WO2015079916A1 - Single-cylinder sohc engine and rocker arm for single-cylinder sohc engine - Google Patents

Single-cylinder sohc engine and rocker arm for single-cylinder sohc engine Download PDF

Info

Publication number
WO2015079916A1
WO2015079916A1 PCT/JP2014/079966 JP2014079966W WO2015079916A1 WO 2015079916 A1 WO2015079916 A1 WO 2015079916A1 JP 2014079966 W JP2014079966 W JP 2014079966W WO 2015079916 A1 WO2015079916 A1 WO 2015079916A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake
exhaust
cam
valve
camshaft
Prior art date
Application number
PCT/JP2014/079966
Other languages
French (fr)
Japanese (ja)
Inventor
航介 土居
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to JP2015550639A priority Critical patent/JP6058158B2/en
Priority to TW103140853A priority patent/TWI541430B/en
Publication of WO2015079916A1 publication Critical patent/WO2015079916A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/08Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for decompression, e.g. during starting; for changing compression ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/18Rocking arms or levers
    • F01L1/181Centre pivot rocking arms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • F01L2001/0535Single overhead camshafts [SOHC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L2013/10Auxiliary actuators for variable valve timing
    • F01L2013/108Centrifugal force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines

Definitions

  • the present invention relates to a single cylinder SOHC engine having a rocker arm and a rocker arm for a single cylinder SOHC engine.
  • the engine includes a cylinder body having a cylinder hole, a cylinder head fixed to the cylinder body, and a piston slidably fitted in the cylinder hole and connected to the crankshaft.
  • the cylinder head is formed with an intake passage and an exhaust passage that allow a combustion chamber formed between the cylinder head and the piston to communicate with the outside.
  • An intake valve and an exhaust valve are disposed at the open ends of the intake passage and the exhaust passage on the combustion chamber side, respectively.
  • the intake valve and the exhaust valve are opened and closed by a valve operating device. This valve operating device is arranged in the cylinder head.
  • a single cylinder engine is an engine having only one cylinder hole.
  • a single-cylinder engine is provided with a so-called SOHC (Single OverHead Camshaft) type valve gear that drives an intake valve and an exhaust valve with a single camshaft in order to reduce the size of the engine (for example, Patent Document 1). reference).
  • SOHC Single OverHead Camshaft
  • the SOHC type valve gear includes a camshaft provided with an intake cam and an exhaust cam, an intake rocker arm that is pressed and rocked by the intake cam and presses the intake valve in a direction to open, and an exhaust And an exhaust rocker arm that is oscillated by being pressed by the cam, and that presses the exhaust valve in the opening direction.
  • the intake and exhaust rocker arms are rotatably supported by intake and exhaust rocker shafts arranged in parallel across the camshaft.
  • a single-cylinder SOHC engine often uses a roller rocker arm in which a roller is provided at a contact portion with a cam (see, for example, Patent Document 1).
  • valve gears are provided with a decompression mechanism for releasing the compression pressure at the start of the engine and improving the startability (see, for example, Patent Document 1).
  • the decompression mechanism is disposed on the camshaft.
  • the decompression mechanism of Patent Document 1 includes a decompression weight that swings due to centrifugal force generated by rotation of a camshaft, and a decompression cam that swings in conjunction with the decompression weight.
  • valve gears include a variable valve timing mechanism for changing the opening / closing timing of an intake valve or an exhaust valve (see, for example, Patent Document 1).
  • the variable valve timing mechanism has an actuator attached to the wall of the cylinder head.
  • the actuator has a rod that can advance and retract in the axial direction of the camshaft.
  • the engine of Patent Document 1 has two intake rocker arms and two intake cams, and the two intake rocker arms are formed with holes penetrating in the axial direction of the camshaft.
  • the actuator rod presses the connecting pin accommodated in the hole of one intake rocker arm and pushes it into the hole of the other intake rocker arm by the operation of the actuator. .
  • the actuator of such a variable valve timing mechanism is disposed on the rocker shaft when viewed from the cylinder axial direction.
  • the roller of the roller rocker arm rolls against the cam. Therefore, in order to ensure the rolling fatigue strength on the cam side, it is necessary to increase the axial width of the cam shaft of the roller and the cam to some extent. Further, since the roller is supported by both ends, the tip of the roller rocker arm on the cam side is longer than the roller alone in the axial direction of the camshaft. Therefore, in a single-cylinder SOHC engine provided with a roller rocker arm, the cylinder head is likely to increase in size in the axial direction of the camshaft.
  • an object of the present invention is to provide a single-cylinder SOHC engine that can reduce the size of the engine by increasing the degree of freedom in engine design while suppressing an increase in mechanical loss.
  • the single cylinder SOHC engine of the present invention includes a cylinder body portion having a single cylinder hole, a cylinder head portion that covers one end opening of the cylinder hole and forms at least a part of a combustion chamber, and the cylinder head portion.
  • a camshaft provided and rotatable, wherein at least one intake cam and at least one exhaust cam are provided side by side in the rotation axis direction, and each is arranged in parallel with the camshaft;
  • An intake cam arm portion that touches and is pressed by the intake cam, and an intake valve arm that protrudes from the intake boss portion and has an end portion that contacts the intake valve and presses the intake valve in the opening direction.
  • At least one intake rocker arm swingable about a central axis of the intake rocker shaft, an exhaust boss supported by the exhaust rocker shaft, and protruding from the exhaust boss
  • the exhaust cam arm portion that contacts the exhaust cam and is pressed by the exhaust cam, protrudes from the exhaust boss portion, the end portion contacts the exhaust valve, and opens the exhaust valve
  • the intake rocker arm is integrally formed with the intake cam arm portion, and the width thereof is smaller than the width of the end portion of the intake cam arm portion close to the intake boss portion in the rotation axis direction.
  • the width is formed smaller than the width of the end portion of the exhaust cam arm portion close to the exhaust boss portion, and the friction coefficient is lower than that of the base material and the coating has a high hardness.
  • an exhaust sliding surface provided so as to be aligned with the intake sliding surface of the intake rocker arm and the rotational axis of the camshaft.
  • the intake rocker arm includes an intake boss portion supported by the intake rocker shaft, an intake cam arm portion that protrudes from the intake boss portion, contacts the intake cam, and is pressed by the intake cam, and an intake boss And an intake valve arm portion that protrudes from the portion and has an end portion that contacts the intake valve and presses the intake valve in the opening direction.
  • the intake rocker arm is integrally formed with the intake cam arm portion, and has an intake sliding surface that slides on the intake cam through a coating having a lower coefficient of friction and higher hardness than the base material.
  • the exhaust rocker arm includes an exhaust boss supported by the exhaust rocker shaft, an exhaust cam arm that protrudes from the exhaust boss, contacts the exhaust cam, and is pressed by the exhaust cam; And an exhaust valve arm portion that protrudes from the boss portion and has an end portion that contacts the exhaust valve and presses the exhaust valve in the opening direction.
  • the exhaust rocker arm is integrally formed with the exhaust cam arm portion, and has an exhaust sliding surface that slides on the exhaust cam through a coating having a lower friction coefficient and higher hardness than the base material.
  • the intake rocker arm and the exhaust rocker arm may be collectively referred to as a rocker arm.
  • Other names with “for intake” and “for exhaust” may also be collectively referred to.
  • the sliding surface of the cam arm portion and the cam slide through the film.
  • This coating has a lower coefficient of friction than the substrate of the sliding surface. Therefore, the coefficient of friction between the coating and the surface sliding with the coating is small.
  • the rocker arm can be reduced in weight, and as a result, mechanical loss can be reduced.
  • the contact surface pressure between the sliding surface and the cam increases. An increase in contact surface pressure leads to an increase in frictional force.
  • the friction coefficient between the contact surfaces is reduced by the coating.
  • the width of the sliding shaft in the rotational axis direction of the camshaft is reduced, the mechanical force due to the increase in the frictional force is increased. Increase in loss can be suppressed.
  • the width of the cam shaft at the end of the cam arm near the boss in the rotational axis direction is determined by the magnitude of the force applied to the rocker arm, and does not become extremely large. Therefore, in the rotation axis direction of the cam shaft, the width of the sliding surface of the cam arm portion is made smaller than the width of the end portion close to the boss portion of the cam arm portion, so that the width of the sliding surface can be reduced. It can be made smaller than the width of the end portion on the side.
  • the width of the intake sliding surface and the exhaust sliding surface in the rotational axis direction of the camshaft is set to the width of the cam-side end portion of the conventional rocker arm. Can be smaller.
  • the width of the intake sliding surface and the exhaust sliding surface in the direction of the rotation axis of the camshaft space can be secured accordingly.
  • the intake sliding surface and the exhaust sliding surface are provided side by side in the rotational axis direction of the camshaft. Therefore, secure a wide space between the intake sliding surface and the exhaust sliding surface, or widen the space outside the camshaft rotation axis direction of the intake sliding surface and the exhaust sliding surface. Can do.
  • the design freedom of an engine can be raised.
  • the engine can be downsized by reducing the width of the camshaft in the rotational axis direction and reducing the length of the camshaft.
  • a single-cylinder engine comprising at least one intake rocker arm and at least one exhaust rocker arm is A small margin of interior space compared to a multi-cylinder engine.
  • the single cylinder engine it is effective to reduce the size of the engine to secure the internal space and improve the design freedom. Also, many devices equipped with a single cylinder engine have a small space outside the engine. Therefore, this space can be effectively utilized by reducing the size of the single cylinder engine and increasing the space outside the engine.
  • a film having a lower coefficient of friction and higher hardness than the base material of the sliding surface is interposed between the sliding surface of the rocker arm and the cam, so that there is a gap between the sliding surface of the rocker arm and the cam. Can prevent seizing.
  • the sliding surface for intake and the sliding surface for exhaust are in the direction of the central axis of the cylinder hole with respect to the camshaft when viewed from the rotational axis of the camshaft. It is preferable to be provided in one direction.
  • the intake sliding surface and the exhaust sliding surface have a small width in the rotational axis direction of the camshaft and are aligned in the rotational axis direction of the camshaft.
  • the sliding surface for intake and the sliding surface for exhaust are provided in one direction in the direction of the central axis of the cylinder hole with respect to the camshaft as viewed from the rotational axis direction of the camshaft. Therefore, the intake sliding surface and the exhaust sliding surface can be arranged in a small space. This facilitates securing a large space in the engine. Therefore, the degree of freedom in engine design can be further improved, and the engine can be further downsized.
  • the rotational axis direction of the camshaft is a left-right direction
  • one of the intake rocker shaft and the exhaust rocker shaft is provided above the camshaft, and the other is
  • the intake sliding surface and the exhaust sliding surface are provided below the camshaft, and are provided between the intake rocker shaft and the exhaust rocker shaft when viewed from the central axis direction of the cylinder hole.
  • both are preferably provided in front of or behind the camshaft.
  • the intake sliding surface and the exhaust sliding surface have a small width in the rotation axis direction (left-right direction) of the camshaft and are aligned in the rotation axis direction of the camshaft.
  • the intake sliding surface and the exhaust sliding surface are provided between the intake rocker shaft and the exhaust rocker shaft when viewed from the direction of the center axis of the cylinder hole, both of which are in front of or behind the camshaft. Placed in. Therefore, the intake sliding surface and the exhaust sliding surface can be arranged in a small space.
  • one of the intake rocker shaft and the exhaust rocker shaft is provided above the camshaft, and the other is provided below the camshaft. Therefore, it is easy to narrow the distance between the intake sliding surface and the exhaust sliding surface in the left-right direction. These make it easy to secure a large space in the engine. Therefore, the engine design freedom can be further improved, and the engine can be further downsized.
  • the intake cam arm portion when the rotation axis direction of the camshaft is a left-right direction, the intake cam arm portion is vertically moved from the intake boss portion when viewed from the center axis direction of the cylinder hole.
  • the exhaust cam arm portion protrudes vertically from the exhaust boss portion, and the intake sliding surface and the exhaust sliding surface are provided so as to be aligned in the left-right direction.
  • the intake cam arm portion and the exhaust cam arm portion protrude from the intake boss portion and the exhaust boss portion in the vertical direction perpendicular to the rotation axis direction (left-right direction) of the camshaft. Therefore, when the intake sliding surface and the exhaust sliding surface are both arranged in front or rear of the camshaft, one is arranged above the camshaft, and the other is arranged below the camshaft, It is easy to narrow the distance between the intake sliding surface and the exhaust sliding surface in the left-right direction. This facilitates securing a large space in the engine. Therefore, the degree of freedom in engine design can be further improved, and the engine can be further downsized.
  • the intake cam arm portion and the exhaust cam arm portion have a hole penetrating in the rotation axis direction of the cam shaft.
  • the intake cam arm portion and the exhaust cam arm portion have holes penetrating in the rotation axis direction of the cam shaft. Accordingly, the intake rocker arm and the exhaust rocker arm can be reduced in weight. The mechanical loss can be reduced by reducing the weight, while maintaining the strength of the intake cam arm and exhaust cam arm, while increasing the width of the intake sliding surface and exhaust sliding surface in the rotation axis direction of the camshaft. Can be small. As a result, the degree of freedom in engine design can be further improved, and the engine can be further downsized.
  • the intake cam arm portion is formed such that a width of an end portion close to the intake boss portion is maximized in a width in a rotation axis direction of the cam shaft.
  • the cam arm portion is preferably formed so that the width of the end portion close to the exhaust boss portion is maximized in the width of the cam shaft in the rotation axis direction.
  • the intake cam has a width smaller than a width of an end portion of the intake cam arm portion close to the intake boss portion in the rotation axis direction of the camshaft, and the exhaust cam.
  • the cam preferably has a width smaller than a width of an end portion of the exhaust cam arm portion close to the exhaust boss portion in a rotation axis direction of the cam shaft.
  • the intake cam and the exhaust cam have a small width in the rotation axis direction of the camshaft, a space can be secured in the vicinity of the camshaft without increasing the size of the engine. Further, by arranging the cams close to each other, a large space can be secured in the outer peripheral portion of the camshaft without increasing the size of the engine. By securing such a space, the degree of freedom in designing the engine can be further improved, so that the engine can be further downsized. Further, since the width of the cam shaft of the intake cam and the exhaust cam in the rotation axis direction is small, the engine can be downsized by shortening the length of the cam shaft.
  • the single-cylinder SOHC engine of the present invention further includes a spark plug provided in the cylinder head portion so that a tip portion faces the combustion chamber, and a part of the spark plug is disposed on the rotation axis of the camshaft. It is preferable that
  • the spark plug is provided in the cylinder head portion so that a part of the spark plug is located on the rotation axis of the camshaft. Since the intake cam and the exhaust cam have a small width in the rotation axis direction of the camshaft, the length of the camshaft can be shortened. By shortening the length of the camshaft, the wall on which the ignition plug of the cylinder head portion is provided can be shifted to the inside of the cylinder head portion. Thereby, the space used when maintaining a spark plug is securable.
  • the intake valve and the exhaust valve each have a valve shaft portion and a valve umbrella portion connected to a tip end of the valve shaft, and the intake sliding surface and It is preferable that the exhaust sliding surface has a width in the rotation axis direction of the camshaft that is smaller than a minimum diameter of the valve shaft portion of the intake valve and the exhaust valve.
  • the diameters of the valve shafts of the intake and exhaust valves are determined by the magnitude of the force that the intake and exhaust valves receive from the camshaft and do not become extremely large. According to the above configuration, the width of the intake sliding surface and the exhaust sliding surface in the rotation axis direction of the camshaft is only smaller than the width of the end portions near the boss portions of the intake cam arm portion and the exhaust cam arm portion. It is smaller than the minimum diameter of the valve shaft. Therefore, when the diameter of the valve shaft portion is smaller than the width of the end portions close to the boss portions of the intake cam arm portion and the exhaust cam arm portion, the design freedom of the engine is further improved and the engine can be further downsized. .
  • the decompression mechanism mounted on the camshaft. According to this configuration, the decompression mechanism can be arranged while suppressing the enlargement of the engine.
  • the single-cylinder SOHC engine of the present invention includes a variable valve timing mechanism that includes a plurality of at least one of the intake rocker arm and the exhaust rocker arm, and includes an actuator having a rod arranged in parallel with the camshaft. It is preferable. According to this configuration, the variable valve timing mechanism can be arranged while suppressing an increase in size of the engine.
  • the intake boss portion and the exhaust boss portion are rotatably supported by the intake rocker shaft and the exhaust rocker shaft, respectively,
  • a coating having a lower coefficient of friction and a higher hardness than the base material is formed on at least a portion of the outer peripheral surface of the exhaust rocker shaft that contacts the intake boss and the exhaust boss. preferable.
  • a coating film having a lower coefficient of friction and higher hardness than the base material is formed on at least a portion of the outer peripheral surface of the rocker shaft that contacts the boss portion.
  • a coating having a lower coefficient of friction and higher hardness than the base material is formed on the surface of the end of the intake valve arm that presses the intake valve. It is preferable that a coating film having a lower friction coefficient and higher hardness than the base material is formed on the surface of the end portion of the exhaust valve arm portion that presses the exhaust valve.
  • a film having a lower friction coefficient and higher hardness than the base material is formed on the surface of the end portion of the valve arm portion of the rocker arm that presses the valve.
  • the intake shim disposed between the intake valve arm portion and the intake valve, and the exhaust valve arm portion and the exhaust valve are disposed. It is preferable that an exhaust shim is provided, and a film having a lower friction coefficient and higher hardness than the base material is formed on the surfaces of the intake shim and the exhaust shim.
  • a film having a lower friction coefficient and higher hardness than the base material is formed on the surface of the shim disposed between the valve arm portion and the valve.
  • the coating having a lower coefficient of friction and higher hardness than the base material of the intake sliding surface is formed on at least one of the intake sliding surface and the intake cam. It is preferable that at least one of the exhaust sliding surface and the intake cam is formed with the coating film having a lower friction coefficient and higher hardness than the base material of the exhaust sliding surface.
  • the rocker arm for a single cylinder SOHC engine of the present invention is the intake rocker arm or the exhaust rocker arm used in the single cylinder SOHC engine of the present invention, wherein the intake sliding surface or the exhaust sliding surface. Furthermore, the coating film having a lower friction coefficient and higher hardness than the base material is formed.
  • FIG. 1 is a side view showing a partial cross section of an engine unit to which a single cylinder SOHC engine according to an embodiment of the present invention is applied. It is the elements on larger scale of Drawing 1, and is a sectional view of a single cylinder SOHC engine. It is sectional drawing of the single cylinder SOHC engine in FIG.
  • FIG. 2 is a view of the single-cylinder SOHC engine shown in FIG. 1 as viewed from the cylinder cover side with the cylinder cover and a reinforcing plate removed. It is sectional drawing of the single cylinder engine which concerns on other embodiment of this invention. It is sectional drawing of the single cylinder engine which concerns on other embodiment of this invention.
  • FIG. 7 is a view of the single cylinder SOHC engine shown in FIG. 6 viewed from the cylinder cover side with the cylinder cover and the reinforcing plate removed. It is the figure which looked at the rocker arm which concerns on other embodiment of this invention from the center axis line direction of the cylinder hole.
  • FIG. 1 discloses a swing type engine unit 1 used in, for example, a scooter type motorcycle.
  • the engine unit 1 includes a single-cylinder SOHC engine 2 and a transmission case 3 that also serves as a swing arm.
  • the single cylinder SOHC engine 2 is a water-cooled four-cycle engine.
  • the front-rear direction is the vehicle front-rear direction viewed from the rider seated on the motorcycle seat
  • the left-right direction is the vehicle left-right direction viewed from the rider seated on the seat ( (Width direction of the vehicle).
  • the arrow F direction and the arrow B direction of each drawing represent the front and the rear
  • the arrow L direction and the arrow R direction represent the left side and the right side
  • the arrow U direction and the arrow D direction are Represents the top and bottom.
  • the transmission case 3 extends rearward from the single cylinder SOHC engine 2.
  • the transmission case 3 incorporates a V-belt type automatic transmission 4, and a rear wheel (not shown) driven by the V-belt type automatic transmission 4 is supported at the rear end portion of the transmission case 3. .
  • the single-cylinder SOHC engine 2 has a crankcase 5, a cylinder body portion 6, and a cylinder head portion 7 that are integrated with the transmission case 3.
  • the crankcase 5 accommodates the crankshaft 8.
  • the crankshaft 8 is horizontally disposed along the width direction (left-right direction) of the motorcycle body, and one end of the crankshaft 8 is connected to the input end of the V-belt type automatic transmission 4 via an automatic centrifugal clutch. It is connected to.
  • a cylinder hole 9 is formed in the cylinder body 6.
  • a piston 10 is accommodated in the cylinder hole 9.
  • a central axis C1 of the cylinder hole 9 extends in the front-rear direction.
  • the piston 10 is connected to the crankshaft 8 via a connecting rod 11.
  • the cylinder body 6 protrudes substantially horizontally from the crankcase 5 toward the front.
  • the cylinder head portion 7 covers the front opening of the cylinder hole 9.
  • the cylinder head portion 7 has a recess 12 on the surface facing the cylinder hole 9.
  • a combustion chamber 13 is formed between the recess 12 and the piston 10.
  • the cylinder head portion 7 includes two intake passages 14 (only one is shown in FIG. 2) that opens to the combustion chamber 13 and a single exhaust passage 15 that opens to the combustion chamber 13.
  • the two intake passages 14 are formed to extend forward and upward from two intake ports 14a (only one is shown in FIG. 2) formed in the recess 12.
  • the two air inlets 14a are formed side by side in the left-right direction.
  • the exhaust passage 15 is formed to extend forward and downward from an exhaust port 15 a formed in the recess 12.
  • the two intake ports 14a are opened and closed by two intake valves 16 (only one is shown in FIG. 2).
  • the intake valve 16 includes a valve umbrella portion 16a that opens and closes the intake port 14a, and a valve shaft portion 16b that extends forward and upward from the valve umbrella portion 16a.
  • the valve shaft portion 16 b is supported by the cylinder head portion 7 via the valve guide 17.
  • the two valve shaft portions 16b are arranged in parallel in the left-right direction.
  • the ignition plug 68 is attached to the cylinder head portion 7.
  • the tip of the spark plug 68 is disposed facing the combustion chamber 13.
  • the spark plug 68 is inserted into the combustion chamber 13 from the outer surface of the single cylinder SOHC engine 2.
  • a spring retainer 21 is attached to the front end of the valve shaft 16b.
  • the front end portion of the valve shaft portion 16b is fitted into the hole in the center portion of the spring retainer 21.
  • An intake spring 22 is interposed between the outer peripheral portion of the spring retainer 21 and the cylinder head portion 7. The intake valve 16 is urged by an intake spring 22 in a direction to close the intake port 14a.
  • the exhaust port 15 a is opened and closed by an exhaust valve 18.
  • the exhaust valve 18 includes a valve umbrella portion 18a that opens and closes the exhaust port 15a, and a valve shaft portion 18b that extends forward and downward from the valve umbrella portion 18a.
  • the valve shaft portion 18 b is supported by the cylinder head portion 7 via the valve guide 19.
  • a spring retainer 23 is attached to the front end portion of the valve shaft portion 18b.
  • the front end portion of the valve shaft portion 18 b is fitted in the hole in the center portion of the spring retainer 23.
  • An exhaust spring 24 is interposed between the outer peripheral portion of the spring retainer 23 and the cylinder head portion 7. The exhaust valve 18 is biased by the exhaust spring 24 in a direction to close the exhaust port 15a.
  • the minimum diameter of the valve shaft portion 16b of the intake valve 16 and the minimum diameter of the valve shaft portion 18b of the exhaust valve 18 are substantially the same.
  • the cylinder head portion 7 has outer walls 25a, 25b, 25c, and 25d.
  • the first outer wall 25 a forms the right surface of the cylinder head portion 7
  • the second outer wall 25 b forms the left surface of the cylinder head portion 7.
  • the first outer wall 25a and the second outer wall 25b face each other in the left-right direction.
  • the third outer wall 25 c forms the upper surface of the cylinder head portion 7, and the fourth outer wall 25 d forms the lower surface of the cylinder head portion 7.
  • the third outer wall 25c and the fourth outer wall 25d face each other in the vertical direction.
  • a valve operating chamber 26 is formed with the front opened.
  • a detachable head cover 27 is attached to the front end portion of the cylinder head portion 7. The head cover 27 covers the open end of the valve operating chamber 26.
  • the spark plug 68 described above is attached to the first outer wall 25a.
  • the first outer wall 25 a is formed in a concave shape protruding toward the inside of the valve operating chamber 26. In the vertical direction, the spark plug 68 is disposed at the same position as the concave portion of the first outer wall 25a.
  • the spark plug 68 is connected to a boss portion 43 of the cam arm portion 44 of the intake rocker arm 32 described later and a cam arm portion 54 of the exhaust rocker arm 33 described later. Between the boss portion 53 and the connecting portion.
  • the spark plug 68 is positioned between a center axis C3 of an intake rocker shaft 34, which will be described later, and a center axis C4 of an exhaust rocker shaft 35, which will be described later, when viewed from the direction of the center axis C1 of the cylinder hole 9. ing.
  • the spark plug 68 is located between the central axes C3 and C4 in the vertical direction. Further, a part of the spark plug 68 is disposed on a rotation axis C2 of the cam shaft 31 described later.
  • the cylinder head portion 7 has a support wall 28 inside the valve operating chamber 26.
  • the support wall 28 is connected to the third outer wall 25c, and is disposed between the first outer wall 25a and the second outer wall 25b.
  • the valve shaft portion 16 b of the intake valve 16 and the valve shaft portion 18 b of the exhaust valve 18 are located between the first outer wall 25 a and the support wall 28.
  • the valve operating chamber 26 houses a valve operating device 30 that opens and closes the intake valve 16 and the exhaust valve 18.
  • the valve gear 30 includes a camshaft 31, an intake rocker arm 32, an exhaust rocker arm 33, an intake rocker shaft 34, and an exhaust rocker shaft 35.
  • the exhaust rocker arm 33 shows only the cut end face, and the exhaust rocker shaft 35 is not shown.
  • the camshaft 31 is rotatably supported by the cylinder head portion 7. As shown in FIG. 3, one end portion (right end portion) of the camshaft 31 is rotatably supported with respect to the first outer wall 25 a via a bearing 36. The other end portion (left end portion) of the camshaft 31 is rotatably supported with respect to the support wall 28 via a bearing 37.
  • the camshaft 31 is disposed horizontally along the width direction (left-right direction) of the vehicle body.
  • the other end portion (left end portion) of the camshaft 31 is disposed to the left of the support wall 28, and a sprocket (or pulley) 38 is fixed thereto.
  • a chain (or belt) 39 is bridged between the sprocket 38 and a sprocket (not shown) provided on the crankshaft 8.
  • the camshaft 31 is provided with an intake cam 40 and an exhaust cam 41 side by side in the left-right direction (the direction of the rotation axis C2 of the camshaft 31).
  • a coating (not shown) similar to the coating 62 described later is formed on the outer peripheral surfaces of the intake cam 40 and the exhaust cam 41.
  • the coating may be formed not only on the outer peripheral surfaces of the intake cam 40 and the exhaust cam 41 but also on the axial end surfaces.
  • the camshaft 31 is formed with an oil passage that opens to the outer peripheral surfaces of the intake cam 40 and the exhaust cam 41.
  • the intake rocker shaft 34 is provided on the front upper side of the camshaft 31.
  • the intake rocker shaft 34 is in parallel with the camshaft 31.
  • the intake rocker shaft 34 is supported by the cylinder head portion 7 so as not to rotate.
  • one end portion (right end portion) of the intake rocker shaft 34 is supported by a bearing portion 42 that protrudes from the first outer wall 25 a to the valve operating chamber 26.
  • the other end (left end) of the intake rocker shaft 34 is supported by the support wall 28.
  • a film (not shown) similar to the film 62 described later is formed on the outer peripheral surface of the intake rocker shaft 34.
  • the intake rocker arm 32 is swingably supported by the intake rocker shaft 34.
  • the intake rocker arm 32 includes a cylindrical boss portion 43 (intake boss portion of the present invention), a cam arm portion 44 (intake cam arm portion of the present invention), and two valve arm portions. 45A and 45B (see FIG. 4 for 45A). Each of the two valve arm portions 45A and 45B corresponds to an intake valve arm portion of the present invention.
  • the intake rocker shaft 34 passes through the boss portion 43.
  • the boss portion 43 is supported so as to be swingable with respect to the intake rocker shaft 34 and to be slidable in the axial direction (left-right direction).
  • the intake rocker arm 32 is formed by integral molding.
  • the cam arm portion 44 projects downward from the outer peripheral surface of the boss portion 43.
  • the cam arm portion 44 is formed with a hole 47 penetrating in the left-right direction (the direction of the rotational axis C2 of the camshaft 31).
  • the cam arm portion 44 is connected to two locations separated in the circumferential direction of the outer peripheral portion of the boss portion 43.
  • a sliding surface 46 (sliding surface for intake of the present invention) is formed at the rear lower end of the cam arm portion 44.
  • the sliding surface 46 slides with the outer peripheral surface of the intake cam 40.
  • the intake rocker arm 32 is pressed by the intake cam 40 and swings around the central axis C ⁇ b> 3 of the intake rocker shaft 34.
  • a coating 62 is formed on the sliding surface 46. Therefore, strictly speaking, the sliding surface 46 has an outer periphery of the intake cam 40 via a coating 62 formed on the sliding surface 46 and a coating (not shown) formed on the outer peripheral surface of the intake cam 40. Sliding with the surface.
  • the coating 62 is formed not only on the sliding surface 46 but also on the surface of the intake rocker arm 32 other than the inner peripheral surface of the boss portion 43. In the partial enlarged view shown in FIG. 3, the thickness of the film 62 is exaggerated.
  • the coating 62 has a lower coefficient of friction and higher hardness than the base material of the intake rocker arm 32 (also the base material of the sliding surface 46).
  • the coating 62 is formed by subjecting the sliding surface 46 to a surface treatment that lowers the coefficient of friction and increases the hardness as compared with the base material.
  • the friction coefficient of the film 62 is lower than the friction coefficient of the surface subjected to the surface treatment with the chromium nitride coating or the sintered material.
  • the coating film 62 has high seizure resistance.
  • the coating 62 is preferably, for example, a carbon-based hard coating, and more specifically DLC (Diamond Like Carbon).
  • DLC has a self-lubricating property that is a characteristic of a graphite structure, and therefore has a low friction coefficient and high seizure resistance.
  • a film made of a chromium nitride coating does not have self-lubricating properties and has a relatively high friction coefficient.
  • DLC has a diamond structure, it has a higher maximum hardness and higher wear resistance than a film formed by chromium nitride coating.
  • the width D1 of the sliding surface 46 of the cam arm 44 in the left-right direction is smaller than the width W of the outer peripheral surface of the intake cam 40 in the left-right direction.
  • the width D1 in the left-right direction of the sliding surface 46 of the cam arm portion 44 is smaller than the minimum diameter of the valve shaft portion 16b of the intake valve 16.
  • the lateral width of the portion other than the sliding surface 46 at the end (the end provided with the sliding surface 46) opposite to the boss 43 of the cam arm 44 is the lateral width D1 of the sliding surface 46. Is almost the same.
  • the cam arm portion 44 In the vicinity of the boss portion 43, the cam arm portion 44 has a width in the left-right direction that is closer to the boss portion 43.
  • the lateral width D2 of the connecting portion 44a of the cam arm portion 44 with the boss portion 43 (the end portion of the cam arm portion 44 close to the boss portion 43) is larger than the lateral width D1 of the sliding surface 46 of the cam arm portion 44.
  • the cam arm portion 44 has the maximum width in the left-right direction at the connecting portion 44 a with the boss portion 43.
  • the width in the left-right direction (the direction of the rotational axis C2 of the camshaft 31) of the connecting portion 44a of the cam arm 44 with the boss 43 is the direction of the central axis C1 of the cylinder hole 9 and This is the length of a straight line connecting inflection points between the curvature of the outer surface (left surface and right surface) in the left-right direction and the curvature of the outer peripheral surface of the boss portion 43 in the left-right direction.
  • the outer peripheral surface of the boss portion 43 extends in the left-right direction.
  • the length of the straight line connecting the boundary positions of the straight line corresponding to the outer peripheral surface of the boss portion 43 and the two curves corresponding to the left and right both surfaces of the cam arm portion 44 Is the width in the left-right direction of the connecting portion 44 a with the boss portion 43 of the cam arm portion 44.
  • the lateral width D2 of the connecting portion 44a of the cam arm portion 44 with the boss portion 43 is larger than the lateral width W of the outer peripheral surface of the intake cam 40 and the minimum diameter of the valve shaft portions 16b and 18b.
  • valve arm portions 45 ⁇ / b> A and 45 ⁇ / b> B protrude upward from the outer peripheral surface of the boss portion 43.
  • the valve arm portions 45A and 45B are formed in a V shape that is separated from each other toward the top (see FIG. 4).
  • each of the valve arm portions 45A and 45B is formed with a hole 48 penetrating in the left-right direction (the direction of the rotation axis C2 of the camshaft 31).
  • the valve arm portions 45 ⁇ / b> A and 45 ⁇ / b> B are connected to two locations separated from each other in the circumferential direction of the outer peripheral portion of the boss portion 43. In one of the two places, the valve arm portions 45 ⁇ / b> A and 45 ⁇ / b> B are connected to the cam arm portion 44.
  • a pressing portion 49 is formed at each end of the valve arm portions 45A and 45B opposite to the boss portion 43.
  • the pressing portion 49 faces the tip of the valve shaft portion 16 b of the intake valve 16.
  • a disk-shaped shim 50 (the intake shim of the present invention) is disposed between each pressing portion 49 of the intake rocker arm 32 and the tip of the valve shaft portion 16b.
  • the shim 50 is for adjusting the tappet clearance.
  • the shim 50 is detachably mounted in the central hole of the spring retainer 21 and is in contact with the pressing portion 49 of the intake rocker arm 32.
  • a film (not shown) similar to the film 62 is formed on the surface of the shim 50. Therefore, the pressing portion 49 contacts the surface of the shim 50 via the coating 62 formed on the pressing portion 49 and the coating formed on the surface of the shim 50.
  • a spring 51 is disposed on the outer periphery of the intake rocker shaft 34 on the left side of the boss 43 of the intake rocker arm 32.
  • the intake rocker arm 32 is biased by the spring 51 toward the first outer wall 25a (that is, to the right). More specifically, the boss portion 43 is pressed against the end surface of the bearing portion 42 of the first outer wall 25a by the spring 51.
  • a thickness gauge is inserted between the pressing portion 49 of the intake rocker arm 32 and the shim 50 to measure the tappet clearance.
  • the operator rocks the intake rocker arm 32 toward the second outer wall 25b against the biasing force of the spring 51.
  • the pressing portion 49 located at the tip of the valve arm portions 45 ⁇ / b> A and 45 ⁇ / b> B is shifted to the side of the shim 50.
  • the shim 50 is taken out using a magnet driver. Thereafter, a new shim 50 is mounted on the spring retainer 21, and then the intake rocker arm 32 is slid to the original position.
  • lubricating oil ejected from an oil passage (not shown) of the camshaft 31 is guided between the boss portion 43 and the intake rocker shaft 34 to the boss portion 43 of the intake rocker arm 32.
  • the oil supply hole is formed.
  • the exhaust rocker shaft 35 is disposed in front of and below the camshaft 31.
  • the exhaust rocker shaft 35 is in parallel with the camshaft 31 and the intake rocker shaft 34.
  • the exhaust rocker shaft 35 is supported by the cylinder head portion 7 so as not to rotate.
  • One end portion (right end portion) of the exhaust rocker shaft 35 is fitted into a bearing portion 52 that protrudes from the first outer wall 25a to the valve operating chamber 26.
  • the other end (left end) of the exhaust rocker shaft 35 is supported by the support wall 28.
  • a film (not shown) similar to the film 62 is formed on the outer peripheral surface of the exhaust rocker shaft 35.
  • the exhaust rocker arm 33 is swingably supported by the exhaust rocker shaft 35.
  • the exhaust rocker arm 33 includes a cylindrical boss 53 (exhaust boss according to the present invention), a cam arm 54 (exhaust cam arm according to the present invention), and a single valve arm 55 (exhaust according to the present invention). Valve arm section).
  • the exhaust rocker shaft 35 passes through the boss portion 53.
  • the boss portion 53 is supported so as to be swingable with respect to the exhaust rocker shaft 35 and to be slidable in the axial direction (left-right direction).
  • the exhaust rocker arm 33 is formed by integral molding.
  • the cam arm portion 54 protrudes upward from the outer peripheral surface of the boss portion 53.
  • the cam arm portion 54 is formed with a hole 57 penetrating in the left-right direction (the direction of the rotation axis C2 of the camshaft 31).
  • the cam arm portion 54 is connected to two locations separated in the circumferential direction of the outer peripheral portion of the boss portion 53.
  • a sliding surface 56 (exhaust sliding surface of the present invention) is formed at the rear upper end of the cam arm portion 54.
  • the sliding surface 56 is aligned with the sliding surface 46 of the intake rocker arm 32 in the left-right direction. As shown in FIG. 4, the sliding surface 56 is located to the left of the sliding surface 46.
  • the sliding surfaces 46 and 56 are provided between the intake rocker shaft 34 and the exhaust rocker shaft 35 when viewed from the front-rear direction (the direction of the central axis C1 of the cylinder hole 9). In other words, the sliding surfaces 46 and 56 are positioned between the intake rocker shaft 34 and the exhaust rocker shaft 35 in the vertical direction. Further, as shown in FIG. 2, when viewed from the left-right direction (the direction of the rotational axis C2 of the camshaft 31), the sliding surfaces 46 and 56 are forward of the camshaft 31 (one direction of the central axis C1 of the cylinder hole 9). ).
  • the sliding surface 56 slides with the outer peripheral surface of the exhaust cam 41.
  • the exhaust rocker arm 33 is pressed by the exhaust cam 41 and swings around the central axis C ⁇ b> 4 of the exhaust rocker shaft 35.
  • a film (not shown) similar to the film 62 is formed on the sliding surface 56. Therefore, strictly speaking, the sliding surface 56 slides with the outer peripheral surface of the exhaust cam 41 via the coating formed on the sliding surface 56 and the coating formed on the outer peripheral surface of the exhaust cam 41.
  • the coating is formed not only on the sliding surface 56 but also on the surface of the exhaust rocker arm 33 other than the inner peripheral surface of the boss portion 53.
  • the lateral width of the sliding surface 56 of the cam arm 54 is smaller than the lateral width of the outer peripheral surface of the exhaust cam 41. Further, the lateral width of the sliding surface 56 of the cam arm portion 54 is smaller than the minimum diameter of the valve shaft portion 18 b of the exhaust valve 18. The lateral width of the portion other than the sliding surface 56 at the end of the cam arm portion 54 opposite to the boss 53 (the end provided with the sliding surface 56) is equal to the lateral width of the sliding surface 56. It is almost the same.
  • the cam arm portion 54 In the vicinity of the boss portion 53, the cam arm portion 54 has a width in the left-right direction that is closer to the boss portion 53.
  • the lateral width of the connecting portion 54a of the cam arm portion 54 with the boss portion 53 is greater than the lateral width of the sliding surface 56 of the cam arm portion 54.
  • the cam arm portion 54 has the maximum width in the left-right direction at the connecting portion 54 a with the boss portion 53.
  • the lateral width of the connecting portion 54a of the cam arm portion 54 with the boss portion 53 is the curvature of the outer surface (left surface and right surface) of the cam arm portion 54 with respect to the lateral direction when viewed from the direction of the central axis C1 of the cylinder hole 9. And the length of a straight line connecting inflection points with the curvature of the outer peripheral surface of the boss portion 53 with respect to the left-right direction.
  • the lateral width of the connecting portion 54a of the cam arm portion 54 with the boss portion 53 is larger than the lateral width of the outer peripheral surface of the exhaust cam 41 and the minimum diameter of the valve shaft portions 16b and 18b.
  • the valve arm portion 55 projects downward from the outer peripheral surface of the boss portion 53.
  • the valve arm 55 is formed with a hole 58 penetrating in the left-right direction.
  • the valve arm portion 55 is connected to two locations separated in the circumferential direction of the outer peripheral portion of the boss portion 53. In one of the two places, the valve arm portion 55 is connected to the cam arm portion 54.
  • a pressing portion 59 is formed at the end of the valve arm portion 55 opposite to the boss portion 53.
  • the pressing portion 59 faces the tip of the valve shaft portion 18b of the exhaust valve 18.
  • a disc-shaped shim 60 (exhaust shim of the present invention) is disposed between the pressing portion 59 of the exhaust rocker arm 33 and the tip of the valve shaft portion 18b.
  • the shim 60 is for adjusting the tappet clearance.
  • the shim 60 is detachably mounted in the central hole of the spring retainer 23 and is in contact with the pressing portion 59 of the exhaust rocker arm 33.
  • a film (not shown) similar to the film 62 is formed on the surface of the shim 60. Therefore, the pressing portion 59 is in contact with the surface of the shim 60 via the coating formed on the pressing portion 59 and the coating formed on the surface of the shim 60.
  • a spring 61 is disposed on the outer periphery of the exhaust rocker shaft 35 on the right side of the boss 53 of the exhaust rocker arm 33.
  • the exhaust rocker arm 33 is urged toward the second outer wall 25b by the spring 61 (that is, to the left). More specifically, the boss portion 53 is pressed against the support wall 28 by the spring 61.
  • lubricating oil ejected from an oil passage (not shown) of the camshaft 31 is guided between the boss portion 53 and the exhaust rocker shaft 35 to the boss portion 53 of the exhaust rocker arm 33.
  • the oil supply hole is formed.
  • a reinforcing plate 65 is fixed to the cylinder head portion 7.
  • the reinforcing plate 65 is disposed across the end surface of the first outer wall 25 a and the end surface of the support wall 28.
  • the reinforcing plate 65 has a substantially square shape, and a substantially square hole is formed in the center of the reinforcing plate 65.
  • a pair of stud bolts 66 protrude from the front end surface of the support wall 28 and the front end surface of the first outer wall 25a (see FIG. 4).
  • the stud bolt 66 passes through holes formed at the four corners of the reinforcing plate 65.
  • a nut 67 is attached to the tip of the stud bolt 66.
  • the single cylinder SOHC engine 2 of the present embodiment has the following features.
  • a coating film (62) is formed on the sliding surfaces 46, 56 of the cam arm portions 44, 54, and a coating film (not shown) similar to the coating film 62 is formed on the outer peripheral surface of the cams 40, 41.
  • This coating has a lower coefficient of friction than the base material of the sliding surfaces 46 and 56. Therefore, the coefficient of friction between the coating and the surface sliding with the coating is small.
  • the width (D2) of the cam shaft 31 in the direction of the rotation axis C2 of the end portions 44a and 54a of the cam arm portions 44 and 54 close to the boss portions 43 and 53 is determined by the magnitude of the force applied to the rocker arms 32 and 33. , None become extremely large. Therefore, in the direction of the rotation axis C2 of the camshaft 31, the width (D1) of the sliding surfaces 46, 56 of the cam arm portions 44, 54 is set to the end portions 44a, 54a close to the boss portions 43, 53 of the cam arm portions 44, 54. By making it smaller than the width (D2), the width (D1) of the sliding surfaces 46, 56 can be made smaller than the width of the end portion on the cam side of the conventional rocker arm.
  • the width (D1) of the sliding surfaces 46 and 56 in the direction of the rotation axis C2 of the camshaft 31 is set to the cam-side end of the conventional rocker arm. Can be smaller than the width of.
  • the width (D1) of the sliding surfaces 46 and 56 in the direction of the rotation axis C2 of the camshaft 31 space can be secured accordingly.
  • the sliding surface 46 and the sliding surface 56 are provided side by side in the rotational axis direction of the camshaft 31. Therefore, it is possible to secure a wide space between the sliding surface 46 and the sliding surface 56, or to widen a space outside the sliding surface 46 and the sliding surface 56 in the direction of the rotation axis C2 of the camshaft 31. it can. Thereby, the design freedom of the engine 2 can be raised. By increasing the degree of design freedom, it becomes easier to devise for downsizing the engine 2. For example, the engine 2 can be downsized by reducing the width of the cams 40 and 41 in the direction of the rotation axis C2 of the camshaft 31 and shortening the length of the camshaft 31.
  • the engine 2 of the present embodiment is a single cylinder engine, the internal space is less than that of a multi-cylinder engine. Therefore, in the engine 2 of the present embodiment, it is effective to reduce the size of the engine 2 to secure the internal space and improve the design freedom. Also, many devices equipped with a single cylinder engine have a small space outside the engine. Therefore, the space can be effectively utilized by downsizing the engine 2 and increasing the space outside the engine 2.
  • a coating (62) having a lower coefficient of friction and higher hardness than the base material of the sliding surfaces 46 and 56 is interposed. Therefore, seizure can be prevented from occurring between the sliding surfaces 46, 56 of the rocker arms 32, 33 and the cams 40, 41.
  • the sliding surface 46 and the sliding surface 56 have a small width in the direction of the rotation axis C2 of the camshaft 31 and are aligned in the direction of the rotation axis C2 of the camshaft 31.
  • the sliding surface 46 and the sliding surface 56 are unidirectional (forward) in the direction of the central axis C1 of the cylinder hole 9 with respect to the camshaft 31 when viewed from the direction of the rotational axis C2 of the camshaft 31.
  • the sliding surface 46 and the sliding surface 56 can be concentrated and arranged in a small space. Thereby, it becomes easy to ensure a large space in the engine 2. Therefore, since the design freedom of the engine 2 can be further improved, the engine 2 can be further downsized.
  • the sliding surface 46 and the sliding surface 56 have a small width in the direction (left-right direction) of the rotation axis C2 of the camshaft 31, and are aligned in the direction of the rotation axis C2 of the camshaft 31.
  • the sliding surface 46 and the sliding surface 56 are provided between the intake rocker shaft 34 and the exhaust rocker shaft 35 when viewed from the direction of the central axis C ⁇ b> 1 of the cylinder hole 9. Placed in front of. Therefore, the sliding surface 46 and the sliding surface 56 can be arranged in a smaller space.
  • an intake rocker shaft 34 is provided above the camshaft 31, and an exhaust rocker shaft 35 is provided below the camshaft 31.
  • the engine 2 can be further downsized.
  • the cam arm portions 44 and 54 protrude from the boss portions 43 and 53 in the vertical direction perpendicular to the direction of the rotation axis C2 (left and right direction) of the camshaft 31. Therefore, it is easy to narrow the distance between the sliding surface 46 and the sliding surface 56 in the left-right direction. Thereby, it becomes easy to ensure a large space in the engine 2. Therefore, since the design freedom of the engine 2 can be further improved, the engine 2 can be further downsized.
  • the cam arm portions 44 and 54 have holes 47 and 57 penetrating in the direction of the rotation axis C2 of the camshaft 31.
  • the rocker arms 32 and 33 can be reduced in weight. Since the mechanical loss can be reduced by reducing the weight, the width of the sliding surface 46, 56 in the direction of the rotation axis C2 of the camshaft 31 can be made smaller while maintaining the strength of the cam arm portions 44, 54. Thereby, since the design freedom of the engine 2 can be further improved, the engine 2 can be further downsized.
  • valve arm portions 45A, 45B, 55 have holes 48, 58 penetrating in the direction of the rotation axis C2 of the camshaft 31.
  • the rocker arms 32 and 33 can be reduced in weight. Since the mechanical loss can be reduced by reducing the weight, the width of the sliding surfaces 46 and 56 in the direction of the rotation axis C2 of the camshaft 31 can be further reduced. Thereby, since the design freedom of the engine 2 can be further improved, the engine 2 can be further downsized.
  • the cams 40 and 41 are smaller in width in the direction of the rotation axis C2 of the cam shaft 31 than the end portions 44a and 54a of the cam arm portions 44 and 54 near the boss portions 43 and 53. Since the cams 40 and 41 have a small width in the direction of the rotation axis C2 of the camshaft 31, a space can be secured in the vicinity of the camshaft 31 without increasing the size of the engine 2. Further, by arranging the cams 40 and 41 close to each other, a large space can be secured in the outer peripheral portion of the cam shaft 31 without increasing the size of the engine 2. By securing such a space, the design freedom of the engine 2 can be further improved, and therefore the engine 2 can be further downsized. Further, since the width of the cams 40 and 41 in the direction of the rotation axis C2 of the camshaft 31 is small, the engine 2 can be downsized by shortening the length of the camshaft 31.
  • the spark plug 68 is provided on the first outer wall 25a of the cylinder head portion 7 so that a part thereof is positioned on the rotation axis C2 of the camshaft 31. Since the cams 40 and 41 have a small width in the direction of the rotational axis C2 of the camshaft 31, the length of the camshaft 31 can be shortened. By shortening the length of the cam shaft 31, the first outer wall 25 a provided with the ignition plug 68 of the cylinder head portion 7 can be shifted to the inside of the cylinder head portion 7. Specifically, in the present embodiment, the depth of the concave portion of the first outer wall 25a can be increased. Thereby, the space used when maintaining the spark plug 68 can be secured.
  • the diameters of the valve shafts 16b and 18b of the valves 16 and 18 are determined by the magnitude of the force that the valves 16 and 18 receive from the camshaft 31, and do not become extremely large.
  • the width of the sliding surfaces 46 and 56 in the direction of the rotation axis C2 of the camshaft 31 is not only smaller than the width of the end portions 44a and 54a close to the boss portions 43 and 53 of the cam arm portions 44 and 54, but also the valve shaft portion 16b. Smaller than the minimum diameter of 18b.
  • the diameters of the valve shaft portions 16b and 18b are smaller than the widths of the end portions 44a and 54a close to the boss portions 43 and 53 of the cam arm portions 44 and 54. Therefore, since the width of the sliding surfaces 46 and 56 in the direction of the rotation axis C2 of the camshaft 31 can be made smaller, the design freedom of the engine 2 is further improved, and the engine 2 can be further downsized.
  • a coating film (not shown) having a lower friction coefficient and higher hardness than the base material is formed on the outer peripheral surfaces of the rocker shafts 34 and 35.
  • a coating (62) having a lower coefficient of friction and higher hardness than the base material is formed on the surfaces of the pressing portions 49 and 59 (end portions of the present invention) that press the valve 16 of the valve arm portions 45 and 55.
  • a coating (62) having a lower coefficient of friction and higher hardness than the base material is formed on the surfaces of the pressing portions 49 and 59 (end portions of the present invention) that press the valve 16 of the valve arm portions 45 and 55.
  • a film (not shown) having a lower friction coefficient and higher hardness than the base material is formed on the surfaces of the shims 50 and 60 disposed between the valve arm portions 45 and 55 and the valves 16 and 18. Yes.
  • the frictional force between the valve arm portions 45 and 55 and the shims 50 and 60 can be reduced, and seizure between the valve arm portions 45 and 55 and the shims 50 and 60 can be prevented. Therefore, an increase in mechanical loss of the engine 2 can be further suppressed.
  • the driving torque of the camshaft 31 is increased by the amount corresponding to the increased frictional resistance as compared with the case of using the roller rocker arm.
  • the rocker arms 32 and 33 can be reduced in weight, the spring force of the intake and exhaust springs 22 and 24 can be reduced, and the drive torque of the camshaft 31 can be reduced accordingly.
  • an increase in driving torque of the camshaft 31 can be suppressed, and an increase in mechanical loss can be suppressed.
  • the coating is formed on both the sliding surface 46 of the cam arm portion 44 of the intake rocker arm 32 and the outer peripheral surface of the intake cam 40, but the coating is formed only on one of them. Also good.
  • the coating is formed on both the surface of the pressing portion 49 and the surface of the shim 50, but the coating may be formed on only one of them. Moreover, the coating film may not be formed on both the pressing portion 49 and the shim 50. Similarly, the pressing part 59 and the shim 60 may have a film formed on only one of them, or may not have a film formed on both.
  • the coating is formed on the entire outer peripheral surface of the rocker shafts 34 and 35, but at least the inner peripheral surface of the boss portions 43 and 53 when the engine is driven among the outer peripheral surfaces of the rocker shafts 34 and 35. As long as a film is formed in a region in contact with the film, the film may not be formed in other portions. Moreover, the coating film may not be formed on the outer peripheral surfaces of the rocker shafts 34 and 35.
  • the cam arm portions 44 and 54 of the rocker arms 32 and 33 have holes 47 and 57 that penetrate in the direction of the rotation axis C2 of the camshaft 31, but the rocker arms are closed by the holes 47 and 57.
  • the shape may be different.
  • the valve arm portions 45A, 45B, and 55 have holes 48 and 58, but the holes 48 and 58 may be closed.
  • the tip portions (pressing portions 49, 59) of the valve arm portions 45A, 45B, 55 of the rocker shafts 34, 35 press the valves 16, 18 via the shims 50, 60.
  • An adjustment screw may be provided at the tip of the valve arm portion of the rocker shaft, and the valve may be pressed by the adjustment screw.
  • the springs 51 and 61 for replacing the shims 50 and 60 are not necessary.
  • the separation distance between the intake cam 40 and the exhaust cam 41 and the separation distance between the sliding surface 46 of the intake rocker shaft 34 and the sliding surface 56 of the exhaust rocker shaft 35 are smaller than those in the above embodiment. can do.
  • a larger space can be secured in the cylinder head portion 7.
  • the cylinder head portion 7 can be further downsized.
  • the number of intake and exhaust cams, the number of intake and exhaust valves, and the number of intake and exhaust rocker arms may be different from the above embodiment. Further, the number of valve arm portions and the number of cam-side arms provided in one intake rocker arm may be different from those in the above embodiment. Similarly for the exhaust rocker arm, the number of valve arm portions and the number of cam side arms may be different from those in the above embodiment.
  • the single-cylinder SOHC engine 2 has one intake rocker shaft 34, but may have two or more intake rocker shafts. In this case, the number of intake rocker arms is equal to or greater than the number of intake rocker shafts. Further, the single cylinder SOHC engine 2 may have two or more exhaust rocker shafts.
  • valve arm portions 45A, 45B, 55 of the intake and exhaust rocker arms 32, 33 intersect the direction perpendicular to the direction of the rotation axis C2 of the camshaft 31 from the boss portions 43, 53.
  • the shape of the valve arm portion is not limited to this.
  • the valve arm portion 345 of the intake rocker arm 332 may extend from the boss portion 343 in a direction perpendicular to the direction of the rotation axis C ⁇ b> 2 of the camshaft 31.
  • it is preferable that the cam arm portion 344 and the valve arm portion 345 are arranged on one straight line when viewed from the front-rear direction (the direction of the central axis C1 of the cylinder hole 9).
  • the engine 202 may include a decompression mechanism 170 for releasing the compression pressure when the engine is started.
  • the decompression mechanism 170 is attached to the outer periphery of the camshaft 31.
  • the decompression mechanism 170 is disposed on the exhaust cam 41 opposite to the intake cam 40 (on the spark plug 68 side).
  • a specific configuration of the decompression mechanism 170 is the same as that of a conventional decompression mechanism as described in, for example, Japanese Patent Application Laid-Open No. 2011-202625.
  • the decompression mechanism 170 can be disposed in this space, the decompression mechanism 170 can be disposed while suppressing an increase in the size of the engine.
  • the engine 202 may include a variable valve timing mechanism 280 for changing the opening / closing timing of the two intake valves 16 and 16 (or two exhaust valves).
  • An exhaust cam 41 and two intake cams 240A and 240B are formed on the cam shaft 231 of the engine 202.
  • the engine 202 has two intake rocker arms 232A and 232B. Specific configurations of the two intake rocker arms 232A and 232B and the variable valve timing mechanism 280 are the same as those of the conventional variable valve timing mechanism described in, for example, Japanese Patent Application Laid-Open No. 2011-202625.
  • the variable valve timing mechanism 280 has an actuator 281 attached to the first outer wall 225a of the cylinder head portion 207.
  • the actuator 281 has a rod 281 a that can advance and retract in the axial direction of the camshaft 231.
  • the actuator 281 is disposed on the central axis of the intake rocker shaft 34 when viewed from the central axis direction of the cylinder hole 9.
  • the lateral width of the sliding surfaces of the intake rocker arms 232A and 232B is substantially the same as the lateral width of the sliding surface 46 of the above embodiment.
  • FIG. 6 only the cam arm portions of the intake rocker arms 232A and 232B are shown, and the boss portion and the valve arm portion are not shown. Further, in FIG. 6, the display of the intake rocker shaft 34 is omitted.
  • the first outer wall 225a of the cylinder head portion 207 is moved toward the valve operating chamber 26.
  • the depth of the concave portion of the first outer wall 225a can be increased. Therefore, a space for arranging the actuator 281 outside the cylinder head portion 207 can be secured. Therefore, the actuator 281 of the variable valve timing mechanism 280 can be disposed while suppressing an increase in the size of the engine 202.
  • the actuator of the variable valve timing mechanism may be arranged inside the cylinder head.
  • the rocker shafts 34 and 35 are supported by the cylinder head portion 7 so as not to move, and the rocker shafts 32 and 35 are supported by the rocker shafts 34 and 35 so as to be swingable. Not.
  • the rocker shafts 34 and 35 are swingably supported by the cylinder head unit 7, and the rocker arms 32 and 33 may be fixed to the rocker shafts 34 and 35.
  • the single-cylinder SOHC engine 2 of the above embodiment is a water cooling type, but may be an air cooling type.
  • the cylinder body portion 6 and the cylinder head portion 7 are separate members, but may be a member in which the cylinder body portion and the cylinder head portion are integrated.
  • the above embodiment is an example in which the single-cylinder SOHC engine of the present invention is applied to a scooter type motorcycle, but the application target of the single-cylinder SOHC engine of the present invention is not limited to a scooter type motorcycle.
  • the single-cylinder SOHC engine of the present invention may be applied to a motorcycle other than a scooter type, or may be applied to a straddle-type vehicle other than a motorcycle.
  • the saddle riding type vehicle refers to all vehicles that ride in a state in which an occupant straddles a saddle.
  • the saddle riding type vehicle includes a motorcycle, a tricycle, a four-wheel buggy (ATV: All Terrain Vehicle), a water bike, a snowmobile, and the like.
  • the friction coefficient of the coating film is lower than the friction coefficient of the base material of the sliding surface, for example. That is, it is lower than the friction coefficient with an object of a certain material A.
  • the material A is not particularly limited.
  • the intake sliding surface and the exhaust sliding surface are aligned in the rotational axis direction of the camshaft.
  • the intake sliding surface and the exhaust sliding surface are close to each other in the rotational axis direction of the camshaft. Including both the case of being separated and the case of being separated.
  • the fact that the intake sliding surface and the exhaust sliding surface are aligned in the rotational axis direction of the camshaft means that any member is disposed between the intake sliding surface and the exhaust sliding surface. And the case where nothing is arranged.

Abstract

The objective of the present invention is to provide a smaller-sized single-cylinder SOHC engine by increasing the degree of freedom in the design of the engine while preventing an increase in mechanical loss. An intake rocker arm (32) and an exhaust rocker arm (33) respectively have sliding surfaces (46, 56), which have a width in the direction of the axis of rotation (C2) of a cam shaft (31) that is less than the width (D2) of the end parts (44a, 54a) of cam arm parts (44, 54) close to boss parts (43, 53), with these sliding surfaces respectively sliding with respect to an intake cam (40) and an exhaust cam (41) via a coating having a lower coefficient of friction and higher hardness than that of the base material of the sliding surfaces. The sliding surfaces (46, 56) are arranged in a row in the direction of the axis of rotation (C2) of the cam shaft (31).

Description

単気筒SOHCエンジン及び単気筒SOHCエンジン用ロッカーアームSingle cylinder SOHC engine and rocker arm for single cylinder SOHC engine
 本発明は、ロッカーアームを備える単気筒SOHCエンジンおよび単気筒SOHCエンジン用ロッカーアームに関する。 The present invention relates to a single cylinder SOHC engine having a rocker arm and a rocker arm for a single cylinder SOHC engine.
 エンジンは、シリンダ孔を有するシリンダボディと、このシリンダボディに固定されるシリンダヘッドと、上記シリンダ孔に摺動自在に嵌入され、クランクシャフトに連結されたピストンとを備えている。シリンダヘッドには、シリンダヘッドとピストンとの間に形成される燃焼室を外部に連通させる吸気通路および排気通路が形成されている。吸気通路と排気通路の燃焼室側の開口端には、それぞれ吸気用バルブと排気用バルブが配置されている。吸気用バルブと排気用バルブは動弁装置によって開閉される。この動弁装置はシリンダヘッド内に配置されている。 The engine includes a cylinder body having a cylinder hole, a cylinder head fixed to the cylinder body, and a piston slidably fitted in the cylinder hole and connected to the crankshaft. The cylinder head is formed with an intake passage and an exhaust passage that allow a combustion chamber formed between the cylinder head and the piston to communicate with the outside. An intake valve and an exhaust valve are disposed at the open ends of the intake passage and the exhaust passage on the combustion chamber side, respectively. The intake valve and the exhaust valve are opened and closed by a valve operating device. This valve operating device is arranged in the cylinder head.
 単気筒エンジンは、シリンダ孔を1つだけ有するエンジンである。単気筒エンジンは、エンジンを小型化するために、1本のカムシャフトで吸気用バルブおよび排気用バルブを駆動するいわゆるSOHC(Single OverHead Camshaft)型の動弁装置を備えている(例えば特許文献1参照)。 A single cylinder engine is an engine having only one cylinder hole. A single-cylinder engine is provided with a so-called SOHC (Single OverHead Camshaft) type valve gear that drives an intake valve and an exhaust valve with a single camshaft in order to reduce the size of the engine (for example, Patent Document 1). reference).
 SOHC型の動弁装置は、吸気用カムおよび排気用カムが設けられたカムシャフトと、吸気用カムによって押圧されて揺動し、吸気用バルブを開く方向に押圧する吸気用ロッカーアームと、排気用カムによって押圧されて揺動し、排気用バルブを開く方向に押圧する排気用ロッカーアームとを有する。吸気用および排気用ロッカーアームは、カムシャフトを挟んで平行に配置された吸気用および排気用ロッカーシャフトにそれぞれ回転可能に支持されている。 The SOHC type valve gear includes a camshaft provided with an intake cam and an exhaust cam, an intake rocker arm that is pressed and rocked by the intake cam and presses the intake valve in a direction to open, and an exhaust And an exhaust rocker arm that is oscillated by being pressed by the cam, and that presses the exhaust valve in the opening direction. The intake and exhaust rocker arms are rotatably supported by intake and exhaust rocker shafts arranged in parallel across the camshaft.
 単気筒SOHCエンジンには、カムとの接触部分にローラーが設けられたローラーロッカーアームが用いられている場合が多い(例えば特許文献1参照)。 A single-cylinder SOHC engine often uses a roller rocker arm in which a roller is provided at a contact portion with a cam (see, for example, Patent Document 1).
 また、動弁装置には、エンジンの始動時の圧縮圧力を逃がして始動性を向上させるためのデコンプレッション機構を備えたものがある(例えば特許文献1参照)。デコンプレッション機構はカムシャフト上に配置されている。特許文献1のデコンプレッション機構は、カムシャフトの回転で生じる遠心力により揺動するデコンプウェイトと、デコンプウェイトに連動して揺動するデコンプカムとを有する。 Also, some valve gears are provided with a decompression mechanism for releasing the compression pressure at the start of the engine and improving the startability (see, for example, Patent Document 1). The decompression mechanism is disposed on the camshaft. The decompression mechanism of Patent Document 1 includes a decompression weight that swings due to centrifugal force generated by rotation of a camshaft, and a decompression cam that swings in conjunction with the decompression weight.
 また、動弁装置には、吸気用バルブまたは排気用バルブの開閉タイミングを変更するための可変バルブタイミング機構を備えたものがある(例えば特許文献1参照)。可変バルブタイミング機構は、シリンダヘッドの壁部に取り付けられたアクチュエータを有する。アクチュエータは、カムシャフトの軸方向に進退可能なロッドを有する。特許文献1のエンジンは、吸気用ロッカーアームと吸気用カムを2つずつ有しており、2つの吸気用ロッカーアームにはカムシャフトの軸方向に貫通する孔が形成されている。特許文献1では、アクチュエータの作動により、アクチュエータのロッドが、一方の吸気用ロッカーアームの孔内に収容された連結ピンを押圧して他方の吸気用ロッカーアームの孔内に押し込むようになっている。このような可変バルブタイミング機構のアクチュエータは、シリンダ軸方向から見て、ロッカーシャフト上に配置されている。 Further, some valve gears include a variable valve timing mechanism for changing the opening / closing timing of an intake valve or an exhaust valve (see, for example, Patent Document 1). The variable valve timing mechanism has an actuator attached to the wall of the cylinder head. The actuator has a rod that can advance and retract in the axial direction of the camshaft. The engine of Patent Document 1 has two intake rocker arms and two intake cams, and the two intake rocker arms are formed with holes penetrating in the axial direction of the camshaft. In Patent Document 1, the actuator rod presses the connecting pin accommodated in the hole of one intake rocker arm and pushes it into the hole of the other intake rocker arm by the operation of the actuator. . The actuator of such a variable valve timing mechanism is disposed on the rocker shaft when viewed from the cylinder axial direction.
特開2011-202625号公報JP 2011-202625 A
 ローラーロッカーアームのローラーは、カムに対して転動する。そのため、カム側の転動疲労強度を確保するために、ローラーとカムのカムシャフトの軸方向の幅をある程度大きくする必要がある。また、ローラーは両持ちで支持されているため、ローラーロッカーアームのカム側の先端部は、カムシャフトの軸方向において、ローラー単体よりも長くなっている。したがって、ローラーロッカーアームを備えた単気筒SOHCエンジンは、シリンダヘッドがカムシャフトの軸方向に大型化しやすい。 ¡The roller of the roller rocker arm rolls against the cam. Therefore, in order to ensure the rolling fatigue strength on the cam side, it is necessary to increase the axial width of the cam shaft of the roller and the cam to some extent. Further, since the roller is supported by both ends, the tip of the roller rocker arm on the cam side is longer than the roller alone in the axial direction of the camshaft. Therefore, in a single-cylinder SOHC engine provided with a roller rocker arm, the cylinder head is likely to increase in size in the axial direction of the camshaft.
 また、ローラーロッカーアームを備えた単気筒SOHCエンジンは、上述したようなデコンプレッション機構や可変バルブタイミング機構を備えている場合、シリンダヘッドがカムシャフトの軸方向により大型化しやすい。 In addition, when a single cylinder SOHC engine equipped with a roller rocker arm is equipped with a decompression mechanism or a variable valve timing mechanism as described above, the cylinder head tends to be larger in the axial direction of the camshaft.
 そこで、本発明は、機械損失の増大を抑えつつ、エンジンの設計自由度を高めることでエンジンの小型化を図ることができる単気筒SOHCエンジンを提供することを目的とする。 Accordingly, an object of the present invention is to provide a single-cylinder SOHC engine that can reduce the size of the engine by increasing the degree of freedom in engine design while suppressing an increase in mechanical loss.
課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention
 本発明の単気筒SOHCエンジンは、単一のシリンダ孔を備えたシリンダボディ部と、前記シリンダ孔の一端開口を覆い、燃焼室の少なくとも一部を構成するシリンダヘッド部と、前記シリンダヘッド部に設けられ、回転可能であって、少なくとも1つの吸気用カムおよび少なくとも1つの排気用カムが回転軸線方向に並んで設けられた1つのカムシャフトと、それぞれ前記カムシャフトと並列に配置される吸気用ロッカーシャフトおよび排気用ロッカーシャフトと、前記燃焼室に設けられた吸気口を開閉可能な少なくとも1つの吸気用バルブおよび前記燃焼室に設けられた排気口を開閉可能な少なくとも1つの排気用バルブと、前記吸気用ロッカーシャフトに支持された吸気用ボス部と、前記吸気用ボス部から突出し、前記吸気用カムと接触し、前記吸気用カムによって押圧される吸気用カムアーム部と、前記吸気用ボス部から突出し、端部が前記吸気用バルブと接触し、前記吸気用バルブを開く方向に押圧する吸気用バルブアーム部とを含み、前記吸気用ロッカーシャフトの中心軸線周りに揺動可能な少なくとも1つの吸気用ロッカーアームと、前記排気用ロッカーシャフトに支持された排気用ボス部と、前記排気用ボス部から突出し、前記排気用カムと接触し、前記排気用カムによって押圧される排気用カムアーム部と、前記排気用ボス部から突出し、端部が前記排気用バルブと接触し、前記排気用バルブを開く方向に押圧する排気用バルブアーム部とを含み、前記排気用ロッカーシャフトの中心軸線周りに揺動可能な少なくとも1つの排気用ロッカーアームと、を備え、前記吸気用ロッカーアームは、前記吸気用カムアーム部と一体成形され、前記カムシャフトの回転軸線方向において、その幅が前記吸気用カムアーム部の前記吸気用ボス部に近い端部の幅より小さく形成され、その基材より摩擦係数が低く、硬度が高い被膜を介して前記吸気用カムと摺動する吸気用摺動面を有し、前記排気用ロッカーアームは、前記排気用カムアーム部と一体成形され、前記カムシャフトの回転軸線方向において、その幅が前記排気用カムアーム部の前記排気用ボス部に近い端部の幅より小さく形成され、その基材より摩擦係数が低く、硬度が高い被膜を介して前記排気用カムと摺動し、前記吸気用ロッカーアームの前記吸気用摺動面と前記カムシャフトの回転軸線方向に並ぶように設けられている排気用摺動面を有する、ことを特徴とする。 The single cylinder SOHC engine of the present invention includes a cylinder body portion having a single cylinder hole, a cylinder head portion that covers one end opening of the cylinder hole and forms at least a part of a combustion chamber, and the cylinder head portion. A camshaft provided and rotatable, wherein at least one intake cam and at least one exhaust cam are provided side by side in the rotation axis direction, and each is arranged in parallel with the camshaft; A rocker shaft and an exhaust rocker shaft; at least one intake valve capable of opening and closing an intake port provided in the combustion chamber; and at least one exhaust valve capable of opening and closing an exhaust port provided in the combustion chamber; An intake boss portion supported by the intake rocker shaft; and an intake cam projecting from the intake boss portion; An intake cam arm portion that touches and is pressed by the intake cam, and an intake valve arm that protrudes from the intake boss portion and has an end portion that contacts the intake valve and presses the intake valve in the opening direction. And at least one intake rocker arm swingable about a central axis of the intake rocker shaft, an exhaust boss supported by the exhaust rocker shaft, and protruding from the exhaust boss The exhaust cam arm portion that contacts the exhaust cam and is pressed by the exhaust cam, protrudes from the exhaust boss portion, the end portion contacts the exhaust valve, and opens the exhaust valve An exhaust valve arm for pressing, and at least one exhaust rocker arm swingable around a central axis of the exhaust rocker shaft, The intake rocker arm is integrally formed with the intake cam arm portion, and the width thereof is smaller than the width of the end portion of the intake cam arm portion close to the intake boss portion in the rotation axis direction. And an intake sliding surface that slides on the intake cam through a coating having a lower coefficient of friction and higher hardness than the base material, and the exhaust rocker arm is integrally formed with the exhaust cam arm portion. In the rotational axis direction of the camshaft, the width is formed smaller than the width of the end portion of the exhaust cam arm portion close to the exhaust boss portion, and the friction coefficient is lower than that of the base material and the coating has a high hardness. And an exhaust sliding surface provided so as to be aligned with the intake sliding surface of the intake rocker arm and the rotational axis of the camshaft. And features.
 吸気用ロッカーアームは、吸気用ロッカーシャフトに支持された吸気用ボス部と、吸気用ボス部から突出し、吸気用カムと接触し、吸気用カムによって押圧される吸気用カムアーム部と、吸気用ボス部から突出し、端部が吸気用バルブと接触し、吸気用バルブを開く方向に押圧する吸気用バルブアーム部とを含む。この吸気用ロッカーアームは、吸気用カムアーム部と一体成形され、その基材より摩擦係数が低く、硬度が高い被膜を介して吸気用カムと摺動する吸気用摺動面を有する。
 また、排気用ロッカーアームは、排気用ロッカーシャフトに支持された排気用ボス部と、排気用ボス部から突出し、排気用カムと接触し、排気用カムによって押圧される排気用カムアーム部と、排気用ボス部から突出し、端部が排気用バルブと接触し、排気用バルブを開く方向に押圧する排気用バルブアーム部とを含む。この排気用ロッカーアームは、排気用カムアーム部と一体成形され、その基材より摩擦係数が低く、硬度が高い被膜を介して排気用カムと摺動する排気用摺動面を有する。
 以下、吸気用ロッカーアームと排気用ロッカーアームを、ロッカーアームと総称する場合がある。他の「吸気用」「排気用」が付く名称についても同様に総称する場合がある。
 上述の構成によると、カムアーム部の摺動面とカムは、被膜を介して摺動する。この被膜は、摺動面の基材よりも摩擦係数が低い。そのため、被膜と、この被膜と摺動する面との摩擦係数は小さい。
 摺動面のカムシャフトの回転軸線方向の幅を小さくした場合、ロッカーアームを軽量化でき、その結果、機械的損失を低減できる。その一方で、摺動面とカムとの接触面圧が高くなる。接触面圧の増加は、摩擦力の増加につながる。しかし、本発明では、上述したように被膜によって接触面の間の摩擦係数を下げているため、摺動面のカムシャフトの回転軸線方向の幅を小さくしても、摩擦力の増加による機械的損失の増加を抑えることができる。
 カムアーム部のボス部に近い端部のカムシャフトの回転軸線方向の幅は、ロッカーアームにかかる力の大きさによって決まっており、極端に大きくなることはない。したがって、カムシャフトの回転軸線方向において、カムアーム部の摺動面の幅を、カムアーム部のボス部に近い端部の幅より小さくすることで、摺動面の幅を、従来のロッカーアームのカム側の端部の幅よりも小さくできる。
 そのため、本発明では、機械的損失の増加を抑えつつ、カムシャフトの回転軸線方向において、吸気用摺動面と排気用摺動面の幅を、従来のロッカーアームのカム側の端部の幅よりも小さくできる。
The intake rocker arm includes an intake boss portion supported by the intake rocker shaft, an intake cam arm portion that protrudes from the intake boss portion, contacts the intake cam, and is pressed by the intake cam, and an intake boss And an intake valve arm portion that protrudes from the portion and has an end portion that contacts the intake valve and presses the intake valve in the opening direction. The intake rocker arm is integrally formed with the intake cam arm portion, and has an intake sliding surface that slides on the intake cam through a coating having a lower coefficient of friction and higher hardness than the base material.
The exhaust rocker arm includes an exhaust boss supported by the exhaust rocker shaft, an exhaust cam arm that protrudes from the exhaust boss, contacts the exhaust cam, and is pressed by the exhaust cam; And an exhaust valve arm portion that protrudes from the boss portion and has an end portion that contacts the exhaust valve and presses the exhaust valve in the opening direction. The exhaust rocker arm is integrally formed with the exhaust cam arm portion, and has an exhaust sliding surface that slides on the exhaust cam through a coating having a lower friction coefficient and higher hardness than the base material.
Hereinafter, the intake rocker arm and the exhaust rocker arm may be collectively referred to as a rocker arm. Other names with “for intake” and “for exhaust” may also be collectively referred to.
According to the above-described configuration, the sliding surface of the cam arm portion and the cam slide through the film. This coating has a lower coefficient of friction than the substrate of the sliding surface. Therefore, the coefficient of friction between the coating and the surface sliding with the coating is small.
When the width of the sliding surface of the cam shaft in the rotation axis direction is reduced, the rocker arm can be reduced in weight, and as a result, mechanical loss can be reduced. On the other hand, the contact surface pressure between the sliding surface and the cam increases. An increase in contact surface pressure leads to an increase in frictional force. However, in the present invention, as described above, the friction coefficient between the contact surfaces is reduced by the coating. Therefore, even if the width of the sliding shaft in the rotational axis direction of the camshaft is reduced, the mechanical force due to the increase in the frictional force is increased. Increase in loss can be suppressed.
The width of the cam shaft at the end of the cam arm near the boss in the rotational axis direction is determined by the magnitude of the force applied to the rocker arm, and does not become extremely large. Therefore, in the rotation axis direction of the cam shaft, the width of the sliding surface of the cam arm portion is made smaller than the width of the end portion close to the boss portion of the cam arm portion, so that the width of the sliding surface can be reduced. It can be made smaller than the width of the end portion on the side.
Therefore, in the present invention, while suppressing an increase in mechanical loss, the width of the intake sliding surface and the exhaust sliding surface in the rotational axis direction of the camshaft is set to the width of the cam-side end portion of the conventional rocker arm. Can be smaller.
 また、吸気用摺動面と排気用摺動面のカムシャフトの回転軸線方向の幅を小さくしたことにより、その分、スペースを確保できる。吸気用摺動面と排気用摺動面は、カムシャフトの回転軸線方向に並んで設けられている。そのため、吸気用摺動面と排気用摺動面の間に広いスペースを確保したり、吸気用摺動面と排気用摺動面のカムシャフトの回転軸線方向の外側のスペースを広げたりすることができる。これにより、エンジンの設計自由度を高めることができる。設計自由度を高めることで、エンジンを小型化するための工夫が行いやすくなる。例えば、カムのカムシャフトの回転軸線方向の幅を小さくして、カムシャフトの長さを短くすることで、エンジンを小型化できる。 Also, by reducing the width of the intake sliding surface and the exhaust sliding surface in the direction of the rotation axis of the camshaft, space can be secured accordingly. The intake sliding surface and the exhaust sliding surface are provided side by side in the rotational axis direction of the camshaft. Therefore, secure a wide space between the intake sliding surface and the exhaust sliding surface, or widen the space outside the camshaft rotation axis direction of the intake sliding surface and the exhaust sliding surface. Can do. Thereby, the design freedom of an engine can be raised. By increasing the degree of design freedom, it becomes easier to devise for downsizing the engine. For example, the engine can be downsized by reducing the width of the camshaft in the rotational axis direction and reducing the length of the camshaft.
 単一のシリンダ孔を備えたシリンダボディ部と、シリンダ孔の一端開口を覆い、燃焼室の少なくとも一部を構成するシリンダヘッド部と、シリンダヘッド部に設けられ、回転可能であって、少なくとも1つの吸気用カムおよび少なくとも1つの排気用カムが回転軸線方向に並んで設けられた1つのカムシャフトと、それぞれカムシャフトと並列に配置される吸気用ロッカーシャフトおよび排気用ロッカーシャフトと、燃焼室に設けられた吸気口を開閉可能な少なくとも1つの吸気用バルブおよび燃焼室に設けられた排気口を開閉可能な少なくとも1つの排気用バルブと、吸気用ロッカーシャフトに支持された吸気用ボス部と、少なくとも1つの吸気用ロッカーアームと、少なくとも1つの排気用ロッカーアームとを備える単気筒エンジンは、多気筒エンジンに比べて内部スペースの余裕が少ない。そのため、単気筒エンジンは、内部スペースを確保して設計自由度を向上させることが、エンジンの小型化により有効である。また、単気筒エンジンが搭載される機器は、エンジンの外側のスペースが少ないものが多い。そのため、単気筒エンジンを小型化してエンジンの外側のスペースを増やすことで、このスペースを有効に活用できる。 A cylinder body portion having a single cylinder hole, a cylinder head portion that covers one end opening of the cylinder hole and that constitutes at least a part of the combustion chamber, is provided in the cylinder head portion, is rotatable, and is at least 1 One intake cam and at least one exhaust cam arranged side by side in the rotational axis direction, an intake rocker shaft and an exhaust rocker shaft respectively disposed in parallel with the camshaft, and a combustion chamber At least one intake valve capable of opening and closing the provided intake port, at least one exhaust valve capable of opening and closing the exhaust port provided in the combustion chamber, and an intake boss portion supported by the intake rocker shaft; A single-cylinder engine comprising at least one intake rocker arm and at least one exhaust rocker arm is A small margin of interior space compared to a multi-cylinder engine. Therefore, in the single cylinder engine, it is effective to reduce the size of the engine to secure the internal space and improve the design freedom. Also, many devices equipped with a single cylinder engine have a small space outside the engine. Therefore, this space can be effectively utilized by reducing the size of the single cylinder engine and increasing the space outside the engine.
 また、ロッカーアームの摺動面とカムとの間に、摺動面の基材よりも摩擦係数が低く、硬度が高い被膜が介在しているため、ロッカーアームの摺動面とカムとの間で焼き付きが生じるのを防止できる。 In addition, a film having a lower coefficient of friction and higher hardness than the base material of the sliding surface is interposed between the sliding surface of the rocker arm and the cam, so that there is a gap between the sliding surface of the rocker arm and the cam. Can prevent seizing.
 本発明の単気筒SOHCエンジンにおいて、前記吸気用摺動面と前記排気用摺動面は、前記カムシャフトの回転軸線方向から見て、前記カムシャフトに対して、前記シリンダ孔の中心軸線方向の一方向に設けられていることが好ましい。 In the single-cylinder SOHC engine of the present invention, the sliding surface for intake and the sliding surface for exhaust are in the direction of the central axis of the cylinder hole with respect to the camshaft when viewed from the rotational axis of the camshaft. It is preferable to be provided in one direction.
 この構成によると、吸気用摺動面と排気用摺動面は、カムシャフトの回転軸線方向の幅が小さく、且つ、カムシャフトの回転軸線方向に並んでいる。それに加えて、吸気用摺動面と排気用摺動面は、カムシャフトの回転軸線方向から見て、カムシャフトに対して、シリンダ孔の中心軸線方向の一方向に設けられる。そのため、吸気用摺動面と排気用摺動面を小さいスペースに集約して配置することができる。これにより、エンジン内に大きいスペースを確保しやすくなる。したがって、エンジンの設計自由度をさらに向上できるため、エンジンをより小型化できる。 According to this configuration, the intake sliding surface and the exhaust sliding surface have a small width in the rotational axis direction of the camshaft and are aligned in the rotational axis direction of the camshaft. In addition, the sliding surface for intake and the sliding surface for exhaust are provided in one direction in the direction of the central axis of the cylinder hole with respect to the camshaft as viewed from the rotational axis direction of the camshaft. Therefore, the intake sliding surface and the exhaust sliding surface can be arranged in a small space. This facilitates securing a large space in the engine. Therefore, the degree of freedom in engine design can be further improved, and the engine can be further downsized.
 本発明の単気筒SOHCエンジンにおいて、前記カムシャフトの回転軸線方向を左右方向とした時、前記吸気用ロッカーシャフトおよび前記排気用ロッカーシャフトのいずれか一方は前記カムシャフトより上方に設けられ、他方は前記カムシャフトより下方に設けられ、前記吸気用摺動面と前記排気用摺動面は、前記シリンダ孔の中心軸線方向から見て前記吸気用ロッカーシャフトと前記排気用ロッカーシャフトの間に設けられ、且つ、両方とも前記カムシャフトの前方または後方に設けられていることが好ましい。 In the single cylinder SOHC engine of the present invention, when the rotational axis direction of the camshaft is a left-right direction, one of the intake rocker shaft and the exhaust rocker shaft is provided above the camshaft, and the other is The intake sliding surface and the exhaust sliding surface are provided below the camshaft, and are provided between the intake rocker shaft and the exhaust rocker shaft when viewed from the central axis direction of the cylinder hole. In addition, both are preferably provided in front of or behind the camshaft.
 この構成によると、吸気用摺動面と排気用摺動面は、カムシャフトの回転軸線方向(左右方向)の幅が小さく、且つ、カムシャフトの回転軸線方向に並んでいる。それに加えて、吸気用摺動面と排気用摺動面は、シリンダ孔の中心軸線方向から見て、吸気用ロッカーシャフトと排気用ロッカーシャフトの間に設けられ、両方ともカムシャフトの前方または後方に配置される。そのため、吸気用摺動面と排気用摺動面を小さいスペースに集約して配置することができる。さらに、吸気用ロッカーシャフトおよび排気用ロッカーシャフトのいずれか一方がカムシャフトより上方に設けられ、他方がカムシャフトより下方に設けられる。そのため、吸気用摺動面と排気用摺動面の左右方向の間隔を狭めやすい。
 これらにより、エンジン内に大きいスペースを確保しやすくなる。したがって、エンジンの設計自由度をさらに向上できるため、エンジンをより小型化できる。
According to this configuration, the intake sliding surface and the exhaust sliding surface have a small width in the rotation axis direction (left-right direction) of the camshaft and are aligned in the rotation axis direction of the camshaft. In addition, the intake sliding surface and the exhaust sliding surface are provided between the intake rocker shaft and the exhaust rocker shaft when viewed from the direction of the center axis of the cylinder hole, both of which are in front of or behind the camshaft. Placed in. Therefore, the intake sliding surface and the exhaust sliding surface can be arranged in a small space. Furthermore, one of the intake rocker shaft and the exhaust rocker shaft is provided above the camshaft, and the other is provided below the camshaft. Therefore, it is easy to narrow the distance between the intake sliding surface and the exhaust sliding surface in the left-right direction.
These make it easy to secure a large space in the engine. Therefore, the engine design freedom can be further improved, and the engine can be further downsized.
 本発明の単気筒SOHCエンジンにおいて、前記カムシャフトの回転軸線方向を左右方向とした時、前記シリンダ孔の中心軸線方向から見て、前記吸気用カムアーム部は、前記吸気用ボス部から上下方向に突出し、前記排気用カムアーム部は、前記排気用ボス部から上下方向に突出し、前記吸気用摺動面と前記排気用摺動面は、左右方向に並ぶように設けられていることが好ましい。 In the single-cylinder SOHC engine of the present invention, when the rotation axis direction of the camshaft is a left-right direction, the intake cam arm portion is vertically moved from the intake boss portion when viewed from the center axis direction of the cylinder hole. Preferably, the exhaust cam arm portion protrudes vertically from the exhaust boss portion, and the intake sliding surface and the exhaust sliding surface are provided so as to be aligned in the left-right direction.
 この構成によると、吸気用カムアーム部および排気用カムアーム部は、吸気用ボス部および排気用ボス部から、カムシャフトの回転軸線方向(左右方向)に直交する上下方向に突出している。そのため、吸気用摺動面と排気用摺動面が、共にカムシャフトの前方または後方に配置され、一方がカムシャフトの上方に配置され、他方がカムシャフトの下方に配置される場合には、吸気用摺動面と排気用摺動面の左右方向の間隔を狭めやすい。これにより、エンジン内に大きいスペースを確保しやすくなる。したがって、エンジンの設計自由度をさらに向上できるため、エンジンをより小型化できる。 According to this configuration, the intake cam arm portion and the exhaust cam arm portion protrude from the intake boss portion and the exhaust boss portion in the vertical direction perpendicular to the rotation axis direction (left-right direction) of the camshaft. Therefore, when the intake sliding surface and the exhaust sliding surface are both arranged in front or rear of the camshaft, one is arranged above the camshaft, and the other is arranged below the camshaft, It is easy to narrow the distance between the intake sliding surface and the exhaust sliding surface in the left-right direction. This facilitates securing a large space in the engine. Therefore, the degree of freedom in engine design can be further improved, and the engine can be further downsized.
 本発明の単気筒SOHCエンジンにおいて、前記吸気用カムアーム部および前記排気用カムアーム部は、前記カムシャフトの回転軸線方向に貫通する穴を有することが好ましい。 In the single-cylinder SOHC engine of the present invention, it is preferable that the intake cam arm portion and the exhaust cam arm portion have a hole penetrating in the rotation axis direction of the cam shaft.
 この構成によると、吸気用カムアーム部および排気用カムアーム部は、カムシャフトの回転軸線方向に貫通する穴を有する。それにより、吸気用ロッカーアームおよび排気用ロッカーアームを軽量化できる。軽量化によって機械的損失を低減できた分、吸気用カムアーム部および排気用カムアーム部の強度を維持しながら、吸気用摺動面および排気用摺動面のカムシャフトの回転軸線方向の幅をより小さくできる。それにより、エンジンの設計自由度をさらに向上できるため、エンジンをより小型化できる。 According to this configuration, the intake cam arm portion and the exhaust cam arm portion have holes penetrating in the rotation axis direction of the cam shaft. Accordingly, the intake rocker arm and the exhaust rocker arm can be reduced in weight. The mechanical loss can be reduced by reducing the weight, while maintaining the strength of the intake cam arm and exhaust cam arm, while increasing the width of the intake sliding surface and exhaust sliding surface in the rotation axis direction of the camshaft. Can be small. As a result, the degree of freedom in engine design can be further improved, and the engine can be further downsized.
 本発明の単気筒SOHCエンジンにおいて、前記吸気用カムアーム部は、前記カムシャフトの回転軸線方向の幅において、前記吸気用ボス部に近い端部の幅が最大となるように形成され、前記排気用カムアーム部は、前記カムシャフトの回転軸線方向の幅において、前記排気用ボス部に近い端部の幅が最大となるように形成されていることが好ましい。 In the single-cylinder SOHC engine of the present invention, the intake cam arm portion is formed such that a width of an end portion close to the intake boss portion is maximized in a width in a rotation axis direction of the cam shaft. The cam arm portion is preferably formed so that the width of the end portion close to the exhaust boss portion is maximized in the width of the cam shaft in the rotation axis direction.
 本発明の単気筒SOHCエンジンにおいて、前記吸気用カムは、前記カムシャフトの回転軸線方向において、その幅が前記吸気用カムアーム部の前記吸気用ボス部に近い端部の幅より小さく、前記排気用カムは、前記カムシャフトの回転軸線方向において、その幅が前記排気用カムアーム部の前記排気用ボス部に近い端部の幅より小さいことが好ましい。 In the single cylinder SOHC engine of the present invention, the intake cam has a width smaller than a width of an end portion of the intake cam arm portion close to the intake boss portion in the rotation axis direction of the camshaft, and the exhaust cam. The cam preferably has a width smaller than a width of an end portion of the exhaust cam arm portion close to the exhaust boss portion in a rotation axis direction of the cam shaft.
 この構成によると、吸気用カムと排気用カムは、カムシャフトの回転軸線方向の幅が小さいため、エンジンを大型化することなく、カムシャフトの近傍にスペースを確保できる。また、カム同士を近づけて配置することで、エンジンを大型化することなく、カムシャフトの外周部に大きいスペースを確保できる。このようなスペースを確保することで、エンジンの設計自由度をさらに向上できるため、エンジンをより小型化できる。
 また、吸気用カムと排気用カムのカムシャフトの回転軸線方向の幅が小さいため、カムシャフトの長さを短くすることでエンジンを小型化できる。
According to this configuration, since the intake cam and the exhaust cam have a small width in the rotation axis direction of the camshaft, a space can be secured in the vicinity of the camshaft without increasing the size of the engine. Further, by arranging the cams close to each other, a large space can be secured in the outer peripheral portion of the camshaft without increasing the size of the engine. By securing such a space, the degree of freedom in designing the engine can be further improved, so that the engine can be further downsized.
Further, since the width of the cam shaft of the intake cam and the exhaust cam in the rotation axis direction is small, the engine can be downsized by shortening the length of the cam shaft.
 本発明の単気筒SOHCエンジンにおいて、先端部が前記燃焼室に臨むように前記シリンダヘッド部に設けられた点火プラグをさらに備え、前記点火プラグの一部が、前記カムシャフトの回転軸線上に配置されていることが好ましい。 The single-cylinder SOHC engine of the present invention further includes a spark plug provided in the cylinder head portion so that a tip portion faces the combustion chamber, and a part of the spark plug is disposed on the rotation axis of the camshaft. It is preferable that
 この構成によると、点火プラグは、その一部がカムシャフトの回転軸線上に位置するように、シリンダヘッド部に設けられている。吸気用カムおよび排気用カムは、カムシャフトの回転軸線方向の幅が小さいため、カムシャフトの長さを短くできる。カムシャフトの長さを短くすることで、シリンダヘッド部の点火プラグが設けられる壁をシリンダヘッド部の内部側にずらすことができる。これにより、点火プラグをメンテナンスする際に使用するスペースを確保できる。 According to this configuration, the spark plug is provided in the cylinder head portion so that a part of the spark plug is located on the rotation axis of the camshaft. Since the intake cam and the exhaust cam have a small width in the rotation axis direction of the camshaft, the length of the camshaft can be shortened. By shortening the length of the camshaft, the wall on which the ignition plug of the cylinder head portion is provided can be shifted to the inside of the cylinder head portion. Thereby, the space used when maintaining a spark plug is securable.
 本発明の単気筒SOHCエンジンにおいて、前記吸気用バルブおよび排気用バルブは、バルブ軸部と、前記バルブ軸の先端に連結されたバルブ傘部とを有しており、前記吸気用摺動面および前記排気用摺動面は、前記カムシャフトの回転軸線方向の幅が、前記吸気用バルブおよび排気用バルブの前記バルブ軸部の最小直径よりも小さいことが好ましい。 In the single-cylinder SOHC engine of the present invention, the intake valve and the exhaust valve each have a valve shaft portion and a valve umbrella portion connected to a tip end of the valve shaft, and the intake sliding surface and It is preferable that the exhaust sliding surface has a width in the rotation axis direction of the camshaft that is smaller than a minimum diameter of the valve shaft portion of the intake valve and the exhaust valve.
 吸気用バルブおよび排気用バルブのバルブ軸部の直径は、吸気用バルブおよび排気用バルブがカムシャフトから受ける力の大きさによって決まっており、極端に大きくなることはない。上記の構成によると、吸気用摺動面と排気用摺動面のカムシャフトの回転軸線方向の幅は、吸気用カムアーム部および排気用カムアーム部のボス部に近い端部の幅より小さいだけでなく、バルブ軸部の最小直径よりも小さい。したがって、バルブ軸部の直径が、吸気用カムアーム部および排気用カムアーム部のボス部に近い端部の幅よりも小さい場合には、エンジンの設計自由度がより向上し、エンジンをより小型化できる。 The diameters of the valve shafts of the intake and exhaust valves are determined by the magnitude of the force that the intake and exhaust valves receive from the camshaft and do not become extremely large. According to the above configuration, the width of the intake sliding surface and the exhaust sliding surface in the rotation axis direction of the camshaft is only smaller than the width of the end portions near the boss portions of the intake cam arm portion and the exhaust cam arm portion. It is smaller than the minimum diameter of the valve shaft. Therefore, when the diameter of the valve shaft portion is smaller than the width of the end portions close to the boss portions of the intake cam arm portion and the exhaust cam arm portion, the design freedom of the engine is further improved and the engine can be further downsized. .
 本発明の単気筒SOHCエンジンにおいて、前記カムシャフトに装着されたデコンプレッション機構を備えることが好ましい。この構成によると、エンジンの大型化を抑制しつつ、デコンプレッション機構を配置できる。 In the single-cylinder SOHC engine of the present invention, it is preferable to include a decompression mechanism mounted on the camshaft. According to this configuration, the decompression mechanism can be arranged while suppressing the enlargement of the engine.
 本発明の単気筒SOHCエンジンにおいて、前記吸気用ロッカーアームおよび前記排気用ロッカーアームの少なくとも一方を複数備えており、前記カムシャフトと並列に配置されるロッドを有するアクチュエータを含む可変バルブタイミング機構を備えることが好ましい。この構成によると、エンジンの大型化を抑制しつつ、可変バルブタイミング機構を配置できる。 The single-cylinder SOHC engine of the present invention includes a variable valve timing mechanism that includes a plurality of at least one of the intake rocker arm and the exhaust rocker arm, and includes an actuator having a rod arranged in parallel with the camshaft. It is preferable. According to this configuration, the variable valve timing mechanism can be arranged while suppressing an increase in size of the engine.
 本発明の単気筒SOHCエンジンにおいて、前記吸気用ボス部および前記排気用ボス部は、それぞれ、前記吸気用ロッカーシャフトおよび前記排気用ロッカーシャフトに回転可能に支持されており、前記吸気用ロッカーシャフトおよび前記排気用ロッカーシャフトの外周面のうち少なくとも前記吸気用ボス部および前記排気用ボス部と接触する部分には、その基材よりも摩擦係数が低く、硬度が高い被膜が形成されていることが好ましい。 In the single cylinder SOHC engine of the present invention, the intake boss portion and the exhaust boss portion are rotatably supported by the intake rocker shaft and the exhaust rocker shaft, respectively, A coating having a lower coefficient of friction and a higher hardness than the base material is formed on at least a portion of the outer peripheral surface of the exhaust rocker shaft that contacts the intake boss and the exhaust boss. preferable.
 この構成によると、ロッカーシャフトの外周面のうち少なくともボス部と接触する部分には、その基材よりも摩擦係数が低く、硬度が高い被膜が形成されている。これにより、ロッカーシャフトとロッカーアームのボス部との間の摩擦力を低減できると共に、ロッカーシャフトとロッカーアームのボス部との焼き付きを防止できる。したがって、エンジンの機械損失の増大をより抑制できる。 According to this configuration, a coating film having a lower coefficient of friction and higher hardness than the base material is formed on at least a portion of the outer peripheral surface of the rocker shaft that contacts the boss portion. Thereby, the frictional force between the rocker shaft and the boss portion of the rocker arm can be reduced, and seizure between the rocker shaft and the boss portion of the rocker arm can be prevented. Therefore, an increase in engine mechanical loss can be further suppressed.
 本発明の単気筒SOHCエンジンにおいて、前記吸気用バルブアーム部の前記吸気用バルブを押圧する端部の表面に、その基材よりも摩擦係数が低く、硬度が高い被膜が形成されており、前記排気用バルブアーム部の前記排気用バルブを押圧する端部の表面に、その基材よりも摩擦係数が低く、硬度が高い被膜が形成されていることが好ましい。 In the single-cylinder SOHC engine of the present invention, a coating having a lower coefficient of friction and higher hardness than the base material is formed on the surface of the end of the intake valve arm that presses the intake valve. It is preferable that a coating film having a lower friction coefficient and higher hardness than the base material is formed on the surface of the end portion of the exhaust valve arm portion that presses the exhaust valve.
 この構成によると、ロッカーアームのバルブアーム部のバルブを押圧する端部の表面に、その基材よりも摩擦係数が低く、硬度が高い被膜が形成されている。これにより、バルブアーム部のバルブを押圧する端部とバルブとの間、または、バルブアーム部のバルブを押圧する端部と、バルブに設けられて当該端部によって押圧される部品と間に生じる摩擦力を低減できると共に、両者の間の焼き付きを防止できる。したがって、エンジンの機械損失の増大をより抑制できる。 According to this configuration, a film having a lower friction coefficient and higher hardness than the base material is formed on the surface of the end portion of the valve arm portion of the rocker arm that presses the valve. Thereby, it arises between the edge part which presses the valve | bulb of a valve arm part, and a valve, or the edge part which presses the valve | bulb of a valve arm part, and the components which are provided in a valve and are pressed by the said edge part. The frictional force can be reduced and seizure between the two can be prevented. Therefore, an increase in engine mechanical loss can be further suppressed.
 本発明の単気筒SOHCエンジンにおいて、前記吸気用バルブアーム部と前記吸気用バルブとの間に配置された吸気用シムと、前記排気用バルブアーム部と前記排気用バルブとの間に配置された排気用シムとを有し、前記吸気用シムおよび前記排気用シムの表面に、その基材よりも摩擦係数が低く、硬度が高い被膜が形成されていることが好ましい。 In the single-cylinder SOHC engine of the present invention, the intake shim disposed between the intake valve arm portion and the intake valve, and the exhaust valve arm portion and the exhaust valve are disposed. It is preferable that an exhaust shim is provided, and a film having a lower friction coefficient and higher hardness than the base material is formed on the surfaces of the intake shim and the exhaust shim.
 この構成によると、バルブアーム部とバルブとの間に配置されるシムの表面に、その基材よりも摩擦係数が低く、硬度が高い被膜が形成されている。これにより、バルブアーム部とシムとの間の摩擦力を低減できると共に、バルブアーム部とシムとの焼き付きを防止できる。したがって、エンジンの機械損失の増大をより抑制できる。 According to this configuration, a film having a lower friction coefficient and higher hardness than the base material is formed on the surface of the shim disposed between the valve arm portion and the valve. Thereby, the frictional force between the valve arm portion and the shim can be reduced, and seizure between the valve arm portion and the shim can be prevented. Therefore, an increase in engine mechanical loss can be further suppressed.
 本発明の単気筒SOHCエンジンにおいて、前記吸気用摺動面および前記吸気用カムの少なくとも一方に、前記吸気用摺動面の基材より摩擦係数が低く、硬度が高い前記被膜が形成され、前記排気用摺動面および前記吸気用カムの少なくとも一方に、前記排気用摺動面の基材より摩擦係数が低く、硬度が高い前記被膜が形成されていることが好ましい。 In the single-cylinder SOHC engine of the present invention, the coating having a lower coefficient of friction and higher hardness than the base material of the intake sliding surface is formed on at least one of the intake sliding surface and the intake cam. It is preferable that at least one of the exhaust sliding surface and the intake cam is formed with the coating film having a lower friction coefficient and higher hardness than the base material of the exhaust sliding surface.
 本発明の単気筒SOHCエンジン用ロッカーアームは、本発明の単気筒SOHCエンジンに用いられる前記吸気用ロッカーアームまたは前記排気用ロッカーアームであって、前記吸気用摺動面または前記排気用摺動面に、その基材よりも摩擦係数が低く、硬度が高い前記被膜が形成されていることを特徴とする。 The rocker arm for a single cylinder SOHC engine of the present invention is the intake rocker arm or the exhaust rocker arm used in the single cylinder SOHC engine of the present invention, wherein the intake sliding surface or the exhaust sliding surface. Furthermore, the coating film having a lower friction coefficient and higher hardness than the base material is formed.
本発明の実施の形態に係る単気筒SOHCエンジンが適用されたエンジンユニットを一部断面で示す側面図である。1 is a side view showing a partial cross section of an engine unit to which a single cylinder SOHC engine according to an embodiment of the present invention is applied. 図1の部分拡大図であって、単気筒SOHCエンジンの断面図である。It is the elements on larger scale of Drawing 1, and is a sectional view of a single cylinder SOHC engine. 図1中の単気筒SOHCエンジンの断面図である。It is sectional drawing of the single cylinder SOHC engine in FIG. 図1に示す単気筒SOHCエンジンをシリンダカバーと補強板を取り外した状態でシリンダカバー側から見た図である。FIG. 2 is a view of the single-cylinder SOHC engine shown in FIG. 1 as viewed from the cylinder cover side with the cylinder cover and a reinforcing plate removed. 本発明の他の実施形態に係る単気筒エンジンの断面図である。It is sectional drawing of the single cylinder engine which concerns on other embodiment of this invention. 本発明の他の実施形態に係る単気筒エンジンの断面図である。It is sectional drawing of the single cylinder engine which concerns on other embodiment of this invention. 図6に示す単気筒SOHCエンジンをシリンダカバーと補強板を取り外した状態でシリンダカバー側から見た図である。FIG. 7 is a view of the single cylinder SOHC engine shown in FIG. 6 viewed from the cylinder cover side with the cylinder cover and the reinforcing plate removed. 本発明の他の実施形態に係るロッカーアームをシリンダ孔の中心軸線方向から見た図である。It is the figure which looked at the rocker arm which concerns on other embodiment of this invention from the center axis line direction of the cylinder hole.
 以下、本発明の実施の形態について図面を参照しつつ説明する。
 図1は、例えばスクータ型自動二輪車に用いるスイング式のエンジンユニット1を開示している。このエンジンユニット1は、単気筒SOHCエンジン2と、スイングアームを兼ねる伝動ケース3とを備えている。単気筒SOHCエンジン2は、水冷式の4サイクルエンジンである。なお、以下の説明において、前後方向とは、自動二輪車のシートに着座したライダーから視た車両前後方向のことであり、左右方向とは、シートに着座したライダーから視たときの車両左右方向(車両の幅方向)のことである。また、各図面の矢印F方向と矢印B方向は、前方と後方を表しており、矢印L方向と矢印R方向は、左方と右方を表しており、矢印U方向と矢印D方向は、上方と下方を表している。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 discloses a swing type engine unit 1 used in, for example, a scooter type motorcycle. The engine unit 1 includes a single-cylinder SOHC engine 2 and a transmission case 3 that also serves as a swing arm. The single cylinder SOHC engine 2 is a water-cooled four-cycle engine. In the following description, the front-rear direction is the vehicle front-rear direction viewed from the rider seated on the motorcycle seat, and the left-right direction is the vehicle left-right direction viewed from the rider seated on the seat ( (Width direction of the vehicle). Moreover, the arrow F direction and the arrow B direction of each drawing represent the front and the rear, the arrow L direction and the arrow R direction represent the left side and the right side, and the arrow U direction and the arrow D direction are Represents the top and bottom.
 伝動ケース3は、単気筒SOHCエンジン2から後方に向けて延びている。伝動ケース3は、Vベルト式自動変速機4を内蔵しており、この伝動ケース3の後端部にVベルト式自動変速機4によって駆動される後輪(図示せず)が支持されている。 The transmission case 3 extends rearward from the single cylinder SOHC engine 2. The transmission case 3 incorporates a V-belt type automatic transmission 4, and a rear wheel (not shown) driven by the V-belt type automatic transmission 4 is supported at the rear end portion of the transmission case 3. .
 単気筒SOHCエンジン2は、伝動ケース3と一体化されたクランクケース5、シリンダボディ部6及びシリンダヘッド部7を有している。クランクケース5は、クランクシャフト8を収容している。クランクシャフト8は、自動二輪車の車体の幅方向(左右方向)に沿って水平に配置されており、このクランクシャフト8の一端部が自動遠心クラッチを介してVベルト式自動変速機4の入力端に連結されている。 The single-cylinder SOHC engine 2 has a crankcase 5, a cylinder body portion 6, and a cylinder head portion 7 that are integrated with the transmission case 3. The crankcase 5 accommodates the crankshaft 8. The crankshaft 8 is horizontally disposed along the width direction (left-right direction) of the motorcycle body, and one end of the crankshaft 8 is connected to the input end of the V-belt type automatic transmission 4 via an automatic centrifugal clutch. It is connected to.
 シリンダボディ部6にはシリンダ孔9が形成されている。このシリンダ孔9にピストン10が収容されている。シリンダ孔9の中心軸線C1は、前後方向に延びている。ピストン10はコンロッド11を介してクランクシャフト8に連結されている。シリンダボディ部6は、クランクケース5から前方に向けて略水平に突出している。 A cylinder hole 9 is formed in the cylinder body 6. A piston 10 is accommodated in the cylinder hole 9. A central axis C1 of the cylinder hole 9 extends in the front-rear direction. The piston 10 is connected to the crankshaft 8 via a connecting rod 11. The cylinder body 6 protrudes substantially horizontally from the crankcase 5 toward the front.
図2に示すように、シリンダヘッド部7は、シリンダ孔9の前側開口を覆っている。シリンダヘッド部7は、シリンダ孔9と向かい合う面に凹部12を有している。凹部12とピストン10との間には燃焼室13が形成されている。シリンダヘッド部7は、燃焼室13に開口する2つの吸気通路14(図2では一方のみを図示)と、燃焼室13に開口する単一の排気通路15を備えている。2つの吸気通路14は、凹部12に形成された2つの吸気口14a(図2では一方のみを表示)から前上方に延びて形成されている。2つの吸気口14aは、左右方向に並んで形成されている。排気通路15は、凹部12に形成された排気口15aから前下方に延びて形成されている。 As shown in FIG. 2, the cylinder head portion 7 covers the front opening of the cylinder hole 9. The cylinder head portion 7 has a recess 12 on the surface facing the cylinder hole 9. A combustion chamber 13 is formed between the recess 12 and the piston 10. The cylinder head portion 7 includes two intake passages 14 (only one is shown in FIG. 2) that opens to the combustion chamber 13 and a single exhaust passage 15 that opens to the combustion chamber 13. The two intake passages 14 are formed to extend forward and upward from two intake ports 14a (only one is shown in FIG. 2) formed in the recess 12. The two air inlets 14a are formed side by side in the left-right direction. The exhaust passage 15 is formed to extend forward and downward from an exhaust port 15 a formed in the recess 12.
 2つの吸気口14aは、2つの吸気用バルブ16(図2では一方のみを図示)によってそれぞれ開閉される。吸気用バルブ16は、吸気口14aを開閉するバルブ傘部16aと、バルブ傘部16aから前上方に延びるバルブ軸部16bとを有する。バルブ軸部16bは、バルブガイド17を介してシリンダヘッド部7に支持されている。2本のバルブ軸部16bは、左右方向に並んで互いに平行に配置されている。 The two intake ports 14a are opened and closed by two intake valves 16 (only one is shown in FIG. 2). The intake valve 16 includes a valve umbrella portion 16a that opens and closes the intake port 14a, and a valve shaft portion 16b that extends forward and upward from the valve umbrella portion 16a. The valve shaft portion 16 b is supported by the cylinder head portion 7 via the valve guide 17. The two valve shaft portions 16b are arranged in parallel in the left-right direction.
 シリンダヘッド部7には、点火プラグ68が取り付けられている。点火プラグ68の先端部は燃焼室13に臨んで配置されている。点火プラグ68は、単気筒SOHCエンジン2の外面から燃焼室13に差し込まれる。 The ignition plug 68 is attached to the cylinder head portion 7. The tip of the spark plug 68 is disposed facing the combustion chamber 13. The spark plug 68 is inserted into the combustion chamber 13 from the outer surface of the single cylinder SOHC engine 2.
 バルブ軸部16bの前端部には、スプリングリテーナ21が取り付けられている。このスプリングリテーナ21の中央部の孔にバルブ軸部16bの前端部が嵌まり込んでいる。スプリングリテーナ21の外周部とシリンダヘッド部7との間には吸気用スプリング22が介在している。吸気用バルブ16は、吸気用スプリング22によって吸気口14aを閉じる方向に付勢されている。 A spring retainer 21 is attached to the front end of the valve shaft 16b. The front end portion of the valve shaft portion 16b is fitted into the hole in the center portion of the spring retainer 21. An intake spring 22 is interposed between the outer peripheral portion of the spring retainer 21 and the cylinder head portion 7. The intake valve 16 is urged by an intake spring 22 in a direction to close the intake port 14a.
 排気口15aは、排気用バルブ18によって開閉される。排気用バルブ18は、排気口15aを開閉するバルブ傘部18aと、バルブ傘部18aから前下方に延びるバルブ軸部18bとを有する。バルブ軸部18bは、バルブガイド19を介してシリンダヘッド部7に支持されている。 The exhaust port 15 a is opened and closed by an exhaust valve 18. The exhaust valve 18 includes a valve umbrella portion 18a that opens and closes the exhaust port 15a, and a valve shaft portion 18b that extends forward and downward from the valve umbrella portion 18a. The valve shaft portion 18 b is supported by the cylinder head portion 7 via the valve guide 19.
 バルブ軸部18bの前端部には、スプリングリテーナ23が取り付けられている。このスプリングリテーナ23の中央部の孔にバルブ軸部18bの前端部が嵌まり込んでいる。スプリングリテーナ23の外周部とシリンダヘッド部7との間には排気用スプリング24が介在している。排気用バルブ18は、排気用スプリング24によって排気口15aを閉じる方向に付勢されている。 A spring retainer 23 is attached to the front end portion of the valve shaft portion 18b. The front end portion of the valve shaft portion 18 b is fitted in the hole in the center portion of the spring retainer 23. An exhaust spring 24 is interposed between the outer peripheral portion of the spring retainer 23 and the cylinder head portion 7. The exhaust valve 18 is biased by the exhaust spring 24 in a direction to close the exhaust port 15a.
 吸気用バルブ16のバルブ軸部16bの最小直径と、排気用バルブ18のバルブ軸部18bの最小直径はほぼ同じである。 The minimum diameter of the valve shaft portion 16b of the intake valve 16 and the minimum diameter of the valve shaft portion 18b of the exhaust valve 18 are substantially the same.
 シリンダヘッド部7は、外壁25a、25b、25c、25dを有している。図3及び図4に示すように、第1の外壁25aは、シリンダヘッド部7の右面を形成しており、第2の外壁25bは、シリンダヘッド部7の左面を形成している。第1の外壁25aと第2の外壁25bは、左右方向に向かい合っている。図2及び図4に示すように、第3の外壁25cは、シリンダヘッド部7の上面を形成しており、第4の外壁25dは、シリンダヘッド部7の下面を形成している。第3の外壁25cと第4の外壁25dは、上下方向に向かい合っている。 The cylinder head portion 7 has outer walls 25a, 25b, 25c, and 25d. As shown in FIGS. 3 and 4, the first outer wall 25 a forms the right surface of the cylinder head portion 7, and the second outer wall 25 b forms the left surface of the cylinder head portion 7. The first outer wall 25a and the second outer wall 25b face each other in the left-right direction. As shown in FIGS. 2 and 4, the third outer wall 25 c forms the upper surface of the cylinder head portion 7, and the fourth outer wall 25 d forms the lower surface of the cylinder head portion 7. The third outer wall 25c and the fourth outer wall 25d face each other in the vertical direction.
 シリンダヘッド部7の内側には、前方が開放された動弁室26が形成されている。シリンダヘッド部7の前端部には、着脱可能なヘッドカバー27が取り付けられている。ヘッドカバー27は、動弁室26の開放端を覆っている。 </ RTI> Inside the cylinder head part 7, a valve operating chamber 26 is formed with the front opened. A detachable head cover 27 is attached to the front end portion of the cylinder head portion 7. The head cover 27 covers the open end of the valve operating chamber 26.
 上述した点火プラグ68は、第1の外壁25aに取り付けられている。第1の外壁25aは、動弁室26の内側に向かって突出する凹状に形成されている。上下方向において、点火プラグ68は、第1の外壁25aの凹状部と同じ位置に配置されている。シリンダ孔9の中心軸線C1の方向から見て、点火プラグ68は、後述する吸気用ロッカーアーム32のカムアーム部44のボス部43との連結部分と、後述する排気用ロッカーアーム33のカムアーム部54のボス部53との連結部分との間に位置している。また、点火プラグ68は、シリンダ孔9の中心軸線C1の方向から見て、後述する吸気用ロッカーシャフト34の中心軸線C3と、後述する排気用ロッカーシャフト35の中心軸線C4との間に位置している。言い換えると、点火プラグ68は、上下方向に関して、中心軸線C3、C4の間に位置している。また、点火プラグ68の一部は、後述するカムシャフト31の回転軸線C2上に配置されている。 The spark plug 68 described above is attached to the first outer wall 25a. The first outer wall 25 a is formed in a concave shape protruding toward the inside of the valve operating chamber 26. In the vertical direction, the spark plug 68 is disposed at the same position as the concave portion of the first outer wall 25a. When viewed from the direction of the central axis C1 of the cylinder hole 9, the spark plug 68 is connected to a boss portion 43 of the cam arm portion 44 of the intake rocker arm 32 described later and a cam arm portion 54 of the exhaust rocker arm 33 described later. Between the boss portion 53 and the connecting portion. The spark plug 68 is positioned between a center axis C3 of an intake rocker shaft 34, which will be described later, and a center axis C4 of an exhaust rocker shaft 35, which will be described later, when viewed from the direction of the center axis C1 of the cylinder hole 9. ing. In other words, the spark plug 68 is located between the central axes C3 and C4 in the vertical direction. Further, a part of the spark plug 68 is disposed on a rotation axis C2 of the cam shaft 31 described later.
 シリンダヘッド部7は、動弁室26の内部に支持壁28を有する。支持壁28は、第3の外壁25cに接続されており、第1の外壁25aと第2の外壁25bとの間に配置されている。吸気用バルブ16のバルブ軸部16b及び排気用バルブ18のバルブ軸部18bは、第1の外壁25aと支持壁28との間に位置している。 The cylinder head portion 7 has a support wall 28 inside the valve operating chamber 26. The support wall 28 is connected to the third outer wall 25c, and is disposed between the first outer wall 25a and the second outer wall 25b. The valve shaft portion 16 b of the intake valve 16 and the valve shaft portion 18 b of the exhaust valve 18 are located between the first outer wall 25 a and the support wall 28.
 動弁室26は、吸気用バルブ16及び排気用バルブ18を開閉駆動する動弁装置30を収容している。動弁装置30は、カムシャフト31、吸気用ロッカーアーム32、排気用ロッカーアーム33、吸気用ロッカーシャフト34、及び排気用ロッカーシャフト35を備えている。なお、図3では、排気用ロッカーアーム33は切断端面のみを表示していると共に、排気用ロッカーシャフト35の図示を省略している。 The valve operating chamber 26 houses a valve operating device 30 that opens and closes the intake valve 16 and the exhaust valve 18. The valve gear 30 includes a camshaft 31, an intake rocker arm 32, an exhaust rocker arm 33, an intake rocker shaft 34, and an exhaust rocker shaft 35. In FIG. 3, the exhaust rocker arm 33 shows only the cut end face, and the exhaust rocker shaft 35 is not shown.
 カムシャフト31は、シリンダヘッド部7に回転可能に支持されている。図3に示すように、カムシャフト31の一端部(右端部)は、軸受36を介して第1の外壁25aに対して回転可能に支持されている。カムシャフト31の他端部(左端部)は、軸受37を介して支持壁28に対して回転可能に支持されている。カムシャフト31は、車体の幅方向(左右方向)に沿って水平に配置されている。 The camshaft 31 is rotatably supported by the cylinder head portion 7. As shown in FIG. 3, one end portion (right end portion) of the camshaft 31 is rotatably supported with respect to the first outer wall 25 a via a bearing 36. The other end portion (left end portion) of the camshaft 31 is rotatably supported with respect to the support wall 28 via a bearing 37. The camshaft 31 is disposed horizontally along the width direction (left-right direction) of the vehicle body.
 カムシャフト31の他端部(左端部)は、支持壁28より左方に配置され、スプロケット(又はプーリ)38が固定されている。このスプロケット38と、クランクシャフト8に設けられたスプロケット(図示省略)との間にチェーン(又はベルト)39が架け渡されている。これにより、カムシャフト31は図2に矢印で示す方向(自動二輪車が前進する時の後輪の回転方向)に正回転するようになっている。 The other end portion (left end portion) of the camshaft 31 is disposed to the left of the support wall 28, and a sprocket (or pulley) 38 is fixed thereto. A chain (or belt) 39 is bridged between the sprocket 38 and a sprocket (not shown) provided on the crankshaft 8. As a result, the camshaft 31 rotates in the forward direction in the direction indicated by the arrow in FIG. 2 (the direction of rotation of the rear wheel when the motorcycle moves forward).
 カムシャフト31には、吸気用カム40と排気用カム41が、左右方向(カムシャフト31の回転軸線C2の方向)に並んで設けられている。吸気用カム40及び排気用カム41の外周面には、後述する被膜62と同様の被膜(図示省略)が形成されている。被膜は、吸気用カム40及び排気用カム41の外周面だけでなく軸方向端面にも形成されていてもよい。 The camshaft 31 is provided with an intake cam 40 and an exhaust cam 41 side by side in the left-right direction (the direction of the rotation axis C2 of the camshaft 31). A coating (not shown) similar to the coating 62 described later is formed on the outer peripheral surfaces of the intake cam 40 and the exhaust cam 41. The coating may be formed not only on the outer peripheral surfaces of the intake cam 40 and the exhaust cam 41 but also on the axial end surfaces.
 図示は省略するが、カムシャフト31には、吸気用カム40及び排気用カム41の外周面に開口するオイル通路が形成されている。 Although not shown, the camshaft 31 is formed with an oil passage that opens to the outer peripheral surfaces of the intake cam 40 and the exhaust cam 41.
 図2に示すように、吸気用ロッカーシャフト34は、カムシャフト31より前上方に設けられている。吸気用ロッカーシャフト34は、カムシャフト31と並列している。吸気用ロッカーシャフト34は、シリンダヘッド部7に回転不能に支持されている。図4に示すように、吸気用ロッカーシャフト34の一端部(右端部)は、第1の外壁25aから動弁室26に突出する軸受部42に支持されている。吸気用ロッカーシャフト34の他端部(左端部)は、支持壁28に支持されている。吸気用ロッカーシャフト34の外周面には、後述する被膜62と同様の被膜(図示省略)が形成されている。 As shown in FIG. 2, the intake rocker shaft 34 is provided on the front upper side of the camshaft 31. The intake rocker shaft 34 is in parallel with the camshaft 31. The intake rocker shaft 34 is supported by the cylinder head portion 7 so as not to rotate. As shown in FIG. 4, one end portion (right end portion) of the intake rocker shaft 34 is supported by a bearing portion 42 that protrudes from the first outer wall 25 a to the valve operating chamber 26. The other end (left end) of the intake rocker shaft 34 is supported by the support wall 28. A film (not shown) similar to the film 62 described later is formed on the outer peripheral surface of the intake rocker shaft 34.
 吸気用ロッカーアーム32は、吸気用ロッカーシャフト34に揺動可能に支持されている。図2に示すように、吸気用ロッカーアーム32は、円筒状のボス部43(本発明の吸気用ボス部)と、カムアーム部44(本発明の吸気用カムアーム部)、及び2つのバルブアーム部45A、45B(45Aは図4参照)を備えている。2つのバルブアーム部45A、45Bは、それぞれが本発明の吸気用バルブアーム部に相当する。吸気用ロッカーシャフト34は、ボス部43を貫通している。ボス部43は吸気用ロッカーシャフト34に対して揺動可能で且つ軸方向(左右方向)に摺動可能に支持されている。 The intake rocker arm 32 is swingably supported by the intake rocker shaft 34. As shown in FIG. 2, the intake rocker arm 32 includes a cylindrical boss portion 43 (intake boss portion of the present invention), a cam arm portion 44 (intake cam arm portion of the present invention), and two valve arm portions. 45A and 45B (see FIG. 4 for 45A). Each of the two valve arm portions 45A and 45B corresponds to an intake valve arm portion of the present invention. The intake rocker shaft 34 passes through the boss portion 43. The boss portion 43 is supported so as to be swingable with respect to the intake rocker shaft 34 and to be slidable in the axial direction (left-right direction).
 吸気用ロッカーアーム32は、一体成形によって形成されている。カムアーム部44は、ボス部43の外周面から下方に突出している。カムアーム部44には、左右方向(カムシャフト31の回転軸線C2の方向)に貫通する穴47が形成されている。カムアーム部44は、ボス部43の外周部の周方向に離れた2箇所に接続されている。 The intake rocker arm 32 is formed by integral molding. The cam arm portion 44 projects downward from the outer peripheral surface of the boss portion 43. The cam arm portion 44 is formed with a hole 47 penetrating in the left-right direction (the direction of the rotational axis C2 of the camshaft 31). The cam arm portion 44 is connected to two locations separated in the circumferential direction of the outer peripheral portion of the boss portion 43.
 カムアーム部44の後下端部には、摺動面46(本発明の吸気用摺動面)が形成されている。摺動面46は吸気用カム40の外周面と摺動する。吸気用ロッカーアーム32は、吸気用カム40に押圧されて吸気用ロッカーシャフト34の中心軸線C3周りに揺動する。摺動面46には、被膜62が形成されている。したがって、厳密には、摺動面46は、摺動面46に形成された被膜62と、吸気用カム40の外周面に形成された被膜(図示省略)を介して、吸気用カム40の外周面と摺動する。本実施形態では、被膜62は、摺動面46だけでなく、吸気用ロッカーアーム32の表面のうちボス部43の内周面以外の部分に形成されている。なお、図3に表示した部分拡大図では、被膜62の厚さを誇張して表示している。 A sliding surface 46 (sliding surface for intake of the present invention) is formed at the rear lower end of the cam arm portion 44. The sliding surface 46 slides with the outer peripheral surface of the intake cam 40. The intake rocker arm 32 is pressed by the intake cam 40 and swings around the central axis C <b> 3 of the intake rocker shaft 34. A coating 62 is formed on the sliding surface 46. Therefore, strictly speaking, the sliding surface 46 has an outer periphery of the intake cam 40 via a coating 62 formed on the sliding surface 46 and a coating (not shown) formed on the outer peripheral surface of the intake cam 40. Sliding with the surface. In the present embodiment, the coating 62 is formed not only on the sliding surface 46 but also on the surface of the intake rocker arm 32 other than the inner peripheral surface of the boss portion 43. In the partial enlarged view shown in FIG. 3, the thickness of the film 62 is exaggerated.
 被膜62は、吸気用ロッカーアーム32の基材(摺動面46の基材でもある)よりも摩擦係数が低く、硬度が高い。言い換えると、摺動面46に、基材よりも摩擦係数を下げ且つ硬度を上げる表面処理を施すことで、被膜62は形成されている。被膜62の摩擦係数は、窒化クロムコーティング、または、焼結材による表面処理が施された面の摩擦係数よりも低い。換言すれば、被膜62は、耐焼付き性が高い。被膜62は、具体的には、例えば、炭素系硬質被膜が好ましく、より具体的にはDLC(Diamond Like Carbon)が好ましい。DLCは、グラファイト構造の特性である自己潤滑性を有するため、摩擦係数が低く、耐焼付き性が高い。このDLCに比べて、例えば窒化クロムコーティングによる被膜は、自己潤滑性を有しておらず、摩擦係数が相対的に高い。また、DLCは、ダイヤモンド構造を有するため、窒化クロムコーティングによる被膜よりも最高硬度が高く、耐摩耗性が高い。 The coating 62 has a lower coefficient of friction and higher hardness than the base material of the intake rocker arm 32 (also the base material of the sliding surface 46). In other words, the coating 62 is formed by subjecting the sliding surface 46 to a surface treatment that lowers the coefficient of friction and increases the hardness as compared with the base material. The friction coefficient of the film 62 is lower than the friction coefficient of the surface subjected to the surface treatment with the chromium nitride coating or the sintered material. In other words, the coating film 62 has high seizure resistance. Specifically, the coating 62 is preferably, for example, a carbon-based hard coating, and more specifically DLC (Diamond Like Carbon). DLC has a self-lubricating property that is a characteristic of a graphite structure, and therefore has a low friction coefficient and high seizure resistance. Compared to this DLC, for example, a film made of a chromium nitride coating does not have self-lubricating properties and has a relatively high friction coefficient. Further, since DLC has a diamond structure, it has a higher maximum hardness and higher wear resistance than a film formed by chromium nitride coating.
 図4に示すように、カムアーム部44の摺動面46の左右方向(カムシャフト31の回転軸線C2の方向)の幅D1は、吸気用カム40の外周面の左右方向の幅Wより小さい。また、カムアーム部44の摺動面46の左右方向の幅D1は、吸気用バルブ16のバルブ軸部16bの最小直径よりも小さい。カムアーム部44のボス部43と反対側の端部(摺動面46が設けられた端部)における摺動面46以外の部分の左右方向の幅は、摺動面46の左右方向の幅D1とほぼ同じである。 As shown in FIG. 4, the width D1 of the sliding surface 46 of the cam arm 44 in the left-right direction (the direction of the rotation axis C2 of the camshaft 31) is smaller than the width W of the outer peripheral surface of the intake cam 40 in the left-right direction. Further, the width D1 in the left-right direction of the sliding surface 46 of the cam arm portion 44 is smaller than the minimum diameter of the valve shaft portion 16b of the intake valve 16. The lateral width of the portion other than the sliding surface 46 at the end (the end provided with the sliding surface 46) opposite to the boss 43 of the cam arm 44 is the lateral width D1 of the sliding surface 46. Is almost the same.
 カムアーム部44は、ボス部43の近傍部において、ボス部43に近づくほど左右方向の幅が大きくなっている。カムアーム部44のボス部43との連結部分44a(カムアーム部44のボス部43に近い端部)の左右方向の幅D2は、カムアーム部44の摺動面46の左右方向の幅D1よりも大きい。カムアーム部44は、ボス部43との連結部分44aにおいて、左右方向の幅が最大となっている。 In the vicinity of the boss portion 43, the cam arm portion 44 has a width in the left-right direction that is closer to the boss portion 43. The lateral width D2 of the connecting portion 44a of the cam arm portion 44 with the boss portion 43 (the end portion of the cam arm portion 44 close to the boss portion 43) is larger than the lateral width D1 of the sliding surface 46 of the cam arm portion 44. . The cam arm portion 44 has the maximum width in the left-right direction at the connecting portion 44 a with the boss portion 43.
 なお、カムアーム部44のボス部43との連結部分44aの左右方向(カムシャフト31の回転軸線C2の方向)の幅とは、シリンダ孔9の中心軸線C1の方向から見て、カムアーム部44の外面(左面および右面)の左右方向に対する曲率とボス部43の外周面の左右方向に対する曲率との変曲点同士を結んだ直線の長さである。本実施形態では、ボス部43の外周面は、左右方向に延びている。そのため、シリンダ孔9の中心軸線C1の方向から見て、ボス部43の外周面に対応する直線とカムアーム部44の左右両面に対応する2つの曲線との境界位置同士を結んだ直線の長さが、カムアーム部44のボス部43との連結部分44aの左右方向の幅である。 Note that the width in the left-right direction (the direction of the rotational axis C2 of the camshaft 31) of the connecting portion 44a of the cam arm 44 with the boss 43 is the direction of the central axis C1 of the cylinder hole 9 and This is the length of a straight line connecting inflection points between the curvature of the outer surface (left surface and right surface) in the left-right direction and the curvature of the outer peripheral surface of the boss portion 43 in the left-right direction. In the present embodiment, the outer peripheral surface of the boss portion 43 extends in the left-right direction. Therefore, when viewed from the direction of the central axis C1 of the cylinder hole 9, the length of the straight line connecting the boundary positions of the straight line corresponding to the outer peripheral surface of the boss portion 43 and the two curves corresponding to the left and right both surfaces of the cam arm portion 44 Is the width in the left-right direction of the connecting portion 44 a with the boss portion 43 of the cam arm portion 44.
 カムアーム部44のボス部43との連結部分44aの左右方向の幅D2は、吸気用カム40の外周面の左右方向の幅W、及び、バルブ軸部16b、18bの最小直径より大きい。 The lateral width D2 of the connecting portion 44a of the cam arm portion 44 with the boss portion 43 is larger than the lateral width W of the outer peripheral surface of the intake cam 40 and the minimum diameter of the valve shaft portions 16b and 18b.
 バルブアーム部45A、45Bは、ボス部43の外周面から上方に突出している。バルブアーム部45A、45Bは、吸気用ロッカーアーム32をヘッドカバー27側から見た時に、上方に向かうほど互いに離間するV字状に形成されている(図4参照)。 The valve arm portions 45 </ b> A and 45 </ b> B protrude upward from the outer peripheral surface of the boss portion 43. When the intake rocker arm 32 is viewed from the head cover 27 side, the valve arm portions 45A and 45B are formed in a V shape that is separated from each other toward the top (see FIG. 4).
 図2に示すように、バルブアーム部45A、45Bには、それぞれ、左右方向(カムシャフト31の回転軸線C2の方向)に貫通する穴48が形成されている。バルブアーム部45A、45Bは、それぞれボス部43の外周部の周方向に離れた2箇所に接続されている。2箇所の一方において、バルブアーム部45A、45Bはカムアーム部44と連結されている。 As shown in FIG. 2, each of the valve arm portions 45A and 45B is formed with a hole 48 penetrating in the left-right direction (the direction of the rotation axis C2 of the camshaft 31). The valve arm portions 45 </ b> A and 45 </ b> B are connected to two locations separated from each other in the circumferential direction of the outer peripheral portion of the boss portion 43. In one of the two places, the valve arm portions 45 </ b> A and 45 </ b> B are connected to the cam arm portion 44.
 バルブアーム部45A、45Bのボス部43と反対側の端部には、それぞれ押圧部49が形成されている。押圧部49は、吸気用バルブ16のバルブ軸部16bの先端と向かい合っている。吸気用ロッカーアーム32は、吸気用カム40に押圧されて揺動した際に、2つの押圧部49によって2つの吸気用バルブ16を開く方向に押圧する。 A pressing portion 49 is formed at each end of the valve arm portions 45A and 45B opposite to the boss portion 43. The pressing portion 49 faces the tip of the valve shaft portion 16 b of the intake valve 16. When the intake rocker arm 32 is pressed by the intake cam 40 and swings, the intake rocker arm 32 presses the two intake valves 16 in the direction to open the two intake valves 16.
 吸気用ロッカーアーム32の各押圧部49とバルブ軸部16bの先端との間には円盤状のシム50(本発明の吸気用シム)が配置されている。シム50は、タペットクリアランスを調整するためのものである。シム50は、スプリングリテーナ21の中央部の孔に取り外し可能に装着されて、吸気用ロッカーアーム32の押圧部49に接している。シム50の表面には、被膜62と同様の被膜(図示省略)が形成されている。したがって、押圧部49は、押圧部49に形成された被膜62と、シム50の表面に形成された被膜を介して、シム50の表面と接する。 A disk-shaped shim 50 (the intake shim of the present invention) is disposed between each pressing portion 49 of the intake rocker arm 32 and the tip of the valve shaft portion 16b. The shim 50 is for adjusting the tappet clearance. The shim 50 is detachably mounted in the central hole of the spring retainer 21 and is in contact with the pressing portion 49 of the intake rocker arm 32. A film (not shown) similar to the film 62 is formed on the surface of the shim 50. Therefore, the pressing portion 49 contacts the surface of the shim 50 via the coating 62 formed on the pressing portion 49 and the coating formed on the surface of the shim 50.
 図4に示すように、吸気用ロッカーアーム32のボス部43より左方において、吸気用ロッカーシャフト34の外周部にはスプリング51が配置されている。吸気用ロッカーアーム32は、スプリング51によって第1の外壁25aに向かって(即ち右方に)付勢されている。より具体的には、スプリング51によってボス部43は第1の外壁25aの軸受部42の端面に押し付けられている。 As shown in FIG. 4, a spring 51 is disposed on the outer periphery of the intake rocker shaft 34 on the left side of the boss 43 of the intake rocker arm 32. The intake rocker arm 32 is biased by the spring 51 toward the first outer wall 25a (that is, to the right). More specifically, the boss portion 43 is pressed against the end surface of the bearing portion 42 of the first outer wall 25a by the spring 51.
 タペットクリアランスを調整する際には、まず、吸気用ロッカーアーム32の押圧部49とシム50との間にシックネスゲージを挿入してタペットクリアランスを計測する。この計測結果に基づきシム50を厚みの異なるものと交換することで、吸気側のタペットクリアランスを規定値に調整することができる。 When adjusting the tappet clearance, first, a thickness gauge is inserted between the pressing portion 49 of the intake rocker arm 32 and the shim 50 to measure the tappet clearance. By replacing the shim 50 with a different thickness based on the measurement result, the tappet clearance on the intake side can be adjusted to a specified value.
 シム50を交換する際には、作業者の手によって吸気用ロッカーアーム32をスプリング51の付勢力に抗して第2の外壁25b側にスライドさせる。これにより、バルブアーム部45A、45Bの先端部に位置する押圧部49がシム50の横にずれる。この状態で例えばマグネットドライバを利用してシム50を取り出す。この後、新たなシム50をスプリングリテーナ21に装着してから、吸気用ロッカーアーム32を元の位置にスライドさせる。 When replacing the shim 50, the operator rocks the intake rocker arm 32 toward the second outer wall 25b against the biasing force of the spring 51. As a result, the pressing portion 49 located at the tip of the valve arm portions 45 </ b> A and 45 </ b> B is shifted to the side of the shim 50. In this state, for example, the shim 50 is taken out using a magnet driver. Thereafter, a new shim 50 is mounted on the spring retainer 21, and then the intake rocker arm 32 is slid to the original position.
 図示は省略するが、吸気用ロッカーアーム32のボス部43には、カムシャフト31のオイル通路(図示せず)から噴出する潤滑油をボス部43と吸気用ロッカーシャフト34との間に導くためのオイル供給孔が形成されている。 Although not shown, lubricating oil ejected from an oil passage (not shown) of the camshaft 31 is guided between the boss portion 43 and the intake rocker shaft 34 to the boss portion 43 of the intake rocker arm 32. The oil supply hole is formed.
 排気用ロッカーシャフト35は、カムシャフト31より前下方に配置されている。排気用ロッカーシャフト35は、カムシャフト31および吸気用ロッカーシャフト34と並列している。排気用ロッカーシャフト35は、シリンダヘッド部7に回転不能に支持されている。排気用ロッカーシャフト35の一端部(右端部)は、第1の外壁25aから動弁室26に突出する軸受部52に嵌め込まれている。排気用ロッカーシャフト35の他端部(左端部)は、支持壁28に支持されている。排気用ロッカーシャフト35の外周面には、被膜62と同様の被膜(図示省略)が形成されている。 The exhaust rocker shaft 35 is disposed in front of and below the camshaft 31. The exhaust rocker shaft 35 is in parallel with the camshaft 31 and the intake rocker shaft 34. The exhaust rocker shaft 35 is supported by the cylinder head portion 7 so as not to rotate. One end portion (right end portion) of the exhaust rocker shaft 35 is fitted into a bearing portion 52 that protrudes from the first outer wall 25a to the valve operating chamber 26. The other end (left end) of the exhaust rocker shaft 35 is supported by the support wall 28. A film (not shown) similar to the film 62 is formed on the outer peripheral surface of the exhaust rocker shaft 35.
 排気用ロッカーアーム33は、排気用ロッカーシャフト35に揺動可能に支持されている。排気用ロッカーアーム33は、円筒状のボス部53(本発明の排気用ボス部)、カムアーム部54(本発明の排気用カムアーム部)、及び単一のバルブアーム部55(本発明の排気用バルブアーム部)を備えている。排気用ロッカーシャフト35は、ボス部53を貫通している。ボス部53は排気用ロッカーシャフト35に対して揺動可能で且つ軸方向(左右方向)に摺動可能に支持されている。 The exhaust rocker arm 33 is swingably supported by the exhaust rocker shaft 35. The exhaust rocker arm 33 includes a cylindrical boss 53 (exhaust boss according to the present invention), a cam arm 54 (exhaust cam arm according to the present invention), and a single valve arm 55 (exhaust according to the present invention). Valve arm section). The exhaust rocker shaft 35 passes through the boss portion 53. The boss portion 53 is supported so as to be swingable with respect to the exhaust rocker shaft 35 and to be slidable in the axial direction (left-right direction).
 排気用ロッカーアーム33は、一体成形によって形成されている。カムアーム部54は、ボス部53の外周面から上方に突出している。カムアーム部54には、左右方向(カムシャフト31の回転軸線C2の方向)に貫通する穴57が形成されている。カムアーム部54は、ボス部53の外周部の周方向に離れた2箇所に接続されている。 The exhaust rocker arm 33 is formed by integral molding. The cam arm portion 54 protrudes upward from the outer peripheral surface of the boss portion 53. The cam arm portion 54 is formed with a hole 57 penetrating in the left-right direction (the direction of the rotation axis C2 of the camshaft 31). The cam arm portion 54 is connected to two locations separated in the circumferential direction of the outer peripheral portion of the boss portion 53.
 カムアーム部54の後上端部には、摺動面56(本発明の排気用摺動面)が形成されている。摺動面56は、吸気用ロッカーアーム32の摺動面46と左右方向に並んでいる。図4に示すように、摺動面56は摺動面46より左方に位置する。前後方向(シリンダ孔9の中心軸線C1の方向)から見て、摺動面46、56は、吸気用ロッカーシャフト34と排気用ロッカーシャフト35の間に設けられている。言い換えると、上下方向において、摺動面46、56は、吸気用ロッカーシャフト34と排気用ロッカーシャフト35の間に位置している。また、図2に示すように、左右方向(カムシャフト31の回転軸線C2の方向)から見て、摺動面46、56は、カムシャフト31より前方(シリンダ孔9の中心軸線C1の一方向)に設けられている。 A sliding surface 56 (exhaust sliding surface of the present invention) is formed at the rear upper end of the cam arm portion 54. The sliding surface 56 is aligned with the sliding surface 46 of the intake rocker arm 32 in the left-right direction. As shown in FIG. 4, the sliding surface 56 is located to the left of the sliding surface 46. The sliding surfaces 46 and 56 are provided between the intake rocker shaft 34 and the exhaust rocker shaft 35 when viewed from the front-rear direction (the direction of the central axis C1 of the cylinder hole 9). In other words, the sliding surfaces 46 and 56 are positioned between the intake rocker shaft 34 and the exhaust rocker shaft 35 in the vertical direction. Further, as shown in FIG. 2, when viewed from the left-right direction (the direction of the rotational axis C2 of the camshaft 31), the sliding surfaces 46 and 56 are forward of the camshaft 31 (one direction of the central axis C1 of the cylinder hole 9). ).
 摺動面56は排気用カム41の外周面と摺動する。排気用ロッカーアーム33は、排気用カム41に押圧されて排気用ロッカーシャフト35の中心軸線C4周りに揺動する。摺動面56には、被膜62と同様の被膜(図示省略)が形成されている。したがって、厳密には、摺動面56は、摺動面56に形成された被膜と、排気用カム41の外周面に形成された被膜を介して排気用カム41の外周面と摺動する。本実施形態では、被膜は、摺動面56だけでなく、排気用ロッカーアーム33の表面のうちボス部53の内周面以外の部分に形成されている。 The sliding surface 56 slides with the outer peripheral surface of the exhaust cam 41. The exhaust rocker arm 33 is pressed by the exhaust cam 41 and swings around the central axis C <b> 4 of the exhaust rocker shaft 35. A film (not shown) similar to the film 62 is formed on the sliding surface 56. Therefore, strictly speaking, the sliding surface 56 slides with the outer peripheral surface of the exhaust cam 41 via the coating formed on the sliding surface 56 and the coating formed on the outer peripheral surface of the exhaust cam 41. In the present embodiment, the coating is formed not only on the sliding surface 56 but also on the surface of the exhaust rocker arm 33 other than the inner peripheral surface of the boss portion 53.
 図4に示すように、カムアーム部54の摺動面56の左右方向の幅は、排気用カム41の外周面の左右方向の幅より小さい。また、カムアーム部54の摺動面56の左右方向の幅は、排気用バルブ18のバルブ軸部18bの最小直径よりも小さい。カムアーム部54のボス部53と反対側の端部(摺動面56が設けられた端部)における摺動面56以外の部分の左右方向の幅は、摺動面56の左右方向の幅とほぼ同じである。 As shown in FIG. 4, the lateral width of the sliding surface 56 of the cam arm 54 is smaller than the lateral width of the outer peripheral surface of the exhaust cam 41. Further, the lateral width of the sliding surface 56 of the cam arm portion 54 is smaller than the minimum diameter of the valve shaft portion 18 b of the exhaust valve 18. The lateral width of the portion other than the sliding surface 56 at the end of the cam arm portion 54 opposite to the boss 53 (the end provided with the sliding surface 56) is equal to the lateral width of the sliding surface 56. It is almost the same.
 カムアーム部54は、ボス部53の近傍部において、ボス部53に近づくほど左右方向の幅が大きくなっている。カムアーム部54のボス部53との連結部分54a(カムアーム部54のボス部53に近い端部)の左右方向の幅は、カムアーム部54の摺動面56の左右方向の幅よりも大きい。カムアーム部54は、ボス部53との連結部分54aにおいて、左右方向の幅が最大となっている。 In the vicinity of the boss portion 53, the cam arm portion 54 has a width in the left-right direction that is closer to the boss portion 53. The lateral width of the connecting portion 54a of the cam arm portion 54 with the boss portion 53 (the end portion of the cam arm portion 54 close to the boss portion 53) is greater than the lateral width of the sliding surface 56 of the cam arm portion 54. The cam arm portion 54 has the maximum width in the left-right direction at the connecting portion 54 a with the boss portion 53.
 なお、カムアーム部54のボス部53との連結部分54aの左右方向の幅とは、シリンダ孔9の中心軸線C1の方向から見て、カムアーム部54の外面(左面および右面)の左右方向に対する曲率とボス部53の外周面の左右方向に対する曲率との変曲点同士を結んだ直線の長さである。 The lateral width of the connecting portion 54a of the cam arm portion 54 with the boss portion 53 is the curvature of the outer surface (left surface and right surface) of the cam arm portion 54 with respect to the lateral direction when viewed from the direction of the central axis C1 of the cylinder hole 9. And the length of a straight line connecting inflection points with the curvature of the outer peripheral surface of the boss portion 53 with respect to the left-right direction.
 カムアーム部54のボス部53との連結部分54aの左右方向の幅は、排気用カム41の外周面の左右方向の幅、及び、バルブ軸部16b、18bの最小直径より大きい。 The lateral width of the connecting portion 54a of the cam arm portion 54 with the boss portion 53 is larger than the lateral width of the outer peripheral surface of the exhaust cam 41 and the minimum diameter of the valve shaft portions 16b and 18b.
 バルブアーム部55は、ボス部53の外周面から下方に突出している。バルブアーム部55には、左右方向に貫通する穴58が形成されている。バルブアーム部55は、ボス部53の外周部の周方向に離れた2箇所に接続されている。2箇所の一方において、バルブアーム部55はカムアーム部54と連結されている。 The valve arm portion 55 projects downward from the outer peripheral surface of the boss portion 53. The valve arm 55 is formed with a hole 58 penetrating in the left-right direction. The valve arm portion 55 is connected to two locations separated in the circumferential direction of the outer peripheral portion of the boss portion 53. In one of the two places, the valve arm portion 55 is connected to the cam arm portion 54.
 バルブアーム部55のボス部53と反対側の端部には、押圧部59が形成されている。押圧部59は、排気用バルブ18のバルブ軸部18bの先端と向かい合っている。排気用ロッカーアーム33は、排気用カム41に押圧されて揺動した際に、押圧部59によって排気用バルブ18を開く方向に押圧する。 A pressing portion 59 is formed at the end of the valve arm portion 55 opposite to the boss portion 53. The pressing portion 59 faces the tip of the valve shaft portion 18b of the exhaust valve 18. When the exhaust rocker arm 33 is pressed by the exhaust cam 41 and swings, the exhaust rocker arm 33 presses the exhaust valve 18 in a direction to open the exhaust valve 18.
 排気用ロッカーアーム33の押圧部59とバルブ軸部18bの先端との間に円盤状のシム60(本発明の排気用シム)が配置されている。シム60は、タペットクリアランスを調整するためのものである。シム60は、スプリングリテーナ23の中央部の孔に取り外し可能に装着されて、排気用ロッカーアーム33の押圧部59に接している。シム60の表面には、被膜62と同様の被膜(図示省略)が形成されている。したがって、押圧部59は、押圧部59に形成された被膜と、シム60の表面に形成された被膜を介して、シム60の表面と接する。 A disc-shaped shim 60 (exhaust shim of the present invention) is disposed between the pressing portion 59 of the exhaust rocker arm 33 and the tip of the valve shaft portion 18b. The shim 60 is for adjusting the tappet clearance. The shim 60 is detachably mounted in the central hole of the spring retainer 23 and is in contact with the pressing portion 59 of the exhaust rocker arm 33. A film (not shown) similar to the film 62 is formed on the surface of the shim 60. Therefore, the pressing portion 59 is in contact with the surface of the shim 60 via the coating formed on the pressing portion 59 and the coating formed on the surface of the shim 60.
 図4に示すように、排気用ロッカーアーム33のボス部53より右方において、排気用ロッカーシャフト35の外周部にはスプリング61が配置されている。排気用ロッカーアーム33は、スプリング61によって第2の外壁25bに向かって(即ち左方に)付勢されている。より具体的には、スプリング61によってボス部53は支持壁28に押し付けられている。 As shown in FIG. 4, a spring 61 is disposed on the outer periphery of the exhaust rocker shaft 35 on the right side of the boss 53 of the exhaust rocker arm 33. The exhaust rocker arm 33 is urged toward the second outer wall 25b by the spring 61 (that is, to the left). More specifically, the boss portion 53 is pressed against the support wall 28 by the spring 61.
 タペットクリアランスの調整作業は、上記吸気側と同様の手順で行う。 タ Tappet clearance adjustment is performed in the same way as the intake side.
 図示は省略するが、排気用ロッカーアーム33のボス部53には、カムシャフト31のオイル通路(図示せず)から噴出する潤滑油をボス部53と排気用ロッカーシャフト35との間に導くためのオイル供給孔が形成されている。 Although not shown, lubricating oil ejected from an oil passage (not shown) of the camshaft 31 is guided between the boss portion 53 and the exhaust rocker shaft 35 to the boss portion 53 of the exhaust rocker arm 33. The oil supply hole is formed.
 図2及び図3に示すように、シリンダヘッド部7には補強板65が固定されている。補強板65は、第1の外壁25aの端面と支持壁28の端面との間に跨って配置されている。補強板65は略四角形状であって、補強板65の中央部には略四角形状の孔が形成されている。 2 and 3, a reinforcing plate 65 is fixed to the cylinder head portion 7. The reinforcing plate 65 is disposed across the end surface of the first outer wall 25 a and the end surface of the support wall 28. The reinforcing plate 65 has a substantially square shape, and a substantially square hole is formed in the center of the reinforcing plate 65.
 支持壁28の前端面及び第1の外壁25aの前端面からは、それぞれ一対のスタッドボルト66が突出している(図4参照)。スタッドボルト66は、補強板65の四隅に形成した孔を貫通している。このスタッドボルト66の先端にはナット67が取り付けられている。 A pair of stud bolts 66 protrude from the front end surface of the support wall 28 and the front end surface of the first outer wall 25a (see FIG. 4). The stud bolt 66 passes through holes formed at the four corners of the reinforcing plate 65. A nut 67 is attached to the tip of the stud bolt 66.
 本実施形態の単気筒SOHCエンジン2は、以下の特徴を有する。
 本実施形態では、カムアーム部44、54の摺動面46、56には被膜(62)が形成されており、カム40、41の外周面に、被膜62と同様の被膜(図示省略)が形成されている。したがって、カムアーム部44、54の摺動面46、56と、カム40、41の外周面とは、2つの被膜を介して摺動する。この被膜は、摺動面46、56の基材よりも摩擦係数が低い。そのため、被膜と、この被膜と摺動する面との摩擦係数は小さい。
The single cylinder SOHC engine 2 of the present embodiment has the following features.
In the present embodiment, a coating film (62) is formed on the sliding surfaces 46, 56 of the cam arm portions 44, 54, and a coating film (not shown) similar to the coating film 62 is formed on the outer peripheral surface of the cams 40, 41. Has been. Therefore, the sliding surfaces 46 and 56 of the cam arm portions 44 and 54 and the outer peripheral surface of the cams 40 and 41 slide through the two films. This coating has a lower coefficient of friction than the base material of the sliding surfaces 46 and 56. Therefore, the coefficient of friction between the coating and the surface sliding with the coating is small.
 摺動面46、56のカムシャフト31の回転軸線C2の方向の幅(D1)を小さくした場合、ロッカーアーム32、33を軽量化でき、その結果、機械的損失を低減できる。その一方で、摺動面46、56とカム40、41との接触面圧が高くなる。接触面圧の増加は、摩擦力の増加につながる。しかし、本実施形態では、被膜によって接触面の間の摩擦係数を下げているため、摺動面46、56のカムシャフト31の回転軸線C2の方向の幅を小さくしても、摩擦力の増加による機械的損失の増加を抑えることができる。 When the width (D1) of the sliding surface 46, 56 in the direction of the rotation axis C2 of the camshaft 31 is reduced, the rocker arms 32, 33 can be reduced in weight, and as a result, mechanical loss can be reduced. On the other hand, the contact surface pressure between the sliding surfaces 46 and 56 and the cams 40 and 41 increases. An increase in contact surface pressure leads to an increase in frictional force. However, in this embodiment, since the friction coefficient between the contact surfaces is lowered by the coating, even if the width of the sliding surfaces 46 and 56 in the direction of the rotation axis C2 of the camshaft 31 is reduced, the frictional force is increased. The increase in mechanical loss due to can be suppressed.
 カムアーム部44、54のボス部43、53に近い端部44a、54aのカムシャフト31の回転軸線C2の方向の幅(D2)は、ロッカーアーム32、33にかかる力の大きさによって決まっており、極端に大きくなることはない。したがって、カムシャフト31の回転軸線C2の方向において、カムアーム部44、54の摺動面46、56の幅(D1)を、カムアーム部44、54のボス部43、53に近い端部44a、54aの幅(D2)より小さくすることで、摺動面46、56の幅(D1)を、従来のロッカーアームのカム側の端部の幅よりも小さくできる。
 そのため、本実施形態では、機械的損失の増加を抑えつつ、カムシャフト31の回転軸線C2の方向において、摺動面46、56の幅(D1)を、従来のロッカーアーのカム側の端部の幅よりも小さくできる。
The width (D2) of the cam shaft 31 in the direction of the rotation axis C2 of the end portions 44a and 54a of the cam arm portions 44 and 54 close to the boss portions 43 and 53 is determined by the magnitude of the force applied to the rocker arms 32 and 33. , Never become extremely large. Therefore, in the direction of the rotation axis C2 of the camshaft 31, the width (D1) of the sliding surfaces 46, 56 of the cam arm portions 44, 54 is set to the end portions 44a, 54a close to the boss portions 43, 53 of the cam arm portions 44, 54. By making it smaller than the width (D2), the width (D1) of the sliding surfaces 46, 56 can be made smaller than the width of the end portion on the cam side of the conventional rocker arm.
Therefore, in this embodiment, while suppressing an increase in mechanical loss, the width (D1) of the sliding surfaces 46 and 56 in the direction of the rotation axis C2 of the camshaft 31 is set to the cam-side end of the conventional rocker arm. Can be smaller than the width of.
 また、摺動面46、56のカムシャフト31の回転軸線C2の方向の幅(D1)を小さくしたことにより、その分、スペースを確保できる。摺動面46と摺動面56は、カムシャフト31の回転軸線方向に並んで設けられている。そのため、摺動面46と摺動面56の間に広いスペースを確保したり、摺動面46と摺動面56のカムシャフト31の回転軸線C2の方向の外側のスペースを広げたりすることができる。これにより、エンジン2の設計自由度を高めることができる。設計自由度を高めることで、エンジン2を小型化するための工夫が行いやすくなる。例えば、カム40、41のカムシャフト31の回転軸線C2の方向の幅を小さくして、カムシャフト31の長さを短くすることで、エンジン2を小型化できる。 Further, by reducing the width (D1) of the sliding surfaces 46 and 56 in the direction of the rotation axis C2 of the camshaft 31, space can be secured accordingly. The sliding surface 46 and the sliding surface 56 are provided side by side in the rotational axis direction of the camshaft 31. Therefore, it is possible to secure a wide space between the sliding surface 46 and the sliding surface 56, or to widen a space outside the sliding surface 46 and the sliding surface 56 in the direction of the rotation axis C2 of the camshaft 31. it can. Thereby, the design freedom of the engine 2 can be raised. By increasing the degree of design freedom, it becomes easier to devise for downsizing the engine 2. For example, the engine 2 can be downsized by reducing the width of the cams 40 and 41 in the direction of the rotation axis C2 of the camshaft 31 and shortening the length of the camshaft 31.
 本実施形態のエンジン2は、単気筒エンジンであるため、多気筒エンジンに比べて内部スペースの余裕が少ない。そのため、本実施形態のエンジン2では、内部スペースを確保して設計自由度を向上させることが、エンジン2の小型化により有効である。また、単気筒エンジンが搭載される機器は、エンジンの外側のスペースが少ないものが多い。そのため、エンジン2を小型化してエンジン2の外側のスペースを増やすことで、このスペースを有効に活用できる。 Since the engine 2 of the present embodiment is a single cylinder engine, the internal space is less than that of a multi-cylinder engine. Therefore, in the engine 2 of the present embodiment, it is effective to reduce the size of the engine 2 to secure the internal space and improve the design freedom. Also, many devices equipped with a single cylinder engine have a small space outside the engine. Therefore, the space can be effectively utilized by downsizing the engine 2 and increasing the space outside the engine 2.
 また、ロッカーアーム32、33の摺動面46、56とカム40、41との間に、摺動面46、56の基材よりも摩擦係数が低く、硬度が高い被膜(62)が介在しているため、ロッカーアーム32、33の摺動面46、56とカム40、41との間で焼き付きが生じるのを防止できる。 Further, between the sliding surfaces 46 and 56 of the rocker arms 32 and 33 and the cams 40 and 41, a coating (62) having a lower coefficient of friction and higher hardness than the base material of the sliding surfaces 46 and 56 is interposed. Therefore, seizure can be prevented from occurring between the sliding surfaces 46, 56 of the rocker arms 32, 33 and the cams 40, 41.
 また、摺動面46と摺動面56は、カムシャフト31の回転軸線C2の方向の幅が小さく、且つ、カムシャフト31の回転軸線C2の方向に並んでいる。それに加えて、摺動面46と摺動面56は、カムシャフト31の回転軸線C2の方向から見て、カムシャフト31に対して、シリンダ孔9の中心軸線C1の方向の一方向(前方)に設けられる。そのため、摺動面46と摺動面56を小さいスペースに集約して配置することができる。これにより、エンジン2内に大きいスペースを確保しやすくなる。したがって、エンジン2の設計自由度をさらに向上できるため、エンジン2をより小型化できる。 Further, the sliding surface 46 and the sliding surface 56 have a small width in the direction of the rotation axis C2 of the camshaft 31 and are aligned in the direction of the rotation axis C2 of the camshaft 31. In addition, the sliding surface 46 and the sliding surface 56 are unidirectional (forward) in the direction of the central axis C1 of the cylinder hole 9 with respect to the camshaft 31 when viewed from the direction of the rotational axis C2 of the camshaft 31. Provided. Therefore, the sliding surface 46 and the sliding surface 56 can be concentrated and arranged in a small space. Thereby, it becomes easy to ensure a large space in the engine 2. Therefore, since the design freedom of the engine 2 can be further improved, the engine 2 can be further downsized.
 摺動面46と摺動面56は、カムシャフト31の回転軸線C2の方向(左右方向)の幅が小さく、且つ、カムシャフト31の回転軸線C2の方向に並んでいる。それに加えて、摺動面46と摺動面56は、シリンダ孔9の中心軸線C1の方向から見て、吸気用ロッカーシャフト34と排気用ロッカーシャフト35の間に設けられ、両方ともカムシャフト31の前方に配置される。そのため、摺動面46と摺動面56をより小さいスペースに集約して配置することができる。さらに、吸気用ロッカーシャフト34がカムシャフト31より上方に設けられ、排気用ロッカーシャフト35がカムシャフト31より下方に設けられる。そのため、摺動面46と摺動面56の左右方向の間隔を狭めやすい。
 これらにより、エンジン2内に大きいスペースを確保しやすくなる。したがって、エンジン2の設計自由度をさらに向上できるため、エンジン2をより小型化できる。
The sliding surface 46 and the sliding surface 56 have a small width in the direction (left-right direction) of the rotation axis C2 of the camshaft 31, and are aligned in the direction of the rotation axis C2 of the camshaft 31. In addition, the sliding surface 46 and the sliding surface 56 are provided between the intake rocker shaft 34 and the exhaust rocker shaft 35 when viewed from the direction of the central axis C <b> 1 of the cylinder hole 9. Placed in front of. Therefore, the sliding surface 46 and the sliding surface 56 can be arranged in a smaller space. Further, an intake rocker shaft 34 is provided above the camshaft 31, and an exhaust rocker shaft 35 is provided below the camshaft 31. Therefore, it is easy to narrow the distance between the sliding surface 46 and the sliding surface 56 in the left-right direction.
Thus, it becomes easy to secure a large space in the engine 2. Therefore, since the design freedom of the engine 2 can be further improved, the engine 2 can be further downsized.
 また、カムアーム部44、54は、ボス部43、53から、カムシャフト31の回転軸線C2の方向(左右方向)に直交する上下方向に突出している。そのため、摺動面46と摺動面56の左右方向の間隔を狭めやすい。これにより、エンジン2内に大きいスペースを確保しやすくなる。したがって、エンジン2の設計自由度をさらに向上できるため、エンジン2をより小型化できる。 Further, the cam arm portions 44 and 54 protrude from the boss portions 43 and 53 in the vertical direction perpendicular to the direction of the rotation axis C2 (left and right direction) of the camshaft 31. Therefore, it is easy to narrow the distance between the sliding surface 46 and the sliding surface 56 in the left-right direction. Thereby, it becomes easy to ensure a large space in the engine 2. Therefore, since the design freedom of the engine 2 can be further improved, the engine 2 can be further downsized.
 また、カムアーム部44、54は、カムシャフト31の回転軸線C2の方向に貫通する穴47、57を有する。それにより、ロッカーアーム32、33を軽量化できる。軽量化によって機械的損失を低減できた分、カムアーム部44、54の強度を維持しながら、摺動面46、56のカムシャフト31の回転軸線C2の方向の幅をより小さくできる。それにより、エンジン2の設計自由度をさらに向上できるため、エンジン2をより小型化できる。 Further, the cam arm portions 44 and 54 have holes 47 and 57 penetrating in the direction of the rotation axis C2 of the camshaft 31. Thereby, the rocker arms 32 and 33 can be reduced in weight. Since the mechanical loss can be reduced by reducing the weight, the width of the sliding surface 46, 56 in the direction of the rotation axis C2 of the camshaft 31 can be made smaller while maintaining the strength of the cam arm portions 44, 54. Thereby, since the design freedom of the engine 2 can be further improved, the engine 2 can be further downsized.
 また、バルブアーム部45A、45B、55は、カムシャフト31の回転軸線C2の方向に貫通する穴48、58を有する。それにより、ロッカーアーム32、33を軽量化できる。軽量化によって機械的損失を低減できた分、摺動面46、56のカムシャフト31の回転軸線C2の方向の幅をより小さくできる。それにより、エンジン2の設計自由度をさらに向上できるため、エンジン2をより小型化できる。 Further, the valve arm portions 45A, 45B, 55 have holes 48, 58 penetrating in the direction of the rotation axis C2 of the camshaft 31. Thereby, the rocker arms 32 and 33 can be reduced in weight. Since the mechanical loss can be reduced by reducing the weight, the width of the sliding surfaces 46 and 56 in the direction of the rotation axis C2 of the camshaft 31 can be further reduced. Thereby, since the design freedom of the engine 2 can be further improved, the engine 2 can be further downsized.
 また、カム40、41は、カムシャフト31の回転軸線C2の方向において、その幅がカムアーム部44、54のボス部43、53に近い端部44a、54aの幅より小さい。カムシャフト31の回転軸線C2の方向において、カム40、41の幅が小さいため、エンジン2を大型化することなく、カムシャフト31の近傍にスペースを確保できる。また、カム40、41同士を近づけて配置することで、エンジン2を大型化することなく、カムシャフト31の外周部に大きいスペースを確保できる。このようなスペースを確保することで、エンジン2の設計自由度をさらに向上できるため、エンジン2をより小型化できる。
 また、カム40、41のカムシャフト31の回転軸線C2の方向の幅が小さいため、カムシャフト31の長さを短くすることでエンジン2を小型化できる。
The cams 40 and 41 are smaller in width in the direction of the rotation axis C2 of the cam shaft 31 than the end portions 44a and 54a of the cam arm portions 44 and 54 near the boss portions 43 and 53. Since the cams 40 and 41 have a small width in the direction of the rotation axis C2 of the camshaft 31, a space can be secured in the vicinity of the camshaft 31 without increasing the size of the engine 2. Further, by arranging the cams 40 and 41 close to each other, a large space can be secured in the outer peripheral portion of the cam shaft 31 without increasing the size of the engine 2. By securing such a space, the design freedom of the engine 2 can be further improved, and therefore the engine 2 can be further downsized.
Further, since the width of the cams 40 and 41 in the direction of the rotation axis C2 of the camshaft 31 is small, the engine 2 can be downsized by shortening the length of the camshaft 31.
 点火プラグ68は、その一部がカムシャフト31の回転軸線C2上に位置するように、シリンダヘッド部7の第1の外壁25aに設けられている。カム40、41は、カムシャフト31の回転軸線C2の方向の幅が小さいため、カムシャフト31の長さを短くできる。カムシャフト31の長さを短くすることで、シリンダヘッド部7の点火プラグ68が設けられる第1の外壁25aをシリンダヘッド部7の内部側にずらすことができる。具体的には、本実施形態では、第1の外壁25aの凹状部の深さをより大きくできる。これにより、点火プラグ68をメンテナンスする際に使用するスペースを確保できる。 The spark plug 68 is provided on the first outer wall 25a of the cylinder head portion 7 so that a part thereof is positioned on the rotation axis C2 of the camshaft 31. Since the cams 40 and 41 have a small width in the direction of the rotational axis C2 of the camshaft 31, the length of the camshaft 31 can be shortened. By shortening the length of the cam shaft 31, the first outer wall 25 a provided with the ignition plug 68 of the cylinder head portion 7 can be shifted to the inside of the cylinder head portion 7. Specifically, in the present embodiment, the depth of the concave portion of the first outer wall 25a can be increased. Thereby, the space used when maintaining the spark plug 68 can be secured.
 バルブ16、18のバルブ軸部16b、18bの直径は、バルブ16、18がカムシャフト31から受ける力の大きさによって決まっており、極端に大きくなることはない。摺動面46、56のカムシャフト31の回転軸線C2の方向の幅は、カムアーム部44、54のボス部43、53に近い端部44a、54aの幅より小さいだけでなく、バルブ軸部16b、18bの最小直径よりも小さい。本実施形態では、バルブ軸部16b、18bの直径は、カムアーム部44、54のボス部43、53に近い端部44a、54aの幅よりも小さい。したがって、摺動面46、56のカムシャフト31の回転軸線C2の方向の幅をより小さくできるため、エンジン2の設計自由度がより向上し、エンジン2をより小型化できる。 The diameters of the valve shafts 16b and 18b of the valves 16 and 18 are determined by the magnitude of the force that the valves 16 and 18 receive from the camshaft 31, and do not become extremely large. The width of the sliding surfaces 46 and 56 in the direction of the rotation axis C2 of the camshaft 31 is not only smaller than the width of the end portions 44a and 54a close to the boss portions 43 and 53 of the cam arm portions 44 and 54, but also the valve shaft portion 16b. Smaller than the minimum diameter of 18b. In the present embodiment, the diameters of the valve shaft portions 16b and 18b are smaller than the widths of the end portions 44a and 54a close to the boss portions 43 and 53 of the cam arm portions 44 and 54. Therefore, since the width of the sliding surfaces 46 and 56 in the direction of the rotation axis C2 of the camshaft 31 can be made smaller, the design freedom of the engine 2 is further improved, and the engine 2 can be further downsized.
 また、ロッカーシャフト34、35の外周面には、その基材よりも摩擦係数が低く、硬度が高い被膜(図示省略)が形成されている。これにより、ロッカーシャフト34、35の外周面とロッカーアーム32、33のボス部43、53の内周面との間の摩擦力を低減できると共に、ロッカーシャフト34、35とロッカーアーム32、33のボス部43、53との焼き付きを防止できる。したがって、エンジン2の機械損失の増大をより抑制できる。 Further, a coating film (not shown) having a lower friction coefficient and higher hardness than the base material is formed on the outer peripheral surfaces of the rocker shafts 34 and 35. Thereby, the frictional force between the outer peripheral surface of the rocker shafts 34 and 35 and the inner peripheral surface of the boss portions 43 and 53 of the rocker arms 32 and 33 can be reduced, and the rocker shafts 34 and 35 and the rocker arms 32 and 33 can be reduced. Burn-in with the boss portions 43 and 53 can be prevented. Therefore, an increase in mechanical loss of the engine 2 can be further suppressed.
 バルブアーム部45、55のバルブ16を押圧する押圧部49、59(本発明の端部)の表面には、その基材より摩擦係数が低く、硬度が高い被膜(62)が形成されている。これにより、バルブアーム部45、55のバルブ16、18を押圧する押圧部49、59と、バルブ16、18に設けられて押圧部49、59によって押圧されるシム50、60と間に生じる摩擦力を低減できると共に、両者の間の焼き付きを防止できる。したがって、エンジン2の機械損失の増大をより抑制できる。 On the surfaces of the pressing portions 49 and 59 (end portions of the present invention) that press the valve 16 of the valve arm portions 45 and 55, a coating (62) having a lower coefficient of friction and higher hardness than the base material is formed. . Thereby, the friction which arises between the press parts 49 and 59 which press the valves 16 and 18 of the valve arm parts 45 and 55, and the shims 50 and 60 which are provided in the valves 16 and 18 and are pressed by the press parts 49 and 59. The force can be reduced and seizure between the two can be prevented. Therefore, an increase in mechanical loss of the engine 2 can be further suppressed.
 また、バルブアーム部45、55とバルブ16、18との間に配置されるシム50、60の表面に、その基材よりも摩擦係数が低く、硬度が高い被膜(図示省略)が形成されている。これにより、バルブアーム部45、55とシム50、60との間の摩擦力を低減できると共に、バルブアーム部45、55とシム50、60との焼き付きを防止できる。したがって、エンジン2の機械損失の増大をより抑制できる。 In addition, a film (not shown) having a lower friction coefficient and higher hardness than the base material is formed on the surfaces of the shims 50 and 60 disposed between the valve arm portions 45 and 55 and the valves 16 and 18. Yes. Thereby, the frictional force between the valve arm portions 45 and 55 and the shims 50 and 60 can be reduced, and seizure between the valve arm portions 45 and 55 and the shims 50 and 60 can be prevented. Therefore, an increase in mechanical loss of the engine 2 can be further suppressed.
 ローラーロッカーアームを用いた場合、ローラーが重たいため、ローラーをカムに追随させるために、バルブを閉じる方向に付勢するスプリングのスプリング力が大きくなる。スプリング力は高回転になるほど大きくなる。そのため、ローラーとカムとの摩擦抵抗が小さいことでカムシャフトの駆動トルクが小さくなるものの、スプリング力が大きい分、カムシャフトの駆動トルクが大きくなる。
 一方、本実施形態では、ロッカーアーム32、33とカム40、41とを摺動させるため、摺動する箇所に摩擦係数を下げる表面処理が施されていても、ローラーロッカーアームを用いた場合よりも若干摩擦抵抗が大きくなる。そのため、ローラーロッカーアームを用いた場合よりも、摩擦抵抗が大きくなった分、カムシャフト31の駆動トルクが大きくなる。しかしながら、ロッカーアーム32、33を軽量化できるため、吸気用及び排気用スプリング22、24スプリング力を小さくでき、その分、カムシャフト31の駆動トルクを小さくできる。その結果、カムシャフト31の駆動トルクの増大を抑制でき、機械損失の増大を抑制できる。
When the roller rocker arm is used, since the roller is heavy, the spring force of the spring that biases the valve in the closing direction is increased in order to cause the roller to follow the cam. The spring force increases as the rotation speed increases. For this reason, the camshaft drive torque is reduced because the frictional resistance between the roller and the cam is small, but the camshaft drive torque is increased due to the large spring force.
On the other hand, in this embodiment, since the rocker arms 32 and 33 and the cams 40 and 41 are slid, even if the surface treatment for reducing the coefficient of friction is applied to the sliding portions, the roller rocker arm is used. However, the frictional resistance is slightly increased. For this reason, the driving torque of the camshaft 31 is increased by the amount corresponding to the increased frictional resistance as compared with the case of using the roller rocker arm. However, since the rocker arms 32 and 33 can be reduced in weight, the spring force of the intake and exhaust springs 22 and 24 can be reduced, and the drive torque of the camshaft 31 can be reduced accordingly. As a result, an increase in driving torque of the camshaft 31 can be suppressed, and an increase in mechanical loss can be suppressed.
 以上、本発明の好適な実施の形態について説明したが、本発明は上記実施形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々な変更が可能である。また、後述する変更例は適宜組み合わせて実施することができる。なお、本明細書において「好ましい」という用語は非排他的なものであって、「好ましいがこれに限定されるものではない」ということを意味するものである。 The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications can be made as long as they are described in the claims. Moreover, the example of a change mentioned later can be implemented in combination as appropriate. In the present specification, the term “preferred” is non-exclusive, and means “preferably but not limited to”.
 上記実施形態では、吸気用ロッカーアーム32のカムアーム部44の摺動面46と、吸気用カム40の外周面の両方に被膜が形成されているが、いずれか一方にのみ被膜が形成されていてもよい。排気用ロッカーアーム33と排気用カム41についても同様である。この場合、摺動面46、56と、カム40、41は、被膜を介して摺動する。そのため、上記実施形態と同様の効果が得られる。但し、摩擦力をより低減して機械損失をより低減できる点では、上記実施形態のように、摺動面46、56と、カム40、41の外周面に被膜を形成することが好ましい。 In the above embodiment, the coating is formed on both the sliding surface 46 of the cam arm portion 44 of the intake rocker arm 32 and the outer peripheral surface of the intake cam 40, but the coating is formed only on one of them. Also good. The same applies to the exhaust rocker arm 33 and the exhaust cam 41. In this case, the sliding surfaces 46 and 56 and the cams 40 and 41 slide through the film. Therefore, the same effect as the above embodiment can be obtained. However, it is preferable to form a coating on the sliding surfaces 46 and 56 and the outer peripheral surfaces of the cams 40 and 41 as in the above-described embodiment in that the frictional force can be further reduced and the mechanical loss can be further reduced.
 上記実施形態では、押圧部49の表面と、シム50の表面の両方に、被膜が形成されているが、いずれか一方にのみ被膜が形成されていてもよい。また、押圧部49とシム50の両方に被膜が形成されていなくてもよい。押圧部59とシム60についても同様に、いずれか一方にのみ被膜が形成されていてもよく、両方に被膜が形成されていなくてもよい。 In the above embodiment, the coating is formed on both the surface of the pressing portion 49 and the surface of the shim 50, but the coating may be formed on only one of them. Moreover, the coating film may not be formed on both the pressing portion 49 and the shim 50. Similarly, the pressing part 59 and the shim 60 may have a film formed on only one of them, or may not have a film formed on both.
 上記実施形態では、ロッカーシャフト34、35の外周面の全域に、被膜が形成されているが、ロッカーシャフト34、35の外周面のうち、少なくとも、エンジン駆動時にボス部43、53の内周面と接触する領域に被膜が形成されていれば、その他の部分には被膜が形成されていなくてもよい。また、ロッカーシャフト34、35の外周面に、被膜が形成されていなくてもよい。 In the above-described embodiment, the coating is formed on the entire outer peripheral surface of the rocker shafts 34 and 35, but at least the inner peripheral surface of the boss portions 43 and 53 when the engine is driven among the outer peripheral surfaces of the rocker shafts 34 and 35. As long as a film is formed in a region in contact with the film, the film may not be formed in other portions. Moreover, the coating film may not be formed on the outer peripheral surfaces of the rocker shafts 34 and 35.
 上記実施形態では、ロッカーアーム32、33のカムアーム部44、54は、カムシャフト31の回転軸線C2の方向に貫通する穴47、57を有するが、ロッカーアームは、この穴47、57が塞がれた形状であってもよい。また、バルブアーム部45A、45B、55は、穴48、58を有するが、この穴48、58が塞がれた形状であってもよい。 In the above embodiment, the cam arm portions 44 and 54 of the rocker arms 32 and 33 have holes 47 and 57 that penetrate in the direction of the rotation axis C2 of the camshaft 31, but the rocker arms are closed by the holes 47 and 57. The shape may be different. Further, the valve arm portions 45A, 45B, and 55 have holes 48 and 58, but the holes 48 and 58 may be closed.
 上記実施形態では、ロッカーシャフト34、35のバルブアーム部45A、45B、55の先端部(押圧部49、59)は、シム50、60を介してバルブ16、18を押圧するようになっているが、この構成に限定されるものではない。ロッカーシャフトのバルブアーム部の先端部に、アジャストスクリューが設けられており、このアジャストスクリューによってバルブを押圧するようになっていてもよい。 In the above embodiment, the tip portions (pressing portions 49, 59) of the valve arm portions 45A, 45B, 55 of the rocker shafts 34, 35 press the valves 16, 18 via the shims 50, 60. However, it is not limited to this configuration. An adjustment screw may be provided at the tip of the valve arm portion of the rocker shaft, and the valve may be pressed by the adjustment screw.
 シム50、60を設けない場合、シム50、60を交換するためのスプリング51、61は不要となる。この場合、吸気用カム40と排気用カム41の離間距離、及び、吸気用ロッカーシャフト34の摺動面46と排気用ロッカーシャフト35の摺動面56の離間距離を、上記実施形態よりも小さくすることができる。その結果、シリンダヘッド部7の内部により大きいスペースを確保することができる。もしくは、シリンダヘッド部7をより小型化できる。 When the shims 50 and 60 are not provided, the springs 51 and 61 for replacing the shims 50 and 60 are not necessary. In this case, the separation distance between the intake cam 40 and the exhaust cam 41 and the separation distance between the sliding surface 46 of the intake rocker shaft 34 and the sliding surface 56 of the exhaust rocker shaft 35 are smaller than those in the above embodiment. can do. As a result, a larger space can be secured in the cylinder head portion 7. Alternatively, the cylinder head portion 7 can be further downsized.
 吸気用及び排気用カムの数、吸気用及び排気用バルブの数、吸気用及び排気用ロッカーアームの数は、上記実施形態と異なっていてもよい。また、1つの吸気用ロッカーアームに設けられるバルブアーム部の数、及び、カム側アームの数は、それぞれ、上記実施形態と異なっていてもよい。排気用ロッカーアームについても同様に、バルブアーム部の数、及び、カム側アームの数は、上記実施形態と異なっていてもよい。 The number of intake and exhaust cams, the number of intake and exhaust valves, and the number of intake and exhaust rocker arms may be different from the above embodiment. Further, the number of valve arm portions and the number of cam-side arms provided in one intake rocker arm may be different from those in the above embodiment. Similarly for the exhaust rocker arm, the number of valve arm portions and the number of cam side arms may be different from those in the above embodiment.
 上記実施形態では、単気筒SOHCエンジン2は、1本の吸気用ロッカーシャフト34を有するが、2本以上の吸気用ロッカーシャフトを有していてもよい。この場合、吸気用ロッカーアームの数は、吸気用ロッカーシャフトの数以上となる。また、単気筒SOHCエンジン2は、2本以上の排気用ロッカーシャフトを有していてもよい。 In the above embodiment, the single-cylinder SOHC engine 2 has one intake rocker shaft 34, but may have two or more intake rocker shafts. In this case, the number of intake rocker arms is equal to or greater than the number of intake rocker shafts. Further, the single cylinder SOHC engine 2 may have two or more exhaust rocker shafts.
 上記実施形態では、吸気用及び排気用ロッカーアーム32、33のバルブアーム部45A、45B、55は、ボス部43、53からカムシャフト31の回転軸線C2の方向に直交する方向に対して交差する方向に延びているが、バルブアーム部の形状はこれに限定されない。例えば図8に示すように、吸気用ロッカーアーム332のバルブアーム部345が、ボス部343からカムシャフト31の回転軸線C2の方向に直交する方向に延びていてもよい。この場合、図8に示すように、前後方向(シリンダ孔9の中心軸線C1の方向)から見て、カムアーム部344とバルブアーム部345が1つの直線上に配置されていることが好ましい。 In the above embodiment, the valve arm portions 45A, 45B, 55 of the intake and exhaust rocker arms 32, 33 intersect the direction perpendicular to the direction of the rotation axis C2 of the camshaft 31 from the boss portions 43, 53. Although extending in the direction, the shape of the valve arm portion is not limited to this. For example, as shown in FIG. 8, the valve arm portion 345 of the intake rocker arm 332 may extend from the boss portion 343 in a direction perpendicular to the direction of the rotation axis C <b> 2 of the camshaft 31. In this case, as shown in FIG. 8, it is preferable that the cam arm portion 344 and the valve arm portion 345 are arranged on one straight line when viewed from the front-rear direction (the direction of the central axis C1 of the cylinder hole 9).
 例えば図5に示すように、エンジン202はエンジンの始動時の圧縮圧力を逃がすためのデコンプレッション機構170を備えていてもよい。デコンプレッション機構170は、カムシャフト31の外周に装着される。デコンプレッション機構170は、排気用カム41の吸気用カム40と反対側(点火プラグ68側)に配置されている。デコンプレッション機構170の具体的な構成は、例えば特開2011-202625号公報に記載されているような従来のデコンプレッション機構と同様である。 For example, as shown in FIG. 5, the engine 202 may include a decompression mechanism 170 for releasing the compression pressure when the engine is started. The decompression mechanism 170 is attached to the outer periphery of the camshaft 31. The decompression mechanism 170 is disposed on the exhaust cam 41 opposite to the intake cam 40 (on the spark plug 68 side). A specific configuration of the decompression mechanism 170 is the same as that of a conventional decompression mechanism as described in, for example, Japanese Patent Application Laid-Open No. 2011-202625.
 上記実施形態と同様に、ロッカーアーム32、33の摺動面46、56の左右方向の幅とカム40、41の左右方向の幅が小さいため、カムシャフト31の外周にスペースを確保できる。そのため、このスペースにデコンプレッション機構170を配置できるため、エンジンの大型化を抑制しつつ、デコンプレッション機構170を配置できる。 As in the above-described embodiment, since the lateral width of the sliding surfaces 46 and 56 of the rocker arms 32 and 33 and the lateral width of the cams 40 and 41 are small, a space can be secured on the outer periphery of the camshaft 31. Therefore, since the decompression mechanism 170 can be disposed in this space, the decompression mechanism 170 can be disposed while suppressing an increase in the size of the engine.
 例えば図6及び図7に示すように、エンジン202は2つの吸気用バルブ16、16(または2つの排気用バルブ)の開閉タイミングを変更するための可変バルブタイミング機構280を備えていてもよい。このエンジン202のカムシャフト231には、排気用カム41と2つの吸気用カム240A、240Bが形成されている。また、このエンジン202は2つの吸気用ロッカーアーム232A、232Bを有する。2つの吸気用ロッカーアーム232A、232B及び可変バルブタイミング機構280の具体的な構成は、例えば特開2011-202625号公報に記載されているような従来の可変バルブタイミング機構と同様である。 For example, as shown in FIGS. 6 and 7, the engine 202 may include a variable valve timing mechanism 280 for changing the opening / closing timing of the two intake valves 16 and 16 (or two exhaust valves). An exhaust cam 41 and two intake cams 240A and 240B are formed on the cam shaft 231 of the engine 202. The engine 202 has two intake rocker arms 232A and 232B. Specific configurations of the two intake rocker arms 232A and 232B and the variable valve timing mechanism 280 are the same as those of the conventional variable valve timing mechanism described in, for example, Japanese Patent Application Laid-Open No. 2011-202625.
 可変バルブタイミング機構280は、シリンダヘッド部207の第1の外壁225aに取り付けられたアクチュエータ281を有する。アクチュエータ281は、カムシャフト231の軸方向に進退可能なロッド281aを有する。アクチュエータ281は、シリンダ孔9の中心軸線方向から見て、吸気用ロッカーシャフト34の中心軸線上に配置されている。吸気用ロッカーアーム232A、232Bの摺動面の左右方向の幅は、上記実施形態の摺動面46の左右方向の幅とほぼ同じである。なお、図6では、吸気用ロッカーアーム232A、232Bのカムアーム部のみを表示して、ボス部及びバルブアーム部の表示を省略している。また、図6では、吸気用ロッカーシャフト34の表示を省略している。 The variable valve timing mechanism 280 has an actuator 281 attached to the first outer wall 225a of the cylinder head portion 207. The actuator 281 has a rod 281 a that can advance and retract in the axial direction of the camshaft 231. The actuator 281 is disposed on the central axis of the intake rocker shaft 34 when viewed from the central axis direction of the cylinder hole 9. The lateral width of the sliding surfaces of the intake rocker arms 232A and 232B is substantially the same as the lateral width of the sliding surface 46 of the above embodiment. In FIG. 6, only the cam arm portions of the intake rocker arms 232A and 232B are shown, and the boss portion and the valve arm portion are not shown. Further, in FIG. 6, the display of the intake rocker shaft 34 is omitted.
 ロッカーアーム232A、232B、33の摺動面の左右方向の幅とカム240A、240B、41の左右方向の幅が小さいことにより、シリンダヘッド部207の第1の外壁225aを動弁室26側にずらすことができる(第1の外壁225aの凹状部の深さをより大きくできる)。そのため、シリンダヘッド部207の外側にアクチュエータ281を配置するスペースを確保できる。したがって、エンジン202の大型化を抑制しつつ、可変バルブタイミング機構280のアクチュエータ281を配置できる。 Due to the small width of the sliding surfaces of the rocker arms 232A, 232B, 33 in the left-right direction and the width of the cams 240A, 240B, 41 in the left-right direction, the first outer wall 225a of the cylinder head portion 207 is moved toward the valve operating chamber 26. The depth of the concave portion of the first outer wall 225a can be increased. Therefore, a space for arranging the actuator 281 outside the cylinder head portion 207 can be secured. Therefore, the actuator 281 of the variable valve timing mechanism 280 can be disposed while suppressing an increase in the size of the engine 202.
 なお、可変バルブタイミング機構のアクチュエータは、シリンダヘッド部の内部に配置してもよい。 Note that the actuator of the variable valve timing mechanism may be arranged inside the cylinder head.
 上記実施形態では、ロッカーシャフト34、35がシリンダヘッド部7に移動不能に支持されて、このロッカーシャフト34、35にロッカーアーム32、33が揺動可能に支持されているが、この構成に限定されない。ロッカーシャフト34、35がシリンダヘッド部7に揺動可能に支持されており、このロッカーシャフト34、35にロッカーアーム32、33が固定されていてもよい。 In the above embodiment, the rocker shafts 34 and 35 are supported by the cylinder head portion 7 so as not to move, and the rocker shafts 32 and 35 are supported by the rocker shafts 34 and 35 so as to be swingable. Not. The rocker shafts 34 and 35 are swingably supported by the cylinder head unit 7, and the rocker arms 32 and 33 may be fixed to the rocker shafts 34 and 35.
 上記実施形態の単気筒SOHCエンジン2は、水冷式であるが、空冷式であってもよい。 The single-cylinder SOHC engine 2 of the above embodiment is a water cooling type, but may be an air cooling type.
 上記実施形態では、シリンダボディ部6とシリンダヘッド部7は別部材であるが、シリンダボディ部とシリンダヘッド部が一体化された部材であってもよい。 In the above embodiment, the cylinder body portion 6 and the cylinder head portion 7 are separate members, but may be a member in which the cylinder body portion and the cylinder head portion are integrated.
 上記実施形態は、スクータ型自動二輪車に本発明の単気筒SOHCエンジンを適用した一例であるが、本発明の単気筒SOHCエンジンの適用対象はスクータ型自動二輪車に限定されるものではない。本発明の単気筒SOHCエンジンは、スクータ型以外の自動二輪車に適用してもよく、自動二輪車以外の鞍乗型車両に適用してもよい。なお、鞍乗型車両とは、乗員が鞍にまたがるような状態で乗車する車両全般を指している。鞍乗型車両には、自動二輪車、三輪車、四輪バギー(ATV:All Terrain Vehicle(全地形型車両))、水上バイク、スノーモービル等が含まれる。 The above embodiment is an example in which the single-cylinder SOHC engine of the present invention is applied to a scooter type motorcycle, but the application target of the single-cylinder SOHC engine of the present invention is not limited to a scooter type motorcycle. The single-cylinder SOHC engine of the present invention may be applied to a motorcycle other than a scooter type, or may be applied to a straddle-type vehicle other than a motorcycle. Note that the saddle riding type vehicle refers to all vehicles that ride in a state in which an occupant straddles a saddle. The saddle riding type vehicle includes a motorcycle, a tricycle, a four-wheel buggy (ATV: All Terrain Vehicle), a water bike, a snowmobile, and the like.
 なお、本発明および本明細書において、被膜の摩擦係数が、例えば摺動面の基材の摩擦係数より低いとは、被膜とある材質Aの物体との摩擦係数が、摺動面の基材とある材質Aの物体との摩擦係数より低いことをいう。材質Aは特に限定されない。
 また、本発明において、吸気用摺動面と排気用摺動面がカムシャフトの回転軸線方向に並ぶとは、カムシャフトの回転軸線方向において、吸気用摺動面と排気用摺動面が近接している場合と、離間している場合の両方を含む。また、本発明において、吸気用摺動面と排気用摺動面がカムシャフトの回転軸線方向に並ぶとは、吸気用摺動面と排気用摺動面の間に何らの部材が配置されている場合と、何も配置されていない場合の両方を含む。
In the present invention and the present specification, the friction coefficient of the coating film is lower than the friction coefficient of the base material of the sliding surface, for example. That is, it is lower than the friction coefficient with an object of a certain material A. The material A is not particularly limited.
In the present invention, the intake sliding surface and the exhaust sliding surface are aligned in the rotational axis direction of the camshaft. The intake sliding surface and the exhaust sliding surface are close to each other in the rotational axis direction of the camshaft. Including both the case of being separated and the case of being separated. In the present invention, the fact that the intake sliding surface and the exhaust sliding surface are aligned in the rotational axis direction of the camshaft means that any member is disposed between the intake sliding surface and the exhaust sliding surface. And the case where nothing is arranged.
2、102、202 単気筒SOHCエンジン
6 シリンダボディ部
7、207 シリンダヘッド部
9 シリンダ孔
13 燃焼室
14 吸気通路
14a 吸気口
15 排気通路
15a 排気口
16 吸気用バルブ
16a、18a バルブ傘部
16b、18b バルブ軸部
18 排気用バルブ
22 吸気用スプリング
24 排気用スプリング
30 動弁装置
31、231 カムシャフト
32、232A、232B、332 吸気用ロッカーアーム
33 排気用ロッカーアーム
34 吸気用ロッカーシャフト
35 排気用ロッカーシャフト
40、240A、240B 吸気用カム
41 排気用カム
43、53、343 ボス部
44、54、344 カムアーム部
44a、54a 端部
45、55、345 バルブアーム部
46、56 摺動面
47、48、57、58 穴
49、59 押圧部(端部)
50、60 シム
62 被膜
68 点火プラグ
170 デコンプレッション機構
280 可変バルブタイミング機構
281 アクチュエータ
281a ロッド
C1 シリンダ孔の中心軸線
C2 カムシャフトの回転軸線
C3 吸気用ロッカーシャフトの中心軸線
C4 排気用ロッカーシャフトの中心軸線
2, 102, 202 Single cylinder SOHC engine 6 Cylinder body part 7, 207 Cylinder head part 9 Cylinder hole 13 Combustion chamber 14 Intake passage 14a Intake port 15 Exhaust passage 15a Exhaust port 16 Intake valve 16a, 18a Valve umbrella part 16b, 18b Valve shaft portion 18 Exhaust valve 22 Intake spring 24 Exhaust spring 30 Valve operating devices 31, 231 Camshafts 32, 232A, 232B, 332 Intake rocker arm 33 Exhaust rocker arm 34 Intake rocker shaft 35 Exhaust rocker shaft 40, 240A, 240B Intake cam 41 Exhaust cam 43, 53, 343 Boss portion 44, 54, 344 Cam arm portion 44a, 54a End portion 45, 55, 345 Valve arm portion 46, 56 Sliding surfaces 47, 48, 57 , 58 Hole 49, 59 Pressing part End)
50, 60 Shim 62 Film 68 Spark plug 170 Decompression mechanism 280 Variable valve timing mechanism 281 Actuator 281a Rod C1 Cylinder hole center axis C2 Camshaft rotation axis C3 Intake rocker shaft center axis C4 Exhaust rocker shaft center axis

Claims (16)

  1.  単一のシリンダ孔を備えたシリンダボディ部と、
     前記シリンダ孔の一端開口を覆い、燃焼室の少なくとも一部を構成するシリンダヘッド部と、
     前記シリンダヘッド部に設けられ、回転可能であって、少なくとも1つの吸気用カムおよび少なくとも1つの排気用カムが回転軸線方向に並んで設けられた1つのカムシャフトと、
     それぞれ前記カムシャフトと並列に配置される吸気用ロッカーシャフトおよび排気用ロッカーシャフトと、
     前記燃焼室に設けられた吸気口を開閉可能な少なくとも1つの吸気用バルブおよび前記燃焼室に設けられた排気口を開閉可能な少なくとも1つの排気用バルブと、
     前記吸気用ロッカーシャフトに支持された吸気用ボス部と、前記吸気用ボス部から突出し、前記吸気用カムと接触し、前記吸気用カムによって押圧される吸気用カムアーム部と、前記吸気用ボス部から突出し、端部が前記吸気用バルブと接触し、前記吸気用バルブを開く方向に押圧する吸気用バルブアーム部とを含み、前記吸気用ロッカーシャフトの中心軸線周りに揺動可能な少なくとも1つの吸気用ロッカーアームと、
     前記排気用ロッカーシャフトに支持された排気用ボス部と、前記排気用ボス部から突出し、前記排気用カムと接触し、前記排気用カムによって押圧される排気用カムアーム部と、前記排気用ボス部から突出し、端部が前記排気用バルブと接触し、前記排気用バルブを開く方向に押圧する排気用バルブアーム部とを含み、前記排気用ロッカーシャフトの中心軸線周りに揺動可能な少なくとも1つの排気用ロッカーアームと、を備え、
     前記吸気用ロッカーアームは、前記吸気用カムアーム部と一体成形され、前記カムシャフトの回転軸線方向において、その幅が前記吸気用カムアーム部の前記吸気用ボス部に近い端部の幅より小さく形成され、その基材より摩擦係数が低く、硬度が高い被膜を介して前記吸気用カムと摺動する吸気用摺動面を有し、
     前記排気用ロッカーアームは、前記排気用カムアーム部と一体成形され、前記カムシャフトの回転軸線方向において、その幅が前記排気用カムアーム部の前記排気用ボス部に近い端部の幅より小さく形成され、その基材より摩擦係数が低く、硬度が高い被膜を介して前記排気用カムと摺動し、前記吸気用ロッカーアームの前記吸気用摺動面と前記カムシャフトの回転軸線方向に並ぶように設けられている排気用摺動面を有する、ことを特徴とする単気筒SOHCエンジン。
    A cylinder body portion having a single cylinder hole;
    A cylinder head portion covering one end opening of the cylinder hole and constituting at least a part of the combustion chamber;
    A camshaft provided in the cylinder head portion and rotatable, wherein at least one intake cam and at least one exhaust cam are provided side by side in the rotation axis direction;
    An intake rocker shaft and an exhaust rocker shaft, each disposed in parallel with the camshaft;
    At least one intake valve capable of opening and closing an intake port provided in the combustion chamber and at least one exhaust valve capable of opening and closing an exhaust port provided in the combustion chamber;
    An intake boss supported by the intake rocker shaft, an intake cam arm that protrudes from the intake boss, contacts the intake cam, and is pressed by the intake cam; and the intake boss And an intake valve arm portion whose end is in contact with the intake valve and presses in the opening direction of the intake valve, and is capable of swinging around a central axis of the intake rocker shaft An intake rocker arm;
    An exhaust boss supported by the exhaust rocker shaft, an exhaust cam arm that protrudes from the exhaust boss, contacts the exhaust cam, and is pressed by the exhaust cam; and the exhaust boss And an exhaust valve arm portion whose end is in contact with the exhaust valve and presses the exhaust valve in a direction to open the exhaust valve, and is capable of swinging around a central axis of the exhaust rocker shaft An exhaust rocker arm,
    The intake rocker arm is integrally formed with the intake cam arm portion, and the width thereof is smaller than the width of the end portion of the intake cam arm portion close to the intake boss portion in the rotation axis direction. , Having a sliding surface for intake that slides with the intake cam through a coating having a lower coefficient of friction than the base material and high hardness,
    The exhaust rocker arm is integrally formed with the exhaust cam arm, and the width of the exhaust rocker arm is smaller than the width of the end of the exhaust cam arm close to the exhaust boss in the rotation axis direction. And sliding with the exhaust cam through a coating having a lower friction coefficient and higher hardness than the base material, and aligned with the intake sliding surface of the intake rocker arm and the rotational axis of the camshaft. A single-cylinder SOHC engine having an exhaust sliding surface provided.
  2.  前記吸気用摺動面と前記排気用摺動面は、前記カムシャフトの回転軸線方向から見て、前記カムシャフトに対して、前記シリンダ孔の中心軸線方向の一方向に設けられていることを特徴とする請求項1に記載の単気筒SOHCエンジン。 The intake sliding surface and the exhaust sliding surface are provided in one direction in the central axis direction of the cylinder hole with respect to the camshaft when viewed from the rotational axis direction of the camshaft. The single-cylinder SOHC engine according to claim 1, wherein
  3.  前記カムシャフトの回転軸線方向を左右方向とした時、
     前記吸気用ロッカーシャフトおよび前記排気用ロッカーシャフトのいずれか一方は前記カムシャフトより上方に設けられ、他方は前記カムシャフトより下方に設けられ、
     前記吸気用摺動面と前記排気用摺動面は、前記シリンダ孔の中心軸線方向から見て前記吸気用ロッカーシャフトと前記排気用ロッカーシャフトの間に設けられ、且つ、両方とも前記カムシャフトの前方または後方に設けられていることを特徴とする請求項1または2に記載の単気筒SOHCエンジン。
    When the direction of the axis of rotation of the camshaft is the left-right direction,
    One of the intake rocker shaft and the exhaust rocker shaft is provided above the camshaft, and the other is provided below the camshaft.
    The intake sliding surface and the exhaust sliding surface are provided between the intake rocker shaft and the exhaust rocker shaft when viewed from the center axis direction of the cylinder hole, and both are provided on the camshaft. The single-cylinder SOHC engine according to claim 1 or 2, wherein the single-cylinder SOHC engine is provided in front or rear.
  4.  前記カムシャフトの回転軸線方向を左右方向とした時、前記シリンダ孔の中心軸線方向から見て、
     前記吸気用カムアーム部は、前記吸気用ボス部から上下方向に突出し、
     前記排気用カムアーム部は、前記排気用ボス部から上下方向に突出し、
     前記吸気用摺動面と前記排気用摺動面は、左右方向に並ぶように設けられていることを特徴とする請求項1~3のいずれかに記載の単気筒SOHCエンジン。
    When the rotation axis direction of the camshaft is the left-right direction, viewed from the center axis direction of the cylinder hole,
    The intake cam arm portion projects vertically from the intake boss portion,
    The exhaust cam arm portion projects vertically from the exhaust boss portion,
    The single-cylinder SOHC engine according to any one of claims 1 to 3, wherein the intake sliding surface and the exhaust sliding surface are provided so as to be aligned in the left-right direction.
  5.  前記吸気用カムアーム部および前記排気用カムアーム部は、前記カムシャフトの回転軸線方向に貫通する穴を有することを特徴とする請求項1~4のいずれかに記載の単気筒SOHCエンジン。 The single-cylinder SOHC engine according to any one of claims 1 to 4, wherein the intake cam arm portion and the exhaust cam arm portion have a hole penetrating in a rotation axis direction of the cam shaft.
  6.  前記吸気用カムアーム部は、前記カムシャフトの回転軸線方向の幅において、前記吸気用ボス部に近い端部の幅が最大となるように形成され、
     前記排気用カムアーム部は、前記カムシャフトの回転軸線方向の幅において、前記排気用ボス部に近い端部の幅が最大となるように形成されていることを特徴とする請求項1~5のいずれかに記載の単気筒SOHCエンジン。
    The intake cam arm portion is formed such that the width of the end portion close to the intake boss portion is maximized in the width of the camshaft in the rotation axis direction.
    6. The exhaust cam arm portion is formed so that a width of an end portion close to the exhaust boss portion is maximized in a width in a rotation axis direction of the cam shaft. A single-cylinder SOHC engine according to any one of the above.
  7.  前記吸気用カムは、前記カムシャフトの回転軸線方向において、その幅が前記吸気用カムアーム部の前記吸気用ボス部に近い端部の幅より小さく、
     前記排気用カムは、前記カムシャフトの回転軸線方向において、その幅が前記排気用カムアーム部の前記排気用ボス部に近い端部の幅より小さいことを特徴とする請求項1~6のいずれかに記載の単気筒SOHCエンジン。
    The intake cam has a width smaller than a width of an end portion of the intake cam arm portion near the intake boss portion in the rotation axis direction of the camshaft,
    7. The exhaust cam has a width smaller than a width of an end portion of the exhaust cam arm portion close to the exhaust boss portion in a rotation axis direction of the cam shaft. The single-cylinder SOHC engine described in 1.
  8.  先端部が前記燃焼室に臨むように前記シリンダヘッド部に設けられた点火プラグをさらに備え、
     前記点火プラグの一部が、前記カムシャフトの回転軸線上に配置されていることを特徴とする請求項7に記載の単気筒SOHCエンジン。
    A spark plug provided on the cylinder head portion such that a tip portion faces the combustion chamber;
    The single-cylinder SOHC engine according to claim 7, wherein a part of the spark plug is disposed on a rotation axis of the camshaft.
  9.  前記吸気用バルブおよび排気用バルブは、バルブ軸部と、前記バルブ軸の先端に連結されたバルブ傘部とを有しており、
     前記吸気用摺動面および前記排気用摺動面は、前記カムシャフトの回転軸線方向の幅が、前記吸気用バルブおよび排気用バルブの前記バルブ軸部の最小直径よりも小さいことを特徴とする請求項1~8のいずれかに記載の単気筒SOHCエンジン。
    The intake valve and the exhaust valve each have a valve shaft portion and a valve umbrella portion connected to the tip of the valve shaft,
    The intake sliding surface and the exhaust sliding surface have a width in the rotational axis direction of the camshaft smaller than a minimum diameter of the valve shaft portion of the intake valve and the exhaust valve. The single-cylinder SOHC engine according to any one of claims 1 to 8.
  10.  前記カムシャフトに装着されたデコンプレッション機構を備えることを特徴とする請求項7に記載の単気筒SOHCエンジン。 The single-cylinder SOHC engine according to claim 7, further comprising a decompression mechanism mounted on the camshaft.
  11.  前記吸気用ロッカーアームおよび前記排気用ロッカーアームの少なくとも一方を複数備えており、
     前記カムシャフトと並列に配置されるロッドを有するアクチュエータを含む可変バルブタイミング機構を備えることを特徴とする請求項1~10のいずれかに記載の単気筒SOHCエンジン。
    A plurality of at least one of the intake rocker arm and the exhaust rocker arm;
    The single-cylinder SOHC engine according to any one of claims 1 to 10, further comprising a variable valve timing mechanism including an actuator having a rod arranged in parallel with the camshaft.
  12.  前記吸気用ボス部および前記排気用ボス部は、それぞれ、前記吸気用ロッカーシャフトおよび前記排気用ロッカーシャフトに回転可能に支持されており、
     前記吸気用ロッカーシャフトおよび前記排気用ロッカーシャフトの外周面のうち少なくとも前記吸気用ボス部および前記排気用ボス部と接触する部分には、その基材よりも摩擦係数が低く、硬度が高い被膜が形成されていることを特徴とする請求項1~11のいずれかに記載の単気筒SOHCエンジン。
    The intake boss portion and the exhaust boss portion are rotatably supported by the intake rocker shaft and the exhaust rocker shaft, respectively.
    Of the outer peripheral surfaces of the intake rocker shaft and the exhaust rocker shaft, at least a portion in contact with the intake boss portion and the exhaust boss portion has a coating having a lower coefficient of friction and higher hardness than the base material. The single-cylinder SOHC engine according to any one of claims 1 to 11, wherein the single-cylinder SOHC engine is formed.
  13.  前記吸気用バルブアーム部の前記吸気用バルブを押圧する端部の表面に、その基材よりも摩擦係数が低く、硬度が高い被膜が形成されており、
     前記排気用バルブアーム部の前記排気用バルブを押圧する端部の表面に、その基材よりも摩擦係数が低く、硬度が高い被膜が形成されていることを特徴とする請求項1~12のいずれかに記載の単気筒SOHCエンジン。
    On the surface of the end of the intake valve arm that presses the intake valve, a coating having a lower coefficient of friction and higher hardness than the base material is formed,
    13. A film having a lower coefficient of friction and higher hardness than the base material is formed on a surface of an end of the exhaust valve arm that presses the exhaust valve. A single-cylinder SOHC engine according to any one of the above.
  14.  前記吸気用バルブアーム部と前記吸気用バルブとの間に配置された吸気用シムと、
     前記排気用バルブアーム部と前記排気用バルブとの間に配置された排気用シムとを有し、
     前記吸気用シムおよび前記排気用シムの表面に、その基材よりも摩擦係数が低く、硬度が高い被膜が形成されていることを特徴とする請求項1~13のいずれかに記載の単気筒SOHCエンジン。
    An intake shim disposed between the intake valve arm and the intake valve;
    An exhaust shim disposed between the exhaust valve arm and the exhaust valve;
    The single cylinder according to any one of claims 1 to 13, wherein a coating having a lower coefficient of friction and higher hardness than a base material is formed on surfaces of the intake shim and the exhaust shim. SOHC engine.
  15.  前記吸気用摺動面および前記吸気用カムの少なくとも一方に、前記吸気用摺動面の基材より摩擦係数が低く、硬度が高い前記被膜が形成され、
     前記排気用摺動面および前記吸気用カムの少なくとも一方に、前記排気用摺動面の基材より摩擦係数が低く、硬度が高い前記被膜が形成されていることを特徴とする請求項1~14のいずれかに記載の単気筒SOHCエンジン。
    At least one of the intake sliding surface and the intake cam is formed with the coating having a lower coefficient of friction and higher hardness than the base material of the intake sliding surface,
    The coating having a lower coefficient of friction and higher hardness than a base material of the exhaust sliding surface is formed on at least one of the exhaust sliding surface and the intake cam. The single cylinder SOHC engine according to any one of 14.
  16.  請求項1~15のいずれかに記載の単気筒SOHCエンジンに用いられる前記吸気用ロッカーアームまたは前記排気用ロッカーアームであって、前記吸気用摺動面または前記排気用摺動面に、その基材よりも摩擦係数が低く、硬度が高い前記被膜が形成されていることを特徴とする単気筒SOHCエンジン用ロッカーアーム。 The intake rocker arm or the exhaust rocker arm used in the single-cylinder SOHC engine according to any one of claims 1 to 15, wherein the intake slide surface or the exhaust slide surface has a base thereof. A rocker arm for a single-cylinder SOHC engine, wherein the coating film having a lower friction coefficient and higher hardness than the material is formed.
PCT/JP2014/079966 2013-11-26 2014-11-12 Single-cylinder sohc engine and rocker arm for single-cylinder sohc engine WO2015079916A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015550639A JP6058158B2 (en) 2013-11-26 2014-11-12 Single cylinder SOHC engine and rocker arm for single cylinder SOHC engine
TW103140853A TWI541430B (en) 2013-11-26 2014-11-25 Single cylinder SOHC engine and single cylinder SOHC engine with swing arm

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013243796 2013-11-26
JP2013-243796 2013-11-26

Publications (1)

Publication Number Publication Date
WO2015079916A1 true WO2015079916A1 (en) 2015-06-04

Family

ID=53198863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079966 WO2015079916A1 (en) 2013-11-26 2014-11-12 Single-cylinder sohc engine and rocker arm for single-cylinder sohc engine

Country Status (3)

Country Link
JP (1) JP6058158B2 (en)
TW (1) TWI541430B (en)
WO (1) WO2015079916A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107795348A (en) * 2016-08-29 2018-03-13 铃木株式会社 The overhead valve actuating mechanism of engine
JP2018168817A (en) * 2017-03-30 2018-11-01 本田技研工業株式会社 Valve gear of internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628322Y2 (en) * 1979-06-04 1987-02-26
JPS6312603U (en) * 1986-07-09 1988-01-27
JPS6325285Y2 (en) * 1981-06-03 1988-07-11
JP2005061240A (en) * 2003-08-14 2005-03-10 Nissan Motor Co Ltd Valve device for engine
JP2011202625A (en) * 2010-03-26 2011-10-13 Honda Motor Co Ltd Decompression device arrangement structure for engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628322Y2 (en) * 1979-06-04 1987-02-26
JPS6325285Y2 (en) * 1981-06-03 1988-07-11
JPS6312603U (en) * 1986-07-09 1988-01-27
JP2005061240A (en) * 2003-08-14 2005-03-10 Nissan Motor Co Ltd Valve device for engine
JP2011202625A (en) * 2010-03-26 2011-10-13 Honda Motor Co Ltd Decompression device arrangement structure for engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107795348A (en) * 2016-08-29 2018-03-13 铃木株式会社 The overhead valve actuating mechanism of engine
JP2018168817A (en) * 2017-03-30 2018-11-01 本田技研工業株式会社 Valve gear of internal combustion engine

Also Published As

Publication number Publication date
JP6058158B2 (en) 2017-01-11
TW201533311A (en) 2015-09-01
JPWO2015079916A1 (en) 2017-03-16
TWI541430B (en) 2016-07-11

Similar Documents

Publication Publication Date Title
US20100077978A1 (en) Internal combustion engine having a hydraulically-actuated variable valve control system, and motorcycle incorporating same
JP5905665B2 (en) Rocker arm equipment
US8136492B2 (en) Internal combustion engine having a variable valve control system, and method of using same
JP4361772B2 (en) Four-cycle engine valve gear
JP6058158B2 (en) Single cylinder SOHC engine and rocker arm for single cylinder SOHC engine
TWI611094B (en) Engine and vehicle
US7980213B2 (en) Internal combustion engine equipped with a variable valve control system
US7938091B2 (en) Camshaft and camshaft manufacturing method
JP2010053748A (en) Cam housing structure of engine for motorcycle
CN111902614B (en) Valve drive of an internal combustion engine
JP5147957B2 (en) 4-cycle engine
TWI652403B (en) Engine
US11591939B2 (en) Compression release mechanism and internal combustion engine including the same
JP5310467B2 (en) Valve operating device and internal combustion engine provided with the same
JP2008082311A (en) Lubrication structure of 4-stroke engine for vehicle
JP4818333B2 (en) Four-cycle engine valve gear
JP3919017B2 (en) Scooter engine
CN107575273B (en) Variable valve mechanism, engine, and motorcycle
JP2004225622A (en) Valve system and internal combustion engine with this valve system
JP2022056559A (en) Rocker arm channel structure and saddle-riding vehicle
JP5712025B2 (en) Rocker arm support structure in valve gear mechanism for engine
JPH03271513A (en) Valve system for four cycle engine
JP2013087676A (en) Valve gear of engine
JP3156645U (en) Engine and vehicle
JP2004011464A (en) Valve system and internal combustion engine equipped therewith

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866020

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015550639

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201602340

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14866020

Country of ref document: EP

Kind code of ref document: A1