WO2015080081A1 - Chemical liquid supply mechanism and small-sized manufacturing device - Google Patents

Chemical liquid supply mechanism and small-sized manufacturing device Download PDF

Info

Publication number
WO2015080081A1
WO2015080081A1 PCT/JP2014/081051 JP2014081051W WO2015080081A1 WO 2015080081 A1 WO2015080081 A1 WO 2015080081A1 JP 2014081051 W JP2014081051 W JP 2014081051W WO 2015080081 A1 WO2015080081 A1 WO 2015080081A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
plunger
chemical
resist
chemical solution
Prior art date
Application number
PCT/JP2014/081051
Other languages
French (fr)
Japanese (ja)
Inventor
義久 扇子
史朗 原
ソマワン クンプアン
翔 武内
土井 幹夫
成雄 荒崎
幸弘 杉山
晃一 服部
Original Assignee
リソテックジャパン株式会社
独立行政法人産業技術総合研究所
株式会社パルサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013246868A external-priority patent/JP2017027965A/en
Priority claimed from JP2013250000A external-priority patent/JP2017027966A/en
Application filed by リソテックジャパン株式会社, 独立行政法人産業技術総合研究所, 株式会社パルサ filed Critical リソテックジャパン株式会社
Publication of WO2015080081A1 publication Critical patent/WO2015080081A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/162Coating on a rotating support, e.g. using a whirler or a spinner

Definitions

  • the present invention relates to a chemical solution supply mechanism for dropping a chemical solution on the surface of a processing substrate, and a small manufacturing apparatus using the chemical solution supply mechanism.
  • the present invention can be applied to a resist coating apparatus and a resist developing apparatus used in a semiconductor manufacturing process using a small semiconductor wafer.
  • a conventional chemical solution supply mechanism will be described by taking as an example one mounted on a resist coating apparatus for a semiconductor manufacturing process.
  • the spin chuck is rotated while the semiconductor wafer is fixedly held on the spin chuck. And a resist film is formed in the surface of this semiconductor wafer by dripping a resist liquid on a semiconductor wafer from a nozzle.
  • a resist solution storage tank is arranged at a location away from the spin chuck, the resist solution in the tank is sucked up by a pump, and supplied to a nozzle using a pipe. As a result, it was dripped onto the semiconductor wafer (see FIG. 4 of Patent Document 1).
  • the resist supply bottle is accommodated in a resist thermostat, so that the resist solution in the resist supply bottle is maintained at a predetermined temperature.
  • a resist pipe and a nozzle are accommodated in a temperature control liquid pipe, and the temperature control liquid is circulated in the temperature control liquid pipe. The temperature of the temperature control liquid is monitored and controlled by a temperature control device. As a result, the resist solution flowing through the resist piping and nozzles is kept at a predetermined temperature.
  • JP 2006-114607 A Japanese Patent Laid-Open No. 5-74698
  • the above-described pump is expensive and is one of the causes of the large-scale apparatus. Therefore, using such a pump hinders miniaturization and cost reduction of the resist coating apparatus.
  • Degradation refers to quality degradation such as oxidation of the resist solution due to the permeation of atmospheric gas from the outside, quality degradation due to dissolution of substances on the inner surface of the piping into the resist solution, and these gases and substances are chemically mixed with the resist solution. These include quality degradation due to reaction, generation of bubbles due to liberation of dissolved gas, and the like. The deterioration of the resist solution causes the quality of semiconductor products and the yield to decrease.
  • the conventional resist coating apparatus requires a resist thermostat, a temperature control liquid pipe, a temperature control device and the like in order to adjust the temperature of the resist solution. This also causes the increase in size and cost of the device.
  • An object of the present invention is to provide a chemical supply mechanism capable of accurately controlling the supply amount even when the chemical supply amount is small, and capable of adjusting the temperature of the chemical solution with a small mechanism, and The purpose is to provide the small manufacturing apparatus used at low cost.
  • a chemical solution supply apparatus is a chemical solution supply mechanism used in a manufacturing process in which a predetermined amount of a chemical solution is dropped onto the surface of a processing substrate, and includes a cylindrical syringe body that contains the chemical solution, A syringe having a plunger insertion port provided at one end, a nozzle provided at the other end of the syringe body, a plunger fitted into the syringe body from the plunger insertion port, and the plunger And a plunger moving mechanism for discharging the predetermined amount of the chemical solution from the nozzle by moving the nozzle toward the nozzle by a predetermined distance.
  • the plunger moving mechanism uses a moving member that supports the plunger, a screw shaft that moves the moving member according to the amount of rotation, and a rotational power transmission that rotates the screw shaft using a power source. It is desirable to provide a part.
  • a solvent receiver for storing the chemical liquid discharged from the nozzle and discarded before dropping the chemical liquid on the surface of the processing substrate.
  • the tip portion of the nozzle is formed so as to be thinner as it approaches the discharge port.
  • the nozzle is configured to temporarily store the chemical liquid for at least one step, and the temperature of the chemical liquid stored in the nozzle is adjusted by adjusting the temperature of the nozzle. It is desirable to adjust.
  • the chemical solution may be a resist solution or a resist developer used in a semiconductor manufacturing process.
  • the diameter of the processing substrate can be 20 mm or less.
  • a small-sized manufacturing apparatus is a small-sized manufacturing apparatus that performs a manufacturing process in which a predetermined amount of chemical liquid is dropped onto the surface of a processing substrate using a chemical liquid supply mechanism, and the chemical liquid supply mechanism stores the chemical liquid.
  • a syringe having a cylindrical syringe body, a plunger insertion port provided at one end of the syringe body, and a nozzle provided at the other end of the syringe body, and the syringe from the plunger insertion port
  • the chemical solution supply mechanism of the present invention since the amount of the chemical solution discharged from the syringe can be controlled by the distance by which the plunger moving mechanism moves the plunger, even if the discharge amount of the chemical solution is small, Accurate control of this discharge amount is possible.
  • the chemical liquid accommodated in the syringe body is discharged by moving the plunger by the plunger moving mechanism, so that the size reduction and the price reduction are easy.
  • the chemical solution passage is very short. Therefore, the deterioration of the chemical solution in this passage (oxidation, the substance on the inner surface of the passage) Melting, chemical reaction, generation of bubbles, etc.) hardly occur. Further, even if the chemical solution in the passage is discarded due to deterioration of the chemical solution, the discard amount may be very small.
  • the chemical solution supply mechanism of the present invention by dropping a part of the chemical solution in the solvent receptacle before dropping the chemical solution on the surface of the processing substrate, it is possible to easily prevent the chemical solution deteriorated due to oxidation or the like.
  • the tip of the nozzle is formed so as to become thinner as it approaches the discharge port, so that it is difficult for the chemical to adhere to the tip of the nozzle. It can be controlled stably and accurately.
  • the temperature of the chemical solution container or the like it is not necessary to adjust the temperature of the chemical solution container or the like by storing the chemical solution for at least one step in the nozzle and adjusting the temperature of the chemical solution stored in the nozzle.
  • the temperature of the chemical solution can be adjusted at a low cost with a simple structure.
  • the chemical temperature adjusting mechanism by adjusting the temperature of the chemical stored in the nozzle by blowing a gas of a predetermined temperature onto the nozzle, the chemical temperature adjusting mechanism can be configured very simply and inexpensively.
  • the resist coating process and the resist developing process can be performed accurately and inexpensively.
  • the chemical solution supply mechanism of the present invention can be easily downsized by setting the diameter of the processing substrate to 20 mm or less.
  • FIG. 1 is a conceptual perspective view showing an overall configuration of a small manufacturing apparatus according to Embodiment 1.
  • FIG. 1 is a conceptual plan view showing a configuration of a resist coating apparatus according to Embodiment 1.
  • FIG. 3 is a cross-sectional view illustrating a configuration of a temperature adjustment mechanism according to Embodiment 1.
  • FIG. 4 is a partially enlarged view of FIG. 3.
  • FIG. 4 is a partially enlarged view of the nozzle shown in FIG. 3.
  • Embodiment 1 of the Invention will be described taking as an example the case where the present invention is applied to a resist coating apparatus for a small semiconductor wafer.
  • FIG. 1 is a perspective view conceptually showing the overall configuration of the small-sized semiconductor manufacturing apparatus according to the first embodiment.
  • the small semiconductor manufacturing apparatus 100 includes a resist coating apparatus 110 as a processing chamber and an apparatus front chamber 120. Accommodate.
  • the resist coating apparatus 110 and the apparatus front chamber 120 are configured to be separable.
  • the resist coating apparatus 110 receives a semiconductor wafer (not shown) from the apparatus front chamber 120 via a wafer transfer port (not shown). Then, a resist film forming process is performed on the semiconductor wafer. Detailed description of the resist coating apparatus 110 will be described later.
  • a semiconductor wafer having a small diameter of 20 mm or less for example, 12.5 ⁇ 0.2 mm is used.
  • the apparatus front chamber 120 is a room for taking out a semiconductor wafer accommodated in a wafer transfer container (not shown) and transferring it to the resist coating apparatus 110.
  • the top plate 120 a of the apparatus front chamber 120 has a container mounting table 121 for mounting a wafer transfer container, a pressing lever 122 for pressing and fixing the mounted wafer transfer container from above, and a small semiconductor manufacturing apparatus 100.
  • An operation panel 124 having operation buttons 141 and the like for performing operations is provided.
  • the front chamber 120 of the apparatus includes a transfer robot (not shown) for loading a semiconductor wafer taken out from the wafer transfer container into the resist coating apparatus 110.
  • FIG. 2 is a plan view conceptually showing the configuration of the resist coating apparatus 110.
  • a transfer unit 210 and HMDS (hexamethyldisilazane) treatment are performed inside one resist coating device 110 (for example, one side of the horizontal section of the housing is 30 cm).
  • a unit 220, a spin coater unit 230, a resist nozzle unit 240, an EBR (Edge Bead Removal) nozzle unit 250, a bake processing unit 260, and the like are accommodated.
  • the transfer unit 210 receives a semiconductor wafer from the transfer robot (not shown) and sequentially transfers the semiconductor wafer to the HMDS processing unit 220, the spin coater unit 230, and the bake processing unit 260.
  • the main body 211 of the transport unit 210 includes a pair of hands 212a and 212b.
  • Arc-shaped wafer mounting portions 213a and 213b are formed at the tip portions of the hand portions 212a and 212b so as to face each other.
  • the semiconductor wafer is placed so that the outer edge portion comes into contact with these wafer placement portions 212a and 212b.
  • the hand portions 212a and 212b can be opened in a direction away from each other or closed in a direction approaching each other.
  • FIG. 2 shows a state in which the hand portions 212a and 212b are closed.
  • the transport unit 210 can rotate the main body portion 211 and move the hand portions 212a and 212b forward and backward by a mechanism (not shown).
  • the HMDS processing unit 220 is a mechanism for performing HMDS processing (that is, processing for replacing OH groups on the surface of the semiconductor wafer with HMDS in order to improve the adhesion between the resist film and the semiconductor wafer).
  • the HMDS processing unit 220 includes a hot plate 221 and, for example, four mounting pins 222a to 222d.
  • the mounting pins 222a to 222d are arranged substantially evenly inside the outer edge of the hot plate 221. These mounting pins 222a to 222d can be moved up and down by a lifting mechanism (not shown), and are housed in the hot plate 221 when lowered.
  • the semiconductor wafer is placed on the wafer placing portions 213a and 213b with the hand portions 212a and 212b closed, and the main body of the transfer unit 210 is placed. 211 is rotated to a position facing the hot plate 221, and the hand portions 212 a and 212 b are further advanced onto the hot plate 221. Then, the mounting pins 222a to 222d are raised and the semiconductor wafer is lifted from below to be separated from the hand portions 212a and 212b. Subsequently, the hand portions 212a and 212b are opened and retracted. Thereafter, the mounting pins 222 a to 222 d are lowered to the position where they are accommodated in the hot plate 221, thereby placing the semiconductor wafer on the hot plate 221.
  • the spin coater unit 230 is a mechanism for performing resist film formation, EBR processing, back surface cleaning processing, and the like on a semiconductor wafer.
  • the spin coater unit 230 includes a mounting portion 231 for holding and rotating the semiconductor wafer.
  • the resist nozzle unit 240 is a mechanism for applying a resist solution to a rotating semiconductor wafer in the resist film forming process.
  • the nozzle 241 of the resist nozzle unit 240 is waiting above the solvent receiver 242.
  • the resist nozzle unit 240 rotates the arm 243 to move the nozzle 241 to above the center of the semiconductor wafer (not shown) placed on the placement portion 231. Then, a resist solution is dropped onto the semiconductor wafer.
  • the detailed structure of the resist nozzle unit 240 will be described later with reference to FIGS.
  • the EBR nozzle unit 250 is a mechanism for supplying a resist solution to the peripheral portion of the semiconductor wafer in the EBR step (that is, a step of removing the resist film formed on the peripheral portion of the semiconductor wafer).
  • the EBR nozzle unit 250 rotates the nozzle 251 from above the solvent receiver 252 to above the peripheral edge of the semiconductor wafer placed on the placement unit 231 to drop the resist solution.
  • the baking unit 260 is a mechanism for heating the semiconductor wafer in order to solidify the resist film.
  • the bake processing unit 260 includes a hot plate 261 and, for example, four mounting pins 262a to 262d.
  • the mounting pins 262a to 262d are substantially evenly arranged inside the outer edge portion of the hot plate 261, and can be moved up and down by a lifting mechanism (not shown). Since the procedure for placing the semiconductor wafer on the hot plate 261 is the same as that in the case of the HMDS processing unit 220, description thereof is omitted.
  • FIG. 3 is a side view showing the configuration of the resist nozzle unit 240.
  • FIG. 4 is an enlarged view of the solvent receiver 242
  • FIG. 5 is an enlarged view of the nozzle 241.
  • the resist nozzle unit 240 includes a resist solution container 310.
  • the resist solution container 310 includes a syringe part 311, a plunger part 312, and the nozzle 241 described above.
  • the syringe unit 311 includes a cylindrical syringe body 311a.
  • the syringe body 311a contains a resist solution.
  • a plunger insertion port 311b having substantially the same inner diameter as the syringe part 311 is provided at the upper end of the syringe body 311a.
  • a spout 311 c is formed to protrude from the lower end of the syringe part 311.
  • the plunger portion 312 has an outer diameter substantially the same as the inner diameter of the plunger insertion port 311b provided in the syringe portion 311 and is inserted into the syringe body 311a from the plunger insertion port 311b.
  • the plunger portion 312 may include a gasket or the like in order to maintain airtightness between the outer peripheral surface of the lower end portion and the inner peripheral surface of the syringe body 311a.
  • the nozzle 241 is fitted into the spout 311c of the syringe part 311. As shown in FIG. 5, the tip portion 241a of the nozzle 241 is formed so that the thickness decreases as it approaches the tip. In the first embodiment, the nozzle 241 is fitted into the spout 311c. However, the nozzle 241 may be integrally formed (that is, the spout 311c may be used as a nozzle as it is). Is possible.
  • a resist film can be formed by dropping about 2 drops of resist solution using a nozzle 241 having an inner diameter of 0.56 mm.
  • the tip portion 241a of the nozzle 241 is formed so as to become thinner as it approaches the tip, thereby making it difficult to attach the resist solution. Thereby, accurate control of the resist solution discharge amount can be maintained without impairing the sufficient strength of the nozzle 241.
  • the resist solution R stored in the liquid passage 241c is pushed out by the new resist solution R when the new resist solution R is supplied from the syringe unit 311 into the nozzle 241 and is discharged to the discharge port 241b. And is dropped onto the surface of a semiconductor wafer (not shown).
  • the solvent receiver 242 is a container for containing the resist solution R dripping from the nozzle 241 when the nozzle 241 is in the standby position (that is, the position when the resist coating process is not performed).
  • the solvent receiver 242 discards the resist solution R stored at the tip portion of the nozzle 241 before the resist coating process. As a result, even when the resist solution R at the tip portion of the nozzle 241 is deteriorated due to oxidation or the like, the possibility of deteriorating the quality or yield of the semiconductor product is reduced.
  • the solvent receiver 242 stores an insertion portion 242a for inserting the nozzle 241; a cup portion 242b for receiving the dripping resist solution R; and a resist solution R received by the cup portion 242b in a waste liquid container (not shown).
  • a waste liquid pipe 242c A waste liquid pipe 242c.
  • an air supply port 242d for blowing a temperature adjusting gas to the nozzle 241 is provided on the side wall of the insertion portion 242a.
  • an air supply pipe 242e is connected to the air supply port 242d.
  • an air supply pipe 242g is connected to the air supply pipe 242e via a gas supply valve 242f.
  • the supply pipe 242g is connected to a gas supply mechanism (gas cylinder or the like) (not shown).
  • the container supporter 320 includes a support body 321, a syringe support 322, a plunger support 323, and a plunger moving mechanism 324.
  • the syringe support 322 is fixed to and supported by the support main body 321 and is detachably fixed by tightening the syringe 311 of the resist solution container 310 using a screw 322a.
  • the plunger support 323 is fixed to a moving member 324f (described later) of the plunger moving mechanism 324 and fixedly supported so as to be removable by tightening the plunger portion 312 of the resist solution container 310 using a screw 323a. .
  • the plunger moving mechanism 324 raises and lowers the plunger portion 312 of the resist solution container 310 by raising and lowering the plunger support 323.
  • the plunger moving mechanism 324 when the stepping motor 324a rotates the pulley 324b, this rotational power is transmitted to the pulley 324d via the belt 324c.
  • the screw shaft 324e is rotated by the rotation of the pulley 324d, and thereby the moving member 324f is moved up and down.
  • the plunger support 323 is fixedly supported by the moving member 324f. Therefore, when the moving member 324f is lowered, the plunger support 323 is raised and lowered, and thereby the plunger portion 312 is raised and lowered.
  • the container support 320 is fixedly supported by the arm 243 (described above).
  • the arm 243 is moved up and down and rotated by the arm driving unit 330.
  • the container support part 320 detachably supports the syringe part 311 and the plunger part 312. For this reason, the resist solution container 310 can be replaced with a simple operation. Therefore, in the first embodiment, when the resist solution in the resist solution container 310 is used up, when the resist solution is deteriorated, or when the type of the resist solution is to be switched, a new resist solution container 310 and Just replace it. This eliminates the need to fill the tank with the resist solution, replace the deteriorated resist solution in the pipe with a new one, flush the pipe (described above), etc., which is necessary in the conventional resist coating apparatus. The work burden can be reduced.
  • the cost of one resist solution container 310 is very low. Therefore, even if the resist solution container 310 is disposable, the cost increase is slight.
  • the resist solution container 310 that has not been used up can be stored and reused in an appropriate environment.
  • the syringe unit 311 and the plunger unit 312 are detachably supported using the screws 322a and 323a.
  • other methods for example, the syringe support 322 and the plunger support 323 may be used). It is good also as providing a holder and supporting by the method of fitting the syringe part 311 and the plunger part 312).
  • the nozzle 241 of the resist nozzle unit 240 is waiting above the solvent receiver 242 as described above.
  • the resist liquid R for at least one resist coating process is stored.
  • the nozzle 241 is blown with gas from an air supply port 242d.
  • As this gas a gas whose temperature is adjusted is used.
  • the resist solution R in the liquid path 241c is adjusted to a predetermined temperature.
  • the gas blowing is continuously performed while the nozzle 241 is retracted onto the solvent receiver 242.
  • the kind of gas is not limited, For example, air and nitrogen can be used. Further, as this gas, it is desirable to use a clean gas from which dust is sufficiently removed in order to improve the yield of the resist coating process.
  • a semiconductor wafer is mounted on the mounting portion 231 (see FIG. 2) of the spin coater unit 230.
  • the resist solution R at the tip of the nozzle 241 is discarded in the solvent receiver 242. This discarding prevents the deterioration of the quality of the semiconductor product and the like when the resist solution R at the tip portion is deteriorated due to oxidation or the like as described above.
  • the amount of resist solution R discarded is, for example, about 0.02 cc or less.
  • the plunger moving mechanism 324 slightly raises the plunger portion 312 using the moving member 324f.
  • the plunger moving mechanism 324 slightly raises the plunger portion 312 before the movement of the nozzle 241, when the atmospheric gas is injected into the tip portion of the nozzle 241 and the resist solution container 310 is moved, the resist solution R droops from the nozzle 241. Can prevent falling.
  • the arm driving unit 330 raises the arm 243 to move the nozzle 241 to above the insertion portion 242a, and further rotates the arm 243 to move the nozzle 241 to above the central portion of the semiconductor wafer. .
  • the moving member 324f is lowered as described above, and the plunger portion 312 is lowered (that is, the plunger portion 312 approaches the nozzle 241). Moving).
  • the resist solution in the syringe part 311 is dropped from the nozzle 241 onto the semiconductor wafer.
  • the downward movement amount of the plunger portion 312 is set to such a value that the resist solution for one resist application step is poured out from the spout 311c.
  • the rotation amount of the stepping motor 324a is controlled by the number of input voltage pulses. For this reason, in this Embodiment 1, the descending amount of the plunger part 312 can be controlled accurately, and therefore the amount of resist solution dispensed can be accurately controlled.
  • the inner diameter of the tip of the nozzle 241 is reduced (for example, when a needle-like nozzle is used), for example, by inputting 300 voltage pulses to the stepping motor 324a, one drop (for example, 0.001cc) ) Resist solution R can be dropped. In this case, the droplet resolution is 0.001 cc / 300 pulses, ie 0.00003 cc / pulse.
  • the resolution of the position of the plunger portion 312 is about 0.00017 mm / pulse, that is, 170 nm / pulse.
  • the resist solution R for one resist coating step is poured out from the spout 311c of the resist solution container 310 to the nozzle 241, the resist solution R stored in the liquid path 241c of the nozzle 241 is removed. Extruded and discharged from the discharge port 241 b of the nozzle 241. Then, the discharged resist solution R is dropped onto a semiconductor wafer (not shown). At this time, the amount of the resist solution R discharged from the discharge port 241b is also an amount corresponding to one resist coating process.
  • At least one resist application step of the resist solution R is stored in the liquid path 241c, and the temperature is adjusted by blowing gas during standby. Therefore, the resist solution R dropped on the surface of the semiconductor wafer is the resist solution R adjusted to a predetermined temperature.
  • the resist solution R poured out from the spout 311c to the nozzle 241 is newly stored in the liquid passage 241c of the nozzle 241 as it is.
  • the arm driving unit 330 rotates the arm 243, so that the nozzle 241 returns to the standby position, that is, above the solvent receiver 242 (see FIG. 2).
  • the resolution of the liquid amount is about 0.1 cc or less. This resolution is determined by the accuracy of human control by hand, the scale unit printed on the syringe unit 311, and the like. In the case of manual control, there are individual differences in resolution, and even the same person cannot always guarantee the same resolution.
  • the conventional syringe is suitable for the usage method of inhaling only the chemical
  • the amount of the resist solution discharged from the syringe 311 can be controlled by the distance by which the plunger moving mechanism 324 moves the plunger 312. Even when the amount is small, the discharge amount can be accurately controlled.
  • the moving distance of the plunger 312 is controlled by the amount by which the stepping motor 324a rotates the screw shaft 324e, it becomes very easy to control the discharge amount of the resist solution very accurately. Furthermore, according to such a mechanism, it is easy to reduce the size and cost of the resist solution supply mechanism.
  • the solvent receiver 242 is provided, and before the resist solution R is dropped onto the surface of the processing substrate, a part of the resist solution R stored in the tip portion 241a of the nozzle 241 is removed as a solvent. Since the waste is discarded, it is possible to prevent the use of a chemical solution that has deteriorated due to oxidation or the like.
  • the tip portion 241a of the nozzle 241 is formed so as to become thinner as it approaches the discharge port 241b. Therefore, the resist solution is difficult to adhere to the discharge port 241b.
  • the discharge amount of the resist solution can be stably and accurately controlled.
  • the resist liquid R for one resist application process is stored in the liquid path 241c of the nozzle 241, and temperature adjustment is performed. Therefore, according to the first embodiment, it is not necessary to adjust the temperature of the resist solution R in the resist solution container 310. Therefore, the temperature of the resist solution can be adjusted at a low cost with a simple structure. it can.
  • the temperature of the chemical solution stored in the liquid path 241c is adjusted by blowing a gas at a predetermined temperature onto the nozzle 241, so that the temperature adjusting liquid is used, etc.
  • the mechanism for temperature adjustment can be configured very simply and inexpensively.
  • a small semiconductor manufacturing apparatus 100 that uses a semiconductor wafer having a diameter of 20 mm or less can be provided at low cost.
  • the present invention is applied to a resist coating apparatus
  • the present invention can also be applied to other semiconductor manufacturing apparatuses such as a resist developing apparatus.
  • the present invention can also be applied to manufacturing apparatuses other than semiconductor manufacturing apparatuses.
  • devices from other types of substrates for example, insulating substrates such as sapphire substrates and conductive substrates such as aluminum substrates
  • non-disc-shaped (for example, rectangular) processing substrates It is applicable also to the manufacturing apparatus which manufactures.
  • a large manufacturing apparatus such as a semiconductor manufacturing apparatus using a large-diameter semiconductor wafer such as 8 inches or 12 inches. It can also be used in other manufacturing equipment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Coating Apparatus (AREA)

Abstract

[Problem] To provide a chemical liquid supply mechanism which can accurately control the amount of supply of chemical liquid even if the amount of supply is small and which is small-sized and low cost. [Solution] A chemical liquid supply mechanism is provided with a syringe having: a cylindrical syringe body for receiving a chemical liquid; a plunger insertion opening provided at one end of the syringe body; and a nozzle provided at the other end of the syringe body. A plunger is fitted into the syringe body from the plunger insertion opening. A plunger movement mechanism moves the plunger in the direction toward the nozzle by a predetermined distance to cause a predetermined amount of the chemical liquid to be discharged from the nozzle.

Description

薬液供給機構及び小型製造装置Chemical supply mechanism and small manufacturing equipment
 本発明は、処理基板の表面に薬液を滴下する薬液供給機構と、この薬液供給機構を用いた小型製造装置とに関する。例えば、本発明は、小型の半導体ウェハを用いた半導体製造プロセスで使用されるレジスト塗布装置やレジスト現像装置等に適用することができる。 The present invention relates to a chemical solution supply mechanism for dropping a chemical solution on the surface of a processing substrate, and a small manufacturing apparatus using the chemical solution supply mechanism. For example, the present invention can be applied to a resist coating apparatus and a resist developing apparatus used in a semiconductor manufacturing process using a small semiconductor wafer.
 従来の薬液供給機構について、半導体製造プロセス用のレジスト塗布装置に搭載されたものを例に採って説明する。 A conventional chemical solution supply mechanism will be described by taking as an example one mounted on a resist coating apparatus for a semiconductor manufacturing process.
 従来のレジスト塗布装置としては、例えば、下記特許文献1及び2に記載されたものが知られている。 As a conventional resist coating apparatus, for example, those described in Patent Documents 1 and 2 below are known.
 特許文献1及び2に記載されているように、レジスト塗布装置では、スピンチャックに半導体ウェハを固定保持した状態で、このスピンチャックを回転させる。そして、レジスト液をノズルから半導体ウェハ上に滴下することによって、この半導体ウェハの表面にレジスト膜を形成する。 As described in Patent Documents 1 and 2, in the resist coating apparatus, the spin chuck is rotated while the semiconductor wafer is fixedly held on the spin chuck. And a resist film is formed in the surface of this semiconductor wafer by dripping a resist liquid on a semiconductor wafer from a nozzle.
 ここで、特許文献1及び2のレジスト塗布装置では、レジスト液貯留用のタンクをスピンチャックから離れた場所に配置し、このタンク内のレジスト液をポンプで吸い上げ、配管を用いてノズルに供給することにより、半導体ウェハに滴下していた(特許文献1の図4等参照)。 Here, in the resist coating apparatuses of Patent Documents 1 and 2, a resist solution storage tank is arranged at a location away from the spin chuck, the resist solution in the tank is sucked up by a pump, and supplied to a nozzle using a pipe. As a result, it was dripped onto the semiconductor wafer (see FIG. 4 of Patent Document 1).
 また、特許文献2のレジスト塗布装置では、レジスト供給ビンをレジスト恒温槽に収容することによって、このレジスト供給ビン内のレジスト液を所定温度に保っている。更に、特許文献2のレジスト塗布装置では、レジスト配管やノズルを温調液体配管に収容して、この温調液体配管内に温調液体を循環させている。この温調液体の温度は、温度制御装置によって、監視・制御されている。これにより、これらレジスト配管やノズル内を流れるレジスト液を、所定温度に保っている。 Further, in the resist coating apparatus of Patent Document 2, the resist supply bottle is accommodated in a resist thermostat, so that the resist solution in the resist supply bottle is maintained at a predetermined temperature. Furthermore, in the resist coating apparatus of Patent Document 2, a resist pipe and a nozzle are accommodated in a temperature control liquid pipe, and the temperature control liquid is circulated in the temperature control liquid pipe. The temperature of the temperature control liquid is monitored and controlled by a temperature control device. As a result, the resist solution flowing through the resist piping and nozzles is kept at a predetermined temperature.
特開2006-114607号公報JP 2006-114607 A 特開平5-74698号公報Japanese Patent Laid-Open No. 5-74698
 従来の半導体製造工場は、規模が巨大であるため、建設コストや運営コストが非常に高額であった。このような大規模製造システムは、少品種大量生産ではチップの製造単価低減に寄与するが、少量多品種生産の要請に応え難く、市場状況に応じた生産量の調整を困難にすると共に、中小企業の参入を困難にする。これらの問題を解決するためには、小口径ウェハ(例えば、直径20mm以下)を用いて低コストで半導体チップを製造できる、小型で安価な半導体製造装置が望まれる。 Since the conventional semiconductor manufacturing factory is huge, the construction cost and the operation cost were very high. Such a large-scale manufacturing system contributes to a reduction in the unit cost of chip production in small-quantity mass production, but it is difficult to meet the demand for small-quantity, multi-product production, making it difficult to adjust the production volume according to market conditions, Make it difficult for companies to enter. In order to solve these problems, a small and inexpensive semiconductor manufacturing apparatus that can manufacture semiconductor chips at low cost using a small-diameter wafer (for example, a diameter of 20 mm or less) is desired.
 しかしながら、従来のレジスト塗布装置をそのまま小型化する場合、以下のような欠点が生じる。
(1)直径が20mm以下の小口径ウェハを用いた半導体製造プロセスでは、通常、一枚の半導体ウェハに滴下するレジスト液の量は、非常に少量で良い。しかし、上述のようにポンプを用いてレジスト液をノズルに供給する方法では、レジスト液の滴下量を正確に制御することは困難である。
However, when the conventional resist coating apparatus is downsized as it is, the following drawbacks occur.
(1) In a semiconductor manufacturing process using a small-diameter wafer having a diameter of 20 mm or less, the amount of resist solution dropped on one semiconductor wafer is usually very small. However, in the method of supplying the resist solution to the nozzles using the pump as described above, it is difficult to accurately control the dropping amount of the resist solution.
 また、上述のようなポンプは高価であると共に、装置が大規模化する原因の1つとなっている。従って、このようなポンプを使用することは、レジスト塗布装置の小型化や低価格化の妨げとなる。 In addition, the above-described pump is expensive and is one of the causes of the large-scale apparatus. Therefore, using such a pump hinders miniaturization and cost reduction of the resist coating apparatus.
 (2)従来のレジスト塗布装置では、タンクとノズルとを長い配管で連結しているため、その配管内でレジスト液の劣化が進行しやすくなってしまう。劣化とは、雰囲気ガスが外部から浸透してくることによるレジスト液の酸化等の品質劣化、配管の内側表面の物質がレジスト液に溶け込むことによる品質劣化、これらのガスや物質がレジスト液と化学反応することによる品質劣化、溶存ガスの遊離による泡の発生等である。レジスト液の劣化は、半導体製品の品質劣化や歩留まり低下等の原因になる。 (2) In the conventional resist coating apparatus, since the tank and the nozzle are connected by a long pipe, the resist solution is likely to deteriorate in the pipe. Degradation refers to quality degradation such as oxidation of the resist solution due to the permeation of atmospheric gas from the outside, quality degradation due to dissolution of substances on the inner surface of the piping into the resist solution, and these gases and substances are chemically mixed with the resist solution. These include quality degradation due to reaction, generation of bubbles due to liberation of dissolved gas, and the like. The deterioration of the resist solution causes the quality of semiconductor products and the yield to decrease.
 これに対して、レジスト工程前に、配管内で劣化したレジスト液を全て廃棄することによって、品質劣化等の欠点を解消することも可能である。しかしながら、配管内のレジスト液を全て廃棄する場合、レジスト液の消費量が増大して、上述のような低コスト化の要請に反する。 On the other hand, it is possible to eliminate defects such as quality degradation by discarding all resist solution deteriorated in the pipe before the resist process. However, when all of the resist solution in the piping is discarded, the consumption amount of the resist solution is increased, which is contrary to the above-described demand for cost reduction.
 (3)タンクを交換する場合、半導体製品の十分な品質確保等のためには、配管内のレジスト液も全て新しいものに交換する必要がある。このため、タンク内のレジスト液の交換は、非常に作業負担が大きい。これに対して、大きいタンクに大量のレジスト液を収容することとすれば、タンク交換の頻度を減らして、作業負担を軽減できる。しかしながら、タンクに収容するレジスト液量を増やした場合、そのレジスト液を使い切るまでの期間が長くなって、レジスト液の劣化が進行しやすくなってしまう。 (3) When replacing the tank, it is necessary to replace all resist solutions in the piping with new ones in order to ensure sufficient quality of semiconductor products. For this reason, exchanging the resist solution in the tank is very heavy. On the other hand, if a large amount of resist solution is stored in a large tank, the frequency of tank replacement can be reduced and the work load can be reduced. However, when the amount of the resist solution stored in the tank is increased, the period until the resist solution is used up becomes longer, and the deterioration of the resist solution is likely to proceed.
 (4)従来のレジスト塗布装置において、配管のレジスト液を交換する際には、半導体製品の十分な品質確保等のために、配管をフラッシュ(配管内のレジスト液を全て廃棄して、この配管内を洗浄すること)することが望ましい。このフラッシュも、レジスト液の消費量を増大させる原因となっている。 (4) When replacing the resist solution in a pipe in a conventional resist coating apparatus, flush the pipe (dispose of all the resist liquid in the pipe and remove this pipe to ensure sufficient quality of the semiconductor product). It is desirable to clean the inside. This flush also increases the consumption of the resist solution.
 (5)また、他の種類の半導体製品の製造プロセスに切り換えるために、使用するレジスト液の種類を変更したい場合もある。このような場合も、配管内のレジスト液の廃棄する必要やフラッシュの必要等が生じて、レジスト液の消費量が無駄に増大したり、作業負担が増大したりする。更には、レジストの種類を変更するために、配管の敷設し直す必要が生じる場合もある。これに対して、1台のレジスト塗布装置に複数系統のタンクや配管等を設けることも可能であるが、装置構造が複雑になって、レジスト塗布装置の小型化、低コスト化の要請に反する。 (5) In addition, there is a case where it is desired to change the type of resist solution to be used in order to switch to the manufacturing process of other types of semiconductor products. In such a case as well, it becomes necessary to discard the resist solution in the pipes, flushing, etc., and the consumption amount of the resist solution increases unnecessarily and the work load increases. Furthermore, it may be necessary to re-lay the piping in order to change the type of resist. On the other hand, it is possible to provide a plurality of tanks, pipes and the like in one resist coating apparatus, but the structure of the apparatus becomes complicated, which is contrary to the demand for downsizing and cost reduction of the resist coating apparatus. .
 (6)従来のレジスト塗布装置は、上述のように、レジスト液の温度を調整するために、レジスト恒温槽や、温調液体配管、温度制御装置等が必要である。この点も、装置の大型化や高価格化の原因になっている。 (6) As described above, the conventional resist coating apparatus requires a resist thermostat, a temperature control liquid pipe, a temperature control device and the like in order to adjust the temperature of the resist solution. This also causes the increase in size and cost of the device.
 これらの欠点は、レジスト塗布装置だけで無く、レジスト液以外の薬液を使用する他の半導体製造装置(例えば、レジスト現像装置)にも生じる。更には、このような課題は、例えばサファイア基板やアルミニウム基板等に処理を施して電子デバイスを製造する装置や、光学デバイスを製造する装置等にも生じる。 These defects occur not only in the resist coating apparatus but also in other semiconductor manufacturing apparatuses (for example, resist developing apparatuses) that use a chemical solution other than the resist solution. Furthermore, such a problem also arises in an apparatus for manufacturing an electronic device by processing a sapphire substrate, an aluminum substrate or the like, an apparatus for manufacturing an optical device, or the like.
 本発明の課題は、薬液供給量が少量の場合であってもその供給量を正確に制御することができ、且つ、小型の機構で薬液の温度調整を行うことができる薬液供給機構及びこれを用いた小型製造装置を、安価に提供することにある。 An object of the present invention is to provide a chemical supply mechanism capable of accurately controlling the supply amount even when the chemical supply amount is small, and capable of adjusting the temperature of the chemical solution with a small mechanism, and The purpose is to provide the small manufacturing apparatus used at low cost.
 本発明に係る薬液供給装置は、処理基板の表面に所定量の薬液を滴下する製造工程で使用される薬液供給機構であって、前記薬液を収容する筒状のシリンジ本体と、該シリンジ本体の一方の端部に設けられたプランジャ挿入口と、該シリンジ本体の他方の端部に設けられたノズルとを有するシリンジと、前記プランジャ挿入口から前記シリンジ本体内に嵌め込まれるプランジャと、前記プランジャを前記ノズルに近づく方向に所定距離だけ移動させることで、前記所定量の薬液を前記ノズルから吐出させるプランジャ移動機構とを備えることを特徴とする。 A chemical solution supply apparatus according to the present invention is a chemical solution supply mechanism used in a manufacturing process in which a predetermined amount of a chemical solution is dropped onto the surface of a processing substrate, and includes a cylindrical syringe body that contains the chemical solution, A syringe having a plunger insertion port provided at one end, a nozzle provided at the other end of the syringe body, a plunger fitted into the syringe body from the plunger insertion port, and the plunger And a plunger moving mechanism for discharging the predetermined amount of the chemical solution from the nozzle by moving the nozzle toward the nozzle by a predetermined distance.
 本発明においては、前記プランジャ移動機構が、前記プランジャを支持する移動部材と、回転量に応じて前記移動部材を移動させるねじ軸と、動力源を用いて、前記ねじ軸を回転させる回転動力伝達部とを備えることが望ましい。 In the present invention, the plunger moving mechanism uses a moving member that supports the plunger, a screw shaft that moves the moving member according to the amount of rotation, and a rotational power transmission that rotates the screw shaft using a power source. It is desirable to provide a part.
 本発明においては、前記処理基板の表面に前記薬液を滴下する前に、前記ノズルから吐出されて廃棄された薬液を収容する、溶剤受けを更に備えることが望ましい。 In the present invention, it is desirable to further include a solvent receiver for storing the chemical liquid discharged from the nozzle and discarded before dropping the chemical liquid on the surface of the processing substrate.
 本発明においては、前記ノズルの先端部は、吐出口に近づくほど厚みが薄くなるように形成されることが望ましい。 In the present invention, it is desirable that the tip portion of the nozzle is formed so as to be thinner as it approaches the discharge port.
 本発明において、前記ノズルは、少なくとも工程1回分の前記薬液を一時的に貯留するように構成され、且つ、前記ノズルの温度を調整することにより、該ノズル内に貯留された前記薬液の温度を調整することが望ましい。 In the present invention, the nozzle is configured to temporarily store the chemical liquid for at least one step, and the temperature of the chemical liquid stored in the nozzle is adjusted by adjusting the temperature of the nozzle. It is desirable to adjust.
 本発明においては、所定温度のガスを前記ノズルに吹き付けることによって、該ノズルに貯留された前記薬液の温度調整を行うことが望ましい。 In the present invention, it is desirable to adjust the temperature of the chemical stored in the nozzle by blowing a gas at a predetermined temperature onto the nozzle.
 本発明においては、前記薬液を、半導体製造工程で使用されるレジスト液又はレジスト現像液とすることができる。 In the present invention, the chemical solution may be a resist solution or a resist developer used in a semiconductor manufacturing process.
 本発明においては、前記処理基板の径を20mm以下とすることができる。 In the present invention, the diameter of the processing substrate can be 20 mm or less.
 本発明に係る小型製造装置は、薬液供給機構を用いて、処理基板の表面に所定量の薬液を滴下する製造工程を行う小型製造装置であって、該薬液供給機構は、前記薬液を収容する筒状のシリンジ本体と、該シリンジ本体の一方の端部に設けられたプランジャ挿入口と、該シリンジ本体の他方の端部に設けられたノズルとを有するシリンジと、前記プランジャ挿入口から前記シリンジ本体内に嵌め込まれるプランジャと、前記プランジャを前記ノズルに近づく方向に所定距離だけ移動させることで、前記所定量の薬液を前記ノズルから吐出させるプランジャ移動機構と、を備える。 A small-sized manufacturing apparatus according to the present invention is a small-sized manufacturing apparatus that performs a manufacturing process in which a predetermined amount of chemical liquid is dropped onto the surface of a processing substrate using a chemical liquid supply mechanism, and the chemical liquid supply mechanism stores the chemical liquid. A syringe having a cylindrical syringe body, a plunger insertion port provided at one end of the syringe body, and a nozzle provided at the other end of the syringe body, and the syringe from the plunger insertion port A plunger fitted in the body, and a plunger moving mechanism for discharging the predetermined amount of the chemical from the nozzle by moving the plunger by a predetermined distance in a direction approaching the nozzle.
 本発明の薬液供給機構によれば、シリンジから吐出される薬液の量を、プランジャ移動機構がプランジャを移動させる距離で制御することができるので、薬液の吐出量が少量の場合であっても、この吐出量の正確な制御が可能である。 According to the chemical solution supply mechanism of the present invention, since the amount of the chemical solution discharged from the syringe can be controlled by the distance by which the plunger moving mechanism moves the plunger, even if the discharge amount of the chemical solution is small, Accurate control of this discharge amount is possible.
 更に、本発明の薬液供給機構によれば、プランジャ移動機構でプランジャを移動させることによって、シリンジ本体に収容された薬液を吐出するので、小型化や低価格化が容易である。 Furthermore, according to the chemical liquid supply mechanism of the present invention, the chemical liquid accommodated in the syringe body is discharged by moving the plunger by the plunger moving mechanism, so that the size reduction and the price reduction are easy.
 また、本発明の薬液供給機構において、薬液を収容するシリンジ本体にノズルを設けることにより、薬液の通路が非常に短く、従って、この通路での薬液の劣化(酸化、通路の内側表面の物質の溶け込み、化学反応、泡の発生等)が生じ難い。また、薬液の劣化等のために、この通路内の薬液を廃棄するとしても、その廃棄量は非常に少量でよい。 Further, in the chemical solution supply mechanism of the present invention, by providing the nozzle in the syringe body that stores the chemical solution, the chemical solution passage is very short. Therefore, the deterioration of the chemical solution in this passage (oxidation, the substance on the inner surface of the passage) Melting, chemical reaction, generation of bubbles, etc.) hardly occur. Further, even if the chemical solution in the passage is discarded due to deterioration of the chemical solution, the discard amount may be very small.
 本発明の薬液供給機構において、ねじ軸の回転量によってプランジャの移動距離を制御することにより、薬液の吐出量を正確に制御することが容易である。 In the chemical solution supply mechanism of the present invention, it is easy to accurately control the discharge amount of the chemical solution by controlling the movement distance of the plunger by the rotation amount of the screw shaft.
 本発明の薬液供給機構において、処理基板の表面に薬液を滴下する前に、薬液の一部を溶剤受けに廃棄することにより、酸化等で劣化した薬液の使用を容易に防止できる。 In the chemical solution supply mechanism of the present invention, by dropping a part of the chemical solution in the solvent receptacle before dropping the chemical solution on the surface of the processing substrate, it is possible to easily prevent the chemical solution deteriorated due to oxidation or the like.
 本発明の薬液供給機構において、ノズルの先端部を、吐出口に近づくほど薄厚になるように形成することにより、このノズルの先端部に薬液が付着し難くなり、従って、薬液の吐出量を、安定して正確に制御することができる。 In the chemical liquid supply mechanism of the present invention, the tip of the nozzle is formed so as to become thinner as it approaches the discharge port, so that it is difficult for the chemical to adhere to the tip of the nozzle. It can be controlled stably and accurately.
 本発明の薬液供給機構において、少なくとも工程1回分の薬液をノズルに貯留させて、該ノズルに貯留された薬液の温度調整を行うことにより、薬液収容容器等の温度調整を行う必要がなく、従って、簡単な構造で、安価に、薬液の温度調整を行うことができる。 In the chemical solution supply mechanism of the present invention, it is not necessary to adjust the temperature of the chemical solution container or the like by storing the chemical solution for at least one step in the nozzle and adjusting the temperature of the chemical solution stored in the nozzle. The temperature of the chemical solution can be adjusted at a low cost with a simple structure.
 本発明において、所定温度のガスをノズルに吹き付けることによって、ノズルに貯留された薬液の温度調整を行うことにより、薬液温度調整機構を非常に簡単且つ安価に構成することができる。 In the present invention, by adjusting the temperature of the chemical stored in the nozzle by blowing a gas of a predetermined temperature onto the nozzle, the chemical temperature adjusting mechanism can be configured very simply and inexpensively.
 レジスト液又はレジスト現像液の供給機構に本発明を適用することにより、レジスト塗布工程やレジスト現像工程を正確且つ安価に行うことができる。 By applying the present invention to the resist solution or resist developer supply mechanism, the resist coating process and the resist developing process can be performed accurately and inexpensively.
 本発明の薬液供給機構において、処理基板の径を20mm以下とすることにより、薬液供給機構の小型化が容易になる。 In the chemical solution supply mechanism of the present invention, the chemical solution supply mechanism can be easily downsized by setting the diameter of the processing substrate to 20 mm or less.
 本発明の薬液供給機構を用いることにより、製造装置の小型化や低価格化が容易になる。 By using the chemical solution supply mechanism of the present invention, it is easy to reduce the size and cost of the manufacturing apparatus.
実施の形態1に係る小型製造装置の全体構成を示す概念的斜視図である。1 is a conceptual perspective view showing an overall configuration of a small manufacturing apparatus according to Embodiment 1. FIG. 実施の形態1に係るレジスト塗布装置の構成を示す概念的平面図である。1 is a conceptual plan view showing a configuration of a resist coating apparatus according to Embodiment 1. FIG. 実施の形態1に係る温度調整機構の構成を示す断面図である。3 is a cross-sectional view illustrating a configuration of a temperature adjustment mechanism according to Embodiment 1. FIG. 図3の部分拡大図である。FIG. 4 is a partially enlarged view of FIG. 3. 図3に示したノズルの部分拡大図である。FIG. 4 is a partially enlarged view of the nozzle shown in FIG. 3.
 以下、本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described.
 [発明の実施の形態1]
 以下、本発明の実施の形態1について、本発明を小型半導体ウェハ用のレジスト塗布装置に適用した場合を例に採って説明する。
Embodiment 1 of the Invention
Hereinafter, Embodiment 1 of the present invention will be described taking as an example the case where the present invention is applied to a resist coating apparatus for a small semiconductor wafer.
 図1は、この実施の形態1に係る小型半導体製造装置の全体構成を概念的に示す斜視図である。 FIG. 1 is a perspective view conceptually showing the overall configuration of the small-sized semiconductor manufacturing apparatus according to the first embodiment.
 図1から解るように、この実施の形態1に係る小型半導体製造装置100(本発明の「小型製造装置」に相当する)は、処理室としてのレジスト塗布装置110と、装置前室120とを収容する。レジスト塗布装置110と装置前室120とは、分離可能に構成されている。 As can be seen from FIG. 1, the small semiconductor manufacturing apparatus 100 according to the first embodiment (corresponding to the “small manufacturing apparatus” of the present invention) includes a resist coating apparatus 110 as a processing chamber and an apparatus front chamber 120. Accommodate. The resist coating apparatus 110 and the apparatus front chamber 120 are configured to be separable.
 レジスト塗布装置110は、図示しないウェハ搬送口を介して装置前室120から半導体ウェハ(図示せず)を受け取る。そして、この半導体ウェハに対して、レジスト膜形成処理を行う。レジスト塗布装置110についての詳細な説明は、後述する。この実施の形態1では、半導体ウェハとして、径が20mm以下(例えば12.5±0.2mm)の小径のものを使用する。 The resist coating apparatus 110 receives a semiconductor wafer (not shown) from the apparatus front chamber 120 via a wafer transfer port (not shown). Then, a resist film forming process is performed on the semiconductor wafer. Detailed description of the resist coating apparatus 110 will be described later. In the first embodiment, a semiconductor wafer having a small diameter of 20 mm or less (for example, 12.5 ± 0.2 mm) is used.
 一方、装置前室120は、ウェハ搬送容器(図示せず)に収容された半導体ウェハを取り出して、レジスト塗布装置110に搬送するための部屋である。装置前室120の天板120aには、ウェハ搬送容器を載置するための容器載置台121と、載置されたウェハ搬送容器を上方から押圧固定する押さえレバー122と、小型半導体製造装置100の操作を行うための操作釦141等を有する操作パネル124が設けられている。また、装置前室120は、ウェハ搬送容器から下方に取り出した半導体ウェハをレジスト塗布装置110に搬入するための搬送ロボット(図示せず)を備えている。 On the other hand, the apparatus front chamber 120 is a room for taking out a semiconductor wafer accommodated in a wafer transfer container (not shown) and transferring it to the resist coating apparatus 110. The top plate 120 a of the apparatus front chamber 120 has a container mounting table 121 for mounting a wafer transfer container, a pressing lever 122 for pressing and fixing the mounted wafer transfer container from above, and a small semiconductor manufacturing apparatus 100. An operation panel 124 having operation buttons 141 and the like for performing operations is provided. Further, the front chamber 120 of the apparatus includes a transfer robot (not shown) for loading a semiconductor wafer taken out from the wafer transfer container into the resist coating apparatus 110.
 図2は、レジスト塗布装置110の構成を概念的に示す平面図である。図2に示したように、この実施の形態1では、1台のレジスト塗布装置110(例えば筐体の水平断面の一辺が30cm)の内部に、搬送ユニット210、HMDS(ヘキサメチルジシラザン)処理ユニット220、スピンコーターユニット230、レジストノズルユニット240、EBR(Edge Bead Removal)ノズルユニット250、ベーク処理ユニット260等が収容されている。 FIG. 2 is a plan view conceptually showing the configuration of the resist coating apparatus 110. As shown in FIG. 2, in the first embodiment, a transfer unit 210 and HMDS (hexamethyldisilazane) treatment are performed inside one resist coating device 110 (for example, one side of the horizontal section of the housing is 30 cm). A unit 220, a spin coater unit 230, a resist nozzle unit 240, an EBR (Edge Bead Removal) nozzle unit 250, a bake processing unit 260, and the like are accommodated.
 搬送ユニット210は、半導体ウェハを上述の搬送ロボット(図示せず)から受け取って、HMDS処理ユニット220、スピンコーターユニット230、ベーク処理ユニット260に順次搬送する。搬送ユニット210の本体部211は、一対のハンド部212a,212bを備えている。ハンド部212a,212bの先端部分には、円弧状のウェハ載置部213a,213bが、互いに対向するように形成されている。半導体ウェハは、これらウェハ載置部212a,212bに外縁部が当接するように、載置される。ハンド部212a,212bは、互いに遠ざかる方向に開いたり、互いに近づく方向に閉じたりすることができる。図2は、ハンド部212a,212bが閉じた状態である。搬送ユニット210は、図示しない機構により、本体部211を回転させることができると共に、ハンド部212a,212bを前進・後退させることができる。 The transfer unit 210 receives a semiconductor wafer from the transfer robot (not shown) and sequentially transfers the semiconductor wafer to the HMDS processing unit 220, the spin coater unit 230, and the bake processing unit 260. The main body 211 of the transport unit 210 includes a pair of hands 212a and 212b. Arc-shaped wafer mounting portions 213a and 213b are formed at the tip portions of the hand portions 212a and 212b so as to face each other. The semiconductor wafer is placed so that the outer edge portion comes into contact with these wafer placement portions 212a and 212b. The hand portions 212a and 212b can be opened in a direction away from each other or closed in a direction approaching each other. FIG. 2 shows a state in which the hand portions 212a and 212b are closed. The transport unit 210 can rotate the main body portion 211 and move the hand portions 212a and 212b forward and backward by a mechanism (not shown).
 HMDS処理ユニット220は、HMDS処理(すなわち、レジスト膜と半導体ウェハとの密着性を向上させるために、半導体ウェハ表面のO-H基をHMDSで置換する処理)を行うための機構である。HMDS処理ユニット220は、ホットプレート221と、例えば4本の載置ピン222a~222dとを備えている。載置ピン222a~222dは、このホットプレート221の外縁部の内側に略均等に配置されている。これら載置ピン222a~222dは、図示しない昇降機構によって昇降させることができ、最下降したときにはホットプレート221内に収容される。半導体ウェハをホットプレート221上に載置する為には、まず、ハンド部212a,212bが閉じた状態で、ウェハ載置部213a,213b上に半導体ウェハを載置し、搬送ユニット210の本体部211を、ホットプレート221に対向する位置まで回転させ、更に、ハンド部212a,212bをホットプレート221上まで前進させる。そして、載置ピン222a~222dを上昇させて半導体ウェハを下方から持ち上げることで、ハンド部212a,212bから離間させる。続いて、このハンド部212a,212bを開いて、後退させる。その後、ホットプレート221内に収容される位置まで、載置ピン222a~222dを下降させることにより、ホットプレート221上に半導体ウェハが載置される。 The HMDS processing unit 220 is a mechanism for performing HMDS processing (that is, processing for replacing OH groups on the surface of the semiconductor wafer with HMDS in order to improve the adhesion between the resist film and the semiconductor wafer). The HMDS processing unit 220 includes a hot plate 221 and, for example, four mounting pins 222a to 222d. The mounting pins 222a to 222d are arranged substantially evenly inside the outer edge of the hot plate 221. These mounting pins 222a to 222d can be moved up and down by a lifting mechanism (not shown), and are housed in the hot plate 221 when lowered. In order to place the semiconductor wafer on the hot plate 221, first, the semiconductor wafer is placed on the wafer placing portions 213a and 213b with the hand portions 212a and 212b closed, and the main body of the transfer unit 210 is placed. 211 is rotated to a position facing the hot plate 221, and the hand portions 212 a and 212 b are further advanced onto the hot plate 221. Then, the mounting pins 222a to 222d are raised and the semiconductor wafer is lifted from below to be separated from the hand portions 212a and 212b. Subsequently, the hand portions 212a and 212b are opened and retracted. Thereafter, the mounting pins 222 a to 222 d are lowered to the position where they are accommodated in the hot plate 221, thereby placing the semiconductor wafer on the hot plate 221.
 スピンコーターユニット230は、半導体ウェハに対するレジスト膜の形成や、EBR処理、裏面洗浄処理等を行うための機構である。スピンコーターユニット230は、半導体ウェハを保持して回転させるための、載置部231を備えている。 The spin coater unit 230 is a mechanism for performing resist film formation, EBR processing, back surface cleaning processing, and the like on a semiconductor wafer. The spin coater unit 230 includes a mounting portion 231 for holding and rotating the semiconductor wafer.
 レジストノズルユニット240は、レジスト膜形成工程において、回転する半導体ウェハに、レジスト液を塗布するための機構である。レジスト塗布工程を行っていないとき(すなわち、待機時)、レジストノズルユニット240のノズル241は、溶剤受け242の上方で待機している。そして、レジスト液を供給する際、レジストノズルユニット240は、アーム243を回転させることにより、ノズル241を、載置部231に載置された半導体ウェハ(図示せず)の中心部上方まで移動させて、この半導体ウェハ上にレジスト液を滴下する。レジストノズルユニット240の詳細な構造については、図3乃至図5を用いて後述する。 The resist nozzle unit 240 is a mechanism for applying a resist solution to a rotating semiconductor wafer in the resist film forming process. When the resist coating process is not performed (that is, during standby), the nozzle 241 of the resist nozzle unit 240 is waiting above the solvent receiver 242. When supplying the resist solution, the resist nozzle unit 240 rotates the arm 243 to move the nozzle 241 to above the center of the semiconductor wafer (not shown) placed on the placement portion 231. Then, a resist solution is dropped onto the semiconductor wafer. The detailed structure of the resist nozzle unit 240 will be described later with reference to FIGS.
 EBRノズルユニット250は、EBR工程(すなわち、半導体ウェハの周縁部に形成されたレジスト膜を除去する工程)において、半導体ウェハの周縁部にレジスト溶解液を供給するための機構である。EBR工程に際して、EBRノズルユニット250は、ノズル251を、溶剤受け252の上方から、載置部231に載置された半導体ウェハの周縁部上方まで回転移動させて、レジスト溶解液を滴下する。 The EBR nozzle unit 250 is a mechanism for supplying a resist solution to the peripheral portion of the semiconductor wafer in the EBR step (that is, a step of removing the resist film formed on the peripheral portion of the semiconductor wafer). In the EBR process, the EBR nozzle unit 250 rotates the nozzle 251 from above the solvent receiver 252 to above the peripheral edge of the semiconductor wafer placed on the placement unit 231 to drop the resist solution.
 ベーク処理ユニット260は、レジスト膜を固化するために半導体ウェハを加熱する機構である。ベーク処理ユニット260は、ホットプレート261と、例えば4本の載置ピン262a~262dとを備えている。載置ピン262a~262dは、このホットプレート261の外縁部の内側に略均等に配置されており、図示しない昇降機構によって昇降させることができる。半導体ウェハをホットプレート261上に載置する際の手順は、HMDS処理ユニット220の場合と同様であるので、説明を省略する。 The baking unit 260 is a mechanism for heating the semiconductor wafer in order to solidify the resist film. The bake processing unit 260 includes a hot plate 261 and, for example, four mounting pins 262a to 262d. The mounting pins 262a to 262d are substantially evenly arranged inside the outer edge portion of the hot plate 261, and can be moved up and down by a lifting mechanism (not shown). Since the procedure for placing the semiconductor wafer on the hot plate 261 is the same as that in the case of the HMDS processing unit 220, description thereof is omitted.
 図3は、レジストノズルユニット240の構成を示す側面図である。また、図4は溶剤受け242の拡大図、図5はノズル241の拡大図である。 FIG. 3 is a side view showing the configuration of the resist nozzle unit 240. FIG. 4 is an enlarged view of the solvent receiver 242, and FIG. 5 is an enlarged view of the nozzle 241.
 図3に示したように、この実施の形態1に係るレジストノズルユニット240は、レジスト液収容器310を備えている。このレジスト液収容器310は、シリンジ部311と、プランジャ部312と、上述のノズル241とを備えている。 As shown in FIG. 3, the resist nozzle unit 240 according to the first embodiment includes a resist solution container 310. The resist solution container 310 includes a syringe part 311, a plunger part 312, and the nozzle 241 described above.
 シリンジ部311は、筒状のシリンジ本体311aを備えている。このシリンジ本体311aには、レジスト液が収容される。シリンジ本体311aの上側端部には、このシリンジ部311と略同じ内径のプランジャ挿入口311bが設けられている。一方、シリンジ部311の下側端部には、注出口311cが突出形成されている。 The syringe unit 311 includes a cylindrical syringe body 311a. The syringe body 311a contains a resist solution. A plunger insertion port 311b having substantially the same inner diameter as the syringe part 311 is provided at the upper end of the syringe body 311a. On the other hand, a spout 311 c is formed to protrude from the lower end of the syringe part 311.
 プランジャ部312は、シリンジ部311に設けられたプランジャ挿入口311bの内径と略同一の外径を有しており、このプランジャ挿入口311bからシリンジ本体311a内に挿入される。また、プランジャ部312は、その下端部外周面とシリンジ本体311aの内周面との気密性を保つために、ガスケット等を備えていても良い。 The plunger portion 312 has an outer diameter substantially the same as the inner diameter of the plunger insertion port 311b provided in the syringe portion 311 and is inserted into the syringe body 311a from the plunger insertion port 311b. In addition, the plunger portion 312 may include a gasket or the like in order to maintain airtightness between the outer peripheral surface of the lower end portion and the inner peripheral surface of the syringe body 311a.
 ノズル241は、シリンジ部311の注出口311cに嵌め込まれる。図5に示したように、このノズル241の先端部241aは、先端に近づくほど厚みが薄くなるように形成されている。なお、この実施の形態1では、ノズル241を注出口311cに嵌め込む構成としたが、これらを一体に形成すること(すなわち、注出口311cを、そのままノズルとして使用できるように構成すること)も可能である。 The nozzle 241 is fitted into the spout 311c of the syringe part 311. As shown in FIG. 5, the tip portion 241a of the nozzle 241 is formed so that the thickness decreases as it approaches the tip. In the first embodiment, the nozzle 241 is fitted into the spout 311c. However, the nozzle 241 may be integrally formed (that is, the spout 311c may be used as a nozzle as it is). Is possible.
 小口径ウェハ(例えば直径20mm以下)を用いる半導体製造装置では、一枚の半導体ウェハに滴下するレジスト液の量も、少量である。このため、ノズル241の吐出口241bは、非常に小径に形成される。本発明者の検討によれば、例えば内径0.56mmのノズル241を用いて2滴程度のレジスト液を滴下すれば、レジスト膜を形成することができる。このような小径のノズル241を使用する場合、その先端部241aにレジスト液が付着すると、吐出口241bの開口面積が狭くなる等して、吐出量を正確に制御できなくなるおそれがある。これに対して、この実施の形態1では、ノズル241の先端部241aを、先端に近づくほど薄厚に形成して、レジスト液を付着し難くした。これにより、ノズル241の十分な強度を損なうこと無しに、レジスト液吐出量の正確な制御を維持することができる。 In a semiconductor manufacturing apparatus using a small-diameter wafer (for example, a diameter of 20 mm or less), the amount of resist solution dropped on one semiconductor wafer is also small. For this reason, the discharge port 241b of the nozzle 241 is formed with a very small diameter. According to the study of the present inventor, for example, a resist film can be formed by dropping about 2 drops of resist solution using a nozzle 241 having an inner diameter of 0.56 mm. When such a small-diameter nozzle 241 is used, if the resist solution adheres to the tip portion 241a, there is a possibility that the discharge amount cannot be accurately controlled because the opening area of the discharge port 241b becomes narrow. On the other hand, in the first embodiment, the tip portion 241a of the nozzle 241 is formed so as to become thinner as it approaches the tip, thereby making it difficult to attach the resist solution. Thereby, accurate control of the resist solution discharge amount can be maintained without impairing the sufficient strength of the nozzle 241.
 後述するように、液路241cに貯留されたレジスト液Rは、シリンジ部311からノズル241内に新たなレジスト液Rが供給されたときに、この新たなレジスト液Rによって押し出されて吐出口241bから吐出され、半導体ウェハ(図示せず)の表面に滴下される。 As will be described later, the resist solution R stored in the liquid passage 241c is pushed out by the new resist solution R when the new resist solution R is supplied from the syringe unit 311 into the nozzle 241 and is discharged to the discharge port 241b. And is dropped onto the surface of a semiconductor wafer (not shown).
 溶剤受け242は、ノズル241が待機位置(すなわち、レジスト塗布工程が行われていないときの位置)にあるときに、このノズル241から垂れ落ちるレジスト液Rを収容するための容器である。また、この溶剤受け242には、レジスト塗布工程の前に、ノズル241の先端部分に貯留されたレジスト液Rが廃棄される。これにより、ノズル241の先端部分のレジスト液Rが酸化等によって劣化していた場合でも、半導体製品の品質や歩留まり等を悪化させるおそれが小さくなる。この溶剤受け242は、ノズル241を挿入する挿入部242aと、垂れ落ちたレジスト液Rを受けるカップ部242bと、このカップ部242bが受けたレジスト液Rを廃液容器(図示せず)に収容するための廃液管242cとを備えている。 The solvent receiver 242 is a container for containing the resist solution R dripping from the nozzle 241 when the nozzle 241 is in the standby position (that is, the position when the resist coating process is not performed). The solvent receiver 242 discards the resist solution R stored at the tip portion of the nozzle 241 before the resist coating process. As a result, even when the resist solution R at the tip portion of the nozzle 241 is deteriorated due to oxidation or the like, the possibility of deteriorating the quality or yield of the semiconductor product is reduced. The solvent receiver 242 stores an insertion portion 242a for inserting the nozzle 241; a cup portion 242b for receiving the dripping resist solution R; and a resist solution R received by the cup portion 242b in a waste liquid container (not shown). A waste liquid pipe 242c.
 また、挿入部242aの側壁には、ノズル241に温度調整用のガスを吹き付けるための給気口242dが設けられている。この給気口242dには、図2及び図3に示したように、給気管242eが連結されている。更に、給気管242eには、ガス供給バルブ242fを介して、給気管242gが連結されている。給気管242gは、図示しないガス供給機構(ガスボンベ等)に連結されている。 Further, an air supply port 242d for blowing a temperature adjusting gas to the nozzle 241 is provided on the side wall of the insertion portion 242a. As shown in FIGS. 2 and 3, an air supply pipe 242e is connected to the air supply port 242d. Further, an air supply pipe 242g is connected to the air supply pipe 242e via a gas supply valve 242f. The supply pipe 242g is connected to a gas supply mechanism (gas cylinder or the like) (not shown).
 図3において、収容器支持部320は、支持部本体321と、シリンジ支持具322と、プランジャ支持具323と、プランジャ移動機構324とを備えている。 3, the container supporter 320 includes a support body 321, a syringe support 322, a plunger support 323, and a plunger moving mechanism 324.
 シリンジ支持具322は、支持部本体321に固定されると共に、レジスト液収容器310のシリンジ部311を、ネジ322aを用いて締め付けることにより、取り外し自在に固定支持している。 The syringe support 322 is fixed to and supported by the support main body 321 and is detachably fixed by tightening the syringe 311 of the resist solution container 310 using a screw 322a.
 プランジャ支持具323は、プランジャ移動機構324の移動部材324f(後述)に固定されると共に、レジスト液収容器310のプランジャ部312をネジ323aを用いて締め付けることにより、取り外し自在に固定支持している。 The plunger support 323 is fixed to a moving member 324f (described later) of the plunger moving mechanism 324 and fixedly supported so as to be removable by tightening the plunger portion 312 of the resist solution container 310 using a screw 323a. .
 プランジャ移動機構324は、プランジャ支持具323を昇降させることによって、レジスト液収容器310のプランジャ部312を昇降させる。このプランジャ移動機構324において、ステッピングモータ324aがプーリ324bを回転させると、この回転動力が、ベルト324cを介して、プーリ324dに伝達される。そして、このプーリ324dの回転により、ねじ軸324eが回転し、これにより、移動部材324fが昇降する。上述のように、この移動部材324fには、プランジャ支持具323が固定支持されている。従って、移動部材324fが下降すると、プランジャ支持具323が昇降し、これによって、プランジャ部312が昇降する。 The plunger moving mechanism 324 raises and lowers the plunger portion 312 of the resist solution container 310 by raising and lowering the plunger support 323. In the plunger moving mechanism 324, when the stepping motor 324a rotates the pulley 324b, this rotational power is transmitted to the pulley 324d via the belt 324c. The screw shaft 324e is rotated by the rotation of the pulley 324d, and thereby the moving member 324f is moved up and down. As described above, the plunger support 323 is fixedly supported by the moving member 324f. Therefore, when the moving member 324f is lowered, the plunger support 323 is raised and lowered, and thereby the plunger portion 312 is raised and lowered.
 図3に示したように、この収容器支持部320は、アーム243(上述)に固定支持されている。このアーム243は、アーム駆動部330によって、昇降及び回転する。 As shown in FIG. 3, the container support 320 is fixedly supported by the arm 243 (described above). The arm 243 is moved up and down and rotated by the arm driving unit 330.
 上述のように、この実施の形態1では、シリンジ部311及びプランジャ部312を、収容器支持部320が、取り外し自在に支持している。このため、レジスト液収容器310は、簡単な作業のみで、交換することが可能である。従って、この実施の形態1では、レジスト液収容容器310のレジスト液を使い尽くしたときや、レジスト液が劣化したとき、レジスト液の種類を切り換えたいとき等には、新しいレジスト液収容器310と交換するだけでよい。これにより、従来のレジスト塗布装置で必要であった、レジスト液をタンクに充填する作業や、配管内の劣化したレジスト液を新しいものに交換する作業、配管のフラッシュ(上述)等が不要となって、作業負担を軽減することができる。ここで、小型半導体製造装置100の場合、1個のレジスト液収容器310のコストは非常に安価であるため、このレジスト液収容器310を使い捨てにしても、コストの増大は僅かである。また、レジスト液の種類を切り換えたい場合には、使い切っていないレジスト液収容容器310を、適切な環境下で保存して再使用することも可能である。 As described above, in the first embodiment, the container support part 320 detachably supports the syringe part 311 and the plunger part 312. For this reason, the resist solution container 310 can be replaced with a simple operation. Therefore, in the first embodiment, when the resist solution in the resist solution container 310 is used up, when the resist solution is deteriorated, or when the type of the resist solution is to be switched, a new resist solution container 310 and Just replace it. This eliminates the need to fill the tank with the resist solution, replace the deteriorated resist solution in the pipe with a new one, flush the pipe (described above), etc., which is necessary in the conventional resist coating apparatus. The work burden can be reduced. Here, in the case of the small semiconductor manufacturing apparatus 100, the cost of one resist solution container 310 is very low. Therefore, even if the resist solution container 310 is disposable, the cost increase is slight. When it is desired to switch the type of the resist solution, the resist solution container 310 that has not been used up can be stored and reused in an appropriate environment.
 なお、この実施の形態1では、ネジ322a,323aを用いてシリンジ部311及びプランジャ部312を取り外し自在に支持しているが、他の方法(例えば、シリンジ支持具322を及びプランジャ支持具323にホルダを設けて、シリンジ部311及びプランジャ部312を嵌め込む方式)で支持することとしてもよい。 In the first embodiment, the syringe unit 311 and the plunger unit 312 are detachably supported using the screws 322a and 323a. However, other methods (for example, the syringe support 322 and the plunger support 323 may be used). It is good also as providing a holder and supporting by the method of fitting the syringe part 311 and the plunger part 312).
 続いて、この実施の形態1に係るレジストノズルユニット240の動作について、詳細に説明する。 Subsequently, the operation of the resist nozzle unit 240 according to the first embodiment will be described in detail.
 待機時には、レジストノズルユニット240のノズル241は、上述のように、溶剤受け242の上方で待機している。このノズル241の液路241cには、図4に示したように、少なくともレジスト塗布工程1回分のレジスト液Rが貯留されている。そして、このノズル241には、給気口242dから、ガスが吹き付けられる。このガスとしては、温度が調整されたものを使用する。これにより、液路241c内のレジスト液Rが、所定の温度に調整される。ガスの吹き付けは、ノズル241が溶剤受け242上に退避している間、継続的に行われる。ガスの種類は限定されないが、例えば、空気や窒素を使用することができる。また、このガスとしては、レジスト塗布工程の歩留まりを向上させるために、塵埃が十分に除去された、クリーンなガスを使用することが望ましい。 During standby, the nozzle 241 of the resist nozzle unit 240 is waiting above the solvent receiver 242 as described above. In the liquid path 241c of the nozzle 241, as shown in FIG. 4, the resist liquid R for at least one resist coating process is stored. The nozzle 241 is blown with gas from an air supply port 242d. As this gas, a gas whose temperature is adjusted is used. Thereby, the resist solution R in the liquid path 241c is adjusted to a predetermined temperature. The gas blowing is continuously performed while the nozzle 241 is retracted onto the solvent receiver 242. Although the kind of gas is not limited, For example, air and nitrogen can be used. Further, as this gas, it is desirable to use a clean gas from which dust is sufficiently removed in order to improve the yield of the resist coating process.
 レジスト塗布工程を行うときには、まず、スピンコーターユニット230の載置部231(図2参照)に、半導体ウェハが載置される。 When performing the resist coating process, first, a semiconductor wafer is mounted on the mounting portion 231 (see FIG. 2) of the spin coater unit 230.
 そして、プランジャ移動機構324が、レジスト液収容器310のプランジャ部312を下降させることにより、ノズル241の先端部分のレジスト液Rが、溶剤受け242に廃棄される。この廃棄により、上述のように、この先端部分のレジスト液Rが酸化等によって劣化していた場合の、半導体製品の品質悪化等が防止される。廃棄されるレジスト液Rの量は、例えば0.02cc程度或いはそれ以下である。 Then, when the plunger moving mechanism 324 lowers the plunger portion 312 of the resist solution container 310, the resist solution R at the tip of the nozzle 241 is discarded in the solvent receiver 242. This discarding prevents the deterioration of the quality of the semiconductor product and the like when the resist solution R at the tip portion is deteriorated due to oxidation or the like as described above. The amount of resist solution R discarded is, for example, about 0.02 cc or less.
 続いて、プランジャ移動機構324は、移動部材324fを用いて、このプランジャ部312を僅かに上昇させる。ノズル241の移動前にプランジャ部312を僅かに上昇させることにより、このノズル241の先端部分に雰囲気ガスを注入して、レジスト液収容器310を移動させる際に、ノズル241からレジスト液Rが垂れ落ちることを防止できる。 Subsequently, the plunger moving mechanism 324 slightly raises the plunger portion 312 using the moving member 324f. By slightly raising the plunger portion 312 before the movement of the nozzle 241, when the atmospheric gas is injected into the tip portion of the nozzle 241 and the resist solution container 310 is moved, the resist solution R droops from the nozzle 241. Can prevent falling.
 その後、アーム駆動部330が、アーム243を上昇させることによって、ノズル241を挿入部242aの上方まで移動させ、更に、アーム243を回転させることによって、ノズル241を半導体ウェハの中央部上方まで移動させる。 Thereafter, the arm driving unit 330 raises the arm 243 to move the nozzle 241 to above the insertion portion 242a, and further rotates the arm 243 to move the nozzle 241 to above the central portion of the semiconductor wafer. .
 次に、ステッピングモータ324aを駆動してプーリ324bを回転させると、上述のようにして移動部材324fが下降して、プランジャ部312が下降する(すなわち、プランジャ部312が、ノズル241に近づく方向に移動する)。これにより、シリンジ部311内のレジスト液が、ノズル241から半導体ウェハに滴下される。このとき、プランジャ部312の下降量は、レジスト塗布工程1回分のレジスト液が、注出口311cから注出されるような値に、設定されている。 Next, when the stepping motor 324a is driven to rotate the pulley 324b, the moving member 324f is lowered as described above, and the plunger portion 312 is lowered (that is, the plunger portion 312 approaches the nozzle 241). Moving). Thereby, the resist solution in the syringe part 311 is dropped from the nozzle 241 onto the semiconductor wafer. At this time, the downward movement amount of the plunger portion 312 is set to such a value that the resist solution for one resist application step is poured out from the spout 311c.
 周知のように、ステッピングモータ324aは、入力した電圧パルスの個数によって、回転量が制御される。このため、この実施の形態1では、プランジャ部312の下降量を正確に制御でき、従って、レジスト液の注出量を正確に制御できる。例えば、ノズル241の先端部の内径を小さくした場合(針状のノズルを使用する場合等)には、ステッピングモータ324aに例えば300個の電圧パルスを入力することで、1滴(例えば0.001cc)のレジスト液Rを滴下させることができる。この場合、液滴の分解能は、0.001cc/300パルス、すなわち0.00003cc/パルスである。また、例えばプランジャ部312を1mm下降させたときのレジスト液滴下量が0.2ccの場合、このプランジャ部312の位置の分解能は、約0.00017mm/パルス、すなわち170nm/パルスである。 As is well known, the rotation amount of the stepping motor 324a is controlled by the number of input voltage pulses. For this reason, in this Embodiment 1, the descending amount of the plunger part 312 can be controlled accurately, and therefore the amount of resist solution dispensed can be accurately controlled. For example, when the inner diameter of the tip of the nozzle 241 is reduced (for example, when a needle-like nozzle is used), for example, by inputting 300 voltage pulses to the stepping motor 324a, one drop (for example, 0.001cc) ) Resist solution R can be dropped. In this case, the droplet resolution is 0.001 cc / 300 pulses, ie 0.00003 cc / pulse. For example, when the resist droplet drop amount when the plunger portion 312 is lowered by 1 mm is 0.2 cc, the resolution of the position of the plunger portion 312 is about 0.00017 mm / pulse, that is, 170 nm / pulse.
 このようにして、レジスト塗布工程1回分のレジスト液Rが、レジスト液収容器310の注出口311cからノズル241に注出されると、このノズル241の液路241cに貯留されていたレジスト液Rが押し出されて、ノズル241の吐出口241bから吐出される。そして、吐出されたレジスト液Rが、半導体ウェハ(図示せず)上に滴下される。このとき、吐出口241bから吐出されるレジスト液Rの量も、レジスト塗布工程1回分に相当する量である。 In this way, when the resist solution R for one resist coating step is poured out from the spout 311c of the resist solution container 310 to the nozzle 241, the resist solution R stored in the liquid path 241c of the nozzle 241 is removed. Extruded and discharged from the discharge port 241 b of the nozzle 241. Then, the discharged resist solution R is dropped onto a semiconductor wafer (not shown). At this time, the amount of the resist solution R discharged from the discharge port 241b is also an amount corresponding to one resist coating process.
 上述のように、液路241cには、少なくともレジスト塗布工程1回分のレジスト液Rが貯留されており、待機時にガスを吹き付けることによって温度調整されている。従って、半導体ウェハの表面に滴下されるレジスト液Rは、所定温度に調整されたレジスト液Rである。一方、注出口311cからノズル241に注出されたレジスト液Rは、そのまま、ノズル241の液路241c内に、新たに貯留される。 As described above, at least one resist application step of the resist solution R is stored in the liquid path 241c, and the temperature is adjusted by blowing gas during standby. Therefore, the resist solution R dropped on the surface of the semiconductor wafer is the resist solution R adjusted to a predetermined temperature. On the other hand, the resist solution R poured out from the spout 311c to the nozzle 241 is newly stored in the liquid passage 241c of the nozzle 241 as it is.
 レジスト塗布工程が終了すると、アーム駆動部330がアーム243を回転させることによって、ノズル241が待機位置、すなわち溶剤受け242(図2参照)の上方まで戻る。 When the resist coating process is completed, the arm driving unit 330 rotates the arm 243, so that the nozzle 241 returns to the standby position, that is, above the solvent receiver 242 (see FIG. 2).
 次に、この実施の形態1の効果について説明する。 Next, the effect of the first embodiment will be described.
 レジスト液Rをノズルから滴下する場合に、1滴の液量を正確に制御しようとすると、この1滴の液量の100分の1程度の分解能が望まれる。例えば、1滴の液量を0.03ccとする場合、レジスト液量を、0.0003cc程度の分解能で制御できることが望まれる。しかしながら、ポンプやバルブシステムを用いたレジスト液供給機構(上記特許文献1参照)では、このような高い分解能を得ることはできない。また、ポンプ用モータとしても、レジスト液Rの供給と停止との繰り返しを高精度に制御できるものは、知られていない。更には、ポンプは、通常、金属で形成されるので、レジスト液を汚染しやすいという欠点が生じる。加えて、モータは大きな摩擦を伴うので、微粒子が発生してレジスト液を汚染しやすいという欠点も生じる。 In the case where the resist solution R is dropped from the nozzle, if it is attempted to accurately control the amount of one drop, a resolution of about 1/100 of the amount of one drop is desired. For example, when the amount of one drop is 0.03 cc, it is desirable that the amount of resist solution can be controlled with a resolution of about 0.0003 cc. However, such a high resolution cannot be obtained with a resist solution supply mechanism (see Patent Document 1) using a pump or a valve system. Also, no pump motor is known that can control the supply and stop of the resist solution R with high accuracy. Furthermore, since the pump is usually made of metal, there is a drawback that the resist solution is easily contaminated. In addition, since the motor is accompanied by a large friction, there is a disadvantage that fine particles are generated and the resist solution is easily contaminated.
 一方、シリンジ部311とプランジャ部312とを有するレジスト液収容器310を使用する場合であって、人間の手でプランジャ部312をシリンジ部311に押し込むことでレジスト液を滴下させる場合、1滴の液量の分解能は、0.1cc程度又はそれ以下である。この分解能は、人間が手で制御する際の精度や、シリンジ部311に印刷された目盛の単位等によって決まる。また、手動で制御する場合は、分解能に個人差があり、更には、同一人物であっても常に同一の分解能を保障することはできない。このため、従来のシリンジは、プランジャを用いて使用1回分の薬液のみを吸入し、その後、このプランジャを押し込むことで全ての薬液を吐出するといった使用方法には適しているものの、多数回分の薬液を収容しておいて所定量ずつ吐出するといった使用方法には適していない。 On the other hand, when using the resist solution container 310 having the syringe portion 311 and the plunger portion 312, when dropping the resist solution by pushing the plunger portion 312 into the syringe portion 311 with a human hand, one drop The resolution of the liquid amount is about 0.1 cc or less. This resolution is determined by the accuracy of human control by hand, the scale unit printed on the syringe unit 311, and the like. In the case of manual control, there are individual differences in resolution, and even the same person cannot always guarantee the same resolution. For this reason, although the conventional syringe is suitable for the usage method of inhaling only the chemical | medical solution for one use using a plunger and then discharging all the chemical | medical solutions by pushing this plunger, many chemical | medical solutions It is not suitable for a method of use in which a container is contained and discharged in predetermined amounts.
 これに対して、この実施の形態1によれば、シリンジ311から吐出されるレジスト液の量を、プランジャ移動機構324がプランジャ312を移動させる距離で制御することができるので、レジスト液の吐出量が少量の場合であっても、この吐出量の正確な制御が可能である。加えて、このプランジャ312の移動距離を、ステッピングモータ324aがねじ軸324eを回転させる量で制御しているので、レジスト液の吐出量を非常に正確に制御することが非常に容易となる。更に、このような機構によれば、レジスト液供給機構の小型化や低価格化が容易である。 On the other hand, according to the first embodiment, the amount of the resist solution discharged from the syringe 311 can be controlled by the distance by which the plunger moving mechanism 324 moves the plunger 312. Even when the amount is small, the discharge amount can be accurately controlled. In addition, since the moving distance of the plunger 312 is controlled by the amount by which the stepping motor 324a rotates the screw shaft 324e, it becomes very easy to control the discharge amount of the resist solution very accurately. Furthermore, according to such a mechanism, it is easy to reduce the size and cost of the resist solution supply mechanism.
 また、この実施の形態1によれば、溶剤受け242を設けて、処理基板の表面にレジスト液Rを滴下する前に、ノズル241の先端部241aに貯留されたレジスト液Rの一部を溶剤受けに廃棄することとしたので、酸化等で劣化した薬液の使用を防止できる。 Further, according to the first embodiment, the solvent receiver 242 is provided, and before the resist solution R is dropped onto the surface of the processing substrate, a part of the resist solution R stored in the tip portion 241a of the nozzle 241 is removed as a solvent. Since the waste is discarded, it is possible to prevent the use of a chemical solution that has deteriorated due to oxidation or the like.
 加えて、この実施の形態1によれば、ノズル241の先端部241aを、吐出口241bに近づくほど薄厚になるように形成したので、この吐出口241bにレジスト液が付着し難くなり、従って、レジスト液の吐出量を、安定して正確に制御することができる。 In addition, according to the first embodiment, the tip portion 241a of the nozzle 241 is formed so as to become thinner as it approaches the discharge port 241b. Therefore, the resist solution is difficult to adhere to the discharge port 241b. The discharge amount of the resist solution can be stably and accurately controlled.
 更に、この実施の形態1では、ノズル241の液路241cに、レジスト塗布工程1回分のレジスト液Rを貯留して、温度調整を行う。このため、この実施の形態1によれば、レジスト液収容器310内のレジスト液Rの温度調整を行う必要がなく、従って、簡単な構造で、安価に、レジスト液の温度調整を行うことができる。 Furthermore, in this Embodiment 1, the resist liquid R for one resist application process is stored in the liquid path 241c of the nozzle 241, and temperature adjustment is performed. Therefore, according to the first embodiment, it is not necessary to adjust the temperature of the resist solution R in the resist solution container 310. Therefore, the temperature of the resist solution can be adjusted at a low cost with a simple structure. it can.
 また、この実施の形態1によれば、所定温度のガスをノズル241に吹き付けることによって、この液路241cに貯留された薬液の温度調整を行うので、温度調整用の液体を使用する場合等と比較して、温度調整のための機構を非常に簡単且つ安価に構成することができる。 Further, according to the first embodiment, the temperature of the chemical solution stored in the liquid path 241c is adjusted by blowing a gas at a predetermined temperature onto the nozzle 241, so that the temperature adjusting liquid is used, etc. In comparison, the mechanism for temperature adjustment can be configured very simply and inexpensively.
 この実施の形態1によれば、径が20mm以下の半導体ウェハを使用する小型の半導体製造装置100を、安価に提供することができる。 According to the first embodiment, a small semiconductor manufacturing apparatus 100 that uses a semiconductor wafer having a diameter of 20 mm or less can be provided at low cost.
 なお、この実施の形態1では、本発明をレジスト塗布装置に適用した場合を例に採って説明したが、例えばレジスト現像装置等、他の半導体製造装置にも適用することができ、更には、半導体製造装置以外の製造装置にも適用することができる。 In the first embodiment, the case where the present invention is applied to a resist coating apparatus has been described as an example. However, the present invention can also be applied to other semiconductor manufacturing apparatuses such as a resist developing apparatus. The present invention can also be applied to manufacturing apparatuses other than semiconductor manufacturing apparatuses.
 また、半導体ウェハを用いる製造装置だけでなく、他の種類の基板(例えばサファイア基板等の絶縁性基板や、アルミニウム基板等の導電性基板)や、非円盤形状(例えば矩形)の処理基板からデバイスを製造する製造装置にも適用することができる。 In addition to manufacturing apparatuses that use semiconductor wafers, devices from other types of substrates (for example, insulating substrates such as sapphire substrates and conductive substrates such as aluminum substrates) and non-disc-shaped (for example, rectangular) processing substrates It is applicable also to the manufacturing apparatus which manufactures.
 加えて、この実施の形態1では、本発明を小型製造装置に適用した場合を例に採って説明したが、例えば8インチや12インチ等の大径半導体ウェハを使用する半導体製造装置等、大型の製造装置にも使用できる。 In addition, in the first embodiment, the case where the present invention is applied to a small manufacturing apparatus has been described as an example. However, for example, a large manufacturing apparatus such as a semiconductor manufacturing apparatus using a large-diameter semiconductor wafer such as 8 inches or 12 inches. It can also be used in other manufacturing equipment.
 100 小型半導体製造装置
 110 処理室(レジスト塗布装置)
 120 装置前室
 121 容器載置台
 122 押さえレバー
 124 操作パネル
 210 搬送ユニット
 220 HMDS処理ユニット
 230 スピンコーターユニット
 240 レジストノズルユニット
 241 ノズル
 241a 先端部
 241b 吐出口
 241c 液路
 242 溶剤受け
 243 アーム
 250 EBRノズルユニット
 260 ベーク処理ユニット
 310 レジスト液収容器
 311 シリンジ部
 311a シリンジ本体
 311b プランジャ挿入口
 311c 注出口
 312 プランジャ部
 320 収容器支持部
 322 シリンジ支持具
 323 プランジャ支持具
 324 プランジャ移動機構
 324a ステッピングモータ
 324b,324d プーリ
 324c ベルト
 324e ねじ軸
 324f 移動部材
100 Small semiconductor manufacturing equipment 110 Processing chamber (resist coating equipment)
DESCRIPTION OF SYMBOLS 120 Front chamber 121 Container mounting table 122 Holding lever 124 Operation panel 210 Transfer unit 220 HMDS processing unit 230 Spin coater unit 240 Resist nozzle unit 241 Nozzle 241a Tip 241b Discharge port 241c Liquid path 242 Solvent receiver 243 Arm 250 EBR nozzle unit 260 Bake processing unit 310 Resist liquid container 311 Syringe part 311a Syringe body 311b Plunger insertion port 311c Outlet 312 Plunger part 320 Container support part 322 Syringe support 323 Plunger support 324 Plunger moving mechanism 324a Stepping motor 324b, 324d Pulley 324c Belt 324e Screw shaft 324f Moving member

Claims (9)

  1.  処理基板の表面に所定量の薬液を滴下する製造工程で使用される薬液供給機構であって、
     前記薬液を収容する筒状のシリンジ本体と、該シリンジ本体の一方の端部に設けられたプランジャ挿入口と、該シリンジ本体の他方の端部に設けられたノズルとを有するシリンジと、
     前記プランジャ挿入口から前記シリンジ本体内に嵌め込まれるプランジャと、
     前記プランジャを前記ノズルに近づく方向に所定距離だけ移動させることで、前記所定量の薬液を前記ノズルから吐出させるプランジャ移動機構と、
     を備えることを特徴とする薬液供給機構。
    A chemical supply mechanism used in the manufacturing process of dripping a predetermined amount of chemical on the surface of a processing substrate,
    A syringe having a cylindrical syringe body containing the chemical solution, a plunger insertion port provided at one end of the syringe body, and a nozzle provided at the other end of the syringe body;
    A plunger fitted into the syringe body from the plunger insertion port;
    A plunger moving mechanism for discharging the predetermined amount of the chemical from the nozzle by moving the plunger by a predetermined distance in a direction approaching the nozzle;
    A chemical solution supply mechanism comprising:
  2.  前記プランジャ移動機構は、
     前記プランジャを支持する移動部材と、
     回転量に応じて前記移動部材を移動させるねじ軸と、
     動力源を用いて、前記ねじ軸を回転させる回転動力伝達部と、
     を備えることを特徴とする請求項1に記載の薬液供給機構。
    The plunger moving mechanism is
    A moving member that supports the plunger;
    A screw shaft that moves the moving member according to the amount of rotation;
    A rotational power transmission unit for rotating the screw shaft using a power source;
    The chemical solution supply mechanism according to claim 1, comprising:
  3.  前記処理基板の表面に前記薬液を滴下する前に、前記ノズルから吐出されて廃棄された薬液を収容する、溶剤受けを更に備えることを特徴とする請求項1又は2に記載の薬液供給機構。 3. The chemical solution supply mechanism according to claim 1, further comprising a solvent receiver that stores the chemical solution discharged from the nozzle and discarded before the chemical solution is dropped onto the surface of the processing substrate.
  4.  前記ノズルの先端部は、吐出口に近づくほど厚みが薄くなるように形成されたことを特徴とする請求項1乃至3の何れかに記載の薬液供給機構。 The chemical solution supply mechanism according to any one of claims 1 to 3, wherein the tip portion of the nozzle is formed so as to be thinner as it approaches the discharge port.
  5.  前記ノズルは、少なくとも工程1回分の前記薬液を一時的に貯留するように構成され、且つ、
     前記ノズルの温度を調整することにより、該ノズル内に貯留された前記薬液の温度を調整する、
     ことを特徴とする請求項1乃至4の何れかに記載の薬液供給機構。
    The nozzle is configured to temporarily store the chemical solution for at least one step, and
    Adjusting the temperature of the chemical liquid stored in the nozzle by adjusting the temperature of the nozzle;
    The chemical solution supply mechanism according to any one of claims 1 to 4, wherein:
  6.  所定温度のガスを前記ノズルに吹き付けることによって、該ノズルに貯留された前記薬液の温度調整を行うことを特徴とする請求項5に記載の薬液供給機構。 6. The chemical solution supply mechanism according to claim 5, wherein the temperature of the chemical solution stored in the nozzle is adjusted by blowing a gas having a predetermined temperature onto the nozzle.
  7.  前記薬液は、半導体製造工程で使用されるレジスト液又はレジスト現像液であることを特徴とする請求項1乃至6の何れかに記載の薬液温度調整機構。 The chemical temperature adjusting mechanism according to any one of claims 1 to 6, wherein the chemical solution is a resist solution or a resist developer used in a semiconductor manufacturing process.
  8.  前記処理基板の径が20mm以下であることを特徴とする請求項1乃至7の何れかに記載の薬液供給機構。 The chemical supply mechanism according to any one of claims 1 to 7, wherein a diameter of the processing substrate is 20 mm or less.
  9.  薬液供給機構を用いて、処理基板の表面に所定量の薬液を滴下する製造工程を行う小型製造装置であって、
     該薬液供給機構は、
     前記薬液を収容する筒状のシリンジ本体と、該シリンジ本体の一方の端部に設けられたプランジャ挿入口と、該シリンジ本体の他方の端部に設けられたノズルとを有するシリンジと、
     前記プランジャ挿入口から前記シリンジ本体内に嵌め込まれるプランジャと、
     前記プランジャを前記ノズルに近づく方向に所定距離だけ移動させることで、前記所定量の薬液を前記ノズルから吐出させるプランジャ移動機構と、
     を備えることを特徴とする小型製造装置。
    A small-sized manufacturing apparatus that performs a manufacturing process in which a predetermined amount of chemical liquid is dropped on the surface of a processing substrate using a chemical liquid supply mechanism,
    The chemical solution supply mechanism
    A syringe having a cylindrical syringe body containing the chemical solution, a plunger insertion port provided at one end of the syringe body, and a nozzle provided at the other end of the syringe body;
    A plunger fitted into the syringe body from the plunger insertion port;
    A plunger moving mechanism for discharging the predetermined amount of the chemical from the nozzle by moving the plunger by a predetermined distance in a direction approaching the nozzle;
    A small-sized manufacturing apparatus comprising:
PCT/JP2014/081051 2013-11-29 2014-11-25 Chemical liquid supply mechanism and small-sized manufacturing device WO2015080081A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-246868 2013-11-29
JP2013246868A JP2017027965A (en) 2013-11-29 2013-11-29 Chemical solution supply mechanism and small manufacturing apparatus
JP2013-250000 2013-12-03
JP2013250000A JP2017027966A (en) 2013-12-03 2013-12-03 Chemical temperature adjustment mechanism and small manufacturing apparatus

Publications (1)

Publication Number Publication Date
WO2015080081A1 true WO2015080081A1 (en) 2015-06-04

Family

ID=53199021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081051 WO2015080081A1 (en) 2013-11-29 2014-11-25 Chemical liquid supply mechanism and small-sized manufacturing device

Country Status (1)

Country Link
WO (1) WO2015080081A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09270373A (en) * 1996-01-29 1997-10-14 Dainippon Screen Mfg Co Ltd Processing solution feeding method and device
JPH10314640A (en) * 1997-05-19 1998-12-02 Matsushita Electric Ind Co Ltd Coating method for adhesive and apparatus therefor
JP2005296771A (en) * 2004-04-09 2005-10-27 Tokyo Electron Ltd Coating apparatus and coating method
JP2006064545A (en) * 2004-08-27 2006-03-09 Mitsubishi Chemicals Corp Fluid discharge mechanism, fluid discharge method and fluid-dispensing device
JP2007258462A (en) * 2006-03-23 2007-10-04 Dainippon Screen Mfg Co Ltd Apparatus and method for processing substrate
JP2009136799A (en) * 2007-12-07 2009-06-25 Seiko Epson Corp Apparatus for controlling temperature of liquid droplet discharge head and method for controlling temperature of apparatus for discharging liquid droplet
JP2009212404A (en) * 2008-03-06 2009-09-17 Tokyo Electron Ltd Method of processing substrate, program, computer storage medium, and substrate processing system
JP2012033886A (en) * 2010-07-02 2012-02-16 Tokyo Electron Ltd Substrate processing system
JP2012235132A (en) * 2012-06-19 2012-11-29 Tokyo Electron Ltd Nozzle cleaning in liquid treatment, method for preventing drying of treatment liquid and apparatus of the same
WO2013008799A1 (en) * 2011-07-11 2013-01-17 武蔵エンジニアリング株式会社 Droplet discharge device and method
JP2013539202A (en) * 2010-06-28 2013-10-17 インテグリス・インコーポレーテッド Customizable derivation system with smart controller

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09270373A (en) * 1996-01-29 1997-10-14 Dainippon Screen Mfg Co Ltd Processing solution feeding method and device
JPH10314640A (en) * 1997-05-19 1998-12-02 Matsushita Electric Ind Co Ltd Coating method for adhesive and apparatus therefor
JP2005296771A (en) * 2004-04-09 2005-10-27 Tokyo Electron Ltd Coating apparatus and coating method
JP2006064545A (en) * 2004-08-27 2006-03-09 Mitsubishi Chemicals Corp Fluid discharge mechanism, fluid discharge method and fluid-dispensing device
JP2007258462A (en) * 2006-03-23 2007-10-04 Dainippon Screen Mfg Co Ltd Apparatus and method for processing substrate
JP2009136799A (en) * 2007-12-07 2009-06-25 Seiko Epson Corp Apparatus for controlling temperature of liquid droplet discharge head and method for controlling temperature of apparatus for discharging liquid droplet
JP2009212404A (en) * 2008-03-06 2009-09-17 Tokyo Electron Ltd Method of processing substrate, program, computer storage medium, and substrate processing system
JP2013539202A (en) * 2010-06-28 2013-10-17 インテグリス・インコーポレーテッド Customizable derivation system with smart controller
JP2012033886A (en) * 2010-07-02 2012-02-16 Tokyo Electron Ltd Substrate processing system
WO2013008799A1 (en) * 2011-07-11 2013-01-17 武蔵エンジニアリング株式会社 Droplet discharge device and method
JP2012235132A (en) * 2012-06-19 2012-11-29 Tokyo Electron Ltd Nozzle cleaning in liquid treatment, method for preventing drying of treatment liquid and apparatus of the same

Similar Documents

Publication Publication Date Title
TW300177B (en)
US5968268A (en) Coating apparatus and coating method
US6281145B1 (en) Apparatus and method for applying process solution
US11203094B2 (en) Substrate cleaning device, substrate processing apparatus, substrate cleaning method and substrate processing method
TWI523683B (en) Mixing device and stirring method
US10589305B2 (en) Substrate treating apparatus, and method of controlling the substrate treating apparatus
KR20120100769A (en) Substrate processing apparatus and substrate processing method
US20210233784A1 (en) Film processing method
US10854480B2 (en) Film processing unit, substrate processing apparatus and substrate processing method
US10331034B2 (en) Substrate processing apparatus and substrate processing method
CN110739245B (en) Apparatus and method for processing substrate
JP4256584B2 (en) Coating film forming apparatus and coating film forming method
WO2015080081A1 (en) Chemical liquid supply mechanism and small-sized manufacturing device
JP2017027966A (en) Chemical temperature adjustment mechanism and small manufacturing apparatus
JP2017027965A (en) Chemical solution supply mechanism and small manufacturing apparatus
TWI648767B (en) Substrate processing method and substrate processing apparatus
JPH08222498A (en) Chemical delivery device of resist coater
JP2006190828A (en) Substrate treatment apparatus
US20160293401A1 (en) Wet processing apparatus
TW201342511A (en) Evaluation sample manufacturing device, evaluation sample manufacturing method, and substrate treatment device
JP2003181364A (en) Coating device
JP2004172201A (en) Substrate processor and substrate processing method
JP4036331B2 (en) Treatment liquid supply nozzle, treatment liquid supply apparatus, and nozzle cleaning method
WO2005010959A1 (en) Development processing device and development processing method
WO2004036633A1 (en) Liquid processing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14865026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP