は、2007年8月22日付で独立行政法人 産業技術総合研究所 特許生物寄託センター(〒305-8566 日本国茨城県つくば市東1丁目1番地1 中央第6)に受託番号FERM P-21348として寄託され、2008年3月13日にブダペスト条約に基づく国際寄託に移管され、FERM BP-10955の受領番号が付与されている。
 真菌としては、サッカロミセス(Saccharomyces)属、シゾサッカロミセス(Schizosaccharomyces)属、ヤロウイア(Yarrowia)属、トリコデルマ(Trichoderma)属、アスペルギルス(Aspergillus)属、フザリウム(Fusarium)属、ムコール(Mucor)属の微生物等が挙げられ、サッカロミセス(Saccharomyces)属、シゾサッカロミセス(Schizosaccharomyces)属、ヤロウイア(Yarrowia)属、またはトリコデルマ(Trichoderma)属の微生物が好ましい。
 サッカロミセス(Saccharomyces)属の微生物としては、サッカロミセス・カールスベルゲンシス(Saccharomyces carlsbergensis)、サッカロミセス・セレビシエー(Saccharomyces cerevisiae)、サッカロミセス・ディアスタティクス(Saccharomyces diastaticus)、サッカロミセス・ドウグラシー(Saccharomyces douglasii)、サッカロミセス・クルイベラ(Saccharomyces kluyveri)、サッカロミセス・ノルベンシス(Saccharomyces norbensis)、サッカロミセス・オビフォルミス(Saccharomyces oviformis)が挙げられ、サッカロミセス・セレビシエー(Saccharomyces cerevisiae)が好ましい。
 シゾサッカロミセス(Schizosaccharomyces)属の微生物としては、シゾサッカロミセス・ポンベ(Schizosaccharomyces pombe)が好ましい。
 ヤロウイア(Yarrowia)属の微生物としては、ヤロウィア・リポリティカ(Yarrowia lipolytica)が好ましい。
 トリコデルマ(Trichoderma)属の微生物としては、トリコデルマ・ハルジアヌム(Ttichoderma harzianum)、トリコデルマ・コニンギー(Trichoderma koningii)、トリコデルマ・ロンギフラキアム(Trichoderma longibrachiatum)、トリコデルマ・リーゼイ(Trichoderma reesei)、トリコデルマ・ビリデ(Trichoderma viride)が挙げられ、トリコデルマ・リーゼイ(Trichoderma reesei)が好ましい。
 本発明のイソプレンシンターゼ発現微生物は、さらにイソプレンシンターゼの基質であるジメチルアリル二リン酸(DMAPP)を合成する経路が強化されていてもよい。このような強化のため、イソペンテニル二リン酸(IPP)からジメチルアリル二リン酸(DMAPP)への変換能を有するイソペンテニル二リン酸デルタイソメラーゼの発現ベクターが、本発明のイソプレンシンターゼ発現微生物に導入されてもよい。また、IPPおよび/またはDMAPPの生成に関連するメバロン酸経路および/またはメチルエリスリトールリン酸経路に関与する1以上の酵素の発現ベクターが、本発明のイソプレンシンターゼ発現微生物に導入されてもよい。このような酵素の発現ベクターは、組込み型ベクターであっても、非組込み型ベクターであってもよい。このような酵素の発現ベクターはさらに、メバロン酸経路および/またはメチルエリスリトールリン酸経路に関与する複数の酵素(例、1種、2種、3種または4種以上)を一緒または個別に発現するものであってもよく、例えば、ポリシストロニックmRNAの発現ベクターであってもよい。メバロン酸経路および/またはメチルエリスリトールリン酸経路に関与する1以上の酵素の由来は、宿主に対して同種であってもよいし、異種であってもよい。メバロン酸経路および/またはメチルエリスリトールリン酸経路に関与する酵素の由来が宿主に対して異種である場合、例えば、宿主が上述したような細菌(例、大腸菌)であり、かつ、メバロン酸経路に関与する酵素が真菌(例、サッカロミセス・セレビシエ)に由来するものであってもよい。また、宿主が、メチルエリスリトールリン酸経路に関与する酵素を固有に産生するものである場合、宿主に導入される発現ベクターは、メバロン酸経路に関与する酵素を発現するものであってもよい。
 イソペンテニル二リン酸デルタイソメラーゼ(EC:5.3.3.2)としては、例えば、Idi1p(ACCESSION ID NP_015208)、AT3G02780(ACCESSION ID NP_186927)、AT5G16440(ACCESSION ID NP_197148)、およびIdi(ACCESSION ID NP_417365)が挙げられる。発現ベクターにおいて、イソペンテニル二リン酸デルタイソメラーゼをコードする遺伝子は、後述の増殖促進剤逆依存性プロモーターの制御下に配置されてもよい。
 メバロン酸(MVA)経路に関与する酵素としては、例えば、メバロン酸キナーゼ(EC:2.7.1.36;例1、Erg12p、ACCESSION ID NP_013935;例2、AT5G27450、ACCESSION ID NP_001190411)、ホスホメバロン酸キナーゼ(EC:2.7.4.2;例1、Erg8p、ACCESSION ID NP_013947;例2、AT1G31910、ACCESSION ID NP_001185124)、ジホスホメバロン酸デカルボキシラーゼ(EC:4.1.1.33;例1、Mvd1p、ACCESSION ID NP_014441;例2、AT2G38700、ACCESSION ID NP_181404;例3、AT3G54250、ACCESSION ID NP_566995)、アセチル-CoA-C-アセチルトランスフェラーゼ(EC:2.3.1.9;例1、Erg10p、ACCESSION ID NP_015297;例2、AT5G47720、ACCESSION ID NP_001032028;例3、AT5G48230、ACCESSION ID NP_568694)、ヒドロキシメチルグルタリル-CoAシンターゼ(EC:2.3.3.10;例1、Erg13p、ACCESSION ID NP_013580;例2、AT4G11820、ACCESSION ID NP_192919;例3、MvaS、ACCESSION ID AAG02438)、ヒドロキシメチルグルタリル-CoAリダクターゼ(EC:1.1.1.34;例1、Hmg2p、ACCESSION ID NP_013555;例2、Hmg1p、ACCESSION ID NP_013636;例3、AT1G76490、ACCESSION ID NP_177775;例4、AT2G17370、ACCESSION ID NP_179329、EC:1.1.1.88、例、MvaA、ACCESSION ID P13702)、アセチル-CoA-C-アセチルトランスフェラーゼ/ヒドロキシメチルグルタリル-CoAリダクターゼ(EC:2.3.1.9/1.1.1.34、例、MvaE、ACCESSION ID AAG02439)が挙げられる。発現ベクターにおいて、メバロン酸(MVA)経路に関与する1以上の酵素(例、ホスホメバロン酸キナーゼ、ジホスホメバロン酸デカルボキシラーゼ、アセチル-CoA-C-アセチルトランスフェラーゼ/ヒドロキシメチルグルタリル-CoAリダクターゼ、ヒドロキシメチルグルタリル-CoAシンターゼ)をコードする遺伝子は、後述の増殖促進剤逆依存性プロモーターの制御下に配置されてもよい。
 メチルエリスリトールリン酸(MEP)経路に関与する酵素としては、例えば、1-デオキシ-D-キシルロース-5-リン酸シンターゼ(EC:2.2.1.7、例1、Dxs、ACCESSION ID NP_414954;例2、AT3G21500、ACCESSION ID NP_566686;例3、AT4G15560、ACCESSION ID NP_193291;例4、AT5G11380、ACCESSION ID NP_001078570)、1-デオキシ-D-キシルロース-5-リン酸リダクトイソメラーゼ(EC:1.1.1.267;例1、Dxr、ACCESSION ID NP_414715;例2、AT5G62790、ACCESSION ID NP_001190600)、4-ジホスホシチジル-2-C-メチル-D-エリスリトールシンターゼ(EC:2.7.7.60;例1、IspD、ACCESSION ID NP_417227;例2、AT2G02500、ACCESSION ID NP_565286)、4-ジホスホシチジル-2-C-メチル-D-エリスリトールキナーゼ(EC:2.7.1.148;例1、IspE、ACCESSION ID NP_415726;例2、AT2G26930、ACCESSION ID NP_180261)、2-C-メチル―D-エリスリトール-2,4-シクロニリン酸シンターゼ(EC:4.6.1.12;例1、IspF、ACCESSION ID NP_417226;例2、AT1G63970、ACCESSION ID NP_564819)、1-ヒドロキシ-2-メチル-2-(E)-ブテニル-4-ニリン酸シンターゼ(EC:1.17.7.1;例1、IspG、ACCESSION ID NP_417010;例2、AT5G60600、ACCESSION ID NP_001119467)、4-ヒドロキシ-3-メチル-2-ブテニル二リン酸レダクターゼ(EC:1.17.1.2;例1、IspH、ACCESSION ID NP_414570;例2、AT4G34350、ACCESSION ID NP_567965)が挙げられる。発現ベクターにおいて、メチルエリスリトールリン酸(MEP)経路に関与する1以上の酵素をコードする遺伝子は、後述の増殖促進剤逆依存性プロモーターの制御下に配置されてもよい。
 遺伝子が組込まれた発現ベクターによる宿主細胞の形質転換は従来公知の方法を用いて行うことができる。例えば、カルシウム処理された菌体を用いるコンピテント細胞法や、エレクトロポレーション法等が挙げられる。また、プラスミドベクター以外にもファージベクターを用いて、菌体内に感染させ導入する方法によってもよい。
 更に、本発明のイソプレンシンターゼ発現微生物において、イソプレンシンターゼの基質であるジメチルアリル二リン酸を合成するメバロン酸経路又はメチルエリスリトールリン酸経路の酵素をコードする遺伝子が導入されていてもよい。このような酵素としては、ピルビン酸塩とD-グリセルアルデヒド-3-ホスフェートを1-デオキシ-D-キシロース-5-ホスフェートに転換する1-デオキシ-D-キシロース-5-ホスフェートシンターゼ;イソペンテニル二リン酸をジメチルアリル二リン酸に転換するイソペンチルジホスフェートイソメラーゼ等が挙げられる。発現ベクターにおいて、ジメチルアリル二リン酸を合成するメバロン酸経路又はメチルエリスリトールリン酸経路の酵素をコードする遺伝子は、上述したような構成型プロモーター、または誘導型プロモーター(例、後述の増殖促進剤逆依存プロモーター)の制御下に配置され得る。
 イソプレンの基質であるDMAPP(dimethylallyl pyrophosphate)は、ペプチドグリカンや電子受容体(メナキノン等)の前駆体であり、微生物の増殖に必須であることが知られている(Fujisaki et al.,J.Biochem.,1986;99:1137-1146)。本発明のイソプレンシンターゼ発現微生物は、効率的なイソプレンの製造の観点から、微生物の増殖期に対応する工程1)(十分な濃度の増殖促進剤の存在下でイソプレン発現微生物を培養して、イソプレン発現微生物を増殖させること)、およびイソプレンの生成期に対応する工程3)(イソプレン発現微生物を培養してイソプレンモノマーを生成すること)が分離された、イソプレンの製造方法で用いられてもよい。また、このイソプレンの製造方法は、微生物の増殖期からイソプレンの生成期に移行させるため、イソプレン生成の誘導期に対応する工程2)(増殖促進剤の十分な濃度を減少させて、イソプレン発現微生物によるイソプレンモノマーの生成を誘導すること)を含んでいてもよい。
 本発明では、増殖促進剤とは、微生物により消費され得る、微生物の増殖に必須の因子または微生物の増殖の促進作用を有する因子であって、微生物により消費され培地中の量が減少すると微生物の増殖が喪失または低減するものをいう。例えば、ある量の増殖促進剤を用いた場合、その量の増殖促進剤が消費されるまで微生物は増殖し続けるが、一旦増殖促進剤が全て消費されると、微生物は増殖し得ず、または増殖速度が低下し得る。したがって、増殖促進剤により、微生物の増殖の程度を調節することができる。このような増殖促進剤としては、例えば、酸素(ガス)等の物質;鉄、マグネシウム、カリウム、カルシウムのイオン等のミネラル;リン酸(例、モノリン酸、ニリン酸、ポリリン酸)またはその塩等のリン化合物;アンモニア、硝酸、亜硝酸、尿素等の窒素化合物(ガス);硫酸アンモニウム、チオ硫酸等の硫黄化合物;ビタミン(例、ビタミンA、ビタミンD、ビタミンE、ビタミンK、ビタミンB1、ビタミンB2、ビタミンB6、ビタミンB12、ナイアシン、パントテン酸、ビオチン、アスコルビン酸)、およびアミノ酸(例、アラニン、アルギニン、アスパラギン、アスパラギン酸、システイン、グルタミン、グルタミン酸、グリシン、ヒスチヂン、ロイシン、イソロイシン、リジン、メチオニン、フェニルアラニン、プロリン、セリン、スレオニン、トリプトファン、チロシン、バリン、セレノシステイン)等の栄養素が挙げられる。本発明の方法では、1種の増殖促進剤を用いてもよいし、2種以上の増殖促進剤を組み合わせて用いてもよい。
 増殖促進剤が用いられる場合、本発明のイソプレン発現微生物は、増殖促進剤に依存して増殖する能力、および増殖促進剤逆依存プロモーターに依存してイソプレンを生成する能力を有していてもよい。イソプレン生成微生物は、イソプレン生成微生物の増殖に十分な濃度の増殖促進剤の存在下で、増殖できる。ここで、「十分な濃度」とは、イソプレン生成微生物の増殖に有効な濃度で増殖促進剤が用いられることをいい得る。表現「増殖促進剤逆依存プロモーターに依存してイソプレンを生成する能力」とは、相対的に高い濃度の増殖促進剤の存在下では、イソプレンを生成できず、またはイソプレンの生成効率が低いが、相対的に低い濃度の増殖促進剤の存在下または増殖促進剤の不在下では、イソプレンを生成できること、またはイソプレンの生成効率が高いことを意味し得る。したがって、本発明で用いられるイソプレン生成微生物は、十分な濃度の増殖促進剤の存在下では、良好に増殖し得るが、イソプレンを生成できず、またはイソプレンの生成効率が低い。イソプレン生成微生物はまた、不十分な濃度の増殖促進剤の存在下または増殖促進剤の不在下では、良好に増殖し得ないが、イソプレンを生成でき、またはイソプレンの生成効率が高い。
 このようなイソプレン生成微生物では、上述した酵素をコードする遺伝子が増殖促進剤逆依存性プロモーターの制御下にあり得る。表現「増殖促進剤逆依存性プロモーター」とは、相対的に高い濃度の増殖促進剤の存在下では、転写活性を有しない、または低い転写活性を有するが、相対的に低い濃度の増殖促進剤の存在下または増殖促進剤の不在下では、転写活性を有する、または高い転写活性を有するプロモーターを意味し得る。したがって、増殖促進剤逆依存性プロモーターは、イソプレン生成微生物の増殖に十分な濃度の増殖促進剤の存在下では、上述した酵素をコードする遺伝子の発現を抑制でき、一方、イソプレン生成微生物の増殖に不十分な濃度の増殖促進剤の存在下では、上述した酵素をコードする遺伝子の発現を促進できる。好ましくは、イソプレン生成微生物は、増殖促進剤逆依存性プロモーターの制御下にある上述した酵素をコードする遺伝子を含む発現ベクターで形質転換された微生物である。
 例えば、増殖促進剤が酸素である場合、微好気誘導型プロモーターを利用することができる。微好気誘導型プロモーターとは、微好気条件下で下流遺伝子の発現を促進できるプロモーターをいい得る。一般的に、飽和溶存酸素濃度は7.22ppmである(気圧760mmHg、温度33℃、酸素20.9%の水蒸気が飽和した大気中)。微好気条件とは、(溶存)酸素濃度0.35ppm以下の条件をいい得る。微好気条件下の(溶存)酸素濃度は、0.30ppm以下、0.25ppm以下、0.20ppm以下、0.15ppm以下、0.10ppm以下、または0.05ppm以下であってもよい。微好気誘導型プロモーターとしては、例えば、D-またはL-乳酸デヒドロゲナーゼをコードする遺伝子(例、lld、ldhA)のプロモーター、アルコールデヒドロゲナーゼをコードする遺伝子(例、adhE)のプロモーター、ピルビン酸ギ酸リアーゼをコードする遺伝子(例、pflB)のプロモーター、およびα-アセトラクテイトデカルボシラーゼをコードする遺伝子(例、budA)のプロモーターが挙げられる。
 また、増殖促進剤がリン化合物である場合、リン欠乏誘導型プロモーターを利用することができる。表現「リン欠乏誘導型プロモーター」とは、低濃度のリン化合物で下流遺伝子の発現を促進できるプロモーターをいい得る。低濃度のリン化合物とは、(遊離)リン濃度100mg/L下の条件をいい得る。用語「リン」は、用語「リン化合物」と同義であり、交換可能に使用され得る。リン欠乏条件下の(遊離)リン濃度は、50mg/L以下、10mg/L以下、5mg/L以下、1mg/L以下、0.1mg/L以下、または0.01mg/L以下であってもよい。リン欠乏誘導型プロモーターとしては、例えば、アルカリフォスファターゼをコードする遺伝子(例、phoA)のプロモーター、酸性フォスファターゼをコードする遺伝子(例、phoC)のプロモーター、センサーヒスチジンキナーゼをコードする遺伝子(例、phoR)のプロモーター、レスポンスレギュレーターをコードする遺伝子(例、phoB)のプロモーター、およびリン取り込み担体をコードする遺伝子(例、pstS)のプロモーターが挙げられる。
 増殖促進剤がアミノ酸である場合、アミノ酸欠乏誘導型プロモーターを利用することができる。アミノ酸欠乏誘導型プロモーターとは、低アミノ酸濃度で下流遺伝子の発現を促進できるプロモーターをいい得る。低アミノ酸濃度とは、(遊離)アミノ酸またはその塩の濃度が100mg/L以下である条件をいい得る。アミノ酸欠乏条件下の(遊離)アミノ酸またはその塩の濃度は、50mg/L以下、10mg/L以下、5mg/L以下、1mg/L以下、0.1mg/L以下、または0.01mg/L以下であってもよい。アミノ酸欠乏型プロモーターとしては、例えば、トリプトファンリーダーペプチドをコードする遺伝子(例、trpL)のプロモーター、およびN-アセチルグルタメイトシンターゼをコードする遺伝子(例、ArgA)のプロモーターが挙げられる。
<イソプレンモノマーおよびイソプレンポリマーの製造方法>
 本発明は、イソプレンモノマーの製造方法を提供する。本発明のイソプレンモノマーの製造方法は、本発明のイソプレンシンターゼ発現微生物を培養培地中で培養してイソプレンモノマーを生成することを含む。
 本発明のイソプレンモノマーの製造方法は、本発明のイソプレンシンターゼ発現微生物の培養により行うことができる。イソプレンモノマーの原料となるジメチルアリル二リン酸は、本発明のイソプレンシンターゼ発現微生物により、培地中の炭素源から効率的に供給される。本発明のイソプレンシンターゼ発現微生物は、培地中の炭素源から、イソプレンモノマーを主にアウトガスとして生産するため、形質転換体から発生するガスを採取することにより、イソプレンモノマーが回収される。イソプレンシンターゼの基質であるジメチルアリル二リン酸は、培地中の炭素源を素に、宿主細胞内のメバロン酸経路又はメチルエリスリトールリン酸経路で合成される。
 本発明のイソプレンシンターゼ発現微生物を培養する培地としては、イソプレンに転換されるための炭素源を含むことが好ましい。炭素源としては、単糖類、二糖類、オリゴ糖類、多糖類等の炭水化物;ショ糖を加水分解した転化糖;グリセロール;メタノール、ホルムアルデヒド、ギ酸塩、一酸化炭素、二酸化炭素等の炭素数が1の化合物(以下、C1化合物という。);コーン油、パーム油、大豆油等のオイル;アセテート;動物油脂;動物オイル;飽和脂肪酸、不飽和脂肪酸等の脂肪酸;脂質;リン脂質;グリセロ脂質;モノグリセライド、ジグリセライド、トリグリセライド等のグリセリン脂肪酸エステル;微生物性タンパク質、植物性タンパク質等のポリペプチド;加水分解されたバイオマス炭素源等の再生可能な炭素源;酵母エキス;又はこれらを組み合わせたものが挙げられる。窒素源としては、硫酸アンモニウム、塩化アンモニウム、リン酸アンモニウム等の無機アンモニウム塩、大豆加水分解物などの有機窒素、アンモニアガス、アンモニア水等を用いることができる。有機微量栄養源としては、ビタミンB1、L-ホモセリンなどの要求物質または酵母エキス等を適量含有させることが望ましい。これらの他に、必要に応じて、リン酸カリウム、硫酸マグネシウム、鉄イオン、マンガンイオン等が少量添加される。なお、本発明で用いる培地は、炭素源、窒素源、無機イオン及び必要に応じてその他の有機微量成分を含む培地であれば、天然培地、合成培地のいずれでもよい。
 単糖類としては、ケトトリオース(ジヒドロキシアセトン)、アルドトリオース(グリセルアルデヒド)等のトリオース;ケトテトロース(エリトルロース)、アルドテトロース(エリトロース、トレオース)等のテトロース;ケトペントース(リブロース、キシルロース)、アルドペントース(リボース、アラビノース、キシロース、リキソース)、デオキシ糖(デオキシリボース)等のペントース;ケトヘキソース(プシコース、フルクトース、ソルボース、タガトース)、アルドヘキソース(アロース、アルトロース、グルコース、マンノース、グロース、イドース、ガラクトース、タロース)、デオキシ糖(フコース、フクロース、ラムノース)等のヘキソース;セドヘプツロース等のヘプトースが挙げられ、フルクトース、マンノース、ガラクトース、グルコース等のC6糖;キシロース、アラビノース等のC5糖の炭水化物が好ましい。
 二糖類としては、スクロース、ラクトース、マルトース、トレハロース、ツラノース、セロビオース等が挙げられ、スクロース、ラクトースが好ましい。
 オリゴ糖類としては、ラフィノース、メレジトース、マルトトリオース等の三糖類;アカルボース、スタキオース等の四糖類;フラクトオリゴ糖(FOS)、ガラクトオリゴ糖(GOS)、マンナンオリゴ糖(MOS)等のその他のオリゴ糖類が挙げられる。
 多糖類としては、グリコーゲン、デンプン(アミロース、アミロペクチン)、セルロース、デキストリン、グルカン(β1,3-グルカン)が挙げられ、デンプン、セルロースが好ましい。
 微生物性タンパク質としては、酵母または細菌由来のポリペプチドが挙げられる。
 植物性タンパク質としては、大豆、コーン、キャノーラ、ジャトロファ、パーム、ピーナッツ、ヒマワリ、ココナッツ、マスタード、綿実、パーム核油、オリーブ、紅花、ゴマ、亜麻仁由来のポリペプチドが挙げられる。
 脂質としては、C4以上の飽和、不飽和脂肪酸を1以上含む物質が挙げられる。
 オイルとしては、C4以上の飽和、不飽和脂肪酸が1以上含み、室温で液体の脂質が好ましく、大豆、コーン、キャノーラ、ジャトロファ、パーム、ピーナッツ、ヒマワリ、ココナッツ、マスタード、綿実、パーム核油、オリーブ、紅花、ゴマ、亜麻仁、油性微生物細胞、ナンキンハゼ、又はこれらの2以上の組み合わせからなるものが挙げられる。
 脂肪酸としては、式RCOOH(「R」は炭化水素基を表す。)で表される化合物が挙げられる。
 不飽和脂肪酸は、「R」に少なくとも1の炭素-炭素二重結合を有する化合物であり、オレイン酸、バクセン酸、リノール酸、パルミテライジン酸、アラキドン酸等が挙げられる。
 飽和脂肪酸は、「R」が飽和脂肪族基である化合物であり、ドコサン酸、イコサン酸、オクタデカン酸、ヘキサデカン酸、テトラデカン酸、ドデカン酸等が挙げられる。
 中でも、脂肪酸としては、1以上のC2からC22の脂肪酸が含まれるものが好ましく、C12脂肪酸、C14脂肪酸、C16脂肪酸、C18脂肪酸、C20脂肪酸、C22脂肪酸が含まれるものがより好ましい。
 また、炭素源としては、これら脂肪酸の塩、誘導体、誘導体の塩も挙げられる。塩としては、リチウム塩、カリウム塩、ナトリウム塩等が挙げられる。
 また、炭素源としては、脂質、オイル、油脂、脂肪酸、グリセリン脂肪酸エステルとグルコース等の炭水化物との組み合わせが挙げられる。
 再生可能な炭素源としては、加水分解されたバイオマス炭素源が挙げられる。
 バイオマス炭素源としては、木、紙、及びパルプの廃材、葉状植物、果肉等のセルロース系基質;柄、穀粒、根、塊茎等の植物の一部分が挙げられる。
 バイオマス炭素源として用いられる植物としては、コーン、小麦、ライ麦、ソルガム、トリティケイト、コメ、アワ、大麦、キャッサバ、エンドウマメ等のマメ科植物、ジャガイモ、サツマイモ、バナナ、サトウキビ、タピオカ等が挙げられる。
 バイオマス等の再生可能な炭素源を細胞培地に添加する際には、前処理することが好ましい。前処理としては、酵素的前処理、化学的前処理、酵素的前処理と化学的前処理の組み合わせが挙げられる。
 再生可能な炭素源を細胞培地に添加する前に、その全部または一部を加水分解することが好ましい。
 また、炭素源としては、酵母エキス、または酵母エキスと、グルコース等の他の炭素源との組み合わせが挙げられ、酵母エキスと、二酸化炭素やメタノール等のC1化合物との組み合わせが好ましい。
 本発明において、形質転換体の培養方法としては、細胞を生理食塩水と栄養源を含む標準的培地で培養することが好ましい。
 培養培地としては、特に限定されず、Luria Bertani(LB)ブロス、Sabouraud Dextrose(SD)ブロス、Yeast medium(YM)ブロス等の一般的に市販されている既成の培地が挙げられる。特定の宿主細胞の培養に適した培地を適宜選択して用いることができる。
 細胞培地には適切な炭素源の他に、適切なミネラル、塩、補助因子、緩衝液、及び培養に適していること、またはイソプレン産出を促進することが当業者にとって公知の成分が含まれていることが望ましい。
 本発明のイソプレンシンターゼ発現微生物の培養条件としては、ピロリン酸ホスファターゼの発現の向上により、イソプレンシンターゼ発現微生物によるイソプレン生成能を改善できる条件であれば特に限定されず、標準的な細胞培養条件を用いることができる。
 培養温度としては、20℃~37℃が好ましく、ガス組成としては、CO濃度が約6%~約84%であることが好ましく、pHが、約5~約9であることが好ましい。
 また、宿主細胞の性質に応じて好気性、無酸素性、又は嫌気性条件下で培養を行うことが好ましい。
 培養方法としては、形質転換体をバッチ培養法、流加培養法、連続培養法等の公知の発酵方法を用いて培養する方法が挙げられる。
 バッチ培養法は、発酵開始時に培地組成物に仕込み、宿主細胞を培地に植菌し、pHや酸素濃度等の制御を行いながら形質転換体の培養を行う方法である。
 バッチ培養法による形質転換体の培養において、形質転換体は、穏やかな誘導期から対数増殖期を経て最終的に成長速度が減少または停止する定常期に至る。イソプレンは、対数増殖期や定常期の形質転換体によって産出される。
 流加培養法は、上述したバッチ法に加えて、発酵プロセスが進行するに従い徐々に炭素源を添加する方法である。流加培養法は、カタボライト抑制により形質転換体の代謝が抑制される傾向があり、培地中の炭素源の量を制限することが好ましいときに有効である。流加培養法は、制限された量または過剰な量のグルコース等の炭素源を用いて行うことができる。
 連続培養法は、一定の速度でバイオリアクターに所定量の培地を連続的に供給しながら、同時に同量の培養液を抜き取る培養法である。連続培養法では培養物を一定の高密度に保つことができ、培養液中の形質転換体は主に対数増殖期にある。
 適宜、培地の一部または全部を入れ換えることにより、栄養素の補給を行うことができ、形質転換体の生育に悪影響を及ぼす可能性のある代謝副産物、及び死細胞の蓄積を防ぐことができる。
 本発明のイソプレンシンターゼ発現微生物に導入される発現ベクターが有するプロモーターとしては、上述のプロモーターが挙げられる。本発明のイソプレンシンターゼ発現微生物に導入される発現ベクターがlacプロモーター等の誘導的プロモーターを有している場合には、培養液中に、例えばIPTG(イソプロピル-β-チオガラクトピラノシド)を添加して、タンパク質の発現を誘導してもよい。
 本発明のイソプレンシンターゼ発現微生物を培養することにより得られるイソプレンモノマーの生産量の評価方法としては、ヘッドスペース法により気相を採取し、この気相をガスクロマトグラフィー法で分析する方法が挙げられる。
 詳細には、密封したバイアル中で形質転換体を含む培養液を振蕩しながら培養したときのヘッドスペース中のイソプレンモノマーを、標準的なガスクロマトグラフィーを用いて分析する。次いで、検量線を用いて、ガスクロマトグラフィー測定カーブから得られる面積を、形質転換体のイソプレンモノマー生産量に換算する。
 本発明のイソプレンシンターゼ発現微生物を培養することにより得られるイソプレンモノマーの回収方法としては、ガスストリッピング、分留、或いは、固相に吸着させたイソプレンモノマーの熱若しくは真空による固相からの脱着、又は溶媒による抽出等が挙げられる。
 ガスストリッピングでは、アウトガスから連続的にイソプレンガスを除去する。このようなイソプレンガスの除去は種々の方法で行うことができ、固相への吸着、液相への分離、又はイソプレンガスを直接凝縮させる方法が挙げられる。
 イソプレンモノマーの回収は一段階又は多段階で行うことができる。イソプレンモノマーを一段階で回収する場合には、アウトガスからのイソプレンモノマーの分離と、イソプレンモノマーの液相への変換を同時に行う。イソプレンモノマーをアウトガスから直接凝縮させて液相にすることもできる。イソプレンモノマーを多段階で回収する場合には、オフガスからのイソプレンモノマーの分離と、イソプレンモノマーの液相への変換とを順次行う。例えば、イソプレンモノマーを固相に吸着させ、溶媒で固相から抽出する方法が挙げられる。
 更に、イソプレンモノマーの回収方法は、イソプレンモノマーを精製する工程が含まれていてもよい。精製工程としては、液相抽出物からの蒸留による分離や各種クロマトグラフィーが挙げられる。
 本発明はまた、イソプレンポリマーの製造方法を提供する。本発明のイソプレンポリマーの製造方法は、以下(I)および(II)を含む:
(I)本発明の方法によりイソプレンモノマーを生成すること;
(II)イソプレンモノマーを重合してイソプレンポリマーを生成すること。
 工程(I)は、上述した本発明のイソプレンモノマーの製造方法と同様にして行うことができる。工程(II)におけるイソプレンモノマーの重合は、当該分野で公知の任意の方法(例、有機化学的な合成法)、例えば、付加重合により行うことができる。
 本発明のゴム組成物は、本発明のイソプレンの製造方法により製造されるイソプレンに由来するポリマーを含む。イソプレンに由来するポリマーは、同種ポリマー(即ち、イソプレンポリマー)、またはイソプレンおよびイソプレン以外の1以上のモノマー単位を含む異種ポリマー(例、ブロック共ポリマー等の共ポリマー)であり得る。好ましくは、イソプレンに由来するポリマーは、本発明のイソプレンポリマーの製造方法により製造される同種ポリマー(即ち、イソプレンポリマー)である。本発明のゴム組成物はさらに、上記ポリマー以外の1以上のポリマー、1以上のゴム成分、および/または他の成分を含んでいてもよい。本発明のゴム組成物は、イソプレンに由来するポリマーを用いて製作することができる。例えば、本発明のゴム組成物は、イソプレンに由来するポリマーを、このポリマー以外の1以上のポリマー、1以上のゴム成分、ならびに/または他の成分(例、補強材、架橋剤、加硫促進剤、および抗酸化剤)と混合することにより調製することができる。
 本発明のタイヤは、本発明のゴム組成物を用いることにより製作される。本発明のゴム組成物は、制限されることなく、タイヤの任意の部分に利用することができ、その目的に応じて適切に選択され得る。例えば、本発明のゴム組成物は、タイヤのトレッド、ベーストレッド、サイドウォール、サイド補強ゴムおよびビードフィラーにおいて用いてもよい。タイヤを製造する方法としては、慣用の方法を用いることができる。例えば、タイヤ未加硫ゴムから構成されるカーカス層、ベルト層、トレッド層、および通常のタイヤ製造に用いられる他の部材をタイヤ成形用ドラム上に順次貼り重ね、ドラムを抜き去ってグリーンタイヤとする。次いで、このグリーンタイヤを常法に従って加熱加硫することにより、所望のタイヤ(例、空気式タイヤ)を製造することができる。
 次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
実施例1:MG1655 Ptac-KKDyI株におけるppa遺伝子発現強化
 E.coli株において、内因性ppa遺伝子(ピロリン酸ホスファターゼ遺伝子)に固有のプロモーターが別の強力なプロモーターに置換され、内因性ppa遺伝子の発現が増強された株を、以下の手順により作製した。
 先ず、MG1655 Ptac-KKDyI株(参考例7-4)を参照。なお、本株は、E.coliの形質転換体である。)のエレクトロポレーション用のコンピテントセルは次のようにして調製した。MG1655 Ptac-KKDyI株を5mLのLB培地にて、一晩、37℃で振盪培養を実施した。その後、培養液50μLを、新たな5mLのLB培地に植菌し、37℃でOD600が0.6付近になるまで振盪培養を実施した。その後、菌体を集菌し、氷冷した10%グリセロールで3回洗浄した後、最終的に0.5mLの10%グリセロールに懸濁したものをコンピテントセルとした。
 次に、MG1655 Ptac-KKDyI株のコンピテントセルにpKD46をエレクトロポレーション法により導入した。エレクトロポレーション法は、GENE PULSER II(BioRad社製)を用いて、電場強度18kV/cm、コンデンサー容量25μF、抵抗値200Ωの条件で導入した。エレクトロポレーション法によりpKD46が導入された菌体に、SOC培地(バクトトリプトン20g/L、イーストエキストラクト5g/L、NaCl 0.5g/L、グルコース10g/L)1mLを添加し、30℃で2時間振盪培養を行った後、100(mg/L)のアンピシリンを含むLB寒天培地に塗布した。30℃で一晩培養後、出現したコロニーを同寒天培地で純化する事で、MG1655 Ptac-KKDyI/pKD46株を取得した。
 取得したMG1655 Ptac-KKDyI/pKD46株のエレクトロポレーション用のコンピテントセルは次のようにして調製した。MG1655 Ptac-KKDyI/pKD46株を、100(mg/L)のアンピシリンを含む5mLのLB培地にて、一晩、30℃で振盪培養を実施した。その後、培養液50μLを、100(mg/L)のアンピシリンを含む5mLのLB培地に植菌し、30℃でOD600が0.6付近になるまで振盪培養を実施した。その後、菌体を集菌し、氷冷した10%グリセロールで3回洗浄した後、最終的に0.3mLの10%グリセロールに懸濁したものをコンピテントセルとした。
 次に染色体上のppa遺伝子のプロモーター領域を置換する為の遺伝子断片を調製した。ppa遺伝子の塩基配列とそのプロモーター領域については、既存のデーターベースより入手が可能である(NCBI Reference Sequences NC_000913.2, ppa gene locus tag: b4225, Range: 4447145..4447675, complement)。ppa遺伝子のプロモーター領域の置換は、λ-red法により実施した。PCRの鋳型として、λattL-Tet-λattR-Ptacを有するゲノム断片を使用した。これは、tacプロモーター(Ptac)とテトラサイクリン耐性薬剤マーカー(Tet)、及びλファージのアタッチメントサイトであるλattL及びλattRが含まれる。これらのヌクレオチド配列を配列番号1に示す。配列番号2と配列番号3に示すヌクレオチド配列からなるプライマーを用いてPCR反応を行った。DNAポリメラーゼとして、タカラバイオ社より販売されているLA-Taqポリメラーゼを利用し、92℃、1分、(92℃、10秒、54℃、20秒、72℃、2分)×40サイクル、72℃、5分の条件で反応を行った。前記PCRにより、λattL-Tet-λattR-Ptac、更にその外側にそれぞれppa遺伝子のプロモーター領域の上流60bp、下流60bpの配列を付加した遺伝子断片を増幅した。この遺伝子断片をWizard PCR Prep DNA Purification System(Promega社製)を用いて精製した。以降、得られた遺伝子断片をTet-Ptac-ppaと命名する。
 次に、MG1655 Ptac-KKDyI/pKD46株のコンピテントセルに、Tet-Ptac-ppaをエレクトロポレーション法により導入した。エレクトロポレーション法は、GENE PULSER II(BioRad社製)を用いて、電場強度18kV/cm、コンデンサー容量25μF、抵抗値200Ωの条件で導入した。その後、コンピテンセルに、1mLのSOC培地を添加し、30℃で2時間振盪培養を行った後、25(mg/L)のテトラサイクリンを含むLB寒天培地に塗布した。37℃で一晩培養後、出現したコロニーを同じ寒天培地を用いて純化した。その後、配列番号4と配列番号5に示すヌクレオチド配列からなるプライマーを用いて、コロニーPCRを行い、ppa遺伝子のプロモーター領域がtacプロモーターに置換されている事を確認した。ppa遺伝子のプロモーター領域がtacプロモーターに置換された株をMG1655 Ptac-KKDyI Ptac-ppa株と命名した。
実施例2:MG1655 Ptac-KKDyI Ptac-ppa株におけるPPA発現解析
 MG1655 Ptac-KKDyI Ptac-ppa株におけるピロリン酸ホスファターゼ(PPA)のタンパク質発現量をSDS-PAGEにて確認した。MG1655 Ptac-KKDyI株とMG1655 Ptac-KKDyI Ptac-ppa株を5mLのLB培地にて、一晩、37℃で振盪培養を実施した。集菌後の菌体は、氷冷した50mMのトリスバッファー(Tris-HCl pH8.0)で3回洗浄を行い、超音波破砕装置(Bio-ruptor:30秒ON 30秒OFF 20min)にて菌体を破砕した。破砕した菌体溶液は、15000rpmで10分間の遠心を行い、未破砕細胞を取り除いた。得られた上清画分を可溶性タンパク質画分として取り扱った。可溶性タンパク質画分をブラッドフォード法にて定量後、5μgの可溶性タンパク質をSDS-PAGE(Invitrogen社製NuPAGE:SDS-PAGE Gel System)にて電気泳動を行った。その後、定法に従って、CBB染色と脱色を行った。図1にPPAタンパク質量付近のゲルの写真を示した。その結果、MG1655 Ptac-KKDyI Ptac-ppa株において、PPAと推定されるタンパク質の発現量の増加を確認した(図1)。電気泳動後のSDS-PAGEのバンドの濃さから、MG1655 Ptac-KKDyI Ptac-ppa株におけるPPAと推定されるタンパク質の発現量は、元の菌株(コントロール)のものに比し、約2~5倍であると見積もられた。
実施例3:MG1655 Ptac-KKDyI Ptac-ppa/pSTV28-Ptac-ispSK/pMW-Para-mvaES株の構築
 MG1655 Ptac-KKDyI Ptac-ppa株のエレクトロポレーション用のコンピテントセルは次のようにして調製した。MG1655 Ptac-KKDyI Ptac-ppa株を5mLのLB培地にて、一晩、37℃で振盪培養を実施した。その後、培養液50μLを、新たな5mLのLB培地に植菌し、37℃でOD600が0.6付近になるまで振盪培養を実施した。その後、菌体を集菌し、氷冷した10%グリセロールで3回洗浄した後、最終的に0.5mLの10%グリセロールに懸濁したものをコンピテントセルとした。
 MG1655 Ptac-KKDyI Ptac-ppa株のコンピテントセルに葛由来イソプレンシンターゼ発現プラスミド、pSTV28-Ptac-ispSK(参考例3-5)を参照)を前記の条件でエレクトロポレーション法により導入した。その後、コンピテンセルに、1mLのSOC培地を添加し、30℃で2時間振盪培養を行った後、60(mg/L)のクロラムフェニコールを含むLB寒天培地に塗布した。37℃で一晩培養後、出現したコロニーを同寒天培地で純化する事で、pSTV28-Ptac-ispSKが導入されたMG1655 Ptac-KKDyI Ptac-ppa/pSTV28-Ptac-ispSK株を取得した。
 その後、MG1655 Ptac-KKDyI Ptac-ppa/pSTV28-Ptac-ispSK株にpMW-Para-mvaES-Ttrp(参考例7-3)を参照)の導入を行った。前記と同様に、MG1655 Ptac-KKDyI Ptac-ppa/pSTV28-Ptac-ispSK株のコンピテントセルを調製後、pMW-Para-mvaES-Ttrpを前記の条件でエレクトロポレーション法により導入した。その後、コンピテンセルに、1mLのSOC培地を添加し、30℃で2時間振盪培養を行った後、60(mg/L)のクロラムフェニコールと100(mg/L)のカナマイシンを含むLB寒天培地に塗布した。37℃で一晩培養後、出現したコロニーを同寒天培地で純化する事で、pMW-Para-mvaES-Ttrpが導入されたMG1655 Ptac-KKDyI Ptac-ppa/pSTV28-Ptac-ispSK/pMW-Para-mvaES-Ttrp株を取得した。以後、ppa遺伝子の発現が強化されたMG1655 Ptac-KKDyI Ptac-ppa/pSTV28-Ptac-ispSK/pMW-Para-mvaES-Ttrp株をppa発現強化株と記載する。
実施例4:ppa発現強化株のジャー培養評価
 ppa発現強化株と、対照株(MG1655 Ptac-KKDyI/pSTV28-Ptac-ispSK/pMW-Para-mvaES-Ttrp株)のジャー培養評価を実施した。60(mg/L)のクロラムフェニコールと100(mg/L)のカナマイシンを含むLB寒天培地に塗布し、34℃にて16時間培養を実施した。次に表1に記載したグルコール培地0.3Lを1Lの容積の発酵槽に投入し、充分に生育したプレート1枚分の菌体を接種し、培養を行った。培養条件は、pH7.0(アンモニアガスにて制御)、30℃、150mL/minの通気にて行い、培地中の酸素濃度が5%以上になるように撹拌制御を行った。OD600が20付近に到達後、L-アラビノースを終濃度20mMになるように培地に添加し、45時間の培養を実施した。培養中は、培地中のグルコース濃度が10(g/L)以上になるよう500(g/L)に調製したグルコースを適宜、添加した。経時的に排ガスを1Lのガスバックに回収し、排ガスに含まれるイソプレンガスの濃度を測定した。イソプレンガスの分析条件を以下に記載した。ガスクロマトグラフィーの分析条件は、参考例4-3)に記載されるものと同様である。
Figure JPOXMLDOC01-appb-T000001
 A区とB区を0.15L調製後、115℃、10minで加熱滅菌を行った。放冷後A区とB区を混合し、60(mg/L)のクロラムフェニコールと100(mg/L)のカナマイシンを添加し、培地として使用した。
 対照株とppa発現強化株における、45時間培養後のジャー1基あたりのイソプレン生産量(mg/B)と対グルコース消費収率%を表2に記載した。ppa発現強化株は、対照株と比較してジャー1基あたりのイソプレン生産量(mg/B)、更には対グルコース消費収率(%)が高い事が確認できた。
Figure JPOXMLDOC01-appb-T000002
参考例1:植物におけるイソプレン生産能の検討
1-1)葉乾燥物の単位重量あたりのイソプレン発生量の測定
 先ず、植物におけるイソプレン生産能を検討するため、植物における葉乾燥重量1gあたりのイソプレン発生量を測定した。植物としては、ムクナ、ヤナギ(シダレヤナギ)、モミジバフウ、ギンコウバイ、葛を用いた。
 イソプレン発生量測定には、ガス交換式デシケーター(商品名:真空デシケーター、アズワン社製)を、インキュベーター(商品名:グロースチェンバーMLR-351HSANYO社製)内に収容し、ガス交換式デシケーター内に設置した気体攪拌用ファンを作動させガス交換式デシケーターの空間内の雰囲気を攪拌させつつ、インキュベーターを高温誘導条件(照度100μmolE/m/sで40℃)に設定した。ガス交換式デシケーター内の雰囲気の温度が40℃になった後、プランターに植えられたムクナ植物体を収容し、ガス交換式デシケーターを密閉した状態で3時間保持した。次いで、吸引ポンプにより、シリコンチューブ、吸着管および気体採取管を介して、ガス交換式デシケーター内の空間から、ムクナが放出したガス成分を吸引した。これにより、吸着管において、ムクナが放出したガス成分に含まれる水蒸気(水分)を吸着、分離するとともに、水蒸気が分離されたガス成分を気体採取管に導き、気体採取管において、そのガス成分を採取した。次いで、ガスクロマトグラフ(商品名:GC-FID6890、Agilent社製)を用いて、気体採取管に採取されたガス成分に含まれるイソプレンを定量分析した。
 植物の葉乾燥重量は、新鮮個葉の葉面積と、80℃の乾熱器によって新鮮個葉を8時間乾燥させたときの乾燥重には非常に良い正の相関関係が成り立つので、葉面積からの乾燥重換算式を導いておき、イソプレン発生量測定に用いたムクナ植物体の全葉面積から乾燥重を推定した。
 植物における葉乾燥重量1gあたりのイソプレン発生量はムクナ植物体全体からのイソプレン発生量を植物体全体の葉の乾燥重量推定値で割ることにより求めた。
 その結果、ムクナが葉乾燥物の単位重量あたりのイソプレン発生量に優れることが明らかとなった(図2)。
1-2)総タンパク質量あたりのイソプレン発生量の測定
 次いで、種々の植物の葉から抽出された総タンパク質量あたりのイソプレン発生量を測定した。植物としては、ムクナ(サンプル1、2)、ヤナギ(シダレヤナギ)、モミジバフウ、ギンコウバイ、クズを用いた。
 タンパク質抽出には、バッファー液(50mM Tris-HCl, 20mM MgCl, 5% Glycerol, 0.02% Triton-X100, pH8.0)を作成し、使用直前にPolyclar AT 10%、DTT 20mM、Protease Complete tablet (1tablet/50ml)Benzamidine-HCl 1mM(それぞれ終濃度)となるように加え蛋白抽出バッファーとして用いた。5gサンプルに対してタンパク抽出バッファー50ml加えて、氷上で冷やしておいた乳鉢でよく摩砕した後、2重に重ねたMiraclothで摩砕液を濾過し、濾液を12000Gで20分、40000Gで40分遠心分離した上清を取得し粗抽出液とした。
 次いで、この粗抽出液について硫安分画を行った。硫安の終濃度40%から55%の範囲で析出する蛋白を40000Gで40分遠心分離し、得られた沈殿を蛋白抽出バッファーに再溶解させて硫安画分を得た。
 総(硫安画分)タンパク質量は、ブラッドフォード法で硫安画分を測定することで求めた。標準蛋白Bovine serum albuminについて、ブラッドフォード試薬を反応させ分光光度計で測定した波長595nmの吸光度に対する蛋白量の検量線を作成した。50倍希釈した硫安画分液について同様に波長595nmの吸光度を測定し、標準蛋白の検量線から総(硫安画分)蛋白量を推定した。
 イソプレン発生量は、4mlガラスバイアルに粗抽出液ないしは100℃で煮沸処理した粗酵素液を100μl入れ、次いで0.5M MgCl溶液を2μl、0.2M DMAPP溶液を5μl加え、セプタム付きスクリューキャップをしっかり締めたあと、ゆるやかに振とう撹拌し40℃恒温漕にセットした。0.5時間、1時間、2時間後に、ガスタイトシリンジでHeadspace気層を0.5~2mlサンプリングしガスクロマトグラフ(商品名:GC-FID6890、Agilent社製)を用いてイソプレン発生量を測定した。粗酵素での0.5時間、1時間、2時間後の発生量は、それぞれの測定値から100℃で煮沸処理した粗酵素液の測定値を引いて求めた。1時間あたりのイソプレン発生量からTotal蛋白1mgあたりの酵素活性(比活性)を求めた。なお、イソプレン発生量の測定は、イソプレンシンターゼの基質であるDMAPPの量を一定にして行った。
 その結果、ムクナが総タンパク質量あたりのイソプレン発生量に優れることが明らかとなった(図3、表3)。以上より、ムクナがイソプレン生産能に優れることが示された。
Figure JPOXMLDOC01-appb-T000003
参考例2:ムクナ由来イソプレンシンターゼ遺伝子のクローニング
2-1)サンプリング時間の検討
 40℃の温度下で1,2,3,5時間光照射したムクナの葉が放出するイソプレンガスをサンプリングし、後述するガスクロマトグラフィーにてイソプレン生産量を定量したところ、それぞれ4,8,12,10μg isoprene/g DW leafのイソプレンの生産が確認され、最適な光照射時間は、3時間であることが確認された。
2-2)Total RNA溶解液の抽出
 以下の手順でムクナの葉からTotal RNA溶解液を抽出した。
(1)40℃の温度下で3時間光照射したムクナの葉をサンプリングした。
(2)葉組織100mgを液体窒素ですばやく凍結しながら乳鉢で粉砕した後、RNaseフリーの2mlエッペンドルフチューブに液体窒素ごと分注し、液体窒素を気化させた。
(3)このエッペンドルフチューブに、RNeasy Plant Kit(キアゲン社製)に備え付けの溶解バッファーRLT(2-メルカプトエタノール含有)を450μl添加し、ボルッテックスで激しく混和し、葉組織溶解物を得た。
(4)この葉組織溶解物をRNeasy Plant Kitに備え付けのQIAshredderスピンカラムにかけ、15000rpm、2分間、遠心分離を行った。
(5)カラム濾液の上清のみを、RNaseフリーの新たな2mlエッペンドルフチューブに分注した後、このカラム濾液上清の1/2容量の特級エタノールを添加し、ピペッティングにより混和し、約650μlの溶液を得た。
(6)この溶液をRNeasy Plant Kitに備え付けのRNeasyスピンカラムにかけ、10000rpm、15秒間、遠心分離を行い、濾液を捨てた。
(7)このRNeasyスピンカラムに、RNeasy Plant Kitに備え付けのRW1バッファー700μlを添加し、10000rpm、15秒間、遠心分離を行い、濾液を捨てた。
(8)このRNeasyスピンカラムに、RNeasy Plant Kitに備え付けのBPEバッファー500μlを添加し、10000rpm、15秒間、遠心分離を行い、濾液を捨てた。
(9)このRNeasyスピンカラムに、再度、BPEバッファー500μlを添加し、10000rpm、2分間、遠心分離を行い、濾液を捨てた。
(10)このRNeasyスピンカラムを、RNeasy Plant Kitに備え付けの2ml回収用チューブにセットし、15000rpm、1分間、遠心分離を行い、濾液を捨てた。
(11)このRNeasyスピンカラムを、RNeasy Plant Kitに備え付けの1.5ml回収用チューブにセットした。
(12)ピペットマンを用いて、このRNeasyスピンカラムに、RNeasy Plant Kitに備え付けのRNaseフリーの蒸留水を、RNeasyスピンカラムの膜に直接添加し、10000rpm、1分間、遠心分離を行い、Total RNAを回収した。このステップを2回繰り返し、約100μlのTotal RNAを得た。
2-3)ムクナ由来イソプレンシンターゼ遺伝子の塩基配列の解析
 抽出したTotal RNA溶解液について、バイオアナライザ(アジレント・テクノロジー社)のRNA用nanoチップを用いて、RNAの品質チェックを行い、溶解液中にゲノムDNAの混入がなく、溶解液中のRNAが分解していないことを確認した。
 このTotal RNAを、逆転写酵素を用いて二本鎖化した後、ネブライザーを用いて断片化した。3’末端にpolyA配列を有する198179個の断片の塩基配列を、454 Titanium FLX高速シークエンサー(ロッシュアプライドサイエンス社製)を用いて解析した。得られた断片配列において、重複する配列を連結し、13485個のコンティグ配列を得た。これらコンティグ配列に対して、BLAST検索を行ったところ、登録されている既知の葛及びポプラのイソプレンシンターゼ遺伝子配列と相同性(塩基配列の同一性)を有する6個のコンティグ配列が抽出された。更に配列を詳細に解析したところ、この6個のコンティグ配列のうち3個は、同一の遺伝子由来のものであることが分かり、ムクナ由来イソプレンシンターゼ遺伝子の部分配列が得られた。この部分配列に基づき、5’RACEを行い、配列番号6で表されるムクナ由来イソプレンシンターゼcDNAの完全長の塩基配列を得た。
参考例3:各植物種由来イソプレンシンターゼの発現プラスミドの調製
3-1)Pueraria montana var.lobata(葛)由来イソプレンシンターゼの化学合成
 P.montana var.lobata由来、イソプレンシンターゼcDNAの塩基配列、及びアミノ酸配列は既に知られている(ACCESSION: AAQ84170:P.montana var.lobata(葛) isoprene synthase(IspS))。P.montana由来IspSタンパク質のアミノ酸配列、及びcDNAの塩基配列を配列番号8、及び配列番号9にそれぞれ示す。IspS遺伝子を、E.coliで効率的に発現させる為にE.coliのコドン使用頻度に最適化し、更に葉緑体移行シグナルが切断されたIspS遺伝子を設計し、これをIspSKと名付けた。IspSKの塩基配列を配列番号10に示す。IspSK遺伝子は化学合成された後、pUC57(GenScript社製)にクローニングされ、得られたプラスミドをpUC57-IspSKと名付けた。
3-2)Populus alba x Populus tremula(ポプラ)由来イソプレンシンターゼの化学合成
 P.alba x P.tremula由来、イソプレンシンターゼcDNAの塩基配列、及びイソプレンシンターゼのアミノ酸配列は既に知られている(ACCESSION: CAC35696:P.alba x P. tremula (ポプラ)isoprene synthase)。P.alba x P.tremula由来IspSタンパク質のアミノ酸配列、及びcDNAの塩基配列を配列番号11、及び配列番号12にそれぞれ示す。この塩基配列を基に、前記と同様に、E.coliのコドン使用頻度に最適化し、更に葉緑体移行シグナルが切断されたIspS遺伝子を設計し、これをIspSPと名付けた。IspSPの塩基配列を配列番号13に示す。IspSP遺伝子は化学合成された後、pUC57(GenScript社製)にクローニングされ、得られたプラスミドをpUC57-IspSPと名付けた。
3-3)Mucuna bracteata(ムクナ)由来イソプレンシンターゼの化学合成
 Mucuna bracteata由来イソプレンシンターゼcDNAの塩基配列を基に、前記と同様に、E.coliのコドン使用頻度に最適化されたIspS遺伝子を設計し、葉緑体移行シグナルが付与されたものをIspSM(L)と名付け、葉緑体移行シグナルを切断したものをIspSMと名付けた。IspSM(L)の塩基配列を配列番号14に、IspSMの塩基配列を配列番号15に示す。IspSM遺伝子とIspSM(L)遺伝子は、それぞれ化学合成された後、pUC57(GenScript社製)にクローニングされ、得られたプラスミドをpUC57-IspSMとpUC57-IspSM(L)と名付けた。
3-4)発現用プラスミドpSTV28-Ptac-Ttrpの構築
 E.coliで各植物種由来IspSを発現させる為の発現用プラスミドpSTV28-Ptac-Ttrpを構築した。始めに、tacプロモーター(同意語:Ptac)領域(deBoer,et al.,(1983) Proc.Natl.Acad.Sci.U.S.A.,80,21-25)及びE.coli由来トリプトファンオペロンのターミネーター(同意語Ttrp)領域(Wu et al.,(1978) Proc.Natl.Acad.Sci.U.S.A.,75,5442-5446)を含み、5’末端にKpnIサイト、3’末端にBamHIサイトを有するDNA断片(Ptac-Ttrp)を化学合成した(Ptac-Ttrpの塩基配列を配列番号16に示す)。得られたPtac-TtrpのDNA断片をKpnI、及びBamHIにて消化処理し、同様にKpnI、及びBamHIで消化処理したpSTV28(タカラバイオ社製)とをDNA Ligaseによるライゲーション反応によって連結した。得られたプラスミドをpSTV28-Ptac-Ttrpと名付けた(塩基配列を配列番号17に示す)。本プラスミドは、Ptac下流にIspS遺伝子をクローニングすることで、IspS遺伝子の発現増幅が可能となる。
3-5)各植物種由来IspS遺伝子発現用プラスミドの構築
 E.coliでIspSK遺伝子、IspSP遺伝子、IspSM遺伝子、及びIspSM(L)遺伝子を発現させる為のプラスミドは次の手順で構築した。pUC57-IspSKを鋳型として、配列番号18と配列番号19の塩基配列からなる合成オリゴヌクレオチド、pUC57-IspSPを鋳型として、配列番号20と配列番号21の塩基配列からなる合成オリゴヌクレオチド、pUC57-IspSMを鋳型として、配列番号22と配列番号23の塩基配列からなる合成オリゴヌクレオチド、更にはpUC57-IspSM(L)を鋳型として、配列番号24と配列番号25の塩基配列からなる合成オリゴヌクレオチドをプライマーとして、Prime Starポリメラーゼ(タカラバイオ社製)を用いてPCRを行った。反応溶液はキットに添付された組成に従って調整し、98℃にて10秒、54℃にて20秒、68℃にて120秒の反応を40サイクル行った。その結果、IspSK遺伝子、IspSP遺伝子、IspSM遺伝子、及びIspSM(L)遺伝子を含む、PCR産物を取得した。同様に、pSTV28-Ptac-Ttrpを、配列番号26と配列番号27の塩基配列からなる合成オリゴヌクレオチドをプライマーとして、Prime Starポリメラーゼ(タカラバイオ社製)を用いてPCRを行った。反応溶液はキットに添付された組成に従って調整し、98℃にて10秒、54℃にて20秒、68℃にて210秒の反応を40サイクル行った。その結果、pSTV28-Ptac-Ttrpを含む、PCR産物を取得した。その後、精製されたIspSK遺伝子、IspSP遺伝子、IspSM遺伝子、及びIspSM(L)遺伝子遺伝子断片と、pSTV28-Ptac-TtrpのPCR産物を、In-Fusion HD Cloning Kit(Clontech社製)を用いて連結した。得られたIspSK遺伝子発現用プラスミドをpSTV28-Ptac-IspSK、IspSP遺伝子発現用プラスミドをpSTV28-Ptac-IspSP、IspSM遺伝子発現用プラスミドをpSTV28-Ptac-IspSM、IspSM(L)遺伝子発現用プラスミドをpSTV28-Ptac-IspSM(L)と命名した。
Figure JPOXMLDOC01-appb-T000004
参考例4:E.coli由来粗酵素抽出液を用いた各植物種由来イソプレンシンターゼの酵素活性測定
4-1)イソプレン生産能を有するE.coli MG1655株の構築
 E.coli MG1655株(ATCC700926)のコンピテントセルを調整後、エレクトロポレーション法によりpSTV28-Ptac-Ttrp、pSTV28-Ptac-IspSK、pSTV28-Ptac-IspSP、pSTV28-Ptac-IspSM、更にpSTV28-Ptac-IspSM(L)を導入し、60(mg/L)のクロラムフェニコールを含むLBプレートに均一に塗布し、37℃にて18時間培養した。その後、得られたプレートから、クロラムフェニコール耐性を示す形質転換体を取得した。E.coli MG1655株にpSTV28-Ptac-Ttrpが導入された株をMG1655/pSTV28-Ptac-Ttrp株、pSTV28-Ptac-IspSKが導入された株をMG1655/pSTV28-Ptac-IspSK株、pSTV28-Ptac-IspSPが導入された株をMG1655/pSTV28-Ptac-IspSP株、pSTV28-Ptac-IspSMが導入された株をMG1655/pSTV28-Ptac-IspSM株、更にpSTV28-Ptac-IspSM(L)が導入された株をMG1655/pSTV28-Ptac-IspSM(L)株と命名した。
4-2)粗酵素抽出液の調製方法
 MG1655/pSTV28-Ptac-Ttrp株、MG1655/pSTV28-Ptac-IspSK株、MG1655/pSTV28-Ptac-IspSP株、MG1655/pSTV28-Ptac-IspSM株、及びMG1655/pSTV28-Ptac-IspSM(L)株を、60(mg/L)のクロラムフェニコールを含むLBプレートに均一に塗布し、37℃にて18時間培養した。得られたプレートから、1/6プレート分の菌体を60(mg/L)のクロラムフェニコールを含むLB20mlを張り込んだ坂口フラスコに接種し、37℃にて6時間培養した。培養液より菌体を5000rpm、4℃、5分の条件で遠心分離し、氷冷したイソプレンシンターゼバッファー(50mM Tris-HCl(pH8.0)・20mM MgCl・5%グリセロール)にて2回洗浄した。洗浄菌体を同バッファー1.8mlに懸濁した。2ml容のマルチビーズショッカー専用チューブに約0.9mlの破砕用ビーズ(YBG01,直径0.1mm)と菌体懸濁液0.9mlを入れ、安井器械製マルチビーズショッカー(MB701(S)型)にて2500rpm、4℃、30秒ON・30秒OFFを3サイクルの条件で菌体を破砕した。破砕後チューブを20000g、4℃、20分の条件で遠心し、上清を粗酵素抽出液とした。
4-3)イソプレンシンターゼ活性の測定
 MG1655/pSTV28-Ptac-Ttrp株、MG1655/pSTV28-Ptac-IspSK株、MG1655/pSTV28-Ptac-IspSP株、MG1655/pSTV28-Ptac-IspSM株、MG1655/pSTV28-Ptac-IspSM(L)株の粗酵素抽出液(総タンパク量として2mgを含む量)とイソプレンバッファーを合わせて0.5mlをヘッドスペースバイアル(Perkin Elmer社製 22mL CLEAR CRIMP TOP VIAL cat♯B0104236)に入れ、0.5M MgCl溶液0.025mlと0.2M DMAPP(cayman製,Catlog No.63180)溶液0.01mlを加えて軽く攪拌した後、すぐにヘッドスペースバイアル用キャップブチルゴムセプタム付(Perkin Elmer社製CRIMPS cat♯B0104240)にて密栓、37℃にて2時間保温した。
 反応終了後、バイアルのヘッドスペース中のイソプレン濃度をガスクロマトグラフィーにより測定した。以下にガスクロマトグラフィーの分析条件を記載する。
Headspace Sampler (Perkin Elmer社製 Turbo Matrix 40)
バイアル保温温度 40℃
バイアル保温時間 30min
加圧時間 3.0min
注入時間 0.02min
ニードル温度 70℃
トランスファー温度 80℃
キャリアガス圧力(高純度ヘリウム) 124kPa
ガスクロマトグラフィー(島津社製 GC-2010 Plus AF)
カラム(Rxi(登録商標)-1ms: 長さ30m、内径0.53mm、液相膜厚1.5μm cat♯13370)
カラム温度 37℃
圧力 24.8kPa
カラム流量 5mL/min
流入方法 スプリット 1:0(実測1:18)
トランスファー流量 90mL
GC注入量 1.8mL(トランスファー流量×注入時間)
カラムへの試料注入量 0.1mL
注入口温度 250℃
検出機 FID(水素 40mL/min、空気 400mL/min、メイクアップガス ヘリウム 30mL/min)
検出器温度 250℃
イソプレン標準試料の調整
 試薬イソプレン(比重0.681)を冷却したメタノールで10、100、1000、10000、100000倍希釈し、添加用標準溶液を調整した。その後、水1mLを入れたヘッドスペースバイアルに各添加用標準溶液を、それぞれ1μL添加し、標準試料とした。
 表5に各菌株の反応2時間後のイソプレン生成量を記載した。
Figure JPOXMLDOC01-appb-T000005
 表5の結果から、イソプレン生成量は高い順に、MG1655/pSTV28-Ptac-IspSM株MG1655/pSTV28-Ptac-IspSM(L)株、MG1655/pSTV28-Ptac-IspSK株となり、MG1655/pSTV28-Ptac-IspSP株とMG1655/pSTV28-Ptac-Ttrp株はほぼ同等の値となった。上記の結果から、ムクナ由来イソプレンシンターゼを導入した株の粗酵素抽出液が最も高いイソプレン生成活性を示した。
参考例5:E.coli MG1655株における、各植物種由来イソプレンシンターゼの導入効果
 参考例4の粗酵素活性の結果から、葉緑体移行シグナルを欠失したムクナ由来のイソプレンシンターゼで最も高い活性が確認された。その為、葉緑体移行シグナルを欠失した全てのイソプレンシンターゼ導入株について、グルコースからのイソプレン生産能を比較した。MG1655/pSTV28-Ptac-Ttrp株、MG1655/pSTV28-Ptac-IspSK株、MG1655/pSTV28-Ptac-IspSP株、及びMG1655/pSTV28-Ptac-IspSM株を、60(mg/L)のクロラムフェニコールを含むLBプレートに均一に塗布し、37℃にて18時間培養した。得られたプレートから、1白金耳分の菌体を、ヘッドスペースバイアル中のM9グルコース培地1mLに接種し、ヘッドスペースバイアル用キャップブチルゴムセプタム付(Perkin Elmer社製CRIMPS cat♯B0104240)で密栓後、往復振とう培養装置(120rpm)で、30℃にて24時間培養を行った。M9グルコース培地の組成は表6に記載のとおりである。
Figure JPOXMLDOC01-appb-T000006
 培養終了後、バイアルのヘッドスペース中のイソプレン濃度をガスクロマトグラフィーにより測定した。また、OD値は分光光度計(HITACHI U-2900)によって600nmで測定した。表7に各菌株の培養終了時のイソプレン濃度とOD値を記載した。
Figure JPOXMLDOC01-appb-T000007
 表7の結果から、イソプレン生産量は高い順に、MG1655/pSTV28-Ptac-IspSM株、MG1655/pSTV28-Ptac-IspSK株、MG1655/pSTV28-Ptac-IspSP株、そしてMG1655/pSTV28-Ptac-Ttrp株となった。上記の結果から、野生株では、ムクナ由来イソプレンシンターゼを導入した株が最も高いイソプレン生産能を示した。
参考例6:MEP(メチルエリスリトール)経路を強化したE.coli MG1655株における、各植物種由来イソプレンシンターゼの導入効果
6-1)dxs遺伝子発現用プラスミド(pMW219-dxs)の構築
 イソプレンシンターゼを導入したE.coliでMEP経路を構成するdxs遺伝子(1-deoxy-D-xylulose-5-phosphate synthase)の発現強化を行うと、イソプレン生成量が向上する事が既に報告されている(Appl.Microbiol.Biotechnol.,(2011)90,1915-1922)。そこで、dxs遺伝子の発現を強化した株においても、イソプレンシンターゼの由来の違いで、イソプレン生産能に相違が生じるかを確認した。E.coli K-12株のゲノムの全塩基配列(Genbank Accession No.U00096)は既に明らかにされている(Science,(1997)277,1453-1474)。遺伝子増幅を行うためにpMW219(ニッポンジーン社製)を用いた。本プラスミドは、マルチクローニングサイトに目的遺伝子を導入する事で、イソプロピル-β-チオガラクトピラノシド(IPTG)を添加時に目的遺伝子の発現量を増加させる事が出来る。E.coliのゲノム配列のdxs遺伝子の塩基配列(Gene ID:945060 Locus tag b0420)に基づいて、配列番号28と配列番号29の塩基配列からなる合成オリゴヌクレオチドを合成した。その後、E.coli MG1655株のゲノムを鋳型として、配列番号28と配列番号29の塩基配列からなる合成オリゴヌクレオチドをプライマーとして、Prime Starポリメラーゼ(タカラバイオ社製)を用いてPCRを行った。反応溶液はキットに添付された組成に従って調整し、98℃にて10秒、54℃にて20秒、68℃にて120秒の反応を40サイクル行った。その結果、dxs遺伝子を含む、PCR産物を取得した。同様に、pMW219を鋳型として、配列番号30と配列番号31の塩基配列からなる合成オリゴヌクレオチドをプライマーとして、Prime Starポリメラーゼ(タカラバイオ社製)を用いてPCRを行った。反応溶液はキットに添付された組成に従って調整し、98℃にて10秒、54℃にて20秒、68℃にて240秒の反応を40サイクル行った。その結果、pMW219を含む、PCR産物を取得した。その後、精製されたdxs遺伝子断片と、pMW219のPCR産物を、In-Fusion HD Cloning Kit(Clontech社製)を用いて連結した。得られたdxs遺伝子発現用プラスミドをpMW219-dxsと命名した。
Figure JPOXMLDOC01-appb-T000008
6-2)イソプレン生産能を有するE.coli MG1655株へのpMW219-dxsの導入
 MG1655/pSTV28-Ptac-Ttrp株、MG1655/pSTV28-Ptac-IspSK株、MG1655/pSTV28-Ptac-IspSM株、更にMG1655/pSTV28-Ptac-IspSP株のコンピテントセルを調整後、エレクトロポレーション法によりpMW219-dxsを導入し、60(mg/L)のクロラムフェニコールと50(mg/L)のカナマイシン塩酸塩を含むLBプレートに均一に塗布し、37℃にて18時間培養した。得られたプレートから、クロラムフェニコールとカナマイシンに耐性を示す形質転換体を取得した。MG1655/pSTV28-Ptac-Ttrp株、MG1655/pSTV28-Ptac-IspSK株、MG1655/pSTV28-Ptac-IspSM株、更にMG1655/pSTV28-Ptac-IspSP株にpMW219-dxsがそれぞれ導入された株をMG1655/pSTV28-Ptac-Ttrp/pMW219-dxs株、MG1655/pSTV28-Ptac-IspSK/pMW219-dxs株、MG1655/pSTV28-Ptac-IspSM/pMW219-dxs、更にMG1655/pSTV28-Ptac-IspSP/pMW219-dxsと命名した。
6-3)DXSの発現を強化したE.coli MG1655株における、各植物種由来イソプレンシンターゼの導入効果
 MG1655/pSTV28-Ptac-Ttrp/pMW219-dxs株、MG1655/pSTV28-Ptac-IspSK/pMW219-dxs株、MG1655/pSTV28-Ptac-IspSM/pMW219-dxs株、更にMG1655/pSTV28-Ptac-IspSP/pMW219-dxs株を、60(mg/L)のクロラムフェニコールと50(mg/L)のカナマイシン塩酸塩を含むLBプレートに均一に塗布し、37℃にて18時間培養した。その後、参考例5に記載したヘッドスペースバイアルでの培養評価を実施した。培養終了時のイソプレン生産量(μg/L)とOD値を表9に記載した。
Figure JPOXMLDOC01-appb-T000009
 表9の結果から、イソプレン生産量は高い順に、MG1655/pSTV28-Ptac-IspSM/pMW219-dxs株、MG1655/pSTV28-Ptac-IspSK/pMW219-dxs株、MG1655/pSTV28-Ptac-IspSP/pMW219-dxs株、そしてMG1655/pSTV28-Ptac-Ttrp/pMW219-dxs株となった。上記の結果から、MEP経路強化株においても、ムクナ由来イソプレンシンターゼを導入した株が最も高いイソプレン生産能を示した。
参考例7:MVA(メバロン酸)経路を導入したE.coli MG1655株における、各植物種由来イソプレンシンターゼの導入効果
7-1)酵母由来のメバロン酸経路下流遺伝子のクローニング
 メバロン酸経路の下流領域はSaccharomyces cerevisiaeより取得した(WO2009076676,Saccharomyces Genome database http://www.yeastgenome.org/#  Nucleic Acids Res.,Jan 2012;40:D700-D705)S.cerevisiaeのゲノムDNAを鋳型とし、メバロン酸キナーゼをコードするERG12遺伝子、ホスホメバロン酸キナーゼをコードするERG8遺伝子、ジホスホメバロン酸デカルボキシラーゼをコードするERG19遺伝子、イソペンテニルニリン酸デルタイソメラーゼをコードするIDI1遺伝子を次に示すプライマーを用いたPCR反応により増幅した(表10)。PCR酵素にはタカラバイオ社より販売されているPrimeSTAR MAX Premixを利用し、98℃、2分、(98℃、10秒、55℃、5秒、72℃、5秒/kb)×30サイクルの条件で反応を行った。PCR断片は制限酵素SmaIで処理したpSTV28-Ptac-Ttrpベクター(配列番号17)にin-fusionクローニング法にて挿入し、クローニングと発現ベクター構築を行った。E.coli DH5αに形質転換を行い、各遺伝子の想定配列長を有するクローンを選抜した後、定法に従いプラスミド抽出を行い、シーケンスを確認した。これら増幅した遺伝子の塩基配列、およびその遺伝子がコードする酵素のアミノ酸配列はSaccharomyces Genome database http://www.yeastgenome.org/#にて取得可能である。
Figure JPOXMLDOC01-appb-T000010
7-2)メバロン酸経路下流の人工オペロンの構築
 メバロン酸キナーゼとホスホメバロン酸キナーゼを直鎖状に並べた配列の構築を、In-fusionクローニング法にて行った。Saccharomyces cerevisiaeのゲノムDNAを鋳型とし、メバロン酸キナーゼをコードするERG12遺伝子、ホスホメバロン酸キナーゼをコードするERG8遺伝子を表11に示すプライマーを用いたPCR法により増幅した。PCR酵素には東洋紡より販売されているKOD plusを利用し、94℃、2分、(94℃、15秒、45℃、30秒、68℃、1分/kb)×30サイクル、68℃、10分の条件で反応を行った。PCR断片は制限酵素SmaIで処理したpUC118ベクターにin-fusionクローニング法にて挿入し、クローニングと発現ベクター構築を行った。E.coli JM109に形質転換を行い、各遺伝子の想定配列長を有するクローンを選抜した後、定法に従いプラスミド抽出を行い、シーケンスを確認した。作成したプラスミドをpUC-mvk-pmkと名付けた。pUC-mvk-pmkの塩基配列を配列番号40に示す。
Figure JPOXMLDOC01-appb-T000011
 ジホスホメバロン酸デカルボキシラーゼとイソペンテニルニリン酸デルタイソメラーゼを直鎖状に並べた配列の構築を、In-fusionクローニング法にて行った。Saccharomyces cerevisiaeのゲノムDNAを鋳型とし、ジホスホメバロン酸デカルボキシラーゼをコードするERG19遺伝子、イソペンテニルニリン酸デルタイソメラーゼをコードするIDI1遺伝子を表12に示すプライマーを用いたPCR法により増幅した。PCR酵素には東洋紡より販売されているKOD plusを利用し、94℃、2分、(94℃、15秒、45℃、30秒、68℃、1分/kb)×30サイクル、68℃、10分の条件で反応を行った。PCR断片は制限酵素SmaIで処理したpTWV228ベクターにin-fusionクローニング法にて挿入し、クローニングと発現ベクター構築を行った。E.coli DH5αに形質転換を行い、各遺伝子の想定配列長を有するクローンを選抜した後、定法に従いプラスミド抽出を行い、シーケンスを確認した。作成したプラスミドをpTWV-dmd-yidiと名付けた。pTWV-dmd-yidiの塩基配列を配列番号45に示す。
Figure JPOXMLDOC01-appb-T000012
 メバロン酸キナーゼ、ホスホメバロン酸キナーゼ、ジホスホメバロン酸デカルボキシラーゼとイソペンテニルニリン酸デルタイソメラーゼを直鎖状に並べた配列の構築を、In-fusionクローニング法にて行った。pUC-mvk-pmkを鋳型とし表13に示すプライマーを用いてメバロン酸キナーゼとホスホメバロン酸キナーゼ配列をPCR法により増幅し、pTWV-dmd-yidiを鋳型とし表13に示すプライマーを用いてジホスホメバロン酸デカルボキシラーゼとイソペンテニルニリン酸デルタイソメラーゼをPCR法により増幅した後、pTrcHis2BベクターにIn-fusionクローニング法にてクローニングを行うことで4種の酵素遺伝子を直鎖状に並べた発現プラスミドの構築を行った。PCR酵素にはタカラバイオ社より販売されているPrimeSTAR HS DNAポリメラーゼを利用し、98℃、2分、(98℃、10秒、52℃、5秒、72℃、1分/kb)×30サイクル、72℃、10分の条件で反応を行った。PCR断片は、制限酵素NcoIとPstIで処理したpTrcHis2Bベクターにin-fusionクローニング法にて挿入し、発現ベクター構築を行った。E.coli JM109に形質転換を行い、目的配列長を有するクローンを選抜した後、定法に従いプラスミド抽出を行い、シーケンスを確認した。構築した発現ベクターをpTrc-KKDyI(β)と名付けた。pTrc-KKDyI(β)の塩基配列を配列番号50に示す。
Figure JPOXMLDOC01-appb-T000013
7-3)メバロン酸経路下流の染色体固定
 メバロン酸キナーゼ、ホスホメバロン酸キナーゼ、ジホスホメバロン酸デカルボキシラーゼとイソペンテニルニリン酸デルタイソメラーゼを直鎖状に並べた配列を染色体上で発現させる事とした。遺伝子の発現にはグルコースイソメラーゼプロモーターを利用し、転写終結にはE.coliのaspA遺伝子の転写終結領域を利用した(WO2010031062)。染色体固定部位としてTn7の転移部位を用いた(Mol Gen Genet.1981;183(2):380-7)。染色体固定後の薬剤マーカーとしてはcat遺伝子を利用した。表14に示すプライマーを利用して、E.coliのゲノムを鋳型としたPCRにより染色体固定領域の内、Tn7下流領域の増幅を行った。PCR酵素にはタカラバイオ社より販売されているPrimeSTAR HS DNAポリメラーゼを利用し、98℃、2分、(98℃、10秒、52℃、5秒、72℃、1分/kb)×30サイクル、72℃、10分の条件で反応を行った。表14に示すプライマーを利用して、pMW118-attL-Cm-attRプラスミドを鋳型としたPCRによりλファージアッタチメント部位を含むcat遺伝子領域の増幅を行った(WO2010-027022)。PCR酵素にはタカラバイオ社より販売されているPrimeSTAR HS DNAポリメラーゼを利用し、95℃、3分、(95℃、1分、34℃、30秒、72℃、40秒)×2サイクル、(95℃、30秒、50℃、30秒、72℃、40秒)×25サイクル、72℃、5分の条件で反応を行った。表14に示すプライマーを利用して、pTrc-KKDyI(β)を鋳型としたPCRによりプロモータと転写終結領域を付与したメバロン酸経路下流配列(以下KKDyIと略す)の増幅を行った。PCR酵素にはタカラバイオ社より販売されているPrimeSTAR HS DNAポリメラーゼを利用し、98℃、2分、(98℃、10秒、52℃、5秒、72℃、1分/kb)×30サイクル、72℃、10分の条件で反応を行った。これらのPCR産物と、制限酵素SmaIで処理したpMW219を用い、In-Fusionクローニング法によりベクター構築を行った。E.coli JM109に形質転換を行い、目的配列長を有するクローンを選抜した後、定法に従いプラスミド抽出を行い、シーケンスを確認した。得られたプラスミドをpMW219-KKDyI-TaspAと名づけた。pMW219-KKDyI-TaspAの塩基配列を配列番号55に示す。
 次に、表14に示すプライマーを利用して、E.coliのゲノムを鋳型としたPCRにより染色体固定領域の内、Tn7上流領域の増幅を行った。PCR酵素にはタカラバイオ社より販売されているPrimeSTAR HS DNAポリメラーゼを利用し、98℃、2分、(98℃、10秒、52℃、5秒、72℃、1分/kb)×30サイクル、72℃、10分の条件で反応を行った。PCR産物と、制限酵素SalIで処理したpMW219-KKDyI-TaspAを用い、In-Fusionクローニング法によりベクター構築を行った。E.coli JM109に形質転換を行い、目的配列長を有するクローンを選抜した後、定法に従いプラスミド抽出を行い、シーケンスを確認した。得られたプラスミドをpMW-Tn7-Pgi-KKDyI-TaspA-Tn7と名づけた。構築したプラスミドの配列を配列番号56に示す。
 続いて、λ-Red法を用いてクロラムフェニコール耐性遺伝子、グルコースイソメラーゼプロモーター、メバロン酸経路下流オペロン、aspA遺伝子転写終結領域を含む領域の染色体固定を行った。染色体固定用の断片は、プラスミドpMW-Tn7-Pgi-KKDyI-TaspA-Tn7を抽出後、制限酵素PvuIとSalIで処理した後、精製することで調整した。E.coli MG1655に温度感受性の複製能を有するプラスミドpKD46を含むE.coli MG1655(以下MG1655/pKD46と表記する)をエレクトロポレーションするために用いた。プラスミドpKD46[Proc.Natl.Acad.Sci.USA,2000,vol.97,No.12,p6640-6645]は、アラビノース誘導性ParaBプロモーターに制御されるλRedシステムの遺伝子(λ、β、exo遺伝子)を含むλファージの合計2154塩基のDNAフラグメント(GenBank/EMBL アクセッション番号 J02459,第31088番目~33241番目)を含む。エレクトロポレーションの後、クロラムフェニコール耐性を獲得したコロニーを取得した。続いてゲノムDNAを抽出し、表16に示すプライマーを用いたPCRにより目的領域が染色体に固定されていることを確認した。更に、PCR断片の配列を確認することで目的領域の配列を確認した。染色体固定したメバロン酸経路下流とその周辺領域の塩基配列を配列番号57に、構築概要を図4に示す。得られた変異体をMG1655 cat-Pgi-KKDyIと名づけた。
 MG1655 cat-Pgi-KKDyIの薬剤マーカーを以下の手順で除去した。MG1655 cat-Pgi-KKDyIのコンピテントセルを作成後pMW-int-xisを導入した。pMW-int-xisは、λファージのインテグラーゼ(Int)をコードする遺伝子、エクシジョナーゼ(Xis)をコードする遺伝子を搭載し、温度感受性の複製能を有するプラスミドである(WO2007/037460、特開2005-058827)。
 pMW-int-xisの導入により、λファージのアタッチメントサイトであるattL及びattRで挟まれた領域にあるクロラムフェニコール耐性遺伝子が染色体から脱落する。その結果として、宿主はクロラムフェニコール耐性を失うことが知られている。そこで、得られたコロニーからクロラムフェニコール感受性株を取得した。この後、42度、LB培地で6時間培養の後、LBプレート培地に塗布し、コロニーを出現させた。この中からアンピシリン耐性を失ったクローンを選抜することで、薬剤耐性を除去した。このようにして取得した変異体をMG1655 Pgi-KKDyIと名づけた。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
7-4)染色体上メバロン酸経路下流のプロモーター置換
 染色体上のメバロン酸経路下流オペロンのプロモーターをλ-red法により置換した。PCRの鋳型として、attL-Tet-attR-Ptacを有するゲノム断片を使用した。これは、tacプロモーターとテトラサイクリン耐性薬剤マーカー及びλファージのアタッチメントサイトであるattL及びattRが並ぶものである。これらの配列を配列番号68に示す。表17に示すプロモーターを用いてPCR断片を調整した。PCR酵素にはタカラバイオ社より販売されているLA-Taqポリメラーゼを利用し、92℃、1分、(92℃、10秒、50℃、20秒、72℃、1分/kb)×40サイクル、72℃、7分の条件で反応を行った。PCR産物を精製し、温度感受性の複製能を有するプラスミドpKD46を含むMG1655 Pgi-KKDyI(以下MG1655 Pgi-KKDyI/pKD46と表記する)をエレクトロポレーションするために用いた。プラスミドpKD46[Proc.Natl.Acad.Sci.USA,2000,vol.97,No.12,p6640-6645]は、アラビノース誘導性ParaBプロモーターに制御されるλRedシステムの遺伝子(λ、β、exo遺伝子)を含むλファージの合計2154塩基のDNAフラグメント(GenBank/EMBL アクセッション番号 J02459,第31088番目~33241番目)を含む。プラスミドpKD46はPCR産物をMG1655 Pgi-KKDyIに組み込むために必要である。
 エレクトロポレーション用のコンピテントセルは次のようにして調製した。100mg/Lのアンピシリンを含んだLB培地中で30℃、一晩培養したMG1655 Pgi-KKDyI/pKD46を、アンピシリンとL-アラビノース(1mM)を含んだ5mLのLB培地で100倍希釈した。得られた希釈物を30℃で通気しながらOD600が約0.6になるまで生育させた後、氷冷した10% グリセロール溶液で3回洗浄することによってエレクトロポレーションに使用できるようにした。エレクトロポレーションは50μLのコンピテントセルと約100ngのPCR産物を用いて行った。エレクトロポレーション後のセルは1mLのSOC培地[モレキュラークローニング:実験室マニュアル第2版、Sambrook,J.ら、Cold Spring Harbor Laboratory Press(1989年)]を加えて37℃で1時間培養した後、LB寒天培地上、37℃で平板培養し、クロラムフェニコール耐性組換え体を選択した。次に、pKD46プラスミドを除去するために、テトラサイクリン入りのLB寒天培地上、37℃で継代し、得られたコロニーのアンピシリン耐性を試験し、pKD46が脱落しているアンピシリン感受性株を取得した。テトラサイクリン耐性遺伝子によって識別できるtacプロモーター置換を含む変異体を取得した。得られた変異体をMG1655 tet-Ptac-KKDyIと名づけた。
 薬剤マーカーを以下の手順で除去した。MG1655 tet-Ptac-KKDyIのコンピテントセルを作成後pMW-int-xisを導入した。pMW-int-xisは、λファージのインテグラーゼ(Int)をコードする遺伝子、エクシジョナーゼ(Xis)をコードする遺伝子を搭載し、温度感受性の複製能を有するプラスミドである(WO2007/037460、特開2005-058827)。pMW-int-xisの導入により、λファージのアタッチメントサイトであるattL及びattRで挟まれた領域にあるテトラサイクリン耐性遺伝子が染色体から脱落する。その結果として、宿主はテトラサイクリン耐性を失うことが知られている。そこで、得られたコロニーからテトラサイクリン感受性株を取得した。この後、42℃、LB培地で6時間培養の後、LBプレート培地に塗布し、コロニーを出現させた。この中からアンピシリン耐性を失ったクローンを選抜することで、薬剤耐性を除去した。得られた変異体をMG1655 Ptac-KKDyIと名づけた。染色体上にてtacプロモーターで支配されたメバロン酸経路下流およびその周辺領域の塩基配列を配列番号69に、概要を図5に示す。
Figure JPOXMLDOC01-appb-T000017
7-5)MG1655 Ptac-KKDyI株への各植物種由来イソプレンシンターゼの導入
 MG1655 Ptac-KKDyI株のコンピテントセルを調整後、エレクトロポレーション法によりpSTV28-Ptac-Ttrp、pSTV28-Ptac-IspSK、pSTV28-Ptac-IspSM、更にpSTV28-Ptac-IspSPを導入し、60(mg/L)のクロラムフェニコールを含むLBプレートに均一に塗布し、37℃にて18時間培養した。得られたプレートから、クロラムフェニコール耐性を示す形質転換体を取得した。MG1655 Ptac-KKDyI株にpSTV28-Ptac-Ttrpが導入された株をMG1655 Ptac-KKDyI/pSTV28-Ptac-Ttrp株、pSTV28-Ptac-IspSKが導入された株をMG1655 Ptac-KKDyI/pSTV28-Ptac-IspSK株、pSTV28-Ptac-IspSMが導入された株をMG1655 Ptac-KKDyI/pSTV28-Ptac-IspSM株、pSTV28-Ptac-IspSPが導入された株をMG1655 Ptac-KKDyI/pSTV28-Ptac-IspSP株と命名した。
7-6)MVA経路を強化したMG1655株における、各植物種由来イソプレンシンターゼの導入効果
 MG1655 Ptac-KKDyI/pSTV28-Ptac-Ttrp株、MG1655 Ptac-KKDyI/pSTV28-Ptac-IspSK株、MG1655 Ptac-KKDyI/pSTV28-Ptac-IspSM株、更にMG1655 Ptac-KKDyI/pSTV28-Ptac-IspSP株を、60(mg/L)のクロラムフェニコールを含むLBプレートに均一に塗布し、37℃にて18時間培養した。得られたプレートから、1白金耳分の菌体を、ヘッドスペースバイアル中(Perkin Elmer社製 22 mL CLEAR CRIMP TOP VIAL cat♯B0104236)のM9グルコース(メバロン酸含有)培地1mLに接種し、その後、参考例2に記載した方法に従って、培養評価を実施した。M9グルコース(メバロン酸含有)培地の組成を表18に記載した。培養終了時のイソプレン生産量とOD値を表19に記載した。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 表19の結果から、イソプレン生産量は高い順に、MG1655 Ptac-KKDyI/pSTV28-Ptac-IspSM株、MG1655 Ptac-KKDyI/pSTV28-Ptac-IspSK株、MG1655 Ptac-KKDyI/pSTV28-Ptac-IspSP株、そしてMG1655 Ptac-KKDyI/pSTV28-Ptac-Ttrp株となった。上記の結果から、MVA経路導入株においても、ムクナ由来イソプレンシンターゼを導入した株が最も高いイソプレン生産能を示した。
実施例5:P.ananatis AG10265の構築
5-1)pMW-Para-mvaES-Ttrpの構築
5-1-1)Enterococcus faecalis由来mvaE遺伝子の化学合成
 acetyl-CoA acetyltransferaseとhydroxymethlglutaryl-CoAreductaseをコードするEnterococcus faecalis由来mvaEの塩基配列、及びアミノ酸配列はすでに知られている(塩基配列のACCESSION番号:AF290092.1、(1479..3890)、アミノ酸配列のACCESSION番号:AAG02439)(J.Bacteriol.182(15),4319-4327(2000))。Enterococcus faecalis由来mvaEタンパク質のアミノ酸配列、及び遺伝子の塩基配列を配列番号72、及び配列番号73にそれぞれ示す。mvaE遺伝子をE.coliで効率的に発現させるためにE.coliのコドン使用頻度に最適化したmvaE遺伝子を設計し、これをEFmvaEと名付けた。この塩基配列を配列番号74に示す。mvaE遺伝子は化学合成された後、pUC57(GenScript社製)にクローニングされ、得られたプラスミドをpUC57-EFmvaEと名付けた。
5-1-2)Enterococcus faecalis由来mvaS遺伝子の化学合成
 hydroxymethylglutaryl-CoA synthaseをコードするEnterococcus faecalis由来mvaSの塩基配列、及びアミノ酸配列はすでに知られている(塩基配列のACCESSION番号:AF290092.1、complement(142..1293)、アミノ酸配列のACCESSION番号:AAG02438)(J.Bacteriol.182(15),4319-4327(2000))。Enterococcus faecalis由来mvaSタンパク質のアミノ酸配列、及び遺伝子の塩基配列を配列番号75、及び配列番号76にそれぞれ示す。mvaS遺伝子をE.coliで効率的に発現させるためにE.coliのコドン使用頻度に最適化したmvaS遺伝子を設計し、これをEFmvaSと名付けた。この塩基配列を配列番号77に示す。mvaS遺伝子は化学合成された後、pUC57(GenScript社製)にクローニングされ、得られたプラスミドをpUC57-EFmvaSと名付けた。
5-1-3)アラビノース誘導型mvaES発現ベクターの構築
 アラビノース誘導型メバロン酸経路上流遺伝子発現ベクターは次の手順で構築した。プラスミドpKD46を鋳型として配列番号78と配列番号79に示す合成オリゴヌクレオチドをプライマーとしたPCRによりE.coli由来araCとaraBADプロモーター配列からなるParaを含むPCR断片を得た。プラスミドpUC57-EFmvaEを鋳型として配列番号80と配列番号81に示す合成オリゴヌクレオチドをプライマーとしたPCRによりEFmvaE遺伝子を含むPCR断片を得た。プラスミドpUC57-EFmvaSを鋳型として配列番号82と配列番号83に示す合成オリゴヌクレオチドをプライマーとしたPCRによりEFmvaS遺伝子を含むPCR断片を得た。プラスミドpSTV-Ptac-Ttrpを鋳型として配列番号84と配列番号85に示す合成オリゴヌクレオチドをプライマーとしたPCRによりTtrp配列を含むPCR断片を取得した。これら4つのPCR断片を得るためのPCRにはPrime Starポリメラーゼ(タカラバイオ社製)を用いた。反応溶液はキットに添付された組成に従って調整し、98℃にて10秒、55℃にて5秒、72℃にて1分/kbの反応を30サイクル行った。精製したParaを含むPCR産物とEFmvaE遺伝子を含むPCR産物を鋳型として配列番号78と配列番号81に示す合成オリゴヌクレオチドを、精製したEFmvaS遺伝子を含むPCR産物とTtrpを含むPCR産物を鋳型として配列番号82と配列番号85に示す合成オリゴヌクレオチドをプライマーとしてPCRを行った。その結果、ParaとEFmvaE遺伝子、EFmvaSとTtrp含むPCR産物を取得した。プラスミドpMW219(ニッポンジーン社製)は常法に従ってSmaI消化した。SmaI消化後pMW219と精製したParaとEFmvaE遺伝子を含むPCR産物、EFmvaS遺伝子とTtrpを含むPCR産物はIn-Fusion HD Cloning Kit(Clontech社製)を用いて連結した。得られたプラスミドは、pMW-Para-mvaES-Ttrpと命名した。
5-2)pTrc-KKDyI-ispS(K)の構築
 先ず、メバロン酸キナーゼ、ホスホメバロン酸キナーゼ、ジホスホメバロン酸デカルボキシラーゼとイソペンテニルニリン酸デルタイソメラーゼを直鎖状に並べた配列を含む発現ベクターの構築を、In-fusionクローニング法にて行った。pUC-mvk-pmk(参考例7-2)を参照)(配列番号40)を鋳型とし配列番号86~89の塩基配列からなるプライマーを用いてメバロン酸キナーゼとホスホメバロン酸キナーゼ配列をPCR法により増幅し、pTWV-dmd-yidi(参考例7-2)を参照)(配列番号45)を鋳型とし配列番号86~89の塩基配列からなるプライマーを用いてジホスホメバロン酸デカルボキシラーゼとイソペンテニルニリン酸デルタイソメラーゼをPCR法により増幅した後、pTrcHis2BベクターにIn-fusionクローニング法にてクローニングを行うことで4種の酵素遺伝子を直鎖状に並べた発現プラスミドの構築を行った。PCR酵素にはタカラバイオ社より販売されているPrimeSTAR HS DNAポリメラーゼを利用し、98℃、2分、(98℃、10秒、52℃、5秒、72℃、1分/kb)×30サイクル、72℃、10分の条件で反応を行った。PCR断片は、制限酵素NcoIとPstIで処理したpTrcHis2Bベクターにin-fusionクローニング法にて挿入し、発現ベクター構築を行った。E.coli JM109に形質転換を行い、目的配列長を有するクローンを選抜した後、定法に従いプラスミド抽出を行い、シーケンスを確認した。構築した発現ベクターをpTrc-KKDyI(α)と名付けた。pTrc-KKDyI(α)の塩基配列を配列番号90に示す。
 次いで、得られたpTrc-KKDyI(α)(配列番号90)にIspS(K)を付加したプラスミドpTrc-KKDyI-ispS(K)の構築は以下の手順で行った。
 pTrc-KKDyI(α)を制限酵素PstI(タカラバイオ社製)で消化処理し、pTrc-KKDyI(α)/PstIを得た。pUC57-ispSKを鋳型とし、pTrcKKDyIkSS_6083-10-1(配列番号91)、pTrcKKDyIkSA_6083-10-2(配列番号92)をプライマーとし、Prime Starポリメラーゼ(タカラバイオ社製)を用いてPCRを行った。反応溶液はキットに添付された組成に従って調整し、98℃にて10秒、54℃にて20秒、68℃にて120秒の反応を30サイクル行った。その結果IspSK遺伝子を含む、PCR産物を取得した。その後、精製されたIspSK遺伝子断片と、pTrc-KKDyI(α)/PstIを、In-Fusion HD Cloning Kit(Clontech社製)を用いて連結した。得られたプラスミドをpTrc-KKDyI-ispS(K)(配列番号93)と命名した。
5-3)pSTV-Ptac-ispS-Mmamvkの構築
5-3-1)Methanosarcina mazei由来メバロン酸キナーゼの化学合成
 Methanosarcina mazei Go1由来、メバロン酸キナーゼの塩基配列、及びアミノ酸配列はすでに知られている(塩基配列のACCESSION番号:NC_003901.1(2101873..2102778、LOCUS TAG MM_1762,アミノ酸配列の番号:NP_633786.1))。Methanosarcina mazei由来MVKタンパク質のアミノ酸配列、及び遺伝子の塩基配列を配列番号94、及び配列番号95にそれぞれ示す。MVK遺伝子をE.coliで効率的に発現させるためにE.coliのコドン使用頻度に最適化したMVK遺伝子を設計し、これをMmamvkと名付けた。Mmamvkの塩基配列を配列番号96に示す。Mmamvk遺伝子は化学合成された後、pUC57(GenScript社製)にクローニングされ、得られたプラスミドをpUC57-Mmamvkと名付けた。
5-3-2)Pueraria montana var.lobata(葛)由来イソプレンシンターゼとMVK遺伝子発現用プラスミドの構築
 E.coliでIspSK遺伝子とMmamvk遺伝子とを発現させる為のプラスミドは次の手順で構築した。pUC57-IspSKを鋳型として、配列番号97と配列番号98の塩基配列からなる合成オリゴヌクレオチドをプライマーとして、Prime Starポリメラーゼ(タカラバイオ社製)を用いてPCRを行った。反応溶液はキットに添付された組成に従って調整し、98℃にて10秒、54℃にて20秒、68℃にて120秒の反応を40サイクル行った。その結果IspSK遺伝子を含む、PCR産物を取得した。同様に、pSTV28-Ptac-Ttrpを、配列番号99と配列番号100の塩基配列からなる合成オリゴヌクレオチドをプライマーとして、Prime Starポリメラーゼ(タカラバイオ社製)を用いてPCRを行った。反応溶液はキットに添付された組成に従って調整し、98℃にて10秒、54℃にて20秒、68℃にて210秒の反応を40サイクル行った。その結果、pSTV28-Ptac-Ttrpを含む、PCR産物を取得した。その後、精製されたIspSK遺伝子断片と、pSTV28-Ptac-TtrpのPCR産物を、In-Fusion HD Cloning Kit(Clontech社製)を用いて連結した。得られたIspSK遺伝子発現用プラスミドをpSTV28-Ptac-IspSKと命名した。次に、pUC57-Mmamvkを鋳型として、配列番号101と配列番号102の塩基配列からなる合成オリゴヌクレオチドをプライマーとして、Prime Starポリメラーゼ(タカラバイオ社製)を用いてPCRを行った。反応溶液はキットに添付された組成に従って調整し、98℃にて10秒、55℃にて5秒、72℃にて1分/kbの反応を30サイクル行った。その結果Mmamvk遺伝子を含むPCR産物を取得した。同様に、pSTV28-Ptac-IspSKを、配列番号103と配列番号104の塩基配列からなる合成オリゴヌクレオチドをプライマーとして、Prime Starポリメラーゼ(タカラバイオ社製)を用いてPCRを行った。反応溶液はキットに添付された組成に従って調整し、98℃にて10秒、55℃にて5秒、72℃にて1分/kbの反応を30サイクル行った。その結果、pSTV28-Ptac-IspSKを含む、PCR産物を取得した。その後、精製されたMmamvk遺伝子と、pSTV28-Ptac-IspSKのPCR産物を、In-Fusion HD Cloning Kit(Clontech社製)を用いて連結した。得られたIspSK遺伝子とMmamvk遺伝子の発現用プラスミドをpSTV28-Ptac-ispSK-Mmamvkと名付けた。
5-4)pMW-Ptac-Mclmvk-Ttrpの構築
 次に、MVK発現プラスミド(pMW-Ptac-mvk-Ttrp)を構築した。
 pUC57-Mclmvkを鋳型として、Mcl_mvk_N(配列番号105)とMcl_mvk_C(配列番号106)の塩基配列からなる合成オリゴヌクレオチドをプライマーとして、Prime Starポリメラーゼ(タカラバイオ社製)を用いてPCRを行った。反応溶液はキットに添付された組成に従って調整し、98℃にて10秒、55℃にて5秒、72℃にて1分/kbの反応を30サイクル行った。その結果Mclmvk遺伝子を含むPCR産物を取得した。同様に、pMW219-Ptac-Ttrp(WO2013069634A1を参照)を、PtTt219f(配列番号107)とPtTt219r(配列番号108)の塩基配列からなる合成オリゴヌクレオチドをプライマーとして、Prime Starポリメラーゼ(タカラバイオ社製)を用いてPCRを行った。反応溶液はキットに添付された組成に従って調整し、98℃にて10秒、55℃にて5秒、72℃にて1分/kbの反応を30サイクル行った。その結果、pMW219-Ptac-Ttrpを含む、PCR産物を取得した。その後、精製されたMclmvk遺伝子と、pMW219-Ptac-TtrpのPCR産物を、In-Fusion HD Cloning Kit(Clontech社製)を用いて連結した。得られたMclmvk遺伝子の発現用プラスミドをpMW-Ptac-Mclmvk-Ttrpと名付けた。
5-5)メバロン酸経路の上流および下流遺伝子を保有する組込み型コンディショナル複製プラスミドの構築
 メバロン酸経路の上流および下流遺伝子を保有する組込み型プラスミドを構築するため、pAH162-λattL-TcR-λattR vector(Minaeva NI et al.,BMC Biotechnol.2008;8:63)を用いた。
 pMW-Para-mvaES-TtrpのKpnI-SalIフラグメントを、pAH162-λattL-TcR-λattRのSphI-SalI認識部位中にクローニングした。その結果、E.coli Paraプロモーターおよびリプレッサー遺伝子araCの制御下にあるE.faecalis由来mvaESオペロンを保有するpAH162-Para-mvaESプラスミドを構築した(図6)。
 S.cerevisiae由来のメバロン酸キナーゼ、ホスホメバロン酸キナーゼ、ジホスホメバロン酸デカルボキシラーゼ、およびIPPイソメラーゼ遺伝子、および葛由来ispS遺伝子のコーディング部分を含むpTrc-KKDyI-ispS(K)プラスミドのEcl136II-SalIフラグメントを、pAH162-λattL-TcR-λattRのSphI-SalI部位中にサブクローニングし、得られたプラスミドを、pAH162-KKDyI-ispS(K)と命名した(図7)。
 Ptacの制御下にあるispS(ムクナ)およびmvk(M.mazei)遺伝子を含むpSTV28-Ptac-ispS-MmamvkのBglII-EcoRIフラグメントを、組込み型ベクターpAH162-λattL-TcR-λattRのBamHI-Ecl136II認識部位中にサブクローニングした。得られたプラスミドpAH162-Ptac-ispS(M)-mvk(Mma)を、図8に示す。
5-6)phi80ファージのattB部位をゲノムの異なる部位に保有するP.ananatis SC17(0)誘導体の構築
 ampC遺伝子、ampH遺伝子またはcrtオペロンを置換したphi80ファージのattB部位を保有するP.ananatis SC17(0)誘導体を構築した(P.ananatis AJ13355の注釈付完全ゲノム配列は、PRJDA162073またはGenBankアクセッション番号AP01232.1およびAP012033.1として入手可能)。これらの株を得るために、ゲノム中の標的部位に相同である40bp領域に隣接したattLphi80-kan-attRphi80を保有するPCR増幅DNAフラグメントのλRed依存性組込みを、既報(Katashkina JI et al.,BMC Mol Biol.2009;10:34)の手法にしたがって行った。エレクトロポレーション後、50mg/lカナマイシン含有L-アガー上で細胞を培養した。attLphi80-kan-attRphi80によるampCおよびampH遺伝子ならびにcrtオペロンの置換に用いたDNAフラグメントを、それぞれ、オリゴヌクレオチド1および2、3および4、ならびに5および6(表20)を用いた反応で増幅した。PMWattphiプラスミド(Minaeva NI et al.,BMC Biotechnol.2008;8:63)を、これらの反応で鋳型として用いた。得られた組込み体を、SC17(0)ΔampC::attLphi80-kan-attRphi80、SC17(0)ΔampH::attLphi80-kan-attRphi80、およびSC17(0)Δcrt::attLphi80-kan-attRphi80と命名した。オリゴヌクレオチド7および8、9および10、ならびに11および12(表20)を、それぞれ、SC17(0)ΔampC::attLphi80-kan-attRphi80、SC17(0)ΔampH::attLphi80-kan-attRphi80、およびSC17(0)Δcrt::attLphi80-kan-attRphi80株のPCRによる検証のために用いた。得られたΔampC::attLphi80-kan-attRphi80、ΔampH::attLphi80-kan-attRphi80、およびΔcrt::attLphi80-kan-attRphi80、ゲノム改変体のマップを、それぞれ、図9A)、図10A)および図11A)に示す。
 カナマイシン耐性マーカーからの構築株のキュアリングを、既報(Andreeva IG et al.,FEMS Microbiol Lett.2011;318(1):55-60)の手法にしたがい、pAH129-catヘルパープラスミドを用いて行った。オリゴヌクレオチド7および8、9および10、ならびに11および12(表20)を、それぞれ、得られたSC17(0)ΔampC::attBphi80、SC17(0)ΔampH::attBphi80、およびSC17(0)Δcrt::attBphi80株のPCRによる検証のために用いた。
5-7)ISP3-S株の構築
 5-5)に記載されるpAH162-KKDyI-ispS(K)のプラスミドを、既報(Andreeva IG et al.,FEMS Microbiol Lett.2011;318(1):55-60)の手法にしたがい、ヘルパープラスミドpAH123-catを用いて、5-6)に記載されるSC17(0)ΔampC::attBphi80株に組み込んだ。オリゴヌクレオチド対13-7および14-8(表20)を、得られた組込み体のPCRによる検証のために用いた。得られたSC17(0)ΔampC::pAH162-KKDyI-ispS(K)株を、既報(Katashkina JI et al.,BMC Mol Biol.2009;10:34)の手法にしたがい、λファージのintおよびxis遺伝子を保有するpMWintxis-catヘルパープラスミドを用いて、pAH162-KKDyI-ispS(K)のベクター部分からキュアした。その結果、SC17(0)ΔampC::KKDyI-ispS(K)株を得た。オリゴヌクレオチド7および15(表20)を、カナマイシン感受性誘導体のPCRによる検証のために用いた。SC17(0)ΔampC::KKDyI-ispS(K)の構築を図9に示す。
 GeneElute細菌性ゲノムDNAキット(Sigma)を用いて上記SC17(0)ΔampH::attLphi80-kan-attRphi80株から単離したゲノムDNAを、既報(Katashkina JI et al.,BMC Mol Biol.2009;10:34)の染色体エレクトロポレーションの方法にしたがって、SC17(0)ΔampC::KKDyI-ispS(K)株にエレクトロポレーションした。ΔampH::attLphi80-kan-attRphi80変異の移入を、プライマー9および10を用いたPCRにより確認した。
 最後の株を、phi80 Int/Xis依存性手法(Andreeva IG et al.,FEMS Microbiol Lett.2011;318(1):55-60)を用いてカナマイシン耐性マーカーからキュアした。得られたKmS組換え体においてプライマー7および15を用いてΔampC::KKDyI-ispS(K)改変体をPCRにより検証した後、SC17(0)ΔampC::KKDyI-ispS(K) ΔampH::attBphi80株を選択した。
 上記pAH162-Para-mvaESプラスミドを、pAH123-catヘルパープラスミド(Andreeva IG et al.,FEMS Microbiol Lett.2011;318(1):55-60)を用いて、SC17(0)ΔampC::KKDyI-ispS(K)ΔampH::attBphi80に組み込んだ。オリゴヌクレオチド13および9、ならびにオリゴヌクレオチド14および10(表20)を、得られた組込み体のPCRによる検証のために用いた。この組込み体を、ファージλ Int/Xis依存性技術(Katashkina JI et al.,BMC Mol Biol.2009;10:34)を用いて、pAH162-Para-mvaESのベクター部分からキュアした。染色体からのベクターの除去は、プライマー9および16を用いたPCRにより確認した。その結果、マーカーを含まないSC17(0)ΔampC::KKDyI-ispS(K)ΔampH::Para-mvaESを得た。ΔampH::Para-mvaES染色体改変体の構築物を、図10に示す。
 5-5)に記載されるpAH162-Ptac-ispS(K)-mvk(Mma)プラスミドを、既報(Andreeva IG et al.,FEMS Microbiol Lett.2011;318(1):55-60)に記載されるプロトコルを用いて、SC17(0)Δcrt::attBphi80のゲノムに組み込んだ。プラスミド組込みを、プライマー11-13および12-14を用いたポリメラーゼ連鎖反応で確認した。
 このようにして構築された染色体改変体SC17(0)Δcrt::pAH162-Ptac-ispS(K)-mvk(Mma)を、既報(Katashkina JI et al.,BMC Mol Biol.2009;10:34)のゲノムDNAによるエレクトロポレーションの方法を用いて、SC17(0)ΔampC::KKDyI-ispS(K)ΔampH::Para-mvaES株に移した。得られた組込み体を、ファージλ Int/Xis依存性技術(Katashkina JI et al.,BMC Mol Biol.2009;10:34)を用いて、pAH162-Ptac-ispS(K)-mvk(Mma)のベクター部分からキュアした。最終構築物Δcrt::Ptac-ispS(K)-mvk(Mma)の構造(図11)は、プライマー11および17を用いたPCRで確認した。
 この最終株に導入された組込み型発現カセットをPCRにより検証したところ、S.cerevisiae由来のMVK、PMK、MVDおよびyldI遺伝子を含むKKDyIオペロンの5’-部分で幾つか予想外に再構成していることが判明した。このカセットを修復するため、既報(Katashkina JI et al.,BMC Mol Biol.2009;10:34)の手法にしたがい、GeneElute細菌性ゲノムDNAキット(Sigma)を用いて、SC17(0)ΔampC::pAH162-KKDyI-ispS(K)株から単離したゲノムDNAをこの株にエレクトロポレーションした。得られた株は、イソプレン産生に必要な全ての遺伝子を含んでいた。
 pAH162-KKDyI-ispS(K)(上記を参照)のベクター部分からファージλ Int/Xis依存性でキュアした後、マーカーを含まないISP3-S株(P.ananatis SC17(0) ΔampC::attLphi80-KKDyI-ispS(K)-attRphi80 ΔampH::attLphi80-Para-mvaES-attRphi80 Δcrt::attLphi80-Ptac-ispS(K)-mvk(Mma)-attRphi80)を得た。
5-8)異なるメバロン酸キナーゼ遺伝子を保有する組込み型プラスミドの構築
 pMW-Ptac-Mclmvk-TtrpのKpnI-BamHIフラグメントを、pAH162-λattL-TcR-λattR組込み型ベクターのKpnI-Ecl136II認識部位中にサブクローニングした。その結果、tacプロモーターの制御下にあるM.concilli由来MVK遺伝子を保有するpAH162-Ptac-Mclmvkプラスミドを構築した。
5-9)AG10265株の構築
 5-8)に記載されるpAH162-Ptac-Mclmvkプラスミドを、既報(Andreeva IG et al.,FEMS Microbiol Lett.2011;318(1):55-60)のプロトコルにしたがい、pAH123-catヘルパープラスミドを用いて、SC17(0)Δcrt::attBphi80のゲノム中に組み込んだ。
 構築されたΔcrt::pAH123-Ptac-mvk(M.paludicola)染色体改変体を、SC17(0)Δcrt::pAH162-Ptac-Mclmvkから単離したゲノムDNAのエレクトロポレーションを介して、ISP3-S株〔5-7)を参照〕に移入した。得られた組込み体を、AG10265(P.ananatis SC17(0) ΔampC::attLphi80-KKDyI-ispS(K)-attRphi80 ΔampH::attLphi80-Para-mvaES-attRphi80 Δcrt::attLphi80-λattL-TcR-λattR-Ptac-Mclmvk-attRphi80)と命名した。
Figure JPOXMLDOC01-appb-T000020
実施例6:ppa遺伝子の発現が向上したPantoea株の作製およびそれを用いた培養によるイソプレンの生産
 P.ananatis株において、内因性ppa遺伝子(ピロリン酸ホスファターゼ遺伝子)に固有のプロモーターが別の強力なプロモーターに置換され、内因性ppa遺伝子の発現が増強された株を、以下の手順により作製した。
6-1)AG10265株におけるppa遺伝子発現強化
6-1-1)野生型SC17(0)株ppa遺伝子プロモーター置換株の作製
 P.ananatis にはPAJ_2344(ppa-1)とPAJ_2736(ppa-2)の2種類のピロリン酸ホスファターゼをコードする遺伝子が存在する。PAJ_2344(ppa-1)遺伝子とPAJ_2736(ppa-2)遺伝子の発現を強化すべく、P. ananatis SC17(0)株でPAJ_2344(ppa-1)遺伝子とPAJ_2736(ppa-2)遺伝子のプロモーター配列とSD配列をそれぞれPtacとφ10に置換した株をλRed法で作製した。λRed法はBMC Mol Biol. 2009; 10:34に記載の方法に従った。アノテーションが付与されたP. ananatis AJ13355のゲノム配列情報はGenBankのアクセッション番号AP012032.1とAP012033.1で利用可能である。
 P.ananatis SC17(0) 株Ptac-lacZ(RU application 2006134574,WO2008/090770,US2010062496)よりゲノムDNAを抽出し、PCRの鋳型として利用した。P.ananatis SC17(0) 株Ptac-lacZにおいて、λattL-Km-λattRの下流にPtacプロモーターが連結された、λattL-Km-λattR-PtacがlacZ遺伝子の上流に組み込まれている(WO2011/87139 A1を参照)。
 PAJ_2344(ppa-1)遺伝子のプロモーター領域を置換するために、表21のPAJ_2344-F及び PAJ_2344-Rに示す塩基配列からなる合成ヌクレオチドをプライマーとし、PAJ_2736(ppa-2)遺伝子のプロモーター領域を置換するために、表21のPAJ_2736-F及び PAJ_2736-Rに示す塩基配列からなる合成ヌクレオチドをプライマーとし、PrimeSTAR MAX DNAポリメラーゼ(タカラバイオ社製)を用いてPCRを行った。反応溶液はキットに添付された組成に従って調整し、98℃にて10秒、55℃にて5秒、72℃にて20秒の反応を30サイクル行った。その結果、λattL-Km-λattR-φ10を含むプロモーター置換用断片を取得した。
 SC17(0)にRSF-Red-TER(US7919284B2)プラスミドを常法に従いエレクトロポレーションにより導入し、得られた株をSC17(0)/RSF-Red-TERと命名した。SC17(0)/RSF-Red-TERのコンピテントセルを調整後、精製したλattL-Km-λattR-φ10を含むプロモーター置換用断片をエレクトロポレーション法により導入した。エレクトロポレーションの後、カナマイシン耐性を獲得したコロニーを取得した。
 次に、PAJ_2344(ppa-1)遺伝子上流領域、あるいはPAJ_2736(ppa-2)遺伝子上流領域にPCR断片由来の配列が挿入されたことを、ppa_p1-F(表21)とppa_p1-R(表21)あるいはppa_p2-F(表21)とppa_p2-R(表21)に示される合成DNAプライマー2本を用いたPCRにより確認し、断片の挿入が確認できた菌株を取得した。このようにして得られた菌株をP.ananatis SC17(0)Ptac-φ10-ppa1及びP.ananatis SC17(0)Ptac-φ10-ppa2と命名した。
6-1-2)AG10265株でのppa遺伝子プロモーター置換株作成
 SC17(0)Ptac-φ10-ppa1からPurElute Bacterial Genomic kit(EdgeBio)を用いてゲノムDNAを抽出した。これを鋳型にPAJ_2344(ppa-1)遺伝子の上流1kbから下流1kbを表21のppa-1-g1000-Fとppa-1-g1000-R primerに示す塩基配列からなる合成ヌクレオチドをプライマーとしたPCRで増幅した。また、SC17(0)Ptac-φ10-ppa2から抽出したゲノムDNAを鋳型とし、PAJ_2736(ppa-2)遺伝子の上流1kbから下流1kbを表21のppa-2-g1000-Fとppa-2-g1000-R primerに示す塩基配列からなる合成ヌクレオチドをプライマーとしたPCRで増幅した。PCRはPrimeSTAR GXL DNAポリメラーゼ(タカラバイオ社製)を用い、反応溶液はキットに添付された組成に従って調整し、98℃にて10秒、60℃にて15秒、68℃にて5分の反応を40サイクル行った。その結果、PAJ_2344(ppa-1)遺伝子あるいはPAJ_2736(ppa-2)遺伝子の上流1kbから下流1kbを含む断片を取得した。得られた断片を精製し、当該PCR産物600ngをエレクトロポレーションによりAG10265に導入して形質転換を行い、カナマイシン耐性を獲得したコロニーを取得した。
 得られた形質転換体について、PAJ_2344(ppa-1)遺伝子のプロモーターが置換されていることを、表21のPpa_p1-FとPpa_p1-Rに示す塩基配列からなる合成ヌクレオチドをプライマーとしたコロニーPCRにより確認した。同様に、PAJ_2736(ppa-2)遺伝子のプロモーターが置換されていることを、表21のPpa_p2-FとPpa_p2-Rに示す塩基配列からなる合成ヌクレオチドをプライマーとしたコロニーPCRにより確認した。これらの株はPAJ_2344(ppa-1)遺伝子、あるいはPAJ_2736(ppa-2)遺伝子のプロモーター領域がPtac-φ10に置換されている。そのうちのそれぞれ1クローンを選び、AG10265 Ptac-φ10-ppa1、AG10265 Ptac-φ10-ppa2と名付けた。
Figure JPOXMLDOC01-appb-T000021
6-1-3)ピロリン酸ホスファターゼ発現量の確認
 AG10265 Ptac-φ10-ppa1株、AG10265 Ptac-φ10-ppa2株におけるピロリン酸ホスファターゼ(PPA)のタンパク質発現量をSDS-PAGEにて確認した。AG10265株、AG10265 Ptac-φ10-ppa1株、AG10265 Ptac-φ10-ppa2株を3mLの50mg/Lのカナマイシンを添加したLB培地にて、一晩、30℃で振盪培養を実施した。集菌後の菌体は、氷冷した50mMのトリスバッファー(Tris-HCl pH8.0)で2回洗浄を行い、マルチビーズショッカー(Yasui Kikai, Japan、4℃、60秒ON 60秒OFF、2500rpm、5cycles)にて菌体を破砕した。破砕した菌体溶液は、14000rpmで20分間の遠心を行い、未破砕細胞を取り除いた。得られた上清画分を可溶性タンパク質画分として取り扱った。可溶性タンパク質画分をBCA法にて定量後、5μgの可溶性タンパク質をSDS-PAGE(Invitrogen社製NuPAGE:SDS-PAGE Gel System)にて電気泳動を行った。その後、定法に従って、CBB染色と脱色を行った。図12にPPAタンパク質量付近のゲルの写真を示した。その結果、AG10265 Ptac-φ10-ppa1株、AG10265 Ptac-φ10-ppa2株において、それぞれPPAと推定されるタンパク質の発現量の増加を確認した。電気泳動後のSDS-PAGEのバンドの濃さから、AG10265 Ptac-φ10-ppa1株、およびAG10265 Ptac-φ10-ppa2株におけるPPAと推定されるタンパク質の発現量は、元の菌株(AG10265)のものに比し、約1.5~2.0倍であると見積もられた。
6-1-4)イソプレンシンターゼ発現プラスミドの導入
 常法に従いAG10265株、AG10265 Ptac-φ10-ppa1株、AG10265 Ptac-φ10-ppa2株のエレクトロセルを作成し、エレクトロポレーションによりpSTV28-Ptac-IspSM〔参考例3-5を参照〕を導入した。得られたイソプレン生産菌株をそれぞれ、AG10265(Control)、AG10265 PPA1、AG10265 PPA2と命名した。
6-2)P.ananatisイソプレン生産菌のジャー培養条件
 P.ananatisイソプレン生産菌の培養には1L容積の発酵槽を使用した。グルコース培地は表22に示す組成になるように調整した。クロラムフェニコール(60mg/L)を含むLBプレートにイソプレン生産菌株を塗布し、34℃にて16時間培養を実施した。0.3Lのグルコース培地を1L容積の発酵槽に投入後、充分に生育したプレート1枚分の菌体を接種し、培養を開始した。培養条件は、pH7.0(アンモニアガスにて制御)、30℃、150mL/minの通気にて行い、培地中の酸素濃度が5%以上になるように撹拌制御を行った。培養中は、培地中のグルコース濃度が10g/L以上になるよう500g/Lに調整したグルコースを連続的に添加した。最終的に、71時間の培養でAG10265(Control)は92.2g、AG10265 PPA1は95.8g、AG10265 PPA2は85.7gのグルコースを消費した。
Figure JPOXMLDOC01-appb-T000022
 A区とB区を0.15L調整後、115℃、10minで加熱滅菌を行った。放冷後A区とB区を混合し、クロラムフェニコール(60mg/L)を添加し、培地として使用した。
6-3)イソプレン生産期への誘導方法
 P.ananatisイソプレン生産菌は、メバロン酸経路上流遺伝子をアラビノース誘導型プロモーターにて発現させるため、L-アラビノース(和光純薬工業)存在下でイソプレン生産量が顕著に向上する。イソプレン生産期への誘導方法として、発酵槽におけるブロスを経時的に分析し、600nmの吸光度が16になった時点で終濃度20mMとなるようにL-アラビノースを添加した。
6-4)発酵ガス中のイソプレンガス濃度測定方法
 培養開始直後から、経時的に排ガスを1Lのガスバックに回収し、排ガスに含まれるイソプレンガスの濃度を、参考例4-3)に記載される条件に基づきガスクロマトグラフィーにより測定した。
6-5)ジャー培養におけるイソプレン生成量
 AG10265(Control)、AG10265 PPA1、AG10265 PPA2を上記のジャー培養条件にて培養を行い、イソプレンの生成量を測定した。図13に菌体生育のプロファイルを、図14に培養開始後71時間までのイソプレン生産量を測定した結果を示す。全イソプレン生産量の高い順に、AG10265 PPA2、AG10265 PPA1、AG10265 Controlであった(図3)。それぞれの全イソプレン生成量はAG10265 PPA2が2478mg、AG10265 PPA1が2365mg、AG10265(Control)が2013mgであった。このことから、ピロリン酸ホスファターゼの発現量が増加したP.ananatisイソプレン生産菌は、ピロリン酸ホスファターゼの発現量を強化していないP.ananatisイソプレン生産菌よりも優れたイソプレン生産能を示した。
参考例8.SWITCH-PphoC-1(S)株の作製
<1.MVA経路上流染色体固定用プラスミドの作成>
 MVA経路上流染色体固定用プラスミドpAH162-PphoC-mvaESを、以下のとおり構築した。
(1-1)アラビノース誘導型のエンテロコッカス・フェカリス(Enterococcus faecalis)(E. faecalis)由来メバロン酸経路上流遺伝子(mvaES(E. faecalis))発現用プラスミドpMW-Para-mvaES-Ttrpの構築
(1-1-1)mvaES(E. faecalis)遺伝子の化学的合成及びクローニング
 エンテロコッカス・フェカリス(Enterococcus faecalis)(E. faecalis)由来のメバロン酸経路上流遺伝子(mvaES(E. faecalis))をコードするmvaES遺伝子の塩基配列(GenBank/EMBL/DDBJ accession ID AF290092.1)、及びアミノ酸配列(mvaS, GenPept accession ID AAG02438.1, mvaE, GenPept accession ID AAG02439.1)は公知である(Wilding,EI et al., J. Bacteriol. 182 (15), 4319-4327 (2000)参照)。これらの情報に基づいて、大腸菌(E. coli)のコドン使用頻度に最適化されたmvaE遺伝子及びmvaS遺伝子を設計し、これらを、それぞれEFmvaE及びEFmvaSと名付けた。EFmvaEの塩基配列を配列番号139に、EFmvaSの塩基配列を配列番号140に示す。化学合成により準備されたEFmvaE及びEFmvaSのDNA配列を、常法により発現用プラスミドpUC57(GenScript社製)にクローニングし、得られたプラスミドを、それぞれ、pUC57-EFmvaE、pUC57-EFmvaSと名付けた。pUC57-EFmvaEの塩基配列を配列番号141に、pUC57-EFmvaSの塩基配列を配列番号142に示す。
(1-1-2)In-fusion法に用いるプラスミドpMW-Ptrc-mvaES-Ttrpの構築
 In-fusion法に用いるためのプラスミドpMW-Ptrc-mvaES-Ttrpを、下記の手順に従って構築した。
 プラスミドpMW219(ニッポンジーン社製、品番:310-02571)を、SmaIで消化処理し、この消化処理したプラスミドを精製した。得られたプラスミドをpMW219/SmaIと名付けた。
 trcプロモーター(Ptrc)領域の遺伝子を得るために、鋳型としてPtrc領域を有するプラスミドpTrcHis2Bを、プライマーとして配列番号143及び配列番号144の塩基配列からなる合成オリゴヌクレオチドを用いて、PCR反応を行った。
 mvaE遺伝子部分を得るために、鋳型としてプラスミドpUC57-EFmvaEを、プライマーとして配列番号145及び配列番号146の塩基配列からなる合成オリゴヌクレオチドを用いて、PCR反応を行った。
 mvaS遺伝子部分を得るために、鋳型としてプラスミドpUC57-EFmvaSを、プライマーとして配列番号146及び配列番号147の塩基配列からなる合成オリゴヌクレオチドを用いて、PCR反応を行った。
 trpターミネーター(Ttrp)領域の遺伝子を得るために、鋳型としてTtrp領域を有するプラスミドpSTV-Ptac-Ttrpを、プライマーとして配列番号148と配列番号149の塩基配列からなる合成オリゴヌクレオチドを用いて、PCRを行った。
 上記4つのPCR反応においては、酵素としてPrime Starポリメラーゼ(タカラバイオ社製)を用い、反応溶液は、酵素の製造業者により提供される説明書に従って調製し、反応条件は、98℃:10秒、55℃:5秒、72℃:60秒/kb、サイクル数:30とした。その結果、Ptrc領域の遺伝子、mvaE遺伝子、mvaS遺伝子、Ttrp領域の遺伝子を含むPCR産物を取得した。
(1-1-3)In-fusion法に用いるプラスミドpMW-Ptrc-mvaES-Ttrpの構築
 続いて、鋳型として精製したPtrcを含むPCR産物とmvaE遺伝子を含むPCR産物とを、プライマーとして配列番号143及び配列番号146からなる合成オリゴヌクレオチドを用いて、PCR反応を行った。また、鋳型として精製したmvaS遺伝子を含むPCR産物とTtrpを含むPCR産物を、プライマーとして配列番号147及び配列番号150からなる合成オリゴヌクレオチドを用いて、PCR反応を行った。
 その結果、Ptrc領域の遺伝子とmvaE遺伝子とを含むPCR産物、及びmvaS遺伝子とTtrp領域の遺伝子とを含むPCR産物を取得した。
 その後、Ptrc領域の遺伝子とmvaE遺伝子とを含むPCR産物、及びmvaS遺伝子とTtrp領域の遺伝子とを含むPCR産物と、前述の消化処理したプラスミドpMW219/SmaI とを、In-Fusion HD Cloning Kit(Clontech社製)を用いて連結した。得られたプラスミドを、pMW-Ptrc-mvaES-Ttrpと名付けた。得られたpMW-Ptrc-mvaES-Ttrpの配列を配列番号151に示す。
(1-1-4)プラスミドpMW-Para-mvaES-Ttrpの構築
 アラビノース誘導型メバロン酸経路上流遺伝子発現用プラスミドpMW-Para-mvaES-Ttrpを、下記の手順に従って構築した。
 鋳型として(1-2-3)で調製したプラスミドpMW-Ptrc-mvaES-Ttrpを、プライマーとして配列番号152及び配列番号153の塩基配列からなる合成オリゴヌクレオチドを用いて、PCR反応を行った。
 鋳型としてParaC領域の遺伝子、araC遺伝子、及びParaBAD領域の遺伝子を含む領域の遺伝子(以下、合わせて「Para領域の遺伝子」ともいう)を含むプラスミドpKD46(Proc. Natl. Acad. Sci. USA, 2000, vol.97, No.12, p6640-6645参照)を、プライマーとして配列番号154及び配列番号155の塩基配列からなる合成オリゴヌクレオチドを用いて、PCR反応を行った。
 その結果、pMWプラスミドとmvaES遺伝子とを含むPCR産物と、Para領域の遺伝子を含むPCR産物とを取得した。精製したこれらのPCR産物同士を、In-Fusion HD Cloning Kit(Clontech社製)を用いて連結した。得られたアラビノース誘導型のE. faecalis由来メバロン酸経路上流遺伝子(mvaES(E. faecalis))発現用プラスミドをpMW-Para-mvaES-Ttrpと名付けた。pMW-Para-mvaES-Ttrpの塩基配列を配列番号156に示す。
1-2)メバロン酸経路上流を保有する組込み型コンディショナル複製プラスミドの構築
 メバロン酸経路の上流および下流遺伝子を保有する組込み型プラスミドを構築するため、pAH162-λattL-TcR-λattR vector(Minaeva NI et al.,BMC Biotechnol.2008;8:63)を用いた。
 オペロンのプロモーター欠損バリアントを得るために、pMW-Para-mvaES-TtrpのEcl136II-SalIフラグメントを、pAH162-λattL-TcR-λattRベクター中にサブクローニングした。得られたプラスミドのマップを、図15に示す。
 異なるプロモーターの制御下にあるmvaES遺伝子を保持する染色体固定用プラスミドのセットを構築した。この目的のために、I-SceI、XhoI、PstIおよびSphI認識部位を含むポリリンカーを、mvaES遺伝子の上流に位置する唯一のHindIII認識部位中に挿入した。この目的を達成するために、配列番号157及び配列番号158の塩基配列からなる合成オリゴヌクレオチドとポリヌクレオチドキナーゼを用いてアニーリングを行い、得られたフラグメントをHindIIIにて切断したpAH162-mvaESプラスミドにライゲーション反応により挿入した。得られたpAH162-MCS-mvaESプラスミド(図16)は、mvaES遺伝子の前で所望の配向性を保ちながらプロモーターをクローニングに都合が良いものである。phoC遺伝子の調節領域を保持するDNAフラグメントを、P.ananatis SC17(0)株(Katashkina JI et al. BMC Mol Biol. 2009;10:34)のゲノムDNAを鋳型として、ならびに配列番号159及び配列番号160の塩基配列からなるオリゴヌクレオチドを用いて、PCRにより生成し、pAH162-MCS-mvaESの適切な制限酵素認識部位中にクローニングした。得られたプラスミドを、図17に示す。クローニングされたプロモーターフラグメントの配列決定を行い、予想されるヌクレオチド配列に正確に対応することを確認した。得られたプラスミドをpAH162-PphoC-mvaESと命名した。
<2.MVA経路下流染色体固定用プラスミドの作成>
 MVA経路下流染色体固定用プラスミドとして、pAH162-Km-Ptac-KDyI組込み型プラスミドを、以下のとおり構築した。
 tetAR遺伝子を含むpAH162-λattL-Tc-λattR(Minaeva NI et al. BMC Biotechnol. 2008;8:63)のAatII-ApaIフラグメントを、プライマーとして配列番号161(プライマー11)および配列番号162(プライマー12)の塩基配列からなる合成オリゴヌクレオチド、ならびにpUC4Kプラスミド(Taylor LAおよびRose RE. Nucleic Acids Res. 16,358,1988)を鋳型として用いたPCRで得られたDNAフラグメントと置換した。その結果、pAH162-λattL-Km-λattRが得られた(図18)。
 Ptacプロモーターを、pAH162-λattL-Tc-λattR組込み型ベクター(Minaeva NI et al. BMC Biotechnol. 2008;8:63)のHindIII-SphI認識部位に挿入した。その結果、組込み型発現ベクターpAH162-Ptacが構築された。クローニングされたプロモーターフラグメントを配列決定した。pAH162-Ptacのマップを、図19に示す。
 ATG Service Gene(ロシア)により化学合成された、置換レアコドンを有するS.cerevisiae由来PMK、MVDおよびyldI遺伝子を保持するDNAフラグメント(図20)を、組込み型ベクターpAH162-PtacのSphI-KpnI制限エンドヌクレアーゼ認識部位中にサブクローニングした。化学合成されたKDyIオペロンを含むDNA配列を配列番号184に示す。Ptac-KDyI発現カセットを保持する得られたプラスミドpAH162-Tc-Ptac-KDyIを、図21Aに示す。その後、tetAR遺伝子を保持するpAH162-Tc-Ptac-KDyIのNotI-KpnIフラグメントを、pAH162-λattL-KmR-λattRの対応フラグメントにより置換した。その結果、カナマイシン耐性遺伝子kanをマーカーとするpAH162-Km-Ptac-KDyIプラスミドを得た(図21B)。
<3.MVA遺伝子組込み型プラスミドの作成>
 古典的SD配列に連結された、メタノセラ・パルディコラ(Methanocella paludicola)株であるSANAE[完全ゲノム配列については、GenBankアクセッション番号AP011532を参照]由来の推定mvk遺伝子のコーディング部分を含む化学合成DNAフラグメントを、上記組込み型発現ベクターpAH162-PtacのPstI-KpnI認識部位中にクローニングした。
 mvk遺伝子を保持する組込み型プラスミドのマップを、図22に示す。
<4.レシピエント株SC17(0) ΔampC::attBphi80 ΔampH::attBphi80 Δcrt::Ptac-mvk(M.paludicola)の構築>
 attLphi80およびattRphi80に隣接した遺伝子kan、ならびに標的染色体部位に相同な40bp配列を含むPCR増幅DNAフラグメントのλRed依存組込み(Katashkina JI et al. BMC Mol Biol.2009;10:34)、続いて、カナマイシン耐性マーカーのファージphi80 Int/Xis依存切除(Andreeva IG et al. FEMS Microbiol Lett.2011;318(1):55-60)を含む2段階の手法を用いて、ΔampH::attBphi80およびΔampC::attBphi80染色体改変を、P.ananatis SC17(0)株に段階的に導入した。SC17(0)は、P.ananatis AJ13355のλRed耐性誘導体である(Katashkina JI et al. BMC Mol Biol. 2009;10:34);P.ananatis AJ13355の注釈付完全ゲノム配列は、PRJDA162073またはGenBankアクセッション番号AP012032.1およびAP012033.1として利用可能である。pMWattphiプラスミド[Minaeva NI et al. BMC Biotechnol. 2008;8:63]を鋳型として用いて、配列番号163(プライマー13)と配列番号164(プライマー14)の塩基配列からなる合成オリゴヌクレオチド、及び、配列番号165(プライマー15)と配列番号166(プライマー16)の塩基配列からなる合成オリゴヌクレオチドをプライマーとして用いて、それぞれampHおよびampC遺伝子中への組込みに使用されるDNAフラグメントを生成した。配列番号167(プライマー17)と配列番号168(プライマー18)の塩基配列からなる合成オリゴヌクレオチド、及び、配列番号169(プライマー19)と配列番号170(プライマー20)の塩基配列からなる合成オリゴヌクレオチドをプライマーとして、得られた染色体改変物のPCR検証に用いた。
 並行して、(P.ananatis AJ13355ゲノムの一部である、pEA320 320kbメガプラスミド上に位置する)crtオペロンの代わりにphi80ファージのattB部位を保持するP.ananatis SC17(0)の誘導体を構築した。この株を得るために、ゲノム中の標的部位に相同な40bp領域に隣接したattLphi80-kan-attRphi80を保持するPCR増幅DNAフラグメントのλRed依存組込みを、以前に記載された手法(Katashkina JI et al. BMC Mol Biol. 2009;10:34)にしたがって行った。attLphi80-kan-attRphi80によるcrtオペロンの置換に用いられるDNAフラグメントを、配列番号171(プライマー21)と配列番号172(プライマー22)の塩基配列からなる合成オリゴヌクレオチドを用いたPCR反応で増幅した。pMWattphiプラスミド(Minaeva NI et al. BMC Biotechnol. 2008;8:63)を、この反応で鋳型として用いた。得られた組込み体を、SC17(0)Δcrt::attLphi80-kan-attRphi80と名付けた。配列番号173(プライマー23)と配列番号174(プライマー24)の塩基配列からなる合成オリゴヌクレオチドを、SC17(0)Δcrt::attLphi80-kan-attRphi80.の染色体構造のPCR検証に用いた。構築株からのカナマイシン耐性マーカーの除去を、既報の手法に従いpAH129-catヘルパープラスミドを用いて行った(Andreeva IG et al. FEMS Microbiol Lett. 2011;318(1):55-60)。配列番号173(プライマー23)と配列番号174(プライマー24)の塩基配列からなる合成オリゴヌクレオチドを、得られたSC17(0)Δcrt::attBphi80株のPCR検証に用いた。得られたΔampC::attBphi80、ΔampH::attBphi80およびΔcrt::attBphi80ゲノム改変物のマップをそれぞれ、図23A)、7B)、および7C)に示す。
 上記pAH162-Ptac-mvk(M.paludicola)プラスミドを、既報のプロトコル(Andreeva IG et al. FEMS Microbiol Lett. 2011;318(1):55-60)にしたがってSC17(0)Δcrt::attBphi80のゲノムに組み込んだ。プラスミドの組込みを、配列番号171(プライマー21)と配列番号173(プライマー23)、配列番号172(プライマー22)と配列番号174(プライマー24)の塩基配列からなる合成オリゴヌクレオチドをプライマーとして用いたポリメラーゼ連鎖反応で確認した。その結果、SC17(0)Δcrt::pAH162-Ptac-mvk(M.paludicola)株を得た。Δcrt::pAH162-Ptac-mvk(M.paludicola)改変物のマップを、図24A)に示す。
 その後、ゲノムDNAエレクトロポレーション手法(Katashkina JI et al. BMC Mol Biol. 2009;10:34)を介したSC17(0)Δcrt::pAH162-Ptac-mvk(M.paludicola)からSC17(0) ΔampC::attBphi80 ΔampH::attBphi80への移入を行った。得られた株を、既報のpMW-intxis-catヘルパープラスミド[Katashkina JI et al. BMC Mol Biol. 2009;10:34]を用いてpAH162-Ptac-mvk(M.paludicola)組込み型プラスミドのベクター部分からキュアリングした。その結果、マーカー欠損株SC17(0) ΔampH::attBφ80 ΔampC::attBφ80 Δcrt::Ptac-mvk(M.paludicola)を得た。Δcrt::Ptac-mvk(M.paludicola)ゲノム改変物のマップを、図24B)に示す。
<5.SWITCH-PphoC株の構築>
 pAH162-Km-Ptac-KDyIプラスミドを、既報のプロトコル(Andreeva IG et al. FEMS Microbiol Lett. 2011;318(1):55-60)にしたがい、SC17(0)ΔampH::attBφ80 ΔampC::attBφ80 Δcrt::Ptac-mvk(M.paludicola)/pAH123-cat株の染色体に組み込んだ。電気泳動後、50mg/Lカナマイシンを含むLBアガー上に細胞を撒いた。増殖したKmクローンを、配列番号163(プライマー13)と配列番号167(プライマー17)、及び、配列番号163(プライマー13)と配列番号169(プライマー19)の塩基配列からなる合成オリゴヌクレオチドをプライマーとしたポリメラーゼ連鎖反応で試験した。ΔampH::attBφ80またはpC::attBφ80mに組み込まれたpAH162-Km-Ptac-KDyIプラスミドを保持する株を選択した。ΔampH::pAH162-Km-Ptac-KDyIおよびΔampC::pAH162-Km-Ptac-KDyI染色体改変物のマップを、図25(AおよびB)に示す。
 pAH162-PphoC-mvaESを、既報のプロトコル[Andreeva IG et al. FEMS Microbiol Lett. 2011;318(1):55-60]にしたがってpAH123-catヘルパープラスミドを用いてSC17(0) ΔampC::pAH162-Km-Ptac-KDyI ΔampH::attBphi80 Δcrt::Ptac-mvk(M.paludicola)およびSC17(0) ΔampC::attBphi80 ΔampH::pAH162-Km-Ptac-KDyI Δcrt::Ptac-mvk(M.paludicola)レシピエント株の染色体中に挿入した。その結果、SWITCH-PphoC-1およびSWITCH-PphoC-2とそれぞれ名付けられた2セットの株を得た。ΔampH::pAH162-PphoC-mvaESおよびΔampC::pAH162-PphoC-mvaES染色体改変物のマップを図26に示す。
 SWITCH-PphoC-1からのテトラサイクリン及びカナマイシン耐性マーカーの除去を、既報の手法に従いファージphi80 Int/Xis依存的な除去により行った(Katashkina JI et al. BMC Mol. Biol. 2009;10:34)。得られた株をSWITCH-PphoC-1(S)株と命名した。
実施例7.SWITCH-PphoC-1(S)株におけるE.coli MG1655(b4226)のppa遺伝子を高発現させたPantoea株の作製およびそれを用いた培養によるイソプレン生産
 P.ananatis株において、E.coli MG1655(b4226)のppa遺伝子(ピロリン酸ホスファターゼ遺伝子)を強力なプロモーターで発現が増強された株を以下の手順により作製した。
7-1)pAH162-Ptac-MG-ppaの構築
 E.coli MG1655株より単離したゲノムDNAを鋳型として、配列番号175と配列番号176の塩基配列からなる合成オリゴヌクレオチドをプライマーとして用いてppa遺伝子(b4226)をPCRにより単離し、pSTV28Ptac-Ttrpベクター(参考例3)を制限酵素SmaIで切断した部位に、PCRで単離したppa遺伝子をin-fusion法で導入し、プラスミドpSTV28Ptac-MG-ppa-Ttrpを構築した。次に、このプラスミドを鋳型に配列番号177と配列番号178の塩基配列からなる合成オリゴヌクレオチドをプライマーとして用いてTacプロモーター、ppa遺伝子、Trpターミネーターを含む領域をPCRにより単離し、pAH162-Km-attLRベクターを、制限酵素BamHIおよびEcoRIで切断した部位にIn-Fusion HD Cloning Kit(Clontech社製)を用いてで導入し、プラスミドpAH162-Ptac-MG-ppaを構築した。
7-2)E.coli MG1655 ppa遺伝子発現強化イソプレン生産菌株及びコントロール株の構築
 先ず、ydcI遺伝子(PAJ_1320、Hara Y et al., The complete genome sequence of Pantoea ananatis AJ13355, an organism with great biotechnological potential. Appl Microbiol Biotechnol. 2012 Jan;93(1):331-41)を置換したphi80ファージのattB部位を保有するP.ananatis SC17(0)誘導体を構築した。この株を得るために、配列番号179と配列番号180の塩基配列からなる合成オリゴヌクレオチドをプライマーとし、P.ananatis SC17(0)のゲノムを鋳型として用いて、ゲノム中のydcI標的部位に相同である40bp領域に隣接した部位に、attLphi80-kan-attRphi80を保有するPCR増幅DNAフラグメントを取得した。続いて、DNAフラグメントのλRed依存性組込みを、既報(Katashkina JI et al.,BMC Mol Biol.2009;10:34)の手法にしたがって行った。エレクトロポレーション後、50mg/lカナマイシン含有L-アガー上で細胞を培養した。attLphi80-kan-attRphi80によるydcI遺伝子の置換株は配列番号181と配列番号182の塩基配列からなるプライマーで確認した。次に、pAH162-Ptac-MG-ppaのプラスミドを、既報(Andreeva IG et al.,FEMS Microbiol Lett.2011;318(1):55-60)の手法に従い、ヘルパープラスミドpAH123-catを用いて組み込んだ株SC17(0)ΔydcI::Ptac-MG-ppaを作製した。この株より単離したゲノムDNAを既報(Katashkina JI et al.,BMC Mol Biol.2009;10:34)の染色体エレクトロポレーションの方法に従って、SWITCH-PphoC-1(S)株にエレクトロポレーションした。配列番号182と配列番号183の塩基配列からなるプライマーを用いてΔydcI::Ptac-MG-ppa改変体がSWITCH-PphoC-1(S)株の染色体に組み込まれた事をPCRにより検証した。このようにして、E.coi MG1655 由来のppa遺伝子を導入したイソプレン生産株であるSWITCH-PphoC-1(S)ΔydcI::Ptac-MG-ppa株を取得した。
 次に、ydcI遺伝子を置換したphi80ファージのattB部位を保有するP.ananatis SC17(0)誘導株よりゲノムDNAを単離し、既報(Katashkina JI et al.,BMC Mol Biol.2009;10:34)の染色体エレクトロポレーションの方法に従って、SWITCH-PphoC-1(S)株にエレクトロポレーションした。配列番号181と配列番号182からなる塩基配列のプライマーを用いてΔydcI改変体をPCRにより検証した後、コントロール用のイソプレン生産株SWITCH-PphoC-1(S)ΔydcI株を選択した。
7-3)ピロリン酸ホスファターゼ発現量の確認
 SWITCH-PphoC-1(S)ΔydcI::Ptac-MG-ppa株におけるピロリン酸ホスファターゼ(PPA)のタンパク質発現量をSDS-PAGEにて確認した。この株を3mLの50mg/Lのカナマイシンを添加したLB培地にて、一晩、30℃で振盪培養を実施した。集菌後の菌体は、氷冷した50mMのトリスバッファー(Tris-HCl pH8.0)で2回洗浄を行い、マルチビーズショッカー(Yasui Kikai, Japan、4℃、60秒ON 60秒OFF、2500rpm、5cycles)にて菌体を破砕した。破砕した菌体溶液は、14000rpmで20分間の遠心を行い、未破砕細胞を取り除いた。得られた上清画分を可溶性タンパク質画分として取り扱った。可溶性タンパク質画分をBCA法にて定量後、5μgの可溶性タンパク質をSDS-PAGE(Invitrogen社製NuPAGE:SDS-PAGE Gel System)にて電気泳動を行った。その後、定法に従って、CBB染色と脱色を行った。図27にPPAタンパク質量付近のゲルの写真を示した。その結果、SWITCH-PphoC-1(S)ΔydcI::Ptac-MG-ppa株において、PPAと推定されるタンパク質の発現量の増加を確認した。
7-4)イソプレンシンターゼ発現プラスミドの導入
 常法に従いSWITCH-PphoC-1(S)ΔydcI::Ptac-MG-ppa株及びSWITCH-PphoC-1(S)ΔydcI(コントロール)のエレクトロセルを作製し、pSTV28-Ptac-ispSM(US2014113344A1)を導入し、60(mg/L)のクロラムフェニコールを含むLBプレートに均一に塗布し、37℃にて18時間培養した。その後、得られたプレートから、クロラムフェニコール耐性を示す形質転換体を取得した。得られたイソプレン生産菌株をそれぞれ、SWITCH-PphoC-1(S)ydcI::MG-PPA/ispSM、SWITCH-PphoC-1(S)ΔydcI/ispSM(Control)と命名した。
7-5)イソプレンシンターゼ活性測定
 SWITCH-PphoC-1(S)ydcI::MG-PPA/ispSM株、SWITCH-PphoC-1(S)ΔydcI/ispSM(Control)株を、各々クロラムフェニコールを含むLBプレートに均一に塗布し、34℃にて16-24時間培養した。得られたプレートから1白金耳分の菌体をヘッドスペースバイアル(Perkin Elmer社製 22mL CLEAR CRIMP TOP VIAL cat♯B0104236)中のPS培地1mLに接種し、ヘッドスペースバイアル用キャップブチルゴムセプタム付(Perkin Elmer社製CRIMPS cat♯B0104240)にて密栓後、往復振とう培養装置(120rpm)で、30℃にて48時間培養を行った。
 PS培地の組成は表23の記載の通りである。
Figure JPOXMLDOC01-appb-T000023
 培養終了後、バイアルのヘッドスペース中のイソプレン濃度をガスクロマトグラフィーにより測定した。表24に各菌株のイソプレン生成量を記載した。
Figure JPOXMLDOC01-appb-T000024
 表24の結果から、E.coli MG1655のppa遺伝子を導入したSWITCH-PphoC-1(S)ydcI::MG-PPA/ispSM株は、SWITCH-PphoC-1(S)ΔydcI(Control)株より高いイソプレン生成活性を示した。
実施例8:ポリイソプレンの製造
 イソプレンを、発酵排気管を通過させることにより液体窒素冷却トラップで回収する。回収したイソプレンを、十分に乾燥した100mLガラス容器中で、窒素雰囲気下で35gのヘキサン(Sigma-Aldrich)、ならびに10gのシリカゲル(Sigma-Aldrich,カタログ番号236772)、および10gのアルミナ(Sigma-Aldrich,カタログ番号267740)と混合する。得られた混合液を、室温で5時間放置する。次いで、上清液を採取し、十分に乾燥した50mLガラス容器中に加える。
 一方で、グローブ・ボックスにおいて窒素雰囲気下、40.0μmolのトリス[ビス(トリメチルシリル)アミド]ガドリニウム、150.0μmolのトリブチルアルミニウム、40.0μmolのビス[2-(ジフェニルホスフィノ)フェニル]アミン、40.0μmolのトリフェニルカーボニウム・テトラキス(ペンタフルオロフェニル)ボレート(Ph3CBC6F5)4)をガラス溶液に用意し、これを5mLのトルエン(Sigma-Aldrich,カタログ番号245511)中に溶解させて、触媒液を得る。その後、触媒液をグローブ・ボックスから採り、モノマー液に加え、次いで、これをポリマー反応(50℃で120分間)に供する。
 ポリマー反応後、5質量%の2,2’-メチレン-ビス(4-エチル-6-t-ブチルフェノール)(NS-5)を含む1mLのイソプロパノール溶液を加えて、反応を停止させる。次いで、多量のメタノールをさらに加えて、ポリマーを単離し、70℃で真空乾燥させて、ポリマーを得る。
実施例9:ゴム組成物の製造
 表25に示されるように処方されるゴム組成物を調製し、145℃で35分間加硫処理する。
Figure JPOXMLDOC01-appb-T000025
 その好ましい実施形態を参照して本発明を詳細に記述したが、本発明の範囲を逸脱することなく、種々の変更が為され得ること、および均等物が採用され得ることは、当業者に明らかである。本明細書中の全ての引用文献は、本願の一部として参照により援用される。
 本発明のイソプレンシンターゼ発現微生物は、イソプレンの生産に有用である。

Claims (17)

  1.  ピロリン酸ホスファターゼの発現が向上した、イソプレンシンターゼ発現微生物。
  2.  前記微生物が、イソプレンシンターゼ発現ベクターで形質転換された微生物である。請求項1記載のイソプレンシンターゼ発現微生物。
  3.  ピロリン酸ホスファターゼが前記微生物に対して同種由来である、請求項1または2記載のイソプレンシンターゼ発現微生物。
  4.  ピロリン酸ホスファターゼの発現の向上が、前記微生物に固有のピロリン酸ホスファターゼ遺伝子のプロモーター領域の改変によるものである、請求項3記載のイソプレンシンターゼ発現微生物。
  5.  ピロリン酸フォスファターゼの発現の向上が、ピロリン酸ホスファターゼ遺伝子の染色体でのコピー数の上昇によるものである、請求項1~4のいずれか一項記載のイソプレンシンターゼ発現微生物。
  6.  前記微生物が、腸内細菌科に属する微生物である、請求項1~5のいずれか一項記載のイソプレンシンターゼ発現微生物。
  7.  前記微生物が、メチルエリスリトールリン酸経路によるジメチルアリル二リン酸の合成能を有する、請求項1~6のいずれか一項記載のイソプレンシンターゼ発現微生物。
  8.  前記微生物がエシェリヒア属細菌である、請求項7記載のイソプレンシンターゼ発現微生物。
  9.  前記エシェリヒア属細菌がエシェリヒア・コリである、請求項8記載のイソプレンシンターゼ発現微生物。
  10.  前記微生物が、メバロン酸経路によるジメチルアリル二リン酸の合成能を有する、請求項1~7のいずれか一項記載のイソプレンシンターゼ発現微生物。
  11.  前記微生物がパントエア属細菌である、請求項1~7および10のいずれか一項記載のイソプレンシンターゼ発現微生物。
  12.  前記パントエア属細菌がパントエア・アナナティスである、請求項11記載のイソプレンシンターゼ発現微生物。
  13.  請求項1~12のいずれか一項記載のイソプレンシンターゼ発現微生物を培養培地中で培養してイソプレンモノマーを生成することを含む、イソプレンモノマーの製造方法。
  14.  以下(I)および(II)を含む、イソプレンポリマーの製造方法:
    (I)請求項13記載の方法によりイソプレンモノマーを生成すること;
    (II)イソプレンモノマーを重合してイソプレンポリマーを生成すること。
  15.  請求項13記載の方法により製造されるイソプレンモノマーに由来するポリマー。
  16.  請求項15記載のポリマーを含むゴム組成物。
  17.  請求項16記載のゴム組成物を使用することにより製造されるタイヤ。
PCT/JP2014/081645 2013-11-28 2014-11-28 イソプレンモノマーの製造方法 WO2015080273A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015551028A JPWO2015080273A1 (ja) 2013-11-28 2014-11-28 イソプレンモノマーの製造方法
BR112016011677A BR112016011677A2 (pt) 2013-11-28 2014-11-28 micro-organismo que expressa isopreno sintase, métodos para produzir um monômero de isopreno e um polímero de isopreno, polímero derivado de um monômero de isopreno, composição de borracha, e, pneu
EP14865818.0A EP3075843B1 (en) 2013-11-28 2014-11-28 Method for producing isoprene monomer
US15/165,362 US20160340695A1 (en) 2013-11-28 2016-05-26 Method of producing isoprene monomer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-246350 2013-11-28
JP2013246350 2013-11-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/165,362 Continuation US20160340695A1 (en) 2013-11-28 2016-05-26 Method of producing isoprene monomer

Publications (1)

Publication Number Publication Date
WO2015080273A1 true WO2015080273A1 (ja) 2015-06-04

Family

ID=53199208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081645 WO2015080273A1 (ja) 2013-11-28 2014-11-28 イソプレンモノマーの製造方法

Country Status (5)

Country Link
US (1) US20160340695A1 (ja)
EP (1) EP3075843B1 (ja)
JP (1) JPWO2015080273A1 (ja)
BR (1) BR112016011677A2 (ja)
WO (1) WO2015080273A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022856A1 (ja) * 2015-08-05 2017-02-09 味の素株式会社 イソプレンモノマーの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2014112066A (ru) * 2014-03-28 2015-10-10 Адзиномото Ко., Инк. Способ получения мономерного изопрена

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0952221A2 (en) 1998-03-18 1999-10-27 Ajinomoto Co., Ltd. L-Glutamic acid-producing bacterium and method for producing L-glutamic acid
JP2005058827A (ja) 2003-08-15 2005-03-10 Asano Koji Kk 有機性汚水の処理方法
WO2007037460A1 (en) 2005-09-27 2007-04-05 Ajinomoto Co., Inc. An l-amino acid-producing bacterium and a method for producing l-amino acids
RU2006134574A (ru) 2006-09-29 2008-04-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) (RU) Способ конструирования рекомбинантных бактерий, принадлежащих к роду pantoea и способ продукции l-аминокислот с использованием бактерий, принадлежащих к роду pantoea
WO2008090770A1 (ja) 2007-01-22 2008-07-31 Ajinomoto Co., Inc. L-アミノ酸を生産する微生物及びl-アミノ酸の製造法
WO2009076676A2 (en) 2007-12-13 2009-06-18 Danisco Us Inc. Compositions and methods for producing isoprene
WO2010027022A1 (ja) 2008-09-05 2010-03-11 味の素株式会社 L-アミノ酸生産菌及びl-アミノ酸の製造法
WO2010031076A2 (en) 2008-09-15 2010-03-18 Danisco Us Inc. Conversion of prenyl derivatives to isoprene
WO2010031062A1 (en) 2008-09-15 2010-03-18 Danisco Us Inc. Increased isoprene production using the archaeal lower mevalonate pathway
JP2011518564A (ja) 2008-04-23 2011-06-30 ダニスコ・ユーエス・インク 改良された微生物によるイソプレン産出用のイソプレンシンターゼ変異体
WO2011087139A2 (en) 2010-01-15 2011-07-21 Ajinomoto Co.,Inc. A BACTERIUM OF Enterobacteriaceae FAMILY PRODUCING L-ASPARTIC ACID OR L-ASPARTIC ACID-DERIVED METABOLITES AND A METHOD FOR PRODUCING L-ASPARTIC ACID OR L-ASPARTIC ACID-DERIVED METABOLITES
WO2012088462A1 (en) * 2010-12-22 2012-06-28 Danisco Us Inc. Compositions and methods for improved isoprene production using two types of ispg enzymes
JP2012516677A (ja) * 2008-12-30 2012-07-26 ダニスコ・ユーエス・インク イソプレンと副生成物の産出方法
WO2013069634A1 (ja) 2011-11-11 2013-05-16 味の素株式会社 発酵法による目的物質の製造法
JP2013216850A (ja) * 2012-03-16 2013-10-24 Bridgestone Corp 合成ポリイソプレンの製造方法、合成ポリイソプレン、ゴム組成物及びタイヤ
WO2013179722A1 (ja) * 2012-05-30 2013-12-05 株式会社ブリヂストン イソプレンシンターゼおよびそれをコードするポリヌクレオチド、ならびにイソプレンモノマーの製造方法
WO2014052054A1 (en) 2012-09-25 2014-04-03 Albert Einstein College Of Medicine Of Yeshiva University Enzymatic platform for the synthesis of isoprenoid precursors and uses thereof
US20140113344A1 (en) 2012-05-30 2014-04-24 Ajinomoto Co., Inc. Isoprene synthase and gene encoding the same, and method for producing isoprene monomer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030148319A1 (en) * 2001-08-15 2003-08-07 Brzostowicz Patricia C. Genes encoding carotenoid compounds
JP2010525816A (ja) * 2007-05-01 2010-07-29 アシドフィル,エルエルシー 代謝改変光合成微生物を用いて二酸化炭素を炭化水素に直接変換する方法
NZ583701A (en) * 2007-09-11 2012-03-30 Sapphire Energy Inc Molecule production by photosynthetic organisms
US9163263B2 (en) * 2012-05-02 2015-10-20 The Goodyear Tire & Rubber Company Identification of isoprene synthase variants with improved properties for the production of isoprene
CN103540557B (zh) * 2012-07-12 2016-04-13 中国科学院青岛生物能源与过程研究所 一种生物法合成异戊二烯醇的方法

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0952221A2 (en) 1998-03-18 1999-10-27 Ajinomoto Co., Ltd. L-Glutamic acid-producing bacterium and method for producing L-glutamic acid
JP2005058827A (ja) 2003-08-15 2005-03-10 Asano Koji Kk 有機性汚水の処理方法
WO2007037460A1 (en) 2005-09-27 2007-04-05 Ajinomoto Co., Inc. An l-amino acid-producing bacterium and a method for producing l-amino acids
RU2006134574A (ru) 2006-09-29 2008-04-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) (RU) Способ конструирования рекомбинантных бактерий, принадлежащих к роду pantoea и способ продукции l-аминокислот с использованием бактерий, принадлежащих к роду pantoea
US20100062496A1 (en) 2007-01-22 2010-03-11 Rie Takikawa L-amino acid producing microorganism and a method for producing an l-amino acid
WO2008090770A1 (ja) 2007-01-22 2008-07-31 Ajinomoto Co., Inc. L-アミノ酸を生産する微生物及びl-アミノ酸の製造法
US7919284B2 (en) 2007-01-22 2011-04-05 Ajinomoto Co., Inc. L-amino acid producing microorganism and a method for producing an L-amino acid
JP2011505841A (ja) 2007-12-13 2011-03-03 ダニスコ・ユーエス・インク イソプレンを産出する組成物及び方法
WO2009076676A2 (en) 2007-12-13 2009-06-18 Danisco Us Inc. Compositions and methods for producing isoprene
JP2011518564A (ja) 2008-04-23 2011-06-30 ダニスコ・ユーエス・インク 改良された微生物によるイソプレン産出用のイソプレンシンターゼ変異体
WO2010027022A1 (ja) 2008-09-05 2010-03-11 味の素株式会社 L-アミノ酸生産菌及びl-アミノ酸の製造法
WO2010031062A1 (en) 2008-09-15 2010-03-18 Danisco Us Inc. Increased isoprene production using the archaeal lower mevalonate pathway
WO2010031076A2 (en) 2008-09-15 2010-03-18 Danisco Us Inc. Conversion of prenyl derivatives to isoprene
JP2012516677A (ja) * 2008-12-30 2012-07-26 ダニスコ・ユーエス・インク イソプレンと副生成物の産出方法
WO2011087139A2 (en) 2010-01-15 2011-07-21 Ajinomoto Co.,Inc. A BACTERIUM OF Enterobacteriaceae FAMILY PRODUCING L-ASPARTIC ACID OR L-ASPARTIC ACID-DERIVED METABOLITES AND A METHOD FOR PRODUCING L-ASPARTIC ACID OR L-ASPARTIC ACID-DERIVED METABOLITES
WO2012088462A1 (en) * 2010-12-22 2012-06-28 Danisco Us Inc. Compositions and methods for improved isoprene production using two types of ispg enzymes
WO2013069634A1 (ja) 2011-11-11 2013-05-16 味の素株式会社 発酵法による目的物質の製造法
JP2013216850A (ja) * 2012-03-16 2013-10-24 Bridgestone Corp 合成ポリイソプレンの製造方法、合成ポリイソプレン、ゴム組成物及びタイヤ
WO2013179722A1 (ja) * 2012-05-30 2013-12-05 株式会社ブリヂストン イソプレンシンターゼおよびそれをコードするポリヌクレオチド、ならびにイソプレンモノマーの製造方法
US20140113344A1 (en) 2012-05-30 2014-04-24 Ajinomoto Co., Inc. Isoprene synthase and gene encoding the same, and method for producing isoprene monomer
WO2014052054A1 (en) 2012-09-25 2014-04-03 Albert Einstein College Of Medicine Of Yeshiva University Enzymatic platform for the synthesis of isoprenoid precursors and uses thereof

Non-Patent Citations (29)

* Cited by examiner, † Cited by third party
Title
ANDREEVA IG ET AL., FEMS MICROBIOL LETT., vol. 318, no. 1, 2011, pages 55 - 60
APPL. MICROBIOL. BIOTECHNOL., vol. 90, 2011, pages 1915 - 1922
BIOTECHNOL. BIOENG., vol. 98, no. 2, 27 March 2007 (2007-03-27), pages 340 - 348
BMC MOL BIOL., vol. 10, 2009, pages 34
DEBOER ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 80, 1983, pages 21 - 25
EVOLUTION, vol. 67, no. 4, 2013, pages 1026 - 1040
FUJISAKI ET AL., BIOCHEM., vol. 99, 1986, pages 1137 - 1146
GARY M. SILVER; RAY FALL, PLANT PHYSIOL., vol. 97, 1991, pages 1588 - 1591
HARA Y ET AL.: "The complete genome sequence of Pantoea ananatis AJ13355, an organism with great biotechnological potential", APPL. MICROBIOL. BIOTECHNOL., vol. 93, no. L, January 2012 (2012-01-01), pages 331 - 41
J. BACTERIOL., vol. 182, no. 15, 2000, pages 4319 - 4327
KARLIN; ALTSCHUL, PRO. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 5873
KATASHKINA JI ET AL., BMC MOL BIOL., vol. 10, 2009, pages 34
KATASHKINA JI ET AL., BMC MOL. BIOL., vol. 10, 2009, pages 34
KUKKO-KALSKE E. ET AL., J. BACTERIOL., vol. 171, 1989, pages 4498 - 4500
MARY C. WILDERMUTH ET AL.: "Biochemical Characterization of Stromal and Thylakoid-Bound Isoforms of Isoprene Synthase in Willow Leaves", PLANT PHYSIOLOGY, vol. 116, 1998, pages 1111 - 1123, XP055346242 *
MARY C. WILDERMUTH; RAY FALL, PLANT PHYSIOL., vol. 116, 1998, pages 1111 - 1123
METHODS ENZYMOL., vol. 183, 1990, pages 63
MINAEVA NI ET AL., BMC BIOTECHNOL., vol. 8, 2008, pages 63
MOL GEN GENET., vol. 183, no. 2, 1981, pages 380 - 7
NUCLEIC ACIDS RES., vol. 40, January 2012 (2012-01-01), pages D700 - D705
OLINS P. O. ET AL., GENE, vol. 73, 1988, pages 227 - 235
PROC. NATL. ACAD. SCI. USA, vol. 97, no. 12, 2000, pages 6640 - 6645
SACCHAROMYCES GENOME DATABASE, Retrieved from the Internet <URL:http://www.yeastgenome.org/#>
SAMBROOK, J. ET AL.: "Molecular Cloning: Laboratory Manuals", 1989, COLD SPRING HARBOR LABORATORY PRESS
SCIENCE, vol. 277, 1997, pages 1453 - 1474
See also references of EP3075843A4
TAYLOR LA; ROSE RE, NUCLEIC ACIDS RES., vol. 16, 1988, pages 358
WILDING, EI ET AL., J. BACTERIOL., vol. 182, no. 15, 2000, pages 4319 - 4327
WU ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 75, 1978, pages 442 - 5446

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022856A1 (ja) * 2015-08-05 2017-02-09 味の素株式会社 イソプレンモノマーの製造方法

Also Published As

Publication number Publication date
EP3075843A4 (en) 2017-05-10
US20160340695A1 (en) 2016-11-24
EP3075843B1 (en) 2019-07-03
EP3075843A1 (en) 2016-10-05
JPWO2015080273A1 (ja) 2017-03-16
BR112016011677A2 (pt) 2017-09-26

Similar Documents

Publication Publication Date Title
JP6254728B2 (ja) イソプレンシンターゼおよびそれをコードするポリヌクレオチド、ならびにイソプレンモノマーの製造方法
US20210403954A1 (en) Method of producing isoprenoid compound
JP6750629B2 (ja) リナロールの製造方法
JP6750630B2 (ja) リナロール組成物の製造方法
US8962296B2 (en) Isoprene synthase and gene encoding the same, and method for producing isoprene monomer
US10184137B2 (en) Method of producing isoprene monomer
WO2017051930A1 (en) Method of producing isoprenoid compound
WO2015080273A1 (ja) イソプレンモノマーの製造方法
US9890373B2 (en) Modified isoprene synthase
JP2017104099A (ja) リモネンの製造方法
WO2017022856A1 (ja) イソプレンモノマーの製造方法
KR101582259B1 (ko) 이소프렌을 생산하는 대장균 균주 fmis2 및 이의 용도
JPWO2015182110A1 (ja) 藻類及びその製造方法、並びに該藻類を用いたバイオマスの製造方法
WO2016174875A1 (ja) ポリイソプレンの製造方法
WO2017132924A1 (zh) 一种用于生物合成异戊二烯和异戊烯的酶及其突变体
JP2020028240A (ja) 新規メバロン酸経路を有する非古細菌生物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865818

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015551028

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016011677

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2014865818

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014865818

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112016011677

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160523