WO2015079509A1 - Lithium ion-conductive oxide and electrical storage device - Google Patents

Lithium ion-conductive oxide and electrical storage device Download PDF

Info

Publication number
WO2015079509A1
WO2015079509A1 PCT/JP2013/081832 JP2013081832W WO2015079509A1 WO 2015079509 A1 WO2015079509 A1 WO 2015079509A1 JP 2013081832 W JP2013081832 W JP 2013081832W WO 2015079509 A1 WO2015079509 A1 WO 2015079509A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
conductive oxide
lithium
ion conductive
oxygen
Prior art date
Application number
PCT/JP2013/081832
Other languages
French (fr)
Japanese (ja)
Inventor
孝博 山木
純 川治
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/081832 priority Critical patent/WO2015079509A1/en
Publication of WO2015079509A1 publication Critical patent/WO2015079509A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the present invention relates to lithium ion conductive oxides and storage devices.
  • a lithium ion secondary battery is an electricity storage device having two electrode layers containing an active material capable of absorbing and desorbing lithium ions, and an electrolyte for conducting lithium ions interposed therebetween.
  • Lithium ion secondary batteries are characterized by high volumetric energy density and weight energy density as compared with other secondary batteries. Therefore, it is widely used as a power source for portable devices such as mobile phones and notebook computers. Furthermore, application to industrial applications such as power supplies for mobile units such as hybrid vehicles and electric vehicles and power supplies for power generation systems such as solar power generation and wind power generation is also in progress.
  • lithium ion secondary batteries currently put to practical use use an electrolyte solution using a flammable organic solvent as an electrolyte. Therefore, there is a risk of liquid leakage or ignition. Therefore, a highly safe lithium ion secondary battery with less risk is desired.
  • the ceramic electrolyte material is, for example, a sulfide-based material containing a lithium-sulfur bond. It is characterized in that the atomic radius of sulfur is large and the polarizability is high, so that it is excellent in lithium conductivity and easily deformed by an external pressure, so that the contact between the electrolyte and the electrode is excellent.
  • sulfides are unstable in the atmosphere, and there are problems in production and use, such as generation of hydrogen sulfide by absorption of water.
  • the ceramic electrolyte material is an oxide material which is stable in the atmosphere and is excellent in heat resistance.
  • a phosphate-based material containing a lithium-oxygen-phosphorus bond there is a phosphate-based material containing a lithium-oxygen-phosphorus bond.
  • NASICON-type glass ceramics Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 ; LAGP and Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 are known.
  • these phosphoric acid materials have problems in reduction resistance, and can not be used on the negative electrode side which is a reduction environment.
  • lithium ion conductive oxides having lithium, lanthanum and zirconium as main constituent elements have been reported.
  • This material is excellent in reduction resistance, is stable even in contact with lithium, and can be used at a site where it is in contact with a negative electrode. That is, since they are excellent in chemical stability, they are suitable as solid electrolytes for all solid lithium secondary batteries excellent in high temperature durability. However, its lithium ion conductivity was not always sufficient.
  • Patent Document 1 the oxide mainly containing lithium, lanthanum and zirconium takes Li 7 La 3 Zr 2 O 12 as a basic chemical composition, and has a so-called garnet type structure of cubic crystal as its crystal structure. By taking it, it is stated that it exhibits excellent lithium ion conductivity.
  • Patent Document 2 and Patent Document 3 disclose various element substitution bodies to Li, La and Zr sites in order to improve the ion conductivity of this Li 7 La 3 Zr 2 O 12 .
  • An object of the present invention is to provide a lithium ion conductive oxide excellent in lithium ion conductivity.
  • a lithium ion conductive oxide excellent in lithium ion conductivity can be provided. Problems, configurations, and effects other than those described above will be apparent from the description of the embodiments below.
  • Li 7 La 3 Zr 2 O 12 which is a cubic Li—La—Zr—O-based solid electrolyte material, is composed of lithium ions and a polyanion skeleton through which lithium ions can pass.
  • the polyanion skeleton is a partial structure consisting of La-oxygen bond and Zr-oxygen bond other than Li.
  • a dodecahedral structure in which eight atoms of oxygen are coordinated around La, and six oxygen atoms around Zr Consists of an ordered octahedral structure. Lithium ions conduct by passing through the voids formed by this polyanion skeleton.
  • the fact that the ratio of lithium ions is too small as the chemical composition means that the number of lithium ions responsible for lithium conductivity decreases, and the conductivity decreases.
  • the ratio of lithium ions is too high, the above-mentioned voids may be filled with lithium ions, and the migration destination of lithium ions may decrease, whereby the conductivity may be lowered.
  • the lithium ion conductive oxide in one embodiment of the present invention contains lithium, lanthanum, zirconium, oxygen as a chemical composition.
  • lithium, lanthanum, zirconium and oxygen are main constituent elements as chemical compositions, and halogen is added.
  • the added halogen is preferably replaced with oxygen which constitutes the crystal structure of the lithium ion conductive oxide.
  • the garnet-type lithium-lanthanum-zirconium oxide is not particularly limited as long as it is a compound having lithium, lanthanum, zirconium and oxygen as main constituent elements and having a garnet-type crystal structure.
  • garnet-type Li 7 La 3 Zr 2 O 12 is preferable.
  • part of divalent oxygen is replaced by monovalent halogen, and the ratio of lithium decreases to maintain charge neutrality. That is, it is presumed that the lithium ion can easily pass by increasing the space in which the lithium ion can move, and the function of enhancing the conductivity can be obtained.
  • the shape of the lithium ion conductive oxide of the present invention is distorted by replacement of oxygen and halogen having different ion radius and electronegativity in the aforementioned polyanion skeleton. It is presumed that this distortion increases the size of the air gap, facilitates the passage of lithium ions, and has the effect of enhancing the conductivity.
  • Fluorine is particularly desirable as the halogen to be added. Although its effect is not clear, it is presumed that the polyanion skeleton has an effect of making the strain gap larger because fluorine is more electronegative than oxygen. In addition, since the ion radius is close to that of oxygen as compared with other halogens, there is a feature that it is difficult to form different phases even if the substitution amount is increased.
  • the composition ratio of the halogen to be added is preferably 0.5% or more and 10% or less of the ratio of oxygen atoms in the basic composition of the lithium ion conductive oxide, particularly 2% or more and 10% or less, and further 2% or more and 7% The following are more preferable. If it is less than 0.5%, the effect of the addition may not be sufficiently obtained, and if it exceeds 10%, there is a possibility of the formation of impurities or different phases.
  • the lithium ion conductive oxide in one embodiment of the present invention has high ion conductivity because the crystal structure is mainly cubic, in particular cubic as a whole. This is because the passage of lithium ions becomes continuous because the voids formed by the polyanion skeleton are continuously formed. Depending on the composition and production conditions, for example, tetragonal crystals other than cubic crystals may occur, but it is desirable to keep cubic crystals.
  • the lattice constant a of cubic crystals in the lithium ion conductive oxide is preferably 1.310 nm to 1.285 nm.
  • the lithium ion conductive oxide in one Embodiment of this invention can substitute the cation suitably by elements other than the main structure element.
  • the site of lithium can be replaced by Al or Ga.
  • La or Zr can be replaced with another transition metal element such as Nb, Ta, Ti, or Va, or a point light metal element such as Si or Ge.
  • the present invention controls its anion, and the effect of substitution of such a cationic element does not disturb the intention of the present invention.
  • the chemical composition and crystal structure of the solid electrolyte in the battery it can be known by disassembling the battery in an inert atmosphere, taking out the solid electrolyte, performing appropriate pretreatment and performing instrumental analysis.
  • the crystal structure can be known by structural analysis by X-ray diffraction or electron beam diffraction.
  • the chemical composition can be known by inductively coupled plasma spectroscopy (ICP), photoelectron spectroscopy (XPS) analysis, X-ray fluorescence (XRF) analysis or the like.
  • the manufacturing method of lithium ion conductive oxide in one embodiment of this invention, It can prepare by the method similar to the synthesis method of a general inorganic compound. That is, it can be prepared by weighing a plurality of compounds serving as raw materials so as to obtain a desired chemical composition, mixing uniformly, and firing. Furthermore, the shaped product (pellet) of the lithium ion conductive oxide of the present invention can be obtained by shaping and heat-treating the obtained fired product.
  • the suitable oxide of Li, La, and Zr, a hydroxide, carbonate, a sulfate, nitrate, and various organic acid salts can be used.
  • each halide can be used depending on the type of halogen to be added.
  • a compound containing two or more cations as a raw material. For example, it is possible to obtain a complex compound raw material by neutralization precipitation from a solution in which an organic acid salt or alkoxide of Li, La or Zr is dissolved, or by solvent drying.
  • the steps of mixing / pulverizing, molding, firing, and heat treatment of the raw materials may be repeated as necessary.
  • mixing and pulverizing conditions, heat treatment and calcination conditions and the like can be appropriately selected.
  • raw materials may be appropriately added when the mixing steps are repeated, and the target composition ratio may be obtained in the final firing step.
  • baking or heat treatment be included in the preparation process. Specifically, baking or heat treatment at 1000 ° C. or more and 1200 ° C. or less is desirable.
  • the raw material composition should have an excess of the volatile component with respect to the desired composition, and the pellet may be covered with the powder of the same component, in some cases, with the excessive volatile component added.
  • means such as using a baking vessel with a lid are effective.
  • a plurality of transition metal oxides may be heat-treated at high temperature to prepare a composite oxide, and then heat-treated at a lower temperature with volatile lithium or halide.
  • the method of mixing the raw materials is not particularly limited, and a planetary ball mill, a jet mill, an attritor, etc. can be used, and dry or wet mixing can be used.
  • a solvent used for wet mixing lower alcohols such as ethanol can be used.
  • the means for molding is not particularly limited, and a crushed sample may be added to a mold to use uniaxial pressing, hot pressing, cold isostatic pressing (CIP), hot isostatic pressing (HIP) or the like.
  • CIP cold isostatic pressing
  • HIP hot isostatic pressing
  • Other manufacturing methods are also possible, for example, sputtering film formation.
  • the lithium ion conductive oxide in one embodiment of the present invention can be applied to a storage device that utilizes lithium ion conduction.
  • FIG. 1 is a schematic cross-sectional view showing an example of the all-solid-state lithium battery which is one of the electricity storage devices according to an embodiment of the present invention.
  • the all solid lithium battery 100 includes a positive electrode layer 13, an electrolyte layer 12, a negative electrode layer 11, a battery case 14 also serving as a negative electrode terminal, a packing 15, a lid 16 also serving as a positive electrode terminal, and the like.
  • FIG. 2 is a schematic cross-sectional view of a laminated structure including the positive electrode layer 13, the electrolyte layer 12, and the negative electrode layer 11.
  • the positive electrode layer 13 comprises a positive electrode active material 25 capable of absorbing and desorbing lithium ions, a solid electrolyte 23 capable of conducting lithium ions, a current collector (not shown) such as aluminum, and optionally a carbon material etc. Have the agent 24.
  • the negative electrode layer 11 includes a negative electrode active material 21 capable of absorbing and desorbing lithium ions, a solid electrolyte 23 capable of conducting lithium ions, a current collector (not shown) such as copper and nickel, and optionally a carbon material And a negative electrode conductive agent 22.
  • the electrolyte layer 12 has a solid electrolyte 23.
  • the lithium ion conductive oxide of the present invention is contained as a solid electrolyte 23 in at least one of the positive electrode layer 13, the negative electrode layer 11, and the electrolyte layer 12 in the all solid lithium battery which is one of the electricity storage devices of the present invention.
  • the material of the battery case 14 and the lid 16 may be aluminum, stainless steel, nickel plated steel, or the like. Also, an exterior such as an aluminum laminate sheet lined with an insulating resin can be used.
  • the packing 15 is configured to maintain an inert atmosphere in the all solid lithium battery 100.
  • a fluorine resin such as tetrafluoroethylene can be used.
  • the laminated structure which consists of the negative electrode layer 11, the electrolyte layer 12, and the positive electrode layer 13 as shown in FIG.
  • a preparation method of the laminated structure which consists of the negative electrode layer 11, the electrolyte layer 12, and the positive electrode layer 13 as shown in FIG.
  • there is a method in which the negative electrode layer 11, the electrolyte layer 12, the positive electrode layer 13, or the positive electrode layer 13, the electrolyte layer 12, and the negative electrode layer 11 are sequentially stacked on the current collector.
  • a green sheet method can also be used.
  • the positive electrode active material 25 used in the all solid lithium secondary battery of the present embodiment is not particularly limited, and any known positive electrode active material capable of inserting and extracting lithium ions can be used.
  • a layered oxide that can be represented by the general formula LiMO 2 (where M is at least one transition metal).
  • M includes Ni, Co, Mn, Fe, Ti, Zr, Al, Mg, Cr, V and the like.
  • a spinel type oxide represented by a general formula LiMn 2-X M X O 4 (M is Co, Ni, Cu, etc.)
  • a layered solid solution oxide in which LiMO 2 and Li 2 MO 3 are solid-solved
  • a polyanion compound of the general formula LixMyAz (A is at least one of PO 4 , SiO 4 and BO 3 ) represented by olivine oxide (LiMPO 4 ) can be used.
  • LiMPO 4 olivine oxide
  • one obtained by adhering or coating a carbonaceous substance may be used.
  • the negative electrode active material 21 is not particularly limited, and any known negative electrode active material capable of inserting and extracting lithium ions can be used.
  • various carbon materials typified by graphite, metal lithium, alloy materials such as TiSn alloy and TiSi alloy, nitrides such as LiCoN, and oxides such as Li 4 Ti 5 O 12 and LiTiO 4 can be used.
  • the negative electrode conductive agent 22 and the positive electrode conductive agent 24 are not particularly limited as long as they are chemically stable in the electrode and have high electron conductivity.
  • Various carbon materials such as carbon black and carbon fibers, and metal powders such as gold, silver, copper, nickel, aluminum and titanium can also be used.
  • the above electrical storage device There is no limitation in particular in the form of the above electrical storage device.
  • a strip type positive electrode layer 13, an electrolyte layer 12, and a wound type obtained by winding a negative electrode layer 11 in a cylindrical or elliptical shape a stacked type in which a positive electrode layer 13, an electrolyte layer 12 and a negative electrode layer 11 are stacked.
  • a plurality of stacks may be stacked in series and may be of a tandem type housed in one outer package.
  • These storage devices have shapes such as a button type, a cylinder type, a square type, and a laminate type.
  • the application of the storage device of the present embodiment is not particularly limited.
  • power supplies such as electric vehicles and hybrid type electric vehicles, industrial equipment such as elevators having a system for recovering at least a part of kinetic energy, power supplies for various business use and household storage systems, and It can be used as various large power sources such as power sources for natural energy power generation systems such as solar light and wind power.
  • power supplies for various business use and household storage systems can be used as various large power sources such as power sources for natural energy power generation systems such as solar light and wind power.
  • it can also be used as various small-sized power supplies such as various types of portable devices, information devices, household electric devices, and electric tools.
  • the lithium ion conductive oxide (Li 6.2 La 3 Zr 2 O 11.2 F 0.8 ) in this example was prepared as follows.
  • Li (OH) ⁇ H 2 O, La (OH) 3 , ZrO 2 and LiF were used as raw materials. These raw materials were weighed based on a predetermined composition ratio. Here, Li (OH) ⁇ H 2 O was weighed in excess of 10%, and LiF was weighed in excess of 20%. These were dry mixed in a planetary crusher.
  • the lithium ion conductive oxide (Li 6.6 La 3 Zr 2 O 11.6 F 0.4 ) in this example was prepared as follows.
  • Example 2 In the same manner as in Example 1, weighing was performed based on a predetermined composition ratio. Here, Li (OH) ⁇ H 2 O was weighed in excess of 10%, and LiF was weighed in excess of 25%. Thereafter, the pellet was prepared in the same manner as in Example 1 to obtain a pellet of this example.
  • the lithium ion conductive oxide (Li 7 La 3 Zr 2 O 12 ) in this comparative example was prepared as follows.
  • Example 2 It was weighed based on the predetermined composition ratio as in Example 1 except for LiF. Here, Li (OH) ⁇ H 2 O was weighed at a 10% excess. Thereafter, the pellet was prepared in the same manner as in Example 1 to obtain a pellet of this comparative example.
  • the lithium ion conductive oxide (Li 6.5 La 3 Zr 2 O 11.5 Cl 0.5 ) in this example was prepared as follows.
  • Li (OH) ⁇ H 2 O, La (OH) 3 , ZrO 2 and LiCl were used as raw materials.
  • La (OH) 3 and ZrO 2 with a molar ratio of 1: 1 were dry-mixed by a planetary crusher, placed in an alumina crucible with a lid, sintered in an air atmosphere at 1400 ° C. for 24 hours by an electric furnace, and the same again Dry mixing and firing to obtain a composite oxide powder of La and Zr.
  • Li (OH) .H 2 O, La (OH) 3 and LiCl were weighed based on a predetermined composition ratio. Here, an excess of 10% of Li (OH) .H 2 O and an excess of 20% of LiCl were weighed. These were dry mixed in a planetary crusher.
  • the lithium ion conductive oxide (Li 6.7 La 3 Zr 2 O 11.7 Br 0.3 ) in this example was prepared as follows.
  • the lithium ion conductive oxide (Li 6.7 La 3 Zr 2 O 11.7 I 0.3 ) in this example was prepared as follows.
  • the lithium ion conductive oxide (Li 7 La 3 Zr 2 O 12 ) in this comparative example was prepared as follows.
  • Example 3 The same raw material as Example 3 except for LiCl was weighed based on a predetermined composition ratio. Here, Li (OH) ⁇ H 2 O was weighed at a 10% excess. Thereafter, the pellet was prepared in the same manner as in Example 3 to obtain a pellet of this comparative example.
  • the ion conductivity was evaluated using an alternating current impedance method.
  • a gold thin film with a thickness of about 200 nm was formed on both sides of the produced pellet by sputtering to form an electrode.
  • Current and voltage lines were attached from a gold electrode in an argon atmosphere glove box, and AC impedance measurement was performed at 25 ° C. The resistance value was determined from the radius of the obtained arc, and the conductivity was calculated using the electrode area and the sample thickness. In each sample, it was confirmed that the direct current resistance was very high, and the electron conductivity in the sample was sufficiently lower than the ion conductivity.
  • Table 1 shows the compositions of the lithium ion conductive oxides of Examples and Comparative Examples, and the evaluation of the ionic conductivity of the prepared pellets.
  • the ion conductivity of the lithium ion conductive oxide in Example 1, Example 2, Example 3, Example 4, Example 5, Example 5, Comparative Example 1 and Comparative Example 2 was 0.39 mS / cm, 0. 0, respectively. It was 32 mS / cm, 0.26 mS / cm, 0.24 mS / cm, 0.23 mS / cm, 0.23 mS / cm, and 0.17 mS / cm.
  • the ion conductivity of the lithium ion conductive oxides of Example 1 and Example 2 of Table 1 is higher than that of Comparative Example 1, and there is an effect of being excellent in lithium ion conductivity. Furthermore, the ion conductivity of the lithium ion conductive oxides of Example 3, Example 4 and Example 5 in Table 1 is higher than that of Comparative Example 2, and there is an effect of being excellent in lithium ion conductivity.
  • an all solid lithium battery of the present invention using the lithium ion conductive oxide of Example 1 as a solid electrolyte and an all solid lithium battery using the lithium ion conductive oxide of Comparative Example 1 were prepared.
  • the positive electrode layer 13 was formed as follows. A solid electrolyte powder having an average particle size of 0.8 ⁇ m, ketjen black as a conductive agent, and lithium borate (Li 3 BO 3 ) as a sintering aid are added to LiCoO 2 powder having an average particle size of 12 ⁇ m. After mixing in a mortar at a weight ratio of 60: 25: 10: 5, in particular, an ethyl cellulose solution was added and mixed to prepare a positive electrode paste. The solid electrolyte powder used in the heat treatment of Example 1 and Comparative Example 1 was a powder which was heat-treated without being pelletized.
  • pellets of 0.8 mm thickness prepared in Example 1 and Comparative Example 1 were used as the electrolyte layer 12.
  • the positive electrode paste was applied to one surface of the pellet, and heat treatment was performed at 400 ° C. for 30 minutes and at 700 ° C. for 2 hours to bake the positive electrode layer 13.
  • the thickness of the positive electrode layer 13 was about 20 ⁇ m.
  • a gold thin film having a thickness of about 200 nm was formed on the positive electrode layer 13 side by sputtering to form a current collection layer.
  • Li foil was stuck on the electrolyte layer side in the argon atmosphere glove box. Current and voltage lines were attached from the gold electrode and the Li foil respectively.
  • Table 1 shows the evaluation results of the type and discharge capacity of the solid electrolyte of the all solid lithium battery prepared.
  • the battery using the lithium ion conductive oxide of Example 1 had a higher discharge capacity than the battery using the lithium ion conductive oxide of Comparative Example 1.
  • Negative electrode layer 12 Electrolyte layer 13: Positive electrode layer 14: Battery case 15: Packing 16: Lid 21: Negative electrode active material 22: Negative electrode conductive agent 23: Solid electrolyte 24: Positive electrode conductive agent 25: Positive electrode active material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

The purpose of the present invention is to provide a lithium ion-conductive oxide having excellent lithium ion conductivity. A lithium ion-conductive oxide having a chemical composition containing lithium, lanthanum, zirconium and oxygen, wherein a halogen is added to the lithium ion-conductive oxide, the basic chemical composition of the lithium ion-conductive oxide is represented by the formula Li7-δLa3Zr2O12-δXδ (wherein X = at least one element selected from F, Cl, Br and I; and 0 < δ < 1), and the content of the halogen is 0.5 to 10% inclusive relative to the content of oxygen in the lithium ion-conductive oxide.

Description

リチウムイオン伝導性酸化物および蓄電デバイスLithium ion conductive oxide and storage device
 本発明は、リチウムイオン伝導性酸化物および蓄電デバイスに関する。 The present invention relates to lithium ion conductive oxides and storage devices.
 リチウムイオン二次電池は、リチウムイオンを吸蔵・放出することのできる活物質を含んだ2つの電極層と、その間にあるリチウムイオンを伝導する電解質とを有する蓄電デバイスである。リチウムイオン二次電池は他の二次電池と比較して、体積エネルギー密度および重量エネルギー密度が高い特徴がある。そのため、携帯電話やノートパソコンなどのポータブル機器用電源として広く用いられている。さらに、ハイブリッド自動車および電気自動車などの移動体用電源や、太陽光発電や風力発電などの発電システム用の電力貯蔵用電源、など産業用途への適用も進められている。 A lithium ion secondary battery is an electricity storage device having two electrode layers containing an active material capable of absorbing and desorbing lithium ions, and an electrolyte for conducting lithium ions interposed therebetween. Lithium ion secondary batteries are characterized by high volumetric energy density and weight energy density as compared with other secondary batteries. Therefore, it is widely used as a power source for portable devices such as mobile phones and notebook computers. Furthermore, application to industrial applications such as power supplies for mobile units such as hybrid vehicles and electric vehicles and power supplies for power generation systems such as solar power generation and wind power generation is also in progress.
 現在実用化されているリチウムイオン二次電池の多くが、電解質に可燃性の有機系溶媒を用いた電解液を使用している。そのため、液漏れや発火などの危険性がある。従って、これらの危険性の少ない高安全なリチウムイオン二次電池が望まれている。 Many of the lithium ion secondary batteries currently put to practical use use an electrolyte solution using a flammable organic solvent as an electrolyte. Therefore, there is a risk of liquid leakage or ignition. Therefore, a highly safe lithium ion secondary battery with less risk is desired.
 この課題の解決のため、電解質にリチウムイオン伝導性を有する固体電解質を用いたリチウムイオン二次電池の開発が進められている。特に固体電解質としてリチウムイオンを伝導する構造を有するセラミクス材料を用いた全固体リチウム二次電池は、高温での耐久性にも優れたものとして注目されている。 In order to solve this problem, development of a lithium ion secondary battery using a solid electrolyte having lithium ion conductivity as an electrolyte is in progress. In particular, an all solid lithium secondary battery using a ceramic material having a structure that conducts lithium ions as a solid electrolyte is attracting attention as one excellent in durability at high temperatures.
 このセラミクス電解質材料には、例えばリチウム-硫黄結合を含んだ硫化物系材料がある。その特徴は硫黄の原子半径が大きくかつ分極率が高いことから、リチウム伝導性に優れ、かつ外部圧力によって変形しやすいことから、電解質と電極との接触性が優れる特徴がある。しかし硫化物は大気中で不安定であり、水分吸収により硫化水素を発生させるなどの、製造上、使用上の課題がある。 The ceramic electrolyte material is, for example, a sulfide-based material containing a lithium-sulfur bond. It is characterized in that the atomic radius of sulfur is large and the polarizability is high, so that it is excellent in lithium conductivity and easily deformed by an external pressure, so that the contact between the electrolyte and the electrode is excellent. However, sulfides are unstable in the atmosphere, and there are problems in production and use, such as generation of hydrogen sulfide by absorption of water.
 セラミクス電解質材料としては他に、大気中でも安定であり、耐熱性に優れる酸化物系材料がある。例えば、リチウム-酸素-リン結合を含んだリン酸系材料がある。NASICON型のガラスセラミックスLi1.5Al0.5Ge1.5(PO43;LAGPやLi1.3Al0.3Ti1.7(PO43が知られている。しかしこれらのリン酸系材料は耐還元性に課題があり、還元環境である負極側で使用することができない。 Another example of the ceramic electrolyte material is an oxide material which is stable in the atmosphere and is excellent in heat resistance. For example, there is a phosphate-based material containing a lithium-oxygen-phosphorus bond. NASICON-type glass ceramics Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 ; LAGP and Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 are known. However, these phosphoric acid materials have problems in reduction resistance, and can not be used on the negative electrode side which is a reduction environment.
 最近、リチウム、ランタン、ジルコニウムを主構成元素とするリチウムイオン伝導性酸化物が報告されている。本材料は耐還元性に優れており、リチウムと接触させても安定であり負極と接触する部位でも使用できる。すなわち化学的安定性に優れていることから、高温耐久性に優れた全固体リチウム二次電池用の固体電解質として適している。しかしそのリチウムイオン伝導性は必ずしも十分ではなかった。 Recently, lithium ion conductive oxides having lithium, lanthanum and zirconium as main constituent elements have been reported. This material is excellent in reduction resistance, is stable even in contact with lithium, and can be used at a site where it is in contact with a negative electrode. That is, since they are excellent in chemical stability, they are suitable as solid electrolytes for all solid lithium secondary batteries excellent in high temperature durability. However, its lithium ion conductivity was not always sufficient.
 特許文献1には、このリチウム、ランタン、ジルコニウムを主構成元素とする酸化物は、基本化学組成としてLi7La3Zr212をとり、その結晶構造として立方晶の、通称ガーネット型構造をとることで、優れたリチウムイオン伝導性を発現することが述べられている。特許文献2および特許文献3には、このLi7La3Zr212をイオン伝導性を向上するべくLi、La、Zrサイトへの各種元素置換体が開示されている。 In Patent Document 1, the oxide mainly containing lithium, lanthanum and zirconium takes Li 7 La 3 Zr 2 O 12 as a basic chemical composition, and has a so-called garnet type structure of cubic crystal as its crystal structure. By taking it, it is stated that it exhibits excellent lithium ion conductivity. Patent Document 2 and Patent Document 3 disclose various element substitution bodies to Li, La and Zr sites in order to improve the ion conductivity of this Li 7 La 3 Zr 2 O 12 .
特開2011-195373号公報JP, 2011-195373, A 特開2009-23623号公報JP, 2009-23623, A 特開2010-272344号公報JP, 2010-272344, A
 上述の特許文献において、立方晶のLi7La3Zr212のカチオン元素を置換することによる性能向上が図られてきたが、そのイオン伝導度は、必ずしも十分ではなかった。本発明の目的は、リチウムイオン伝導性に優れたリチウムイオン伝導性酸化物を提供することにある。 In the above-mentioned patent documents, although the performance improvement was attempted by substituting the cation element of cubic Li 7 La 3 Zr 2 O 12 , the ion conductivity was not necessarily sufficient. An object of the present invention is to provide a lithium ion conductive oxide excellent in lithium ion conductivity.
 上記課題を解決するための本発明の特徴は、例えば以下の通りである。 The features of the present invention for solving the above problems are, for example, as follows.
 化学組成としてリチウム、ランタン、ジルコニウム、酸素を含むリチウムイオン伝導性酸化物であって、リチウムイオン伝導性酸化物にハロゲンが添加されているリチウムイオン伝導性酸化物。 A lithium ion conductive oxide containing lithium, lanthanum, zirconium and oxygen as a chemical composition, wherein a halogen is added to the lithium ion conductive oxide.
 本発明により、リチウムイオン伝導性に優れたリチウムイオン伝導性酸化物を提供できる。上記した以外の課題、構成および効果は以下の実施形態の説明により明らかにされる。 According to the present invention, a lithium ion conductive oxide excellent in lithium ion conductivity can be provided. Problems, configurations, and effects other than those described above will be apparent from the description of the embodiments below.
本発明の一実施形態における蓄電デバイスの一つである全固体リチウム電池の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the all-solid-state lithium battery which is one of the electrical storage devices in one Embodiment of this invention. 負極層、電解質層、正極層からなる積層構造の模式図である。It is a schematic diagram of the laminated structure which consists of a negative electrode layer, an electrolyte layer, and a positive electrode layer.
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。 Hereinafter, embodiments of the present invention will be described using the drawings and the like. The following description shows specific examples of the content of the present invention, and the present invention is not limited to these descriptions, and various modifications by those skilled in the art can be made within the scope of the technical idea disclosed herein. Changes and modifications are possible. Moreover, in all the drawings for explaining the present invention, what has the same function may attach the same numerals, and may omit explanation of the repetition.
 立方晶のLi-La-Zr-O系固体電解質材料であるLi7La3Zr212は、リチウムイオンと、リチウムイオンが通過できるポリアニオン骨格からなる。ポリアニオン骨格とは、Li以外のLa-酸素結合およびZr-酸素結合からなる部分構造で、理想的にはLa周囲に酸素が8原子配位する十二面体構造と、Zr周囲に酸素6原子が配意する八面体構造からなる。リチウムイオンはこのポリアニオン骨格で構成される空隙を通過することで伝導する。 Li 7 La 3 Zr 2 O 12, which is a cubic Li—La—Zr—O-based solid electrolyte material, is composed of lithium ions and a polyanion skeleton through which lithium ions can pass. The polyanion skeleton is a partial structure consisting of La-oxygen bond and Zr-oxygen bond other than Li. Ideally, a dodecahedral structure in which eight atoms of oxygen are coordinated around La, and six oxygen atoms around Zr Consists of an ordered octahedral structure. Lithium ions conduct by passing through the voids formed by this polyanion skeleton.
 ここで、その化学組成としてリチウムイオンの比率が小さすぎることは、リチウム伝導性を担うリチウムイオンの数が少なくなることで、その伝導性は低下する。一方で、リチウムイオンの比率が高すぎると上記の空隙がリチウムイオンで埋まり、リチウムイオンの移動先が減少することで伝導性が低下する可能性がある。 Here, the fact that the ratio of lithium ions is too small as the chemical composition means that the number of lithium ions responsible for lithium conductivity decreases, and the conductivity decreases. On the other hand, if the ratio of lithium ions is too high, the above-mentioned voids may be filled with lithium ions, and the migration destination of lithium ions may decrease, whereby the conductivity may be lowered.
 本発明の一実施形態におけるリチウムイオン伝導性酸化物は、化学組成としてリチウム、ランタン、ジルコニウム、酸素を含む。特に、化学組成としてリチウム、ランタン、ジルコニウム、酸素を主構成元素とし、ハロゲンが添加されている。添加されているハロゲンは、リチウムイオン伝導性酸化物の結晶構造を構成する酸素と置換されていることが好ましい。 The lithium ion conductive oxide in one embodiment of the present invention contains lithium, lanthanum, zirconium, oxygen as a chemical composition. In particular, lithium, lanthanum, zirconium and oxygen are main constituent elements as chemical compositions, and halogen is added. The added halogen is preferably replaced with oxygen which constitutes the crystal structure of the lithium ion conductive oxide.
 ガーネット型リチウムランタンジルコニウム酸化物は、リチウム、ランタン、ジルコニウム、酸素を主要構成元素として含有し、ガーネット型の結晶構造を有した化合物であれば特に制限されない。例えば、ガーネット型Li7La3Zr212が好ましい。一部の酸素がハロゲンと置換されているリチウムイオン伝導性酸化物の基本組成は、Li7+x―δLa3+xZr2-x12―δδ(X=F、Cl、Br、Iの1種以上、x≠0、-3<x<2、0<δ<1)、特に、Li7―δLa3Zr212―δδ(X=F、Cl、Br、Iの1種以上、0<δ<1)と記載される。その基本組成で分かるように、2価の酸素の一部が1価のハロゲンで置き換わり、電荷中性を保つためリチウムの比率が低下する。すなわちリチウムイオンが移動できる空隙を増やすことで、リチウムイオンが通過しやすくなり、伝導性を高める作用があると推定される。 The garnet-type lithium-lanthanum-zirconium oxide is not particularly limited as long as it is a compound having lithium, lanthanum, zirconium and oxygen as main constituent elements and having a garnet-type crystal structure. For example, garnet-type Li 7 La 3 Zr 2 O 12 is preferable. The basic composition of the lithium ion conductive oxide in which a part of the oxygen is replaced with halogen is Li 7 + x − δ La 3 + x Zr 2-x O 12 − δ x δ (X = F, Cl, Br And one or more kinds of I, x ≠ 0, -3 <x <2, 0 <δ <1), in particular, Li 7-δ La 3 Zr 2 O 12-δ X δ (X = F, Cl, Br, It is described that one or more kinds of I, 0 <δ <1). As can be seen from the basic composition, part of divalent oxygen is replaced by monovalent halogen, and the ratio of lithium decreases to maintain charge neutrality. That is, it is presumed that the lithium ion can easily pass by increasing the space in which the lithium ion can move, and the function of enhancing the conductivity can be obtained.
 さらに、本発明のリチウムイオン伝導性酸化物は、前述のポリアニオン骨格において、酸素とイオン半径と電気陰性度の異なるハロゲンが置き換わることで、形状に歪みが生ずると考えられる。この歪みにより空隙の大きさが増大し、リチウムイオンが通過しやすくなり、伝導性を高める作用があると推定される。 Furthermore, it is considered that the shape of the lithium ion conductive oxide of the present invention is distorted by replacement of oxygen and halogen having different ion radius and electronegativity in the aforementioned polyanion skeleton. It is presumed that this distortion increases the size of the air gap, facilitates the passage of lithium ions, and has the effect of enhancing the conductivity.
 添加されるハロゲンとしては特にフッ素が望ましい。その作用は明らかではないが、フッ素は酸素より電気陰性度が強いことから、ポリアニオン骨格がより歪み空隙がより大きくなる作用があると推定される。また他のハロゲンと比較し、酸素とイオン半径が近いことから、置換量を多くしても異相ができにくい特徴がある。 Fluorine is particularly desirable as the halogen to be added. Although its effect is not clear, it is presumed that the polyanion skeleton has an effect of making the strain gap larger because fluorine is more electronegative than oxygen. In addition, since the ion radius is close to that of oxygen as compared with other halogens, there is a feature that it is difficult to form different phases even if the substitution amount is increased.
 添加されるハロゲンの組成比は、リチウムイオン伝導性酸化物の基本組成における酸素原子の比率の0.5%以上10%以下が好ましく、特に2%以上10%以下、更には2%以上7%以下がより好ましい。0.5%より少ないと添加の効果が十分に得られない恐れがあり、10%を超えると不純物や異相の生成の恐れが生ずるためである。 The composition ratio of the halogen to be added is preferably 0.5% or more and 10% or less of the ratio of oxygen atoms in the basic composition of the lithium ion conductive oxide, particularly 2% or more and 10% or less, and further 2% or more and 7% The following are more preferable. If it is less than 0.5%, the effect of the addition may not be sufficiently obtained, and if it exceeds 10%, there is a possibility of the formation of impurities or different phases.
 本発明の一実施形態におけるリチウムイオン伝導性酸化物は、結晶構造として主として立方晶、特に全体として立方晶であることで高いイオン伝導度が得られる。これは、ポリアニオン骨格による空隙が連続的に構成されることで、リチウムイオンの通過経路が連続的になるためである。組成や製造条件により立方晶以外の例えば正方晶が生ずる場合もあるが、立方晶を保つことが望ましい。リチウムイオン伝導性酸化物における立方晶の格子定数aは1.310nm~1.285nmであることが望ましい。 The lithium ion conductive oxide in one embodiment of the present invention has high ion conductivity because the crystal structure is mainly cubic, in particular cubic as a whole. This is because the passage of lithium ions becomes continuous because the voids formed by the polyanion skeleton are continuously formed. Depending on the composition and production conditions, for example, tetragonal crystals other than cubic crystals may occur, but it is desirable to keep cubic crystals. The lattice constant a of cubic crystals in the lithium ion conductive oxide is preferably 1.310 nm to 1.285 nm.
 また、本発明の一実施形態におけるリチウムイオン伝導性酸化物は、そのカチオンを主構成元素以外の元素で適宜置換することができる。例えばリチウムのサイトをAlやGaに置換することができる。さらに例えば、LaもしくはZrを他のNb,Ta,Ti,Vaなどの遷移金属元素や、Si,Geなどの点軽金属元素で置換することもできる。本発明はそのアニオンを制御するもので、このようなカチオン元素の置換による効果は、本発明の意図を妨げるものではない。 Moreover, the lithium ion conductive oxide in one Embodiment of this invention can substitute the cation suitably by elements other than the main structure element. For example, the site of lithium can be replaced by Al or Ga. Furthermore, for example, La or Zr can be replaced with another transition metal element such as Nb, Ta, Ti, or Va, or a point light metal element such as Si or Ge. The present invention controls its anion, and the effect of substitution of such a cationic element does not disturb the intention of the present invention.
 電池内の固体電解質の化学組成や結晶構造を知るには、電池を不活性雰囲気内で解体して固体電解質を取り出し、適切な前処理を施し機器分析を行うことで知ることができる。結晶構造については、X線回折や電子線回折による構造解析により知ることができる。化学組成については誘導結合プラズマ分光法(ICP)、光電子分光(XPS)分析、蛍光X線(XRF)分析などで知ることができる。 In order to know the chemical composition and crystal structure of the solid electrolyte in the battery, it can be known by disassembling the battery in an inert atmosphere, taking out the solid electrolyte, performing appropriate pretreatment and performing instrumental analysis. The crystal structure can be known by structural analysis by X-ray diffraction or electron beam diffraction. The chemical composition can be known by inductively coupled plasma spectroscopy (ICP), photoelectron spectroscopy (XPS) analysis, X-ray fluorescence (XRF) analysis or the like.
 本発明の一実施形態におけるリチウムイオン伝導性酸化物の製法に特に限定はないが、一般的な無機化合物の合成方法と同様の方法で調製できる。すなわち、原料となる複数の化合物を所望の化学組成となるよう秤量し、均質に混合し焼成することで調製できる。さらに、得られた焼成物を成形、さらに熱処理することで本発明のリチウムイオン伝導性酸化物の成形体(ペレット)を得ることができる。 Although there is no limitation in particular in the manufacturing method of lithium ion conductive oxide in one embodiment of this invention, It can prepare by the method similar to the synthesis method of a general inorganic compound. That is, it can be prepared by weighing a plurality of compounds serving as raw materials so as to obtain a desired chemical composition, mixing uniformly, and firing. Furthermore, the shaped product (pellet) of the lithium ion conductive oxide of the present invention can be obtained by shaping and heat-treating the obtained fired product.
 原料となる化合物としては、Li、La、Zrの好適な酸化物、水酸化物、炭酸塩、硫酸塩、硝酸塩、各種の有機酸塩を用いることができる。さらに添加するハロゲンの種類によって、各々のハロゲン化物を用いることができる。また、2つ以上のカチオンを含む化合物を原料として用いることも可能である。例えば、Li、La、Zrの有機酸塩あるいはアルコキシドを溶解した溶液からの中和沈殿、溶媒乾燥による複合化合物原料を得ることができる。 As a compound used as a raw material, the suitable oxide of Li, La, and Zr, a hydroxide, carbonate, a sulfate, nitrate, and various organic acid salts can be used. Further, each halide can be used depending on the type of halogen to be added. It is also possible to use a compound containing two or more cations as a raw material. For example, it is possible to obtain a complex compound raw material by neutralization precipitation from a solution in which an organic acid salt or alkoxide of Li, La or Zr is dissolved, or by solvent drying.
 原料の混合・粉砕、成形、焼成、熱処理の工程は、必要に応じて繰り返す工程としてもよい。その際は、混合・粉砕条件、熱処理・焼成条件などは適宜に選択できる。また、混合、焼成工程を繰り返す製造工程とする場合は、混合工程を繰り返す際に原料を適宜追加し、最終の焼成工程において目的とする組成比になるようにしてもよい。 The steps of mixing / pulverizing, molding, firing, and heat treatment of the raw materials may be repeated as necessary. In that case, mixing and pulverizing conditions, heat treatment and calcination conditions and the like can be appropriately selected. In the case of repeating the mixing and firing steps, raw materials may be appropriately added when the mixing steps are repeated, and the target composition ratio may be obtained in the final firing step.
 結晶構造として主として立方晶であるリチウムイオン伝導性酸化物を得るため、あるいは緻密なペレットを得るためには、調製過程に高温の焼成もしくは熱処理が含まれることが望ましい。具体的には、1000℃以上1200℃以下の焼成もしくは熱処理が望ましい。 In order to obtain a lithium ion conductive oxide which is mainly cubic as a crystal structure, or to obtain a dense pellet, it is desirable that high temperature baking or heat treatment be included in the preparation process. Specifically, baking or heat treatment at 1000 ° C. or more and 1200 ° C. or less is desirable.
 一方で、リチウムやハロゲンは揮発しやすい成分であり、このため高温の焼成もしくは熱処理ではこれらの成分が揮発する恐れがある。そこで所望の化学組成とするには、所望の組成に対し、揮発成分を過剰にした原料組成とすること、ペレットの周囲に同成分の、場合によっては揮発成分を過剰に加えた粉体で覆うこと、さらには、ふた付きの焼成容器とする、などの手段が有効である。 On the other hand, lithium and halogen are easily volatile components, and there is a possibility that these components may be volatile in high temperature baking or heat treatment. Therefore, in order to obtain the desired chemical composition, the raw material composition should have an excess of the volatile component with respect to the desired composition, and the pellet may be covered with the powder of the same component, in some cases, with the excessive volatile component added. Furthermore, means such as using a baking vessel with a lid are effective.
 また、予め複数の遷移金属の酸化物を高温で熱処理して複合酸化物を調製し、その後、揮発しやすいリチウムやハロゲン化物とより低温で熱処理することもできる。 Alternatively, a plurality of transition metal oxides may be heat-treated at high temperature to prepare a composite oxide, and then heat-treated at a lower temperature with volatile lithium or halide.
 原料の混合方法は特に限定されず、遊星ボールミル、ジェットミル、アトライターなどを用いることができ、また乾式、湿式混合を用いることができる。湿式混合に用いる溶媒としては、エタノールなどの低級アルコールを用いることができる。 The method of mixing the raw materials is not particularly limited, and a planetary ball mill, a jet mill, an attritor, etc. can be used, and dry or wet mixing can be used. As a solvent used for wet mixing, lower alcohols such as ethanol can be used.
 成形の手段に特に限定はなく、金型に粉砕試料を加え、一軸加圧や、ホットプレス、冷間当方成形(CIP)、熱間等方成型(HIP)などを用いることができる。これ以外の製法も可能であり、例えばスパッタリング製膜も可能である。 The means for molding is not particularly limited, and a crushed sample may be added to a mold to use uniaxial pressing, hot pressing, cold isostatic pressing (CIP), hot isostatic pressing (HIP) or the like. Other manufacturing methods are also possible, for example, sputtering film formation.
 本発明の一実施形態におけるリチウムイオン伝導性酸化物は、リチウムイオンの伝導を利用する蓄電デバイスに適用が可能である。 The lithium ion conductive oxide in one embodiment of the present invention can be applied to a storage device that utilizes lithium ion conduction.
 例えば、蓄電デバイスとして全固体リチウム電池にリチウムイオン伝導性酸化物を適用できる。図1にその構成の一例を示す。図1は、本発明の一実施形態における蓄電デバイスの一つである全固体リチウム電池の一例を示す断面模式図である。全固体リチウム電池100は、正極層13、電解質層12、負極層11、負極端子を兼ねる電池ケース14、パッキン15、正極端子を兼ねる蓋16、などから構成される。 For example, lithium ion conductive oxide can be applied to an all solid lithium battery as a storage device. An example of the configuration is shown in FIG. FIG. 1 is a schematic cross-sectional view showing an example of the all-solid-state lithium battery which is one of the electricity storage devices according to an embodiment of the present invention. The all solid lithium battery 100 includes a positive electrode layer 13, an electrolyte layer 12, a negative electrode layer 11, a battery case 14 also serving as a negative electrode terminal, a packing 15, a lid 16 also serving as a positive electrode terminal, and the like.
 図2に、正極層13、電解質層12、負極層11からなる積層構造の断面図模式図を示す。正極層13はリチウムイオンを吸蔵・放出可能な正極活物25と、リチウムイオンを伝導可能な固体電解質23と、アルミニウムなどの集電体(図示なし)と、必要により炭素材料などからなる正極導電剤24を有する。同様に負極層11はリチウムイオンを吸蔵・放出可能な負極活物質21と、リチウムイオンを伝導可能な固体電解質23と、銅やニッケルなどの集電体(図示なし)と、必要により炭素材料などからなる負極導電剤22を有する。電解質層12は固体電解質23を有する。本発明の蓄電デバイスの一つである全固体リチウム電池は、正極層13、負極層11、電解質層12の少なくともひとつに、本発明のリチウムイオン伝導性酸化物が固体電解質23として含まれる。 FIG. 2 is a schematic cross-sectional view of a laminated structure including the positive electrode layer 13, the electrolyte layer 12, and the negative electrode layer 11. The positive electrode layer 13 comprises a positive electrode active material 25 capable of absorbing and desorbing lithium ions, a solid electrolyte 23 capable of conducting lithium ions, a current collector (not shown) such as aluminum, and optionally a carbon material etc. Have the agent 24. Similarly, the negative electrode layer 11 includes a negative electrode active material 21 capable of absorbing and desorbing lithium ions, a solid electrolyte 23 capable of conducting lithium ions, a current collector (not shown) such as copper and nickel, and optionally a carbon material And a negative electrode conductive agent 22. The electrolyte layer 12 has a solid electrolyte 23. The lithium ion conductive oxide of the present invention is contained as a solid electrolyte 23 in at least one of the positive electrode layer 13, the negative electrode layer 11, and the electrolyte layer 12 in the all solid lithium battery which is one of the electricity storage devices of the present invention.
 電池ケース14および蓋16の材質は、アルミニウム、ステンレス鋼、ニッケルメッキ鋼製などを用いることができる。また絶縁性樹脂を内張りしたアルミラミネートシートのような外装を用いることができる。パッキン15は、全固体リチウム電池100内の不活性雰囲気を保つために構成されている。パッキン15の材質として、四フッ化エチレンなどのフッ素樹脂などを用いることができる。 The material of the battery case 14 and the lid 16 may be aluminum, stainless steel, nickel plated steel, or the like. Also, an exterior such as an aluminum laminate sheet lined with an insulating resin can be used. The packing 15 is configured to maintain an inert atmosphere in the all solid lithium battery 100. As a material of the packing 15, a fluorine resin such as tetrafluoroethylene can be used.
 図2に示したような、負極層11、電解質層12、正極層13からなる積層構造の作製法としては、特に限定されない。例えば、電解質層12の両面に負極層11と正極層13を付与し、そのあとに集電体を積層する方法がある。また、集電体に、負極層11、電解質層12、正極層13あるいは正極層13、電解質層12、負極層11の順に積層する方法がある。 It does not specifically limit as a preparation method of the laminated structure which consists of the negative electrode layer 11, the electrolyte layer 12, and the positive electrode layer 13 as shown in FIG. For example, there is a method of applying the negative electrode layer 11 and the positive electrode layer 13 to both surfaces of the electrolyte layer 12 and then laminating a current collector. In addition, there is a method in which the negative electrode layer 11, the electrolyte layer 12, the positive electrode layer 13, or the positive electrode layer 13, the electrolyte layer 12, and the negative electrode layer 11 are sequentially stacked on the current collector.
 電解質層12、正極層13、負極層11の作製法として、グリーンシート法を用いることもできる。これは、活物質、導電剤、固体電解質などの粉体とエチルセルロースに代表されるバインダ樹脂を混合したペーストを平滑基材の上に塗布し、乾燥後、基材からはがしたシートを熱処理し、バインダ樹脂の除去と粉体の焼結を実施するものである。図2の積層体を得るのに、各々のグリーンシートを積層し、一括で熱処理することで各層が焼結した積層体を得ることもできる。 As a method of manufacturing the electrolyte layer 12, the positive electrode layer 13, and the negative electrode layer 11, a green sheet method can also be used. This applies a paste obtained by mixing a powder such as an active material, a conductive agent, a solid electrolyte, and a binder resin typified by ethyl cellulose on a smooth substrate, and after drying, heat-treats the sheet peeled off from the substrate. , Removal of the binder resin and sintering of the powder. In order to obtain the laminate of FIG. 2, it is also possible to obtain a laminate in which the respective layers are sintered by laminating the respective green sheets and performing heat treatment at one time.
 本実施形態の全固体リチウム二次電池に用いる正極活物質25は特に限定されず、リチウムイオンを吸蔵・放出可能である既知の正極活物質を使用することができる。たとえば一般式LiMO2(Mは少なくとも1種の遷移金属)で表せる層状型酸化物がある。ここで、MはNi、Co、Mn、Fe、Ti、Zr、Al、Mg、Cr、Vなどが挙げられる。その他にも、一般式LiMn2-XX4(MはCo、Ni、Cuなど)で表記されるスピネル型酸化物、LiMO2とLi2MO3とが固溶した層状固溶体酸化物、オリビン酸化物(LiMPO4)に代表される一般式LixMyAz(Aは、PO4、SiO4、BO3の少なくとも1種)のポリアニオン化合物、などを用いることができる。上記の化合物粒子の表面に導電性を付与するため炭素質の物質を付着、あるいは被覆したものを用いてもよい。 The positive electrode active material 25 used in the all solid lithium secondary battery of the present embodiment is not particularly limited, and any known positive electrode active material capable of inserting and extracting lithium ions can be used. For example, there is a layered oxide that can be represented by the general formula LiMO 2 (where M is at least one transition metal). Here, M includes Ni, Co, Mn, Fe, Ti, Zr, Al, Mg, Cr, V and the like. Besides, a spinel type oxide represented by a general formula LiMn 2-X M X O 4 (M is Co, Ni, Cu, etc.), a layered solid solution oxide in which LiMO 2 and Li 2 MO 3 are solid-solved, A polyanion compound of the general formula LixMyAz (A is at least one of PO 4 , SiO 4 and BO 3 ) represented by olivine oxide (LiMPO 4 ) can be used. In order to impart conductivity to the surface of the above-mentioned compound particle, one obtained by adhering or coating a carbonaceous substance may be used.
 負極活物質21に特に限定はなく、リチウムイオンを吸蔵・放出可能である既知の負極活物質を使用することができる。たとえば、黒鉛に代表される各種の炭素材料、金属リチウム、TiSn合金、TiSi合金などの合金材料、LiCoNなどの窒化物、Li4Ti512、LiTiO4などの酸化物を用いることができる。 The negative electrode active material 21 is not particularly limited, and any known negative electrode active material capable of inserting and extracting lithium ions can be used. For example, various carbon materials typified by graphite, metal lithium, alloy materials such as TiSn alloy and TiSi alloy, nitrides such as LiCoN, and oxides such as Li 4 Ti 5 O 12 and LiTiO 4 can be used.
 負極導電剤22および正極導電剤24も電極内で化学的に安定であり、かつ電子伝導性の高いものであれば特には限定されない。カーボンブラックや炭素繊維などの各種炭素材料や、金、銀、銅、ニッケル、アルミニウム、チタン等の金属粉も使用可能である。 The negative electrode conductive agent 22 and the positive electrode conductive agent 24 are not particularly limited as long as they are chemically stable in the electrode and have high electron conductivity. Various carbon materials such as carbon black and carbon fibers, and metal powders such as gold, silver, copper, nickel, aluminum and titanium can also be used.
 以上の蓄電デバイスの形態に特に限定はない。帯状の正極層13、電解質層12、負極層11を円筒形あるいは楕円形に捲回した捲回型、正極層13、電解質層12、負極層11を積層体した積層型、などがある。特に全固体電池においては、複数の積層体を直列に積層し一つの外装に収めるタンデム型とすることもできる。これらの蓄電デバイスにはボタン型、円筒型、角型、ラミネート型などの形状を有する。 There is no limitation in particular in the form of the above electrical storage device. There are a strip type positive electrode layer 13, an electrolyte layer 12, and a wound type obtained by winding a negative electrode layer 11 in a cylindrical or elliptical shape, a stacked type in which a positive electrode layer 13, an electrolyte layer 12 and a negative electrode layer 11 are stacked. In particular, in the case of an all-solid-state battery, a plurality of stacks may be stacked in series and may be of a tandem type housed in one outer package. These storage devices have shapes such as a button type, a cylinder type, a square type, and a laminate type.
 本実施形態の蓄電デバイスの用途は特に限定されない。例えば、電気自動車やハイブリッド型電気自動車などの動力用電源や、運動エネルギーの少なくとも一部を回収するシステムを有するエレベータなどの産業用機器、各種業務用や家庭用の蓄電システム用の電源、さらには太陽光や風力などの自然エネルギー発電システム用電源など、各種大型電源として用いることができる。また、各種携帯型機器や情報機器、家庭用電気機器、電動工具などの各種小型電源としても用いることができる。 The application of the storage device of the present embodiment is not particularly limited. For example, power supplies such as electric vehicles and hybrid type electric vehicles, industrial equipment such as elevators having a system for recovering at least a part of kinetic energy, power supplies for various business use and household storage systems, and It can be used as various large power sources such as power sources for natural energy power generation systems such as solar light and wind power. In addition, it can also be used as various small-sized power supplies such as various types of portable devices, information devices, household electric devices, and electric tools.
 以下、本実施形態のリチウムイオン伝導性酸化物およびそれを部材として用いた蓄電デバイスの詳細な実施例を示し、具体的に説明する。但し、本発明は以下に述べる実施例に限定されるものではない。 Hereinafter, detailed examples of the lithium ion conductive oxide of the present embodiment and an electricity storage device using the same as a member will be shown and specifically described. However, the present invention is not limited to the examples described below.
 本実施例におけるリチウムイオン伝導性酸化物(Li6.2La3Zr211.20.8)を次のとおり調製した。 The lithium ion conductive oxide (Li 6.2 La 3 Zr 2 O 11.2 F 0.8 ) in this example was prepared as follows.
 原料として、Li(OH)・H2O、La(OH)3、ZrO2、LiFを用いた。これらの原料を所定の組成比を基に秤量した。ここで、Li(OH)・H2Oは10%の過剰量、LiFは20%の過剰量を秤量した。これらを、遊星型粉砕機で乾式混合した。 As raw materials, Li (OH) · H 2 O, La (OH) 3 , ZrO 2 and LiF were used. These raw materials were weighed based on a predetermined composition ratio. Here, Li (OH) · H 2 O was weighed in excess of 10%, and LiF was weighed in excess of 20%. These were dry mixed in a planetary crusher.
 その後、蓋付のアルミナるつぼに入れ、900℃12時間空気雰囲気で焼成した。この焼成物を再び遊星型粉砕機で粉砕した。粉砕後の焼成粉末1gを超鋼ダイスに入れ、一軸プレスにより直径10mmのペレットとした。酸化マグネシウム製の緻密質るつぼにペレットを投入し、るつぼの残容積を焼成物粉末で満たしてふたをし、アルゴン雰囲気で1200℃で24時間熱処理し、本実施例のペレットを得た。 Then, it was put in a covered alumina crucible and fired in an air atmosphere at 900 ° C. for 12 hours. The fired product was crushed again by a planetary crusher. 1 g of the fired powder after grinding was placed in a super steel die and made into pellets of 10 mm in diameter by uniaxial pressing. The pellet was charged into a dense crucible made of magnesium oxide, the remaining volume of the crucible was filled with the powder of the sintered product, the lid was covered, and heat treatment was performed at 1200 ° C. for 24 hours in an argon atmosphere to obtain the pellet of this example.
 得られたペレットをX線回折で測定した結果、立方晶であることが確認された。 As a result of measuring the obtained pellet by X-ray diffraction, it was confirmed to be cubic.
 本実施例におけるリチウムイオン伝導性酸化物(Li6.6La3Zr211.60.4)を次のとおり調製した。 The lithium ion conductive oxide (Li 6.6 La 3 Zr 2 O 11.6 F 0.4 ) in this example was prepared as follows.
 実施例1と同様に所定の組成比を基に秤量した。ここでLi(OH)・H2Oは10%の過剰量、LiFは25%の過剰量を秤量した。以後、実施例1と同様に調製し、本実施例のペレットを得た。 In the same manner as in Example 1, weighing was performed based on a predetermined composition ratio. Here, Li (OH) · H 2 O was weighed in excess of 10%, and LiF was weighed in excess of 25%. Thereafter, the pellet was prepared in the same manner as in Example 1 to obtain a pellet of this example.
 得られたペレットをX線回折で測定した結果、立方晶であることが確認された。 As a result of measuring the obtained pellet by X-ray diffraction, it was confirmed to be cubic.
比較例1Comparative Example 1
 本比較例におけるリチウムイオン伝導性酸化物(Li7La3Zr212)を次のとおり調製した。 The lithium ion conductive oxide (Li 7 La 3 Zr 2 O 12 ) in this comparative example was prepared as follows.
 LiFを除き実施例1と同様に所定の組成比を基に秤量した。ここでLi(OH)・H2Oは10%の過剰量を秤量した。以後、実施例1と同様に調製し、本比較例のペレットを得た。 It was weighed based on the predetermined composition ratio as in Example 1 except for LiF. Here, Li (OH) · H 2 O was weighed at a 10% excess. Thereafter, the pellet was prepared in the same manner as in Example 1 to obtain a pellet of this comparative example.
 得られたペレットをX線回折で測定した結果、立方晶であることが確認された。 As a result of measuring the obtained pellet by X-ray diffraction, it was confirmed to be cubic.
 本実施例におけるリチウムイオン伝導性酸化物(Li6.5La3Zr211.5Cl0.5)を次のとおり調製した。 The lithium ion conductive oxide (Li 6.5 La 3 Zr 2 O 11.5 Cl 0.5 ) in this example was prepared as follows.
 原料として、Li(OH)・H2O、La(OH)3、ZrO2、LiClを用いた。まずモル比1:1のLa(OH)3とZrO2、とを遊星型粉砕機で乾式混合後、蓋付のアルミナるつぼに入れ、電気炉により1400℃24時間空気雰囲気で焼成し、再度同様の乾式混合と焼成を行い、LaとZrの複合酸化物粉末を得た。この複合酸化物粉末に加え、Li(OH)・H2O、La(OH)3、LiClを所定の組成比を基に秤量した。ここで、Li(OH)・H2Oは10%の過剰量、LiClは20%の過剰量を秤量した。これらを、遊星型粉砕機で乾式混合した。 As raw materials, Li (OH) · H 2 O, La (OH) 3 , ZrO 2 and LiCl were used. First, La (OH) 3 and ZrO 2 with a molar ratio of 1: 1 were dry-mixed by a planetary crusher, placed in an alumina crucible with a lid, sintered in an air atmosphere at 1400 ° C. for 24 hours by an electric furnace, and the same again Dry mixing and firing to obtain a composite oxide powder of La and Zr. In addition to this composite oxide powder, Li (OH) .H 2 O, La (OH) 3 and LiCl were weighed based on a predetermined composition ratio. Here, an excess of 10% of Li (OH) .H 2 O and an excess of 20% of LiCl were weighed. These were dry mixed in a planetary crusher.
 その後、蓋付のアルミナるつぼに入れ、原料のハロゲン化リチウムの分解とハロゲンの揮発を考慮して、電気炉により650℃12時間空気雰囲気で焼成した。この焼成物を再び遊星型粉砕機で粉砕した。粉砕後の焼成粉末1gを超鋼ダイスに入れ、一軸プレスにより直径10mmのペレットとした。酸化マグネシウム製の緻密質るつぼにペレットを投入し、るつぼの残容積を焼成物粉末で満たしてふたをし、アルゴン雰囲気で1200℃で24時間熱処理し、本実施例のペレットを得た。 Then, it was placed in a covered alumina crucible and fired in an electric furnace at 650 ° C. for 12 hours in an air atmosphere in consideration of decomposition of raw material lithium halide and volatilization of halogen. The fired product was crushed again by a planetary crusher. 1 g of the fired powder after grinding was placed in a super steel die and made into pellets of 10 mm in diameter by uniaxial pressing. The pellet was charged into a dense crucible made of magnesium oxide, the remaining volume of the crucible was filled with the powder of the sintered product, the lid was covered, and heat treatment was performed at 1200 ° C. for 24 hours in an argon atmosphere to obtain the pellet of this example.
 得られたペレットをX線回折で測定した結果、立方晶であることが確認された。 As a result of measuring the obtained pellet by X-ray diffraction, it was confirmed to be cubic.
 本実施例におけるリチウムイオン伝導性酸化物(Li6.7La3Zr211.7Br0.3)を次のとおり調製した。 The lithium ion conductive oxide (Li 6.7 La 3 Zr 2 O 11.7 Br 0.3 ) in this example was prepared as follows.
 LiClに代わりLiBrを用いた以外は実施例3と同様に調製した。LiBrの過剰量は30%とした。 It was prepared in the same manner as in Example 3 except that LiBr was used instead of LiCl. The excess amount of LiBr was 30%.
 得られたペレットをX線回折で測定した結果、立方晶であることが確認された。 As a result of measuring the obtained pellet by X-ray diffraction, it was confirmed to be cubic.
 本実施例におけるリチウムイオン伝導性酸化物(Li6.7La3Zr211.70.3)を次のとおり調製した。 The lithium ion conductive oxide (Li 6.7 La 3 Zr 2 O 11.7 I 0.3 ) in this example was prepared as follows.
 LiBrに代わりLiIを用いた以外は実施例4と同様に調製した。LiIの過剰量は30%とした。 It was prepared in the same manner as in Example 4 except that LiI was used instead of LiBr. The excess amount of LiI was 30%.
 得られたペレットをX線回折で測定した結果、立方晶であることが確認された。 As a result of measuring the obtained pellet by X-ray diffraction, it was confirmed to be cubic.
比較例2Comparative example 2
 本比較例におけるリチウムイオン伝導性酸化物(Li7La3Zr212)を次のとおり調製した。 The lithium ion conductive oxide (Li 7 La 3 Zr 2 O 12 ) in this comparative example was prepared as follows.
 LiClを除く実施例3と同じ原料を所定の組成比を基に秤量した。ここでLi(OH)・H2Oは10%の過剰量を秤量した。以後、実施例3と同様に調製し、本比較例のペレットを得た。 The same raw material as Example 3 except for LiCl was weighed based on a predetermined composition ratio. Here, Li (OH) · H 2 O was weighed at a 10% excess. Thereafter, the pellet was prepared in the same manner as in Example 3 to obtain a pellet of this comparative example.
 得られたペレットをX線回折で測定した結果、立方晶であることが確認された。 As a result of measuring the obtained pellet by X-ray diffraction, it was confirmed to be cubic.
 <イオン伝導度評価>
 イオン伝導度は、交流インピーダンス法を用いて評価した。作製したペレットの両面に厚さ約200nmの金薄膜をスパッタ法で製膜し電極とした。アルゴン雰囲気のグローブボックス内で金電極から電流、電圧線を取り付け、交流インピーダンス測定を25℃で実施した。得られた円弧の半径から抵抗値を求め、電極面積、試料厚みを用いて伝導度を算出した。尚、いずれの試料においても、直流抵抗は非常に高く、試料内の電子伝導度はイオン伝導度に比べて十分に低いことを確認した。
<Evaluation of ion conductivity>
The ion conductivity was evaluated using an alternating current impedance method. A gold thin film with a thickness of about 200 nm was formed on both sides of the produced pellet by sputtering to form an electrode. Current and voltage lines were attached from a gold electrode in an argon atmosphere glove box, and AC impedance measurement was performed at 25 ° C. The resistance value was determined from the radius of the obtained arc, and the conductivity was calculated using the electrode area and the sample thickness. In each sample, it was confirmed that the direct current resistance was very high, and the electron conductivity in the sample was sufficiently lower than the ion conductivity.
 表1に各実施例及び比較例のリチウムイオン伝導性酸化物の組成と、調整したペレットのイオン伝導度評価を示す。実施例1、実施例2、実施例3、実施例4、実施例5、比較例1、比較例2におけるリチウムイオン伝導性酸化物のイオン伝導度は、それぞれ、0.39mS/cm、0.32mS/cm、0.26mS/cm、0.24mS/cm、0.23mS/cm、0.23mS/cm、0.17mS/cmであった。 Table 1 shows the compositions of the lithium ion conductive oxides of Examples and Comparative Examples, and the evaluation of the ionic conductivity of the prepared pellets. The ion conductivity of the lithium ion conductive oxide in Example 1, Example 2, Example 3, Example 4, Example 5, Example 5, Comparative Example 1 and Comparative Example 2 was 0.39 mS / cm, 0. 0, respectively. It was 32 mS / cm, 0.26 mS / cm, 0.24 mS / cm, 0.23 mS / cm, 0.23 mS / cm, and 0.17 mS / cm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の実施例1と実施例2のリチウムイオン伝導性酸化物のイオン伝導度は比較例1と比べ高く、リチウムイオン伝導性に優れる効果があった。さらに、表1の実施例3、実施例4および実施例5のリチウムイオン伝導性酸化物のイオン伝導度は比較例2と比べ高く、リチウムイオン伝導性に優れる効果があった。 The ion conductivity of the lithium ion conductive oxides of Example 1 and Example 2 of Table 1 is higher than that of Comparative Example 1, and there is an effect of being excellent in lithium ion conductivity. Furthermore, the ion conductivity of the lithium ion conductive oxides of Example 3, Example 4 and Example 5 in Table 1 is higher than that of Comparative Example 2, and there is an effect of being excellent in lithium ion conductivity.
 <蓄電デバイスの作成>
 蓄電デバイスとして、固体電解質として実施例1のリチウムイオン伝導性酸化物を用いた本発明の全固体リチウム電池と、比較例1のリチウムイオン伝導性酸化物を用いた全固体リチウム電池を作成した。
<Creating storage device>
As an electricity storage device, an all solid lithium battery of the present invention using the lithium ion conductive oxide of Example 1 as a solid electrolyte and an all solid lithium battery using the lithium ion conductive oxide of Comparative Example 1 were prepared.
 正極層13を以下のように作成した。平均粒径が12μmのLiCoO2粉末に対し、平均粒径が0.8μmの固体電解質粉末、導電剤としてのケッチェンブラック、焼結助材としてのホウ酸リチウム(Li3BO3)をそれぞれの重量比で60:25:10:5で乳鉢にとりわけ、混合したのち、エチルセルロース溶液を加え混合し正極ペーストを作製した。固体電解質粉末は、実施例1および比較例1の熱処理において、ペレット化せずに熱処理した粉末を用いた。 The positive electrode layer 13 was formed as follows. A solid electrolyte powder having an average particle size of 0.8 μm, ketjen black as a conductive agent, and lithium borate (Li 3 BO 3 ) as a sintering aid are added to LiCoO 2 powder having an average particle size of 12 μm. After mixing in a mortar at a weight ratio of 60: 25: 10: 5, in particular, an ethyl cellulose solution was added and mixed to prepare a positive electrode paste. The solid electrolyte powder used in the heat treatment of Example 1 and Comparative Example 1 was a powder which was heat-treated without being pelletized.
 次いで、電解質層12として実施例1および比較例1で調製した0.8mm厚のペレットを用いた。ペレットの片面に正極ペーストを塗布し、400℃で30分、700℃で2時間熱処理し、正極層13を焼き付けた。正極層13の厚みは約20μmであった。その後、正極層13側に厚さ約200nmの金薄膜をスパッタ法で製膜し集電層とした。 Next, pellets of 0.8 mm thickness prepared in Example 1 and Comparative Example 1 were used as the electrolyte layer 12. The positive electrode paste was applied to one surface of the pellet, and heat treatment was performed at 400 ° C. for 30 minutes and at 700 ° C. for 2 hours to bake the positive electrode layer 13. The thickness of the positive electrode layer 13 was about 20 μm. Thereafter, a gold thin film having a thickness of about 200 nm was formed on the positive electrode layer 13 side by sputtering to form a current collection layer.
 アルゴン雰囲気のグローブボックス内で電解質層側にLi箔を貼りつけた。金電極、Li箔各々から電流、電圧線を取り付けた。 Li foil was stuck on the electrolyte layer side in the argon atmosphere glove box. Current and voltage lines were attached from the gold electrode and the Li foil respectively.
 <全固体リチウム電池の評価>
 作製した全固体リチウム電池の充放電試験を行った。電流は0.02CA相当とし、充電は4.3Vの定電流充電、放電は3.0Vの定電流放電とした。放電時の放電容量を評価した。実施例1、比較例1における全固体リチウム電池の放電容量は、それぞれ、105mAh/g、87mAh/gであった。
<Evaluation of all solid lithium battery>
The charge and discharge test of the produced all solid lithium battery was done. The current was set to be equivalent to 0.02 CA, the charge was constant current charge of 4.3 V, and the discharge was constant current discharge of 3.0 V. The discharge capacity at the time of discharge was evaluated. The discharge capacities of all the solid lithium batteries in Example 1 and Comparative Example 1 were 105 mAh / g and 87 mAh / g, respectively.
 表1に作成した全固体リチウム電池の固体電解質の種類と放電容量の評価結果を示す。実施例1のリチウムイオン伝導性酸化物を用いた電池は比較例1のそれを用いた電池に比べ放電容量が高い効果が得られた。 Table 1 shows the evaluation results of the type and discharge capacity of the solid electrolyte of the all solid lithium battery prepared. The battery using the lithium ion conductive oxide of Example 1 had a higher discharge capacity than the battery using the lithium ion conductive oxide of Comparative Example 1.
11:負極層
12:電解質層
13:正極層
14:電池ケース
15:パッキン
16:蓋
21:負極活物質
22:負極導電剤
23:固体電解質
24:正極導電剤
25:正極活物質
11: Negative electrode layer 12: Electrolyte layer 13: Positive electrode layer 14: Battery case 15: Packing 16: Lid 21: Negative electrode active material 22: Negative electrode conductive agent 23: Solid electrolyte 24: Positive electrode conductive agent 25: Positive electrode active material

Claims (7)

  1.  化学組成としてリチウム、ランタン、ジルコニウム、酸素を含むリチウムイオン伝導性酸化物であって、
     前記リチウムイオン伝導性酸化物にハロゲンが添加されているリチウムイオン伝導性酸化物。
    A lithium ion conductive oxide containing lithium, lanthanum, zirconium, oxygen as a chemical composition,
    Lithium ion conductive oxide in which halogen is added to the lithium ion conductive oxide.
  2.  請求項1において、
     前記酸素の一部が前記ハロゲンで置換されているリチウムイオン伝導性酸化物。
    In claim 1,
    The lithium ion conductive oxide in which a part of the oxygen is substituted by the halogen.
  3.  請求項1乃至2のいずれかにおいて、
     前記リチウムイオン伝導性酸化物の基本組成はLi7-δLa3Zr212-δδ(X=F、Cl、Br、Iの1種以上、0<δ<1)であるリチウムイオン伝導性酸化物。
    In any one of claims 1 to 2,
    The basic composition of the lithium ion conductive oxide is a lithium ion having a composition of Li 7-δ La 3 Zr 2 O 12-δ X δ (where X is at least one of F, Cl, Br and I, 0 <δ <1). Conductive oxide.
  4.  請求項1乃至3のいずれかにおいて、
     前記ハロゲンがフッ素であるリチウムイオン伝導性酸化物。
    In any one of claims 1 to 3,
    Lithium ion conductive oxide in which the halogen is fluorine.
  5.  請求項1乃至4のいずれかにおいて、
     前記ハロゲンの組成比は、前記リチウムイオン伝導性酸化物における前記酸素の比率の0.5%以上10%以下であるリチウムイオン伝導性酸化物。
    In any one of claims 1 to 4,
    The lithium ion conductive oxide, wherein the composition ratio of the halogen is 0.5% or more and 10% or less of the ratio of the oxygen in the lithium ion conductive oxide.
  6.  請求項1乃至4のいずれかにおいて、
     前記リチウムイオン伝導性酸化物の結晶構造は立方晶であるリチウムイオン伝導性酸化物。
    In any one of claims 1 to 4,
    The crystal structure of the lithium ion conductive oxide is cubic crystal.
  7.  請求項1乃至5のいずれかのリチウムイオン伝導性酸化物を用いた蓄電デバイス。 An electricity storage device using the lithium ion conductive oxide according to any one of claims 1 to 5.
PCT/JP2013/081832 2013-11-27 2013-11-27 Lithium ion-conductive oxide and electrical storage device WO2015079509A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/081832 WO2015079509A1 (en) 2013-11-27 2013-11-27 Lithium ion-conductive oxide and electrical storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/081832 WO2015079509A1 (en) 2013-11-27 2013-11-27 Lithium ion-conductive oxide and electrical storage device

Publications (1)

Publication Number Publication Date
WO2015079509A1 true WO2015079509A1 (en) 2015-06-04

Family

ID=53198500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081832 WO2015079509A1 (en) 2013-11-27 2013-11-27 Lithium ion-conductive oxide and electrical storage device

Country Status (1)

Country Link
WO (1) WO2015079509A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105070944A (en) * 2015-07-30 2015-11-18 中国科学院西安光学精密机械研究所 NASICON lithium-ion solid electrolyte synergistically doped with F<-> and Y<3+> ions and preparation method thereof
JP2020087770A (en) * 2018-11-28 2020-06-04 セイコーエプソン株式会社 Solid electrolyte, method for producing solid electrolyte, secondary battery and electronic equipment
JP2020098674A (en) * 2018-12-17 2020-06-25 セイコーエプソン株式会社 Electrolyte, battery, electronic apparatus, and manufacturing method of the electrolyte and the battery
JPWO2020137043A1 (en) * 2018-12-28 2021-11-11 パナソニックIpマネジメント株式会社 Lithium-ion conductive solid electrolyte material and batteries using it
WO2021250985A1 (en) * 2020-06-08 2021-12-16 パナソニックIpマネジメント株式会社 Solid electrolyte material, and battery in which same is used
WO2021256036A1 (en) * 2020-06-15 2021-12-23 株式会社カネカ Lithium ion-conducting garnet type oxide
CN113892206A (en) * 2019-07-04 2022-01-04 松下知识产权经营株式会社 Battery with a battery cell
CN114303267A (en) * 2019-08-30 2022-04-08 昭和电工株式会社 Lithium ion conductive oxide
JP7171826B1 (en) 2021-06-02 2022-11-15 住友化学株式会社 Method for producing lithium-containing oxide and solid electrolyte
US11735765B2 (en) 2021-01-08 2023-08-22 Samsung Electronics Co., Ltd. Solid ion conductor, solid electrolyte including the solid ion conductor, electrochemical device including the solid electrolyte, and method of preparing the solid ion conductor
US11961962B2 (en) 2020-07-02 2024-04-16 Samsung Electronics Co., Ltd. Solid ion conductor compound, solid electrolyte including the same, electrochemical cell including the same, and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006260887A (en) * 2005-03-16 2006-09-28 Japan Science & Technology Agency Porous solid electrode and full solid lithium secondary battery using the same
JP2012018792A (en) * 2010-07-07 2012-01-26 National Univ Corp Shizuoka Univ Solid electrolyte material and lithium battery
WO2013128759A1 (en) * 2012-03-02 2013-09-06 日本碍子株式会社 Solid electrolyte ceramic material and production method therefor
JP2013182836A (en) * 2012-03-02 2013-09-12 Honda Motor Co Ltd Lithium ion conductive electrolyte and lithium ion secondary battery using the same
WO2013136446A1 (en) * 2012-03-13 2013-09-19 株式会社 東芝 Lithium-ion conducting oxide, solid electrolyte rechargeable battery, and battery pack
JP2013256435A (en) * 2012-05-14 2013-12-26 Toyota Central R&D Labs Inc Method for producing garnet type lithium ion-conductive oxide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006260887A (en) * 2005-03-16 2006-09-28 Japan Science & Technology Agency Porous solid electrode and full solid lithium secondary battery using the same
JP2012018792A (en) * 2010-07-07 2012-01-26 National Univ Corp Shizuoka Univ Solid electrolyte material and lithium battery
WO2013128759A1 (en) * 2012-03-02 2013-09-06 日本碍子株式会社 Solid electrolyte ceramic material and production method therefor
JP2013182836A (en) * 2012-03-02 2013-09-12 Honda Motor Co Ltd Lithium ion conductive electrolyte and lithium ion secondary battery using the same
WO2013136446A1 (en) * 2012-03-13 2013-09-19 株式会社 東芝 Lithium-ion conducting oxide, solid electrolyte rechargeable battery, and battery pack
JP2013256435A (en) * 2012-05-14 2013-12-26 Toyota Central R&D Labs Inc Method for producing garnet type lithium ion-conductive oxide

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GREGORY T.HITZ ET AL.: "Highly Li-Stuffed Garnet-Type Li7+xLa3Zr2-xYxO12", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 160, no. 8, 28 May 2013 (2013-05-28), pages A1248 - A1255 *
HENRIK BUSCHMANN ET AL.: "Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors ''Li7La3Zr2O12'' and Li7-xLa3Zr2-xTaxO12 with garnet-type structure", JOURNAL OF POWER SOURCES, vol. 206, 2012, pages 236 - 244 *
SHINGO OHTA ET AL.: "High lithium ionic conductivity in the garnet-type oxide Li7-xLa3(Zr2-x,Nbx)O12(X=0-2)", JOURNAL OF POWER SOURCES, vol. 196, 2011, pages 3342 - 3345 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105070944A (en) * 2015-07-30 2015-11-18 中国科学院西安光学精密机械研究所 NASICON lithium-ion solid electrolyte synergistically doped with F<-> and Y<3+> ions and preparation method thereof
JP2020087770A (en) * 2018-11-28 2020-06-04 セイコーエプソン株式会社 Solid electrolyte, method for producing solid electrolyte, secondary battery and electronic equipment
JP7155944B2 (en) 2018-11-28 2022-10-19 セイコーエプソン株式会社 Solid electrolyte, method for producing solid electrolyte, secondary battery, electronic device
JP2020098674A (en) * 2018-12-17 2020-06-25 セイコーエプソン株式会社 Electrolyte, battery, electronic apparatus, and manufacturing method of the electrolyte and the battery
JP7417951B2 (en) 2018-12-28 2024-01-19 パナソニックIpマネジメント株式会社 Lithium ion conductive solid electrolyte material and battery using the same
JPWO2020137043A1 (en) * 2018-12-28 2021-11-11 パナソニックIpマネジメント株式会社 Lithium-ion conductive solid electrolyte material and batteries using it
EP3905270A4 (en) * 2018-12-28 2022-02-23 Panasonic Intellectual Property Management Co., Ltd. Lithium ion conductive solid electrolyte material, and battery using same
CN113892206A (en) * 2019-07-04 2022-01-04 松下知识产权经营株式会社 Battery with a battery cell
EP3996179A4 (en) * 2019-07-04 2022-08-03 Panasonic Intellectual Property Management Co., Ltd. Battery
CN114303267B (en) * 2019-08-30 2024-04-02 株式会社力森诺科 Lithium ion conductive oxide
CN114303267A (en) * 2019-08-30 2022-04-08 昭和电工株式会社 Lithium ion conductive oxide
WO2021250985A1 (en) * 2020-06-08 2021-12-16 パナソニックIpマネジメント株式会社 Solid electrolyte material, and battery in which same is used
CN115667180A (en) * 2020-06-15 2023-01-31 株式会社钟化 Lithium ion-conducting garnet-type oxide
WO2021256036A1 (en) * 2020-06-15 2021-12-23 株式会社カネカ Lithium ion-conducting garnet type oxide
US11961962B2 (en) 2020-07-02 2024-04-16 Samsung Electronics Co., Ltd. Solid ion conductor compound, solid electrolyte including the same, electrochemical cell including the same, and preparation method thereof
US11735765B2 (en) 2021-01-08 2023-08-22 Samsung Electronics Co., Ltd. Solid ion conductor, solid electrolyte including the solid ion conductor, electrochemical device including the solid electrolyte, and method of preparing the solid ion conductor
WO2022255413A1 (en) 2021-06-02 2022-12-08 住友化学株式会社 Lithium-containing oxide, and method for preparing solid electrolyte
JP2022185465A (en) * 2021-06-02 2022-12-14 住友化学株式会社 Lithium-containing oxide and method for producing solid electrolyte
JP7171826B1 (en) 2021-06-02 2022-11-15 住友化学株式会社 Method for producing lithium-containing oxide and solid electrolyte

Similar Documents

Publication Publication Date Title
WO2015079509A1 (en) Lithium ion-conductive oxide and electrical storage device
JP6165546B2 (en) Solid electrolyte and all-solid lithium ion secondary battery
EP3540843A1 (en) Secondary battery
WO2017026285A1 (en) Solid electrolyte sheet, method for manufacturing same, and sodium ion all-solid-state secondary cell
Park et al. Electrochemical properties of composite cathode using bimodal sized electrolyte for all-solid-state batteries
WO2013008676A1 (en) All-solid-state battery and manufacturing method thereof
CN108886145B (en) Amorphous phase oxide-based positive electrode active material and preparation method and application thereof
JP6252350B2 (en) Solid electrolyte structure, manufacturing method thereof, and all-solid battery
WO2011128977A1 (en) Solid electrolyte material, lithium battery, and manufacturing method for solid electrolyte material
JP6197495B2 (en) All solid battery
JP2015028854A (en) All-solid-state battery
JP2013033655A (en) All-solid battery, and method for manufacturing all-solid battery
WO2013100000A1 (en) All-solid-state battery, and manufacturing method therefor
JPWO2019093221A1 (en) Rechargeable battery
WO2021145312A1 (en) Solid-state battery
JPWO2019212026A1 (en) Ion-conductive powder, ion-conductive compact, and power storage device
CN111699582A (en) All-solid-state battery
JP2022130301A (en) Solid electrolyte, active material layer, electrolyte layer and secondary battery
WO2013100002A1 (en) All-solid-state battery, and manufacturing method therefor
JP2014096352A (en) Ceramic positive electrode-solid electrolyte assembly
JP7115626B2 (en) Precursor composition for solid electrolyte, method for producing secondary battery
WO2022181653A1 (en) Solid electrolyte, active material layer, electrolyte layer and secondary battery
WO2021215403A1 (en) Lithium ion-conductive glass ceramic
JP7070833B2 (en) Solid electrolyte sheet and its manufacturing method, and all-solid-state secondary battery
JP7075006B2 (en) Solid electrolyte, its manufacturing method, and battery, and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13898245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP