WO2015079574A1 - Control device for electric vehicle and control method for electric vehicle - Google Patents

Control device for electric vehicle and control method for electric vehicle Download PDF

Info

Publication number
WO2015079574A1
WO2015079574A1 PCT/JP2013/082248 JP2013082248W WO2015079574A1 WO 2015079574 A1 WO2015079574 A1 WO 2015079574A1 JP 2013082248 W JP2013082248 W JP 2013082248W WO 2015079574 A1 WO2015079574 A1 WO 2015079574A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric vehicle
motor
speed
speed parameter
target value
Prior art date
Application number
PCT/JP2013/082248
Other languages
French (fr)
Japanese (ja)
Inventor
弘征 小松
伊藤 健
中島 孝
雄史 勝又
澤田 彰
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2013/082248 priority Critical patent/WO2015079574A1/en
Publication of WO2015079574A1 publication Critical patent/WO2015079574A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to an electric vehicle control device and an electric vehicle control method.
  • a regenerative brake control device for an electric vehicle that is provided with setting means that can arbitrarily set a regenerative braking force of an electric motor, and regenerates the electric motor with a regenerative braking force set by the setting means (see JP 8-79907A) ).
  • An object of the present invention is to provide a technique for suppressing the occurrence of vibration in the front-rear direction of the vehicle body when the electric vehicle is stopped with a regenerative braking force.
  • the control device for an electric vehicle is a control device for an electric vehicle that uses a motor as a travel drive source and decelerates by the regenerative braking force of the motor when the accelerator operation amount decreases or becomes zero, and the accelerator operation amount decreases. Or when it becomes zero, the speed parameter proportional to the traveling speed of the electric vehicle is made to coincide with the speed parameter target value that asymptotically converges to zero.
  • FIG. 1 is a block diagram illustrating a main configuration of an electric vehicle including an electric vehicle control apparatus according to an embodiment.
  • FIG. 2 is a flowchart showing a flow of processing of motor current control performed by the motor controller.
  • FIG. 3 is a diagram showing an example of an accelerator opening-torque table.
  • FIG. 4 is a diagram modeling a vehicle driving force transmission system.
  • FIG. 5 is a block diagram for realizing the stop control process.
  • FIG. 6 is a block diagram for explaining a method of calculating the speed control torque T ⁇ based on the motor rotation speed ⁇ m and the motor rotation speed target value ⁇ m * .
  • FIG. 7 is a block diagram for explaining a method of setting the motor rotation speed target value ⁇ m * .
  • FIG. 1 is a block diagram illustrating a main configuration of an electric vehicle including an electric vehicle control apparatus according to an embodiment.
  • FIG. 2 is a flowchart showing a flow of processing of motor current control performed by the motor controller.
  • FIG. 3 is
  • FIG. 8 is a diagram illustrating an example of the attenuation rate table.
  • FIG. 9 is a block diagram for explaining a method of calculating the disturbance torque estimated value Td based on the motor rotational speed ⁇ m and the motor torque command value Tm * .
  • FIG. 10 is a flowchart showing a flag setting procedure performed by the flag setter.
  • FIG. 11 is a block diagram for setting the motor rotation speed target value ⁇ m * with a configuration different from that in FIG.
  • FIG. 12A is a diagram illustrating an example of a control result by the control device for the electric vehicle in the embodiment on the uphill road.
  • FIG. 12B is a diagram illustrating an example of a control result by the control device for the electric vehicle in the embodiment on a flat road.
  • FIG. 12A is a diagram illustrating an example of a control result by the control device for the electric vehicle in the embodiment on the uphill road.
  • FIG. 12B is a diagram illustrating an example of a control result by the control device
  • FIG. 12C is a diagram illustrating an example of a control result by the control device for the electric vehicle in the embodiment on the downhill road.
  • FIG. 13 is an enlarged view of the scale of the vertical axis of the motor rotation speed ⁇ m graph shown in FIG. 12, and FIGS. 13 (a) to 13 (c) are cases where the vehicle stops on an uphill road, a flat road, and a downhill road, respectively. The control result is shown.
  • FIG. 1 is a block diagram illustrating a main configuration of an electric vehicle including an electric vehicle control device according to one embodiment.
  • the control device for an electric vehicle according to the present invention is applicable to an electric vehicle that includes an electric motor as a part or all of a drive source of the vehicle and can travel by the driving force of the electric motor.
  • Electric vehicles include not only electric vehicles but also hybrid vehicles and fuel cell vehicles.
  • the control device for an electric vehicle in the present embodiment can be applied to a vehicle that can control acceleration / deceleration and stop of the vehicle only by operating an accelerator pedal. In this vehicle, the driver depresses the accelerator pedal at the time of acceleration and reduces the amount of depression of the accelerator pedal at the time of deceleration or stop, or sets the depression amount of the accelerator pedal to zero.
  • the motor controller 2 inputs signals indicating the vehicle state such as the vehicle speed V, the accelerator opening AP, the rotor phase ⁇ of the electric motor (three-phase AC motor) 4, the currents iu, iv, iw of the electric motor 4 as digital signals. Then, a PWM signal for controlling the electric motor 4 is generated based on the input signal. Further, a drive signal for the inverter 3 is generated according to the generated PWM signal.
  • the inverter 3 includes, for example, two switching elements (for example, power semiconductor elements such as IGBTs and MOS-FETs) for each phase.
  • the supplied direct current is converted into alternating current, and a desired current is passed through the electric motor 4.
  • the electric motor 4 generates a driving force by the alternating current supplied from the inverter 3, and transmits the driving force to the left and right driving wheels 9 a and 9 b via the speed reducer 5 and the drive shaft 8.
  • the electric motor 4 collects the kinetic energy of the vehicle as electric energy by generating a regenerative driving force when the electric motor 4 rotates with the drive wheels 9a and 9b and rotates when the vehicle is traveling.
  • the inverter 3 converts an alternating current generated during the regenerative operation of the electric motor 4 into a direct current and supplies the direct current to the battery 1.
  • the current sensor 7 detects the three-phase alternating currents iu, iv, iw flowing through the electric motor 4. However, since the sum of the three-phase alternating currents iu, iv, and iw is 0, any two-phase current may be detected, and the remaining one-phase current may be obtained by calculation.
  • the rotation sensor 6 is, for example, a resolver or an encoder, and detects the rotor phase ⁇ of the electric motor 4.
  • FIG. 2 is a flowchart showing a flow of processing of motor current control performed by the motor controller 2.
  • step S201 a signal indicating the vehicle state is input.
  • the vehicle speed V (km / h), the accelerator opening AP (%), the rotor phase ⁇ (rad) of the electric motor 4, the rotational speed Nm (rpm) of the electric motor 4, and the three-phase AC flowing through the electric motor 4 Currents iu, iv, iw, and a DC voltage value Vdc (V) between the battery 1 and the inverter 3 are input.
  • the vehicle speed V (km / h) is acquired by communication from a vehicle speed sensor (not shown) or another controller.
  • the rotor mechanical angular speed ⁇ m is multiplied by the tire dynamic radius R, and the vehicle speed v (m / s) is obtained by dividing by the gear ratio of the final gear, and unit conversion is performed by multiplying by 3600/1000 to obtain the vehicle speed.
  • V (km / h) is obtained.
  • Accelerator opening AP (%) is acquired from an accelerator opening sensor (not shown), or is acquired by communication from another controller such as a vehicle controller (not shown).
  • the rotor phase ⁇ (rad) of the electric motor 4 is acquired from the rotation sensor 6.
  • the rotational speed Nm (rpm) of the electric motor 4 is obtained by dividing the rotor angular speed ⁇ (electrical angle) by the pole pair number p of the electric motor 4 to obtain a motor rotational speed ⁇ m (rad / s) is obtained by multiplying the obtained motor rotational speed ⁇ m by 60 / (2 ⁇ ).
  • the rotor angular velocity ⁇ is obtained by differentiating the rotor phase ⁇ .
  • the currents iu, iv, iw (A) flowing through the electric motor 4 are acquired from the current sensor 7.
  • the DC voltage value Vdc (V) is obtained from a power supply voltage value transmitted from a voltage sensor (not shown) provided on a DC power supply line between the battery 1 and the inverter 3 or a battery controller (not shown).
  • a first torque target value Tm1 * is set.
  • the first torque target value Tm1 * is set by referring to the accelerator opening-torque table shown in FIG. 3 based on the accelerator opening AP and the motor rotational speed ⁇ m input in step S201.
  • the control device for an electric vehicle is applicable to a vehicle that can control acceleration / deceleration and stop of the vehicle only by operating the accelerator pedal, and at least when the accelerator pedal is fully closed.
  • the motor torque is set so that the motor regeneration amount becomes large when the accelerator opening is 0 (fully closed).
  • the negative motor torque is set so that the regenerative braking force works when the motor speed is positive and at least when the accelerator opening is 0 (fully closed).
  • the accelerator opening-torque table is not limited to that shown in FIG.
  • step S203 stop control processing for controlling the electric vehicle to stop is performed. Specifically, when the motor rotation speed is higher than a predetermined value, the first torque target value Tm1 * calculated in step S202 is set as the motor torque command value Tm * . When the motor rotation speed is equal to or lower than a predetermined value, the second torque target value Tm2 * that converges to the disturbance torque estimated value Td as the motor rotation speed decreases is obtained by performing speed control described later. Set to Tm * .
  • This second torque target value Tm2 * is positive torque on an uphill road, negative torque on a downhill road, and almost zero on a flat road. Thereby, a stop state can be maintained irrespective of a gradient. Details of the stop control process will be described later.
  • step S204 the d-axis current target value id * and the q-axis current target value iq * are obtained based on the motor torque target value Tm * , the motor rotation speed ⁇ m, and the DC voltage value Vdc calculated in step S203. For example, by preparing in advance a table that defines the relationship between the torque command value, the motor rotation speed, the DC voltage value, the d-axis current target value, and the q-axis current target value, and referring to this table, The d-axis current target value id * and the q-axis current target value iq * are obtained.
  • step S205 current control is performed to match the d-axis current id and the q-axis current iq with the d-axis current target value id * and the q-axis current target value iq * obtained in step S204, respectively. For this reason, first, the d-axis current id and the q-axis current iq are obtained based on the three-phase AC current values iu, iv, iw input in step S201 and the rotor phase ⁇ of the electric motor 4.
  • d-axis and q-axis voltage command values vd and vq are calculated from a deviation between the d-axis and q-axis current command values id * and iq * and the d-axis and q-axis current id and iq.
  • a non-interference voltage necessary for canceling the interference voltage between the dq orthogonal coordinate axes may be added to the calculated d-axis and q-axis voltage command values vd and vq.
  • three-phase AC voltage command values vu, vv, vw are obtained from the d-axis and q-axis voltage command values vd, vq and the rotor phase ⁇ of the electric motor 4.
  • PWM signals tu (%), tv (%), and tw (%) are obtained from the obtained three-phase AC voltage command values vu, vv, and vw and the DC voltage value Vdc.
  • the electric motor 4 can be driven with a desired torque indicated by the torque command value Tm * by opening and closing the switching element of the inverter 3 by the PWM signals tu, tv, and tw obtained in this way.
  • FIG. 4 is a diagram in which a driving force transmission system of a vehicle is modeled, and each parameter in the figure is as shown below.
  • J m inertia of electric motor
  • J w inertia of driving wheel
  • M vehicle weight
  • K d torsional rigidity of driving system
  • K t coefficient relating to friction between tire and road surface
  • N overall gear ratio
  • r tire load radius
  • ⁇ m the electric motor angular velocity
  • T m torque target value
  • T d a torque of the drive wheel
  • F force applied to the vehicle
  • each parameter in Formula (6) is represented by following Formula (7).
  • FIG. 5 is a block diagram for realizing the stop control process.
  • the speed controller 501 calculates a speed control torque T ⁇ for making the detected motor rotational speed ⁇ m coincide with the motor rotational speed target value ⁇ m * that asymptotically converges to zero.
  • FIG. 6 is a block diagram for explaining a process performed by the speed controller 501, that is, a method for calculating the speed control torque T ⁇ based on the motor rotation speed ⁇ m and the motor rotation speed target value ⁇ m * .
  • the motor rotation speed target value setter 601 sets a motor rotation speed target value ⁇ m * that is uniquely determined by the motor rotation speed ⁇ m at the time of starting speed control. A method for setting the motor rotation speed target value ⁇ m * will be described with reference to FIG.
  • the control block 701 obtains the reference torque Tref by multiplying the motor rotational speed target value ⁇ m * by the gain Kvref.
  • the gain Kvref is a negative (minus) value necessary for stopping the electric vehicle, and is appropriately set based on, for example, experimental data.
  • the reference torque Tref is set as a torque that provides a larger regenerative braking force as the motor rotation speed target value ⁇ m * is larger.
  • the control block 702 obtains the motor rotation speed target value ⁇ m * by inputting the reference torque Tref obtained by the control block 701 into the model Gp (s). Since the reference torque Tref acts as a viscous (damper) element for the dynamic characteristics from the reference torque Tref to the motor rotational speed target value ⁇ m * , the motor rotational speed target value ⁇ m * is asymptotically smoothly zeroed immediately before stopping. Converge. Thereby, the smooth stop without a shock in the longitudinal acceleration can be realized.
  • the model Gp (s) is initialized so that the motor rotation speed target value ⁇ m * becomes the motor rotation speed ⁇ m when the flag set by the flag setting unit 504 described later changes from 0 to 1. That is, when the flag set by the flag setting unit 504 changes from 0 to 1, the control block 702 changes the motor rotation speed when the flag changes from 0 to 1 (when the motor rotation speed ⁇ m becomes a predetermined value or less). ⁇ m is output as the motor rotation speed target value ⁇ m * .
  • the model matching compensator 602 in FIG. 6 is a filter having a transfer characteristic of R 1 (s) / (Gp (s) ⁇ (1 ⁇ R 1 (s))), and includes a motor rotation speed target value ⁇ m * and a motor.
  • a speed control torque T ⁇ for matching the motor rotational speed ⁇ m with the motor rotational speed target value ⁇ m * is calculated.
  • R 1 (s) is a low-pass filter, and the time constant is set to an appropriate value by performing simulations and experiments in advance.
  • the motor rotational speed target value setter 601 asymptotically approaches zero by applying a viscous (damper) element to the dynamic characteristics from the reference torque Tref to the motor rotational speed target value ⁇ m *.
  • the target motor speed ⁇ m * that converges automatically is calculated, but control is started using a predetermined torque table for the motor speed ⁇ m, an attenuation rate table that stores the attenuation rate of the motor speed ⁇ m in advance, etc.
  • the motor rotation speed target value ⁇ m * corresponding to the time from may be calculated.
  • FIG. 8 is a diagram illustrating an example of the attenuation rate table.
  • the motor rotation speed target value ⁇ m * is set to a value that converges asymptotically to zero as time passes from the initial value ⁇ m_init * .
  • Motor rotation speed target value .omega.m * initial value .omega.m _init * is the motor rotational speed .omega.m when the flag set by the flag setting unit 504 to be described later is changed from 0 to 1.
  • the disturbance torque estimator 502 calculates a disturbance torque estimated value Td based on the detected motor rotation speed ⁇ m and the motor torque command value Tm * .
  • FIG. 9 is a block diagram for explaining a process performed by the disturbance torque estimator 502, that is, a method for calculating the disturbance torque estimated value Td based on the motor rotation speed ⁇ m and the motor torque command value Tm * .
  • the control block 901 functions as a filter having a transfer characteristic of H (s) / Gp (s), and performs the filtering process by inputting the motor rotation speed ⁇ m, whereby the first motor torque estimated value is obtained. Is calculated.
  • H (s) is a low-pass filter having a transfer characteristic in which the difference between the denominator order and the numerator order is equal to or greater than the difference between the denominator order and the numerator order of the model Gp (s).
  • the control block 702 functions as a low-pass filter having a transfer characteristic of H (s), and calculates a second motor torque estimated value by performing a filtering process by inputting the motor torque command value Tm *. To do.
  • the subtractor 903 calculates the disturbance torque estimated value Td by subtracting the second motor torque estimated value from the first motor torque estimated value.
  • the disturbance torque is estimated by a disturbance observer as shown in FIG. 9, but may be estimated by using a measuring instrument such as a vehicle front-rear G sensor.
  • disturbances include air resistance, modeling errors due to vehicle mass fluctuations due to the number of passengers and loading capacity, tire rolling resistance, road surface gradient resistance, etc., but disturbances that are dominant immediately before stopping
  • the factor is gradient resistance.
  • the disturbance torque estimator 502 calculates the disturbance torque estimated value Td based on the motor torque command value Tm * , the motor rotation speed ⁇ m, and the vehicle model Gp (s). Disturbance factors can be estimated collectively. This makes it possible to realize a smooth stop from deceleration under any driving condition.
  • the subtractor 503 calculates the second torque target value Tm2 * by calculating the deviation between the speed control torque T ⁇ calculated by the speed controller 501 and the disturbance torque estimated value Td calculated by the disturbance torque estimator 502 . Is calculated.
  • Flag setter 504 the disturbance torque estimated value Td, the motor rotational speed .omega.m, and, based on the first torque target value Tm1 *, the motor torque command value Tm *, the first torque target value Tm1 * and the second A flag indicating which of the torque target value Tm2 * is to be set is set.
  • FIG. 10 is a flowchart showing a flag setting processing procedure performed by the flag setting unit 504. In step S1001, it is determined whether the relationship of following Formula (10) is materialized.
  • step S1002 If it is determined that the relationship of Expression (10) holds, it is determined that the motor rotation speed is equal to or less than a predetermined value, and the process proceeds to step S1002, and if it is determined that the relationship of Expression (10) does not hold, the motor rotation speed is a predetermined value. It is determined that the value is higher, and the process proceeds to step S1003.
  • step S1002 the flag is set to 1.
  • step S1003 the flag is set to 0.
  • the motor torque command value setter 505 in FIG. 5 sets the first torque target value Tm1 * as the motor torque command value Tm * , and the flag is set to 1. If it is, the second torque target value Tm2 * is set as the motor torque command value Tm * . In order to maintain the stop state, the second torque target value Tm2 * converges to a positive torque on an uphill road, a negative torque on a downhill road, and approximately zero on a flat road.
  • the difference between the motor rotation speed ⁇ m and the motor rotation speed target value ⁇ m * is input to the model matching compensator 602 and subjected to the filtering process, whereby the motor rotation speed ⁇ m is obtained.
  • a speed control torque T ⁇ for matching with the motor rotation speed target value ⁇ m * is calculated.
  • a disturbance torque estimated value Td is calculated by a disturbance observer (see FIG. 9) based on the motor torque command value Tm * and the motor rotation speed ⁇ m.
  • the second torque target value Tm2 * calculated by subtracting the disturbance torque estimated value Td from the speed control torque T ⁇ as the motor torque command value immediately before stopping (the motor rotation speed is a predetermined value or less). Only the motor torque is used, and the vehicle can be stopped smoothly without depending on the gradient, and the stopped state can be maintained.
  • a motor rotation speed target value setter 1101 sets a motor rotation speed target value ⁇ m * by a method similar to the method performed by the motor rotation speed target value setter 601 shown in FIG.
  • the control block 1102 performs a filtering process on a difference between the motor rotation speed target value ⁇ m * and the motor rotation speed ⁇ m by a compensator including an integration operation, so that the motor rotation speed ⁇ m and the motor rotation speed target value are obtained.
  • a second torque target value Tm2 * that ⁇ m * matches and compensates for disturbance torque is calculated.
  • Kp and ki in the control block 1102 represent a proportional gain and an integral gain, respectively, and appropriate values are set by performing simulations and experiments in advance.
  • FIG. 12A to FIG. 12C are diagrams showing an example of a control result by the control device for an electric vehicle in one embodiment.
  • 12A to 12C show control results when the vehicle stops on an uphill road, a flat road, and a downhill road.
  • the motor rotation speed, the motor torque command value, and the vehicle longitudinal acceleration are shown in order from the top.
  • the motor rotation speed is higher than a predetermined value, and the electric motor 4 is decelerated based on the first torque target value Tm1 * calculated in step S202 of FIG.
  • Time t2 is a timing at which the motor rotational speed becomes equal to or lower than a predetermined value and the flag is set to 1 by the flag setting unit 504. At this time t2, the motor torque command value Tm * is switched from the first torque target value Tm1 * to the second torque target value Tm2 * .
  • the motor torque command value Tm * converges to the disturbance torque estimated value Td regardless of the uphill road, the flat road, or the downhill road, and the motor rotation speed is asymptotic to zero. Converge to. Thereby, the smooth stop without the acceleration vibration of the front-back direction at the time of a stop is realizable. After time t3, the stopped state is maintained.
  • FIG. 13 is an enlarged view of the scale of the vertical axis of the motor rotation speed ⁇ m graph shown in FIG. 12, and FIGS. 13 (a) to 13 (c) are cases where the vehicle stops on an uphill road, a flat road, and a downhill road, respectively. The control result is shown.
  • the timing (motor rotation speed) at which the speed control is started differs depending on the estimated disturbance torque Td that depends on the road surface gradient.
  • the speed control is started at the motor rotation speed ⁇ m1 on the uphill road, but the speed control is started at the motor rotation speed ⁇ m2 lower than the motor rotation speed ⁇ m1 on the flat road.
  • speed control is started at a motor rotation speed ⁇ m3 lower than the motor rotation speed ⁇ m2.
  • the control device for an electric motor that uses the electric motor 4 as a travel drive source and decelerates by the regenerative braking force of the electric motor 4 when the accelerator operation amount decreases or becomes zero. Then, when the motor rotation speed target value ⁇ m * that sets the motor rotation speed ⁇ m asymptotically to zero is set, and the accelerator operation amount decreases or becomes zero, the motor rotation speed ⁇ m is changed to the motor rotation speed target value ⁇ m. Control to match * . Thereby, on a flat road, smooth deceleration without acceleration vibration in the front-rear direction can be realized, and a stopped state can be maintained.
  • the electric motor 4 can be regenerated even immediately before the stop, thereby improving the power consumption. be able to. Furthermore, since acceleration / deceleration and stopping of the vehicle can be realized only by the accelerator operation, it is not necessary to switch between the accelerator pedal and the brake pedal, and the burden on the driver can be reduced.
  • acceleration vibration occurs in the front-rear direction of the vehicle when the vehicle stops.
  • any driver can realize smooth deceleration and stop by only the accelerator operation as described above.
  • the motor rotation speed ⁇ m when the accelerator operation amount decreases or becomes zero and the motor rotation speed ⁇ m is equal to or less than a predetermined value, the motor rotation speed ⁇ m asymptotically converges to zero. Control to match the motor rotation speed target value ⁇ m * is performed.
  • different motor rotational speed target values that is, deceleration of the vehicle can be set, and smoother deceleration can be achieved. Can be realized.
  • the motor rotational speed .omega.m at the time of starting the control to match the motor rotational speed target value .omega.m * to asymptotically converge to zero motor speed .omega.m, so set the initial value of the motor rotational speed target value .omega.m *
  • a torque step does not occur, and a smooth stop can be realized from the deceleration state.
  • control for matching the motor rotational speed ⁇ m to the motor rotational speed target value ⁇ m * that asymptotically converges to zero is started.
  • the timing to perform can be changed according to the disturbance torque estimated value Td.
  • a torque step does not occur before and after the start of control for making the motor rotation speed ⁇ m coincident with the motor rotation speed target value ⁇ m * that asymptotically converges to zero, regardless of the road surface gradient.
  • a stop can be realized.
  • the motor control device when the accelerator operation amount decreases or becomes zero, the motor torque is converged to the disturbance torque estimated value Td as the motor rotation speed ⁇ m decreases. Accordingly, smooth deceleration without acceleration vibration in the front-rear direction can be realized just before the stop regardless of the uphill road, the flat road, and the downhill road, and the stop state can be maintained.
  • the disturbance torque is estimated as a positive value on an uphill road and a negative value on a downhill road, the disturbance torque can be smoothly stopped even on a slope road, and the stopped state can be maintained without requiring a foot brake. Further, since the disturbance torque is estimated as zero on a flat road, the vehicle can be stopped smoothly on the flat road, and the stopped state can be maintained without requiring a foot brake.
  • the disturbance torque is a torque value necessary to cancel the disturbance torque, and the sign is inverted with respect to the estimated value Td calculated by the disturbance torque estimator 502 in FIG. Value. That is, the second torque target value Tm2 * when the speed control torque T ⁇ is zero.
  • the motor rotational speed target value that asymptotically converges to zero based on the torque input to the vehicle and the model Gp (s) of the transmission characteristic of the rotational speed of the motor.
  • Set ⁇ m * .
  • the motor rotation speed target value ⁇ m * is calculated by inputting the arbitrarily determined reference torque to the model Gp (s), a smooth stop can be realized.
  • the disturbance torque estimated value Td can be obtained with high accuracy.
  • the calculation load is reduced. Can be reduced.
  • the present invention is not limited to the embodiment described above.
  • the control is performed so that the motor rotation speed ⁇ m is matched with the motor rotation speed target value ⁇ m * that asymptotically converges to zero.
  • speed parameters such as wheel speed, vehicle speed, and drive shaft rotation speed are proportional to the motor rotation speed ⁇ m, control is performed so that the speed parameter matches the speed parameter target value that asymptotically converges to zero. It may be.

Abstract

A control device for an electric vehicle in which a motor is a travel drive source and which decelerates using the regenerative braking force of the motor if the accelerator operation amount is decreased or is zero, wherein if the accelerator operation amount is decreased or is zero, a speed parameter which is proportional to the travelling speed of the electric vehicle is set so as to conform to a speed parameter target value which converges asymptotically to zero.

Description

電動車両の制御装置および電動車両の制御方法Electric vehicle control device and electric vehicle control method
 本発明は、電動車両の制御装置および電動車両の制御方法に関する。 The present invention relates to an electric vehicle control device and an electric vehicle control method.
 従来、電動機の回生制動力を任意に設定し得る設定手段を設け、設定手段によって設定された回生制動力で電動機の回生を行う電気自動車用回生ブレーキ制御装置が知られている(JP8-79907A参照)。 2. Description of the Related Art Conventionally, there is known a regenerative brake control device for an electric vehicle that is provided with setting means that can arbitrarily set a regenerative braking force of an electric motor, and regenerates the electric motor with a regenerative braking force set by the setting means (see JP 8-79907A) ).
 しかしながら、設定手段によって設定された回生制動力が大きい場合には、設定された回生制動力で電気自動車が減速して速度が0になったときに、車体の前後方向に振動が発生するという問題が生じる。 However, when the regenerative braking force set by the setting means is large, there is a problem that vibration occurs in the front-rear direction of the vehicle body when the electric vehicle decelerates to zero with the set regenerative braking force. Occurs.
 本発明は、回生制動力で電動車両を停止させる際に、車体の前後方向に振動が発生するのを抑制する技術を提供することを目的とする。 An object of the present invention is to provide a technique for suppressing the occurrence of vibration in the front-rear direction of the vehicle body when the electric vehicle is stopped with a regenerative braking force.
 一実施形態における電動車両の制御装置は、モータを走行駆動源とし、アクセル操作量が減少またはゼロになると、モータの回生制動力により減速する電動車両の制御装置であって、アクセル操作量が減少またはゼロになった場合に、電動車両の走行速度に比例する速度パラメータを、漸近的にゼロに収束する速度パラメータ目標値に一致させる。 The control device for an electric vehicle according to an embodiment is a control device for an electric vehicle that uses a motor as a travel drive source and decelerates by the regenerative braking force of the motor when the accelerator operation amount decreases or becomes zero, and the accelerator operation amount decreases. Or when it becomes zero, the speed parameter proportional to the traveling speed of the electric vehicle is made to coincide with the speed parameter target value that asymptotically converges to zero.
 本発明の実施形態については、添付された図面とともに以下に詳細に説明される。 Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
図1は、一実施の形態における電動車両の制御装置を備えた電気自動車の主要構成を示すブロック図である。FIG. 1 is a block diagram illustrating a main configuration of an electric vehicle including an electric vehicle control apparatus according to an embodiment. 図2は、モータコントローラによって行われるモータ電流制御の処理の流れを示すフローチャートである。FIG. 2 is a flowchart showing a flow of processing of motor current control performed by the motor controller. 図3は、アクセル開度-トルクテーブルの一例を示す図である。FIG. 3 is a diagram showing an example of an accelerator opening-torque table. 図4は、車両の駆動力伝達系をモデル化した図である。FIG. 4 is a diagram modeling a vehicle driving force transmission system. 図5は、停止制御処理を実現するためのブロック図である。FIG. 5 is a block diagram for realizing the stop control process. 図6は、モータ回転速度ωmとモータ回転速度目標値ωmに基づいて、速度制御トルクTωを算出する方法を説明するためのブロック図である。FIG. 6 is a block diagram for explaining a method of calculating the speed control torque Tω based on the motor rotation speed ωm and the motor rotation speed target value ωm * . 図7は、モータ回転速度目標値ωmの設定方法を説明するためのブロック図である。FIG. 7 is a block diagram for explaining a method of setting the motor rotation speed target value ωm * . 図8は、減衰率テーブルの一例を示す図である。FIG. 8 is a diagram illustrating an example of the attenuation rate table. 図9は、モータ回転速度ωmとモータトルク指令値Tmに基づいて、外乱トルク推定値Tdを算出する方法を説明するためのブロック図である。FIG. 9 is a block diagram for explaining a method of calculating the disturbance torque estimated value Td based on the motor rotational speed ωm and the motor torque command value Tm * . 図10は、フラグ設定器によって行われるフラグ設定の処理手順を示すフローチャートである。FIG. 10 is a flowchart showing a flag setting procedure performed by the flag setter. 図11は、図7とは別の構成によりモータ回転速度目標値ωmを設定するためのブロック図である。FIG. 11 is a block diagram for setting the motor rotation speed target value ωm * with a configuration different from that in FIG. 図12Aは、登坂路において、一実施の形態における電動車両の制御装置による制御結果の一例を示す図である。FIG. 12A is a diagram illustrating an example of a control result by the control device for the electric vehicle in the embodiment on the uphill road. 図12Bは、平坦路において、一実施の形態における電動車両の制御装置による制御結果の一例を示す図である。FIG. 12B is a diagram illustrating an example of a control result by the control device for the electric vehicle in the embodiment on a flat road. 図12Cは、降坂路において、一実施の形態における電動車両の制御装置による制御結果の一例を示す図である。FIG. 12C is a diagram illustrating an example of a control result by the control device for the electric vehicle in the embodiment on the downhill road. 図13は、図12に示すモータ回転速度ωmのグラフの縦軸のスケールを拡大した図であり、図13(a)~(c)はそれぞれ、登坂路、平坦路、降坂路で停車する場合の制御結果を示している。FIG. 13 is an enlarged view of the scale of the vertical axis of the motor rotation speed ωm graph shown in FIG. 12, and FIGS. 13 (a) to 13 (c) are cases where the vehicle stops on an uphill road, a flat road, and a downhill road, respectively. The control result is shown.
 図1は、一実施の形態における電動車両の制御装置を備えた電気自動車の主要構成を示すブロック図である。本発明の電動車両の制御装置は、車両の駆動源の一部または全部として電動モータを備え、電動モータの駆動力により走行可能な電動車両に適用可能である。電動車両には、電気自動車だけでなく、ハイブリッド自動車や燃料電池自動車も含まれる。特に、本実施形態における電動車両の制御装置は、アクセルペダルの操作のみで車両の加減速や停止を制御することができる車両に適用することができる。この車両では、ドライバは、加速時にアクセルペダルを踏み込み、減速時や停止時には、踏み込んでいるアクセルペダルの踏み込み量を減らすか、または、アクセルペダルの踏み込み量をゼロとする。 FIG. 1 is a block diagram illustrating a main configuration of an electric vehicle including an electric vehicle control device according to one embodiment. The control device for an electric vehicle according to the present invention is applicable to an electric vehicle that includes an electric motor as a part or all of a drive source of the vehicle and can travel by the driving force of the electric motor. Electric vehicles include not only electric vehicles but also hybrid vehicles and fuel cell vehicles. In particular, the control device for an electric vehicle in the present embodiment can be applied to a vehicle that can control acceleration / deceleration and stop of the vehicle only by operating an accelerator pedal. In this vehicle, the driver depresses the accelerator pedal at the time of acceleration and reduces the amount of depression of the accelerator pedal at the time of deceleration or stop, or sets the depression amount of the accelerator pedal to zero.
 モータコントローラ2は、車速V、アクセル開度AP、電動モータ(三相交流モータ)4の回転子位相α、電動モータ4の電流iu、iv、iw等の車両状態を示す信号をデジタル信号として入力し、入力された信号に基づいて、電動モータ4を制御するためのPWM信号を生成する。また、生成したPWM信号に応じてインバータ3の駆動信号を生成する。 The motor controller 2 inputs signals indicating the vehicle state such as the vehicle speed V, the accelerator opening AP, the rotor phase α of the electric motor (three-phase AC motor) 4, the currents iu, iv, iw of the electric motor 4 as digital signals. Then, a PWM signal for controlling the electric motor 4 is generated based on the input signal. Further, a drive signal for the inverter 3 is generated according to the generated PWM signal.
 インバータ3は、例えば、各相ごとに2個のスイッチング素子(例えば、IGBTやMOS-FET等のパワー半導体素子)を備え、駆動信号に応じてスイッチング素子をオン/オフすることにより、バッテリ1から供給される直流の電流を交流に変換し、電動モータ4に所望の電流を流す。 The inverter 3 includes, for example, two switching elements (for example, power semiconductor elements such as IGBTs and MOS-FETs) for each phase. The supplied direct current is converted into alternating current, and a desired current is passed through the electric motor 4.
 電動モータ4は、インバータ3から供給される交流電流により駆動力を発生し、減速機5およびドライブシャフト8を介して、左右の駆動輪9a、9bに駆動力を伝達する。また、電動モータ4は、車両の走行時に駆動輪9a、9bに連れ回されて回転するときに、回生駆動力を発生させることで、車両の運動エネルギーを電気エネルギーとして回収する。この場合、インバータ3は、電動モータ4の回生運転時に発生する交流電流を直流電流に変換して、バッテリ1に供給する。 The electric motor 4 generates a driving force by the alternating current supplied from the inverter 3, and transmits the driving force to the left and right driving wheels 9 a and 9 b via the speed reducer 5 and the drive shaft 8. The electric motor 4 collects the kinetic energy of the vehicle as electric energy by generating a regenerative driving force when the electric motor 4 rotates with the drive wheels 9a and 9b and rotates when the vehicle is traveling. In this case, the inverter 3 converts an alternating current generated during the regenerative operation of the electric motor 4 into a direct current and supplies the direct current to the battery 1.
 電流センサ7は、電動モータ4に流れる3相交流電流iu、iv、iwを検出する。ただし、3相交流電流iu、iv、iwの和は0であるため、任意の2相の電流を検出して、残りの1相の電流は演算により求めてもよい。 The current sensor 7 detects the three-phase alternating currents iu, iv, iw flowing through the electric motor 4. However, since the sum of the three-phase alternating currents iu, iv, and iw is 0, any two-phase current may be detected, and the remaining one-phase current may be obtained by calculation.
 回転センサ6は、例えば、レゾルバやエンコーダであり、電動モータ4の回転子位相αを検出する。 The rotation sensor 6 is, for example, a resolver or an encoder, and detects the rotor phase α of the electric motor 4.
 図2は、モータコントローラ2によって行われるモータ電流制御の処理の流れを示すフローチャートである。 FIG. 2 is a flowchart showing a flow of processing of motor current control performed by the motor controller 2.
 ステップS201では、車両状態を示す信号を入力する。ここでは、車速V(km/h)、アクセル開度AP(%)、電動モータ4の回転子位相α(rad)、電動モータ4の回転速度Nm(rpm)、電動モータ4に流れる三相交流電流iu、iv、iw、バッテリ1とインバータ3間の直流電圧値Vdc(V)を入力する。 In step S201, a signal indicating the vehicle state is input. Here, the vehicle speed V (km / h), the accelerator opening AP (%), the rotor phase α (rad) of the electric motor 4, the rotational speed Nm (rpm) of the electric motor 4, and the three-phase AC flowing through the electric motor 4 Currents iu, iv, iw, and a DC voltage value Vdc (V) between the battery 1 and the inverter 3 are input.
 車速V(km/h)は、図示しない車速センサや、他のコントローラより通信にて取得する。または、回転子機械角速度ωmにタイヤ動半径Rを乗算し、ファイナルギアのギア比で除算することにより車速v(m/s)を求め、3600/1000を乗算することにより単位変換して、車速V(km/h)を求める。 The vehicle speed V (km / h) is acquired by communication from a vehicle speed sensor (not shown) or another controller. Alternatively, the rotor mechanical angular speed ωm is multiplied by the tire dynamic radius R, and the vehicle speed v (m / s) is obtained by dividing by the gear ratio of the final gear, and unit conversion is performed by multiplying by 3600/1000 to obtain the vehicle speed. V (km / h) is obtained.
 アクセル開度AP(%)は、図示しないアクセル開度センサから取得するか、図示しない車両コントローラ等の他のコントローラから通信にて取得する。 Accelerator opening AP (%) is acquired from an accelerator opening sensor (not shown), or is acquired by communication from another controller such as a vehicle controller (not shown).
 電動モータ4の回転子位相α(rad)は、回転センサ6から取得する。電動モータ4の回転速度Nm(rpm)は、回転子角速度ω(電気角)を電動モータ4の極対数pで除算して、電動モータ4の機械的な角速度であるモータ回転速度ωm(rad/s)を求め、求めたモータ回転速度ωmに60/(2π)を乗算することによって求める。回転子角速度ωは、回転子位相αを微分することによって求める。 The rotor phase α (rad) of the electric motor 4 is acquired from the rotation sensor 6. The rotational speed Nm (rpm) of the electric motor 4 is obtained by dividing the rotor angular speed ω (electrical angle) by the pole pair number p of the electric motor 4 to obtain a motor rotational speed ωm (rad / s) is obtained by multiplying the obtained motor rotational speed ωm by 60 / (2π). The rotor angular velocity ω is obtained by differentiating the rotor phase α.
 電動モータ4に流れる電流iu、iv、iw(A)は、電流センサ7から取得する。 The currents iu, iv, iw (A) flowing through the electric motor 4 are acquired from the current sensor 7.
 直流電圧値Vdc(V)は、バッテリ1とインバータ3間の直流電源ラインに設けられた電圧センサ(不図示)、または、バッテリコントローラ(不図示)から送信される電源電圧値から求める。 The DC voltage value Vdc (V) is obtained from a power supply voltage value transmitted from a voltage sensor (not shown) provided on a DC power supply line between the battery 1 and the inverter 3 or a battery controller (not shown).
 ステップS202では、第1のトルク目標値Tm1を設定する。具体的には、ステップS201で入力されたアクセル開度APおよびモータ回転速度ωmに基づいて、図3に示すアクセル開度-トルクテーブルを参照することにより、第1のトルク目標値Tm1を設定する。上述したように、本実施形態における電動車両の制御装置は、アクセルペダルの操作のみで車両の加減速や停止を制御することができる車両に適用可能であり、少なくともアクセルペダルの全閉時に車両を停止させることを可能とするために、図3に示すアクセル開度-トルクテーブルでは、アクセル開度が0(全閉)の時のモータ回生量が大きくなるように、モータトルクが設定されている。すなわち、モータ回転数が正の時であって、少なくともアクセル開度が0(全閉)の時には、回生制動力が働くように、負のモータトルクが設定されている。ただし、アクセル開度-トルクテーブルは、図3に示すものに限定されることはない。 In step S202, a first torque target value Tm1 * is set. Specifically, the first torque target value Tm1 * is set by referring to the accelerator opening-torque table shown in FIG. 3 based on the accelerator opening AP and the motor rotational speed ωm input in step S201. To do. As described above, the control device for an electric vehicle according to the present embodiment is applicable to a vehicle that can control acceleration / deceleration and stop of the vehicle only by operating the accelerator pedal, and at least when the accelerator pedal is fully closed, In order to make it possible to stop, in the accelerator opening-torque table shown in FIG. 3, the motor torque is set so that the motor regeneration amount becomes large when the accelerator opening is 0 (fully closed). . That is, the negative motor torque is set so that the regenerative braking force works when the motor speed is positive and at least when the accelerator opening is 0 (fully closed). However, the accelerator opening-torque table is not limited to that shown in FIG.
 ステップS203では、電動車両が停止するように制御する停止制御処理を行う。具体的には、モータ回転速度が所定値より高い場合には、ステップS202で算出した第1のトルク目標値Tm1をモータトルク指令値Tmに設定する。また、モータ回転速度が所定値以下の場合には、後述する速度制御を行うことにより、モータ回転速度の低下とともに外乱トルク推定値Tdに収束する第2のトルク目標値Tm2をモータトルク指令値Tmに設定する。この第2のトルク目標値Tm2は、登坂路では正トルク、降坂路では負トルク、平坦路では概ねゼロである。これにより、勾配に関わらず、停車状態を維持することができる。停止制御処理の詳細については、後述する。 In step S203, stop control processing for controlling the electric vehicle to stop is performed. Specifically, when the motor rotation speed is higher than a predetermined value, the first torque target value Tm1 * calculated in step S202 is set as the motor torque command value Tm * . When the motor rotation speed is equal to or lower than a predetermined value, the second torque target value Tm2 * that converges to the disturbance torque estimated value Td as the motor rotation speed decreases is obtained by performing speed control described later. Set to Tm * . This second torque target value Tm2 * is positive torque on an uphill road, negative torque on a downhill road, and almost zero on a flat road. Thereby, a stop state can be maintained irrespective of a gradient. Details of the stop control process will be described later.
 ステップS204では、ステップS203で算出したモータトルク目標値Tm、モータ回転速度ωmおよび直流電圧値Vdcに基づいて、d軸電流目標値id、q軸電流目標値iqを求める。例えば、トルク指令値、モータ回転速度、および直流電圧値と、d軸電流目標値およびq軸電流目標値との関係を定めたテーブルを予め用意しておいて、このテーブルを参照することにより、d軸電流目標値id、q軸電流目標値iqを求める。 In step S204, the d-axis current target value id * and the q-axis current target value iq * are obtained based on the motor torque target value Tm * , the motor rotation speed ωm, and the DC voltage value Vdc calculated in step S203. For example, by preparing in advance a table that defines the relationship between the torque command value, the motor rotation speed, the DC voltage value, the d-axis current target value, and the q-axis current target value, and referring to this table, The d-axis current target value id * and the q-axis current target value iq * are obtained.
 ステップS205では、d軸電流idおよびq軸電流iqをそれぞれ、ステップS204で求めたd軸電流目標値idおよびq軸電流目標値iqと一致させるための電流制御を行う。このため、まず初めに、ステップS201で入力された三相交流電流値iu、iv、iwと、電動モータ4の回転子位相αとに基づいて、d軸電流idおよびq軸電流iqを求める。続いて、d軸、q軸電流指令値id、iqと、d軸、q軸電流id、iqとの偏差から、d軸、q軸電圧指令値vd、vqを算出する。なお、算出したd軸、q軸電圧指令値vd、vqに対して、d-q直交座標軸間の干渉電圧を相殺するために必要な非干渉電圧を加算するようにしてもよい。 In step S205, current control is performed to match the d-axis current id and the q-axis current iq with the d-axis current target value id * and the q-axis current target value iq * obtained in step S204, respectively. For this reason, first, the d-axis current id and the q-axis current iq are obtained based on the three-phase AC current values iu, iv, iw input in step S201 and the rotor phase α of the electric motor 4. Subsequently, d-axis and q-axis voltage command values vd and vq are calculated from a deviation between the d-axis and q-axis current command values id * and iq * and the d-axis and q-axis current id and iq. A non-interference voltage necessary for canceling the interference voltage between the dq orthogonal coordinate axes may be added to the calculated d-axis and q-axis voltage command values vd and vq.
 次に、d軸、q軸電圧指令値vd、vqと、電動モータ4の回転子位相αから、三相交流電圧指令値vu、vv、vwを求める。そして、求めた三相交流電圧指令値vu、vv、vwと直流電圧値Vdcから、PWM信号tu(%)、tv(%)、tw(%)を求める。このようにして求めたPWM信号tu、tv、twにより、インバータ3のスイッチング素子を開閉することによって、電動モータ4をトルク指令値Tmで指示された所望のトルクで駆動することができる。 Next, three-phase AC voltage command values vu, vv, vw are obtained from the d-axis and q-axis voltage command values vd, vq and the rotor phase α of the electric motor 4. Then, PWM signals tu (%), tv (%), and tw (%) are obtained from the obtained three-phase AC voltage command values vu, vv, and vw and the DC voltage value Vdc. The electric motor 4 can be driven with a desired torque indicated by the torque command value Tm * by opening and closing the switching element of the inverter 3 by the PWM signals tu, tv, and tw obtained in this way.
 ここで、ステップS203で行われる停止制御処理について説明する前に、本実施形態における電動車両の制御装置において、モータトルクTmからモータ回転速度ωmまでの伝達特性Gp(s)について説明する。 Here, before describing the stop control process performed in step S203, the transfer characteristic Gp (s) from the motor torque Tm to the motor rotation speed ωm in the control apparatus for the electric vehicle in the present embodiment will be described.
 図4は、車両の駆動力伝達系をモデル化した図であり、同図における各パラメータは、以下に示すとおりである。
:電動モータのイナーシャ
:駆動輪のイナーシャ
M:車両の重量
:駆動系の捻り剛性
:タイヤと路面の摩擦に関する係数
N:オーバーオールギヤ比
r:タイヤの荷重半径
ω:電動モータの角速度
:トルク目標値
:駆動輪のトルク
F:車両に加えられる力
V:車両の速度
ω:駆動輪の角速度
FIG. 4 is a diagram in which a driving force transmission system of a vehicle is modeled, and each parameter in the figure is as shown below.
J m : inertia of electric motor J w : inertia of driving wheel M: vehicle weight K d : torsional rigidity of driving system K t : coefficient relating to friction between tire and road surface N: overall gear ratio r: tire load radius ω m : the electric motor angular velocity T m: torque target value T d: a torque of the drive wheel F: force applied to the vehicle V: vehicle speed omega w: angular velocity of the drive wheel
 そして、図4より、以下の運動方程式を導くことができる。ただし、式(1)~(3)中の符号の右上に付されているアスタリスク()は、時間微分を表している。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Then, the following equation of motion can be derived from FIG. However, the asterisk ( * ) attached to the upper right of the symbols in the formulas (1) to (3) represents time differentiation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 式(1)~(5)で示す運動方程式に基づいて、電動モータ4のトルク目標値Tmからモータ回転速度ωmまでの伝達特性Gp(s)を求めると、次式(6)で表される。
Figure JPOXMLDOC01-appb-M000006
When the transfer characteristic Gp (s) from the torque target value Tm of the electric motor 4 to the motor rotation speed ωm is obtained based on the equation of motion represented by the equations (1) to (5), it is expressed by the following equation (6). .
Figure JPOXMLDOC01-appb-M000006
 ただし、式(6)中の各パラメータは、次式(7)で表される。
Figure JPOXMLDOC01-appb-M000007
However, each parameter in Formula (6) is represented by following Formula (7).
Figure JPOXMLDOC01-appb-M000007
 式(6)に示す伝達関数の極と零点を調べると、次式(8)の伝達関数に近似することができ、1つの極と1つの零点は極めて近い値を示す。これは、次式(8)のαとβが極めて近い値を示すことに相当する。
Figure JPOXMLDOC01-appb-M000008
When the poles and zeros of the transfer function shown in equation (6) are examined, it can be approximated to the transfer function of the following equation (8), and one pole and one zero show extremely close values. This corresponds to that α and β in the following formula (8) show extremely close values.
Figure JPOXMLDOC01-appb-M000008
 従って、式(8)における極零相殺(α=βと近似する)を行うことにより、次式(9)に示すように、Gp(s)は、(2次)/(3次)の伝達特性を構成する。
Figure JPOXMLDOC01-appb-M000009
Therefore, by performing pole-zero cancellation (approximate α = β) in equation (8), Gp (s) is transmitted as (second order) / (third order) as shown in the following equation (9). Configure characteristics.
Figure JPOXMLDOC01-appb-M000009
 続いて、図2のステップS203で行われる停止制御処理の詳細について説明する。図5は、停止制御処理を実現するためのブロック図である。 Next, details of the stop control process performed in step S203 of FIG. 2 will be described. FIG. 5 is a block diagram for realizing the stop control process.
 速度制御器501は、検出されたモータ回転速度ωmを、漸近的にゼロに収束するモータ回転速度目標値ωmに一致させるための速度制御トルクTωを算出する。 The speed controller 501 calculates a speed control torque Tω for making the detected motor rotational speed ωm coincide with the motor rotational speed target value ωm * that asymptotically converges to zero.
 図6は、速度制御器501で行われる処理、すなわち、モータ回転速度ωmとモータ回転速度目標値ωmに基づいて、速度制御トルクTωを算出する方法を説明するためのブロック図である。 FIG. 6 is a block diagram for explaining a process performed by the speed controller 501, that is, a method for calculating the speed control torque Tω based on the motor rotation speed ωm and the motor rotation speed target value ωm * .
 モータ回転速度目標値設定器601は、速度制御開始時点のモータ回転速度ωmにより一意に決まるモータ回転速度目標値ωmを設定する。モータ回転速度目標値ωmの設定方法について、図7を用いて説明する。 The motor rotation speed target value setter 601 sets a motor rotation speed target value ωm * that is uniquely determined by the motor rotation speed ωm at the time of starting speed control. A method for setting the motor rotation speed target value ωm * will be described with reference to FIG.
 制御ブロック701は、モータ回転速度目標値ωmにゲインKvrefを乗算することによって、規範トルクTrefを求める。ただし、ゲインKvrefは、電動車両を停止させるために必要な負(マイナス)の値であり、例えば、実験データ等により適宜設定される。これにより、規範トルクTrefは、モータ回転速度目標値ωmが大きいほど、大きい回生制動力が得られるトルクとして設定される。 The control block 701 obtains the reference torque Tref by multiplying the motor rotational speed target value ωm * by the gain Kvref. However, the gain Kvref is a negative (minus) value necessary for stopping the electric vehicle, and is appropriately set based on, for example, experimental data. Thus, the reference torque Tref is set as a torque that provides a larger regenerative braking force as the motor rotation speed target value ωm * is larger.
 制御ブロック702は、制御ブロック701によって求められた規範トルクTrefをモデルGp(s)に入力することによって、モータ回転速度目標値ωmを求める。規範トルクTrefは、規範トルクTrefからモータ回転速度目標値ωmまでの動特性に対して粘性(ダンパ)要素として働くため、停車間際においてモータ回転速度目標値ωmは漸近的に滑らかにゼロに収束する。これにより、前後加速度にショックのない滑らかな停車を実現することができる。 The control block 702 obtains the motor rotation speed target value ωm * by inputting the reference torque Tref obtained by the control block 701 into the model Gp (s). Since the reference torque Tref acts as a viscous (damper) element for the dynamic characteristics from the reference torque Tref to the motor rotational speed target value ωm * , the motor rotational speed target value ωm * is asymptotically smoothly zeroed immediately before stopping. Converge. Thereby, the smooth stop without a shock in the longitudinal acceleration can be realized.
 ここで、後述するフラグ設定器504によって設定されるフラグが0から1に変わる際に、モータ回転速度目標値ωmがモータ回転速度ωmとなるように、モデルGp(s)を初期化する。すなわち、制御ブロック702は、フラグ設定器504によって設定されるフラグが0から1に変わる際に、フラグが0から1に変わる際(モータ回転速度ωmが所定値以下となる際)のモータ回転速度ωmを、モータ回転速度目標値ωmとして出力する。 Here, the model Gp (s) is initialized so that the motor rotation speed target value ωm * becomes the motor rotation speed ωm when the flag set by the flag setting unit 504 described later changes from 0 to 1. That is, when the flag set by the flag setting unit 504 changes from 0 to 1, the control block 702 changes the motor rotation speed when the flag changes from 0 to 1 (when the motor rotation speed ωm becomes a predetermined value or less). ωm is output as the motor rotation speed target value ωm * .
 図6のモデルマッチング補償器602は、R(s)/(Gp(s)・(1-R(s)))なる伝達特性を有するフィルタであり、モータ回転速度目標値ωmとモータ回転速度ωmとの差分に対してフィルタリング処理を行うことにより、モータ回転速度ωmとモータ回転速度目標値ωmが一致するための速度制御トルクTωを算出する。ここで、R(s)はローパスフィルタであり、時定数はシミュレーションや実験を予め行うことにより、適切な値を設定しておく。 The model matching compensator 602 in FIG. 6 is a filter having a transfer characteristic of R 1 (s) / (Gp (s) · (1−R 1 (s))), and includes a motor rotation speed target value ωm * and a motor. By performing a filtering process on the difference from the rotational speed ωm, a speed control torque Tω for matching the motor rotational speed ωm with the motor rotational speed target value ωm * is calculated. Here, R 1 (s) is a low-pass filter, and the time constant is set to an appropriate value by performing simulations and experiments in advance.
 なお、モータ回転速度目標値設定器601は、図7に示すように、規範トルクTrefからモータ回転速度目標値ωmまでの動特性に対して粘性(ダンパ)要素を働かせることにより、ゼロへ漸近的に収束するモータ回転速度目標値ωmを算出しているが、モータ回転速度ωmに対する所定のトルクテーブルや、モータ回転速度ωmの減衰率を予め記憶した減衰率テーブル等を使って、制御開始からの時刻に応じたモータ回転速度目標値ωmを算出するようにしてもよい。 As shown in FIG. 7, the motor rotational speed target value setter 601 asymptotically approaches zero by applying a viscous (damper) element to the dynamic characteristics from the reference torque Tref to the motor rotational speed target value ωm *. The target motor speed ωm * that converges automatically is calculated, but control is started using a predetermined torque table for the motor speed ωm, an attenuation rate table that stores the attenuation rate of the motor speed ωm in advance, etc. The motor rotation speed target value ωm * corresponding to the time from may be calculated.
 図8は、減衰率テーブルの一例を示す図である。図8に示すように、モータ回転速度目標値ωmは、初期値ωm_init から、時間の経過とともに漸近的にゼロへ収束するような値が設定されている。モータ回転速度目標値ωmの初期値ωm_init は、後述するフラグ設定器504によって設定されるフラグが0から1に変わるときのモータ回転速度ωmとする。 FIG. 8 is a diagram illustrating an example of the attenuation rate table. As shown in FIG. 8, the motor rotation speed target value ωm * is set to a value that converges asymptotically to zero as time passes from the initial value ωm_init * . Motor rotation speed target value .omega.m * initial value .omega.m _init * is the motor rotational speed .omega.m when the flag set by the flag setting unit 504 to be described later is changed from 0 to 1.
 図5に戻って説明を続ける。外乱トルク推定器502は、検出されたモータ回転速度ωmとモータトルク指令値Tmに基づいて、外乱トルク推定値Tdを算出する。 Returning to FIG. The disturbance torque estimator 502 calculates a disturbance torque estimated value Td based on the detected motor rotation speed ωm and the motor torque command value Tm * .
 図9は、外乱トルク推定器502によって行われる処理、すなわち、モータ回転速度ωmとモータトルク指令値Tmに基づいて、外乱トルク推定値Tdを算出する方法を説明するためのブロック図である。 FIG. 9 is a block diagram for explaining a process performed by the disturbance torque estimator 502, that is, a method for calculating the disturbance torque estimated value Td based on the motor rotation speed ωm and the motor torque command value Tm * .
 制御ブロック901は、H(s)/Gp(s)なる伝達特性を有するフィルタとしての機能を担っており、モータ回転速度ωmを入力してフィルタリング処理を行うことにより、第1のモータトルク推定値を算出する。H(s)は、分母次数と分子次数との差分が、モデルGp(s)の分母次数と分子次数との差分以上となる伝達特性を有するローパスフィルタである。 The control block 901 functions as a filter having a transfer characteristic of H (s) / Gp (s), and performs the filtering process by inputting the motor rotation speed ωm, whereby the first motor torque estimated value is obtained. Is calculated. H (s) is a low-pass filter having a transfer characteristic in which the difference between the denominator order and the numerator order is equal to or greater than the difference between the denominator order and the numerator order of the model Gp (s).
 制御ブロック702は、H(s)なる伝達特性を有するローパスフィルタとしての機能を担っており、モータトルク指令値Tmを入力してフィルタリング処理を行うことにより、第2のモータトルク推定値を算出する。 The control block 702 functions as a low-pass filter having a transfer characteristic of H (s), and calculates a second motor torque estimated value by performing a filtering process by inputting the motor torque command value Tm *. To do.
 減算器903は、第1のモータトルク推定値から第2のモータトルク推定値を減算することによって、外乱トルク推定値Tdを算出する。 The subtractor 903 calculates the disturbance torque estimated value Td by subtracting the second motor torque estimated value from the first motor torque estimated value.
 なお、本実施形態では、外乱トルクは、図9に示す通り、外乱オブザーバにより推定するが、車両前後Gセンサ等の計測器を使って推定してもよい。 In the present embodiment, the disturbance torque is estimated by a disturbance observer as shown in FIG. 9, but may be estimated by using a measuring instrument such as a vehicle front-rear G sensor.
 ここで、外乱としては、空気抵抗、乗員数や積載量に起因する車両質量の変動によるモデル化誤差、タイヤの転がり抵抗、路面の勾配抵抗等が考えられるが、停車間際で支配的となる外乱要因は勾配抵抗である。外乱要因は運転条件により異なるが、外乱トルク推定器502は、モータトルク指令値Tmとモータ回転速度ωmと車両モデルGp(s)に基づいて、外乱トルク推定値Tdを算出するので、上述した外乱要因を一括して推定することができる。これにより、いかなる運転条件においても、減速からの滑らかな停車を実現することができる。 Here, disturbances include air resistance, modeling errors due to vehicle mass fluctuations due to the number of passengers and loading capacity, tire rolling resistance, road surface gradient resistance, etc., but disturbances that are dominant immediately before stopping The factor is gradient resistance. Although the disturbance factor varies depending on the driving conditions, the disturbance torque estimator 502 calculates the disturbance torque estimated value Td based on the motor torque command value Tm * , the motor rotation speed ωm, and the vehicle model Gp (s). Disturbance factors can be estimated collectively. This makes it possible to realize a smooth stop from deceleration under any driving condition.
 図5に戻って説明を続ける。減算器503は、速度制御器501によって算出された速度制御トルクTωと、外乱トルク推定器502によって算出された外乱トルク推定値Tdとの偏差を演算することによって、第2のトルク目標値Tm2を算出する。 Returning to FIG. The subtractor 503 calculates the second torque target value Tm2 * by calculating the deviation between the speed control torque Tω calculated by the speed controller 501 and the disturbance torque estimated value Td calculated by the disturbance torque estimator 502 . Is calculated.
 フラグ設定器504は、外乱トルク推定値Td、モータ回転速度ωm、および、第1のトルク目標値Tm1に基づいて、モータトルク指令値Tmを、第1のトルク目標値Tm1と第2のトルク目標値Tm2のどちらに設定するのかを示すフラグを設定する。 Flag setter 504, the disturbance torque estimated value Td, the motor rotational speed .omega.m, and, based on the first torque target value Tm1 *, the motor torque command value Tm *, the first torque target value Tm1 * and the second A flag indicating which of the torque target value Tm2 * is to be set is set.
 図10は、フラグ設定器504によって行われるフラグ設定の処理手順を示すフローチャートである。ステップS1001では、次式(10)の関係が成り立つか否かを判定する。
Figure JPOXMLDOC01-appb-M000010
FIG. 10 is a flowchart showing a flag setting processing procedure performed by the flag setting unit 504. In step S1001, it is determined whether the relationship of following Formula (10) is materialized.
Figure JPOXMLDOC01-appb-M000010
 式(10)の関係が成り立つと判定すると、モータ回転速度が所定値以下であると判断して、ステップS1002に進み、式(10)の関係が成り立たないと判定すると、モータ回転速度が所定値より高いと判断して、ステップS1003に進む。 If it is determined that the relationship of Expression (10) holds, it is determined that the motor rotation speed is equal to or less than a predetermined value, and the process proceeds to step S1002, and if it is determined that the relationship of Expression (10) does not hold, the motor rotation speed is a predetermined value. It is determined that the value is higher, and the process proceeds to step S1003.
 ステップS1002では、フラグを1にセットする。 In step S1002, the flag is set to 1.
 一方、ステップS1003では、フラグを0にセットする。 On the other hand, in step S1003, the flag is set to 0.
 図5のモータトルク指令値設定器505は、フラグが0にセットされている場合には、第1のトルク目標値Tm1をモータトルク指令値Tmとして設定し、フラグが1にセットされている場合には、第2のトルク目標値Tm2をモータトルク指令値Tmとして設定する。なお、停車状態を維持するため、第2のトルク目標値Tm2は、登坂路では正トルク、降坂路では負トルク、平坦路では概ねゼロに収束する。 When the flag is set to 0, the motor torque command value setter 505 in FIG. 5 sets the first torque target value Tm1 * as the motor torque command value Tm * , and the flag is set to 1. If it is, the second torque target value Tm2 * is set as the motor torque command value Tm * . In order to maintain the stop state, the second torque target value Tm2 * converges to a positive torque on an uphill road, a negative torque on a downhill road, and approximately zero on a flat road.
 上述したように、本実施形態では、まず、モータ回転速度ωmとモータ回転速度目標値ωmとの差分をモデルマッチング補償器602に入力して、フィルタリング処理を施すことにより、モータ回転速度ωmがモータ回転速度目標値ωmと一致するための速度制御トルクTωを算出している。続いて、モータトルク指令値Tmとモータ回転速度ωmに基づいて外乱オブザーバ(図9参照)により、外乱トルク推定値Tdを算出している。そして、速度制御トルクTωから外乱トルク推定値Tdを減算することによって算出された第2のトルク目標値Tm2を停車間際(モータ回転速度が所定値以下)のモータトルク指令値とすることで、モータトルクのみで、勾配に依らず、滑らかに停車して、停車状態を保持できる構成としている。 As described above, in the present embodiment, first, the difference between the motor rotation speed ωm and the motor rotation speed target value ωm * is input to the model matching compensator 602 and subjected to the filtering process, whereby the motor rotation speed ωm is obtained. A speed control torque Tω for matching with the motor rotation speed target value ωm * is calculated. Subsequently, a disturbance torque estimated value Td is calculated by a disturbance observer (see FIG. 9) based on the motor torque command value Tm * and the motor rotation speed ωm. Then, by setting the second torque target value Tm2 * calculated by subtracting the disturbance torque estimated value Td from the speed control torque Tω as the motor torque command value immediately before stopping (the motor rotation speed is a predetermined value or less), Only the motor torque is used, and the vehicle can be stopped smoothly without depending on the gradient, and the stopped state can be maintained.
 そのような構成とは別に、モータ回転速度ωmとモータ回転速度目標値ωmとの差分をPI制御などの積分動作を含む補償器にてフィルタリング処理することで得られた値をモータトルク指令値に設定する構成としても、同様の効果を得ることができる。この構成の詳細を図11に示す。 Aside from such a configuration, a value obtained by filtering the difference between the motor rotation speed ωm and the motor rotation speed target value ωm * by a compensator including an integration operation such as PI control is used as a motor torque command value. The same effect can be obtained even with the configuration set to. Details of this configuration are shown in FIG.
 図11において、モータ回転速度目標値設定器1101は、図6に示すモータ回転速度目標値設定器601が行う方法と同様の方法により、モータ回転速度目標値ωmを設定する。 In FIG. 11, a motor rotation speed target value setter 1101 sets a motor rotation speed target value ωm * by a method similar to the method performed by the motor rotation speed target value setter 601 shown in FIG.
 制御ブロック1102は、モータ回転速度目標値ωmとモータ回転速度ωmとの差分に対して、積分動作が含まれる補償器にてフィルタリング処理を施すことにより、モータ回転速度ωmとモータ回転速度目標値ωmが一致し、かつ、外乱トルクを補償する第2のトルク目標値Tm2を算出する。制御ブロック1102内のkp、kiはそれぞれ、比例ゲイン、積分ゲインを表しており、シミュレーションや実験を予め行うことにより、適切な値を設定しておく。 The control block 1102 performs a filtering process on a difference between the motor rotation speed target value ωm * and the motor rotation speed ωm by a compensator including an integration operation, so that the motor rotation speed ωm and the motor rotation speed target value are obtained. A second torque target value Tm2 * that ωm * matches and compensates for disturbance torque is calculated. Kp and ki in the control block 1102 represent a proportional gain and an integral gain, respectively, and appropriate values are set by performing simulations and experiments in advance.
 図12A~図12Cは、一実施の形態における電動車両の制御装置による制御結果の一例を示す図である。図12A~図12Cはそれぞれ、登坂路、平坦路、降坂路で停車する場合の制御結果であり、各図において、上から順にモータ回転速度、モータトルク指令値、車両前後加速度を表している。 FIG. 12A to FIG. 12C are diagrams showing an example of a control result by the control device for an electric vehicle in one embodiment. 12A to 12C show control results when the vehicle stops on an uphill road, a flat road, and a downhill road. In each figure, the motor rotation speed, the motor torque command value, and the vehicle longitudinal acceleration are shown in order from the top.
 時刻t0やt1では、モータ回転速度が所定値より高い状況であり、図2のステップS202で算出される第1のトルク目標値Tm1に基づいて、電動モータ4の減速が行われる。 At times t0 and t1, the motor rotation speed is higher than a predetermined value, and the electric motor 4 is decelerated based on the first torque target value Tm1 * calculated in step S202 of FIG.
 時刻t2は、モータ回転速度が所定値以下となり、フラグ設定器504によってフラグが1にセットされるタイミングである。この時刻t2では、モータトルク指令値Tmが第1のトルク目標値Tm1から第2のトルク目標値Tm2に切り替わる。 Time t2 is a timing at which the motor rotational speed becomes equal to or lower than a predetermined value and the flag is set to 1 by the flag setting unit 504. At this time t2, the motor torque command value Tm * is switched from the first torque target value Tm1 * to the second torque target value Tm2 * .
 時刻t3では、図12A~図12Cに示すように、登坂路、平坦路、降坂路によらず、モータトルク指令値Tmは外乱トルク推定値Tdに収束し、モータ回転速度はゼロに漸近的に収束する。これにより、停車時に前後方向の加速度振動のない滑らかな停車を実現することができる。時刻t3以後は、停車状態を維持する。 At time t3, as shown in FIGS. 12A to 12C, the motor torque command value Tm * converges to the disturbance torque estimated value Td regardless of the uphill road, the flat road, or the downhill road, and the motor rotation speed is asymptotic to zero. Converge to. Thereby, the smooth stop without the acceleration vibration of the front-back direction at the time of a stop is realizable. After time t3, the stopped state is maintained.
 図13は、図12に示すモータ回転速度ωmのグラフの縦軸のスケールを拡大した図であり、図13(a)~(c)はそれぞれ、登坂路、平坦路、降坂路で停車する場合の制御結果を示している。 FIG. 13 is an enlarged view of the scale of the vertical axis of the motor rotation speed ωm graph shown in FIG. 12, and FIGS. 13 (a) to 13 (c) are cases where the vehicle stops on an uphill road, a flat road, and a downhill road, respectively. The control result is shown.
 図13(a)~(c)から明らかなように、路面の勾配に依存する外乱トルク推定値Tdに応じて、速度制御を開始するタイミング(モータ回転速度)が異なる。図13に示す例では、登坂路では、モータ回転速度ωm1で速度制御を開始するが、平坦路では、モータ回転速度ωm1より低いモータ回転速度ωm2で速度制御を開始する。また、降坂路では、モータ回転速度ωm2より低いモータ回転速度ωm3で速度制御を開始する。 As is clear from FIGS. 13A to 13C, the timing (motor rotation speed) at which the speed control is started differs depending on the estimated disturbance torque Td that depends on the road surface gradient. In the example shown in FIG. 13, the speed control is started at the motor rotation speed ωm1 on the uphill road, but the speed control is started at the motor rotation speed ωm2 lower than the motor rotation speed ωm1 on the flat road. On the downhill road, speed control is started at a motor rotation speed ωm3 lower than the motor rotation speed ωm2.
 以上、一実施の形態における電動機の制御装置によれば、電動モータ4を走行駆動源とし、アクセル操作量が減少またはゼロになると、電動モータ4の回生制動力により減速する電動車両の制御装置であって、モータ回転速度ωmを漸近的にゼロに収束させるモータ回転速度目標値ωmを設定し、アクセル操作量が減少またはゼロになった場合に、モータ回転速度ωmをモータ回転速度目標値ωmに一致させる制御を行う。これにより、平坦路において、前後方向における加速度振動のない滑らかな減速を実現することができ、かつ、停車状態を保持することができる。また、フットブレーキなどの機械的制動手段によるブレーキ制動力を使わなくても車両を停車状態まで減速させることができるので、停車間際においても電動モータ4を回生運転させることができ、電費を向上させることができる。さらに、アクセル操作のみで車両の加減速および停車を実現することができるので、アクセルペダルとブレーキペダルの踏み替え操作が必要なく、ドライバの負担を軽減することができる。 As described above, according to the control device for an electric motor in one embodiment, the control device for an electric vehicle that uses the electric motor 4 as a travel drive source and decelerates by the regenerative braking force of the electric motor 4 when the accelerator operation amount decreases or becomes zero. Then, when the motor rotation speed target value ωm * that sets the motor rotation speed ωm asymptotically to zero is set, and the accelerator operation amount decreases or becomes zero, the motor rotation speed ωm is changed to the motor rotation speed target value ωm. Control to match * . Thereby, on a flat road, smooth deceleration without acceleration vibration in the front-rear direction can be realized, and a stopped state can be maintained. In addition, since the vehicle can be decelerated to the stop state without using a brake braking force by a mechanical braking means such as a foot brake, the electric motor 4 can be regenerated even immediately before the stop, thereby improving the power consumption. be able to. Furthermore, since acceleration / deceleration and stopping of the vehicle can be realized only by the accelerator operation, it is not necessary to switch between the accelerator pedal and the brake pedal, and the burden on the driver can be reduced.
 ドライバがブレーキペダルを用いて車両を停車させる場合、運転に慣れていないドライバはアクセルペダルを強く踏みすぎて、停車時に車両の前後方向に加速度振動が発生する。また、アクセル操作のみで車両の加減速および停車を実現する車両において、一定の減速度で減速および停車を実現しようとすると、減速時に十分な減速を実現するためには減速度を大きくする必要があるため、停車時に車両の前後方向に加速度振動が発生する。しかしながら、一実施の形態における電動車両の制御装置によれば、どのようなドライバであっても、上述したように、アクセル操作のみで滑らかな減速および停車を実現することができる。 When the driver stops the vehicle using the brake pedal, the driver who is not used to driving depresses the accelerator pedal too much, and acceleration vibration occurs in the front-rear direction of the vehicle when the vehicle stops. In addition, in a vehicle that realizes acceleration / deceleration and stopping of the vehicle only by the accelerator operation, if it is attempted to reduce and stop at a constant deceleration, it is necessary to increase the deceleration in order to achieve sufficient deceleration during deceleration. Therefore, acceleration vibration occurs in the front-rear direction of the vehicle when the vehicle is stopped. However, according to the control device for an electric vehicle in one embodiment, any driver can realize smooth deceleration and stop by only the accelerator operation as described above.
 特に、一実施の形態における電動機の制御装置によれば、アクセル操作量が減少またはゼロになり、かつ、モータ回転速度ωmが所定値以下になると、モータ回転速度ωmを漸近的にゼロに収束するモータ回転速度目標値ωmに一致させる制御を行う。これにより、モータ回転速度ωmが所定値より高い場合と、所定値以下の場合とにおいて、それぞれ別のモータ回転速度目標値、すなわち、車両の減速度を設定することができ、より滑らかな減速を実現することができる。 In particular, according to the motor control device in one embodiment, when the accelerator operation amount decreases or becomes zero and the motor rotation speed ωm is equal to or less than a predetermined value, the motor rotation speed ωm asymptotically converges to zero. Control to match the motor rotation speed target value ωm * is performed. As a result, when the motor rotational speed ωm is higher than the predetermined value and when it is lower than the predetermined value, different motor rotational speed target values, that is, deceleration of the vehicle can be set, and smoother deceleration can be achieved. Can be realized.
 また、モータ回転速度ωmを漸近的にゼロに収束するモータ回転速度目標値ωmに一致させる制御を開始するときのモータ回転速度ωmを、モータ回転速度目標値ωmの初期値に設定するので、モータ回転速度ωmを漸近的にゼロに収束するモータ回転速度目標値ωmに一致させる制御を開始する前後において、トルク段差が生じず、減速状態から滑らかな停車を実現することができる。 Further, the motor rotational speed .omega.m at the time of starting the control to match the motor rotational speed target value .omega.m * to asymptotically converge to zero motor speed .omega.m, so set the initial value of the motor rotational speed target value .omega.m * Thus, before and after the start of control for matching the motor rotation speed ωm to the motor rotation speed target value ωm * that asymptotically converges to zero, a torque step does not occur, and a smooth stop can be realized from the deceleration state.
 また、モータ回転速度ωmと比較する所定値を、外乱トルク推定値Tdに基づいて決定するので、モータ回転速度ωmを漸近的にゼロに収束するモータ回転速度目標値ωmに一致させる制御を開始するタイミングを外乱トルク推定値Tdに応じて変更することができる。これにより、路面の勾配によらず、モータ回転速度ωmを漸近的にゼロに収束するモータ回転速度目標値ωmに一致させる制御を開始する前後において、トルク段差が生じず、減速状態から滑らかな停車を実現することができる。 Further, since the predetermined value to be compared with the motor rotational speed ωm is determined based on the estimated disturbance torque Td, control for matching the motor rotational speed ωm to the motor rotational speed target value ωm * that asymptotically converges to zero is started. The timing to perform can be changed according to the disturbance torque estimated value Td. As a result, a torque step does not occur before and after the start of control for making the motor rotation speed ωm coincident with the motor rotation speed target value ωm * that asymptotically converges to zero, regardless of the road surface gradient. A stop can be realized.
 一実施の形態における電動機の制御装置によれば、アクセル操作量が減少またはゼロになった場合に、モータトルクを、モータ回転速度ωmの低下とともに外乱トルク推定値Tdに収束させる。これにより、登坂路、平坦路、降坂路によらず、前後方向における加速度振動のない滑らかな減速を停車間際で実現することができ、かつ、停車状態を保持することができる。 According to the motor control device in one embodiment, when the accelerator operation amount decreases or becomes zero, the motor torque is converged to the disturbance torque estimated value Td as the motor rotation speed ωm decreases. Accordingly, smooth deceleration without acceleration vibration in the front-rear direction can be realized just before the stop regardless of the uphill road, the flat road, and the downhill road, and the stop state can be maintained.
 外乱トルクは、登坂路では正の値、降坂路では負の値として推定するので、坂路においても滑らかに停車し、フットブレーキを必要とせずに停車状態を保持することができる。また、平坦路では外乱トルクをゼロとして推定するので、平坦路において、滑らかに停車し、フットブレーキを必要とせずに停車状態を保持することができる。なお、ここにいう外乱トルクとは、外乱トルクを相殺するのに必要なトルク値のことであり、図5中の外乱トルク推定器502で算出される推定値Tdに対して符号を反転させた値である。すなわち、速度制御トルクTωがゼロであるときの第2のトルク目標値Tm2のことである。 Since the disturbance torque is estimated as a positive value on an uphill road and a negative value on a downhill road, the disturbance torque can be smoothly stopped even on a slope road, and the stopped state can be maintained without requiring a foot brake. Further, since the disturbance torque is estimated as zero on a flat road, the vehicle can be stopped smoothly on the flat road, and the stopped state can be maintained without requiring a foot brake. Here, the disturbance torque is a torque value necessary to cancel the disturbance torque, and the sign is inverted with respect to the estimated value Td calculated by the disturbance torque estimator 502 in FIG. Value. That is, the second torque target value Tm2 * when the speed control torque Tω is zero.
 また、一実施の形態における電動機の制御装置によれば、車両へのトルク入力とモータの回転速度の伝達特性のモデルGp(s)に基づいて、漸近的にゼロに収束するモータ回転速度目標値ωmを設定する。具体的には、任意に求めた規範トルクをモデルGp(s)に入力することによって、モータ回転速度目標値ωmを算出するので、滑らかな停車を実現することができる。 In addition, according to the motor control apparatus in one embodiment, the motor rotational speed target value that asymptotically converges to zero based on the torque input to the vehicle and the model Gp (s) of the transmission characteristic of the rotational speed of the motor. Set ωm * . Specifically, since the motor rotation speed target value ωm * is calculated by inputting the arbitrarily determined reference torque to the model Gp (s), a smooth stop can be realized.
 また、車両へのトルク入力とモータの回転速度の伝達特性のモデルGp(s)に基づいて、外乱トルクを推定するので、精度良く外乱トルク推定値Tdを求めることができる。 Further, since the disturbance torque is estimated based on the model Gp (s) of the torque input to the vehicle and the transfer characteristic of the rotational speed of the motor, the disturbance torque estimated value Td can be obtained with high accuracy.
 モータ回転速度ωmと比較する所定値を決定するために用いる外乱トルク推定値Tdと、モータトルクを外乱トルク推定値Tdに収束させるために用いる外乱トルク推定値Tdとを共用するので、演算負荷を低減することができる。 Since the disturbance torque estimated value Td used for determining a predetermined value to be compared with the motor rotation speed ωm and the disturbance torque estimated value Td used for converging the motor torque to the disturbance torque estimated value Td are shared, the calculation load is reduced. Can be reduced.
 本発明は、上述した一実施の形態に限定されることはない。例えば、上述した実施形態では、アクセル操作量が減少またはゼロになった場合に、漸近的にゼロに収束するモータ回転速度目標値ωmにモータ回転速度ωmを一致させる制御を行うものとして説明した。しかし、車輪速や車速、ドライブシャフトの回転速度などの速度パラメータは、モータ回転速度ωmと比例関係にあるため、漸近的にゼロに収束する速度パラメータ目標値に速度パラメータを一致させる制御を行うようにしてもよい。 The present invention is not limited to the embodiment described above. For example, in the above-described embodiment, when the accelerator operation amount decreases or becomes zero, the control is performed so that the motor rotation speed ωm is matched with the motor rotation speed target value ωm * that asymptotically converges to zero. . However, since speed parameters such as wheel speed, vehicle speed, and drive shaft rotation speed are proportional to the motor rotation speed ωm, control is performed so that the speed parameter matches the speed parameter target value that asymptotically converges to zero. It may be.

Claims (12)

  1.  モータを走行駆動源とし、アクセル操作量が減少またはゼロになると、前記モータの回生制動力により減速する電動車両の制御装置であって、
     前記アクセル操作量を検出するアクセル操作量検出手段と、
     電動車両の走行速度に比例する速度パラメータを検出する速度パラメータ検出手段と、
     前記速度パラメータを漸近的にゼロに収束させる速度パラメータ目標値を設定する速度パラメータ目標値設定手段と、
     前記アクセル操作量が減少またはゼロになった場合に、前記速度パラメータを前記速度パラメータ目標値に一致させる速度制御手段と、
    を備える電動車両の制御装置。
    A control device for an electric vehicle that uses a motor as a travel drive source and decelerates by the regenerative braking force of the motor when the accelerator operation amount decreases or becomes zero,
    An accelerator operation amount detection means for detecting the accelerator operation amount;
    Speed parameter detecting means for detecting a speed parameter proportional to the traveling speed of the electric vehicle;
    Speed parameter target value setting means for setting a speed parameter target value for asymptotically converging the speed parameter to zero;
    Speed control means for matching the speed parameter with the speed parameter target value when the accelerator operation amount decreases or becomes zero;
    The control apparatus of the electric vehicle provided with.
  2.  請求項1に記載の電動車両の制御装置において、
     前記速度制御手段は、前記アクセル操作量が減少またはゼロになり、かつ、前記速度パラメータが所定値以下になると、前記速度パラメータを前記速度パラメータ目標値に一致させる制御を行う、
    電動車両の制御装置。
    In the control apparatus of the electric vehicle according to claim 1,
    The speed control means performs control to match the speed parameter with the speed parameter target value when the accelerator operation amount decreases or becomes zero and the speed parameter becomes a predetermined value or less.
    Control device for electric vehicle.
  3.  請求項2に記載の電動車両の制御装置において、
     前記速度パラメータ目標値設定手段は、前記速度制御手段によって前記速度パラメータを前記速度パラメータ目標値に一致させる制御を開始するときの速度パラメータを、前記速度パラメータ目標値の初期値に設定する、
    電動車両の制御装置。
    In the control apparatus of the electric vehicle according to claim 2,
    The speed parameter target value setting means sets a speed parameter when starting control for causing the speed control means to match the speed parameter to the speed parameter target value as an initial value of the speed parameter target value.
    Control device for electric vehicle.
  4.  請求項2または請求項3に記載の電動車両の制御装置において、
     外乱トルクを推定する外乱トルク推定手段をさらに備え、
     前記所定値を前記推定された外乱トルクに基づいて決定する、
    電動車両の制御装置。
    In the control apparatus of the electric vehicle according to claim 2 or claim 3,
    A disturbance torque estimating means for estimating the disturbance torque;
    Determining the predetermined value based on the estimated disturbance torque;
    Control device for electric vehicle.
  5.  請求項1に記載の電動車両の制御装置において、
     外乱トルクを推定する外乱トルク推定手段をさらに備え、
     前記速度制御手段は、前記アクセル操作量が減少またはゼロになった場合に、モータトルクを、前記速度パラメータの低下とともに前記推定された外乱トルクに収束させるトルク制御手段を有する、
    電動車両の制御装置。
    In the control apparatus of the electric vehicle according to claim 1,
    A disturbance torque estimating means for estimating the disturbance torque;
    The speed control means includes torque control means for converging the motor torque to the estimated disturbance torque together with a decrease in the speed parameter when the accelerator operation amount decreases or becomes zero.
    Control device for electric vehicle.
  6.  請求項5に記載の電動車両の制御装置において、
     前記外乱トルク推定手段は、前記外乱トルクを、登坂路では正の値、降坂路では負の値として推定する、
    電動車両の制御装置。
    In the control apparatus of the electric vehicle according to claim 5,
    The disturbance torque estimating means estimates the disturbance torque as a positive value on an uphill road and a negative value on a downhill road,
    Control device for electric vehicle.
  7.  請求項5または請求項6に記載の電動車両の制御装置において、
     前記外乱トルク推定手段は、平坦路では前記外乱トルクをゼロとする、
    電動車両の制御装置。
    In the control apparatus of the electric vehicle according to claim 5 or 6,
    The disturbance torque estimating means sets the disturbance torque to zero on a flat road,
    Control device for electric vehicle.
  8.  請求項5から請求項7のいずれか一項に記載の電動車両の制御装置において、
     前記速度パラメータ目標値設定手段は、車両へのトルク入力とモータの回転速度の伝達特性のモデルGp(s)に基づいて、前記速度パラメータ目標値を設定する、
    電動車両の制御装置。
    In the control apparatus of the electric vehicle as described in any one of Claims 5-7,
    The speed parameter target value setting means sets the speed parameter target value based on a torque input to the vehicle and a model Gp (s) of a transfer characteristic of the rotational speed of the motor.
    Control device for electric vehicle.
  9.  請求項5から請求項8のいずれか一項に記載の電動車両の制御装置において、
     前記外乱トルク推定手段は、車両へのトルク入力とモータの回転速度の伝達特性のモデルGp(s)に基づいて、前記外乱トルクを推定する、
    電動車両の制御装置。
    In the control apparatus of the electric vehicle as described in any one of Claims 5-8,
    The disturbance torque estimation means estimates the disturbance torque based on a model Gp (s) of transmission characteristics of torque input to the vehicle and the rotational speed of the motor.
    Control device for electric vehicle.
  10.  請求項5から請求項9のいずれか一項に記載の電動車両の制御装置において、
     前記所定値を前記推定された外乱トルクに基づいて決定する、
    電動車両の制御装置。
    In the control apparatus of the electric vehicle as described in any one of Claims 5-9,
    Determining the predetermined value based on the estimated disturbance torque;
    Control device for electric vehicle.
  11.  請求項1から請求項10のいずれか一項に記載の電動車両の制御装置において、
     前記速度パラメータは、前記モータの回転速度である、
    電動車両の制御装置。
    In the control apparatus of the electric vehicle as described in any one of Claims 1-10,
    The speed parameter is a rotation speed of the motor.
    Control device for electric vehicle.
  12.  モータを走行駆動源とし、アクセル操作量が減少またはゼロになると、前記モータの回生制動力により減速する電動車両の制御方法であって、
     前記アクセル操作量を検出するステップと、
     電動車両の走行速度に比例する速度パラメータを検出するステップと、
     前記速度パラメータを漸近的にゼロに収束させる速度パラメータ目標値を設定するステップと、
     前記アクセル操作量が減少またはゼロになった場合に、前記速度パラメータを前記速度パラメータ目標値に一致させるステップと、
    を備える電動車両の制御方法。
    A control method for an electric vehicle that uses a motor as a travel drive source and decelerates by the regenerative braking force of the motor when the accelerator operation amount decreases or becomes zero.
    Detecting the accelerator operation amount;
    Detecting a speed parameter proportional to the traveling speed of the electric vehicle;
    Setting a speed parameter target value for asymptotically converging the speed parameter to zero;
    When the accelerator operation amount decreases or becomes zero, the speed parameter is matched with the speed parameter target value;
    An electric vehicle control method comprising:
PCT/JP2013/082248 2013-11-29 2013-11-29 Control device for electric vehicle and control method for electric vehicle WO2015079574A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/082248 WO2015079574A1 (en) 2013-11-29 2013-11-29 Control device for electric vehicle and control method for electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/082248 WO2015079574A1 (en) 2013-11-29 2013-11-29 Control device for electric vehicle and control method for electric vehicle

Publications (1)

Publication Number Publication Date
WO2015079574A1 true WO2015079574A1 (en) 2015-06-04

Family

ID=53198559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082248 WO2015079574A1 (en) 2013-11-29 2013-11-29 Control device for electric vehicle and control method for electric vehicle

Country Status (1)

Country Link
WO (1) WO2015079574A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123573A1 (en) * 2017-12-20 2019-06-27 三菱電機株式会社 Electric motor control device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07505998A (en) * 1993-02-11 1995-06-29 ゼネラル・エレクトリック・カンパニイ Electric vehicle drive train with rollback detection and compensation
JP2001218302A (en) * 2000-02-04 2001-08-10 Railway Technical Res Inst Electric brake control method and device thereof
JP2007100327A (en) * 2005-09-30 2007-04-19 Hitachi Constr Mach Co Ltd Driving controller for construction machinery
JP2010188859A (en) * 2009-02-18 2010-09-02 Nissan Motor Co Ltd Controller for hybrid vehicle
JP2010273508A (en) * 2009-05-25 2010-12-02 Nissan Motor Co Ltd Device for control of electric vehicle
WO2013115042A1 (en) * 2012-01-31 2013-08-08 日産自動車株式会社 Regenerative brake control device for electrically driven vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07505998A (en) * 1993-02-11 1995-06-29 ゼネラル・エレクトリック・カンパニイ Electric vehicle drive train with rollback detection and compensation
JP2001218302A (en) * 2000-02-04 2001-08-10 Railway Technical Res Inst Electric brake control method and device thereof
JP2007100327A (en) * 2005-09-30 2007-04-19 Hitachi Constr Mach Co Ltd Driving controller for construction machinery
JP2010188859A (en) * 2009-02-18 2010-09-02 Nissan Motor Co Ltd Controller for hybrid vehicle
JP2010273508A (en) * 2009-05-25 2010-12-02 Nissan Motor Co Ltd Device for control of electric vehicle
WO2013115042A1 (en) * 2012-01-31 2013-08-08 日産自動車株式会社 Regenerative brake control device for electrically driven vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAMICHI OGASA ET AL.: "Plant-test of Electrical Braking to Zero Speed for Railway Vehicles", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN . D, vol. 119, no. 3, 1999, pages 405 - 411 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123573A1 (en) * 2017-12-20 2019-06-27 三菱電機株式会社 Electric motor control device
CN111684708A (en) * 2017-12-20 2020-09-18 三菱电机株式会社 Control device for motor
CN111684708B (en) * 2017-12-20 2023-04-28 三菱电机株式会社 Control device for motor

Similar Documents

Publication Publication Date Title
JP6330820B2 (en) Electric vehicle control device and electric vehicle control method
JP6135775B2 (en) Electric vehicle control device and electric vehicle control method
JP6233420B2 (en) Electric vehicle control device and electric vehicle control method
JP6492399B2 (en) Electric vehicle control device and electric vehicle control method
JP6402782B2 (en) Electric vehicle control device and electric vehicle control method
JP6402783B2 (en) Electric vehicle control device and electric vehicle control method
JPWO2018138780A1 (en) Control method and control apparatus for electric vehicle
JP6540716B2 (en) Vehicle control apparatus and vehicle control method
WO2018138781A1 (en) Electric vehicle control method and control device
CN114599544B (en) Control method for electric vehicle and control device for electric vehicle
JP6729002B2 (en) Electric vehicle control method and control device
JP6237789B2 (en) Electric vehicle control device and electric vehicle control method
JP7056219B2 (en) Motor vehicle control method and motor vehicle control device
WO2015079574A1 (en) Control device for electric vehicle and control method for electric vehicle
JP2018085900A (en) Electric-vehicular control method and electric-vehicular control apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13898193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP