WO2015080062A1 - 蛍光体、発光装置、画像表示装置、顔料および紫外線吸収剤 - Google Patents
蛍光体、発光装置、画像表示装置、顔料および紫外線吸収剤 Download PDFInfo
- Publication number
- WO2015080062A1 WO2015080062A1 PCT/JP2014/080974 JP2014080974W WO2015080062A1 WO 2015080062 A1 WO2015080062 A1 WO 2015080062A1 JP 2014080974 W JP2014080974 W JP 2014080974W WO 2015080062 A1 WO2015080062 A1 WO 2015080062A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phosphor
- light
- emitting device
- jem
- crystal
- Prior art date
Links
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 title claims abstract description 201
- 239000000049 pigment Substances 0.000 title claims description 12
- 239000006097 ultraviolet radiation absorber Substances 0.000 title claims description 6
- 239000013078 crystal Substances 0.000 claims abstract description 117
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 47
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 43
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 27
- 230000005284 excitation Effects 0.000 claims abstract description 27
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 21
- 229910052747 lanthanoid Inorganic materials 0.000 claims abstract description 6
- 150000002602 lanthanoids Chemical class 0.000 claims abstract description 6
- 229910052706 scandium Inorganic materials 0.000 claims abstract description 5
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 5
- 229910052693 Europium Inorganic materials 0.000 claims description 36
- 239000000203 mixture Substances 0.000 claims description 33
- 229910052746 lanthanum Inorganic materials 0.000 claims description 28
- 229910000789 Aluminium-silicon alloy Inorganic materials 0.000 claims description 24
- 229910052760 oxygen Inorganic materials 0.000 claims description 20
- 229910052710 silicon Inorganic materials 0.000 claims description 20
- 239000004973 liquid crystal related substance Substances 0.000 claims description 8
- 229910052788 barium Inorganic materials 0.000 claims description 7
- 229910052684 Cerium Inorganic materials 0.000 claims description 6
- 102100032047 Alsin Human genes 0.000 claims description 4
- 101710187109 Alsin Proteins 0.000 claims description 4
- 239000004065 semiconductor Substances 0.000 claims description 4
- 229910018250 LaSi Inorganic materials 0.000 claims description 3
- 229910004283 SiO 4 Inorganic materials 0.000 claims description 3
- 229910004122 SrSi Inorganic materials 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 238000000295 emission spectrum Methods 0.000 abstract description 16
- 239000011575 calcium Substances 0.000 description 52
- 239000002245 particle Substances 0.000 description 15
- 239000000843 powder Substances 0.000 description 15
- 229920005989 resin Polymers 0.000 description 15
- 239000011347 resin Substances 0.000 description 15
- 239000002131 composite material Substances 0.000 description 14
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 13
- 239000000126 substance Substances 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 12
- 230000007423 decrease Effects 0.000 description 10
- 238000002441 X-ray diffraction Methods 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- 238000000634 powder X-ray diffraction Methods 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 239000003086 colorant Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 150000002484 inorganic compounds Chemical class 0.000 description 7
- 229910010272 inorganic material Inorganic materials 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 7
- 210000004027 cell Anatomy 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 4
- 238000002284 excitation--emission spectrum Methods 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- QCLQZCOGUCNIOC-UHFFFAOYSA-N azanylidynelanthanum Chemical compound [La]#N QCLQZCOGUCNIOC-UHFFFAOYSA-N 0.000 description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 3
- 238000000695 excitation spectrum Methods 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052771 Terbium Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 229910001940 europium oxide Inorganic materials 0.000 description 2
- AEBZCFFCDTZXHP-UHFFFAOYSA-N europium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Eu+3].[Eu+3] AEBZCFFCDTZXHP-UHFFFAOYSA-N 0.000 description 2
- 210000000540 fraction c Anatomy 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 238000003991 Rietveld refinement Methods 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000002447 crystallographic data Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- -1 glazes Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000001579 optical reflectometry Methods 0.000 description 1
- UFQXGXDIJMBKTC-UHFFFAOYSA-N oxostrontium Chemical compound [Sr]=O UFQXGXDIJMBKTC-UHFFFAOYSA-N 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000012856 weighed raw material Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J11/00—Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
- H01J11/20—Constructional details
- H01J11/34—Vessels, containers or parts thereof, e.g. substrates
- H01J11/42—Fluorescent layers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D17/00—Pigment pastes, e.g. for mixing in paints
- C09D17/004—Pigment pastes, e.g. for mixing in paints containing an inorganic pigment
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/22—Luminous paints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/0883—Arsenides; Nitrides; Phosphides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7728—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
- C09K11/77348—Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7783—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
- C09K11/77928—Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J29/00—Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
- H01J29/02—Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
- H01J29/10—Screens on or from which an image or pattern is formed, picked up, converted or stored
- H01J29/18—Luminescent screens
- H01J29/20—Luminescent screens characterised by the luminescent material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/501—Wavelength conversion elements characterised by the materials, e.g. binder
- H01L33/502—Wavelength conversion materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/52—Encapsulations
- H01L33/56—Materials, e.g. epoxy or silicone resin
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/58—Optical field-shaping elements
- H01L33/60—Reflective elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/62—Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133614—Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2329/00—Electron emission display panels, e.g. field emission display panels
- H01J2329/18—Luminescent screens
- H01J2329/20—Luminescent screens characterised by the luminescent material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/85909—Post-treatment of the connector or wire bonding area
- H01L2224/8592—Applying permanent coating, e.g. protective coating
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/30—Devices specially adapted for multicolour light emission
- H10K59/38—Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
Definitions
- the present invention relates to a phosphor mainly composed of a JEM crystal activated with Eu, and a light emitting device, an image display device, a pigment, and an ultraviolet absorber using the phosphor.
- Phosphors are fluorescent display tubes (VFD (Vacuum-Fluorescent Display)), field emission displays (FED (Field Emission Display)), SED (Surface-Condition Electron Display-PPD), Plasma Display (PDP). ), Cathode ray tube (CRT (Cathode-Ray Tube)), liquid crystal display backlight (Liquid-Crystal Display Backlight), white light emitting diode (LED (Light-Emitting Diode)) and the like.
- VFD Voluum-Fluorescent Display
- FED Field Emission Display
- SED Surface-Condition Electron Display-PPD
- Plasma Display PDP
- Cathode ray tube CRT (Cathode-Ray Tube)
- liquid crystal display backlight Liquid-Crystal Display Backlight
- LED Light-Emitting Diode
- an oxynitride phosphor containing, as a main component, a JEM phase represented by (1 or 2 or more elements selected from Tm, Yb, and Lu) is known (for example, see Patent Document 1).
- an oxynitride phosphor containing La and Ce as M is a phosphor emitting blue light
- an oxynitride phosphor containing La and Eu as M, or La and Tb as M is disclosed that the included oxynitride phosphor is a phosphor that emits green light.
- Patent Document 2 an oxynitride phosphor mainly composed of a JEM phase containing an alkaline earth metal element has been developed (see, for example, Patent Document 2).
- a part of La is an oxynitride phosphor mainly comprising a JEM phase substituted with Ca, Sr, or Ba and activated with Ce, and this is a blue having a wavelength of 510 nm or less. It discloses that it emits green light.
- the phosphor mainly composed of the JEM phase (also referred to as JEM phosphor) developed in Patent Document 1 or 2 is a phosphor emitting blue or green light. Further, the emission intensity of the phosphor emitting green light was low.
- An object of the present invention is to provide an oxynitride phosphor mainly composed of a JEM crystal and having emission characteristics (emission color, excitation characteristics, emission spectrum) different from existing JEM phosphors, and uses using the same. It is to be.
- the inventors have different emission characteristics from existing JEM phosphors by adopting the configuration described below. I found out. Further, it has been found that a specific composition exhibits green to yellow light emission.
- the present invention has been made as a result of a series of studies based on the above-described knowledge, and thereby, an oxynitride phosphor that emits light with high brightness, a light-emitting device using the phosphor, an image display device, a pigment, and an ultraviolet absorber Has been successful in providing.
- the JEM crystal is expected to be particularly excellent in heat resistance, and the future is expected for a phosphor using the JEM crystal as a mother crystal.
- the outstanding light emission characteristic was recognized. That is, the configuration is as follows.
- the phosphor according to the present invention is MAl (Si, Al) 6 (O, N) 10 (wherein the M element is selected from the group consisting of Ca, Sr, Eu, La, Sc, Y, and a lanthanoid element 1
- MAl (Si, Al) 6 (O, N) 10 wherein the M element is selected from the group consisting of Ca, Sr, Eu, La, Sc, Y, and a lanthanoid element 1
- the JEM crystal activated by Eu is ((Ca) t , Eu u , La x ) AlSi 6-z Al z N 10-z-t O z + t + u , ((Sr) t , Eu u , La x ) AlSi 6-z Al z N 10- z-t-u O z + t + u, ((Ca, Sr) t, Eu u, La x) AlSi 6-z Al z N 10-z-t-u O z + t + u
- the parameter z is 0.5 ⁇ z ⁇ 1.5 This condition may be satisfied.
- the M element is Sr and Eu, or Sr, La and Eu, and may emit fluorescence having a peak in a wavelength range of 495 nm or more and less than 570 nm when irradiated with an excitation source.
- the M element is Ca and Eu, or Ca, La, and Eu.
- the atomic fraction of Eu satisfies 0.003 or more and 0.03 or less, and is irradiated with an excitation source so that it is 570 nm or more and 590 nm or less. You may emit the fluorescence which has a peak in the wavelength of the range.
- the M element is Ca and Eu, or Ca, La and Eu, and the atomic fraction of Eu satisfies 0.0003 or more and less than 0.003, and is irradiated with an excitation source so that it is 495 nm or more and less than 570 nm. You may emit the fluorescence which has a peak in the wavelength of the range. It may further include a crystal phase or an amorphous phase different from the JEM crystal activated with Eu, and the content of the JEM crystal activated with Eu may be 50 mass% or more.
- the light emitting device according to the present invention includes at least a light emitter and a phosphor, and the phosphor includes at least the above phosphor, thereby solving the above-described problems.
- the light emitter may be a light emitting diode (LED), a laser diode (LD), a semiconductor laser, or an organic EL light emitter (OLED) that emits light having a wavelength of 330 to 495 nm.
- the light emitting device may be a white light emitting diode, a lighting fixture including a plurality of the white light emitting diodes, or a backlight for a liquid crystal panel.
- the phosphor emits ultraviolet or visible light having a peak wavelength of 300 to 450 nm, and mixes green to yellow light emitted from the phosphor and light having a wavelength of 450 nm or more emitted from other phosphors to produce white light or white light. Other light may be emitted.
- the phosphor may further include a blue phosphor that emits light having a peak wavelength of 420 nm to 500 nm or less from the phosphor.
- the blue phosphor includes AlN: (Eu, Si), BaMgAl 10 O 17 : Eu, SrSi 9 Al 19 ON 31 : Eu, LaSi 9 Al 19 N 32 : Eu, ⁇ -sialon: Ce, and JEM: Ce May be selected from the group consisting of
- the phosphor may further include a green phosphor that emits light having a peak wavelength of 500 nm or more and 550 nm or less by the light emitter.
- the green phosphor is selected from the group consisting of ⁇ -sialon: Eu, (Ba, Sr, Ca, Mg) 2 SiO 4 : Eu, and (Ca, Sr, Ba) Si 2 O 2 N 2 : Eu. May be.
- the phosphor may further include a yellow phosphor that emits light having a peak wavelength of 550 nm or more and 600 nm or less by the light emitter.
- the yellow phosphor may be selected from the group consisting of YAG: Ce, ⁇ -sialon: Eu, CaAlSiN 3 : Ce, and La 3 Si 6 N 11 : Ce.
- the phosphor may further include a red phosphor that emits light having a peak wavelength of 600 nm or more and 700 nm or less by the light emitter.
- the red phosphor may be selected from the group consisting of CaAlSiN 3 : Eu, (Ca, Sr) AlSiN 3 : Eu, Ca 2 Si 5 N 8 : Eu, and Sr 2 Si 5 N 8 : Eu.
- the light emitter may be an LED that emits light having a wavelength of 320 to 450 nm.
- the image display apparatus according to the present invention includes at least an excitation source and a phosphor, and the phosphor includes at least the phosphor, thereby solving the above-described problem.
- the image display device may be a liquid crystal display (LCD), a fluorescent display tube (VFD), a field emission display (FED), a plasma display panel (PDP), or a cathode ray tube (CRT).
- the pigment of the present invention consists of JEM crystals activated with the above Eu.
- the ultraviolet absorbent according to the present invention is composed of a JEM crystal activated with Eu.
- the phosphor of the present invention is MAl (Si, Al) 6 (O, N) 10 (where the M element is selected from the group consisting of Ca, Sr, Eu, La, Sc, Y, and a lanthanoid element 1
- MAl (Si, Al) 6 (O, N) 10 where the M element is selected from the group consisting of Ca, Sr, Eu, La, Sc, Y, and a lanthanoid element 1
- a conventional JEM phosphor by containing, as a main component, a JEM crystal activated by Eu, which is a seed or two or more elements and includes at least Eu and Ca and / or Sr
- the phosphor has different light emission characteristics.
- a specific composition is excellent as a phosphor emitting light from green to yellow.
- the phosphor described above may contain at least Ca or Sr.
- Ca and Sr It contains the JEM crystal
- crystallization In the said general formula, a> 0 and b> 0
- the JEM crystal activated with Eu may contain at least Eu (in the general formula, c> 0).
- parameters t, u, x, z are 0.3 ⁇ t ⁇ 1 0.005 ⁇ u ⁇ 0.2 0.5 ⁇ z ⁇ 2 Even when only the above condition is satisfied, it can be handled as the phosphor of the present invention.
- the above parameters are all numbers of 0 or more and t and u satisfy the above
- the phosphor of the present invention has little material deterioration and luminance reduction even when exposed to an excitation source. Therefore, it is suitable for uses such as VFD, FED, PDP, CRT, LCD, and white LED. Since the phosphor of the present invention absorbs ultraviolet rays, it is suitable for pigments and ultraviolet absorbers.
- the figure which shows the observation result of the crystal grain of the comparative example 1, Example 2, and Example 4 The figure which shows the powder X-ray-diffraction result of the compound of Example 3
- the figure which shows the powder X-ray-diffraction result of the compound of Example 15 The figure which shows the emission spectrum of the crystal grain of the comparative example 1
- the inventors of the present application pay attention to a JEM crystal constituting an existing JEM phosphor, and MAl (Si, Al) 6 (O, N) 10 (where M element is Ca, Sr, Eu, La, Sc, Y and one or more elements selected from the group consisting of lanthanoid elements, including at least Eu and Ca and / or Sr) as a main component.
- MAl (Si, Al) 6 (O, N) 10 where M element is Ca, Sr, Eu, La, Sc, Y and one or more elements selected from the group consisting of lanthanoid elements, including at least Eu and Ca and / or Sr
- the constituent component JEM phase (JEM crystal)
- JEM phase JEM crystal
- the constituent component is contained as high as possible, and preferably composed of a single phase. It can also be composed of a mixture with other crystalline phase or amorphous phase.
- the content of the JEM phase is desirably 50% by mass or more in order to obtain high luminance.
- the main component has a JEM phase content of at least 50% by mass.
- the ratio of the content of the JEM crystal can be determined from the ratio of the intensity of the strongest peak of each phase by performing X-ray diffraction measurement.
- the composition of the phosphor as a mixture can be considered in consideration of the content of the JEM phase. That is, the ratio of the content of each phase is specified by the method as described above, the composition of each phase is weighted according to it, and the total is added to form the composition of the phosphor mainly composed of the JEM phase. Can guide you. Even if it is the fluorescent substance as a mixture, if content of a JEM phase is 50 mass% or more, it will be contained in the fluorescent substance of this invention.
- the conventional JEM phase such as Patent Document 1 is often represented by the general formula MAl (Si 6-z Al z ) N 10-z O z (where M is a lanthanoid element such as La or Ce).
- M is a lanthanoid element such as La or Ce.
- MAl (Si, Al) 6 (O, N) 10 Take the notation. This is because the total number of Si and Al and the total number of O and N in the crystal are unchanged in order to maintain the JEM crystal even in such substitution.
- the overall valence of M changes. In this case, the Si / Al ratio and the O / N ratio may change in order to maintain electrical neutrality.
- JEM crystal represented by the general formula MAl (Si 6-z Al z ) N 10-z O z described above is a process for adjusting ⁇ -sialon stabilized by rare earth metal by Jekabs Grins et al.
- the crystal structure parameters have been reported as shown in Table 1 (for example, Non-Patent Document 1).
- lattice constants in Table 1 change as the solid solution amounts of the constituent components La, Al, M (Si and Al), and X (N and O) change
- (1) crystals shown in the Pbcn space group The atomic position given by the structure and (3) the site occupied by the atom and its atomic coordinates does not change. In Table 1, coordinates take values from 0 to 1 for x, y, z grids.
- the crystal structure of the substance is uniquely determined, and the X-ray diffraction intensity (X-ray diffraction chart) of the crystal structure is determined by this. Can be calculated based on the data. When the measured X-ray diffraction result matches the calculated diffraction data, the crystal structure can be identified as the same.
- Parameters a, b, and d are main metals occupying M atom positions in the crystal in MAl (Si, Al) 6 (O, N) 10.
- a + b + d is less than 0.02 or more than 0.06, the crystal structure Since it becomes difficult to maintain the light emission intensity, the emission intensity decreases.
- a + b + d is 0.01 or more, the same crystal structure may be maintained.
- a + b + d may be 0.005 or more.
- a + b + d may be 0.07 or less.
- a + b + d may be 0.08 or less.
- Parameter c is the amount of Eu added as the emission center. When c is less than 0.0003, the emission center decreases and the emission intensity decreases. On the other hand, if it exceeds 0.03, concentration quenching in which energy is dissipated between the emission centers may occur, and the emission intensity decreases. However, even if c is 0.0002 or more, the light emission intensity may be maintained to some extent, and c may be 0.0001 or more depending on the surrounding environment. Further, even if c is 0.004 or less, the same light emission intensity may be maintained to some extent, and c may be 0.005 or less depending on the surrounding environment.
- the parameter e is the amount of Si added to form the crystal skeleton, and if it is less than 0.1 or exceeds 0.5, it becomes difficult to maintain the crystal structure, so that the emission intensity decreases.
- the parameter f is the amount of Al added to form the crystal skeleton, and if it is less than 0.02 or exceeds 0.3, it becomes difficult to maintain the crystal structure, so that the emission intensity decreases.
- the parameter g is the amount of oxygen added to form the skeleton of the crystal, and if it is less than 0.02 or exceeds 0.3, it becomes difficult to maintain the crystal structure, so that the emission intensity decreases.
- the parameter h is the amount of nitrogen added to form the skeleton of the crystal, and if it is less than 0.3 or exceeds 0.6, it becomes difficult to maintain the crystal structure, so that the emission intensity decreases.
- the parameters e, f, g and h are respectively 0.25 ⁇ e ⁇ 0.3 0.1 ⁇ f ⁇ 0.15 0.08 ⁇ g ⁇ 0.15 0.4 ⁇ h ⁇ 0.5 Meet.
- the phosphor of the present invention ensures green to yellow light emission.
- the parameters a to h are selected from the above range so as to satisfy the general formula MAl (Si, Al) 6 (O, N) 10 .
- the above-described Eu-activated JEM crystal according to the present invention is preferably ((Ca) t , Eu u , La x ) AlSi 6-z Al z N 10-z-t O z + t + u , ((Sr) t , Eu u , La x ) AlSi 6-z Al z N 10- z-t-u O z + t + u, ((Ca, Sr) t, Eu u, La x) AlSi 6-z Al z N 10-z-t-u O z + t + u
- parameters t, u, x, z are 0.3 ⁇ t ⁇ 1 0.005 ⁇ u ⁇ 0.2 0.5 ⁇ z ⁇ 2 Satisfy the condition of Thereby, a phosphor with particularly high emission intensity can be obtained.
- This formula is a composition that is effective in improving the light emission characteristics and at the same time provides a stable crystal in a JEM crystal containing divalent Ca, Sr, Eu ions, and trivalent La ions.
- Eu can be used as the emission center, and can include a range that satisfies the condition of 0.005 ⁇ u ⁇ 0.2. If the total is less than 0.005, the concentration of ions responsible for light emission is low, and the light emission intensity decreases. On the other hand, if the total exceeds 0.2, the emission intensity may be reduced (concentration quenching) due to the interaction between the emission center ions.
- the parameter z is a value that determines the ratio of Si and Al.
- the parameter z is a value that determines the ratio of Si and Al.
- In the crystal structure there are one designated position of Al and six positions where either Si or Al can enter.
- the ratio of Si and Al occupying the six positions in the crystal can be changed while maintaining the crystal structure.
- z is preferably 0.5 or more and 2 or less. If it is less than 0.5 or exceeds 2, the stability of the crystal structure is lowered and the emission intensity is lowered. Of these, a light emission intensity of 0.5 to 1.5 is particularly high because a particularly stable crystal can be obtained.
- a phosphor having a maximum emission wavelength of 495 nm to 590 nm in the fluorescence spectrum and a maximum excitation wavelength of 320 nm to 460 nm in the excitation spectrum can be obtained by selecting the composition.
- Such a phosphor can be used as a green or yellow phosphor for purple or blue excitation.
- a JEM crystal activated by Eu shown by MAl (Si, Al) 6 (O, N) 10 described above, and the M element is Sr and Eu, or Sr, La and Eu.
- a phosphor mainly composed of a JEM crystal can emit green fluorescence having a peak at a wavelength in a range from 495 nm to less than 570 nm when irradiated with an excitation source.
- T is 0.3 ⁇ t ⁇ 0.9
- u is 0.005 ⁇ u ⁇ 0.2
- z is 0.5 ⁇ z ⁇ 2
- x is 0 ⁇ x.
- a JEM crystal activated by Eu shown by MAl (Si, Al) 6 (O, N) 10 described above, wherein the M element is Ca and Eu, or Ca, La and Eu.
- a phosphor mainly composed of crystals can emit green to yellow fluorescence having a peak in a wavelength range of 495 nm to 590 nm when irradiated with an excitation source.
- the range atomic fraction is less than 0.0003 or more 0.003 Eu (e.g., the composition of the above formula Ca a Sr b Eu c La d Si e Al f O g N 0.0003 ⁇ c in h ⁇ 0.003), it emits green fluorescence having a peak at a wavelength in the range of 495 nm or more and less than 570 nm.
- T is 0.3 ⁇ t ⁇ 0.9
- u is 0.005 ⁇ u ⁇ 0.06, z is 0.5 ⁇ z ⁇ 2
- x is 0 ⁇ x.
- the range atomic fraction of 0.003 to 0.03 of Eu (e.g., composition formula Ca a above Sr b Eu c La d Si e Al f O g N h 0.003 ⁇ c ⁇ 0 at. 03) emits yellow fluorescence having a peak at a wavelength in the range of 570 nm to 590 nm.
- T is 0.3 ⁇ t ⁇ 0.9
- u is 0.06 ⁇ u ⁇ 0.2
- z is 0.5 ⁇ z ⁇ 2
- x is 0 ⁇ x.
- conductivity can be imparted to the phosphor by mixing a conductive inorganic substance.
- the inorganic substance having conductivity include an oxide, an oxynitride, a nitride, or a mixture thereof containing one or more elements selected from Zn, Al, Ga, In, and Sn. it can.
- the phosphor of the present invention is an oxynitride phosphor that can be suitably used for VFD, FED, PDP, CRT, LCD, white LED, and the like, since the luminance of the phosphor is less lowered when exposed to an excitation source. .
- the phosphor of the present invention absorbs ultraviolet rays and is therefore effective as an ultraviolet absorber or pigment. Since the phosphor of the present invention has a yellow object color, it can also be used as a pigment.
- the method for producing the phosphor of the present invention is not particularly defined.
- a raw material mixture that is a mixture of metal compounds and can constitute a phosphor of a JEM crystal by firing is mixed in an inert atmosphere containing nitrogen.
- a compound containing each desired element for example, silicon nitride (Si 3 N 4 ), aluminum nitride (AlN), aluminum oxide (Al 2 O 3 ), calcium oxide (CaO), strontium oxide (SrO ), Lanthanum nitride (LaN), lanthanum oxide (La 2 O 3 ), europium oxide (Eu 2 O 3 ), etc.
- Si 3 N 4 silicon nitride
- AlN aluminum nitride
- Al 2 O 3 aluminum oxide
- strontium oxide (SrO ) Lanthanum nitride (LaN), lanthanum oxide (La 2 O 3 ), europium oxide (Eu 2 O 3 ), etc.
- LaN Lanthanum nitride
- La 2 O 3 lanthanum oxide
- Eu 2 O 3 europium oxide
- the temperature is raised from room temperature (for example, 800 ° C.), nitrogen gas with high purity (for example, purity 99.999% by volume) is introduced, and the inside of the electric furnace is set at a constant pressure (for example, 1 Mpa).
- the temperature in the electric furnace may be further increased (for example, 1200 ° C. or higher and 2200 ° C. or lower) and held for a certain time (for example, 2 hours).
- a phosphor mainly composed of a JEM crystal activated with Eu of the present invention can be obtained.
- the light emitting device of the present invention is configured using at least a light emitting body or a light emitting light source and the phosphor of the present invention.
- Examples of the light emitter or light source include a light emitting diode (LED) light emitting device, a laser diode (LD) light emitting device, a semiconductor laser, an organic EL (OLED) light emitting device, and a fluorescent lamp.
- LED light emitting diode
- LD laser diode
- OLED organic EL
- An LED light emitting device can be manufactured by using the phosphor of the present invention by a known method as described in JP-A-5-152609, JP-A-7-99345, JP-A-2927279, and the like.
- the light emitter or light source emits light having a wavelength of 330 to 495 nm, and among them, an ultraviolet (or purple) LED light emitting element of 330 to 420 nm or a blue LED light emitting element of 420 to 495 nm is preferable.
- Some of these LED light-emitting elements are made of a nitride semiconductor such as GaN or InGaN. By adjusting the composition, the LED light-emitting element can be a light-emitting light source that emits light of a predetermined wavelength.
- Examples of the light-emitting device of the present invention include a white light-emitting diode, a lighting fixture including a plurality of white light-emitting diodes, and a backlight for a liquid crystal panel that include the phosphor of the present invention.
- a ⁇ sialon green phosphor activated by Eu an ⁇ sialon yellow phosphor activated by Eu, and Sr 2 Si 5 N 8 orange activated by Eu
- phosphors selected from phosphors, Eu-activated (Ca, Sr) AlSiN 3 orange phosphors, and Eu-activated CaAlSiN 3 red phosphors may be further included.
- yellow phosphors other than the above for example, YAG: Ce, (Ca, Sr, Ba) Si 2 O 2 N 2 : Eu, or the like may be used.
- the light emitting body or light emitting light source emits ultraviolet or visible light having a peak wavelength of 300 to 450 nm, the green to yellow light emitted from the phosphor of the present invention, and the other phosphors of the present invention include
- a light-emitting device that emits white light or light other than white light by mixing light having a wavelength of 450 nm or more.
- a blue phosphor that emits light having a peak wavelength of 420 nm or more and 500 nm or less by a light emitter or a light source can be included.
- Such blue phosphors include AlN: (Eu, Si), BaMgAl 10 O 17 : Eu, SrSi 9 Al 19 ON 31 : Eu, LaSi 9 Al 19 N 32 : Eu, ⁇ -sialon: Ce, JEM : Ce and the like.
- a green phosphor that emits light having a peak wavelength of 500 nm or more and 550 nm or less by a light emitting body or a light emitting light source can be included.
- examples of such green phosphors include ⁇ -sialon: Eu, (Ba, Sr, Ca, Mg) 2 SiO 4 : Eu, (Ca, Sr, Ba) Si 2 O 2 N 2 : Eu, and the like. is there.
- a yellow phosphor that emits light having a peak wavelength of 550 nm or more and 600 nm or less by a light emitter or a light source can be included.
- Examples of such a yellow phosphor include YAG: Ce, ⁇ -sialon: Eu, CaAlSiN 3 : Ce, La 3 Si 6 N 11 : Ce.
- a red phosphor that emits light having a peak wavelength of 600 nm or more and 700 nm or less by a light emitter or a light source can be included.
- red phosphor include CaAlSiN 3 : Eu, (Ca, Sr) AlSiN 3 : Eu, Ca 2 Si 5 N 8 : Eu, and Sr 2 Si 5 N 8 : Eu.
- a phosphor or emission light source that emits ultraviolet light having a peak wavelength of 300 to 420 nm, a blue phosphor that is excited at this wavelength and emits light having a peak wavelength of 420 nm to 500 nm, and
- a red phosphor that emits light having a peak wavelength of 600 nm or more and 700 nm or less
- the green phosphor of the present invention when the phosphor is irradiated with ultraviolet rays emitted from the light emitter or the light emission source, light of three colors of red, green, and blue is emitted, and a white luminaire is obtained by mixing these.
- the phosphor of the present invention when the phosphor of the present invention emits green light, a phosphor or light source that emits blue light having a peak wavelength of 420 to 490 nm, a red phosphor that is excited at this wavelength and emits light having a peak wavelength of 600 nm to 700 nm, There is a combination with the green phosphor of the present invention.
- the green phosphor of the present invention when blue light emitted from the light emitter or the light source is irradiated onto the phosphor, two colors of red and green light are emitted, and these light and the blue light of the light emitter or light source itself are emitted. Mixing results in a white luminaire.
- the phosphor of the present invention when the phosphor of the present invention emits yellow light, a phosphor or emission light source that emits blue light having a peak wavelength of 420 to 490 nm, a red phosphor that is excited at this wavelength and emits light having a peak wavelength of 600 nm to 700 nm, There is a combination with the yellow phosphor of the present invention.
- the phosphor when the phosphor is irradiated with blue light emitted from the light emitter or light emitting light source, two colors of red and yellow light are emitted, and these light and the blue light of the light emitter or light emitting light source itself are emitted. Mixing results in a white luminaire.
- the green phosphor of the present invention when the phosphor of the present invention that emits green light and the phosphor of the present invention that emits yellow light are used, a light emitter or a light source that emits blue light having a peak wavelength of 420 to 490 nm, the green phosphor of the present invention, There is a combination with the yellow phosphor of the present invention.
- the fluorescent material when the fluorescent material is irradiated with blue light emitted from the light emitter or the light source, two colors of green and yellow are emitted, and these light and the blue light of the light emitter or the light source itself are emitted. Mixing results in a white luminaire.
- the color tone such as reddish bulb color and pale light by blending the phosphor.
- Specific examples of the red phosphor or the blue phosphor are as described above.
- the light-emitting device of the present invention when an LED that emits light having a wavelength of 320 to 450 nm is used as a light emitter or a light-emitting light source, the light-emitting efficiency is high, so that a highly efficient light-emitting device can be configured.
- the image display device of the present invention comprises at least an excitation source and the phosphor of the present invention, and includes a liquid crystal display (LCD), a fluorescent display tube (VFD), a field emission display (FED), a plasma display panel (PDP), a cathode ray.
- a tube CRT
- the phosphor of the present invention has been confirmed to emit light by excitation of vacuum ultraviolet rays of 100 to 190 nm, ultraviolet rays of 190 to 380 nm, electron beams, etc., and in combination of these excitation sources and the phosphor of the present invention, An image display apparatus as described above can be configured.
- the phosphor of the present invention mainly comprising a JEM crystal activated by Eu having a specific chemical composition has a yellow object color, and therefore can be used as a pigment or a fluorescent pigment. That is, when the phosphor of the present invention is irradiated with illumination such as sunlight or a fluorescent lamp, a yellow object color is observed, but since the color is good and does not deteriorate over a long period of time, the phosphor of the present invention Is suitable for inorganic pigments. For this reason, when used for paints, inks, paints, glazes, colorants added to plastic products, etc., good color development can be maintained high over a long period of time.
- the phosphor of the present invention absorbs ultraviolet rays and is therefore suitable as an ultraviolet absorber. For this reason, when used as a paint, applied to the surface of a plastic product, or kneaded into a plastic product, the effect of blocking ultraviolet rays is high, and the product can be effectively protected from ultraviolet degradation.
- the raw material powder used in the synthesis was a silicon nitride powder having a specific surface area of 11.2 m 2 / g, an oxygen content of 1.29 wt%, and an ⁇ -type content of 95% (SN-E10 manufactured by Ube Industries, Ltd.).
- an aluminum nitride powder having a specific surface area of 3.3 m 2 / g and an oxygen content of 0.82 wt% (E grade manufactured by Tokuyama Corporation), and a specific surface area of 13.2 m 2 / g
- Aluminum oxide powder Teimicron manufactured by Daimei Chemical Co., Ltd.
- calcium oxide powder manufactured by High Purity Chemical Laboratory Co., Ltd.
- strontium oxide powder manufactured by High Purity Chemical
- lanthanum nitride powder LaN; high purity chemical) Laboratories
- lanthanum oxide powder La 2 O 3 ; manufactured by High-Purity Chemical Laboratory
- europium oxide powder Eu 2 O 3 ; purity 99.9%, manufactured by Shin-Etsu Chemical Co., Ltd.
- the crucible containing the mixed powder was set in a graphite resistance heating type electric furnace.
- the firing operation is as follows. First, the firing atmosphere is set to a vacuum of 1 ⁇ 10 ⁇ 1 Pa or less with a diffusion pump, heated from room temperature to 800 ° C. at a rate of 500 ° C. per hour, and at 800 ° C. the purity is 99.999% by volume. Nitrogen was introduced to bring the pressure in the furnace to 1 MPa, the temperature was raised to 500 ° C. per hour to the set temperature shown in Table 5, and the temperature was maintained for 2 hours. Among the obtained composites, Comparative Example 1, Example 2 and Example 4 were observed with an optical microscope. The observation results are shown in FIG.
- FIG. 1 is a diagram showing the observation results of the crystal particles of Comparative Example 1, Example 2, and Example 4.
- all the crystal particles taken out from the composite had a size of several tens of ⁇ m.
- the crystal grains of Comparative Example 1 were 42 ⁇ 45 ⁇ 45 ⁇ m 3 in size.
- the crystal grains of Example 2 were 16 ⁇ 41 ⁇ 20 ⁇ m 3 in size.
- the crystal grains of Example 4 were 46 ⁇ 47 ⁇ 50 ⁇ m 3 in size.
- crystal particles are included in the crystal particles using a scanning electron microscope (SEM; SU1510 manufactured by Hitachi High-Technologies Corporation) equipped with an energy dispersive element analyzer (EDS; QUANTAX manufactured by Bruker AXS). Elemental analysis was performed. As a result, the presence of La, Eu, Si, Al, O, and N elements was confirmed from the crystal particles of Comparative Example 1, and the ratio of the number of atoms contained in La, Eu, Si, Al was 0.75: 0. 25: 5.8: 1.2. The presence of Sr, Eu, Si, Al, O, and N elements was confirmed from the crystal particles of Example 2, and the ratio of the number of atoms contained in Sr, Eu, Si, Al was 0.9: 0.1: 4 .8: 2.2. The presence of Ca, Eu, Si, Al, O, and N elements was confirmed from the crystal particles of Example 4, and the ratio of the number of atoms contained in Ca, Eu, Si, Al was 0.5: 0.5: 5 : Measured to be 2.
- SEM
- the crystal particles were fixed to the tip of the glass fiber with an organic adhesive.
- a single crystal X-ray diffractometer with a rotating counter cathode of MoK ⁇ rays (SMART APEXII Ultra manufactured by Bruker AXS Co., Ltd.) was used to perform X-ray diffraction measurement under the condition that the output of the X-ray source was 50 kV 50 mA. .
- the crystal particles were a single crystal.
- the composites other than Comparative Example 1, Example 2 and Example 4 were pulverized into a powder using a mortar and pestle made of a silicon nitride sintered body, and powder X-ray diffraction measurement was performed using Cu K ⁇ rays. It was. Some of the results are shown in FIGS. As a result, the obtained chart showed a peculiar pattern to the JEM crystal.
- the measurement results were subjected to X-ray diffraction pattern simulation using Rietveld analysis calculation software (RIETAN-2000, Fujio Izumi, Asakura Shoten, actual powder X-ray analysis). JEM crystal was the main component, and the proportion of JEM crystal was determined to be 85% or more. In addition, it is thought that the part from which a mixed raw material composition and the chemical composition of a synthetic
- FIG. 2 is a graph showing the result of powder X-ray diffraction of the synthesized product of Example 3.
- FIG. 3 is a graph showing the result of powder X-ray diffraction of the synthesized product of Example 6.
- 4 is a graph showing the result of powder X-ray diffraction of the synthesized product of Example 15.
- the powder X-ray diffraction results (Figs. 2 to 4) of the synthesized product are all the same as the X-ray diffraction pattern of the JEM crystal, and it is confirmed that the crystal having the same crystal structure as the JEM crystal is the main component. It was done.
- Example 3 contained Eu, Sr, La, Si, Al, O, and N.
- the ratio of Eu: Sr: La: Si: Al was 0.1: 0.4: 0.5: 5: 2.
- the composition of Example 6 was confirmed to contain Eu, Ca, La, Si, Al, O, N, and the ratio of Eu: Ca: La: Si: Al was 0.02: 0.48: 0. 5: 5: 2.
- the composites of the examples of the present invention were inorganic compounds mainly composed of JEM crystals in which Eu was dissolved.
- FIG. 5 is a diagram showing an emission spectrum of the crystal particles of Comparative Example 1.
- 6 is a diagram showing an emission spectrum of the crystal particles of Example 2.
- FIG. 7 is a graph showing an emission spectrum of the crystal particles of Example 4.
- the synthesized product (crystal particles) of Comparative Example 1 emitted green fluorescence having a peak at a wavelength of 530 nm.
- the synthesized product (crystal particles) of Example 2 emitted green fluorescence having a peak at a wavelength of 530 nm.
- the synthesized product (crystal particles) of Example 4 emitted yellow fluorescence having a peak at a wavelength of 590 nm.
- FIG. 8 is a diagram showing an excitation emission spectrum of the synthesized product of Example 3.
- FIG. 9 is a diagram showing an excitation emission spectrum of the synthesized product of Example 6.
- FIG. 10 is a diagram showing an excitation emission spectrum of the synthesized product of Example 15.
- FIG. 8 shows that the synthesized product of Example 3 can be excited most efficiently at 374 nm, and the emission spectrum when excited at 374 nm exhibits green emission having a peak at 556 nm.
- FIG. 9 it was found that the synthesized product of Example 6 can be excited most efficiently at 371 nm, and the emission spectrum when excited at 371 nm exhibits green emission having a peak at 542 nm.
- FIG. 10 it was found that the synthesized product of Example 15 was most efficiently excited at 448 nm, and the emission spectrum when excited at 448 nm exhibited yellow emission having a peak at 581 nm.
- the composite of the example of the present invention is excited by ultraviolet light of 300 nm to 380 nm, violet or blue light of 380 nm to 460 nm, and emits green to yellow light having a peak at a wavelength in the range of 495 nm to 590 nm. It was confirmed that the phosphor is made of an inorganic compound mainly composed of a JEM crystal in which is dissolved.
- MAl (Si, Al) 6 (O, N) 10 contains at least Eu and Ca and / or Sr as M elements. It was found that an inorganic compound mainly composed of JEM crystals activated by Eu is a phosphor emitting green to yellow.
- Example 2 and Example 3 the inorganic compound mainly composed of Eu-activated JEM crystal in which M element is Sr and Eu, or Sr, La, and Eu is an excitation source. It was found that by irradiation, green fluorescence having a peak at a wavelength in the range of 495 nm or more and less than 570 nm was emitted.
- the M element is Ca and Eu, or Ca, La and Eu, and the atomic fraction c of Eu satisfies 0.0003 ⁇ c ⁇ 0.003. It turned out that the inorganic compound which has the activated JEM crystal as a main component emits the green fluorescence which has a peak in the wavelength range of 495 nm or more and less than 570 nm by irradiation of an excitation source.
- the M element is Ca and Eu, or Ca, La and Eu
- the atomic fraction c of Eu is 0.003 ⁇ c ⁇ 0.03. It was found that the filled inorganic compound composed mainly of Eu-activated JEM crystal emits yellow fluorescence having a peak in a wavelength range of 570 nm to 590 nm by irradiation with an excitation source.
- FIG. 11 is a diagram showing the object color of the composite of Example 3.
- FIG. 11 is a black-and-white photograph, it can be seen from the figure itself that the composite is a bright color, but in practice this composite has a yellow object color and is confirmed to be excellent in color development. Although not shown, the composites of other examples also showed similar object colors. It has been found that the inorganic compound which is the composite of the present invention can be used as a pigment or a fluorescent pigment because it exhibits a yellow object color when irradiated with sunlight or illumination such as a fluorescent lamp.
- FIG. 12 is a schematic view showing a lighting fixture (bullet type LED lighting fixture) corresponding to the light emitting device according to the present invention.
- a so-called bullet-type white light-emitting diode lamp (1) shown in FIG. 12 was produced.
- the lower electrode of the ultraviolet light emitting diode element (4) and the bottom surface of the recess are electrically connected by a conductive paste, and the upper electrode and the other lead wire (3) are electrically connected by a gold wire (5). It is connected to the.
- the phosphor (7) is dispersed in the resin and mounted in the vicinity of the ultraviolet light emitting diode element (4).
- the first resin (6) in which the phosphor is dispersed is transparent and covers the entire ultraviolet light emitting diode element (4).
- the tip of the lead wire including the recess, the ultraviolet light emitting diode element, and the first resin in which the phosphor is dispersed are sealed with a transparent second resin (8).
- the transparent second resin (8) has a substantially cylindrical shape as a whole, and has a lens-shaped curved surface at the tip, which is commonly called a shell type.
- the phosphor powder prepared by mixing the yellow phosphor prepared in Example 15 and the JEM: Ce blue phosphor at a mass ratio of 7: 3 was mixed with an epoxy resin at a concentration of 37% by weight, and this was dispensed.
- a first resin (6) in which a mixture of phosphors (7) was dispersed was formed by dropping an appropriate amount of the mixture.
- FIG. 13 is a schematic view showing a lighting fixture (substrate mounted LED lighting fixture) corresponding to the light emitting device according to the present invention.
- a chip-type white light emitting diode lamp (11) for board mounting shown in FIG. 13 was produced.
- Two lead wires (12, 13) are fixed to a white alumina ceramic substrate (19) having a high visible light reflectivity, and one end of each of these wires is located at a substantially central portion of the substrate, and the other end is external. It is an electrode that is soldered when mounted on an electric board.
- One of the lead wires (12) has a blue light emitting diode element (14) having an emission peak wavelength of 450 nm placed and fixed at one end of the lead wire so as to be at the center of the substrate.
- the lower electrode of the blue light emitting diode element (14) and the lower lead wire are electrically connected by a conductive paste, and the upper electrode and the other lead wire (13) are electrically connected by a gold thin wire (15). Connected.
- a mixture of the first resin (16) and the phosphor (17) prepared by mixing the yellow phosphor prepared in Example 15 and the CaAlSiN 3 : Eu red phosphor at a mass ratio of 9: 1 is a light emitting diode element.
- the first resin (16) in which the phosphor is dispersed is transparent and covers the entire blue light emitting diode element (14).
- a wall surface member (20) having a shape with a hole in the center is fixed on the ceramic substrate.
- the wall member (20) has a central portion serving as a hole for holding the resin (16) in which the blue light emitting diode element (14) and the phosphor (17) are dispersed, and the portion facing the center is a slope. It has become.
- This slope is a reflection surface for extracting light forward, and the curved surface shape of the slope is determined in consideration of the light reflection direction. Further, at least the surface constituting the reflecting surface is a surface having a high visible light reflectance having white or metallic luster.
- the wall member (20) is made of a white silicone resin. The hole at the center of the wall member forms a recess as the final shape of the chip-type light-emitting diode lamp.
- the first resin in which the blue light-emitting diode element (14) and the phosphor (17) are dispersed A transparent second resin (18) is filled so as to seal all of 16).
- the same epoxy resin was used for the first resin (16) and the second resin (18). The achieved chromaticity and the like are substantially the same as in Example 18.
- FIG. 14 is a schematic view showing an image display device (plasma display panel) according to the present invention.
- a red phosphor (CaAlSiN 3 : Eu) (31), a green phosphor (32) and a blue phosphor (JEM: Ce) (33) of Example 9 of the present invention are formed on an electrode (37) on a glass substrate (44). , 38, 39) and the inner surface of each cell (34, 35, 36) disposed via the dielectric layer (41).
- the electrodes (37, 38, 39, 40) are energized, vacuum ultraviolet rays are generated by Xe discharge in the cell, which excites the phosphor and emits red, green, and blue visible light, which is the protective layer. (43), observed from the outside through the dielectric layer (42) and the glass substrate (45), and functions as an image display device.
- FIG. 15 is a schematic view showing an image display device (field emission display panel) according to the present invention.
- the green phosphor (56) of Example 6 of the present invention is applied to the inner surface of the anode (53).
- a voltage between the cathode (52) and the gate (54) electrons (57) are emitted from the emitter (55).
- the electrons are accelerated by the voltage of the anode (53) and the cathode, collide with the green phosphor (56), and the phosphor emits light.
- the whole is protected by glass (51).
- the figure shows one light-emitting cell consisting of one emitter and one phosphor.
- a display that can produce a variety of colors is constructed by arranging a number of red and blue cells in addition to green.
- the phosphor used for the red and blue cells is not particularly specified, but a phosphor that emits high luminance with a low-speed electron beam may be used.
- the phosphor of the present invention is mainly composed of a JEM crystal, has emission characteristics (emission color, excitation characteristics, emission spectrum) different from those of existing JEM phosphors, and has an emission intensity even when combined with an LED of 470 nm or less. It is high, chemically and thermally stable, and has little decrease in phosphor brightness when exposed to an excitation source, so it is suitable for VFD, FED, PDP, CRT, LCD, white LED, etc. It is a nitride phosphor. In the future, it can be expected to contribute greatly to the development of the industry in material design for various display devices.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Luminescent Compositions (AREA)
- Led Device Packages (AREA)
- Liquid Crystal (AREA)
- Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
- Gas-Filled Discharge Tubes (AREA)
Abstract
Description
前記蛍光体は、組成式CaaSrbEucLadSieAlfOgNhで示され、パラメータa、b、c、d、e、f、g、h(ただし、a+b+c+d+e+f+g+h=1とする)が、
0.02 ≦ a+b+d ≦ 0.06
0.0003 ≦ c ≦ 0.03
0.1 ≦ e ≦ 0.5
0.02 ≦ f ≦ 0.3
0.02 ≦ g ≦ 0.3
0.3 ≦ h ≦ 0.6
0 < a+b
の条件を満たしてもよい。
前記Euで付活されたJEM結晶は、
((Ca)t,Euu,Lax)AlSi6-zAlzN10-z-t-uOz+t+u、((Sr)t,Euu,Lax)AlSi6-zAlzN10-z-t-uOz+t+u、((Ca,Sr)t,Euu,Lax)AlSi6-zAlzN10-z-t-uOz+t+u
で示され、パラメータt、u、x、z(ただし、t+u+x = 1とする)が
0.3 ≦ t < 1
0.005 ≦ u ≦ 0.2
0.5 ≦ z ≦ 2
の条件を満たしてもよい。
前記パラメータxが、x=0であってもよい。
前記パラメータzが、
0.5 ≦ z ≦ 1.5
の条件を満たしてもよい。
前記M元素は、SrおよびEu、または、Sr、LaおよびEuであり、励起源が照射されることにより、495nm以上570nm未満の範囲の波長にピークを有する蛍光を発してもよい。
前記M元素は、CaおよびEu、または、Ca、LaおよびEuであり、Euの原子分率は、0.003以上0.03以下を満たし、励起源が照射されることにより、570nm以上590nm以下の範囲の波長にピークを有する蛍光を発してもよい。
前記M元素は、CaおよびEu、または、Ca、LaおよびEuであり、Euの原子分率は、0.0003以上0.003未満を満たし、励起源が照射されることにより、495nm以上570nm未満の範囲の波長にピークを有する蛍光を発してもよい。
前記Euで付活されたJEM結晶とは異なる結晶相あるいはアモルファス相をさらに含み、前記Euで付活されたJEM結晶の含有量は50質量%以上であってもよい。
本発明による発光装置は、少なくとも発光体と蛍光体とから構成され、前記蛍光体は、少なくとも上記蛍光体を含み、これにより上記課題を解決する。
前記発光体は、330~495nmの波長の光を発する、発光ダイオード(LED)、レーザダイオード(LD)、半導体レーザ、または、有機EL発光体(OLED)であってもよい。
前記発光装置は、白色発光ダイオード、または、前記白色発光ダイオードを複数含む照明器具、または、液晶パネル用バックライトであってもよい。
前記発光体は、ピーク波長300~450nmの紫外または可視光を発し、上記蛍光体が発する緑色から黄色光と他の蛍光体が発する450nm以上の波長の光を混合することにより白色光または白色光以外の光を発してもよい。
前記蛍光体は、前記発光体によりピーク波長420nm~500nm以下の光を発する青色蛍光体をさらに含んでもよい。
前記青色蛍光体は、AlN:(Eu,Si)、BaMgAl10O17:Eu、SrSi9Al19ON31:Eu、LaSi9Al19N32:Eu、α-サイアロン:Ce、および、JEM:Ceからなる群から選ばれてもよい。
前記蛍光体は、前記発光体によりピーク波長500nm以上550nm以下の光を発する緑色蛍光体をさらに含んでもよい。
前記緑色蛍光体は、β-サイアロン:Eu、(Ba,Sr,Ca,Mg)2SiO4:Eu、および、(Ca,Sr,Ba)Si2O2N2:Euからなる群から選ばれてもよい。
前記蛍光体は、前記発光体によりピーク波長550nm以上600nm以下の光を発する黄色蛍光体をさらに含んでもよい。
前記黄色蛍光体は、YAG:Ce、α-サイアロン:Eu、CaAlSiN3:Ce、および、La3Si6N11:Ceからなる群から選ばれてもよい。
前記蛍光体は、前記発光体によりピーク波長600nm以上700nm以下の光を発する赤色蛍光体をさらに含んでもよい。
前記赤色蛍光体は、CaAlSiN3:Eu、(Ca,Sr)AlSiN3:Eu、Ca2Si5N8:Eu、および、Sr2Si5N8:Euからなる群から選ばれてもよい。
前記発光体は、320~450nmの波長の光を発するLEDであってもよい。
本発明の画像表示装置は、少なくとも励起源と蛍光体とから構成され、前記蛍光体は、少なくとも上記蛍光体を含み、これにより上記課題を解決する。
画像表示装置は、液晶ディスプレイ(LCD)、蛍光表示管(VFD)、フィールドエミッションディスプレイ(FED)、プラズマディスプレイパネル(PDP)、または、陰極線管(CRT)のいずれかであってもよい。
本発明の顔料は、上記Euで付活されたJEM結晶からなる。
本発明の紫外線吸収剤は、上記Euで付活されたJEM結晶からなる。
また、Euで付活されたJEM結晶が、
((Ca)t,Euu,Lax)AlSi6-zAlzN10-z-t-uOz+t+u、((Sr)t,Euu,Lax)AlSi6-zAlzN10-z-t-uOz+t+u、((Ca,Sr)t,Euu,Lax)AlSi6-zAlzN10-z-t-uOz+t+u
で示され、パラメータt、u、x、z(ただし、t+u+x = 1とする)が
0.3 ≦ t < 1
0.005 ≦ u ≦ 0.2
0.5 ≦ z ≦ 2
の条件のみを満たす場合も、本発明の蛍光体として取り扱うことができる。ここで、当業者にとっては常識であるが、上記パラメータは全て0以上の数であり、tおよびuが上記条件を満足するので、xは、「0 ≦ x ≦ 0.695」を満足する。
MAl(Si,Al)6(O,N)10
の表記をとる。これは、このような置換においてもJEM結晶を維持するためには結晶中のSiとAlとの合計数、および、OとNとの合計数は不変であるためである。ただし、Mとして2価の価数と異なる元素を用いると、Mの全体の価数が変わる。この場合は電気的中性を保つために、Si/Al比やO/N比は変化することがある。
0.02 ≦ a+b+d ≦ 0.06
0.0003 ≦ c ≦ 0.03
0.1 ≦ e ≦ 0.5
0.02 ≦ f ≦ 0.3
0.02 ≦ g ≦ 0.3
0.3 ≦ h ≦ 0.6
0 < a+b
の条件を満たす。これにより、Euで付活されたJEM相を主成分とするので、発光強度が高い蛍光体が得られる。
0.25 ≦ e ≦ 0.3
0.1 ≦ f ≦ 0.15
0.08 ≦ g ≦ 0.15
0.4 ≦ h ≦ 0.5
を満たす。これにより、本発明の蛍光体は、緑色から黄色発光を確実にする。
((Ca)t,Euu,Lax)AlSi6-zAlzN10-z-t-uOz+t+u、((Sr)t,Euu,Lax)AlSi6-zAlzN10-z-t-uOz+t+u、((Ca,Sr)t,Euu,Lax)AlSi6-zAlzN10-z-t-uOz+t+u
で示され、パラメータt、u、x、z(ただし、t+u+x = 1とする)が
0.3 ≦ t < 1
0.005 ≦ u ≦ 0.2
0.5 ≦ z ≦ 2
の条件を満たす。これにより、特に発光強度が高い蛍光体が得られる。
において、パラメータxが、x=0である場合、すなわち、
((Ca)t,Euu)AlSi6-zAlzN10-z-t-uOz+t+u、((Sr)t,Euu)AlSi6-zAlzN10-z-t-uOz+t+u、((Ca,Sr)t,Euu)AlSi6-zAlzN10-z-t-uOz+t+u
は、結晶構造が安定であり、発光強度が高い。
において、パラメータzが、0.5 ≦ z ≦ 1.5の条件を満たす値である場合は結晶構造が安定であり、発光強度が高い。
合成に使用した原料粉末は、比表面積11.2m2/gの粒度の、酸素含有量1.29重量%、α型含有量95%の窒化ケイ素粉末(宇部興産(株)製のSN-E10グレード)と、比表面積3.3m2/gの粒度の、酸素含有量0.82重量%の窒化アルミニウム粉末((株)トクヤマ製のEグレード)と、比表面積13.2m2/gの粒度の酸化アルミニウム粉末(大明化学工業製タイミクロン)と、酸化カルシウム粉末((株)高純度化学研究所製)と、酸化ストロンチウム粉末(高純度化学製)と、窒化ランタン粉末(LaN;高純度化学研究所製)と、酸化ランタン粉末(La2O3;高純度化学研究所製)と、酸化ユーロピウム粉末(Eu2O3;純度99.9%信越化学工業(株)製)とであった。
表2および表3に示す設計組成に従って、原料を表4の混合組成(質量比)となるように秤量した。秤量した原料粉末を窒化ケイ素焼結体製の乳棒と乳鉢とを用いて5分間混合を行なった。その後、混合粉末を窒化ホウ素焼結体製のるつぼに投入した。粉体の嵩密度は約20%から30%であった。
図3は、実施例6の合成物の粉末X線回折結果を示す図である。
図4は、実施例15の合成物の粉末X線回折結果を示す図である。
図6は、実施例2の結晶粒子の発光スペクトルを示す図である。
図7は、実施例4の結晶粒子の発光スペクトルを示す図である。
図9は、実施例6の合成物の励起発光スペクトルを示す図である。
図10は、実施例15の合成物の励起発光スペクトルを示す図である。
次に、本発明の蛍光体を用いた発光装置について説明する。
図12は、本発明による発光装置に相当する照明器具(砲弾型LED照明器具)を示す概略図である。
図13は、本発明による発光装置に相当する照明器具(基板実装型LED照明器具)を示す概略図である。
図14は、本発明による画像表示装置(プラズマディスプレイパネル)を示す概略図である。
図15は、本発明による画像表示装置(フィールドエミッションディスプレイパネル)を示す概略図である。
2、3.リードワイヤ。
4.発光ダイオード素子。
5.金細線。
6、8.樹脂。
7.蛍光体。
11.基板実装用チップ型白色発光ダイオードランプ。
12、13.リードワイヤ。
14.発光ダイオード素子。
15.金細線。
16、18.樹脂。
17.蛍光体。
19.アルミナセラミックス基板。
20.壁面部材。
31.赤色蛍光体。
32.緑色蛍光体。
33.青色蛍光体。
34、35、36.紫外線発光セル。
37、38、39、40.電極。
41、42.誘電体層。
43.保護層。
44、45.ガラス基板。
51.ガラス。
52.陰極。
53.陽極。
54.ゲート。
55.エミッタ。
56.蛍光体。
57.電子。
Claims (26)
- MAl(Si,Al)6(O,N)10(ただし、M元素は、Ca、Sr、Eu、La、Sc、Y、および、ランタノイド元素からなる群から選ばれる1種または2種以上の元素であり、M元素は少なくともEuを含み、並びに、M元素はCaおよび/またはSrを含む)で示されるEuで付活されたJEM結晶を含む、蛍光体。
- 前記蛍光体は、組成式CaaSrbEucLadSieAlfOgNhで示され、
パラメータa、b、c、d、e、f、g、h(ただし、a+b+c+d+e+f+g+h=1とする)が、
0.02 ≦ a+b+d ≦ 0.06
0.0003 ≦ c ≦ 0.03
0.1 ≦ e ≦ 0.5
0.02 ≦ f ≦ 0.3
0.02 ≦ g ≦ 0.3
0.3 ≦ h ≦ 0.6
0 < a+b
の条件を満たす、請求項1に記載の蛍光体。 - 前記Euで付活されたJEM結晶は、
((Ca)t,Euu,Lax)AlSi6-zAlzN10-z-t-uOz+t+u、((Sr)t,Euu,Lax)AlSi6-zAlzN10-z-t-uOz+t+u、((Ca,Sr)t,Euu,Lax)AlSi6-zAlzN10-z-t-uOz+t+u
で示され、パラメータt、u、x、z(ただし、t+u+x = 1とする)が
0.3 ≦ t < 1
0.005 ≦ u ≦ 0.2
0.5 ≦ z ≦ 2
の条件を満たす、請求項1に記載の蛍光体。 - 前記パラメータxが、x=0である、請求項3に記載の蛍光体。
- 前記パラメータzが、
0.5 ≦ z ≦ 1.5
の条件を満たす、請求項3に記載の蛍光体。 - 前記M元素は、SrおよびEu、または、Sr、LaおよびEuであり、
励起源が照射されることにより、495nm以上570nm未満の範囲の波長にピークを有する蛍光を発する、請求項1に記載の蛍光体。 - 前記M元素は、CaおよびEu、または、Ca、LaおよびEuであり、
Euの原子分率は、0.003以上0.03以下を満たし、
励起源が照射されることにより、570nm以上590nm以下の範囲の波長にピークを有する蛍光を発する、請求項1に記載の蛍光体。 - 前記M元素は、CaおよびEu、または、Ca、LaおよびEuであり、
Euの原子分率は、0.0003以上0.003未満を満たし、
励起源が照射されることにより、495nm以上570nm未満の範囲の波長にピークを有する蛍光を発する、請求項1に記載の蛍光体。 - 前記Euで付活されたJEM結晶とは異なる結晶相あるいはアモルファス相をさらに含み、
前記Euで付活されたJEM結晶の含有量は50質量%以上である、請求項1に記載の蛍光体。 - 少なくとも発光体と蛍光体とから構成される発光装置において、前記蛍光体は、少なくとも請求項1に記載の蛍光体を含む、発光装置。
- 前記発光体は、330~495nmの波長の光を発する、発光ダイオード(LED)、レーザダイオード(LD)、半導体レーザ、有機EL発光体(OLED)、または、蛍光ランプである、請求項10に記載の発光装置。
- 前記発光装置は、白色発光ダイオード、または、前記白色発光ダイオードを複数含む照明器具、または、液晶パネル用バックライトである、請求項10に記載の発光装置。
- 前記発光体は、ピーク波長300~450nmの紫外または可視光を発し、請求項1に記載の蛍光体が発する緑色から黄色光と他の蛍光体が発する450nm以上の波長の光を混合することにより白色光または白色光以外の光を発する、請求項10に記載の発光装置。
- 前記蛍光体は、前記発光体によりピーク波長420nm~500nm以下の光を発する青色蛍光体をさらに含む、請求項10に記載の発光装置。
- 前記青色蛍光体は、AlN:(Eu,Si)、BaMgAl10O17:Eu、SrSi9Al19ON31:Eu、LaSi9Al19N32:Eu、α-サイアロン:Ce、および、JEM:Ceからなる群から選ばれる、請求項14に記載の発光装置。
- 前記蛍光体は、前記発光体によりピーク波長500nm以上550nm以下の光を発する緑色蛍光体をさらに含む、請求項10に記載の発光装置。
- 前記緑色蛍光体は、β-サイアロン:Eu、(Ba,Sr,Ca,Mg)2SiO4:Eu、および、(Ca,Sr,Ba)Si2O2N2:Euからなる群から選ばれる、請求項16に記載の発光装置。
- 前記蛍光体は、前記発光体によりピーク波長550nm以上600nm以下の光を発する黄色蛍光体をさらに含む、請求項10に記載の発光装置。
- 前記黄色蛍光体は、YAG:Ce、α-サイアロン:Eu、CaAlSiN3:Ce、および、La3Si6N11:Ceからなる群から選ばれる、請求項18に記載の発光装置。
- 前記蛍光体は、前記発光体によりピーク波長600nm以上700nm以下の光を発する赤色蛍光体をさらに含む、請求項10に記載の発光装置。
- 前記赤色蛍光体は、CaAlSiN3:Eu、(Ca,Sr)AlSiN3:Eu、Ca2Si5N8:Eu、および、Sr2Si5N8:Euからなる群から選ばれる、請求項20に記載の発光装置。
- 前記発光体は、320~450nmの波長の光を発するLEDである、請求項10に記載の発光装置。
- 少なくとも励起源と蛍光体とから構成される画像表示装置において、前記蛍光体は、少なくとも請求項1に記載の蛍光体を含む、画像表示装置。
- 画像表示装置は、液晶ディスプレイ(LCD)、蛍光表示管(VFD)、フィールドエミッションディスプレイ(FED)、プラズマディスプレイパネル(PDP)、または、陰極線管(CRT)のいずれかである、請求項23に記載の画像表示装置。
- 請求項1に記載のEuで付活されたJEM結晶からなる顔料。
- 請求項1に記載のEuで付活されたJEM結晶からなる紫外線吸収剤。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015550912A JP6057231B2 (ja) | 2013-11-29 | 2014-11-21 | 蛍光体、発光装置、画像表示装置、顔料および紫外線吸収剤 |
EP14865555.8A EP3075814B1 (en) | 2013-11-29 | 2014-11-21 | Phosphor, light-emitting device, image display device, pigment, and ultraviolet absorber |
US15/038,836 US9909060B2 (en) | 2013-11-29 | 2014-11-21 | Phosphor, light-emitting device, image display device, pigment, and ultraviolet absorber |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-247200 | 2013-11-29 | ||
JP2013247200 | 2013-11-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015080062A1 true WO2015080062A1 (ja) | 2015-06-04 |
Family
ID=53199003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/080974 WO2015080062A1 (ja) | 2013-11-29 | 2014-11-21 | 蛍光体、発光装置、画像表示装置、顔料および紫外線吸収剤 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9909060B2 (ja) |
EP (1) | EP3075814B1 (ja) |
JP (1) | JP6057231B2 (ja) |
WO (1) | WO2015080062A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018095784A (ja) * | 2016-12-15 | 2018-06-21 | 国立研究開発法人物質・材料研究機構 | 蛍光体、その製造方法及びそれを用いた発光装置 |
WO2018225424A1 (ja) * | 2017-06-06 | 2018-12-13 | パナソニックIpマネジメント株式会社 | 波長変換体及びその製造方法、並びに波長変換体を用いた発光装置 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015098814A1 (ja) * | 2013-12-26 | 2015-07-02 | 電気化学工業株式会社 | 蛍光体及び発光装置 |
US10290779B2 (en) * | 2016-12-15 | 2019-05-14 | Panasonic Intellectual Property Management Co., Ltd. | Light emitting element |
EP3775101A1 (en) * | 2018-04-06 | 2021-02-17 | Lumileds LLC | Luminescent materials |
CN109285937B (zh) * | 2018-08-16 | 2020-03-20 | 佛山市国星光电股份有限公司 | Led白光器件及其制备方法、led背光模组 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05152609A (ja) | 1991-11-25 | 1993-06-18 | Nichia Chem Ind Ltd | 発光ダイオード |
JPH0799345A (ja) | 1993-09-28 | 1995-04-11 | Nichia Chem Ind Ltd | 発光ダイオード |
JP2927279B2 (ja) | 1996-07-29 | 1999-07-28 | 日亜化学工業株式会社 | 発光ダイオード |
WO2005019376A1 (ja) | 2003-08-22 | 2005-03-03 | National Institute For Materials Science | 酸窒化物蛍光体と発光器具 |
JP2007326914A (ja) | 2006-06-06 | 2007-12-20 | Sharp Corp | 酸窒化物蛍光体および発光装置 |
WO2013069693A1 (ja) * | 2011-11-07 | 2013-05-16 | 独立行政法人物質・材料研究機構 | 蛍光体、その製造方法、発光装置および画像表示装置 |
JP2013194078A (ja) * | 2012-03-16 | 2013-09-30 | National Institute For Materials Science | 蛍光体、その製造方法、発光装置および画像表示装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10147040A1 (de) * | 2001-09-25 | 2003-04-24 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Beleuchtungseinheit mit mindestens einer LED als Lichtquelle |
JP5294245B2 (ja) | 2008-01-18 | 2013-09-18 | 独立行政法人物質・材料研究機構 | 蛍光体とその製造方法および発光器具 |
JP4825923B2 (ja) * | 2010-08-18 | 2011-11-30 | 株式会社東芝 | 赤色蛍光体およびそれを用いた発光装置 |
EP2610323B1 (en) * | 2010-08-27 | 2014-10-08 | National Institute for Materials Science | Phosphor, lighting fixture, and image display device |
-
2014
- 2014-11-21 WO PCT/JP2014/080974 patent/WO2015080062A1/ja active Application Filing
- 2014-11-21 US US15/038,836 patent/US9909060B2/en active Active
- 2014-11-21 JP JP2015550912A patent/JP6057231B2/ja active Active
- 2014-11-21 EP EP14865555.8A patent/EP3075814B1/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05152609A (ja) | 1991-11-25 | 1993-06-18 | Nichia Chem Ind Ltd | 発光ダイオード |
JPH0799345A (ja) | 1993-09-28 | 1995-04-11 | Nichia Chem Ind Ltd | 発光ダイオード |
JP2927279B2 (ja) | 1996-07-29 | 1999-07-28 | 日亜化学工業株式会社 | 発光ダイオード |
WO2005019376A1 (ja) | 2003-08-22 | 2005-03-03 | National Institute For Materials Science | 酸窒化物蛍光体と発光器具 |
JP2007326914A (ja) | 2006-06-06 | 2007-12-20 | Sharp Corp | 酸窒化物蛍光体および発光装置 |
WO2013069693A1 (ja) * | 2011-11-07 | 2013-05-16 | 独立行政法人物質・材料研究機構 | 蛍光体、その製造方法、発光装置および画像表示装置 |
JP2013194078A (ja) * | 2012-03-16 | 2013-09-30 | National Institute For Materials Science | 蛍光体、その製造方法、発光装置および画像表示装置 |
Non-Patent Citations (2)
Title |
---|
JEKABS GRINS, JOURNAL OF MATERIALS CHEMISTRY, vol. 5, November 1995 (1995-11-01), pages 2001 - 2006 |
See also references of EP3075814A4 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018095784A (ja) * | 2016-12-15 | 2018-06-21 | 国立研究開発法人物質・材料研究機構 | 蛍光体、その製造方法及びそれを用いた発光装置 |
WO2018225424A1 (ja) * | 2017-06-06 | 2018-12-13 | パナソニックIpマネジメント株式会社 | 波長変換体及びその製造方法、並びに波長変換体を用いた発光装置 |
JPWO2018225424A1 (ja) * | 2017-06-06 | 2020-04-02 | パナソニックIpマネジメント株式会社 | 波長変換体及びその製造方法、並びに波長変換体を用いた発光装置 |
US11566175B2 (en) | 2017-06-06 | 2023-01-31 | Panasonic Intellectual Property Management Co., Ltd. | Wavelength converter and method for producing thereof, and light emitting device using the wavelength converter |
Also Published As
Publication number | Publication date |
---|---|
JP6057231B2 (ja) | 2017-01-11 |
JPWO2015080062A1 (ja) | 2017-03-16 |
US9909060B2 (en) | 2018-03-06 |
EP3075814A1 (en) | 2016-10-05 |
US20170037313A1 (en) | 2017-02-09 |
EP3075814B1 (en) | 2018-02-21 |
EP3075814A4 (en) | 2016-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101610565B1 (ko) | 형광체 및 제조 방법, 형광체를 사용하는 발광 장치 및 화상 표시 장치 | |
JP5713305B2 (ja) | 蛍光体、その製造方法、発光装置および画像表示装置 | |
US9534171B2 (en) | Phosphor, method for producing same, light emitting device, and image display device | |
JP6083881B2 (ja) | 蛍光体、その製造方法、発光装置、画像表示装置、顔料および紫外線吸収剤 | |
JP5885175B2 (ja) | 蛍光体およびその製造方法、蛍光体を用いた発光装置、画像表示装置、顔料および紫外線吸収剤 | |
JP6057213B2 (ja) | 蛍光体、その製造方法、発光装置および画像表示装置 | |
JP6061332B2 (ja) | 蛍光体、その製造方法、発光装置および画像表示装置 | |
JP6040500B2 (ja) | 蛍光体、その製造方法、発光装置および画像表示装置 | |
JP6057231B2 (ja) | 蛍光体、発光装置、画像表示装置、顔料および紫外線吸収剤 | |
JP2017210529A (ja) | 蛍光体、その製造方法、発光装置、画像表示装置、顔料、および、紫外線吸収剤 | |
JP5920773B2 (ja) | 蛍光体、その製造方法、発光装置および画像表示装置 | |
JP2015078317A (ja) | 蛍光体、その製造方法、発光装置、画像表示装置、顔料、および、紫外線吸収剤 | |
JP2017179018A (ja) | 蛍光体、その製造方法、発光装置、画像表示装置、顔料および紫外線吸収剤 | |
WO2022244523A1 (ja) | 蛍光体、その製造方法、発光素子および発光装置 | |
JP6099089B2 (ja) | 酸窒化物蛍光体と発光器具 | |
JP2015000965A (ja) | 蛍光体、その製造方法、発光装置、画像表示装置、顔料、および、紫外線吸収剤 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14865555 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015550912 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15038836 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2014865555 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014865555 Country of ref document: EP |