JP2013247265A - Reactor and power supply device - Google Patents

Reactor and power supply device Download PDF

Info

Publication number
JP2013247265A
JP2013247265A JP2012120485A JP2012120485A JP2013247265A JP 2013247265 A JP2013247265 A JP 2013247265A JP 2012120485 A JP2012120485 A JP 2012120485A JP 2012120485 A JP2012120485 A JP 2012120485A JP 2013247265 A JP2013247265 A JP 2013247265A
Authority
JP
Japan
Prior art keywords
magnetic core
magnetic
reactor
legs
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012120485A
Other languages
Japanese (ja)
Other versions
JP6048789B2 (en
Inventor
Nakao Moritsugu
仲男 森次
Kyohei Aimuta
京平 相牟田
Niyu Nakada
二友 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2012120485A priority Critical patent/JP6048789B2/en
Publication of JP2013247265A publication Critical patent/JP2013247265A/en
Application granted granted Critical
Publication of JP6048789B2 publication Critical patent/JP6048789B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Soft Magnetic Materials (AREA)
  • Dc-Dc Converters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reactor composition that is advantageous in downsizing, hard to be magnetically saturated and adequate for noise reduction.SOLUTION: The reactor comprises: a pair of columnar magnetic core legs arranged in parallel; a coil wound around the magnetic core legs; and a pair of magnetic core joints that magnetically joint one ends of the magnetic core legs and joint other ends of the legs. The magnetic core legs are integrally composed using a magnetic material higher in saturation flux density than a magnetic material composing the magnetic core joints. The magnetic core joints comprise, between at least the pair of the magnetic core legs arranged in parallel, an uneven part for supporting the one ends or the other ends of the magnetic core legs, and does not comprise the uneven part on the opposite side across the one ends or the other ends of the magnetic core legs. Surfaces of the one ends or the other ends of the magnetic core legs face to the magnetic core joints through a magnetic gap, and side surfaces of the one ends or the other ends of the magnetic core legs face to the side of the uneven part through the magnetic gap.

Description

本発明は、昇圧装置等の電源装置に用いられるリアクトルに関するものである。   The present invention relates to a reactor used in a power supply device such as a booster.

近年、急速に普及しはじめたハイブリッド車や電気自動車等のモータ駆動の車両や太陽光発電装置などに搭載されている電源装置では、大電流に耐えるリアクトルが用いられている。リアクトルにおいては、高い飽和磁束密度を有する磁心材料を用いるとともに、磁心材料間にギャップを設けることで実効透磁率を下げて、大電流でも磁気飽和しにくい構成が用いられている。   2. Description of the Related Art In recent years, a reactor that can withstand a large current is used in a power supply device mounted on a motor-driven vehicle such as a hybrid vehicle or an electric vehicle that has begun to spread rapidly, or a solar power generation device. In the reactor, a magnetic core material having a high saturation magnetic flux density is used, and an effective magnetic permeability is lowered by providing a gap between the magnetic core materials so that magnetic saturation is difficult even at a large current.

電源装置用リアクトルの磁心材料として、一般に20kHz以下の領域では、主に珪素鋼板、非晶質軟磁性薄帯、微結晶質軟磁性薄帯が、20kHzを超える領域では、Mn−Zn系やNi−Zn系などのフェライトが広く用いられている。前者は、飽和磁束密度Bsと透磁率μが高いという長所を持ち、後者のフェライトは、高周波磁心損失が小さく、形状自由度が高く、量産性に優れるという長所を持つ。また、5kHzから100kHzまでの領域においては、圧粉磁心も用いられている。圧粉磁心は、磁性粉末の表面を絶縁処理したのち成形して得られたもので、絶縁処理により電気抵抗が高められ、渦電流損失が抑制されている。   As a magnetic core material of a reactor for a power supply device, in general, in a region of 20 kHz or less, mainly a silicon steel plate, an amorphous soft magnetic ribbon, and a microcrystalline soft magnetic ribbon, in a region exceeding 20 kHz, Mn—Zn or Ni -Zn-based ferrites are widely used. The former has the advantages that the saturation magnetic flux density Bs and the magnetic permeability μ are high, and the latter ferrite has the advantages that the high-frequency core loss is small, the degree of freedom in shape is high, and the mass productivity is excellent. In addition, in the region from 5 kHz to 100 kHz, a dust core is also used. The dust core is obtained by forming the surface of the magnetic powder after the insulation treatment, and the electrical resistance is increased by the insulation treatment, and the eddy current loss is suppressed.

特許文献1には、かかる圧粉磁心等を用いたリアクトルの損失を低減する技術として、コイルを巻回する磁脚部を、ギャップを介して配置された複数の圧粉体で構成したリアクトルが開示されている。ギャップ数を増やすことによって、ギャップ一ヶ所当たりの漏れ磁束を低減し、損失を抑えることが可能である。そのため、圧粉磁心を用いた大電流用途のリアクトルにおいては、磁脚とそれ以外の部分とで、上記のような長所・短所を合わせ持つ磁性材料を使い分けるとともに、磁脚に複数のギャップを設けて構成が用いられている。   In Patent Document 1, as a technique for reducing the loss of a reactor using such a powder magnetic core or the like, there is a reactor in which a magnetic leg portion around which a coil is wound is composed of a plurality of powder compacts arranged via a gap. It is disclosed. By increasing the number of gaps, the leakage magnetic flux per gap can be reduced and the loss can be suppressed. Therefore, in high current reactors using dust cores, magnetic materials that have the advantages and disadvantages described above are used separately for the magnetic legs and other parts, and multiple gaps are provided in the magnetic legs. The configuration is used.

特開2008−172116号公報JP 2008-172116 A

一方、大電流用途のリアクトルでは、磁気飽和しにくいことや低損失であることに加えて、低騒音であることが重要な要素の一つである。しかしながら、磁気飽和や損失の観点から上記のようにリアクトルを構成しても、リアクトルから発生する騒音も同時に低減することは困難であった。また、磁気飽和や騒音の問題を解決する際にも、リアクトルのサイズが大きくならないように配慮する必要があった。   On the other hand, in a high-current reactor, low noise is one of the important factors in addition to low magnetic loss and low loss. However, even if the reactor is configured as described above from the viewpoint of magnetic saturation and loss, it is difficult to simultaneously reduce noise generated from the reactor. Also, when solving the problems of magnetic saturation and noise, it was necessary to consider not to increase the reactor size.

そこで、上記課題に鑑み、本発明は、大電流用途等のリアクトルにおいて、小型化に有利であるとともに、磁気飽和しにくく、騒音低減に好適なリアクトルの構成を提供することを目的とした。   In view of the above problems, an object of the present invention is to provide a reactor configuration that is advantageous for downsizing and that is less likely to cause magnetic saturation and is suitable for noise reduction in a reactor for large current applications.

本発明のリアクトルは、平行に対置された一組の柱状の磁心脚部と、前記磁心脚部に巻装されたコイルと、前記磁心脚部の一端同士および他端同士を磁気的に繋ぐ一対の磁心継部とを備えたリアクトルであって、前記各磁心脚部は、前記磁心継部を構成する磁性材料よりも飽和磁束密度が高い磁性材料を用いて、一体で構成され、前記各磁心継部は、前記磁心脚部の前記一端または他端を支持するための段差を、少なくとも前記対置された一対の磁心脚部の間に備えるとともに、前記磁心脚部の一端または他端を挟んだ反対側には前記段差を備えず、前記磁心脚部の前記一端または他端の端面が磁気ギャップを介して前記磁心継部と対向しているとともに、前記磁心脚部の前記一端または他端の側面が、磁気ギャップを介して前記段差の側面と対向していることを特徴とする。磁心脚部はコイルが巻装されるため、磁心継部よりも飽和磁束密度が高い磁性材料を用いることでリアクトル全体が大型化することを防ぐことができる。一方、磁心継部は、相対的に飽和磁束密度が低く、磁気飽和しやすい。そこで、磁心継部に前記段差を設けることで、磁心脚部との対向面積を増やし、磁気飽和しにくくする。さらに、磁心脚部を一体で構成すること、すなわち、磁路中に設ける磁気ギャップを磁心脚部と磁心継部との間に限定して配置することで、磁気ギャップの数を低減し、騒音の抑制にも寄与する。   The reactor of the present invention includes a pair of columnar magnetic core legs arranged in parallel, a coil wound around the magnetic core legs, and a pair of magnetically connecting one end and the other end of the magnetic core legs. Each of the magnetic core legs is integrally formed using a magnetic material having a saturation magnetic flux density higher than that of the magnetic material constituting the magnetic core joint. The joint portion includes a step for supporting the one end or the other end of the magnetic core leg portion at least between the pair of the magnetic core leg portions, and sandwiches one end or the other end of the magnetic core leg portion. The opposite side is not provided with the step, and the end surface of the one end or the other end of the magnetic core leg is opposed to the magnetic core joint through a magnetic gap, and the one end or the other end of the magnetic core leg is not provided. Side surface of the step through the magnetic gap Characterized in that it opposed. Since the coil is wound around the magnetic core leg portion, it is possible to prevent the entire reactor from being enlarged by using a magnetic material having a saturation magnetic flux density higher than that of the magnetic core joint portion. On the other hand, the magnetic core joint has a relatively low saturation magnetic flux density and is likely to be magnetically saturated. Therefore, by providing the step in the magnetic core joint, the area facing the magnetic core leg is increased and the magnetic saturation is less likely to occur. In addition, the number of magnetic gaps can be reduced and noise can be reduced by configuring the magnetic core legs as a single unit, that is, by arranging the magnetic gaps provided in the magnetic path only between the magnetic core legs and the magnetic core joints. It also contributes to the suppression of

また、前記リアクトルにおいて、前記一組の磁心脚部は、それぞれ材質が異なる複数の磁性材料ブロックを接着して構成されていることが好ましい。かかる構成によれば、磁心脚部の構成の自由度が高く、特性、コストに照らして磁心脚部の構成の最適化を図ることができる。   In the reactor, it is preferable that the set of magnetic core legs is configured by bonding a plurality of magnetic material blocks made of different materials. According to such a configuration, the degree of freedom of the configuration of the magnetic core leg portion is high, and the configuration of the magnetic core leg portion can be optimized in light of characteristics and costs.

さらに、前記リアクトルにおいて、前記磁心継部はフェライトで構成され、前記一組の磁心脚部は、Fe−Si系圧粉磁心と、それを挟むように配置されたFe−Al−Si系圧粉磁心で構成されていることが好ましい。かかる構成は、損失、騒音およびコストの低減等の観点から好ましい。   Further, in the reactor, the magnetic core joint portion is made of ferrite, and the set of magnetic core leg portions includes an Fe—Si based dust core and an Fe—Al—Si based dust disposed so as to sandwich the Fe—Si based dust core. It is preferable that it is composed of a magnetic core. Such a configuration is preferable from the viewpoints of loss, noise and cost reduction.

さらに、前記リアクトルにおいて、前記磁心脚部を支持した前記一対の磁心継部を、前記磁心脚部を挟む方向から押圧する締め付け具を有し、前記締め付け具と前記磁心継部との間に、弾性シートが介在することが好ましい。かかる構成によれば騒音をいっそう抑制することができる。   Further, in the reactor, the reactor includes a clamping tool that presses the pair of magnetic core joints supporting the magnetic core leg part from a direction sandwiching the magnetic core leg part, and between the fastening tool and the magnetic core joint part, An elastic sheet is preferably interposed. According to such a configuration, noise can be further suppressed.

本発明の電源装置は、上記いずれかのリアクトルを用いたことを特徴とする。上記リアクトルは、小型化や騒音低減に有利であるため、かかるリアクトルを用いることで電源装置の小型化や騒音低減に寄与する。   A power supply apparatus according to the present invention uses any one of the above reactors. Since the reactor is advantageous for downsizing and noise reduction, the use of such a reactor contributes to downsizing and noise reduction of the power supply device.

本発明によれば、大電流用途等のリアクトルにおいて、小型化に有利であるとともに、磁気飽和しにくく、騒音低減に好適なリアクトルの構成を提供することができる。     ADVANTAGE OF THE INVENTION According to this invention, it is advantageous for size reduction in a reactor for large current applications and the like, and it is possible to provide a reactor configuration that is less susceptible to magnetic saturation and is suitable for noise reduction.

本発明に係るリアクトルの実施形態を示す図である。It is a figure which shows embodiment of the reactor which concerns on this invention. 本発明に係るリアクトルに用いる磁心継部の実施形態を示す図である。It is a figure which shows embodiment of the magnetic core connection part used for the reactor which concerns on this invention. 本発明に係るリアクトルの他の実施形態を示す図である。It is a figure which shows other embodiment of the reactor which concerns on this invention. 本発明に係るリアクトルの他の実施形態を示す図である。It is a figure which shows other embodiment of the reactor which concerns on this invention. 本発明に係るリアクトルを用いた電源装置であるDC−DCコンバータの回路図である。It is a circuit diagram of the DC-DC converter which is a power supply device using the reactor which concerns on this invention.

以下、本発明に係るリアクトルの実施形態を、図を用いて具体的に説明するが、本発明はこれに限定されるものではない。また、各実施形態において説明する構成は、他の実施形態の趣旨を損なわない限りにおいて他の実施形態においても適用することが可能であり、その場合、重複する説明は適宜省略する。     Hereinafter, although the embodiment of the reactor which concerns on this invention is described concretely using figures, this invention is not limited to this. Moreover, the structure demonstrated in each embodiment is applicable also in other embodiment, unless the meaning of other embodiment is impaired, In that case, the overlapping description is abbreviate | omitted suitably.

(リアクトルの第1の実施形態)
図1(a)は本発明のリアクトルの実施形態を示す図である。図1(a)に示すリアクトル100は、平行に対置された一組の柱状の磁心脚部1a、1bと、磁心脚部1a、1bにそれぞれ巻装されたコイル2a、2bと、磁心脚部1a、1bの一端同士および他端同士を磁気的に繋ぐ一対の磁心継部3a、3bとを備える。磁心脚部1a、1bと、磁心継部3a、3bによって、環状の磁路が構成される。図1(a)では、柱状の磁心脚部1a、1bの対置方向に切断した状態の断面図でリアクトル100を示してある。柱状の磁心脚部の形状としては、円柱、楕円柱、角柱等、種々のものを適用できるが、コイルを形成する導線の全長を小さくすることができる点で、柱方向(長手方向)に垂直な断面が真円である円柱が優れる。図1に示す実施形態を含め、以下円柱状の磁心脚部を用いたリアクトルを例として説明する。
(First embodiment of the reactor)
Fig.1 (a) is a figure which shows embodiment of the reactor of this invention. A reactor 100 shown in FIG. 1 (a) includes a pair of columnar magnetic leg portions 1a and 1b arranged in parallel, coils 2a and 2b wound around the magnetic leg portions 1a and 1b, and magnetic leg portions, respectively. 1a and 1b, and a pair of magnetic core joint portions 3a and 3b that magnetically connect one end and the other end. An annular magnetic path is constituted by the magnetic core leg portions 1a and 1b and the magnetic core joint portions 3a and 3b. In FIG. 1A, the reactor 100 is shown in a cross-sectional view in a state where the columnar magnetic core legs 1a and 1b are cut in the facing direction. As the shape of the columnar magnetic core leg, various shapes such as a cylinder, an elliptical column, and a rectangular column can be applied, but it is perpendicular to the column direction (longitudinal direction) in that the total length of the conductive wire forming the coil can be reduced. A circular cylinder with a perfect cross section is excellent. In the following, including the embodiment shown in FIG. 1, a reactor using a cylindrical magnetic core leg will be described as an example.

各磁心脚部1a、1bは、磁心継部3a、3bを構成する磁性材料よりも飽和磁束密度が高い磁性材料を用いて、それぞれ一体で構成されている。磁心脚部1a、1b、磁心継部3a、3bを構成する磁性材料は、フェライト、圧粉磁心、軟磁性合金薄帯等、種々の磁性材料を用いることができる。ただし、コイルが巻装される磁心脚部に比べて、磁心継部は寸法の自由度が高いため、コストを犠牲にして過度に飽和磁束密度が高い磁性材料を用いる必要がない。そのため、例えば、コスト的に有利で、かつ形状の自由度の高いフェライトを用いることができる。フェライトは、損失が低い点でも磁心継部の磁性材料として好適である。フェライトはMn−Zn系フェライト焼結体、Ni−Zn系フェライト焼結体等、種々のものを用いることができるが、100kHz以下のような比較的低い周波数帯の用途では、飽和磁束密度および透磁率が高く、損失も低いMn−Zn系フェライト焼結体がより好ましい。例えば、100kHz以下の用途では、Mn−Zn系フェライト焼結体は、圧粉磁心との組み合わせに好適である。   Each of the magnetic leg portions 1a and 1b is integrally formed using a magnetic material having a saturation magnetic flux density higher than that of the magnetic material constituting the magnetic core joint portions 3a and 3b. Various magnetic materials such as ferrite, dust core, and soft magnetic alloy ribbon can be used as the magnetic material constituting the magnetic leg portions 1a and 1b and the magnetic core joint portions 3a and 3b. However, since the core joint portion has a higher degree of dimensional freedom than the magnetic leg portion around which the coil is wound, it is not necessary to use a magnetic material having an excessively high saturation magnetic flux density at the expense of cost. Therefore, for example, ferrite that is advantageous in terms of cost and has a high degree of freedom in shape can be used. Ferrite is suitable as a magnetic material for the magnetic core joint because of its low loss. Various ferrites such as a Mn—Zn ferrite sintered body and a Ni—Zn ferrite sintered body can be used as the ferrite. However, in applications in a relatively low frequency band such as 100 kHz or less, the saturation magnetic flux density and permeability A Mn—Zn ferrite sintered body having a high magnetic permeability and low loss is more preferable. For example, in applications of 100 kHz or less, the Mn—Zn ferrite sintered body is suitable for combination with a dust core.

一方、コイルが巻装される磁心脚部1a、1bに、磁心継部3a、3bを構成する磁性材料よりも飽和磁束密度が高い磁性材料を用いることで、磁心脚部の断面寸法、ひいてはリアクトル全体が大きくなることを抑制することができる。例えば、磁心継部にフェライトを用いる場合であれば、それよりも飽和磁束密度が高い圧粉磁心を磁心脚部に用いればよい。また、磁心継部に圧粉磁心を用いる場合であれば、それよりも相対的に飽和磁束密度が高い圧粉磁心を磁心脚部に用いればよい。上述のように各磁心脚部1a、1bは、実質的な磁気ギャップが形成されないように一体で構成されている。ここで、一体で構成されている、とは、各磁心脚部が一つのコア部材で構成されている場合の他、複数のコア部材を、一定の形状のスペーサ部材を介さないで接着して一体化している場合も含む趣旨である。なお、接着剤自体はここでいうスペーサ部材には含まれない。別体で構成された磁性部材の不連続部分(繋ぎ目)は騒音の原因となる。磁心脚部を一体で構成することで、かかる不連続部分を減らし、騒音を低減することができる。図1に示す実施形態では、各磁心脚部を一つの圧粉磁心で構成しているが、同じ材質の圧粉磁心を複数接着して磁心脚部を構成してもよい。長尺の圧粉磁心の成形は困難であるため、各圧粉磁心において、柱状の圧粉磁心の柱軸に垂直な断面の直径または最大寸法に対する柱軸方向の長さの比を0.5〜2.0倍の範囲にするとよい。   On the other hand, the magnetic leg portions 1a and 1b around which the coils are wound are made of a magnetic material having a saturation magnetic flux density higher than that of the magnetic material constituting the magnetic core joint portions 3a and 3b. It can suppress that the whole becomes large. For example, if ferrite is used for the core joint, a dust core having a higher saturation magnetic flux density than that may be used for the core leg. If a dust core is used for the magnetic core joint, a dust core having a relatively higher saturation magnetic flux density than that may be used for the core leg. As described above, the magnetic core legs 1a and 1b are integrally formed so that a substantial magnetic gap is not formed. Here, the term “integrally configured” means that, in addition to the case where each magnetic core leg portion is composed of a single core member, a plurality of core members are bonded together without a spacer member having a fixed shape. This also includes the case where they are integrated. The adhesive itself is not included in the spacer member here. The discontinuous part (joint) of the magnetic member constituted separately causes noise. By constructing the magnetic leg portion integrally, such discontinuous portions can be reduced and noise can be reduced. In the embodiment shown in FIG. 1, each magnetic core leg is composed of one dust core, but a plurality of dust cores made of the same material may be bonded to form the magnetic core leg. Since it is difficult to form a long dust core, in each dust core, the ratio of the length in the column axis direction to the diameter or maximum dimension of the cross section perpendicular to the column axis of the columnar dust core is 0.5. It is good to be in a range of up to 2.0 times.

各磁心継部3a、3bは、磁心脚部1a、1bの一端または他端を支持するための段差4を、少なくとも対置された一対の磁心脚部1a、1bの間に備える。すなわち、磁心継部3a、3bは、対置された磁心脚部1a、1bを結ぶ方向(x方向)において、磁心脚部1a、1bの端面が対向する左右両端側の面よりも中央側の面が高くなっている。段差4の側面(段差面)は、磁心脚部1a、1bの端面に対向する面、すなわち該磁心脚部1a、1bを支持する面に垂直に立ち上がっている。磁心継部3a、3bに段差4を設けることで、磁心継部3a、3bは磁心脚部1a、1bの端面近傍の側面とも対向するようになる。上述のように、磁心継部は、磁心脚部に比べて相対的に飽和磁束密度が低い磁性材料で構成されており、磁心脚部に比べて磁気飽和しやすい。そこで、磁心継部3a、3bが、磁心脚部1a、1bの円形の端面と対向する部分に加えて、磁心脚部1a、1bの側面の一部とも対向する部分を有することによって、磁心脚部との対向面積を増やし、磁気飽和しにくくなる。また、段差4を設けることで、磁心継部3a、3bに対する磁心脚部1a、1bの位置決めが容易になる。   Each of the magnetic core joint portions 3a and 3b includes a step 4 for supporting one end or the other end of the magnetic core leg portions 1a and 1b between at least a pair of the magnetic core leg portions 1a and 1b. That is, the core joint portions 3a and 3b are surfaces closer to the center than the left and right end surfaces facing the end surfaces of the magnetic core leg portions 1a and 1b in the direction (x direction) connecting the opposing magnetic core leg portions 1a and 1b. Is high. The side surface (step surface) of the step 4 rises perpendicularly to the surface facing the end surfaces of the magnetic core legs 1a and 1b, that is, the surface supporting the magnetic core legs 1a and 1b. By providing the step 4 in the magnetic core joint portions 3a and 3b, the magnetic core joint portions 3a and 3b also face the side surfaces near the end surfaces of the magnetic core leg portions 1a and 1b. As described above, the magnetic core joint portion is made of a magnetic material having a relatively low saturation magnetic flux density compared to the magnetic core leg portion, and is more likely to be magnetically saturated than the magnetic core leg portion. Therefore, the magnetic core joint portions 3a and 3b have a portion facing a part of the side surface of the magnetic core leg portions 1a and 1b in addition to a portion facing the circular end surface of the magnetic core leg portions 1a and 1b. Increases the area facing the part, it becomes difficult to magnetically saturated. Further, the provision of the step 4 facilitates the positioning of the magnetic core leg portions 1a and 1b with respect to the magnetic core joint portions 3a and 3b.

一方、磁心脚部1a、1bに挟まれた前記段差4の、磁心脚部1a、1bの一端または他端を挟んだ反対側、すなわち対置された磁心脚部1a、1bの外側には、段差4に相当するような段差は設けられていない。かかる部分は、磁心脚部1a、1bおよび磁心継部3a、3bで構成される磁路の外側に相当し、流れる磁束量が少ないため、段差を設けても磁路としての実効に乏しい。そこで、かかる部分には段差を設けないようにして、リアクトル全体を小型化する。また、中央の段差4のx方向両側には段差を設けないことで、磁心脚部1a、1bはx方向にスライドさせることができるため、磁気ギャップG3の調整の自由度が高くなる。かかる観点からは、少なくとも、磁心脚部1a、1bをx方向にスライドさせることが可能な範囲で段差を設けないことが好ましい。また、中央の段差4のx方向両側には段差を設けないことで、加圧成形を採用する場合の磁心継部3a、3bの製造も容易になる。   On the other hand, there is a step on the opposite side of the step 4 sandwiched between the magnetic core legs 1a and 1b, with one end or the other end of the magnetic core legs 1a and 1b sandwiched, that is, outside the opposed magnetic core legs 1a and 1b. No level difference corresponding to 4 is provided. Such a portion corresponds to the outside of the magnetic path composed of the magnetic core leg portions 1a and 1b and the magnetic core joint portions 3a and 3b, and since the amount of flowing magnetic flux is small, even if a step is provided, the effect as a magnetic path is poor. Therefore, the entire reactor is reduced in size by not providing a step in such a portion. In addition, since the magnetic core legs 1a and 1b can be slid in the x direction by not providing steps on both sides in the x direction of the central step 4, the degree of freedom in adjusting the magnetic gap G3 is increased. From this point of view, it is preferable that no step is provided at least as long as the magnetic core legs 1a and 1b can be slid in the x direction. Further, by providing no step on both sides in the x direction of the central step 4, it is easy to manufacture the magnetic core joint portions 3a and 3b when pressure molding is employed.

上述の段差を設けた磁心継部の例を図2に示す。図2(a)は磁心脚部を支持するための主面の法線方向から見た平面図であり、図2(b)は図2(a)のy方向から見た正面図である。図2に示した磁心継部200は、磁心脚部を支持するための一対の支持面7を長手方向両端に有し、各支持面7の、他方の支持面側には円弧状に形成された段差4が設けられている。各支持面の段差4に挟まれた中央部6の表面は、支持面7よりもz方向に、一段高くなっている。図中の点線の円は、磁心脚部の端面8を表している。円柱状の磁心脚部の側面との磁気ギャップが磁心脚部の周囲で一定に形成できるように、円弧状の段差4は、磁心脚部の端面の円と同心になるように形成されている。段差4の円弧は円周の50%以下で構成すればよい。円弧の比率は小さくすることも可能であるが、磁路断面積の確保、位置決めの効果の確保の観点からは、円周の40%以上にすることが好ましい。なお、段差4は円弧状に形成しないで、磁心脚部の対置方向(x方向)に垂直な方向に延びる直線状に形成することもできる。また、磁心脚部を角柱で構成し、段差4をその側面形状に倣って、互いに直交する三つの直線で構成されたコの字状にしてもよいし、磁心脚部の対置方向(x方向)に垂直な方向に延びる直線状に形成してもよい。ただし、磁心脚部の側面形状に倣った円弧やコの字状のように、磁心脚部の対置方向(x方向)に垂直な方向(y方向)で磁心脚部を挟むように段差4を構成することで、磁心脚部の対置方向(x方向)のみならず、それに垂直な方向(y方向)においても、磁心脚部の位置決めを行うことができる。また、図2に示す磁心継部では、長方形の主面の四隅を直線に沿って落として、全体の小型化を図っているが、曲線に沿って落としてもよい。また、磁心継部の主面の形状は、図2に示す実施形態のような多角形に限らず、長方形や楕円形等でもよい。   An example of the magnetic core joint provided with the above-described step is shown in FIG. FIG. 2A is a plan view seen from the normal direction of the main surface for supporting the magnetic core leg, and FIG. 2B is a front view seen from the y direction of FIG. The magnetic core joint portion 200 shown in FIG. 2 has a pair of support surfaces 7 for supporting the magnetic core legs at both ends in the longitudinal direction, and each support surface 7 is formed in an arc shape on the other support surface side. A step 4 is provided. The surface of the central portion 6 sandwiched between the steps 4 of each support surface is one step higher in the z direction than the support surface 7. The dotted circle in the figure represents the end face 8 of the magnetic core leg. The arc-shaped step 4 is formed to be concentric with the circle on the end face of the magnetic core leg so that the magnetic gap with the side surface of the cylindrical magnetic core leg can be formed uniformly around the magnetic core leg. . What is necessary is just to comprise the circular arc of the level | step difference 4 at 50% or less of a circumference. Although it is possible to reduce the ratio of the arcs, it is preferable that the ratio is 40% or more of the circumference from the viewpoint of securing the magnetic path cross-sectional area and the positioning effect. In addition, the level | step difference 4 can also be formed in the linear form extended in the direction perpendicular | vertical to the opposing direction (x direction) of a magnetic core leg part, without forming circular arc shape. Further, the magnetic core leg portion may be formed of a prism, and the step 4 may be formed in a U-shape including three straight lines that are orthogonal to each other, following the shape of the side surface thereof. ) May be formed in a straight line extending in a direction perpendicular to. However, the step 4 is formed so as to sandwich the magnetic leg portion in the direction (y direction) perpendicular to the facing direction (x direction) of the magnetic core leg portion, such as an arc or a U-shape following the side shape of the magnetic core leg portion. By configuring, the magnetic core leg can be positioned not only in the facing direction (x direction) of the magnetic core leg but also in the direction (y direction) perpendicular thereto. Further, in the magnetic core joint shown in FIG. 2, the four corners of the rectangular main surface are dropped along a straight line to reduce the overall size, but may be dropped along a curved line. Further, the shape of the main surface of the magnetic core joint is not limited to the polygon as in the embodiment shown in FIG. 2, but may be a rectangle or an ellipse.

図1に示す実施形態では、磁心脚部1a、1bの一端または他端の端面が磁気ギャップを介して磁心継部3a、3bと対向し、さらに磁心脚部1a、1bの一端または他端の側面が、磁気ギャップを介して段差4の側面と対向している。磁心脚部と磁心継部との繋ぎの形態を説明するために、図1(a)の破線で表された、磁心脚部1bと磁心継部3bとの対向部分の拡大図を図1(b)に示した。磁心継部3a、3bが磁心脚部1a、1bの側面の少なくとも一部と対向するように、段差4の大きさG1は、磁心脚部1a、1bの一端または他端の端面と磁心継部3a、3bとのz方向の磁気ギャップG2よりも大きくする。また、磁心脚部1a、1bの一端または他端の側面と、磁心継部3a、3bの段差4の側面との間(x方向)の磁気ギャップG3の大きさは、z方向の磁気ギャップG2の大きさと同じにすると、両磁気ギャップの形成のための部材の共通化が図れるなど、磁気ギャップの形成方法が簡略化される。段差4を設けることの実効を高めるうえでは磁気ギャップG3を磁気ギャップG2よりも小さくするとよい。一方、磁心脚部に巻装されるコイルとの位置関係の観点から、磁心脚部1a、1bの端面から離れた位置での側面方向の漏れ磁束を減らす必要がある場合は、磁気ギャップG3を磁気ギャップG2よりも大きくするとよい。   In the embodiment shown in FIG. 1, the end face of one end or the other end of the magnetic core leg portions 1a, 1b is opposed to the magnetic core joint portions 3a, 3b via the magnetic gap, and further, the end face of the magnetic core leg portions 1a, 1b is at one end or the other end. The side surface faces the side surface of the step 4 through the magnetic gap. In order to explain the form of connection between the magnetic core leg portion and the magnetic core joint portion, an enlarged view of the facing portion between the magnetic core leg portion 1b and the magnetic core joint portion 3b, represented by a broken line in FIG. Shown in b). The size G1 of the step 4 is such that the magnetic core joint portions 3a, 3b face at least a part of the side surfaces of the magnetic core leg portions 1a, 1b. It is larger than the magnetic gap G2 in the z direction between 3a and 3b. The size of the magnetic gap G3 between the side surface of one end or the other end of the magnetic core leg portions 1a and 1b and the side surface of the step 4 of the magnetic core joint portions 3a and 3b (x direction) is the magnetic gap G2 in the z direction. If the size of the magnetic gap is the same, the method for forming the magnetic gap is simplified, for example, the members for forming both magnetic gaps can be shared. In order to increase the effectiveness of providing the step 4, the magnetic gap G3 is preferably made smaller than the magnetic gap G2. On the other hand, from the viewpoint of the positional relationship with the coil wound around the magnetic core leg portion, when it is necessary to reduce the leakage flux in the side surface direction at a position away from the end surfaces of the magnetic core leg portions 1a and 1b, the magnetic gap G3 is set. It may be larger than the magnetic gap G2.

リアクトルにおける騒音は、磁歪や磁気吸引力による構成部材の相対的変位によって生じ、磁気ギャップを構成する部分もかかる変位が生じうる部分である。図1に示す実施形態のように、磁心脚部1a、1bをそれぞれ一体で構成し、磁路中に設ける磁気ギャップを磁心脚部1a、1bと磁心継部3a、3bとの間に限定して配置することで、磁路中の磁気ギャップの数を低減し、騒音を抑制することができる。   Noise in the reactor is caused by relative displacement of the constituent members due to magnetostriction or magnetic attraction force, and the portion constituting the magnetic gap is a portion where such displacement can occur. As in the embodiment shown in FIG. 1, the magnetic core legs 1a and 1b are integrally formed, and the magnetic gap provided in the magnetic path is limited between the magnetic core legs 1a and 1b and the magnetic core joints 3a and 3b. The number of magnetic gaps in the magnetic path can be reduced and noise can be suppressed.

なお、図示はしていないが、磁気ギャップは、所定の間隔を維持できる樹脂プレート、セラミックスなどの非磁性体を配置して構成すればよい。ギャップ寸法精度や強度の観点からはセラミックスを用いることがより好ましい。また、ギャップ形成に用いる非磁性体は、磁心脚部と磁心継部との対向面と同じ形状・寸法にすることも可能であるが、所定の間隔が形成されればよいので、対向面よりも小さい形状のスペーサを用いてもよい。対向面が曲面の場合は、対向面よりも小さい形状のスペーサを用いて対向面の複数箇所に配置する方が、精度の高いギャップを簡易に構成しやすい。   Although not shown, the magnetic gap may be configured by disposing a non-magnetic material such as a resin plate or ceramic that can maintain a predetermined interval. From the viewpoint of gap dimensional accuracy and strength, it is more preferable to use ceramics. In addition, the non-magnetic material used for forming the gap can have the same shape and dimensions as the facing surfaces of the magnetic core leg portion and the magnetic core joint portion, but it is sufficient that a predetermined interval is formed. Alternatively, a spacer having a small shape may be used. In the case where the facing surface is a curved surface, it is easier to construct a highly accurate gap by arranging the spacers at a plurality of locations on the facing surface using spacers having a smaller shape than the facing surface.

磁心脚部1a、1bに巻装されたコイル2a、2bの形態もこれを特に限定するものではない。コイルに使用する導線は、断面形状が長方形の平角線、円形の丸線など種々の形態のものを用いることができる。丸線は、柔軟性に優れ、巻回が容易である。一方、平角線を用いたエッジワイズコイルでは、丸線に比べて線間に不要な空隙が生じないため、占積率が高いコイルが得られ、リアクトルの小型化に寄与する。コイルは、絶縁シートを介して磁心脚部に導線を巻回して構成してもよいし、樹脂製のボビンに導線を巻回して構成してもよい。絶縁性確保の観点からは鍔を有するボビンを用いることがより好ましい。ボビンの内周側または外周側に軸方向に突出した突起を設けておけば、該突起を段差4の側面または磁心脚部の外側の側面に当接させ、磁心脚部の対置方向の動きを拘束することで、磁気ギャップG3の大きさを制御することができる。かかる構成によって、磁心脚部1a、1bの側面と段差4の側面との間の磁気ギャップを構成するためのスペーサを省略することもできる。   The form of the coils 2a and 2b wound around the magnetic core legs 1a and 1b is not particularly limited. As the conducting wire used for the coil, various forms such as a rectangular wire having a rectangular cross-sectional shape and a circular round wire can be used. The round wire is excellent in flexibility and easy to wind. On the other hand, in the edgewise coil using a rectangular wire, an unnecessary gap is not generated between the wires as compared with the round wire, so that a coil with a high space factor is obtained, which contributes to the miniaturization of the reactor. The coil may be configured by winding a conductive wire around a magnetic leg through an insulating sheet, or may be configured by winding a conductive wire around a resin bobbin. From the viewpoint of securing insulation, it is more preferable to use a bobbin having a ridge. If a protrusion protruding in the axial direction is provided on the inner peripheral side or the outer peripheral side of the bobbin, the protrusion is brought into contact with the side surface of the step 4 or the outer side surface of the magnetic core leg portion so that the movement of the magnetic core leg portion in the facing direction is performed. By restraining, the size of the magnetic gap G3 can be controlled. With such a configuration, a spacer for forming a magnetic gap between the side surfaces of the magnetic core legs 1a and 1b and the side surface of the step 4 can be omitted.

(リアクトルの第2の実施形態)
磁心脚部の構成が図1に示す実施形態と異なる他のリアクトル(第2の実施形態)を図3に示す。磁心脚部以外の部分は図1に示す実施形態と同じであるので説明を省略する。図3に示すリアクトル300では、一組の磁心脚部5a、5bは、それぞれ材質が異なる複数の磁性材料ブロック5a−1〜3、5b−1〜3を接着して構成されている。例えば、コイルの外部では磁束の漏れがリアクトルの特性に影響する。そこで、コイルの外部に位置する磁性材料ブロックとして、コイル内部の磁性材料ブロックよりも透磁率が高いものを用いてもよい。また、磁路断面積の自由度の高さに応じて、すなわち磁心継部、磁心継部に隣接する磁性材料ブロック、コイル内部に位置する磁性材料ブロックの順に、飽和磁束密度が高い材料を配置してもよい。一組の磁心脚部を、それぞれ材質が異なる複数の磁性材料ブロックで構成すれば、磁心脚部の構成の自由度が高く、特性、コストに照らして磁心脚部の構成の最適化を図ることができる。各磁性材料ブロックは接着剤を用いて一体化されており、該接着部分には実質的な磁気ギャップは形成されていない。また、各磁性材料ブロックの接着部分は全てコイルの内側になるように配置してある。
(Second embodiment of the reactor)
FIG. 3 shows another reactor (second embodiment) that is different from the embodiment shown in FIG. Since parts other than the magnetic core leg are the same as those in the embodiment shown in FIG. In the reactor 300 shown in FIG. 3, the set of magnetic core legs 5a and 5b is configured by adhering a plurality of magnetic material blocks 5a-1 to 5b-1 to 3b-1 to 3 different from each other. For example, magnetic flux leakage affects the reactor characteristics outside the coil. Therefore, as the magnetic material block located outside the coil, a magnetic material block having higher magnetic permeability than the magnetic material block inside the coil may be used. Also, according to the degree of freedom of the magnetic path cross-sectional area, that is, the material having a high saturation magnetic flux density is arranged in the order of the magnetic core joint, the magnetic material block adjacent to the magnetic core joint, and the magnetic material block located inside the coil. May be. If a set of magnetic leg parts is composed of a plurality of magnetic material blocks made of different materials, the degree of freedom of the structure of the magnetic leg parts is high, and the structure of the magnetic leg parts is optimized in light of characteristics and costs. Can do. Each magnetic material block is integrated using an adhesive, and a substantial magnetic gap is not formed in the bonded portion. Further, all the bonded portions of the magnetic material blocks are arranged so as to be inside the coil.

図3に示す実施形態では、各磁心脚部は三つの磁性材料ブロックで構成されているが、構成する磁性材料ブロック数はこれに限らず、二つでもよいし、四つ以上でもよい。また、図3に示す実施形態では、磁心脚部は三等分されており、各磁性材料ブロックの長さは略同一であるが、各磁性材料ブロックの長さの関係は、必要とされる特性等に応じて決めればよい。例えば、騒音低減に観点からは、磁歪の大きさが異なる材料を用いる場合であれば、磁歪の大きい方の磁性材料ブロックの長さを相対的に小さくするとよい。   In the embodiment shown in FIG. 3, each magnetic core leg portion is constituted by three magnetic material blocks, but the number of magnetic material blocks to be constituted is not limited to this, and may be two, or four or more. Further, in the embodiment shown in FIG. 3, the magnetic core legs are divided into three equal parts, and the lengths of the magnetic material blocks are substantially the same, but the relationship between the lengths of the magnetic material blocks is required. What is necessary is just to decide according to a characteristic etc. For example, from the viewpoint of noise reduction, if materials having different magnetostrictions are used, the length of the magnetic material block having the larger magnetostriction may be relatively reduced.

複数の磁性材料ブロックで構成する場合も含めて、磁心脚部の磁性材料としては、飽和磁束密度が高く、渦電流損失も低い圧粉磁心が好適である。圧粉磁心用の磁性粉末としては、例えば純鉄の粉、Fe−6.5%Siで代表されるSiを6〜7%含むFe−Si合金粉、Fe−Al合金粉、Fe−Al−Si合金粉、Fe−Ni合金粉、Fe−Co合金粉、非晶質軟磁性合金粉、微結晶質軟磁性合金粉などが挙げられ、これらは各々単独で用いてもよいし、適宜、組合せて用いても良い。圧粉磁心部は通常の製造プロセスによって作製することができる。例えば、絶縁性を付与するとともに、粉末を結着するバインダーとしても機能する樹脂としては、例えばエポキシ樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエステル樹脂などを用いればよい。圧粉磁心部の成型方法としても種々のものを適用できるが、金型中に磁性粉末と有機物又は無機物からなる結合材の混合物を充填し加圧して圧粉磁心を成型するプレス成型法が一般的である。   A powder magnetic core having a high saturation magnetic flux density and a low eddy current loss is suitable as the magnetic material for the magnetic core leg portion, including the case where the magnetic core is constituted by a plurality of magnetic material blocks. Examples of magnetic powders for dust cores include pure iron powder, Fe-Si alloy powder containing 6-7% of Si represented by Fe-6.5% Si, Fe-Al alloy powder, Fe-Al- Examples include Si alloy powder, Fe-Ni alloy powder, Fe-Co alloy powder, amorphous soft magnetic alloy powder, and microcrystalline soft magnetic alloy powder, and these may be used alone or in appropriate combination. May be used. The dust core can be manufactured by a normal manufacturing process. For example, an epoxy resin, a polyamide resin, a polyimide resin, a polyester resin, or the like may be used as a resin that imparts insulating properties and also functions as a binder for binding powder. Various methods can be applied as a method of molding the powder magnetic core, but a press molding method is generally used in which a mixture of magnetic powder and a binder made of organic or inorganic material is filled in a mold and pressed to mold the powder magnetic core. Is.

図3に示す構成において、磁心継部3a、3bがフェライトで構成され、一組の磁心脚部5a、5bは、Fe−Si系圧粉磁心(磁性材料ブロック5a−2、5b−2)と、それを挟むように配置されたFe−Al−Si系圧粉磁心(磁性材料ブロック5a−1/5a−3、5b−1/5b−3)で構成されているリアクトルが、騒音・コスト低減等の観点から好ましい。上述のように、損失が低く、コスト、形状の自由度の点で有利なフェライトを複雑な形状の磁心継部に用いる。一方、高飽和磁束密度が求められる磁心脚部5a、5bには圧粉磁心を用い、かかる磁心脚部5a、5bのうち、磁心継部3a、3bに隣接する磁性材料ブロック5a−1/5a−3、5b−1/5b−3としてFe−Al−Si系圧粉磁心が配置されている。さらに、磁性材料ブロック5a−1/5a−3、5b−1/5b−3に挟まれ、コイル内部に位置する磁性材料ブロック5a−2、5b−2として、Fe−Al−Si系圧粉磁心よりも飽和磁束密度が高いFe−Si系圧粉磁心が配置されている。Fe−Al−Si系圧粉磁心およびFe−Si系圧粉磁心とも磁歪が非常に小さく、騒音低減に有効な磁心材料であるが、上記組み合わせが、騒音低減に特に有効である。   In the configuration shown in FIG. 3, the magnetic core joint portions 3a and 3b are made of ferrite, and the set of magnetic core leg portions 5a and 5b are formed of Fe-Si-based dust cores (magnetic material blocks 5a-2 and 5b-2). The reactor composed of Fe-Al-Si powder magnetic cores (magnetic material blocks 5a-1 / 5a-3, 5b-1 / 5b-3) arranged so as to sandwich them, reduces noise and costs. From the viewpoint of the above. As described above, ferrite having a low loss and advantageous in terms of cost and flexibility in shape is used for the magnetic core joint portion having a complicated shape. On the other hand, a dust core is used for the magnetic core legs 5a and 5b for which a high saturation magnetic flux density is required, and the magnetic material blocks 5a-1 / 5a adjacent to the magnetic core joints 3a and 3b among the magnetic core legs 5a and 5b. -3, 5b-1 / 5b-3, Fe-Al-Si based powder magnetic cores are arranged. Furthermore, as magnetic material blocks 5a-2 and 5b-2 located between the magnetic material blocks 5a-1 / 5a-3 and 5b-1 / 5b-3 and located inside the coil, Fe-Al-Si based dust cores are used. An Fe—Si-based dust core having a higher saturation magnetic flux density than that is disposed. Both the Fe-Al-Si dust core and the Fe-Si dust core have extremely small magnetostriction and are effective in reducing noise, but the above combination is particularly effective in reducing noise.

(リアクトルの第3の実施形態)
磁心脚部と磁心継部を備えたリアクトルは、これらを互いに固定して用いる。図4には固定部材の一部も含めてリアクトルの実施形態を示す(第3の実施形態)。固定部材以外の部分は図3に示す実施形態と同じであるので説明を省略する。図4に示すリアクトル400は、磁心脚部5a、5bを支持した一対の磁心継部3a、3bを、磁心脚部5a、5bを挟む方向から押圧する締め付け具9a、9bを有する。図4においては、締め付け具9a、9bは磁心継部3a、3bを押圧するプレート部分のみ図示してあり、磁心継部のy方向の両側で、かかるプレート間に掛架してプレート同士を締め付ける部材は、図示を省略している。締め付け具9a、9bと磁心継部3a、3bとの間には、弾性シート10a、10bが介在している。弾性シートは、締め付け具による締め付けで寸法変化するものであり、例えば、不織布やゴムシートなどを用いることができる。不織布の場合であれば、例えばアラミド、ナイロン、ポリエステル等の材料を用いた不織布などを用いることができる。かかる弾性シートを配置することで、弾性シートを配置しない場合や樹脂スペーサのように締め付け具による締め付けでは寸法変化しないような硬い材料を配置する場合に比べて、騒音を低減することが可能である。弾性シートの大きさはこれを限定するものではないが、締め付け具9a、9bと磁心継部3a、3bとが直接接触しないように、押圧面で、十分広く配置するか、複数箇所に離間して配置する。
(Third embodiment of the reactor)
The reactor provided with the magnetic core leg portion and the magnetic core joint portion is used by fixing them to each other. FIG. 4 shows an embodiment of the reactor including a part of the fixing member (third embodiment). Since parts other than the fixing member are the same as those in the embodiment shown in FIG. A reactor 400 shown in FIG. 4 includes fastening tools 9a and 9b that press the pair of magnetic core joint portions 3a and 3b that support the magnetic core leg portions 5a and 5b from the direction of sandwiching the magnetic core leg portions 5a and 5b. In FIG. 4, only the plate portions that press the magnetic core joint portions 3 a and 3 b are shown in the fasteners 9 a and 9 b, and the plates are fastened between the plates on both sides in the y direction of the magnetic core joint portions. The members are not shown. Elastic sheets 10a and 10b are interposed between the fasteners 9a and 9b and the magnetic core joint portions 3a and 3b. The elastic sheet changes its dimensions by tightening with a tightening tool, and for example, a nonwoven fabric or a rubber sheet can be used. In the case of a nonwoven fabric, for example, a nonwoven fabric using a material such as aramid, nylon, or polyester can be used. By arranging such an elastic sheet, it is possible to reduce noise as compared with the case where an elastic sheet is not arranged or a hard material such as a resin spacer that does not change in size by fastening with a fastening tool is arranged. . The size of the elastic sheet is not limited to this, but it should be arranged sufficiently wide on the pressing surface or spaced apart at a plurality of locations so that the fasteners 9a, 9b and the magnetic core joints 3a, 3b do not directly contact each other. Arrange.

図5には本発明のリアクトル用いて構成する電源装置としてDC−DCコンバータの回路構成を示している。図中のインダクタL1に上述のリアクトルを用いる。なお、本発明のリアクトルはACリアクトル、DCリアクトルとして広く適用できるものであり、図5に示すようなDC−DCコンバータに限らず、フィルタや、それらを用いたパワーコンディショナー等、車両用、太陽光発電用等の各種の大電流電源装置に適用することができる。   FIG. 5 shows a circuit configuration of a DC-DC converter as a power supply device configured using the reactor of the present invention. The above-described reactor is used for the inductor L1 in the figure. The reactor of the present invention can be widely applied as an AC reactor and a DC reactor, and is not limited to a DC-DC converter as shown in FIG. 5, but is used for a vehicle, solar filter, a power conditioner using them, and the like. The present invention can be applied to various types of large current power supply devices for power generation.

磁心継部を図2に示す形状のMn−Zn系フェライトを用い、図4に示すリアクトルを構成した。使用したMn−Zn系フェライトの25℃での飽和磁束密度は0.48T、100kHzでの初透磁率は2400、100kHz/100mTでの損失が200kW/mであった。一組の磁心脚部5a、5bは、Fe−Si系圧粉磁心(磁性材料ブロック5a−2、5b−2)と、それを挟むように配置されたFe−Al−Si系圧粉磁心(磁性材料ブロック5a−1/5a−3、5b−1/5b−3)で構成した。Fe−Si系圧粉磁心はFe−6.5%Siの磁性粉を用いて構成されたものであり、飽和磁束密度Bsは1.65T、100kHzでの初透磁率が50、100kHz/100mTでの損失が1600kW/mのものを用いた。一方、Fe−Al−Si系圧粉磁心は、飽和磁束密度Bsは0.9T、100kHzでの初透磁率80、100kHz/100mTでの損失が850kW/mのものを用いた。円柱状の各圧粉磁心の断面の直径は24mm、Fe−Si系圧粉磁心の長さは20mm、Fe−Al−Si系圧粉磁心の長さは21mmとした。また、磁心脚部5a、5bの一端および他端の端面と磁心継部3a、3bとの磁気ギャップは0.75mm、磁心脚部5a、5bの一端および他端の側面と段差4の側面との磁気ギャップは0.75mmとした。コイルは、PET製のボビンに導線を巻回して構成し、一対の磁心脚部にそれぞれ配した。さらに、締め付け具9a、9bと磁心継部3a、3bとの間に、弾性部材としてポリエステル製の不織布を配置した。 The reactor shown in FIG. 4 was constructed using Mn—Zn-based ferrite having the shape shown in FIG. 2 as the magnetic core joint. The saturation magnetic flux density at 25 ° C. of the Mn—Zn ferrite used was 0.48 T, the initial permeability at 100 kHz was 2400, and the loss at 100 kHz / 100 mT was 200 kW / m 3 . A pair of magnetic core legs 5a and 5b includes an Fe-Si-based dust core (magnetic material blocks 5a-2 and 5b-2) and an Fe-Al-Si-based dust core disposed so as to sandwich the core ( Magnetic material blocks 5a-1 / 5a-3, 5b-1 / 5b-3). The Fe-Si dust core is made of Fe-6.5% Si magnetic powder, and the saturation magnetic flux density Bs is 1.65 T, the initial permeability at 100 kHz is 50, and 100 kHz / 100 mT. The loss of 1600 kW / m 3 was used. On the other hand, the Fe-Al-Si based powder magnetic core used was one having a saturation magnetic flux density Bs of 0.9T, an initial permeability of 80 at 100 kHz, and a loss of 850 kW / m 3 at 100 kHz / 100 mT. The diameter of the cross section of each cylindrical powder magnetic core was 24 mm, the length of the Fe—Si-based dust core was 20 mm, and the length of the Fe—Al—Si-based dust core was 21 mm. Further, the magnetic gap between the end face of one end and the other end of the magnetic core leg portions 5a and 5b and the magnetic core joint portions 3a and 3b is 0.75 mm. The magnetic gap was 0.75 mm. The coil was configured by winding a conducting wire around a bobbin made of PET, and arranged on a pair of magnetic core legs. Further, a polyester non-woven fabric was disposed as an elastic member between the fasteners 9a, 9b and the magnetic core joint portions 3a, 3b.

また、比較のために、以下のリアクトルを作製した。磁心脚部の全ての磁性材料ブロックとしてFe−Al−Si系圧粉磁心を用いるとともに、Fe−Al−Si系圧粉磁心間には樹脂スペーサを配置して0.35mmの磁気ギャップを設けた。Fe−Al−Si系圧粉磁心の断面形状は実施例と同じとし、中央のFe−Al−Si系圧粉磁心の長さは18mm、その両側のFe−Al−Si系圧粉磁心の長さは21mmとした。また、磁心継部と磁心脚部との間の磁気ギャップも0.35mmとした。締め付け具9a、9bと磁心継部3a、3bとの間には、樹脂スペーサを配置した。その他の構成は実施例と同様にした。   Moreover, the following reactors were produced for the comparison. Fe-Al-Si dust cores were used as all magnetic material blocks of the magnetic leg portions, and resin spacers were arranged between the Fe-Al-Si dust cores to provide a magnetic gap of 0.35 mm. . The cross-sectional shape of the Fe-Al-Si dust core is the same as that of the example, the length of the central Fe-Al-Si dust core is 18 mm, and the length of the Fe-Al-Si dust core on both sides thereof. The thickness was 21 mm. The magnetic gap between the magnetic core joint and the magnetic core leg was also 0.35 mm. Resin spacers were disposed between the fasteners 9a and 9b and the magnetic core joint portions 3a and 3b. Other configurations were the same as in the example.

実施例のリアクトルと比較例のリアクトルを用いて、ACリアクトルとしての騒音評価を行った。スイッチング周波数である8kHzおよび16kHzにおいて、騒音が発生するが、比較例のリアクトルに比べて、実施例リアクトルでは、特に、低周波側の8kHzの騒音が10dB以上改善した。   Noise evaluation as an AC reactor was performed using the reactor of the example and the reactor of the comparative example. Although noise is generated at the switching frequencies of 8 kHz and 16 kHz, compared with the reactor of the comparative example, the noise of the 8 kHz on the low frequency side was improved by 10 dB or more particularly in the example reactor.

1a、1b:磁心脚部
2a、2b:コイル
3a、3b:磁心継部
4:段差
5a、5b:磁心脚部
6:中央部
7:支持面
8:磁心脚部の端面
9a、9b:締め付け具
10a、10b:弾性シート
100:リアクトル
200:磁心継部
300:リアクトル
400:リアクトル
DESCRIPTION OF SYMBOLS 1a, 1b: Magnetic core leg part 2a, 2b: Coil 3a, 3b: Magnetic core joint part 4: Level difference 5a, 5b: Magnetic core leg part 6: Center part 7: Support surface 8: End surface of magnetic core leg part 9a, 9b: Fastening tool 10a, 10b: Elastic sheet 100: Reactor 200: Magnetic core joint 300: Reactor 400: Reactor

Claims (5)

平行に対置された一組の柱状の磁心脚部と、
前記磁心脚部に巻装されたコイルと、
前記磁心脚部の一端同士および他端同士を磁気的に繋ぐ一対の磁心継部とを備えたリアクトルであって、
前記各磁心脚部は、前記磁心継部を構成する磁性材料よりも飽和磁束密度が高い磁性材料を用いて、一体で構成され、
前記各磁心継部は、前記磁心脚部の前記一端または他端を支持するための段差を、少なくとも前記対置された一対の磁心脚部の間に備えるとともに、前記磁心脚部の一端または他端を挟んだ反対側には前記段差を備えず、
前記磁心脚部の前記一端または他端の端面が磁気ギャップを介して前記磁心継部と対向しているとともに、前記磁心脚部の前記一端または他端の側面が、磁気ギャップを介して前記段差の側面と対向していることを特徴とするリアクトル。
A pair of columnar magnetic core legs facing each other in parallel;
A coil wound around the magnetic core leg,
A reactor including a pair of magnetic core joints that magnetically connect one end and the other end of the magnetic core legs,
Each of the magnetic core legs is integrally configured using a magnetic material having a higher saturation magnetic flux density than the magnetic material constituting the magnetic core joint.
Each of the magnetic core joints includes a step for supporting the one end or the other end of the magnetic core leg portion between at least the pair of magnetic core legs, and one end or the other end of the magnetic core leg portion. On the opposite side across
The end surface of the one end or the other end of the magnetic core leg portion is opposed to the magnetic core joint portion via a magnetic gap, and the side surface of the one end or the other end of the magnetic core leg portion is the stepped portion via a magnetic gap. Reactor characterized by facing the side of the.
前記一組の磁心脚部は、それぞれ材質が異なる複数の磁性材料ブロックを接着して構成されていることを特徴とする請求項1に記載のリアクトル。   2. The reactor according to claim 1, wherein the set of magnetic core legs are configured by bonding a plurality of magnetic material blocks each having a different material. 前記磁心継部はフェライトで構成され、前記一組の磁心脚部は、Fe−Si系圧粉磁心と、それを挟むように配置されたFe−Al−Si系圧粉磁心で構成されていることを特徴とする請求項2に記載のリアクトル。   The magnetic core joint is made of ferrite, and the set of magnetic core legs is made of an Fe—Si-based dust core and an Fe—Al—Si-based dust core disposed so as to sandwich the core. The reactor according to claim 2, wherein: 前記磁心脚部を支持した前記一対の磁心継部を、前記磁心脚部を挟む方向から押圧する締め付け具を有し、
前記締め付け具と前記磁心継部との間に、弾性シートが介在することを特徴とする請求項1〜3のいずれか一項に記載のリアクトル。
A clamp that presses the pair of magnetic core joints supporting the magnetic core legs from a direction sandwiching the magnetic core legs;
The reactor according to any one of claims 1 to 3, wherein an elastic sheet is interposed between the fastening tool and the magnetic core joint.
請求項1〜4のいずれか一項に記載のリアクトルを用いたことを特徴とする電源装置。   The power supply device using the reactor as described in any one of Claims 1-4.
JP2012120485A 2012-05-28 2012-05-28 Reactor and power supply Active JP6048789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012120485A JP6048789B2 (en) 2012-05-28 2012-05-28 Reactor and power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012120485A JP6048789B2 (en) 2012-05-28 2012-05-28 Reactor and power supply

Publications (2)

Publication Number Publication Date
JP2013247265A true JP2013247265A (en) 2013-12-09
JP6048789B2 JP6048789B2 (en) 2016-12-21

Family

ID=49846815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012120485A Active JP6048789B2 (en) 2012-05-28 2012-05-28 Reactor and power supply

Country Status (1)

Country Link
JP (1) JP6048789B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015141975A (en) * 2014-01-28 2015-08-03 Tdk株式会社 reactor
JP2015156419A (en) * 2014-02-20 2015-08-27 トヨタ自動車株式会社 reactor
JP2015164172A (en) * 2014-01-28 2015-09-10 Tdk株式会社 reactor
JP2016051873A (en) * 2014-09-02 2016-04-11 田淵電機株式会社 Core structure, choke coil for interleave and transformer
JP2017011117A (en) * 2015-06-23 2017-01-12 Necトーキン株式会社 Coil component
JP2017017052A (en) * 2015-06-26 2017-01-19 株式会社タムラ製作所 Core and reactor
JP2017195684A (en) * 2016-04-19 2017-10-26 京都電機器株式会社 Multi-phase converter reactor
CN107622858A (en) * 2016-07-13 2018-01-23 湖北蕊源电子股份有限公司 A kind of inductor for reducing resonance noise
WO2019010698A1 (en) * 2017-07-14 2019-01-17 墨尚电子技术(上海)有限公司 Reactor core and reactor thereof
JP2019110186A (en) * 2017-12-18 2019-07-04 株式会社ウエノ Magnetic core for noise filter and noise filter using the same
CN112117096A (en) * 2019-06-21 2020-12-22 松下知识产权经营株式会社 Magnetic core
CN113808818A (en) * 2020-06-17 2021-12-17 爱三工业株式会社 Electric reactor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112925U (en) * 1980-01-29 1981-08-31
JPS6327006A (en) * 1986-07-21 1988-02-04 Toshiba Corp Reactor
JPH04206509A (en) * 1990-11-30 1992-07-28 Hitachi Ltd Core with gap
JP2000124044A (en) * 1998-10-14 2000-04-28 Hitachi Ltd Low-noise transformer
JP2004319679A (en) * 2003-04-15 2004-11-11 Tamura Seisakusho Co Ltd Reactor
JP2007128951A (en) * 2005-11-01 2007-05-24 Hitachi Ferrite Electronics Ltd Reactor
JP2007281186A (en) * 2006-04-06 2007-10-25 Hitachi Metals Ltd Composite magnetic core and reactor
JP2009071248A (en) * 2007-09-18 2009-04-02 Hitachi Metals Ltd Reactor, and power conditioner apparatus
JP2011159851A (en) * 2010-02-02 2011-08-18 Tabuchi Electric Co Ltd Reactor
JP2012033817A (en) * 2010-08-02 2012-02-16 Tamura Seisakusho Co Ltd Inductance unit

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112925U (en) * 1980-01-29 1981-08-31
JPS6327006A (en) * 1986-07-21 1988-02-04 Toshiba Corp Reactor
JPH04206509A (en) * 1990-11-30 1992-07-28 Hitachi Ltd Core with gap
JP2000124044A (en) * 1998-10-14 2000-04-28 Hitachi Ltd Low-noise transformer
JP2004319679A (en) * 2003-04-15 2004-11-11 Tamura Seisakusho Co Ltd Reactor
JP2007128951A (en) * 2005-11-01 2007-05-24 Hitachi Ferrite Electronics Ltd Reactor
JP2007281186A (en) * 2006-04-06 2007-10-25 Hitachi Metals Ltd Composite magnetic core and reactor
JP2009071248A (en) * 2007-09-18 2009-04-02 Hitachi Metals Ltd Reactor, and power conditioner apparatus
JP2011159851A (en) * 2010-02-02 2011-08-18 Tabuchi Electric Co Ltd Reactor
JP2012033817A (en) * 2010-08-02 2012-02-16 Tamura Seisakusho Co Ltd Inductance unit

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015141975A (en) * 2014-01-28 2015-08-03 Tdk株式会社 reactor
JP2015164172A (en) * 2014-01-28 2015-09-10 Tdk株式会社 reactor
JP2015156419A (en) * 2014-02-20 2015-08-27 トヨタ自動車株式会社 reactor
JP2016051873A (en) * 2014-09-02 2016-04-11 田淵電機株式会社 Core structure, choke coil for interleave and transformer
JP2017011117A (en) * 2015-06-23 2017-01-12 Necトーキン株式会社 Coil component
JP2017017052A (en) * 2015-06-26 2017-01-19 株式会社タムラ製作所 Core and reactor
JP2017195684A (en) * 2016-04-19 2017-10-26 京都電機器株式会社 Multi-phase converter reactor
CN107622858A (en) * 2016-07-13 2018-01-23 湖北蕊源电子股份有限公司 A kind of inductor for reducing resonance noise
WO2019010698A1 (en) * 2017-07-14 2019-01-17 墨尚电子技术(上海)有限公司 Reactor core and reactor thereof
US11430597B2 (en) 2017-07-14 2022-08-30 Magsonder Innovation (Shanghai) Co., Ltd. Inductor magnetic core and inductor using the same
JP2019110186A (en) * 2017-12-18 2019-07-04 株式会社ウエノ Magnetic core for noise filter and noise filter using the same
CN112117096A (en) * 2019-06-21 2020-12-22 松下知识产权经营株式会社 Magnetic core
JP2021002585A (en) * 2019-06-21 2021-01-07 パナソニックIpマネジメント株式会社 core
JP7320748B2 (en) 2019-06-21 2023-08-04 パナソニックIpマネジメント株式会社 core
CN112117096B (en) * 2019-06-21 2024-05-07 松下汽车电子系统株式会社 Magnetic core
CN113808818A (en) * 2020-06-17 2021-12-17 爱三工业株式会社 Electric reactor

Also Published As

Publication number Publication date
JP6048789B2 (en) 2016-12-21

Similar Documents

Publication Publication Date Title
JP6048789B2 (en) Reactor and power supply
US20140176291A1 (en) Choke coil
JP5877486B2 (en) Amorphous metal core, induction device using the same, and method of manufacturing the same
KR101655752B1 (en) Reactor
JP2007013042A (en) Composite magnetic core and reactor employing the same
KR20130014546A (en) Magnetic element for wireless power transmission and power supply device
JP2008021948A (en) Core for reactor
JP4802561B2 (en) Reactor and transformer
US8680962B2 (en) Transformer incorporated in electronic circuits
JP2011100819A (en) Magnetic coupler
EP2936509A1 (en) Inductor core
JP2012049269A (en) Core fixture and coil device
JP2013157352A (en) Coil device
JP2011165977A (en) Reactor
JP6050024B2 (en) Reactor
JP2009032922A (en) Reactor core and reactor
JP2013251451A (en) Composite ferrite core of inductor and inductor using the same
JP6075678B2 (en) Composite magnetic core, reactor and power supply
JP5900741B2 (en) Composite magnetic core, reactor and power supply
JP5288227B2 (en) Reactor core and reactor
JP2010245456A (en) Reactor assembly
JP2012204454A (en) Inductor and two-phase interleave control system power-factor improving converter
JP5288229B2 (en) Reactor core and reactor
JP5288228B2 (en) Reactor core and reactor
JP7365120B2 (en) stationary induction equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161110

R150 Certificate of patent or registration of utility model

Ref document number: 6048789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350