WO2015079869A1 - Gapless magnetic core, coil device using same, and coil device manufacturing method - Google Patents

Gapless magnetic core, coil device using same, and coil device manufacturing method Download PDF

Info

Publication number
WO2015079869A1
WO2015079869A1 PCT/JP2014/079209 JP2014079209W WO2015079869A1 WO 2015079869 A1 WO2015079869 A1 WO 2015079869A1 JP 2014079209 W JP2014079209 W JP 2014079209W WO 2015079869 A1 WO2015079869 A1 WO 2015079869A1
Authority
WO
WIPO (PCT)
Prior art keywords
segment
main body
end surface
cutting
cut
Prior art date
Application number
PCT/JP2014/079209
Other languages
French (fr)
Japanese (ja)
Inventor
今西 恒次
康臣 ▲高▼橋
吉森 平
Original Assignee
株式会社エス・エッチ・ティ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エス・エッチ・ティ filed Critical 株式会社エス・エッチ・ティ
Publication of WO2015079869A1 publication Critical patent/WO2015079869A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • H01F17/062Toroidal core with turns of coil around it
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • H01F27/263Fastening parts of the core together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/306Fastening or mounting coils or windings on core, casing or other support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits

Definitions

  • the present invention relates to a magnetic core used in a coil device installed in a rectifier circuit, a noise prevention circuit, a resonance circuit, etc. in an AC device such as a power supply circuit and an inverter, a coil device using the same, and a method of manufacturing the coil device. is there.
  • Coil devices mounted on circuits of various AC devices are configured by winding a coil around an annular magnetic core.
  • a magnetic core having a gap formed in part is formed, an air core coil wound in advance is inserted from this gap, and then the gap is filled with a magnetic or non-magnetic filler.
  • a gap is formed between one end face of the magnetic core forming the air gap and the filler, and between the filler and the other end face of the magnetic core.
  • interval of the gaps formed on both sides of a filler is not constant. For this reason, in a coil device using such a magnetic core, variations in quality such as magnetic characteristics occur, such as a decrease in inductance characteristics.
  • the filler and the magnetic core have different magnetic characteristics and the like, the magnetic characteristics and the like are deteriorated.
  • An object of the present invention is to provide a gapless magnetic core that is excellent in quality such as magnetic characteristics, has small variations in these characteristics, and has excellent manufacturing efficiency, a coil device using the same, and a manufacturing method of the coil device. is there.
  • the gapless magnetic core according to the present invention is An annular member including an annular magnetic body made of a magnetic material is cut at a first cutting portion and a second cutting portion that cross the outer peripheral surface and the inner peripheral surface and approach each other toward the inner peripheral direction of the annular member; A main body having a main body side first end surface cut by the first cutting portion and a main body side second end surface cut by the second cutting portion; Obtaining a segment having a segment-side first end face cut by the first cutting part and a segment-side second end face cut by the second cutting part; In the notch formed between the main body side first end surface and the main body side second end surface, the main body side first end surface and the segment side first end surface, the main body side second end surface and the segment side first It is formed by pushing the segment so that the two end faces abut.
  • the inner peripheral end surface of the segment protrudes inward from the inner peripheral surface of the main body.
  • an angle formed by the first cutting portion and the second cutting portion is preferably 90 ° or less, and is preferably 75 ° or less.
  • an angle formed by the first cutting portion and the second cutting portion is 20 ° or more.
  • the main body side first end face and the segment side first end face, and the main body side second end face and the segment side second end face can be fixed by bonding or clamping.
  • the annular member may include an annular magnetic body and an insulating resin coating that covers the magnetic body.
  • the magnetic body is preferably a compacted body of magnetic material
  • the resin coating is preferably formed by an insert molding method or a resin powder coating method.
  • the coil device of the present invention comprises: The gapless magnetic core body described above is configured by inserting an air core coil pre-wound from the notch portion and then pushing the segment into the notch portion.
  • the manufacturing method of the coil device of the present invention includes: An annular member including an annular magnetic body made of a magnetic material is cut at a first cutting portion and a second cutting portion that cross the outer peripheral surface and the inner peripheral surface and approach each other toward the inner peripheral direction of the annular member; A main body having a main body side first end surface cut by the first cutting portion and a main body side second end surface cut by the second cutting portion; Obtaining a segment having a segment-side first end face cut by the first cutting part and a segment-side second end face cut by the second cutting part; An air core coil wound in advance is inserted into a notch formed between the main body side first end surface and the main body side second end surface, and the main body side first end surface and the segment side first end surface, The segment is pushed in so that the main body side second end surface and the segment side second end surface are in contact with each other, thereby forming a coil device.
  • the main body and the segment are in close contact with each other without having a gap just by pushing the segment into the notch of the main body, so that there is no leakage of magnetic flux due to the gap, and there is no magnetism due to the size of the gap. Since there is no variation in characteristics and the like, it is possible to provide an excellent gapless magnetic core with stable magnetic characteristics and a coil device using the same.
  • the gapless magnetic core of the present invention is made of the same annular member and the main body and the segment, these magnetic characteristics and the like are the same, and the manufactured gapless magnetic core and the coil device using the same are: Stable magnetic properties can be exhibited.
  • FIG. 1 is a plan view (angle ⁇ is 60 °) showing an embodiment of a gapless magnetic core of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of a gapless magnetic core obtained by cutting the circled portion of FIG. 1 in the height direction.
  • FIG. 3 is a plan view of the annular member according to the embodiment of the present invention before cutting.
  • FIG. 4 is a cross-sectional view taken along line AA in FIG.
  • FIG. 5 is a plan view of a main body and a segment obtained by cutting the annular member of FIG.
  • FIG. 6 is a plan view showing a state in which a segment is taken out from the main body of FIG.
  • FIG. 7 is a perspective view showing a process of inserting the air-core coil into the main body of FIG.
  • FIG. 8 is a perspective view showing a process of inserting the air-core coil into the main body, following FIG. FIG. 9 is a perspective view showing a process of attaching the segment to the main body in which the air-core coil is inserted.
  • FIG. 10 is a plan view of FIG.
  • FIG. 11 is a perspective view of a coil device obtained by attaching segments.
  • FIG. 12 is a plan view of the coil device of FIG.
  • FIG. 13 is a plan view of a gapless magnetic core having an angle ⁇ of 75 °.
  • FIG. 14 is a plan view of a gapless magnetic core having an angle ⁇ of 45 °.
  • FIG. 15 is a plan view of a gapless magnetic core having an angle ⁇ of 30 °.
  • FIG. 16 is a plan view of a gapless magnetic core having an angle ⁇ of 20 °.
  • FIG. 17 is a plan view of a gapless magnetic core having an angle ⁇ of 60 ° and shows an embodiment in which the retaining shape of the resin coating layer is changed.
  • FIG. 18 is a plan view of a gapless magnetic core having an angle ⁇ of 80 °, and shows an embodiment in which the retaining shape of the resin coating layer is changed.
  • FIG. 19 is a graph showing the DC superposition characteristics of the first embodiment.
  • FIG. 20 is a graph showing a comparison result between the angle ⁇ and the initial inductance value in the second embodiment.
  • FIG. 21 is a graph showing a comparison result between the opposing area P of the main body and the segment of the third embodiment and the initial inductance value.
  • FIG. 22 is an explanatory diagram (a) and (b) for comparing the opening widths of teardrop-shaped and annular annular members, and a table (c) for comparing the characteristics.
  • gapless magnetic core 10 according to the present invention will be described with reference to the drawings, and then an embodiment of the coil device 50 using the gapless magnetic core 10 will be described.
  • FIG. 1 is a plan view of a gapless magnetic core 10 according to an embodiment of the present invention.
  • the gapless magnetic core 10 includes a main body 30 with a notch 31 formed in part and a segment 40 that fits into the notch 31 of the main body 30.
  • the segment 40 and the cutout portion 31 of the main body 30 from which the segment 40 is cut out have shapes in which the contact surfaces approach the inner peripheral surface of the main body 30, that is, approximately
  • the inner peripheral surface of the segment 40 has a fan shape, and the magnetic body 21 protrudes inward (protrusion amount S) from the inner peripheral surface of the main body 30.
  • the gapless magnetic core 10 having the above-described configuration can be manufactured in the following manner.
  • the cross section of the magnetic body 21 may be circular, elliptical, or the like.
  • the shape of the annular member 20 may be a teardrop shape, an annular shape, an elliptical shape, an oval shape, a rectangular shape, or the like.
  • FIG. 3 shows a teardrop-shaped annular member 20, and the annular member 20 connects one end of the linear first straight portion 23 and the second straight portion 24 at a substantially right angle with a curved portion 25 having a small curvature radius, These other ends are connected by an arc portion 26 having a large curvature radius.
  • Examples of magnetic materials used for the magnetic body 21 include iron-based, iron-silicon-based, iron-aluminum-silicon-based, iron-nickel-based materials, iron-based and Co-based amorphous materials, and the like.
  • the magnetic body 21 is formed by pressing or compacting a powder made of a magnetic material, a ferrite core formed by sintering a powder made of a magnetic material, and a thin plate made of a magnetic material.
  • the laminated magnetic core can be made.
  • the peripheral surface may collapse when the cutting blade is applied. Accordingly, it is preferable to obtain the annular member 20 by insert-molding the magnetic body 21 made of a compacted body with an insulating resin and forming the resin coating 22 on the outer periphery of the magnetic body 21. Thereby, it can prevent that the magnetic body 21 collapse
  • the annular member 20 can also be produced by a resin powder coating method.
  • the produced annular member 20 crosses the inner circumferential surface and the outer circumferential surface and approaches the inner circumferential direction of the annular member 20 and the second cutting portion 27 and the second cutting portion 27.
  • Cutting is performed by the cutting unit 28.
  • the 1st cutting part 27 and the 2nd cutting part 28 implement a cutting
  • the cutting of the annular member 20 can be performed with a rotating cutting blade or the like.
  • a metal-bonded diamond grindstone can be exemplified.
  • the annular member 20 is preferably cut by the straight portions 23 and 24 in order to prevent the cutting blade from escaping.
  • a cutting allowance 29 corresponding to the thickness of the cutting blade is required. That is, the segment 40 becomes smaller by the cutting allowances 29 and 29 than the cutout portion 31 of the main body 30 where the annular member 20 is cut and the segment 40 is cut.
  • it is desirable to reduce the thickness of the cutting blade For example, it is preferable to use a cutting blade having a blade thickness of 0.5 mm to 1.2 mm or a blade thickness thinner than 0.7 mm.
  • the first straight portion 23 or the second straight portion 24 is cut at least one of the first cut portion 27 or the second cut portion 28.
  • the other cutting of the first cutting portion 27 or the second cutting portion 28 is preferably performed between the bent portion 25 and the end of the first straight portion 23 or the second straight portion 24.
  • a wide opening width 36 for inserting the air-core coil 51 (FIG. 7, etc., which will be described later) can be secured in the cutout portion 31 of the main body 30 from which the segment 40 is cut out. it can.
  • the opening width 36 will be described in detail in the fourth embodiment.
  • an end face for example, a first end face on the main body side
  • the end surface opposite to the end surface has the notch 31 in FIG. It is desirable to form it in parallel to (indicated by an arrow in FIG. 7).
  • the obtained segment 40 is pushed into the notch 31 of the main body 30 from the outer peripheral side and fixed, so that the notch 31 is backfilled and the gapless magnetic core 10 can be obtained.
  • the cutting allowance 29 is required. Therefore, the segment 40 is pushed into the cutout portion 31 of the main body 30, and the main body side first end face 32 and the segment side first end face 42 are When the main body side second end surface 33 and the segment side second end surface 43 are brought into close contact with each other, the segment 40 is cut out by the thickness of the cutting allowances 29 and 29 as shown in FIG. 1 and the enlarged sectional view 2. It enters the inside of the portion 31 and protrudes by an amount of protrusion S toward the inner peripheral side of the main body 30.
  • the segment 40 is pushed in until the main body side first end face 32 and the segment side first end face 42 and the main body side second end face 33 and the segment side second end face 43 are in close contact with each other in the pushing direction which is the width direction of the main body 30. Therefore, fine adjustment of the pushing amount of the segment 40 with respect to the notch 31 is unnecessary. That is, since it is only necessary to adjust the position of the segment 40 only in the height direction with respect to the notch 31, the gapless magnetic core 10 can be manufactured very easily.
  • the step of forming the segment from another member can be eliminated, and in addition, the loss of raw materials is almost all. Therefore, the production efficiency can be increased as much as possible.
  • a method for manufacturing the coil device 50 using the gapless magnetic core 10 will be described. First, after cutting out the segment 40 from the annular member 20 (FIG. 6), as shown in FIGS. 7 to 10, an air-core coil 51 in which a conducting wire is wound in advance from the notch 31 is inserted into the main body 30.
  • the air-core coil 51 is manufactured by winding in accordance with the outer peripheral shape of the main body 30. And after inserting the air-core coil 51 in the main body 30, as shown in FIG.11 and FIG.12, the segment 40 is pushed and fixed to the notch part 31 of the main body 30 in the same way as the above, and a coil apparatus is carried out. 50 is produced.
  • the manufactured coil device 50 has no gap, and since the inner circumferential side magnetic path M passing through the magnetic body 21 and a substantial cross-sectional area are secured, the coil device 50 is stable. Magnetic properties and the like. Moreover, it has the various effects mentioned above.
  • the cutting allowance 29 is thin.
  • the resin coating portion 22 is formed with one end face 28 of the main body 30 and protrusions 34 and 44 that are to be prevented from being removed from the segment 40, respectively.
  • the air-core coil 51 When the air-core coil 51 is inserted from the one end surface 27 of the main body 30, the air-core coil 51 hits the retaining member 34, so that it can be prevented from falling off. Further, after the coil device 50 is manufactured, the retaining cores 34 and 44 can prevent the air-core coil 51 from moving on the gapless magnetic core 10, and the lead terminal of the air-core coil 51 is positioned. be able to.
  • a plurality of green compacts were produced from Sendust powder (composition: Fe—Si—Al alloy) as the magnetic body 21, and an annular member 20 in which the resin coating portion 22 was formed by insert molding was obtained.
  • the magnetic body 21 has a teardrop shape having a cross section with a width of 9.8 mm and a height of 25 mm, an inner peripheral length of 84 mm, and an average magnetic path length of 114 mm.
  • the thickness of the resin coating part 22 is 0.6 mm.
  • the inventive example 4 in which the angle ⁇ is 75 ° exhibits the highest inductance value, and the inductance value decreases as the angle ⁇ decreases.
  • ⁇ Second embodiment Comparison of initial inductance values> Further, the angle ⁇ formed by the first cutting portion 27 and the second cutting portion 28 from the annular member 20 is 0 ° (comparative example: the first cutting portion and the second cutting portion are parallel), 10 ° (Invention Example 21). ), 20 ° (Invention Example 22), 30 ° (Invention Example 23), 45 ° (Invention Example 24), and 75 ° (Invention Example 25). These initial inductance values were measured. The results are shown in FIG.
  • the invention example 22 in which the angle ⁇ is 20 ° has an initial inductance value improved by about 14% compared to the comparative example, and the angle ⁇ is 75.
  • Inventive Example 25 which is ° was able to improve the initial inductance value by about 29% compared to the comparative example.
  • Invention Example 21 in which the angle ⁇ is 10 ° has an initial inductance value substantially equal to that of the comparative example. This is because a sufficient magnetic path could not be secured as a result of an increase in the projecting amount S of the segment 40 toward the inner periphery.
  • a magnetic path M without a gap can be ensured simply by pushing the segment 40 into the notch 31, so that even when the angle ⁇ is 10 °, when the plurality of coil devices 50 are manufactured, There is an advantage that a certain inductance value can be secured.
  • since it is difficult to adjust the width of the two gaps in the comparative example it is difficult to obtain a constant inductance value when a plurality of coil devices are manufactured, and the invention example is superior.
  • the initial inductance value is linearly decreased in the range where the angle ⁇ is 75 ° to 30 °.
  • the angle ⁇ is changed from 30 ° to 20 °
  • the decrease amount of the initial inductance value is increased
  • the angle ⁇ is changed from 20 ° to 10 °
  • the initial inductance value is greatly reduced.
  • the lower limit of the angle ⁇ formed by the first cutting portion 27 and the second cutting portion 28 is preferably 20 ° or more, and more preferably 30 ° or more.
  • ⁇ Third embodiment Comparison of opposing area P of main body and segment and initial inductance value>
  • the angle ⁇ formed by the first cutting portion 27 and the second cutting portion 28 from the annular member 20 is 20 ° (invention).
  • segment 40 was cut out to be 30 ° (Invention Example 32), 45 ° (Invention Example 33), 60 ° (Invention Example 34), and 75 ° (Invention Example 25). They were prepared and their initial inductance values were measured. The results are shown in FIG.
  • the initial inductance value increases as the ratio of the opposed area P to the cross-sectional area C increases.
  • ⁇ Fourth embodiment Comparison of opening widths for inserting air-core coils> As shown in FIGS. 22A and 22B, the size of the segment 40 necessary for forming the notch 31 having the same opening width 36 in which the annular member 20 has a teardrop shape and an annular shape (toroidal core). Compared. The teardrop-shaped annular member 20 (FIG. 22A) was cut so that the first cutting portion 27 was positioned at the curved portion 25 and the second cutting portion 28 was positioned at the second straight portion 24.
  • the size of the segment 40 to be cut out is smaller than that of the annular annular member 20. This is because the notch 31 is formed so as to include the curved portion 25 having a small radius of curvature.
  • the teardrop-shaped annular member 20 needs to chuck the annular member 20 with a jig or the like at the time of cutting. Since a large area can be stably chucked with reference to 23 or 24 and cutting can be performed, positioning is easy. In addition, since the cutting portion 28 is positioned on the straight portion 24, the cutting blade can be orthogonally cut with respect to the straight portion 28, so that the cutting blade can be cut off easily and the cutting operation can be easily performed. .
  • the present invention is particularly suitable for application to the teardrop-shaped annular member 20.
  • the teardrop-shaped annular member 20 is superior in positioning accuracy and workability.
  • the segment 40 can be returned to another main body 30 without returning to the main body 30 from which the segment 40 is cut out.
  • the segment 40 can also be arranged such that the segment-side first end face 42 abuts on the main body-side second end face 33 and the segment-side second end face 43 abuts on the main body-side first end face 32.

Abstract

The present invention provides the following: a gapless magnetic core the quality of which excels with respect to magnetic characteristics and the like, with which fluctuations in such characteristics are small, and which excels in manufacturing efficiency; a coil device using the same; and a coil device manufacturing method. This gapless magnetic core (10) is formed as follows: an annular member (20) that includes an annular magnetic body (21) made of a magnetic material is cut by a first cutting part (27) and a second cutting part (28) that cross an outer circumferential surface and an inner circumferential surface and approach each other going towards the inner circumference of the annular member; a main body (30) is obtained that comprises a first end surface (32) that is cut by the first cutting part (27) and a second end surface (33) that is cut by the second cutting part; a segment (40) is obtained that comprises a first end surface (43) cut by the first cutting part and a second end surface (44) that is cut by the second cutting part; and the segment is pressed into a notch section (31) formed between the first end surface and the second end surface of the main body so that the first end surfaces (32, 42) abut each other and the second end surfaces (33, 43) abut each other.

Description

ギャップレス磁芯、これを用いたコイル装置及びコイル装置の製造方法Gapless magnetic core, coil device using the same, and method of manufacturing the coil device
 本発明は、電源回路やインバータなどの交流機器における整流回路、雑音防止回路、共振回路等に装備されるコイル装置に用いられる磁芯、これを用いたコイル装置及びコイル装置の製造方法に関するものである。 The present invention relates to a magnetic core used in a coil device installed in a rectifier circuit, a noise prevention circuit, a resonance circuit, etc. in an AC device such as a power supply circuit and an inverter, a coil device using the same, and a method of manufacturing the coil device. is there.
 各種交流機器の回路に搭載されるコイル装置は、環状の磁芯にコイルを巻装して構成される。
 巻線を容易に行なうために、一部に空隙を形成した磁芯を形成し、この空隙から予め巻線された空芯コイルを挿入し、その後、空隙を磁性又は非磁性の充填材によって埋め戻している(たとえば、特許文献1の図10参照)。
Coil devices mounted on circuits of various AC devices are configured by winding a coil around an annular magnetic core.
In order to perform winding easily, a magnetic core having a gap formed in part is formed, an air core coil wound in advance is inserted from this gap, and then the gap is filled with a magnetic or non-magnetic filler. (For example, refer to FIG. 10 of Patent Document 1).
特開2011-135091号公報JP 2011-135091 A
 空隙を埋め戻すために、別部材の充填材を準備する必要がある。しかしながら、たとえば、予め圧粉成形した磁芯や積層磁芯などのブロックを充填材として挿入する場合、空隙に嵌め込むためには充填材は、空隙の間隔よりも薄く形成せざるを得ない。 ¡In order to backfill the gap, it is necessary to prepare a separate filler. However, for example, when a block such as a magnetic core or a laminated magnetic core formed in advance is inserted as a filler, the filler must be formed to be thinner than the gap interval in order to fit into the gap.
 その結果、空隙を形成する磁芯の一方の端面と充填材、また、充填材と磁芯の他方の端面との間に夫々ギャップが形成されることになる。そして、充填材を空隙内で精度よく位置決めし、固定することは困難であるから、充填材を挟んで形成されるギャップどうしの間隔も一定しない。このため、このような磁芯を用いたコイル装置では、インダクタンス特性の低下など、磁気特性等の品質のばらつきが生じてしまう。また、充填材と磁芯は磁気特性等が異なるから、磁気特性等が低下してしまう。 As a result, a gap is formed between one end face of the magnetic core forming the air gap and the filler, and between the filler and the other end face of the magnetic core. And since it is difficult to position and fix a filler accurately in a space | gap, the space | interval of the gaps formed on both sides of a filler is not constant. For this reason, in a coil device using such a magnetic core, variations in quality such as magnetic characteristics occur, such as a decrease in inductance characteristics. In addition, since the filler and the magnetic core have different magnetic characteristics and the like, the magnetic characteristics and the like are deteriorated.
 そこで、出願人は、充填材を別途作製するのではなく、予め環状に形成された磁芯を、幅方向に垂直且つ互いに平行に2箇所で切断して、直方体形状のセグメントを切り出し、残されたC字状の本体に形成された切欠き部(空隙)にセグメントを嵌め込むことを考案した。これにより、本体とセグメントを同じ磁気特性とすることができ、また、原材料の効率化を図ることができる。 Therefore, the applicant does not prepare the filler separately, but cuts the annularly formed magnetic core in two places perpendicular to the width direction and parallel to each other to cut out a rectangular parallelepiped segment and leave it there. It has been devised to fit a segment into a notch (gap) formed in a C-shaped body. Thereby, a main body and a segment can be made into the same magnetic characteristic, and efficiency improvement of a raw material can be achieved.
 しかしながら、磁芯を切断刃で切り出す際に、切断刃の刃厚に相当する切断代が必要となるから、セグメントは本体の切欠き部よりも薄くなり、セグメントと切欠き部の端面との間にギャップが生じてしまう課題は残っていた。 However, when cutting the magnetic core with the cutting blade, a cutting allowance corresponding to the blade thickness of the cutting blade is required. Therefore, the segment is thinner than the cutout portion of the main body, and the gap between the segment and the end face of the cutout portion There remains a problem that caused a gap.
 本発明の目的は、磁気特性等の品質にすぐれ、また、これら特性のばらつきが小さく、製造効率にもすぐれるギャップレス磁芯、これを用いたコイル装置及びコイル装置の製造方法を提供することである。 An object of the present invention is to provide a gapless magnetic core that is excellent in quality such as magnetic characteristics, has small variations in these characteristics, and has excellent manufacturing efficiency, a coil device using the same, and a manufacturing method of the coil device. is there.
 本発明に係るギャップレス磁芯は、
 磁性材料からなる環状の磁性体を含む環状部材を、外周面と内周面を横断し、互いに環状部材の内周方向に向けて接近する第1切断部と第2切断部で切断し、
 前記第1切断部で切断された本体側第1端面と、前記第2切断部で切断された本体側第2端面と、を有する本体と、
 前記第1切断部で切断されたセグメント側第1端面と、前記第2切断部で切断されたセグメント側第2端面と、を有するセグメントを得て、
 前記本体側第1端面と前記本体側第2端面との間に形成された切欠き部に、前記本体側第1端面と前記セグメント側第1端面、前記本体側第2端面と前記セグメント側第2端面が当接するように前記セグメントを押し込んで形成される。
The gapless magnetic core according to the present invention is
An annular member including an annular magnetic body made of a magnetic material is cut at a first cutting portion and a second cutting portion that cross the outer peripheral surface and the inner peripheral surface and approach each other toward the inner peripheral direction of the annular member;
A main body having a main body side first end surface cut by the first cutting portion and a main body side second end surface cut by the second cutting portion;
Obtaining a segment having a segment-side first end face cut by the first cutting part and a segment-side second end face cut by the second cutting part;
In the notch formed between the main body side first end surface and the main body side second end surface, the main body side first end surface and the segment side first end surface, the main body side second end surface and the segment side first It is formed by pushing the segment so that the two end faces abut.
 前記セグメントは、内周端面が、前記本体の内周面よりも内側に突出している。 The inner peripheral end surface of the segment protrudes inward from the inner peripheral surface of the main body.
 前記環状部材は、直線状の第1直線部と第2直線部の一端を曲率半径の小さい曲部で略直角に連繋し、前記第1直線部と前記2第直線部の他端どうしを曲率半径の大きい円弧部で接続した涙滴形状を有しており、
 前記第1切断部又は前記第2切断部の少なくとも一方の切断が、前記第1直線部又は第2直線部に実施されることが望ましい。
The annular member connects one end of the linear first straight part and the second straight part at a substantially right angle with a curved part having a small radius of curvature, and the other end of the first straight part and the second linear part is curved. It has a teardrop shape connected by a circular arc part with a large radius,
It is desirable that at least one of the first cutting portion or the second cutting portion is cut at the first straight portion or the second straight portion.
 前記第1切断部又は前記第2切断部の他方の切断は、前記曲部から第1直線部又は第2直線部の端部との間に実施することが望ましい。 It is desirable that the other cutting of the first cutting portion or the second cutting portion is performed between the curved portion and the end of the first straight portion or the second straight portion.
 また、前記第1切断部と前記第2切断部のなす角度は、90°以下とすることが好適であり、75°以下とすることが望ましい。 In addition, an angle formed by the first cutting portion and the second cutting portion is preferably 90 ° or less, and is preferably 75 ° or less.
 前記第1切断部と前記第2切断部のなす角度は、20°以上とすることが好適である。 It is preferable that an angle formed by the first cutting portion and the second cutting portion is 20 ° or more.
 前記本体側第1端面と前記セグメント側第1端面、前記本体側第2端面と前記セグメント側第2端面は、接着又はクランプにより固定することができる。 The main body side first end face and the segment side first end face, and the main body side second end face and the segment side second end face can be fixed by bonding or clamping.
 前記環状部材は、環状の磁性体と、前記磁性体を覆う絶縁性の樹脂被覆部と、を含んだ構成とすることができる。 The annular member may include an annular magnetic body and an insulating resin coating that covers the magnetic body.
 前記磁性体は、磁性材料の圧粉成形体であり、前記樹脂被覆部は、インサート成型工法又は樹脂粉体コーティング工法により形成することが望ましい。 The magnetic body is preferably a compacted body of magnetic material, and the resin coating is preferably formed by an insert molding method or a resin powder coating method.
 本発明のコイル装置は、
 上記に記載のギャップレス磁芯の本体に、前記切欠き部から予め巻線した空芯コイルを挿入した後、前記切欠き部に前記セグメントを押し込んで構成される。
The coil device of the present invention comprises:
The gapless magnetic core body described above is configured by inserting an air core coil pre-wound from the notch portion and then pushing the segment into the notch portion.
 本発明のコイル装置の製造方法は、
 磁性材料からなる環状の磁性体を含む環状部材を、外周面と内周面を横断し、互いに環状部材の内周方向に向けて接近する第1切断部と第2切断部で切断し、
 前記第1切断部で切断された本体側第1端面と、前記第2切断部で切断された本体側第2端面と、を有する本体と、
 前記第1切断部で切断されたセグメント側第1端面と、前記第2切断部で切断されたセグメント側第2端面と、を有するセグメントを得て、
 前記本体側第1端面と前記本体側第2端面との間に形成された切欠き部に、予め巻線した空芯コイルを挿入し
 前記本体側第1端面と前記セグメント側第1端面、前記本体側第2端面と前記セグメント側第2端面が当接するように前記セグメントを押し込んで、コイル装置を形成する。
The manufacturing method of the coil device of the present invention includes:
An annular member including an annular magnetic body made of a magnetic material is cut at a first cutting portion and a second cutting portion that cross the outer peripheral surface and the inner peripheral surface and approach each other toward the inner peripheral direction of the annular member;
A main body having a main body side first end surface cut by the first cutting portion and a main body side second end surface cut by the second cutting portion;
Obtaining a segment having a segment-side first end face cut by the first cutting part and a segment-side second end face cut by the second cutting part;
An air core coil wound in advance is inserted into a notch formed between the main body side first end surface and the main body side second end surface, and the main body side first end surface and the segment side first end surface, The segment is pushed in so that the main body side second end surface and the segment side second end surface are in contact with each other, thereby forming a coil device.
 本発明によれば、本体の切欠き部にセグメントを押し込むだけで、本体とセグメントは、ギャップを存することなく密着して当接するから、ギャップによる磁束の漏洩もなく、また、ギャップの大小による磁気特性等のばらつきもないから、磁気特性等が安定したすぐれたギャップレス磁芯及びこれを用いたコイル装置を提供することができる。 According to the present invention, the main body and the segment are in close contact with each other without having a gap just by pushing the segment into the notch of the main body, so that there is no leakage of magnetic flux due to the gap, and there is no magnetism due to the size of the gap. Since there is no variation in characteristics and the like, it is possible to provide an excellent gapless magnetic core with stable magnetic characteristics and a coil device using the same.
 また、本発明のギャップレス磁芯は、同じ環状部材からを本体とセグメントを作製しているから、これらの磁気特性等は同じであり、作製されたギャップレス磁芯やこれを用いたコイル装置は、安定した磁気特性等を発揮できる。 In addition, since the gapless magnetic core of the present invention is made of the same annular member and the main body and the segment, these magnetic characteristics and the like are the same, and the manufactured gapless magnetic core and the coil device using the same are: Stable magnetic properties can be exhibited.
 また、本体とセグメントを別個に作製する必要はなく、また、切り出されたセグメントをそのまま利用できるので、原材料のロスも殆んどなく、製造効率を可及的に高めることができる。 Also, it is not necessary to prepare the main body and the segment separately, and since the cut segment can be used as it is, there is almost no loss of raw materials, and the production efficiency can be increased as much as possible.
図1は、本発明のギャップレス磁芯の一実施形態を示す平面図(角度αは60°)である。FIG. 1 is a plan view (angle α is 60 °) showing an embodiment of a gapless magnetic core of the present invention. 図2は、図1の丸囲み部を高さ方向に切断したギャップレス磁芯の拡大断面図である。FIG. 2 is an enlarged cross-sectional view of a gapless magnetic core obtained by cutting the circled portion of FIG. 1 in the height direction. 図3は、本発明の一実施形態に係る環状部材の切断前の平面図である。FIG. 3 is a plan view of the annular member according to the embodiment of the present invention before cutting. 図4は、図3の線A-Aに沿う断面図である。FIG. 4 is a cross-sectional view taken along line AA in FIG. 図5は、図3の環状部材を切断して得られた本体とセグメントの平面図である。FIG. 5 is a plan view of a main body and a segment obtained by cutting the annular member of FIG. 図6は、図5の本体からセグメントを取り出した状態を示す平面図である。FIG. 6 is a plan view showing a state in which a segment is taken out from the main body of FIG. 図7は、図6の本体に空芯コイルを挿入する過程を示す斜視図である。FIG. 7 is a perspective view showing a process of inserting the air-core coil into the main body of FIG. 図8は、図7に続き、本体に空芯コイルを挿入する過程を示す斜視図である。FIG. 8 is a perspective view showing a process of inserting the air-core coil into the main body, following FIG. 図9は、空芯コイルの挿入された本体にセグメントを装着する過程を示す斜視図である。FIG. 9 is a perspective view showing a process of attaching the segment to the main body in which the air-core coil is inserted. 図10は、図9の平面図である。FIG. 10 is a plan view of FIG. 図11は、セグメントを装着して得られたコイル装置の斜視図である。FIG. 11 is a perspective view of a coil device obtained by attaching segments. 図12は、図11のコイル装置の平面図である。FIG. 12 is a plan view of the coil device of FIG. 図13は、角度αが75°であるギャップレス磁芯の平面図である。FIG. 13 is a plan view of a gapless magnetic core having an angle α of 75 °. 図14は、角度αが45°であるギャップレス磁芯の平面図である。FIG. 14 is a plan view of a gapless magnetic core having an angle α of 45 °. 図15は、角度αが30°であるギャップレス磁芯の平面図である。FIG. 15 is a plan view of a gapless magnetic core having an angle α of 30 °. 図16は、角度αが20°であるギャップレス磁芯の平面図である。FIG. 16 is a plan view of a gapless magnetic core having an angle α of 20 °. 図17は、角度αが60°であるギャップレス磁芯の平面図であって、樹脂被複層の抜止め形状を変えた実施形態を示している。FIG. 17 is a plan view of a gapless magnetic core having an angle α of 60 ° and shows an embodiment in which the retaining shape of the resin coating layer is changed. 図18は、角度αが80°であるギャップレス磁芯の平面図であって、樹脂被複層の抜止め形状を変えた実施形態を示している。FIG. 18 is a plan view of a gapless magnetic core having an angle α of 80 °, and shows an embodiment in which the retaining shape of the resin coating layer is changed. 図19は、第1実施例の直流重畳特性を示すグラフである。FIG. 19 is a graph showing the DC superposition characteristics of the first embodiment. 図20は、第2実施例の角度αと初期インダクタンス値の比較結果を示すグラフである。FIG. 20 is a graph showing a comparison result between the angle α and the initial inductance value in the second embodiment. 図21は、第3実施例の本体とセグメントの対向面積Pと初期インダクタンス値の比較結果を示すグラフである。FIG. 21 is a graph showing a comparison result between the opposing area P of the main body and the segment of the third embodiment and the initial inductance value. 図22は、涙滴状と円環状の環状部材の開口幅の比較する説明図(a)(b)と、その特性を比較する表(c)である。FIG. 22 is an explanatory diagram (a) and (b) for comparing the opening widths of teardrop-shaped and annular annular members, and a table (c) for comparing the characteristics.
 以下、まず、本発明に係るギャップレス磁芯10について図面を参照して説明した後、このギャップレス磁芯10を用いたコイル装置50の一実施形態について説明を行なう。 Hereinafter, first, the gapless magnetic core 10 according to the present invention will be described with reference to the drawings, and then an embodiment of the coil device 50 using the gapless magnetic core 10 will be described.
 図1は、本発明の一実施形態に係るギャップレス磁芯10の平面図である。ギャップレス磁芯10は、一部に切欠き部31が形成された本体30と、本体30の切欠き部31に嵌まるセグメント40から構成される。 FIG. 1 is a plan view of a gapless magnetic core 10 according to an embodiment of the present invention. The gapless magnetic core 10 includes a main body 30 with a notch 31 formed in part and a segment 40 that fits into the notch 31 of the main body 30.
 図1及び図2に示すように、セグメント40と、セグメント40の切り出された本体30の切欠き部31は、夫々当接面が本体30の内周面に向けて接近する形状、すなわち、略扇形状であり、セグメント40の内周面は、磁性体21が、本体30の内周面よりも内側に突出(突出量S)している。 As shown in FIGS. 1 and 2, the segment 40 and the cutout portion 31 of the main body 30 from which the segment 40 is cut out have shapes in which the contact surfaces approach the inner peripheral surface of the main body 30, that is, approximately The inner peripheral surface of the segment 40 has a fan shape, and the magnetic body 21 protrudes inward (protrusion amount S) from the inner peripheral surface of the main body 30.
 上記構成のギャップレス磁芯10は、以下の要領で作製することができる。 The gapless magnetic core 10 having the above-described configuration can be manufactured in the following manner.
 まず、図3に示すように、磁性体21を含む環状部材20を作製する。
 図示の環状部材20は、図4の断面図に示すように、磁性材料からなる磁性体21の外周を絶縁性の樹脂被覆部22で覆ったものである。なお、樹脂被覆部22は必要に応じて設ければよく、磁性体21のみにより環状部材20を形成することもできる。
First, as shown in FIG. 3, the annular member 20 including the magnetic body 21 is produced.
As shown in the sectional view of FIG. 4, the illustrated annular member 20 is obtained by covering the outer periphery of a magnetic body 21 made of a magnetic material with an insulating resin coating portion 22. In addition, the resin coating | coated part 22 should just be provided as needed, and can also form the annular member 20 only with the magnetic body 21. FIG.
 図4の環状部材20は、磁性体21の断面を略矩形に形成しているが、磁性体21の断面形状は、円形、楕円形等としてもよい。 4 has a substantially rectangular cross section of the magnetic body 21, the cross section of the magnetic body 21 may be circular, elliptical, or the like.
 環状部材20の形状は、涙滴状や円環状、楕円環状、長円環状、矩形環状等を採用できる。図3は、涙滴状の環状部材20であり、環状部材20は、直線状の第1直線部23と第2直線部24の一端を曲率半径の小さい曲部25で略直角に連繋し、これらの他端どうしを曲率半径の大きい円弧部26で接続している。 The shape of the annular member 20 may be a teardrop shape, an annular shape, an elliptical shape, an oval shape, a rectangular shape, or the like. FIG. 3 shows a teardrop-shaped annular member 20, and the annular member 20 connects one end of the linear first straight portion 23 and the second straight portion 24 at a substantially right angle with a curved portion 25 having a small curvature radius, These other ends are connected by an arc portion 26 having a large curvature radius.
 磁性体21に採用される磁性材料として、鉄系、鉄-ケイ素系、鉄-アルミニウム-ケイ素系、鉄-ニッケル系の材料、鉄系やCo系のアモルファス材料などを例示できる。磁性体21は、磁性材料からなる粉末を加圧成形してなる圧粉成形体、磁性材料からなる粉末を焼結してなるフェライト磁芯の成形体、磁性材料からなる薄板を積層又は巻回した積層磁芯とすることができる。 Examples of magnetic materials used for the magnetic body 21 include iron-based, iron-silicon-based, iron-aluminum-silicon-based, iron-nickel-based materials, iron-based and Co-based amorphous materials, and the like. The magnetic body 21 is formed by pressing or compacting a powder made of a magnetic material, a ferrite core formed by sintering a powder made of a magnetic material, and a thin plate made of a magnetic material. The laminated magnetic core can be made.
 上記種々の磁性材料の中で、磁性体21として圧粉成形体を採用することが好適である。圧粉成形体は、寸法精度が高く、また、設計自由度も高いためである。 Among the above-mentioned various magnetic materials, it is preferable to adopt a green compact as the magnetic body 21. This is because the green compact has high dimensional accuracy and high design freedom.
 一方、圧粉成形体からなる磁性体21は、切断刃(砥石)を用いて切断すると、切断刃を当てたときに周面が崩れてしまうことがある。そこで、圧粉成形体からなる磁性体21を絶縁性樹脂によりインサート成型し、磁性体21の外周に樹脂被覆部22を形成することで環状部材20を得ることが好適である。これにより、切断の際に磁性体21が崩れてしまうことを防止できる。なお、環状部材20は、樹脂粉体コーティング工法によって作製することもできる。 On the other hand, when the magnetic body 21 made of a compacted body is cut using a cutting blade (grinding stone), the peripheral surface may collapse when the cutting blade is applied. Accordingly, it is preferable to obtain the annular member 20 by insert-molding the magnetic body 21 made of a compacted body with an insulating resin and forming the resin coating 22 on the outer periphery of the magnetic body 21. Thereby, it can prevent that the magnetic body 21 collapse | crumbles in the case of a cutting | disconnection. The annular member 20 can also be produced by a resin powder coating method.
 作製された環状部材20を、図3及び図5に示すように、その内周面と外周面を横断し、互いに環状部材20の内周方向に向けて接近する第1切断部27と第2切断部28によって切断する。第1切断部27と第2切断部28は、図5に示すように、環状部材20の内周方向に向けて接近するよう切断を実施する。すなわち、第1切断部27と第2切断部28のなす角度をαとすると、0°<α≦90°とする。この理由は後述する。 As shown in FIGS. 3 and 5, the produced annular member 20 crosses the inner circumferential surface and the outer circumferential surface and approaches the inner circumferential direction of the annular member 20 and the second cutting portion 27 and the second cutting portion 27. Cutting is performed by the cutting unit 28. The 1st cutting part 27 and the 2nd cutting part 28 implement a cutting | disconnection so that it may approach toward the inner peripheral direction of the annular member 20, as shown in FIG. That is, if the angle formed by the first cutting part 27 and the second cutting part 28 is α, 0 ° <α ≦ 90 °. The reason for this will be described later.
 環状部材20の切断は、回転する切断刃などによって行なうことができる。切断刃として、メタルボンドされたダイヤモンド砥石を例示することができる。環状部材20は、切断刃の逃げを防止するために、直線部23,24にて切断することが好適である。 The cutting of the annular member 20 can be performed with a rotating cutting blade or the like. As the cutting blade, a metal-bonded diamond grindstone can be exemplified. The annular member 20 is preferably cut by the straight portions 23 and 24 in order to prevent the cutting blade from escaping.
 環状部材20の切断に際し、切断代29をゼロとして切断を行なうことはできず、図5に示すように、切断刃の厚さに応じた切断代29が必要となる。つまり、環状部材20を切断し、セグメント40を切り出した本体30の切欠き部31に対して、セグメント40は、切断代29,29分だけ小さくなる。切断代29を小さくするために、切断刃の刃厚は、薄くすることが望まれる。たとえば、切断刃は、0.5mm~1.2mmの刃厚又は0.7mmよりも刃厚の薄いものを用いることが好適である。 When cutting the annular member 20, it is not possible to perform cutting with the cutting allowance 29 as zero, and as shown in FIG. 5, a cutting allowance 29 corresponding to the thickness of the cutting blade is required. That is, the segment 40 becomes smaller by the cutting allowances 29 and 29 than the cutout portion 31 of the main body 30 where the annular member 20 is cut and the segment 40 is cut. In order to reduce the cutting allowance 29, it is desirable to reduce the thickness of the cutting blade. For example, it is preferable to use a cutting blade having a blade thickness of 0.5 mm to 1.2 mm or a blade thickness thinner than 0.7 mm.
 環状部材20が、上記した図3のような涙滴状である場合、第1切断部27又は第2切断部28の少なくとも一方の切断を、第1直線部23又は第2直線部24に実施し、第1切断部27又は第2切断部28の他方の切断は、曲部25から第1直線部23又は第2直線部24の端部との間に実施することが望ましい。 When the annular member 20 has a teardrop shape as shown in FIG. 3 described above, the first straight portion 23 or the second straight portion 24 is cut at least one of the first cut portion 27 or the second cut portion 28. The other cutting of the first cutting portion 27 or the second cutting portion 28 is preferably performed between the bent portion 25 and the end of the first straight portion 23 or the second straight portion 24.
 これにより、セグメント40の切り出された本体30の切欠き部31に、図6に示すように、空芯コイル51(後述する図7等)を挿入するための広い開口幅36を確保することができる。開口幅36については、第4実施例にて詳述する。 As a result, as shown in FIG. 6, a wide opening width 36 for inserting the air-core coil 51 (FIG. 7, etc., which will be described later) can be secured in the cutout portion 31 of the main body 30 from which the segment 40 is cut out. it can. The opening width 36 will be described in detail in the fourth embodiment.
 図6に示すように、セグメント40の切り出された本体30は、第1切断部27で切断された本体側第1端面32と、第2切断部28で切断された本体側第2端面33を有しており、本体側第1端面32と本体側第2端面33との間には、切り出されたセグメント40と切断代29,29分の間隔を有する切欠き部31が形成された略C字状の部材である。切欠き部31は、本体側第1端面32と本体側第2端面33が内周方向に向けて接近しており、本体側第1端面32と本体側第2端面33とのなす角度は、環状部材20の内周側に向けて、第1切断部27と第2切断部28のなす角度と同じαである。 As shown in FIG. 6, the main body 30 cut out of the segment 40 includes a main body side first end surface 32 cut by the first cutting portion 27 and a main body side second end surface 33 cut by the second cutting portion 28. The cut-out segment 40 is formed between the first end surface 32 on the main body side and the second end surface 33 on the main body side. It is a letter-shaped member. The notch 31 has the main body side first end surface 32 and the main body side second end surface 33 approaching in the inner circumferential direction, and the angle formed by the main body side first end surface 32 and the main body side second end surface 33 is The angle α is the same as the angle formed by the first cutting portion 27 and the second cutting portion 28 toward the inner peripheral side of the annular member 20.
 なお、本体30に後述するとおり空芯コイル51を挿入する場合、空芯コイル51の挿入を容易に行なうために、本体30の空芯コイル51の挿入側となる端面(たとえば本体側第1端面32)は、端面に連続する本体30の先端が平坦となるように切断することが望ましい。また、前記端面とは逆側の端面(たとえば本体側第2端面33)は、空芯コイル51の挿入を阻害しないように、図3切欠き部31を空芯コイル51の挿入方向(後述する図7中矢印で示す)に対して平行に形成することが望ましい。 When the air-core coil 51 is inserted into the main body 30 as will be described later, in order to facilitate the insertion of the air-core coil 51, an end face (for example, a first end face on the main body side) on the insertion side of the air-core coil 51 of the main body 30 is used. 32), it is desirable to cut so that the front-end | tip of the main body 30 continuous with an end surface may become flat. In addition, the end surface opposite to the end surface (for example, the main body-side second end surface 33) has the notch 31 in FIG. It is desirable to form it in parallel to (indicated by an arrow in FIG. 7).
 また、同様に図6に示すように、セグメント40も、第1切断部27で切断されたセグメント側第1端面42と、第2切断部28で切断されたセグメント側第2端面43を有し、セグメント側第1端面42とセグメント側第2端面43が内周方向に向けて接近する略扇形状の部材である。セグメント40のセグメント側第1端面42とセグメント側第2端面43とのなす角度は、環状部材20の内周側に向けて、第1切断部27と第2切断部28のなす角度と同じαである。 Similarly, as shown in FIG. 6, the segment 40 also has a segment-side first end face 42 cut by the first cutting portion 27 and a segment-side second end face 43 cut by the second cutting portion 28. The segment-side first end face 42 and the segment-side second end face 43 are substantially fan-shaped members that approach toward the inner circumferential direction. The angle formed by the segment side first end surface 42 and the segment side second end surface 43 of the segment 40 is the same as the angle formed by the first cutting portion 27 and the second cutting portion 28 toward the inner peripheral side of the annular member 20. It is.
 得られたセグメント40は、本体30の切欠き部31に外周側から押し込んで固定することで、切欠き部31は埋め戻されて、ギャップレス磁芯10を得ることができる。 The obtained segment 40 is pushed into the notch 31 of the main body 30 from the outer peripheral side and fixed, so that the notch 31 is backfilled and the gapless magnetic core 10 can be obtained.
 本体30へのセグメント40の固定は、本体側第1端面32とセグメント側第1端面42との間、本体側第2端面33とセグメント側第2端面43との間を接着したり、本体30とセグメント40とをクランプすることで容易に行なうことができる。 The segment 40 is fixed to the main body 30 by bonding the main body side first end face 32 and the segment side first end face 42, the main body side second end face 33 and the segment side second end face 43, or the main body 30. And the segment 40 can be easily clamped.
 環状部材20からセグメント40を切断刃により切り出すと、切断代29が必要となるから、本体30の切欠き部31にセグメント40を押し込んで、本体側第1端面32とセグメント側第1端面42、本体側第2端面33とセグメント側第2端面43を夫々密着して当接させると、図1及び拡大断面図2に示すように、切断代29,29の厚さ分だけセグメント40が切欠き部31よりも内側に入り、本体30の内周側に突出量Sだけ突出する。 When the segment 40 is cut out from the annular member 20 with the cutting blade, the cutting allowance 29 is required. Therefore, the segment 40 is pushed into the cutout portion 31 of the main body 30, and the main body side first end face 32 and the segment side first end face 42 are When the main body side second end surface 33 and the segment side second end surface 43 are brought into close contact with each other, the segment 40 is cut out by the thickness of the cutting allowances 29 and 29 as shown in FIG. 1 and the enlarged sectional view 2. It enters the inside of the portion 31 and protrudes by an amount of protrusion S toward the inner peripheral side of the main body 30.
 しかしながら、セグメント40は、本体30の幅方向となる押込み方向に、本体側第1端面32とセグメント側第1端面42、本体側第2端面33とセグメント側第2端面43が夫々密着するまで押し込めばよいので、切欠き部31に対するセグメント40の押し込み量の微調整は不要である。つまり、切欠き部31に対して、セグメント40を高さ方向のみに位置調整すればよいので、ギャップレス磁芯10の作製が非常に簡便となる。 However, the segment 40 is pushed in until the main body side first end face 32 and the segment side first end face 42 and the main body side second end face 33 and the segment side second end face 43 are in close contact with each other in the pushing direction which is the width direction of the main body 30. Therefore, fine adjustment of the pushing amount of the segment 40 with respect to the notch 31 is unnecessary. That is, since it is only necessary to adjust the position of the segment 40 only in the height direction with respect to the notch 31, the gapless magnetic core 10 can be manufactured very easily.
 作製されたギャップレス磁芯10について、磁性体21内を通過する磁束は、最短の磁路長である磁性体21の内周側に磁路を取ることとなり、最も磁束密度が高くなる。本発明においては、本体30の切欠き部31の内周側の、磁路Mが、図2に示すように、ギャップを存することなくセグメント40側に通じて確保されているから、外周側の断面積が欠損しても実質的な断面積の減少は少なく、安定したインダクタンス特性を発揮でき、磁気特性等の低下は殆んどないことがわかる。 In the manufactured gapless magnetic core 10, the magnetic flux passing through the magnetic body 21 takes a magnetic path on the inner peripheral side of the magnetic body 21 having the shortest magnetic path length, and the magnetic flux density is highest. In the present invention, as shown in FIG. 2, the magnetic path M on the inner peripheral side of the notch 31 of the main body 30 is secured to the segment 40 side without a gap. It can be seen that even if the cross-sectional area is lost, the substantial reduction of the cross-sectional area is small, stable inductance characteristics can be exhibited, and magnetic characteristics and the like are hardly deteriorated.
 また、セグメント40は、本体30から切り出しているから、本体30とセグメント40は、同じ磁気特性等を具備する。従って、別部材からセグメントを形成する場合に比べて極めて安定した磁気特性等を発揮できる。 In addition, since the segment 40 is cut out from the main body 30, the main body 30 and the segment 40 have the same magnetic characteristics and the like. Therefore, extremely stable magnetic characteristics and the like can be exhibited as compared with the case where the segment is formed from another member.
 さらに、環状部材20から切り出されたセグメント40を本体30の切欠き部31に戻しているから、別部材からセグメントを形成する工程を不要とすることができ、加えて原材料のロスも殆んどなく、製造効率を可及的に高めることができる。 Further, since the segment 40 cut out from the annular member 20 is returned to the cutout portion 31 of the main body 30, the step of forming the segment from another member can be eliminated, and in addition, the loss of raw materials is almost all. Therefore, the production efficiency can be increased as much as possible.
 上記ギャップレス磁芯10を利用したコイル装置50の製造方法について説明する。
 まず、環状部材20からセグメント40を切り出した後(図6)、図7乃至図10に示すように、本体30に切欠き部31から予め導線を巻回した空芯コイル51を挿入される。空芯コイル51は、本体30の外周形状に合わせて巻回して作製される。そして、空芯コイル51を本体30に挿入した後、図11及び図12に示すように、本体30の切欠き部31にセグメント40を上記と同様の要領で押し込んで固定することで、コイル装置50が作製される。
A method for manufacturing the coil device 50 using the gapless magnetic core 10 will be described.
First, after cutting out the segment 40 from the annular member 20 (FIG. 6), as shown in FIGS. 7 to 10, an air-core coil 51 in which a conducting wire is wound in advance from the notch 31 is inserted into the main body 30. The air-core coil 51 is manufactured by winding in accordance with the outer peripheral shape of the main body 30. And after inserting the air-core coil 51 in the main body 30, as shown in FIG.11 and FIG.12, the segment 40 is pushed and fixed to the notch part 31 of the main body 30 in the same way as the above, and a coil apparatus is carried out. 50 is produced.
 作製されたコイル装置50は、本発明のギャップレス磁芯10と同様に、ギャップがなく、磁性体21内を通る内周側の磁路Mと実質的な断面積が確保されているから、安定した磁気特性等を具備している。また、上述した種々の効果を有している。 Like the gapless magnetic core 10 of the present invention, the manufactured coil device 50 has no gap, and since the inner circumferential side magnetic path M passing through the magnetic body 21 and a substantial cross-sectional area are secured, the coil device 50 is stable. Magnetic properties and the like. Moreover, it has the various effects mentioned above.
 ところで、上記ギャップレス磁芯10及びコイル装置50において、第1切断部27と第2切断部28のなす角度αは、0°<α≦90°とすることが好適である。図1の実施形態では、角度αは60°である。また、図13は、角度αが75°、図14は、角度αが45°、図15は、角度αが30°、図16は、角度αが20°の実施形態である。 By the way, in the gapless magnetic core 10 and the coil device 50, it is preferable that the angle α formed by the first cutting part 27 and the second cutting part 28 is 0 ° <α ≦ 90 °. In the embodiment of FIG. 1, the angle α is 60 °. 13 shows an embodiment in which the angle α is 75 °, FIG. 14 shows an angle α of 45 °, FIG. 15 shows an angle α of 30 °, and FIG. 16 shows an angle α of 20 °.
 第1切断部27と第2切断部28とのなす角度αの下限は、上記のとおり、0°より大きくなる、すなわち、第1切断部27と第2切断部28が平行とならないように設定されるが、上記した図1、図13乃至図16を参照すると、角度αが小さくなるほど、セグメント40の内周側への突出量Sが大きくなることがわかる。その結果、突出量Sが大きくなると、本体30の磁性体21とセグメント40の磁性体21との対向面積Pが小さくなり、断面積が狭められて、磁気特性等が低下する虞がある。 As described above, the lower limit of the angle α formed by the first cutting part 27 and the second cutting part 28 is set to be greater than 0 °, that is, the first cutting part 27 and the second cutting part 28 are not parallel to each other. However, referring to FIG. 1 and FIGS. 13 to 16 described above, it can be seen that as the angle α decreases, the protruding amount S of the segment 40 toward the inner peripheral side increases. As a result, when the protruding amount S increases, the facing area P between the magnetic body 21 of the main body 30 and the magnetic body 21 of the segment 40 decreases, the cross-sectional area is narrowed, and the magnetic characteristics and the like may be degraded.
 そして、角度αが0°に至ると、第1切断刃と第2切断刃で生じる切断代に相当するギャップが、本体30とセグメント40との間に形成されてしまい、切欠き部31にセグメント40を挿入しても、第1端面32と42、第2端面33と43の両方を同時に当接させることはできなくなる。 When the angle α reaches 0 °, a gap corresponding to the cutting allowance generated by the first cutting blade and the second cutting blade is formed between the main body 30 and the segment 40, and the notch 31 has a segment. Even if 40 is inserted, both the first end faces 32 and 42 and the second end faces 33 and 43 cannot be brought into contact with each other at the same time.
 このため、第1切断部27と第2切断部28のなす角度αは、20°以上とすることが好適であり、30°以上とすることがより望ましい。その理由は、実施例にて説明する。 For this reason, the angle α formed by the first cutting portion 27 and the second cutting portion 28 is preferably 20 ° or more, and more preferably 30 ° or more. The reason will be described in the examples.
 また、第1切断部27と第2切断部28のなす角度αの上限は、90°とすることが望ましい。角度αが90°を越えるセグメント40を形成することは可能であるが、角度αが大きくなるにつれて、セグメント40自体も大きくなってしまい、挿入できる空芯コイル51のストロークが短くなって、磁気特性等が低下する虞があるためである。
 望ましくは、第1切断部27と第2切断部28のなす角度αの上限は、75°とする。
The upper limit of the angle α formed by the first cutting part 27 and the second cutting part 28 is desirably 90 °. Although it is possible to form the segment 40 having an angle α exceeding 90 °, the segment 40 itself increases as the angle α increases, and the stroke of the air-core coil 51 that can be inserted becomes shorter, resulting in magnetic characteristics. This is because there is a concern that the above may decrease.
Desirably, the upper limit of the angle α formed by the first cutting part 27 and the second cutting part 28 is 75 °.
 なお、上述したが、環状部材20を切断する切断刃は、切断代29を薄くするために、刃厚が薄いものを使用することが望ましい。切断代29が厚くなる程、セグメント40の内周側への突出量Sが大きくなって、本体30の磁性体21とセグメント40の磁性体21との対向面積Pが小さくなり、磁路が狭められて、磁気特性等が低下してしまうからである。 As described above, it is desirable to use a thin cutting blade for cutting the annular member 20 so that the cutting allowance 29 is thin. The thicker the cutting allowance 29, the larger the protruding amount S of the segment 40 toward the inner peripheral side, the smaller the facing area P between the magnetic body 21 of the main body 30 and the magnetic body 21 of the segment 40, and the narrower the magnetic path. This is because the magnetic characteristics and the like are deteriorated.
 磁路Mを確保するために、本体30とセグメント40の磁性体21どうしの対向面積Pは、磁性体21の断面積C(図2参照)の50%以上を確保することが望ましい。より望ましくは、対向面積Pは、断面積Cの80%以上である。 In order to secure the magnetic path M, it is desirable that the facing area P between the magnetic bodies 21 of the main body 30 and the segment 40 be 50% or more of the cross-sectional area C of the magnetic body 21 (see FIG. 2). More desirably, the facing area P is 80% or more of the cross-sectional area C.
 図7乃至図12に示した実施形態では、樹脂被覆部22には、本体30の一方の端面28と、セグメント40に夫々抜止め34,44となる突起を形成している。空芯コイル51を本体30の一方の端面27から挿入したときに、空芯コイル51が抜止め34に当たるから、その脱落を防止できる。また、コイル装置50を作製した後、これら抜止め34,44によって、空芯コイル51がギャップレス磁芯10上で移動することを阻止することができ、空芯コイル51の引き出し端子の位置決めを行なうことができる。 In the embodiment shown in FIGS. 7 to 12, the resin coating portion 22 is formed with one end face 28 of the main body 30 and protrusions 34 and 44 that are to be prevented from being removed from the segment 40, respectively. When the air-core coil 51 is inserted from the one end surface 27 of the main body 30, the air-core coil 51 hits the retaining member 34, so that it can be prevented from falling off. Further, after the coil device 50 is manufactured, the retaining cores 34 and 44 can prevent the air-core coil 51 from moving on the gapless magnetic core 10, and the lead terminal of the air-core coil 51 is positioned. be able to.
 また、抜止め34,44を形成することで、図5に示す環状部材20の切断の際に切断刃を入れる目印とすることができる。 Further, by forming the retaining members 34 and 44, it can be used as a mark for inserting a cutting blade when the annular member 20 shown in FIG. 5 is cut.
 図17及び図18は、抜止め34の異なる実施例であり、本体30の抜止め34を内周側と外周側の両方に突設している。なお、図17と図18で、セグメント40の突出量Sは同じになっているが、これは、図17の切断代29を0.5mm、図18の切断代29をそれよりも厚い0.7mmとしたからである。図17及び図18より、切断代29が厚くなる程、突出量Sは大きくなることがわかる。 17 and 18 show different embodiments of the retaining member 34, and the retaining member 34 of the main body 30 is provided so as to project both on the inner peripheral side and the outer peripheral side. 17 and 18, the protruding amount S of the segment 40 is the same. This is because the cutting allowance 29 in FIG. 17 is 0.5 mm and the cutting allowance 29 in FIG. This is because the thickness is 7 mm. 17 and 18 that the protrusion amount S increases as the cutting allowance 29 increases.
 磁性体21としてセンダスト粉(組成:Fe-Si-Al合金)から圧粉成形体を複数作製し、インサート成型により樹脂被覆部22を形成した環状部材20を得た。磁性体21は、幅9.8mm、高さ25mmの断面を有する涙滴状とし、内周長が84mm、平均磁路長が114mmである。また、樹脂被覆部22の厚さは0.6mmである。 A plurality of green compacts were produced from Sendust powder (composition: Fe—Si—Al alloy) as the magnetic body 21, and an annular member 20 in which the resin coating portion 22 was formed by insert molding was obtained. The magnetic body 21 has a teardrop shape having a cross section with a width of 9.8 mm and a height of 25 mm, an inner peripheral length of 84 mm, and an average magnetic path length of 114 mm. Moreover, the thickness of the resin coating part 22 is 0.6 mm.
<第1実施例:直流重畳特性の比較>
 この環状部材20から、第1切断部27と第2切断部28のなす角度αが、0°(比較例:第1切断部と第2切断部は平行)、20°(発明例11)、30°(発明例12)、45°(発明例13)、75°(発明例14)となるようにセグメント40を切り出した。切断刃として0.7mmの刃厚を有する回転刃を使用した。切断代29は切断刃の刃厚よりも大きく、夫々0.75mmである。
<First embodiment: Comparison of DC superposition characteristics>
From this annular member 20, the angle α formed by the first cutting portion 27 and the second cutting portion 28 is 0 ° (comparative example: the first cutting portion and the second cutting portion are parallel), 20 ° (invention example 11), The segment 40 was cut out to be 30 ° (Invention Example 12), 45 ° (Invention Example 13), and 75 ° (Invention Example 14). A rotary blade having a blade thickness of 0.7 mm was used as the cutting blade. The cutting allowance 29 is larger than the blade thickness of the cutting blade, and is 0.75 mm respectively.
 セグメント40の切り出された本体30に空芯コイル51を挿入し、セグメント40を埋め戻して固定し、コイル装置50を作製した。比較例については、セグメント40は、2つのギャップが同じ幅になるように調整した。 The air core coil 51 was inserted into the main body 30 cut out of the segment 40, the segment 40 was backfilled and fixed, and the coil device 50 was produced. For the comparative example, the segment 40 was adjusted so that the two gaps had the same width.
 得られた各コイル装置50について、0~24AのDCバイアス電流を流し、直流重畳特性を調べた。結果を図19に示す。図を参照すると、発明例は、比較例に比して、インダクタンス値が高いことがわかる。特に、DCバイアス電流が0A~12Aの範囲では、何れも比較例に比して高いインダクタンス値を呈している。 For each of the obtained coil devices 50, a DC bias current of 0 to 24A was passed and the DC superposition characteristics were examined. The results are shown in FIG. Referring to the figure, it can be seen that the invention example has a higher inductance value than the comparative example. In particular, when the DC bias current is in the range of 0 A to 12 A, all exhibit higher inductance values than the comparative example.
 これは、ギャップが形成されることなく、セグメント40を切欠き部31に押し込むことで、本体側第1端面32とセグメント側第1端面42、本体側第2端面33とセグメント側第2端面43が、ギャップを存することなく当接されたためである。一方、比較例は、本体とセグメントとの間に切断代によるギャップが形成されることで、磁束が漏洩し、高いインダクタンス値を確保できなかったことがわかる。 This is because the main body side first end face 32 and the segment side first end face 42 and the main body side second end face 33 and the segment side second end face 43 are pushed by pushing the segment 40 into the notch 31 without forming a gap. This is because the contact is made without a gap. On the other hand, it can be seen that in the comparative example, the gap due to the cutting allowance was formed between the main body and the segment, so that the magnetic flux leaked and a high inductance value could not be secured.
 発明例どうしを比較すると、角度αが75°である発明例4が最も高いインダクタンス値を呈し、角度αが小さくなる程、インダクタンス値が低くなっている。これは、角度αが大きいほど、セグメント40の内周側への突出量Sが小さく、本体側第1端面32とセグメント側第1端面42の対向面積、本体側第2端面33とセグメント側第2端面43の対向面積を大きくでき、磁路Mを確保できたためである。 When comparing the inventive examples, the inventive example 4 in which the angle α is 75 ° exhibits the highest inductance value, and the inductance value decreases as the angle α decreases. This is because the larger the angle α is, the smaller the protrusion amount S of the segment 40 toward the inner peripheral side is, the opposing area between the main body side first end surface 32 and the segment side first end surface 42, the main body side second end surface 33 and the segment side first. This is because the opposing area of the two end faces 43 can be increased and the magnetic path M can be secured.
<第2実施例:初期インダクタンス値の比較>
 また、上記環状部材20から、第1切断部27と第2切断部28のなす角度αが、0°(比較例:第1切断部と第2切断部は平行)、10°(発明例21)、20°(発明例22)、30°(発明例23)、45°(発明例24)、75°(発明例25)となるようにセグメント40を切り出し、同様にコイル装置50を作製し、これらの初期インダクタンス値を測定した。結果を図20に示す。
<Second embodiment: Comparison of initial inductance values>
Further, the angle α formed by the first cutting portion 27 and the second cutting portion 28 from the annular member 20 is 0 ° (comparative example: the first cutting portion and the second cutting portion are parallel), 10 ° (Invention Example 21). ), 20 ° (Invention Example 22), 30 ° (Invention Example 23), 45 ° (Invention Example 24), and 75 ° (Invention Example 25). These initial inductance values were measured. The results are shown in FIG.
 図20に示すように、発明例と比較例を比較すると、角度αが20°である発明例22は、比較例に比して約14%初期インダクタンス値が向上しており、角度αが75°である発明例25は、比較例に比して約29%初期インダクタンス値を向上することができた。 As shown in FIG. 20, when the invention example and the comparative example are compared, the invention example 22 in which the angle α is 20 ° has an initial inductance value improved by about 14% compared to the comparative example, and the angle α is 75. Inventive Example 25, which is °, was able to improve the initial inductance value by about 29% compared to the comparative example.
 一方で、図20より、角度αが10°である発明例21は、比較例とほぼ同等の初期インダクタンス値となっている。これは、セグメント40の内周側への突出量Sが大きくなった結果、十分な磁路を確保できなかったためである。しかしながら、本発明では、セグメント40を切欠き部31に押し込むだけでギャップのない磁路Mを確保できるから、角度αが10°であったとしても、複数のコイル装置50を作製したときに、一定のインダクタンス値を確保できる利点がある。一方、比較例では、2つのギャップの幅の調整が困難であるから、複数のコイル装置を作製したときに、一定のインダクタンス値を得ることは難しく、発明例の方がすぐれる。 On the other hand, from FIG. 20, Invention Example 21 in which the angle α is 10 ° has an initial inductance value substantially equal to that of the comparative example. This is because a sufficient magnetic path could not be secured as a result of an increase in the projecting amount S of the segment 40 toward the inner periphery. However, in the present invention, a magnetic path M without a gap can be ensured simply by pushing the segment 40 into the notch 31, so that even when the angle α is 10 °, when the plurality of coil devices 50 are manufactured, There is an advantage that a certain inductance value can be secured. On the other hand, since it is difficult to adjust the width of the two gaps in the comparative example, it is difficult to obtain a constant inductance value when a plurality of coil devices are manufactured, and the invention example is superior.
 また、発明例どうしを比較すると、図20より、角度αが75°から30°までの範囲においては、初期インダクタンス値は僅かではあるがリニアに減少している。ところが、角度αが30°から20°になると、初期インダクタンス値の減少量は大きくなり、さらに、角度αが20°から10°になると、初期インダクタンス値が大きく低下していることがわかる。 Further, comparing the inventive examples, it can be seen from FIG. 20 that the initial inductance value is linearly decreased in the range where the angle α is 75 ° to 30 °. However, when the angle α is changed from 30 ° to 20 °, the decrease amount of the initial inductance value is increased, and when the angle α is changed from 20 ° to 10 °, the initial inductance value is greatly reduced.
 これは、角度αが小さくなるにつれて、セグメント40の内周側への突出量Sが大きくなる結果、ギャップレス磁芯10の内周側の磁路Mは確保されるが、本体30の磁性体と、セグメント40の磁性体21との対向面積が小さくなって、全体として十分な磁路を確保できなかったためである。 This is because as the angle α decreases, the protrusion amount S to the inner peripheral side of the segment 40 increases, and as a result, the magnetic path M on the inner peripheral side of the gapless magnetic core 10 is ensured. This is because the opposing area of the segment 40 to the magnetic body 21 is reduced, and a sufficient magnetic path cannot be secured as a whole.
 上記実施例より、第1切断部27と第2切断部28とのなす角度αの下限は、20°以上とすることが好ましく、30°以上とすることがより好適であることがわかる。 From the above examples, it can be seen that the lower limit of the angle α formed by the first cutting portion 27 and the second cutting portion 28 is preferably 20 ° or more, and more preferably 30 ° or more.
 また、角度αの上限は90°以下とすることが好ましいことがわかる。一方で、角度αが大きくなると、セグメント40が大きくなってしまい、本体30に挿入できる空芯コイル51のストロークが短くなるため、角度αの上限は、75°以下とすることがより好適である。 It can also be seen that the upper limit of the angle α is preferably 90 ° or less. On the other hand, when the angle α is increased, the segment 40 is increased and the stroke of the air-core coil 51 that can be inserted into the main body 30 is shortened. Therefore, the upper limit of the angle α is more preferably 75 ° or less. .
<第3実施例:本体とセグメントの対向面積Pと初期インダクタンス値の比較>
 本体30とセグメント40の断面積Cに対する対向面積Pによる初期インダクタンス値の変化を調べるために、環状部材20から、第1切断部27と第2切断部28のなす角度αが、20°(発明例31)、30°(発明例32)、45°(発明例33)、60°(発明例34)、75°(発明例25)となるようにセグメント40を切り出し、同様にコイル装置50を作製し、これらの初期インダクタンス値を測定した。結果を図21に示す。
<Third embodiment: Comparison of opposing area P of main body and segment and initial inductance value>
In order to examine the change of the initial inductance value due to the opposing area P with respect to the cross-sectional area C of the main body 30 and the segment 40, the angle α formed by the first cutting portion 27 and the second cutting portion 28 from the annular member 20 is 20 ° (invention). Example 31), segment 40 was cut out to be 30 ° (Invention Example 32), 45 ° (Invention Example 33), 60 ° (Invention Example 34), and 75 ° (Invention Example 25). They were prepared and their initial inductance values were measured. The results are shown in FIG.
 図21を参照すると、断面積Cに対する対向面積Pの割合が高くなるにつれて、初期インダクタンス値が高くなっていることがわかる。 Referring to FIG. 21, it can be seen that the initial inductance value increases as the ratio of the opposed area P to the cross-sectional area C increases.
<第4実施例:空芯コイルを挿入する開口幅の比較>
 図22(a)及び(b)に示すように、環状部材20を涙滴状と円環状(トロイダルコア)とし、同じ開口幅36を有する切欠き部31の形成に必要なセグメント40の大きさを比較した。涙滴状の環状部材20(図22(a))については、第1切断部27が曲部25、第2切断部28が第2直線部24に位置するように切断を行なった。
<Fourth embodiment: Comparison of opening widths for inserting air-core coils>
As shown in FIGS. 22A and 22B, the size of the segment 40 necessary for forming the notch 31 having the same opening width 36 in which the annular member 20 has a teardrop shape and an annular shape (toroidal core). Compared. The teardrop-shaped annular member 20 (FIG. 22A) was cut so that the first cutting portion 27 was positioned at the curved portion 25 and the second cutting portion 28 was positioned at the second straight portion 24.
 図を参照すると、涙滴状の環状部材20は、円環状の環状部材20に比して、切り出されるセグメント40の大きさが小さくなっている。これは、曲率半径の小さい曲部25を含むように切欠き部31を形成したことによるものである。 Referring to the drawing, in the teardrop-shaped annular member 20, the size of the segment 40 to be cut out is smaller than that of the annular annular member 20. This is because the notch 31 is formed so as to include the curved portion 25 having a small radius of curvature.
 図22(c)に、涙滴状と円環状の環状部材20の特性を比較した表を示している。表を参照すると、涙滴状の環状部材20は、円環状の環状部材20に比べて、セグメント40を小さくすることができたことで、本体30に挿入することのできる空芯コイルのストロークを長くすることができる。 FIG. 22 (c) shows a table comparing characteristics of the teardrop-shaped and annular annular member 20. Referring to the table, the teardrop-shaped annular member 20 can reduce the stroke of the air-core coil that can be inserted into the main body 30 because the segment 40 can be made smaller than the annular annular member 20. Can be long.
 また、第1切断部27及び第2切断部28での切断作業についても、涙滴状の環状部材20は、切断の際に治具等で環状部材20をチャックする必要があるが、直線部23又は24を基準として安定して広い面積をチャックすることができ、切断を行なうことができるから、位置決めが容易である。また、直線部24に切断部28を位置させることで、直線部28に対して切断刃を直交させて切断を行なうことできるため、切断刃の逃げも小さく、切断作業を簡便に行なうことができる。 Further, regarding the cutting operation at the first cutting portion 27 and the second cutting portion 28, the teardrop-shaped annular member 20 needs to chuck the annular member 20 with a jig or the like at the time of cutting. Since a large area can be stably chucked with reference to 23 or 24 and cutting can be performed, positioning is easy. In addition, since the cutting portion 28 is positioned on the straight portion 24, the cutting blade can be orthogonally cut with respect to the straight portion 28, so that the cutting blade can be cut off easily and the cutting operation can be easily performed. .
 従って、涙滴状の環状部材20と円環状の環状部材20を比較した場合、本発明は特に涙滴状の環状部材20への適用に好適であることがわかる。 Therefore, when the teardrop-shaped annular member 20 and the annular annular member 20 are compared, it can be seen that the present invention is particularly suitable for application to the teardrop-shaped annular member 20.
 さらには、本体30にセグメント40を戻す際の作業性についても、涙滴状の環状部材20の場合、高さのみを調整するだけで後はセグメント40を切欠き部31に押し込むだけであり、押込み方向は1方向で済むが、円環状の環状部材20の場合、高さ方向の調整に加えて、第1端面32,42どうし、第2端面33,43どうしが当接するよう2方向の調整が必要となる。このため、涙滴状環状部材20の方が、位置決め精度及び作業性にすぐれる。 Furthermore, regarding the workability when returning the segment 40 to the main body 30, in the case of the teardrop-shaped annular member 20, it is only necessary to adjust the height and then push the segment 40 into the notch 31. In the case of the annular member 20, in addition to the adjustment in the height direction, the adjustment in the two directions is performed so that the first end surfaces 32 and 42 and the second end surfaces 33 and 43 are in contact with each other. Is required. For this reason, the teardrop-shaped annular member 20 is superior in positioning accuracy and workability.
 上記説明は、本発明を説明するためのものであって、特許請求の範囲に記載の発明を限定し、或いは範囲を限縮するように解すべきではない。また、本発明の各部構成は、上記実施例に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能であることは勿論である。 The above description is for explaining the present invention, and should not be construed as limiting the invention described in the claims or limiting the scope thereof. Further, the configuration of each part of the present invention is not limited to the above-described embodiment, and various modifications can be made within the technical scope described in the claims.
 たとえば、同じ形状の環状部材20を複数作製する場合、セグメント40は、セグメント40を切り出した本体30に戻さずに、他の本体30に戻すこともできる。また、セグメント40は、セグメント側第1端面42が本体側第2端面33と当接し、セグメント側第2端面43が本体側第1端面32と当接するよう配置することもできる。 For example, when a plurality of annular members 20 having the same shape are produced, the segment 40 can be returned to another main body 30 without returning to the main body 30 from which the segment 40 is cut out. The segment 40 can also be arranged such that the segment-side first end face 42 abuts on the main body-side second end face 33 and the segment-side second end face 43 abuts on the main body-side first end face 32.
10 ギャップレス磁芯
20 環状部材
27 第1切断部
28 第2切断部
30 本体
31 切欠き部
32 本体側第1端面
33 本体側第2端面
40 セグメント
42 セグメント側第1端面
43 セグメント側第2端面
50 コイル装置
51 空芯コイル
α 第1切断部と第2切断部のなす角度
S セグメントの内周側の突出量
DESCRIPTION OF SYMBOLS 10 Gapless magnetic core 20 Annular member 27 1st cutting part 28 2nd cutting part 30 Main body 31 Notch part 32 Main body side 1st end surface 33 Main body side 2nd end surface 40 Segment 42 Segment side 1st end surface 43 Segment side 2nd end surface 50 Coil device 51 Air-core coil α Angle formed by the first cutting portion and the second cutting portion S Projecting amount on the inner peripheral side of the segment

Claims (12)

  1.  磁性材料からなる環状の磁性体を含む環状部材を、外周面と内周面を横断し、互いに環状部材の内周方向に向けて接近する第1切断部と第2切断部で切断し、
     前記第1切断部で切断された本体側第1端面と、前記第2切断部で切断された本体側第2端面と、を有する本体と、
     前記第1切断部で切断されたセグメント側第1端面と、前記第2切断部で切断されたセグメント側第2端面と、を有するセグメントを得て、
     前記本体側第1端面と前記本体側第2端面との間に形成された切欠き部に、前記本体側第1端面と前記セグメント側第1端面、前記本体側第2端面と前記セグメント側第2端面が当接するように前記セグメントを押し込んで形成される、
     ことを特徴とするギャップレス磁芯。
    An annular member including an annular magnetic body made of a magnetic material is cut at a first cutting portion and a second cutting portion that cross the outer peripheral surface and the inner peripheral surface and approach each other toward the inner peripheral direction of the annular member;
    A main body having a main body side first end surface cut by the first cutting portion and a main body side second end surface cut by the second cutting portion;
    Obtaining a segment having a segment-side first end face cut by the first cutting part and a segment-side second end face cut by the second cutting part;
    In the notch formed between the main body side first end surface and the main body side second end surface, the main body side first end surface and the segment side first end surface, the main body side second end surface and the segment side first Formed by pushing the segment so that the two end faces abut,
    Gapless magnetic core.
  2.  前記セグメントは、内周端面が、前記本体の内周面よりも内側に突出している、
     請求項1に記載のギャップレス磁芯。
    The segment has an inner peripheral end surface protruding inward from the inner peripheral surface of the main body.
    The gapless magnetic core according to claim 1.
  3.  前記環状部材は、直線状の第1直線部と第2直線部の一端を曲率半径の小さい曲部で略直角に連繋し、前記第1直線部と前記2第直線部の他端どうしを曲率半径の大きい円弧部で接続した涙滴形状を有しており、
     前記第1切断部又は前記第2切断部の少なくとも一方の切断が、前記第1直線部又は第2直線部に実施される、
     請求項1又は請求項2に記載のギャップレス磁芯。
    The annular member connects one end of the linear first straight part and the second straight part at a substantially right angle with a curved part having a small radius of curvature, and the other end of the first straight part and the second linear part is curved. It has a teardrop shape connected by a circular arc part with a large radius,
    Cutting at least one of the first cutting portion or the second cutting portion is performed on the first straight portion or the second straight portion,
    The gapless magnetic core according to claim 1 or 2.
  4.  前記第1切断部又は前記第2切断部の他方の切断は、前記曲部から第1切断部又は第2直線部の端部との間に実施される、
     請求項3に記載のギャップレス磁芯。
    The other cutting of the first cutting part or the second cutting part is performed between the bent part and the end of the first cutting part or the second straight part.
    The gapless magnetic core according to claim 3.
  5.  前記第1切断部と前記第2切断部のなす角度は、90°以下である、
     請求項1乃至請求項4に記載のギャップレス磁芯。
    The angle formed by the first cut portion and the second cut portion is 90 ° or less.
    The gapless magnetic core according to claim 1.
  6.  前記第1切断部と前記第2切断部のなす角度は、75°以下である、
     請求項1乃至請求項4に記載のギャップレス磁芯。
    The angle formed by the first cut portion and the second cut portion is 75 ° or less.
    The gapless magnetic core according to claim 1.
  7.  前記第1切断部と前記第2切断部のなす角度は、20°以上である、
     請求項1乃至請求項6の何れかに記載のギャップレス磁芯。
    The angle formed by the first cutting part and the second cutting part is 20 ° or more.
    The gapless magnetic core according to any one of claims 1 to 6.
  8.  前記本体側第1端面と前記セグメント側第1端面、前記本体側第2端面と前記セグメント側第2端面は、接着剤により固定される、
     請求項1乃至請求項7の何れかに記載のギャップレス磁芯。
    The main body side first end surface and the segment side first end surface, the main body side second end surface and the segment side second end surface are fixed by an adhesive,
    The gapless magnetic core according to any one of claims 1 to 7.
  9.  前記環状部材は、環状の磁性体と、前記磁性体を覆う絶縁性の樹脂被覆部と、を含んでいる、
     請求項1乃至請求項8の何れかに記載のギャップレス磁芯。
    The annular member includes an annular magnetic body and an insulating resin coating that covers the magnetic body.
    The gapless magnetic core according to any one of claims 1 to 8.
  10.  前記磁性体は、磁性材料の圧粉成形体であり、前記樹脂被覆部は、インサート成型工法又は樹脂粉体コーティング工法により形成される、
     請求項9に記載のギャップレス磁芯。
    The magnetic body is a compacted body of magnetic material, and the resin coating is formed by an insert molding method or a resin powder coating method.
    The gapless magnetic core according to claim 9.
  11.  請求項1乃至請求項10の何れかに記載のギャップレス磁芯の本体に、前記切欠き部から予め巻線した空芯コイルを挿入した後、前記切欠き部に前記セグメントを押し込んで構成されるコイル装置。 The gapless magnetic core according to any one of claims 1 to 10, wherein an air core coil wound in advance from the notch is inserted into the gapless magnetic core, and then the segment is pushed into the notch. Coil device.
  12.  磁性材料からなる環状の磁性体を含む環状部材を、外周面と内周面を横断し、互いに環状部材の内周方向に向けて接近する第1切断部と第2切断部で切断し、
     前記第1切断部で切断された本体側第1端面と、前記第2切断部で切断された本体側第2端面と、を有する本体と、
     前記第1切断部で切断されたセグメント側第1端面と、前記第2切断部で切断されたセグメント側第2端面と、を有するセグメントを得て、
     前記本体側第1端面と前記本体側第2端面との間に形成された切欠き部に、予め巻線した空芯コイルを挿入し
     前記本体側第1端面と前記セグメント側第1端面、前記本体側第2端面と前記セグメント側第2端面が当接するように前記セグメントを押し込んで形成される、
     ことを特徴とするコイル装置の製造方法。
    An annular member including an annular magnetic body made of a magnetic material is cut at a first cutting portion and a second cutting portion that cross the outer peripheral surface and the inner peripheral surface and approach each other toward the inner peripheral direction of the annular member;
    A main body having a main body side first end surface cut by the first cutting portion and a main body side second end surface cut by the second cutting portion;
    Obtaining a segment having a segment-side first end face cut by the first cutting part and a segment-side second end face cut by the second cutting part;
    An air core coil wound in advance is inserted into a notch formed between the main body side first end surface and the main body side second end surface, and the main body side first end surface and the segment side first end surface, Formed by pushing the segment so that the main body side second end surface and the segment side second end surface abut,
    The manufacturing method of the coil apparatus characterized by the above-mentioned.
PCT/JP2014/079209 2013-11-26 2014-11-04 Gapless magnetic core, coil device using same, and coil device manufacturing method WO2015079869A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-244043 2013-11-26
JP2013244043A JP6039538B2 (en) 2013-11-26 2013-11-26 Gapless magnetic core, coil device using the same, and method of manufacturing the coil device

Publications (1)

Publication Number Publication Date
WO2015079869A1 true WO2015079869A1 (en) 2015-06-04

Family

ID=53198817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079209 WO2015079869A1 (en) 2013-11-26 2014-11-04 Gapless magnetic core, coil device using same, and coil device manufacturing method

Country Status (3)

Country Link
JP (1) JP6039538B2 (en)
TW (1) TW201535438A (en)
WO (1) WO2015079869A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6055871B2 (en) 2015-06-03 2016-12-27 株式会社エス・エッチ・ティ Cutting method of mold core used for coil parts

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63282667A (en) * 1987-02-19 1988-11-18 イートン コーポレイション Current-voltage transducer
JP2003124015A (en) * 2001-10-18 2003-04-25 Nec Tokin Corp Dust core, coil component, and power converter using them
JP2006237030A (en) * 2005-02-22 2006-09-07 Sht Corp Ltd Core and its production process
JP2011181869A (en) * 2010-03-04 2011-09-15 Sht Corp Ltd Magnetic core
JP5509267B2 (en) * 2012-07-13 2014-06-04 株式会社エス・エッチ・ティ Teardrop-like magnetic core and coil device using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120593B2 (en) * 1987-02-12 1995-12-20 サンケン電気株式会社 DC current transformer
JP2013149801A (en) * 2012-01-19 2013-08-01 Takanari Terakawa Variable inductor for noise attenuator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63282667A (en) * 1987-02-19 1988-11-18 イートン コーポレイション Current-voltage transducer
JP2003124015A (en) * 2001-10-18 2003-04-25 Nec Tokin Corp Dust core, coil component, and power converter using them
JP2006237030A (en) * 2005-02-22 2006-09-07 Sht Corp Ltd Core and its production process
JP2011181869A (en) * 2010-03-04 2011-09-15 Sht Corp Ltd Magnetic core
JP5509267B2 (en) * 2012-07-13 2014-06-04 株式会社エス・エッチ・ティ Teardrop-like magnetic core and coil device using the same

Also Published As

Publication number Publication date
JP6039538B2 (en) 2016-12-07
TW201535438A (en) 2015-09-16
JP2015103702A (en) 2015-06-04

Similar Documents

Publication Publication Date Title
US20150213942A1 (en) Reactor
JP5509267B2 (en) Teardrop-like magnetic core and coil device using the same
JP2013247265A (en) Reactor and power supply device
KR20160028369A (en) Core and coil device using same
CN104810139A (en) Reactor
TWI611435B (en) Inductor core
CN107615416B (en) Coil device
WO2016195002A1 (en) Gapped core, coil component using same, and method for manufacturing coil component
WO2015079869A1 (en) Gapless magnetic core, coil device using same, and coil device manufacturing method
US20230368959A1 (en) Magnetic core and magnetic device
CN105390226A (en) A core and a coil device using the core
JP5288227B2 (en) Reactor core and reactor
JP2019121749A (en) Magnetic member and method for improving direct current superposition characteristics of the same
JP5288228B2 (en) Reactor core and reactor
JP5288229B2 (en) Reactor core and reactor
KR102310477B1 (en) Inductor and producing method of the same
JP2013211335A (en) Composite magnetic core, reactor and power supply unit
JP2011187763A (en) Coil component and method of manufacturing the same
JP6055871B2 (en) Cutting method of mold core used for coil parts
CN104412340B (en) Teardrop shaped magnetic core and use its coil device
JP2017050507A (en) Inductor and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14866166

Country of ref document: EP

Kind code of ref document: A1