WO2015079871A1 - 中空封止用樹脂シート、及び、中空パッケージの製造方法 - Google Patents

中空封止用樹脂シート、及び、中空パッケージの製造方法 Download PDF

Info

Publication number
WO2015079871A1
WO2015079871A1 PCT/JP2014/079221 JP2014079221W WO2015079871A1 WO 2015079871 A1 WO2015079871 A1 WO 2015079871A1 JP 2014079221 W JP2014079221 W JP 2014079221W WO 2015079871 A1 WO2015079871 A1 WO 2015079871A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin sheet
hollow
resin
sealing
hollow sealing
Prior art date
Application number
PCT/JP2014/079221
Other languages
English (en)
French (fr)
Inventor
豊田 英志
祐作 清水
剛志 土生
智昭 市川
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2015079871A1 publication Critical patent/WO2015079871A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/315Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the encapsulation having a cavity
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/08Holders with means for regulating temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1064Mounting in enclosures for surface acoustic wave [SAW] devices
    • H03H9/1085Mounting in enclosures for surface acoustic wave [SAW] devices the enclosure being defined by a non-uniform sealing mass covering the non-active sides of the BAW device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/81201Compression bonding
    • H01L2224/81205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • This invention relates to the resin sheet for hollow sealing, and the manufacturing method of a hollow package.
  • a sealing resin For the production of an electronic device package, typically, one or more electronic devices fixed to a substrate or the like via bumps or the like are sealed with a sealing resin, and the sealing body is united as an electronic device as necessary. The procedure of dicing so that it becomes a package of is adopted.
  • a sealing resin a sheet-shaped sealing resin may be used.
  • MEMS Microelectronic devices
  • SAW Surface Acoustic Wave
  • CMOS Complementary Metal Oxide Semiconductor
  • acceleration sensors acceleration sensors
  • MEMS microelectronic devices
  • SAW Surface Acoustic Wave
  • CMOS Complementary Metal Oxide Semiconductor
  • Each package in which these electronic devices are sealed generally has a hollow structure for ensuring the propagation of surface acoustic waves, maintaining the optical system, and the mobility of the movable member of the electronic device.
  • This hollow structure is often provided as a gap between the substrate and the element.
  • Patent Document 1 describes a technique of hollow-molding a functional element using a gel-like curable resin sheet.
  • a manufacturing method of the package there is a method of laminating a resin sheet for hollow sealing so as to cover one or a plurality of electronic devices arranged on an adherend, and then thermosetting the resin sheet for hollow sealing. Can be mentioned.
  • the electronic device it is desirable that the electronic device can be suitably embedded in the hollow sealing resin sheet, and that the material constituting the sealing resin sheet does not flow into the gap.
  • the present invention has been made in view of the above-described problems, and the object thereof is to suitably embed an electronic device in a hollow sealing resin sheet, and in the gap between the adherend and the electronic device,
  • An object of the present invention is to provide a hollow sealing resin sheet in which a material constituting the sealing resin sheet hardly flows and a method for manufacturing a hollow package.
  • the present invention provides a hollow sealing resin sheet on the electronic device so as to cover one or more electronic devices arranged on the adherend, and a hollow portion between the adherend and the electronic device.
  • the hollow sealing resin sheet used for the manufacturing method of the hollow package including the lamination process which laminates
  • variety of the said hollow part is small, and content of the inorganic filler whose particle size is below the width
  • a resin that restricts flow is imparted to the resin in the vicinity of the hollow part (the whole material constituting the resin sheet for hollow sealing containing an inorganic filler), and the resin enters the hollow part efficiently. It can be well prevented. As a result, a hollow package can be manufactured with a high yield while maintaining the hollow structure. Further, since the ratio A / B is 5 or more, in the laminating step, the electronic device can be suitably embedded in the hollow sealing resin sheet, and the gap between the adherend and the electronic device is The material constituting the sealing resin sheet can be made difficult to flow.
  • the viscosity of the organic resin component at 120 ° C. is preferably 1 Pa ⁇ s or more.
  • the viscosity of the organic resin component at 120 ° C. is 1 Pa ⁇ s or more, the viscosity of the organic resin component (organic resin component excluding the inorganic filler) is high, so that only the organic resin component oozes into the hollow portion. This can be suppressed.
  • the minimum dynamic viscosity of the entire hollow sealing resin sheet before curing at 60 to 150 ° C. is 50,000 Pa ⁇ s to 1,000,000 Pa ⁇ s.
  • the entire material constituting the hollow sealing resin sheet is It can be made difficult to flow in by the hollow portion.
  • the present invention is a method for manufacturing a hollow package, A resin sheet for hollow sealing is laminated on the electronic device while maintaining a hollow portion between the adherend and the electronic device so as to cover one or a plurality of electronic devices arranged on the adherend. Lamination process; A sealing body forming step of curing the hollow sealing resin sheet to form a sealing body,
  • the hollow sealing resin sheet is: Containing an inorganic filler in a content of 62% by volume or more, In the particle size distribution of the inorganic filler measured by a laser diffraction scattering method, the one exceeding the width of the hollow portion is less than 10% by volume, A test substrate in which a plurality of chips are flip-chip connected to a substrate, the distance between the chips is 100 ⁇ m, and the gap between the substrate and the chip is 20 ⁇ m, After the resin sheet for hollow sealing is placed on the test substrate, the hollow sealing when pressurized from the hollow sealing resin sheet side at 70 ° C., a pressure of 1 kgf / cm 2 , and
  • the hollow sealing resin sheet has a small content of the inorganic filler whose particle size exceeds the width of the hollow portion, and the content of the inorganic filler whose particle size is equal to or less than the width of the hollow portion. It accounts for the majority of inorganic fillers. Since many inorganic fillers with a comparatively small particle diameter are included, the specific surface area of an inorganic filler becomes large. Therefore, the viscosity of the entire material constituting the hollow sealing resin sheet is increased by the interparticle interaction. Further, the inorganic filler having such a particle size distribution is contained in a large amount of 62% by volume or more.
  • a resin that restricts flow is imparted to the resin in the vicinity of the hollow part (the whole material constituting the resin sheet for hollow sealing containing an inorganic filler), and the resin enters the hollow part efficiently. It can be well prevented. As a result, a hollow package can be manufactured with a high yield while maintaining the hollow structure. Further, since the ratio A / B is 5 or more, in the laminating step, the electronic device can be suitably embedded in the hollow sealing resin sheet, and the gap between the adherend and the electronic device is The material constituting the sealing resin sheet can be made difficult to flow.
  • FIG. 1 is a cross-sectional view schematically showing a hollow sealing resin sheet (hereinafter also simply referred to as “resin sheet”) 11 according to an embodiment of the present invention.
  • the resin sheet 11 is typically provided in a state of being laminated on a support 11a such as a polyethylene terephthalate (PET) film. Note that a release treatment may be performed on the support 11a in order to easily peel off the resin sheet 11.
  • a support 11a such as a polyethylene terephthalate (PET) film.
  • PET polyethylene terephthalate
  • FIG. 2A is a schematic front view for explaining the test substrate.
  • the test substrate 50 has a configuration in which a plurality of chips 54 are flip-chip connected to the substrate 52.
  • the chip 54 is flip-chip connected to the substrate 52 by bumps 56.
  • the distance between the chips 54 is 100 ⁇ m, and the gap 58 between the substrate 52 and the chip 54 is 20 ⁇ m.
  • the resin sheet 11 constitutes the resin sheet 11 when the resin sheet 11 is disposed on the test substrate 50 and then pressed from the resin sheet 11 side at 70 ° C., a pressure of 1 kgf / cm 2 , and a vacuum degree of 10 Torr.
  • the ratio A / B between the material entry speed A between the chips 54 and the resin entry speed B into the gap 58 is 5 or more, preferably 8 or more, and 10 or more. More preferred.
  • the ratio A / B is preferably larger, but is, for example, 300 or less. Since the ratio A / B is 5 or more, the electronic device can be suitably embedded in the resin sheet 11, and the material constituting the resin sheet 11 flows into the gap between the adherend and the electronic device. Can be difficult.
  • 2B to 2D are diagrams for explaining how to obtain the ratio A / B.
  • the resin sheet 11 is disposed on the test substrate 50.
  • pressurization is performed from the resin sheet 11 side at 70 ° C., a pressure of 1 kgf / cm 2 , and a degree of vacuum of 10 Torr.
  • the resin enters between the chips 54 by pressure.
  • the speed in the traveling direction of the tip of the resin is measured. This is the approach speed A.
  • the approach speed A is measured within a range until the material constituting the resin sheet 11 reaches the substrate 52.
  • the resin reaches the substrate 52 as shown in FIG. 2D.
  • pressurization is continued as it is, and the speed of the resin tip in the traveling direction is measured. Specifically, the speed of the resin tip in the direction of the gap 58 is measured. This is the approach speed B.
  • the ratio A / B is calculated. More details are as described in the examples.
  • Resin sheet 11 preferably contains an epoxy resin and a phenol resin. Thereby, favorable thermosetting is obtained.
  • the epoxy resin is not particularly limited.
  • triphenylmethane type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, modified bisphenol A type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, modified bisphenol F type epoxy resin, dicyclopentadiene type Various epoxy resins such as an epoxy resin, a phenol novolac type epoxy resin, and a phenoxy resin can be used. These epoxy resins may be used alone or in combination of two or more.
  • those having an epoxy equivalent of 150 to 250 and a softening point or melting point of 50 to 130 ° C. are preferably solid, and in particular, moldability and From the viewpoint of reliability, bisphenol F type epoxy resin, G, bisphenol A type epoxy resin, biphenyl type epoxy resin, and the like are more preferable.
  • the phenol resin is not particularly limited as long as it causes a curing reaction with the epoxy resin.
  • a phenol novolac resin, a phenol aralkyl resin, a biphenyl aralkyl resin, a dicyclopentadiene type phenol resin, a cresol novolak resin, a resole resin, or the like is used.
  • These phenolic resins may be used alone or in combination of two or more.
  • phenol resin those having a hydroxyl equivalent weight of 70 to 250 and a softening point of 50 to 110 ° C. are preferably used from the viewpoint of reactivity with the epoxy resin, and in particular, from the viewpoint of high curing reactivity and low cost.
  • a phenol novolac resin can be preferably used. From the viewpoint of reliability, low hygroscopic materials such as phenol aralkyl resins and biphenyl aralkyl resins can also be suitably used.
  • the blending ratio of the epoxy resin and the phenol resin is blended so that the total of hydroxyl groups in the phenol resin is 0.7 to 1.5 equivalents with respect to 1 equivalent of the epoxy group in the epoxy resin from the viewpoint of curing reactivity. It is preferable to use 0.9 to 1.2 equivalents.
  • the lower limit of the total content of epoxy resin and phenol resin in the resin sheet 11 is preferably 5.0% by weight or more, and more preferably 8.0% by weight or more. Adhesive force with respect to an electronic device, a board
  • the upper limit of the total content is preferably 25% by weight or less, and more preferably 20% by weight or less. The hygroscopicity of a resin sheet can be reduced as it is 25 weight% or less.
  • the resin sheet 11 preferably contains a thermoplastic resin. Thereby, the heat resistance of the resin sheet for hollow sealing obtained, flexibility, and intensity
  • Thermoplastic resins include natural rubber, butyl rubber, isoprene rubber, chloroprene rubber, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, polybutadiene resin, polycarbonate resin, thermoplasticity.
  • Polyimide resin, polyamide resin such as 6-nylon and 6,6-nylon, phenoxy resin, acrylic resin, saturated polyester resin such as PET and PBT, polyamideimide resin, fluororesin, styrene-isobutylene-styrene block copolymer Can be mentioned.
  • These thermoplastic resins can be used alone or in combination of two or more.
  • an acrylic resin is preferable from a viewpoint that a flexibility is easy to obtain and a dispersibility with an epoxy resin is favorable.
  • the acrylic resin is not particularly limited, and includes one or more esters of acrylic acid or methacrylic acid ester having a linear or branched alkyl group having 30 or less carbon atoms, particularly 4 to 18 carbon atoms. Examples thereof include a polymer (acrylic copolymer) as a component.
  • alkyl group examples include a methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, t-butyl group, isobutyl group, amyl group, isoamyl group, hexyl group, heptyl group, cyclohexyl group, 2- Examples include an ethylhexyl group, an octyl group, an isooctyl group, a nonyl group, an isononyl group, a decyl group, an isodecyl group, an undecyl group, a lauryl group, a tridecyl group, a tetradecyl group, a stearyl group, an octadecyl group, and a dodecyl group.
  • the glass transition temperature (Tg) of the acrylic resin is preferably 50 ° C. or less, more preferably ⁇ 70 to 20 ° C., and further preferably ⁇ 50 to 0 ° C. By setting it as 50 degrees C or less, the viscosity and flexibility of the resin sheet 11 can be improved. By increasing the viscosity and flexibility of the resin sheet 11, it is possible to efficiently prevent the resin from entering the hollow portion (see the hollow portion 14 in FIG. 3A).
  • the acrylic resins those having a weight average molecular weight of 50,000 or more are preferable, 100,000 to 2,000,000 are more preferable, and 300,000 to 1,600,000 are more preferable. Within the above numerical range, the viscosity and flexibility of the resin sheet 11 can be further increased.
  • the weight average molecular weight is a value measured by GPC (gel permeation chromatography) and calculated in terms of polystyrene.
  • the other monomer forming the polymer is not particularly limited, and examples thereof include acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid.
  • Carboxyl group-containing monomers maleic anhydride or acid anhydride monomers such as itaconic anhydride, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-methacrylic acid 4- Hydroxybutyl, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate or (4-hydroxymethylcyclohexyl) -Methyl Hydroxyl group-containing monomers such as acrylate, styrene sulfonic acid, allyl sulfonic acid, 2- (meth) acrylamide-2-methylpropane sulfonic acid, (meth) acrylamide propane sulfonic acid, sulfopropyl (meth) acrylate or (meth) Examples thereof include sulfonic acid group-containing monomers such as
  • a carboxyl group-containing monomer preferably, a glycidyl group (epoxy group) -containing monomer, and a hydroxyl group-containing monomer from the viewpoint of increasing the viscosity of the resin sheet 11 by reacting with the epoxy resin.
  • a carboxyl group-containing monomer preferably, a glycidyl group (epoxy group) -containing monomer, and a hydroxyl group-containing monomer from the viewpoint of increasing the viscosity of the resin sheet 11 by reacting with the epoxy resin.
  • the content of the thermoplastic resin in the resin sheet 11 is preferably 0.5% by weight or more, and more preferably 1.0% by weight or more. When the content is 0.5% by weight or more, the flexibility and flexibility of the resin sheet can be obtained.
  • the content of the thermoplastic resin in the resin sheet 11 is preferably 10% by weight or less, and more preferably 5% by weight or less. When it is 10% by weight or less, the adhesiveness of the resin sheet to the electronic device or the substrate is good.
  • Resin sheet 11 contains an inorganic filler in a content of 62% by volume or more.
  • the content is preferably 68% by volume or more, and more preferably 72% by volume or more. Further, the content is preferably 88% by volume or less, and more preferably 85% by volume or less.
  • the resin sheet 11 preferably has an area occupied by the inorganic filler in the cross-sectional SEM image of 45% or more, more preferably 55% or more and 85% or less, and 60% or more and 75% or less. Further preferred.
  • the thixotropy-like action can be suitably imparted to the resin in the vicinity of the hollow structure to maintain the hollow structure, and the linear expansion coefficient after curing is reduced. Package warpage can be prevented, and a highly reliable hollow package can be obtained.
  • the inorganic filler is a mixture of a plurality of types of particles, the content of the mixture satisfies the above range.
  • the content of the inorganic filler can be explained by using “wt%” as a unit.
  • the content of silica or alumina will be described with “% by weight” as a unit.
  • silica usually has a specific gravity of 2.2 g / cm 3
  • the preferred range of the silica content (% by weight) is as follows. That is, the content of silica in the resin sheet 11 is preferably 80% by weight or more, and more preferably 83% by weight or more.
  • the content of silica in the resin sheet 11 is preferably 93% by weight or less, and more preferably 91% by weight or less.
  • the preferred range of the alumina content is as follows. That is, the content of alumina in the resin sheet 11 is preferably 87% by weight or more, and more preferably 89% by weight or more. The content of alumina in the resin sheet 11 is preferably 96% by weight or less, and more preferably 95% by weight or less.
  • the particle size distribution of the inorganic filler measured by the laser diffraction scattering method is less than 10% by volume, preferably less than 5%, exceeding the width of the hollow part of the hollow package to be manufactured. More preferably, it is less than 3%. Specifically, for example, when the width of the hollow part of the hollow package to be manufactured is assumed to be 20 ⁇ m, in the particle size distribution of the inorganic filler, those exceeding 20 ⁇ m are less than 10% by volume, and less than 5%. Preferably, it is less than 3%.
  • the particle size distribution of the inorganic filler by the laser diffraction scattering method is in the above specific relationship, the specific surface area of the inorganic filler is increased, and the viscosity of the entire material constituting the resin sheet for hollow sealing is increased by the interparticle interaction. Get higher. Thereby, a thixotropy-like action can be imparted to the resin, and the resin intrusion into the hollow structure during sealing can be suitably suppressed.
  • the inorganic filler is a mixture of a plurality of types of particles, the particle size distribution of the mixture satisfies the above relationship.
  • the shape of the inorganic filler is not particularly limited, and may be any shape such as a spherical shape (including an ellipsoidal shape), a polyhedron shape, a polygonal column shape, a flat shape, and an indeterminate shape. From the viewpoint of achieving a filling state and appropriate fluidity, a spherical shape is preferable.
  • the inorganic filler is not particularly limited, and various conventionally known fillers can be used.
  • quartz glass, talc, silica such as fused silica or crystalline silica
  • alumina aluminum nitride, silicon nitride And boron nitride powder.
  • silica and alumina are preferable, and silica is more preferable because the linear expansion coefficient can be satisfactorily reduced.
  • silica powder is preferable, and fused silica powder is more preferable.
  • fused silica powder examples include spherical fused silica powder and crushed fused silica powder. From the viewpoint of fluidity, spherical fused silica powder is preferable.
  • the average particle size of the inorganic filler is preferably 20 ⁇ m or less, more preferably 0.1 to 15 ⁇ m, and particularly preferably 0.5 to 10 ⁇ m. preferable.
  • the average particle diameter is determined as D 50 following the procedure of particle size distribution measurement in the embodiment.
  • two or more inorganic fillers having different average particle diameters may be used as the inorganic filler.
  • the above-mentioned “average particle diameter of the inorganic filler is 20 ⁇ m or less” means that the average particle diameter of the whole inorganic filler is 20 ⁇ m or less.
  • the resin sheet 11 preferably contains a curing accelerator.
  • the curing accelerator is not particularly limited as long as it can cure the epoxy resin and the phenol resin, and examples thereof include organophosphorus compounds such as triphenylphosphine and tetraphenylphosphonium tetraphenylborate; 2-phenyl-4, And imidazole compounds such as 5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-hydroxymethylimidazole. Of these, imidazole compounds are preferred because they have good reactivity and are easy to increase the Tg of the cured product.
  • the content of the curing accelerator is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the total of the epoxy resin and the phenol resin.
  • Resin sheet 11 may contain a flame retardant component as necessary to the extent that it does not adversely affect the hollow moldability. This can reduce the expansion of combustion when ignition occurs due to component short-circuiting or heat generation.
  • a flame retardant composition for example, various metal hydroxides such as aluminum hydroxide, magnesium hydroxide, iron hydroxide, calcium hydroxide, tin hydroxide, complex metal hydroxides; phosphazene flame retardants, etc. should be used. Can do.
  • Resin sheet 11 may contain a silane coupling agent.
  • the silane coupling agent is not particularly limited, and examples thereof include 3-glycidoxypropyltrimethoxysilane.
  • the content of the silane coupling agent in the resin sheet 11 is preferably 0.1 to 3% by weight. When it is 0.1% by weight or more, the hardness of the cured resin sheet can be increased and the water absorption rate can be reduced. On the other hand, generation
  • the resin sheet 11 preferably contains a pigment.
  • the pigment is not particularly limited, and examples thereof include carbon black.
  • the content of the pigment in the resin sheet 11 is preferably 0.1 to 2% by weight. When the content is 0.1% by weight or more, good marking properties can be obtained. The intensity
  • the viscosity of the organic resin component (organic resin component excluding the inorganic filler) at 120 ° C. is preferably 1 Pa ⁇ s or more, more preferably 3 Pa ⁇ s or more and 100 Pa ⁇ s or less, and 5 Pa. More preferably, it is s or more and 50 Pa ⁇ s or less.
  • the viscosity of the organic resin component at 120 ° C. is 1 Pa ⁇ s or higher, the viscosity of the organic resin component is high, so that only the organic resin component can be prevented from leaking into the hollow portion.
  • the minimum dynamic viscosity of the entire resin sheet 11 before curing at 60 to 150 ° C. is preferably 50,000 Pa ⁇ s to 1,000,000 Pa ⁇ s, preferably 80,000 Pa ⁇ s to 800,000 Pa ⁇ s. More preferably, it is 100,000 Pa ⁇ s or more and 600,000 Pa ⁇ s or less.
  • the minimum dynamic viscosity before curing at 60 to 150 ° C. of the entire resin sheet 11 is 50,000 Pa ⁇ s or more and 500,000 Pa ⁇ s or less, the entire material constituting the resin sheet 11 is difficult to flow into the hollow portion. be able to.
  • the resin sheet 11 is prepared by dissolving and dispersing a resin or the like for forming the resin sheet 11 in an appropriate solvent to adjust the varnish, and applying the varnish on the support 11a to a predetermined thickness to form a coating film.
  • the coating film can be formed by drying under predetermined conditions. It does not specifically limit as a coating method, For example, roll coating, screen coating, gravure coating, etc. are mentioned. As drying conditions, for example, a drying temperature of 70 to 160 ° C. and a drying time of 1 to 30 minutes are performed. Moreover, after apply
  • the resin sheet 11 is bonded together with the separator on the support 11a.
  • the resin sheet 11 contains a thermoplastic resin (acrylic resin), an epoxy resin, and a phenol resin, all of them are dissolved in a solvent, and then applied and dried. Thereby, the viscosity of the resin sheet 11 can be improved and the approach to the hollow part of a resin component can be suppressed.
  • the solvent include methyl ethyl ketone, ethyl acetate, toluene and the like.
  • the thickness of the resin sheet 11 is not particularly limited, but is, for example, 100 to 2000 ⁇ m.
  • An electronic device can be favorably sealed as it is in the said range.
  • the resin sheet 11 may have a single layer structure or a multilayer structure in which two or more resin sheets are laminated, but there is no fear of delamination, the sheet thickness is highly uniform, and the moisture absorption is reduced.
  • a single layer structure is preferred because it is easy.
  • the layer in contact with the electronic device includes (1) an inorganic filler in a content of 62% by volume or more, and (2) in the particle size distribution of the inorganic filler, The amount exceeding the width of the hollow portion is less than 10% by volume, and (3) the ratio A / B may be 5 or more, and the other layers do not satisfy the above conditions (1) to (3). Also good. This is because if the layer in contact with the electronic device satisfies the above conditions (1) to (3), the resin can be efficiently prevented from entering the hollow portion.
  • the resin sheet 11 is a SAW (Surface Acoustic Wave) filter; MEMS (Micro Electro Mechanical Systems) such as pressure sensors and vibration sensors; ICs such as LSIs; semiconductors such as transistors; capacitors; resistors; sealings of electronic devices such as CMOS sensors. Used for stopping. Especially, it can use suitably for sealing of the electronic device (specifically SAW filter, MEMS) which needs hollow sealing, and can use it especially especially especially for sealing of a SAW filter.
  • SAW Surface Acoustic Wave
  • MEMS Micro Electro Mechanical Systems
  • [Method of manufacturing hollow package] 3A to 2C are diagrams schematically showing one step of the method for manufacturing the hollow package according to the embodiment of the present invention. It does not specifically limit as a hollow sealing method, It can seal by a conventionally well-known method. For example, a method of laminating (mounting) an uncured resin sheet 11 on a substrate while maintaining a hollow structure so as to cover an electronic device on an adherend, and then curing and sealing the resin sheet 11 Can be mentioned.
  • the adherend is not particularly limited, and examples thereof include a printed wiring board, a ceramic substrate, a silicon substrate, and a metal substrate.
  • the SAW chip 13 mounted on the printed wiring board 12 is hollow-sealed with the resin sheet 11 to produce a hollow package.
  • a printed wiring board 12 on which a plurality of SAW chips 13 are mounted is prepared (see FIG. 3A).
  • the SAW chip 13 can be formed by dicing a piezoelectric crystal on which predetermined comb-shaped electrodes are formed by a known method.
  • a known device such as a flip chip bonder or a die bonder can be used.
  • the SAW chip 13 and the printed wiring board 12 are electrically connected via protruding electrodes 13a such as bumps.
  • a hollow portion 14 is maintained between the SAW chip 13 and the printed wiring board 12 so as not to inhibit the propagation of surface acoustic waves on the surface of the SAW filter.
  • the distance (width of the hollow portion) between the SAW chip 13 and the printed wiring board 12 can be set as appropriate, and is generally about 10 to 100 ⁇ m.
  • the resin sheet 11 is laminated on the printed wiring board 12 so as to cover the SAW chip 13, and the SAW chip 13 is resin-sealed with the resin sheet 11 (see FIG. 3B).
  • the resin sheet 11 functions as a sealing resin for protecting the SAW chip 13 and its accompanying elements from the external environment.
  • the method of laminating the resin sheet 11 on the printed wiring board 12 is not particularly limited, and can be performed by a known method such as hot pressing or laminator.
  • the temperature is, for example, 40 to 150 ° C., preferably 50 to 120 ° C.
  • the pressure is, for example, 0.1 to 10 MPa, preferably 0.5 to 8 MPa
  • the time is, for example, 0.3 to 10 minutes, preferably 0.5 to 5 minutes.
  • it is preferable to press under reduced pressure conditions eg, 0.01 to 5 kPa).
  • the resin sheet 11 includes (1) an inorganic filler in a content of 62% by volume or more, and (2) in the particle size distribution of the inorganic filler, less than 10% by volume exceeds the width of the hollow portion. (3) Since the ratio A / B is 5 or more, resin intrusion into the hollow portion 14 is suppressed.
  • the resin sheet 11 is thermally cured to form the sealing body 15 (see FIG. 3B).
  • the heating temperature is preferably 100 ° C. or higher, more preferably 120 ° C. or higher.
  • the upper limit of the heating temperature is preferably 200 ° C. or lower, more preferably 180 ° C. or lower.
  • the heating time is preferably 10 minutes or more, more preferably 30 minutes or more.
  • the upper limit of the heating time is preferably 180 minutes or less, more preferably 120 minutes or less.
  • the upper limit is preferably 10 MPa or less, more preferably 5 MPa or less.
  • a substrate mounting step can be performed in which bumps are formed on the hollow package 18 and mounted on a separate substrate (not shown).
  • a known device such as a flip chip bonder or a die bonder can be used.
  • Epoxy resin YSLV-80XY manufactured by Nippon Steel Chemical Co., Ltd. (bisphenol F type epoxy resin, epkin equivalent 200 g / eq., Softening point 80 ° C.)
  • Phenol resin LVR8210DL (Novolak-type phenol resin, hydroxyl group equivalent 104 g / eq., Softening point 60 ° C.) manufactured by Gunei Chemical Thermoplastic resin: carboxyl group-containing acrylate copolymer, weight average molecular weight: about 600,000, glass transition temperature (Tg): -35 ° C)
  • Inorganic filler 1 FB-7SDC (average particle size 6 ⁇ m) manufactured by Denki Kagaku Kogyo Co., Ltd.
  • Inorganic filler 2 SO-25R manufactured by Admatechs (average particle size 0.5 ⁇ m) Carbon black: # 20 manufactured by Mitsubishi Chemical Curing accelerator: 2PHZ-PW (2-phenyl-4,5-dihydroxymethylimidazole) manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • Examples and comparative examples According to the blending ratio shown in Table 1, each component was dissolved and dispersed in methyl ethyl ketone as a solvent to obtain a varnish having a concentration of 90% by weight. This varnish was applied on a release treatment film made of a polyethylene terephthalate film having a thickness of 38 ⁇ m after the release treatment with silicone, and then dried at 110 ° C. for 5 minutes. As a result, a sheet having a thickness of 65 ⁇ m was obtained. Four layers of this sheet were laminated to prepare a hollow sealing resin sheet having a thickness of 260 ⁇ m.
  • the composition of the resin sheet for hollow sealing is an organic component other than the inorganic filler, and since substantially all the organic components are burned off by the above-described strong heat treatment, the ash content obtained is measured as an inorganic filler. Went. The average particle size was also calculated. The results are shown in Table 1.
  • the minimum dynamic viscosity of the hollow sealing resin sheet before thermosetting at 60 to 150 ° C. was measured.
  • the dynamic viscosity was a value measured by a parallel plate method using a viscoelasticity measuring device ARES manufactured by TA Instruments. More specifically, the viscosity was measured in the range of 50 ° C. to 170 ° C. under the conditions of a gap of 1 ⁇ m, a rotating plate diameter of 8 mm, a frequency of 0.1 Hz, a strain of 0.1%, and a heating rate of 10 ° C./min. The lowest viscosity obtained at that time was taken as the lowest dynamic viscosity. The results are shown in Table 1.
  • a test substrate was prepared in which a plurality of silicon chips (3 mm square, thickness 200 ⁇ m) were flip-chip connected to a glass substrate (30 mm square, thickness 1 mm). The chip is flip-chip connected to the substrate by bumps (bump diameter 100 ⁇ m, height 20 ⁇ m). The distance between the chips is 100 ⁇ m, and the gap (hollow gap) between the substrate and the chip is 20 ⁇ m.
  • the resin sheet for hollow sealing of an Example and a comparative example was arrange
  • Chip size 1.2 mm square (thickness 150 ⁇ m)
  • Bump material Au (height 20 ⁇ m)
  • Number of bumps 6 bumps
  • Number of chips 100 (10 x 10)
  • Each hollow sealing resin sheet was stuck on the obtained SAW chip mounting substrate by a vacuum press under the heating and pressurization conditions shown below.
  • the resin sheet for hollow sealing was thermoset in a hot air dryer at 150 ° C. for 1 hour to obtain a sealed body. Cleavage the substrate and sealing resin interface of the obtained sealing body, and the entry of the resin into the hollow part between the SAW chip and the ceramic substrate by the product name “Digital Microscope” (200 times) manufactured by KEYENCE The amount was measured. The resin penetration amount was determined by measuring the maximum reach distance of the resin that entered the hollow portion from the end of the SAW chip, and setting this as the resin penetration amount. The case where the resin penetration amount was 20 ⁇ m or less was evaluated as “ ⁇ ”, and the case where it exceeded 20 ⁇ m was evaluated as “ ⁇ ”. The results are shown in Table 1.
  • the prepared resin sheet for hollow sealing according to Example 2 was thermally cured at 150 ° C. for 1 hour and gradually cooled to room temperature, and then the obtained cured product was cut with a cutter. The cut surface was polished by a Buhler automatic polishing apparatus, and the cut surface after polishing was observed with SEM (2000 times).
  • FIG. 4 the SEM observation image of the cut surface of the resin sheet for hollow sealing which concerns on Example 2 is shown.
  • the SEM observation image in FIG. 4 is an enlarged view of a 110 ⁇ m long ⁇ 110 ⁇ m wide portion of the sample.
  • a light-colored portion (a portion that is not black) is an inorganic filler.
  • the occupied area of the light-colored portion was obtained by performing binarization processing by the mode method using image processing software WinROOF (manufactured by Mitani Corporation). As a result, it became 68%.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Manufacturing & Machinery (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

 無機充填剤を62体積%以上の含有量で含み、無機充填剤の粒度分布において、製造する中空パッケージの中空部の幅を超えるものが10体積%未満であり、基板に複数のチップがフリップチップ接続されたテスト基板を用い、テスト基板上に、中空封止用樹脂シートを配置した後、中空封止用樹脂シート側から70℃、圧力1kgf/cm、真空度10Torrにて加圧した際の、中空封止用樹脂シートを構成する材料のチップ間への進入速度Aと、中空封止用樹脂シートを構成する材料の間隙への進入速度Bとの比A/Bが5以上である。

Description

中空封止用樹脂シート、及び、中空パッケージの製造方法
 本発明は、中空封止用樹脂シート、及び、中空パッケージの製造方法に関する。
 電子デバイスパッケージの作製には、代表的に、バンプ等を介して基板などに固定された1又は複数の電子デバイスを封止樹脂にて封止し、必要に応じて封止体を電子デバイス単位のパッケージとなるようにダイシングするという手順が採用されている。このような封止樹脂として、シート状の封止樹脂が用いられることがある。
 近年、半導体パッケージと並んで、SAW(Surface Acoustic Wave)フィルタや、CMOS(Complementary Metal Oxide Semiconductor)センサ、加速度センサ等のMEMSと称される微小電子デバイスの開発が進められている。これらの電子デバイスを封止したパッケージは、それぞれ一般的に表面弾性波の伝播や光学系の維持、電子デバイスの可動部材の可動性を確保するための中空構造を有している。この中空構造は、基板と素子との間の空隙として設けられることが多い。封止の際には、可動部材の作動信頼性や素子の接続信頼性を確保するよう中空構造を維持しつつ封止する必要がある。例えば、特許文献1には、ゲル状の硬化性樹脂シートを用いて機能素子を中空モールドする技術が記載されている。
特開2006-19714号公報
 上記パッケージの製造方法としては、被着体上に配置された1又は複数の電子デバイスを覆うように中空封止用樹脂シートを積層し、その後、中空封止用樹脂シートを熱硬化させる方法が挙げられる。このような製造方法においては、電子デバイスを好適に中空封止用樹脂シートに埋め込みでき、且つ、上記空隙には、封止用樹脂シートを構成する材料が流入しないことが望まれる。
 本発明は上述した課題に鑑みてなされたものであり、その目的は、電子デバイスを好適に中空封止用樹脂シートに埋め込みでき、且つ、被着体と電子デバイスとの間の空隙には、封止用樹脂シートを構成する材料が流入し難い中空封止用樹脂シート、及び、中空パッケージの製造方法を提供することにある。
 本願発明者等は、下記の構成を採用することにより、前記の課題を解決できることを見出して本発明を完成させるに至った。
 すなわち、本発明は、被着体上に配置された1又は複数の電子デバイスを覆うように中空封止用樹脂シートを前記電子デバイス上に前記被着体と前記電子デバイスとの間の中空部を維持しながら積層する積層工程、及び、前記中空封止用樹脂シートを硬化させて封止体を形成する封止体形成工程を含む中空パッケージの製造方法に使用される中空封止用樹脂シートであって、
 無機充填剤を62体積%以上の含有量で含み、
 レーザー回折散乱法により測定した前記無機充填剤の粒度分布において、前記中空部の幅を超えるものが10体積%未満であり、
 基板に複数のチップがフリップチップ接続されたテスト基板であって、前記チップ間の距離が100μmであり、且つ、前記基板と前記チップとの間隙(中空ギャップ)が20μmであるものを用い、
 前記テスト基板上に、前記中空封止用樹脂シートを配置した後、前記中空封止用樹脂シート側から70℃、圧力1kgf/cm、真空度10Torrにて加圧した際の、前記中空封止用樹脂シートを構成する材料のチップ間への進入速度Aと、前記中空封止用樹脂シートを構成する材料の前記間隙への進入速度Bとの比A/Bが5以上であることを特徴とする。
 前記構成によれば、粒径が前記中空部の幅を超える無機充填剤の含有量は少なく、粒径が前記中空部の幅以下の無機充填剤の含有量が無機充填剤の大半を占める。粒径が比較的小さい無機充填剤を多く含むため、無機充填剤の比表面積は大きくなる。そのため、粒子間相互作用により中空封止用樹脂シートを構成する材料全体として粘度が高くなる。また、このような粒度分布を有する無機充填剤を62体積%以上と多く含有されている。従って、中空部付近の樹脂(無機充填剤を含む中空封止用樹脂シートを構成する材料全体)に対して流動を規制する作用(チクソトロピー様作用)が付与され、中空部への樹脂進入を効率良く防止することができる。その結果、中空構造を維持しつつ高い歩留まりで中空パッケージを作製することができる。
 また、前記比A/Bが5以上であるため、前記積層工程において、電子デバイスを好適に中空封止用樹脂シートに埋め込みでき、且つ、被着体と電子デバイスとの間の空隙には、封止用樹脂シートを構成する材料が流入し難くすることができる。
 前記構成においては、120℃における有機樹脂成分の粘度が1Pa・s以上であることが好ましい。
 120℃における有機樹脂成分の粘度が1Pa・s以上であると、有機樹脂成分(無機充填剤を除く有機樹脂成分)の粘度が高粘度であるため、有機樹脂成分のみが前記中空部に染み出すことを抑制することができる。
 前記構成においては、中空封止用樹脂シート全体の60~150℃における硬化前の最低動的粘度が5万Pa・s以上100万Pa・s以下であることが好ましい。
 中空封止用樹脂シート全体の60~150℃における硬化前の最低動的粘度が5万Pa・s以上100万Pa・s以下であると、中空封止用樹脂シートを構成する材料全体が前記中空部により流入し難くすることができる。
 また、本発明は、中空パッケージの製造方法であって、
 被着体上に配置された1又は複数の電子デバイスを覆うように中空封止用樹脂シートを前記電子デバイス上に前記被着体と前記電子デバイスとの間の中空部を維持しながら積層する積層工程と、
 前記中空封止用樹脂シートを硬化させて封止体を形成する封止体形成工程と
 を含み、
 前記中空封止用樹脂シートは、
 無機充填剤を62体積%以上の含有量で含み、
 レーザー回折散乱法により測定した前記無機充填剤の粒度分布において、前記中空部の幅を超えるものが10体積%未満であり、
 基板に複数のチップがフリップチップ接続されたテスト基板であって、前記チップ間の距離が100μmであり、且つ、前記基板と前記チップとの間隙が20μmであるものを用い、
 前記テスト基板上に、前記中空封止用樹脂シートを配置した後、前記中空封止用樹脂シート側から70℃、圧力1kgf/cm、真空度10Torrにて加圧した際の、前記中空封止用樹脂シートを構成する材料のチップ間への進入速度Aと、前記中空封止用樹脂シートを構成する材料の前記間隙への進入速度Bとの比A/Bが5以上である。
 前記構成によれば、中空封止用樹脂シートは、粒径が前記中空部の幅を超える無機充填剤の含有量は少なく、粒径が前記中空部の幅以下の無機充填剤の含有量が無機充填剤の大半を占める。粒径が比較的小さい無機充填剤を多く含むため、無機充填剤の比表面積は大きくなる。そのため、粒子間相互作用により中空封止用樹脂シートを構成する材料全体として粘度が高くなる。また、このような粒度分布を有する無機充填剤を62体積%以上と多く含有されている。従って、中空部付近の樹脂(無機充填剤を含む中空封止用樹脂シートを構成する材料全体)に対して流動を規制する作用(チクソトロピー様作用)が付与され、中空部への樹脂進入を効率良く防止することができる。その結果、中空構造を維持しつつ高い歩留まりで中空パッケージを作製することができる。
 また、前記比A/Bが5以上であるため、前記積層工程において、電子デバイスを好適に中空封止用樹脂シートに埋め込みでき、且つ、被着体と電子デバイスとの間の空隙には、封止用樹脂シートを構成する材料が流入し難くすることができる。
本発明の一実施形態に係る樹脂シートを模式的に示す断面図である。 テスト基板を説明するための正面模式図である。 比A/Bの求め方を説明するための図である。 比A/Bの求め方を説明するための図である。 比A/Bの求め方を説明するための図である。 本発明の一実施形態に係る中空パッケージの製造方法の一工程を模式的に示す図である。 本発明の一実施形態に係る中空パッケージの製造方法の一工程を模式的に示す図である。 本発明の一実施形態に係る中空パッケージの製造方法の一工程を模式的に示す図である。 実施例2に係る中空封止用樹脂シートの切断面のSEM観察像である。
 以下に実施形態を掲げ、本発明を詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。
 [中空封止用樹脂シート]
 図1は、本発明の一実施形態に係る中空封止用樹脂シート(以下、単に「樹脂シート」ともいう。)11を模式的に示す断面図である。樹脂シート11は、代表的に、ポリエチレンテレフタレート(PET)フィルムなどの支持体11a上に積層された状態で提供される。なお、支持体11aには樹脂シート11の剥離を容易に行うために離型処理が施されていてもよい。
 図2Aは、テスト基板を説明するための正面模式図である。
 図2Aに示すように、テスト基板50は、基板52に複数のチップ54がフリップチップ接続された構成である。チップ54は、バンプ56により基板52にフリップチップ接続されている。チップ54間の距離は、100μmであり、基板52とチップ54との間隙58は、20μmである。
 樹脂シート11は、テスト基板50上に、樹脂シート11を配置した後、樹脂シート11側から70℃、圧力1kgf/cm、真空度10Torrにて加圧した際の、樹脂シート11を構成する材料(以下、「樹脂」ともいう)のチップ54間への進入速度Aと、樹脂の間隙58への進入速度Bとの比A/Bが5以上であり、8以上が好ましく、10以上がより好ましい。また、前記比A/Bは、大きい方が好ましいが、例えば300以下である。前記比A/Bが5以上であるため、電子デバイスを好適に樹脂シート11に埋め込みでき、且つ、被着体と電子デバイスとの間の空隙には、樹脂シート11を構成する材料が流入し難くすることができる。
 以下、比A/Bの求め方を具体的に説明する。
 図2B~図2Dは、比A/Bの求め方を説明するための図である。
 まず、図2Bに示すように、テスト基板50上に、樹脂シート11を配置する。次に、図2Cに示すように、樹脂シート11側から70℃、圧力1kgf/cm、真空度10Torrにて加圧する。そうすると、樹脂は、圧力によりチップ54間へと進入する。この際の樹脂の先端の進行方向の速度を測定する。これを進入速度Aとする。なお、進入速度Aは、樹脂シート11を構成する材料が基板52に到達するまでの範囲内で測定する。その後、加圧を続けると、図2Dに示すように、樹脂は、基板52に到達する。その後、そのまま加圧を続け、樹脂の先端の進行方向の速度を測定する。具体的には、樹脂の先端の間隙58方向への速度を測定する。これを進入速度Bとする。その後、比A/Bを算出する。より詳細には実施例に記載の通りである。
 樹脂シート11はエポキシ樹脂、及びフェノール樹脂を含むことが好ましい。これにより、良好な熱硬化性が得られる。
 エポキシ樹脂としては、特に限定されるものではない。例えば、トリフェニルメタン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、変性ビスフェノールA型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、変性ビスフェノールF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、フェノキシ樹脂などの各種のエポキシ樹脂を用いることができる。これらエポキシ樹脂は単独で用いてもよいし2種以上併用してもよい。
 エポキシ樹脂の硬化後の靭性及びエポキシ樹脂の反応性を確保する観点からは、エポキシ当量150~250、軟化点もしくは融点が50~130℃の常温で固形のものが好ましく、なかでも、成型性および信頼性の観点から、ビスフェノールF型エポキシ樹脂、ト、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂などがより好ましい。
 フェノール樹脂は、エポキシ樹脂との間で硬化反応を生起するものであれば特に限定されるものではない。例えば、フェノールノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ジシクロペンタジエン型フェノール樹脂、クレゾールノボラック樹脂、レゾール樹脂などが用いられる。これらフェノール樹脂は単独で用いてもよいし、2種以上併用してもよい。
 フェノール樹脂としては、エポキシ樹脂との反応性の観点から、水酸基当量が70~250、軟化点が50~110℃のものを用いることが好ましく、なかでも硬化反応性が高く安価であるという観点から、フェノールノボラック樹脂を好適に用いることができる。また、信頼性の観点から、フェノールアラルキル樹脂やビフェニルアラルキル樹脂のような低吸湿性のものも好適に用いることができる。
 エポキシ樹脂とフェノール樹脂の配合割合は、硬化反応性という観点から、エポキシ樹脂中のエポキシ基1当量に対して、フェノール樹脂中の水酸基の合計が0.7~1.5当量となるように配合することが好ましく、より好ましくは0.9~1.2当量である。
 樹脂シート11中のエポキシ樹脂及びフェノール樹脂の合計含有量の下限は、5.0重量%以上が好ましく、8.0重量%以上がより好ましい。5.0重量%以上であると、電子デバイス、基板などに対する接着力が良好に得られる。一方、上記合計含有量の上限は、25重量%以下が好ましく、20重量%以下がより好ましい。25重量%以下であると、樹脂シートの吸湿性を低減させることができる。
 樹脂シート11は、熱可塑性樹脂を含むことが好ましい。これにより、得られる中空封止用樹脂シートの耐熱性、可撓性、強度を向上させることができる。
 熱可塑性樹脂としては、天然ゴム、ブチルゴム、イソプレンゴム、クロロプレンゴム、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル共重合体、ポリブタジエン樹脂、ポリカーボネート樹脂、熱可塑性ポリイミド樹脂、6-ナイロンや6,6-ナイロンなどのポリアミド樹脂、フェノキシ樹脂、アクリル樹脂、PETやPBTなどの飽和ポリエステル樹脂、ポリアミドイミド樹脂、フッ素樹脂、スチレン-イソブチレン-スチレンブロック共重合体などが挙げられる。これらの熱可塑性樹脂は単独で、又は2種以上を併用して用いることができる。なかでも、可とう性が得やすく、エポキシ樹脂との分散性が良好であるという観点から、アクリル樹脂が好ましい。
 前記アクリル樹脂としては、特に限定されるものではなく、炭素数30以下、特に炭素数4~18の直鎖若しくは分岐のアルキル基を有するアクリル酸又はメタクリル酸のエステルの1種又は2種以上を成分とする重合体(アクリル共重合体)等が挙げられる。前記アルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、イソブチル基、アミル基、イソアミル基、ヘキシル基、へプチル基、シクロヘキシル基、2-エチルヘキシル基、オクチル基、イソオクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、ウンデシル基、ラウリル基、トリデシル基、テトラデシル基、ステアリル基、オクタデシル基、又はドデシル基等が挙げられる。
 前記アクリル樹脂のガラス転移温度(Tg)は、50℃以下が好ましく、-70~20℃がより好ましく、-50~0℃がさらに好ましい。50℃以下とすることにより、樹脂シート11の粘度と可とう性高めることができる。樹脂シート11の粘度と可とう性を高めることにより、中空部(図3Aの中空部14参照)への樹脂進入を効率良く防止することができる。
 前記アクリル樹脂のなかでも、重量平均分子量が5万以上のものが好ましく、10万~200万のものがより好ましく、30万~160万のものがさらに好ましい。上記数値範囲内であると、樹脂シート11の粘度と可とう性をより高くすることができる。なお、重量平均分子量は、GPC(ゲル・パーミエーション・クロマトグラフィー)により測定し、ポリスチレン換算により算出された値である。
 また、前記重合体を形成する他のモノマーとしては、特に限定されるものではなく、例えばアクリル酸、メタクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマール酸若しくはクロトン酸等の様なカルボキシル基含有モノマー、無水マレイン酸若しくは無水イタコン酸等の様な酸無水物モノマー、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル若しくは(4-ヒドロキシメチルシクロヘキシル)-メチルアクリレート等の様なヒドロキシル基含有モノマー、スチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート若しくは(メタ)アクリロイルオキシナフタレンスルホン酸等の様なスルホン酸基含有モノマー、又は2-ヒドロキシエチルアクリロイルホスフェート等の様な燐酸基含有モノマーが挙げられる。なかでも、エポキシ樹脂と反応して、樹脂シート11の粘度を高くできる観点から、カルボキシル基含有モノマー、グリシジル基(エポキシ基)含有モノマー、ヒドロキシル基含有モノマーうちの少なくとも1つを含むことが好ましい。
 樹脂シート11中の熱可塑性樹脂の含有量は、0.5重量%以上が好ましく、1.0重量%以上がより好ましい。上記含有量が0.5重量%以上であると、樹脂シートの柔軟性、可撓性が得られる。樹脂シート11中の熱可塑性樹脂の含有量は、10重量%以下が好ましく、5重量%以下がより好ましい。10重量%以下であると、電子デバイスや基板に対する樹脂シートの接着性が良好である。
 樹脂シート11は、無機充填剤を62体積%以上の含有量で含む。上記含有量は68体積%以上が好ましく、72体積%以上がより好ましい。また、上記含有量は、88体積%以下が好ましく、85体積%以下がより好ましい。また、樹脂シート11は、断面SEM画像における無機充填剤の占有面積が45%以上であることが好ましく、55%以上85%以下であることがより好ましく、60%以上75%以下であることがさらに好ましい。無機充填剤の含有量を上記範囲とすることにより、中空構造付近における樹脂へのチクソトロピー様作用を好適に付与して中空構造を維持することができるとともに、硬化後の線膨張係数を低下させてパッケージの反りを防止し、高信頼性の中空パッケージを得ることができる。なお、無機充填剤が複数種の粒子の混合物である場合は、その混合物の含有量が上記範囲を満たす。
 無機充填剤の含有量は、「重量%」を単位としても説明できる。代表的にシリカ、もしくはアルミナの含有量について、「重量%」を単位として説明する。シリカは通常、比重2.2g/cmであるので、シリカの含有量(重量%)の好適範囲は以下のとおりである。すなわち、樹脂シート11中のシリカの含有量は、80重量%以上が好ましく、83重量%以上がより好ましい。樹脂シート11中のシリカの含有量は、93重量%以下が好ましく、91重量%以下がより好ましい。
 アルミナは通常、比重3.9g/cmであるので、アルミナの含有量(重量%)の好適範囲は以下のとおりである。すなわち、樹脂シート11中のアルミナの含有量は、87重量%以上が好ましく、89重量%以上がより好ましい。樹脂シート11中のアルミナの含有量は、96重量%以下が好ましく、95重量%以下がより好ましい。
 樹脂シート11では、レーザー回折散乱法により測定した前記無機充填剤の粒度分布において、製造する中空パッケージの中空部の幅を超えるものが10体積%未満であり、5%未満であることが好ましく、3%未満であることがより好ましい。具体的には、例えば、製造する中空パッケージの中空部の幅を20μmと想定している場合、前記無機充填剤の粒度分布において、20μmを超えるものが10体積%未満であり、5%未満であることが好ましく、3%未満であることがより好ましい。無機充填剤のレーザー回折散乱法による粒度分布が上記特定の関係にあることにより、無機充填剤の比表面積は大きくなり、粒子間相互作用により中空封止用樹脂シートを構成する材料全体として粘度が高くなる。これにより樹脂へチクソトロピー様作用を付与して封止時の中空構造への樹脂進入を好適に抑制することができる。なお、無機充填剤が複数種の粒子の混合物である場合は、その混合物の粒度分布が上記関係を満たす。
 無機充填剤の形状は特に限定されず、球状(楕円体状を含む。)、多面体状、多角柱状、扁平形状、不定形状等の任意の形状であってもよいが、中空構造付近での高充填状態の達成や適度な流動性の観点から、球状が好ましい。
 無機充填剤は、特に限定されるものではなく、従来公知の各種充填剤を用いることができ、例えば、石英ガラス、タルク、シリカ(溶融シリカや結晶性シリカなど)、アルミナ、窒化アルミニウム、窒化珪素、窒化ホウ素の粉末が挙げられる。これらは単独で用いてもよいし、2種以上併用してもよい。なかでも、線膨張係数を良好に低減できるという理由から、シリカ、アルミナが好ましく、シリカがより好ましい。
 シリカとしては、シリカ粉末が好ましく、溶融シリカ粉末がより好ましい。溶融シリカ粉末としては、球状溶融シリカ粉末、破砕溶融シリカ粉末が挙げられるが、流動性という観点から、球状溶融シリカ粉末が好ましい。
 無機充填剤の平均粒径は20μm以下の範囲のものを用いることが好ましく、0.1~15μmの範囲のものを用いることがより好ましく、0.5~10μmの範囲のものを用いることが特に好ましい。なお、平均粒径は、実施例における粒度分布測定の手順に従いD50として求められる。
 また、前記無機充填剤としては、平均粒子径の異なる2種以上の無機充填剤を用いてもよい。平均粒径の異なる2種以上の無機充填剤を用いる場合、前記の「無機充填剤の平均粒径は20μm以下」とは、無機充填剤全体の平均粒径が20μm以下のことをいう。
 樹脂シート11は、硬化促進剤を含むことが好ましい。
 硬化促進剤としては、エポキシ樹脂とフェノール樹脂の硬化を進行させるものであれば特に限定されず、例えば、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレートなどの有機リン系化合物;2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールなどのイミダゾール系化合物;などが挙げられる。なかでも、反応性が良好で硬化物のTgが高め易いという理由から、イミダゾール系化合物が好ましい。
 硬化促進剤の含有量は、エポキシ樹脂及びフェノール樹脂の合計100重量部に対して0.1~5重量部が好ましい。
 樹脂シート11は、中空成型性に悪影響を与えない程度において、必要に応じ、難燃剤成分を含んでもよい。これにより、部品ショートや発熱などにより発火した際の、燃焼拡大を低減できる。難燃剤組成分としては、例えば水酸化アルミニウム、水酸化マグネシウム、水酸化鉄、水酸化カルシウム、水酸化スズ、複合化金属水酸化物などの各種金属水酸化物;ホスファゼン系難燃剤などを用いることができる。
 樹脂シート11は、シランカップリング剤を含んでいてもよい。シランカップリング剤としては特に限定されず、3-グリシドキシプロピルトリメトキシシランなどが挙げられる。
 樹脂シート11中のシランカップリング剤の含有量は、0.1~3重量%が好ましい。0.1重量%以上であると、硬化後の樹脂シートの硬度を高めることができるとともに、吸水率を低減させることができる。一方、上記含有量が3重量%以下であると、アウトガスの発生を抑制することができる。
 樹脂シート11は、顔料を含むことが好ましい。顔料としては特に限定されず、カーボンブラックなどが挙げられる。
 樹脂シート11中の顔料の含有量は、0.1~2重量%が好ましい。0.1重量%以上であると、良好なマーキング性が得られる。2重量%以下であると、硬化後の樹脂シートの強度を確保することができる。
 なお、樹脂組成物には、上記の各成分以外に必要に応じて、他の添加剤を適宜配合できる。
 樹脂シート11は、120℃における有機樹脂成分(無機充填剤を除く有機樹脂成分)の粘度が1Pa・s以上であることが好ましく、3Pa・s以上100Pa・s以下であることがより好ましく、5Pa・s以上50Pa・s以下であることがさらに好ましい。120℃における有機樹脂成分の粘度が1Pa・s以上であると、有機樹脂成分の粘度が高粘度であるため、有機樹脂成分のみが中空部に染み出すことを抑制することができる。
 樹脂シート11全体の60~150℃における硬化前の最低動的粘度は、5万Pa・s以上100万Pa・s以下であることが好ましく、8万Pa・s以上80万Pa・s以下であることがより好ましく、10万Pa・s以上60万Pa・s以下であることがさらに好ましい。樹脂シート11全体の60~150℃における硬化前の最低動的粘度が5万Pa・s以上50万Pa・s以下であると、樹脂シート11を構成する材料全体が中空部により流入し難くすることができる。
 [中空封止用樹脂シートの製造方法]
 樹脂シート11は、適当な溶剤に樹脂シート11を形成するための樹脂等を溶解、分散させてワニスを調整し、このワニスを支持体11a上に所定厚みとなる様に塗布して塗布膜を形成した後、該塗布膜を所定条件下で乾燥させて形成することができる。塗布方法としては特に限定されず、例えば、ロール塗工、スクリーン塗工、グラビア塗工等が挙げられる。また、乾燥条件としては、例えば乾燥温度70~160℃、乾燥時間1~30分間の範囲内で行われる。また、セパレータ上にワニスを塗布して塗布膜を形成した後、前記乾燥条件で塗布膜を乾燥させて樹脂シート11を形成してもよい。その後、支持体11a上に樹脂シート11をセパレータと共に貼り合わせる。樹脂シート11が、特に、熱可塑性樹脂(アクリル樹脂)、エポキシ樹脂、フェノール樹脂を含む場合、これらすべてを溶剤に溶解させた上で、塗布、乾燥させる。これにより、樹脂シート11の粘度を向上させることができ、樹脂成分の中空部への進入を抑制することができる。溶剤としては、メチルエチルケトン、酢酸エチル、トルエン等を挙げることができる。
 樹脂シート11の厚さは特に限定されないが、例えば、100~2000μmである。上記範囲内であると、良好に電子デバイスを封止することができる。
 樹脂シート11は、単層構造であってもよいし、2以上の樹脂シートを積層した多層構造であってもよいが、層間剥離のおそれがなく、シート厚の均一性が高く、低吸湿化し易いという理由から、単層構造が好ましい。
 なお、樹脂シート11が多層構造である場合、電子デバイスに接する層が、(1)無機充填剤を62体積%以上の含有量で含み、(2)前記無機充填剤の前記粒度分布において、前記中空部の幅を超えるものが10体積%未満であり、(3)前記比A/Bが5以上であればよく、他の層は、上記(1)~(3)の条件を満たさなくてもよい。電子デバイスに接する層が、上記(1)~(3)の条件を満たせば、中空部への樹脂進入を効率良く防止することができるからである。
 樹脂シート11は、SAW(Surface Acoustic Wave)フィルタ;圧力センサ、振動センサなどのMEMS(Micro Electro Mechanical Systems);LSIなどのIC、トランジスタなどの半導体;コンデンサ;抵抗;CMOSセンサなどの電子デバイスの封止に使用される。なかでも、中空封止が必要な電子デバイス(具体的には、SAWフィルタ、MEMS)の封止に好適に使用でき、特にSAWフィルタの封止に特に好適に使用できる。
 [中空パッケージの製造方法]
 図3A~2Cはそれぞれ、本発明の一実施形態に係る中空パッケージの製造方法の一工程を模式的に示す図である。中空封止方法としては特に限定されず、従来公知の方法で封止できる。例えば、被着体上の電子デバイスを覆うように未硬化の樹脂シート11を基板上に中空構造を維持しながら積層(載置)し、次いで樹脂シート11を硬化させて封止する方法などが挙げられる。被着体としては特に限定されず、例えば、プリント配線基板、セラミック基板、シリコン基板、金属基板等が挙げられる。本実施形態では、プリント配線基板12上に搭載されたSAWチップ13を樹脂シート11により中空封止して中空パッケージを作製する。
 (SAWチップ搭載基板準備工程)
 SAWチップ搭載基板準備工程では、複数のSAWチップ13が搭載されたプリント配線基板12を準備する(図3A参照)。SAWチップ13は、所定の櫛形電極が形成された圧電結晶を公知の方法でダイシングして個片化することにより形成できる。SAWチップ13のプリント配線基板12への搭載には、フリップチップボンダーやダイボンダーなどの公知の装置を用いることができる。SAWチップ13とプリント配線基板12とはバンプなどの突起電極13aを介して電気的に接続されている。また、SAWチップ13とプリント配線基板12との間は、SAWフィルタ表面での表面弾性波の伝播を阻害しないように中空部14を維持するようになっている。SAWチップ13とプリント配線基板12との間の距離(中空部の幅)は適宜設定でき、一般的には10~100μm程度である。
 (封止工程)
 封止工程では、SAWチップ13を覆うようにプリント配線基板12へ樹脂シート11を積層し、SAWチップ13を樹脂シート11で樹脂封止する(図3B参照)。樹脂シート11は、SAWチップ13及びそれに付随する要素を外部環境から保護するための封止樹脂として機能する。
 樹脂シート11をプリント配線基板12上に積層する方法は特に限定されず、熱プレスやラミネータなど公知の方法により行うことができる。熱プレス条件としては、温度が、例えば、40~150℃、好ましくは50~120℃であり、圧力が、例えば、0.1~10MPa、好ましくは0.5~8MPaであり、時間が、例えば0.3~10分間、好ましくは0.5~5分間である。また、樹脂シート11のSAWチップ13及びプリント配線基板12への密着性および追従性の向上を考慮すると、減圧条件下(例えば0.01~5kPa)においてプレスすることが好ましい。
 樹脂シート11は、(1)無機充填剤を62体積%以上の含有量で含み、(2)前記無機充填剤の前記粒度分布において、前記中空部の幅を超えるものが10体積%未満であり、(3)前記比A/Bが5以上であるため、中空部14への樹脂進入は、抑制されている。
 (封止体形成工程)
 封止体形成工程では、樹脂シート11を熱硬化処理して封止体15を形成する(図3B参照)。熱硬化処理の条件として、加熱温度が好ましくは100℃以上、より好ましくは120℃以上である。一方、加熱温度の上限が、好ましくは200℃以下、より好ましくは180℃以下である。加熱時間が、好ましくは10分以上、より好ましくは30分以上である。一方、加熱時間の上限が、好ましくは180分以下、より好ましくは120分以下である。また、必要に応じて加圧してもよく、好ましくは0.1MPa以上、より好ましくは0.5MPa以上である。一方、上限は好ましくは10MPa以下、より好ましくは5MPa以下である。
 (ダイシング工程)
 続いて、封止体15のダイシングを行ってもよい(図3C参照)。これにより、SAWチップ13単位での中空パッケージ18を得ることができる。
 (基板実装工程)
 必要に応じて、中空パッケージ18に対してバンプを形成し、これを別途の基板(図示せず)に実装する基板実装工程を行うことができる。中空パッケージ18の基板への実装には、フリップチップボンダーやダイボンダーなどの公知の装置を用いることができる。
 以下に、この発明の好適な実施例を例示的に詳しく説明する。ただし、この実施例に記載されている材料や配合量などは、特に限定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。
 実施例で使用した成分について説明する。
 エポキシ樹脂:新日鐵化学(株)製のYSLV-80XY(ビスフェノールF型エポキシ樹脂、エポキン当量200g/eq.、軟化点80℃)
 フェノール樹脂:群栄化学製のLVR8210DL(ノボラック型フェノール樹脂、水酸基当量104g/eq.、軟化点60℃)
 熱可塑性樹脂:カルボキシル基含有のアクリル酸エステル共重合体、重量平均分子量:約60万、ガラス転移温度(Tg):-35℃)
 無機充填剤1:電気化学工業社製のFB-7SDC(平均粒径6μm)
 無機充填剤2:アドマテックス社製のSO-25R(平均粒径0.5μm)
 カーボンブラック:三菱化学社製の#20
 硬化促進剤:四国化成工業社製の2PHZ-PW(2-フェニル-4,5-ジヒドロキシメチルイミダゾール)
 [実施例、及び、比較例]
 表1に記載の配合比に従い、各成分を溶剤としてのメチルエチルケトンに溶解、分散させ、濃度90重量%のワニスを得た。このワニスを、シリコーン離型処理した厚さが38μmのポリエチレンテレフタレートフィルムからなる離型処理フィルム上に塗布した後、110℃で5分間乾燥させた。これにより、厚さ65μmのシートを得た。このシートを4層積層させて厚さ260μmの中空封止用樹脂シートを作製した。
 (無機充填剤の粒度分布の測定)
 実施例及び比較例のそれぞれの中空封止用樹脂シートをるつぼに入れ、大気雰囲気下、700℃で2時間強熱して灰化させた。得られた灰分を純水中に分散させて10分間超音波処理し、レーザー回折散乱式粒度分布測定装置(ベックマンコールター社製、「LS 13 320」;湿式法)を用いて粒度分布(体積基準)を求めた。なお、中空封止用樹脂シートの組成として無機充填剤以外は有機成分であり、上記の強熱処理により実質的に全ての有機成分が焼失することから、得られる灰分を無機充填剤とみなして測定を行った。また、平均粒径の算出も合わせて行なった。結果を表1に示す。
 (中空封止用樹脂シートの最低動的粘度の測定)
 中空封止用樹脂シートの60~150℃における熱硬化前の最低動的粘度を測定した。動的粘度は、TAインスツルメント社製粘弾性測定装置ARESを用いて、パラレルプレート法により測定した値とした。より詳細には、ギャップ1μm、回転プレート直径8mm、周波数0.1Hz、歪み0.1%、昇温速度10℃/分の条件にて、50℃から170℃の範囲で粘度を測定し、その際に得られる最低粘度を最低動的粘度とした。結果を表1に示す。
 (120℃における有機樹脂成分の粘度の測定)
 中空封止用樹脂シートのフィラー以外の有機組成物の均一混合物を作成し、これをレオメーター(HAAKEレオストレス6000)を用い、せん断速度1(1/s)にて粘度を測定した。結果を表1に示す。
 (比A/Bの測定)
 まず、ガラス基板(30mm角、厚さ1mm)に複数のシリコンチップ(3mm角、厚さ200μm)がフリップチップ接続されたテスト基板を準備した。チップは、バンプ(バンプ径100μm、高さ20μm)により基板にフリップチップ接続されている。チップ間の距離は、100μmであり、基板とチップとの間隙(中空ギャップ)は、20μmである。次に、テスト基板上に、実施例、比較例の中空封止用樹脂シートを配置した(図2B参照)。次に、中空封止用樹脂シート側から70℃、圧力1kgf/cm、真空度10Torrにて加圧した(図2C参照)。この際の樹脂の先端の進行方向の速度を測定した。これを進入速度Aとした。より具体的には、加圧2秒毎にテスト基板を取り出し、ガラス基板側から樹脂(封止用樹脂シートを構成する材料)の進入先端部を、高さ計測機能付き光学顕微鏡で観察し、進入量(チップ上端部から樹脂進入先端までの距離)を測定した。ガラス基板に樹脂先端が到達するまでにおける平均速度を進入速度Aとした。樹脂がガラス基板に到達した後(図2D参照)、そのまま加圧を続け、樹脂の先端の進行方向の速度を測定した。具体的には、樹脂の先端の間隙方向への速度を測定した。より具体的には、進入速度Aと同様、加圧2秒毎にテスト基板を取り出して樹脂の先端の間隙方向への進入量を測定した。樹脂がガラス基板に到達した後、加圧2秒毎の測定を5回繰り返し、その平均速度を進入速度Bとした。ただし、樹脂先端がチップエッジから内部へ50μm浸入した場合は、その時点で測定を終了し、樹脂がガラス基板に到達した後、内部へ50μm浸入した時点までの平均速度を進入速度Bとした。その後、比A/Bを算出した。結果を表1に示す。
 (パッケージ中空部への樹脂進入性評価)
 アルミニウム櫛形電極が形成された以下の仕様のSAWチップを下記ボンディング条件にてセラミック基板に実装したSAWチップ実装基板を作製した。SAWチップとセラミック基板との間のギャップ幅は、20μmであった。
 <SAWチップ>
 チップサイズ:1.2mm角(厚さ150μm)
 バンプ材質:Au(高さ20μm)
 バンプ数:6バンプ
 チップ数:100個(10個×10個)
 <ボンディング条件>
 装置:パナソニック電工(株)製
 ボンディング条件:200℃、3N、1sec、超音波出力2W
 得られたSAWチップ実装基板上に、以下に示す加熱加圧条件下、各中空封止用樹脂シートを真空プレスにより貼付けた。
 <貼り付け条件>
 温度:60℃
 加圧力:4MPa
 真空度:1.6kPa
 プレス時間:1分
 大気圧に開放した後、熱風乾燥機中、150℃、1時間の条件で中空封止用樹脂シートを熱硬化させ、封止体を得た。得られた封止体の基板、封止樹脂界面を劈開し、KEYENCE社製、商品名「デジタルマイクロスコープ」(200倍)により、SAWチップとセラミック基板との間の中空部への樹脂の進入量を測定した。樹脂進入量は、SAWチップの端部から中空部へ進入した樹脂の最大到達距離を測定し、これを樹脂進入量とした。樹脂進入量が20μm以下であった場合を「○」、20μmを超えていた場合を「×」として評価した。結果を表1に示す。
 (中空封止用樹脂シートの切断面のSEM観察)
 作製した実施例2に係る中空封止用樹脂シートを150℃で1時間熱硬化して室温まで徐冷した後、得られた硬化物をカッターにて切断した。切断面をビューラー製自動研磨装置にて研磨し、研磨後の切断面をSEM(2000倍)により観察した。図4に、実施例2に係る中空封止用樹脂シートの切断面のSEM観察像を示す。図4におけるSEM観察像は、サンプルのうち、縦110μm×横110μm部分を拡大したものである。SEM観察像において色の薄い部分(黒色ではない部分)が無機充填剤である。次いで、色の薄い部分の占有面積を画像処理ソフトWinROOF(三谷商事社製)を用い、モード法による2値化処理を行って求めた。その結果、68%となった。
Figure JPOXMLDOC01-appb-T000001
 
 
    11  中空封止用樹脂シート
    11a  支持体
    13  SAWチップ
    15  封止体
    18  中空パッケージ
    50  テスト基板

Claims (4)

  1.  被着体上に配置された1又は複数の電子デバイスを覆うように中空封止用樹脂シートを前記電子デバイス上に前記被着体と前記電子デバイスとの間の中空部を維持しながら積層する積層工程、及び、前記中空封止用樹脂シートを硬化させて封止体を形成する封止体形成工程を含む中空パッケージの製造方法に使用される中空封止用樹脂シートであって、
     無機充填剤を62体積%以上の含有量で含み、
     レーザー回折散乱法により測定した前記無機充填剤の粒度分布において、前記中空部の幅を超えるものが10体積%未満であり、
     基板に複数のチップがフリップチップ接続されたテスト基板であって、前記チップ間の距離が100μmであり、且つ、前記基板と前記チップとの間隙が20μmであるものを用い、
     前記テスト基板上に、前記中空封止用樹脂シートを配置した後、前記中空封止用樹脂シート側から70℃、圧力1kgf/cm、真空度10Torrにて加圧した際の、前記中空封止用樹脂シートを構成する材料のチップ間への進入速度Aと、前記中空封止用樹脂シートを構成する材料の前記間隙への進入速度Bとの比A/Bが5以上であることを特徴とする中空封止用樹脂シート。
  2.  120℃における有機樹脂成分の粘度が1Pa・s以上であることを特徴とする請求項1に記載の中空封止用樹脂シート。
  3.  中空封止用樹脂シート全体の60~150℃における硬化前の最低動的粘度が5万Pa・s以上100万Pa・s以下であることを特徴とする請求項1又は2に記載の中空封止用樹脂シート。
  4.  中空パッケージの製造方法であって、
     被着体上に配置された1又は複数の電子デバイスを覆うように中空封止用樹脂シートを前記電子デバイス上に前記被着体と前記電子デバイスとの間の中空部を維持しながら積層する積層工程と、
     前記中空封止用樹脂シートを硬化させて封止体を形成する封止体形成工程と
     を含み、
     前記中空封止用樹脂シートは、
     無機充填剤を62体積%以上の含有量で含み、
     レーザー回折散乱法により測定した前記無機充填剤の粒度分布において、前記中空部の幅を超えるものが10体積%未満であり、
     基板に複数のチップがフリップチップ接続されたテスト基板であって、前記チップ間の距離が100μmであり、且つ、前記基板と前記チップとの間隙が20μmであるものを用い、
     前記テスト基板上に、前記中空封止用樹脂シートを配置した後、前記中空封止用樹脂シート側から70℃、圧力1kgf/cm、真空度10Torrにて加圧した際の、前記中空封止用樹脂シートを構成する材料のチップ間への進入速度Aと、前記中空封止用樹脂シートを構成する材料の前記間隙への進入速度Bとの比A/Bが5以上である
    ことを特徴とする中空パッケージの製造方法。
PCT/JP2014/079221 2013-11-28 2014-11-04 中空封止用樹脂シート、及び、中空パッケージの製造方法 WO2015079871A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013246340 2013-11-28
JP2013-246340 2013-11-28

Publications (1)

Publication Number Publication Date
WO2015079871A1 true WO2015079871A1 (ja) 2015-06-04

Family

ID=53198819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079221 WO2015079871A1 (ja) 2013-11-28 2014-11-04 中空封止用樹脂シート、及び、中空パッケージの製造方法

Country Status (3)

Country Link
JP (1) JP2015128147A (ja)
TW (1) TW201523797A (ja)
WO (1) WO2015079871A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6780718B2 (ja) * 2019-02-28 2020-11-04 株式会社大真空 圧電振動デバイス

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060584A (ja) * 2003-08-18 2005-03-10 Hitachi Chem Co Ltd 封止用フィルム
JP2006241449A (ja) * 2005-02-07 2006-09-14 San Nopco Ltd 熱硬化性樹脂組成物
JP2006321216A (ja) * 2005-04-19 2006-11-30 Hitachi Chem Co Ltd 封止用シート
JP2008098419A (ja) * 2006-10-12 2008-04-24 Hitachi Chem Co Ltd 封止フィルム、及びこれを用いた半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060584A (ja) * 2003-08-18 2005-03-10 Hitachi Chem Co Ltd 封止用フィルム
JP2006241449A (ja) * 2005-02-07 2006-09-14 San Nopco Ltd 熱硬化性樹脂組成物
JP2006321216A (ja) * 2005-04-19 2006-11-30 Hitachi Chem Co Ltd 封止用シート
JP2008098419A (ja) * 2006-10-12 2008-04-24 Hitachi Chem Co Ltd 封止フィルム、及びこれを用いた半導体装置

Also Published As

Publication number Publication date
JP2015128147A (ja) 2015-07-09
TW201523797A (zh) 2015-06-16

Similar Documents

Publication Publication Date Title
JP6422370B2 (ja) 中空型電子デバイス封止用シート、及び、中空型電子デバイスパッケージの製造方法
JP6643791B2 (ja) 中空封止用樹脂シート及び中空パッケージの製造方法
JP6431340B2 (ja) 封止用熱硬化性樹脂シート及び中空パッケージの製造方法
JP6282626B2 (ja) 中空型電子デバイス封止用シート、及び、中空型電子デバイスパッケージの製造方法
WO2015079870A1 (ja) 中空封止用樹脂シート、及び、中空パッケージの製造方法
JP2015106573A (ja) 中空封止用樹脂シート、及び、中空パッケージの製造方法
JP6883937B2 (ja) 封止用シートおよび中空パッケージの製造方法
JP6497998B2 (ja) 封止用シートおよびパッケージの製造方法
JP6302693B2 (ja) 中空封止用樹脂シート及び中空パッケージの製造方法
JP6933463B2 (ja) 樹脂シート
JP6379051B2 (ja) 中空型電子デバイス封止用シート
JP2016096308A (ja) 半導体装置の製造方法
JP2015128148A (ja) 中空封止用樹脂シート、及び、中空パッケージの製造方法
JP6283624B2 (ja) 中空型電子デバイス封止用シート、中空型電子デバイスパッケージの製造方法、及び、中空型電子デバイスパッケージ
WO2015079871A1 (ja) 中空封止用樹脂シート、及び、中空パッケージの製造方法
CN105590905B (zh) 电子器件密封用片和电子器件封装件的制造方法
JP2017098353A (ja) 電子デバイス封止用シート、及び、電子デバイスパッケージの製造方法
JP2018104649A (ja) 樹脂シート
JP6677966B2 (ja) セパレータ付き封止用シート、及び、半導体装置の製造方法
JP6302692B2 (ja) 中空封止用樹脂シート及び中空パッケージの製造方法
JP2020047951A (ja) 電子デバイス封止用シート、及び、電子デバイスパッケージの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14865206

Country of ref document: EP

Kind code of ref document: A1