JP2022130301A - Solid electrolyte, active material layer, electrolyte layer and secondary battery - Google Patents

Solid electrolyte, active material layer, electrolyte layer and secondary battery Download PDF

Info

Publication number
JP2022130301A
JP2022130301A JP2022007354A JP2022007354A JP2022130301A JP 2022130301 A JP2022130301 A JP 2022130301A JP 2022007354 A JP2022007354 A JP 2022007354A JP 2022007354 A JP2022007354 A JP 2022007354A JP 2022130301 A JP2022130301 A JP 2022130301A
Authority
JP
Japan
Prior art keywords
solid electrolyte
degrees
positive electrode
manufactured
diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022007354A
Other languages
Japanese (ja)
Inventor
健太郎 道口
Kentaro Michiguchi
陽平 政田
Yohei Masada
貴治 青谷
Takaharu Aotani
洋 谷内
Hiroshi Yanai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to PCT/JP2022/007439 priority Critical patent/WO2022181653A1/en
Priority to EP22759688.9A priority patent/EP4300618A1/en
Priority to CN202280017142.1A priority patent/CN116888688A/en
Publication of JP2022130301A publication Critical patent/JP2022130301A/en
Priority to US18/450,297 priority patent/US20230387459A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide a solid electrolyte which can be fabricated by sintering at a low temperature, and which is high in ion conductivity, and a secondary battery having such a solid electrolyte.SOLUTION: A solid electrolyte comprises a borate containing Li, an element R selected from a group consisting of Yb, Er, Ho, Tm, La, Nd and Sm, and an element M selected from a group consisting of Zr, Ce and Sn.SELECTED DRAWING: Figure 7

Description

本発明は、固体電解質及び、該電解質を備える活物質層、電解質層、および、二次電池に関するものである。 The present invention relates to a solid electrolyte, an active material layer comprising the electrolyte, an electrolyte layer, and a secondary battery.

固体電解質を用いた全固体二次電池は、高耐熱性を向上することが可能である。また、電解質が漏液せず、揮発もしないため、安全性も向上できる。よって、モジュールコストを低減できるとともに、エネルギー密度を高めることが可能である。 An all-solid secondary battery using a solid electrolyte can improve high heat resistance. In addition, since the electrolyte does not leak or volatilize, safety can be improved. Therefore, it is possible to reduce the module cost and increase the energy density.

かかる固体電解質の一つとして硫化物系固体電解質が報告されている。しかし、硫化物系固体電解質は、その製造原料に硫化物を使用するため、作業性の観点からの課題があった。そこで、硫化物系ではない固体電解質として、酸化物系の固体電解質が報告されている。 A sulfide-based solid electrolyte has been reported as one of such solid electrolytes. However, since sulfide-based solid electrolytes use sulfides as raw materials for their production, there has been a problem from the viewpoint of workability. Therefore, oxide-based solid electrolytes have been reported as non-sulfide-based solid electrolytes.

Li系の固体電解質として、NASICON型のLi+xAlxTi2-x(PO(LATP)、ペロブスカイト型のLi3+xLa2/3-xTiO(LLT)、ガーネット型で立方晶のLiLaZr12(LLZ)が報告されている。また、Na系の固体電解質として、β’’アルミナ型のNa・(5~7)Al、NASICON型のNaZrSiPO12が、報告されている。しかしながら、これら固体電解質は、使用可能な負極材料が限定されたり、固体電解質間や、固体電解質と活物質間の界面を密着させることで導電性を向上させるために1000℃を超える高温での焼結が必要であったりする等の課題があった。特に、高温での焼結は、固体電解質間や、固体電解質と活物質間の界面に高抵抗相が形成されることがあり、イオン伝導性の向上を制限するものとなっていた。 Li-based solid electrolytes include NASICON-type Li 1 +xAlxTi 2-x (PO 4 ) 3 (LATP), perovskite-type Li 3+x La 2/3-x TiO 3 (LLT), and garnet-type cubic Li 7 . La 3 Zr 2 O 12 (LLZ) has been reported. As Na-based solid electrolytes, β″ alumina type Na 2 O. ( 5-7)Al 2 O 3 and NASICON type Na 3 Zr 2 Si 2 PO 12 have been reported. However, these solid electrolytes are limited in the negative electrode materials that can be used. There were problems such as the need for knots. In particular, sintering at a high temperature sometimes forms a high-resistance phase between solid electrolytes or at the interface between a solid electrolyte and an active material, which limits the improvement of ionic conductivity.

そのため近年、焼結温度を下げる試みがなされている。特許文献1は、Li2+x1-xのように、ホウ酸リチウムを含む固体電解質とすることで、焼成温度を900℃程度まで低下することが可能であることが開示されている。 Therefore, in recent years, attempts have been made to lower the sintering temperature. Patent Document 1 discloses that the firing temperature can be lowered to about 900° C. by using a solid electrolyte containing lithium borate, such as Li 2+x C 1-x B x O 3 . there is

また、特許文献2は、LLZ系の酸化物に、LiBOを混合することで、固体電解質を形成する際の焼結温度を650~800℃に下げることができるとされている。 Further, according to Patent Document 2, the sintering temperature for forming a solid electrolyte can be lowered to 650 to 800° C. by mixing Li 3 BO 3 with an LLZ-based oxide.

特開平5-54712号公報JP-A-5-54712 特開2013-37992号公報JP 2013-37992 A

特許文献1および特許文献2に開示の固体電解質を含む二次電池による焼成温度が低下され、他の材料との間に中間層として高抵抗相が形成され難くなった。しかしながら、固体電解質が占める領域のイオン伝導性σSEが、室温で、1×10-7S/cmより低い場合があり、よりイオン伝導性が高められた酸化物系の固体電解質が求められていた。 The firing temperature of the secondary battery containing the solid electrolytes disclosed in Patent Documents 1 and 2 is lowered, making it difficult to form a high resistance phase as an intermediate layer between other materials. However, the ionic conductivity σ SE of the region occupied by the solid electrolyte may be lower than 1×10 −7 S/cm at room temperature, and there is a demand for an oxide-based solid electrolyte with higher ionic conductivity. rice field.

本発明は、低温での焼結によって作製可能で、かつイオン伝導性の高い固体電解質、及び、かかる固体電解質を含む電解質層、活物質層、二次電池を提供することを目的とする。 An object of the present invention is to provide a solid electrolyte that can be produced by sintering at a low temperature and has high ion conductivity, and an electrolyte layer, an active material layer, and a secondary battery containing such a solid electrolyte.

本発明の実施形態に係る固体電解質は、一般式Li6-x1-xM1(BOで表される酸化物を含む。 A solid electrolyte according to an embodiment of the present invention contains an oxide represented by the general formula Li 6-x R 1-x M1 x (BO 3 ) 3 .

但し、Rは3価の元素Yb、Er、Ho、Tmを含む群から選ばれる少なくとも一または二の元素であり、M1は4価の元素であり、xは、0<x<1を満たす実数である。本発明の実施形態に係る固体電解質は、Liと、Yb、Er、Ho、Tm、La、Nd、Smを含む群から選ばれる元素Rと、Zr、Ce、Snを含む群から選ばれる元素Mと、を含むほう酸化物を含有するものである。 However, R is at least one or two elements selected from the group containing the trivalent elements Yb, Er, Ho, and Tm, M1 is a tetravalent element, and x is a real number that satisfies 0<x<1. is. The solid electrolyte according to the embodiment of the present invention includes Li, an element R selected from the group containing Yb, Er, Ho, Tm, La, Nd, and Sm, and an element M selected from the group containing Zr, Ce, and Sn. and boric oxide containing.

また、本発明の実施形態に係る固体電解質は、Liと、Yb、Er、Ho、Tm、La、Nd、Smを含む群から選ばれる元素Rと、Zr、Ce、Snを含む群から選ばれる元素Mと、を含むほう酸化物を含有し、CuKα線を用いたX線回折分析において、回折角2θが27.4度以上29.0度以下の範囲に2つの回折ピークを呈し、高角側の回折ピークと低角側の回折ピークとの回折角の差2θdが0.43度以上である。 Further, the solid electrolyte according to the embodiment of the present invention is selected from the group containing Li, the element R selected from the group containing Yb, Er, Ho, Tm, La, Nd, and Sm, and the group containing Zr, Ce, and Sn. It contains a borate containing the element M, and in X-ray diffraction analysis using CuKα rays, exhibits two diffraction peaks in the range of diffraction angles 2θ from 27.4 degrees to 29.0 degrees, and exhibits two diffraction peaks on the high angle side. The difference 2θd in the diffraction angle between the diffraction peak of and the diffraction peak on the low angle side is 0.43 degrees or more.

さらに、また、本発明の実施形態に係る固体電解質は、一般式Li6-x1-x(BOで表される酸化物を含む。但し、式中、RはYb、Er、Ho、Tm、La、Nd、Smを含む群から選ばれる希土類元素を含み、少なくとも一または二の元素であり、Mは4価の元素であり、xは、0<x<1を満たす実数である。一般式Li6-x1-x(BOで表される酸化物を含む、固体電解質。但し、式中、RはYb、Er、Ho、Tm、La、Nd、Smを含む群から選ばれる希土類元素であり、Mは、Zr、Ce、Snを含む群から選ばれる元素であり、xは、0<x<1を満たす実数である。 Furthermore, a solid electrolyte according to an embodiment of the present invention contains an oxide represented by the general formula Li 6-x R 1-x M x (BO 3 ) 3 . However, in the formula, R contains a rare earth element selected from the group including Yb, Er, Ho, Tm, La, Nd, and Sm and is at least one or two elements, M is a tetravalent element, x is a real number that satisfies 0<x<1. A solid electrolyte comprising an oxide represented by the general formula Li 6-x R 1-x M x (BO 3 ) 3 . However, in the formula, R is a rare earth element selected from the group including Yb, Er, Ho, Tm, La, Nd, and Sm, M is an element selected from the group including Zr, Ce, and Sn, and x is a real number that satisfies 0<x<1.

本発明によれば、低温での焼結によって作製可能で、かつイオン伝導性の高い固体電解質、及びこれを有する二次電池を得ることが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to obtain the solid electrolyte with high ion conductivity which can be produced by sintering at low temperature, and a secondary battery which has the same.

第1の実施形態に含まれる実施例1~12に係る固体電解質のイオン伝導率と、置換元素Mの組成x(x1+x2)の値との関係を示す図である。4 is a diagram showing the relationship between the ionic conductivity of solid electrolytes according to Examples 1 to 12 included in the first embodiment and the value of the composition x(x1+x2) of the substitution element M. FIG. 実施例1~12に係る固定電解質の回折曲線を示すものである。1 shows diffraction curves of fixed electrolytes according to Examples 1 to 12. FIG. 実施例1~6に係る固定電解質の回折曲線を示すものである。1 shows diffraction curves of fixed electrolytes according to Examples 1 to 6. FIG. 実施例7~10に係る固定電解質の回折曲線を示すものである。1 shows diffraction curves of fixed electrolytes according to Examples 7 to 10. FIG. 第2の実施形態に係る二次電池の概略断面図(a)と正極と電解質層の部分拡大図(b)である。FIG. 4A is a schematic cross-sectional view of a secondary battery according to a second embodiment, and FIG. 4B is a partially enlarged view of a positive electrode and an electrolyte layer; 第1の実施形態に含まれる実施例13~33(a)と実施例1~12(b)に係る固体電解質のイオン伝導率と、置換元素Mの組成x(x1+x2)の値との関係を示す図である。The relationship between the ionic conductivity of the solid electrolytes according to Examples 13 to 33(a) and Examples 1 to 12(b) included in the first embodiment and the value of the composition x(x1+x2) of the substitution element M is FIG. 4 is a diagram showing; 第1の実施形態に含まれる実施例1~33、比較例1~5、参考例1~3に係る固体電解質のイオン伝導率と、置換元素Mの組成x(x1+x2)の値との関係を示す図である。The relationship between the ionic conductivity of the solid electrolytes according to Examples 1 to 33, Comparative Examples 1 to 5, and Reference Examples 1 to 3 included in the first embodiment and the value of the composition x (x1+x2) of the substitution element M was FIG. 4 is a diagram showing;

以下に、本発明の好ましい実施形態を、図面を用いて詳細に説明する。 Preferred embodiments of the present invention are described in detail below with reference to the drawings.

(第1の実施形態)
本実施形態に係る固体電解質は、一般式Li6-x1-xM1(BOで表される酸化物を含む。
(First embodiment)
The solid electrolyte according to this embodiment contains an oxide represented by the general formula Li 6-x R 1-x M1 x (BO 3 ) 3 .

式中、Rは3価の元素Yb、Er、Ho、Tmを含む群から選ばれる少なくとも一または二の元素であり、M1は4価の元素である。さらに、式中、xは、0<x<1を満たす実数である。 In the formula, R is at least one or two elements selected from the group containing the trivalent elements Yb, Er, Ho and Tm, and M1 is a tetravalent element. Furthermore, in the formula, x is a real number that satisfies 0<x<1.

また、式中、Rが3価の元素Yb、Er、Ho、Tmを含む群から選ばれる少なくとも二の元素を含む場合は、Yb、Er、Ho、Tmを含む群から選ばれる元素の組み合わせだけでなく、これらの元素とイオン半径の近い他の3価の元素と組み合わせても良い。 In the formula, when R contains at least two elements selected from the group containing the trivalent elements Yb, Er, Ho, and Tm, only a combination of elements selected from the group containing Yb, Er, Ho, and Tm Instead, these elements may be combined with other trivalent elements having ionic radii close to each other.

本実施形態に係る固体電解質は、一般式Li6-x1-x(BOで表される酸化物を含むと換言される。 In other words, the solid electrolyte according to this embodiment contains an oxide represented by the general formula Li 6-x R 1-x M x (BO 3 ) 3 .

式中、RはYb、Er、Ho、Tm、La、Nd、Smを含む群から選ばれる少なくとも一または二の希土類元素であり、MはZr、Ce、Snを含む群から選ばれる元素である。さらに、式中、xは、0<x<1を満たす実数である。 In the formula, R is at least one or two rare earth elements selected from the group including Yb, Er, Ho, Tm, La, Nd, and Sm, and M is an element selected from the group including Zr, Ce, and Sn. . Furthermore, in the formula, x is a real number that satisfies 0<x<1.

また、式中、Rが希土類元素Yb、Er、Ho、Tm、La、Nd、Smを含む群から選ばれる少なくとも二の元素を含む場合は、かかる群の希土類元素同士の組み合わせだけでなく、これらの元素とイオン半径の近い他の希土類元素と組み合わせても良い。 Further, in the formula, when R contains at least two elements selected from the group containing rare earth elements Yb, Er, Ho, Tm, La, Nd, and Sm, not only combinations of rare earth elements of such groups but also these may be combined with another rare earth element having an ionic radius close to that of the element.

上述の一般式で表される酸化物を有する固体電解質においてイオン伝導率が向上する理由として、以下のように推察している。 The reason why the ion conductivity is improved in the solid electrolyte having the oxide represented by the above general formula is presumed as follows.

希土類元素であるYb、Er、Ho、Tm、La、Nd、Smの一部を、4価の価数をとる元素Mで置換すると、結晶全体として中性になるよう電荷のバランスが調整されるため、結晶格子中のLiが欠損した状態が生成される。元素が欠損した部分を、一般に空孔と呼ぶ。その空孔周囲のLiが空孔に移動する現象、一般にホッピングと呼ばれる現象が協奏的に起きるため、イオン伝導率が向上する。 When some of the rare earth elements Yb, Er, Ho, Tm, La, Nd, and Sm are replaced with the element M having a tetravalence, the charge balance is adjusted so that the crystal as a whole becomes neutral. Therefore, a state in which Li + is deficient in the crystal lattice is generated. Portions lacking elements are generally called vacancies. A phenomenon in which Li 2 + around the vacancies moves to the vacancies, a phenomenon generally called hopping, occurs in concert, thereby improving the ionic conductivity.

本実施形態の固体電解質は、Liと、Yb、Er、Ho、Tm、La、Nd、Smを含む群から選ばれる元素Rと、Zr、Ce、Snを含む群から選ばれる元素Mと、を含むほう酸化物を含有する固体電解質であると換言される。 The solid electrolyte of the present embodiment contains Li, an element R selected from the group including Yb, Er, Ho, Tm, La, Nd, and Sm, and an element M selected from the group including Zr, Ce, and Sn. In other words, it is a solid electrolyte containing boric oxide.

本実施形態の固体電解質は、単斜晶系の結晶構造を備えることが好ましい。 The solid electrolyte of the present embodiment preferably has a monoclinic crystal structure.

CuKα線を用いたX線回折分析(以下、XRD)において、回折角2θが28度付近に発生する回折ピークは、固体電解質の組成によって変化する。 In X-ray diffraction analysis (hereinafter referred to as XRD) using CuKα rays, the diffraction peak occurring at a diffraction angle 2θ of around 28 degrees varies depending on the composition of the solid electrolyte.

本実施形態の一般式Li6-x1-x(BOで表される酸化物のRがYbの固体電解質においては、CuKα線を用いたXRDにおいて、2θ=28.07度以上28.20度以下の範囲に回折ピークを有することが好ましい。より好ましくは2θ=28.10度以上28.20度以下の範囲にピークを有する。 In the solid electrolyte of the present embodiment in which the oxide represented by the general formula Li 6-x R 1-x M x (BO 3 ) 3 has Yb as R, 2θ=28.07 in XRD using CuKα rays. It is preferable to have a diffraction peak in the range of 28.20 degrees or more. More preferably, it has a peak in the range of 2θ=28.10 degrees or more and 28.20 degrees or less.

本実施形態の一般式Li6-x1-x(BOで表される酸化物のRがErの固体電解質においては、CuKα線を用いたXRDにおいて、2θ=27.94度以上28.10度以下の範囲に回折ピークを有することが好ましい。より好ましくは2θ=28.0度以上28.20度以下の範囲にピークを有する。 In the solid electrolyte of the present embodiment in which R is Er and the oxide represented by the general formula Li 6-x R 1-x M x (BO 3 ) 3 , 2θ=27.94 in XRD using CuKα rays. It is preferable to have a diffraction peak in the range of 28.10 degrees or more. More preferably, it has a peak in the range of 2θ=28.0 degrees or more and 28.20 degrees or less.

CuKα線を用いたXRDにおいて、2θ=28度付近に発生する回折ピークの位置は、上記一般式中のxの値を調整すること、Mが示される元素を変更することで制御することができる。 In XRD using CuKα rays, the position of the diffraction peak generated near 2θ = 28 degrees can be controlled by adjusting the value of x in the above general formula and changing the element represented by M. .

上記一般式のMは4価の元素である。また、Mは、Zr、Ce、Snを含む群から選ばれる少なくとも一つの元素である。 M in the above general formula is a tetravalent element. Also, M is at least one element selected from the group including Zr, Ce, and Sn.

Rの3価元素であるYb、Er、Ho、Tm、La、Nd、Smを置換する元素としては、イオン半径が近い元素が置換しやすく、具体的にはZr4+、Ce4+、Sn4+、Ti4+、Nb4+、Pb4+、Pr4+、Nb5+が候補して挙げられる。なかでも、Zr4+、Ce4+はより置換しやすい。 Elements with similar ionic radii are easily substituted for Yb, Er, Ho, Tm, La, Nd, and Sm, which are trivalent elements of R. Specifically, Zr 4+ , Ce 4+ , Sn 4+ , Ti 4+ , Nb 4+ , Pb 4+ , Pr 4+ and Nb 5+ are candidates. Among them, Zr 4+ and Ce 4+ are easier to be substituted.

上記一般式中、xは、0<x<1を満たす実数である。置換元素Mの元素Rの置換量に対応するxとしては、0.025以上0.4以下が採用される。さらに、より好ましいxとしては、0.100以上0.227以下が採用される。 In the above general formula, x is a real number that satisfies 0<x<1. As x corresponding to the substitution amount of the element R with the substitution element M, 0.025 or more and 0.4 or less is adopted. Furthermore, a more preferable x is 0.100 or more and 0.227 or less.

上記xの範囲が好ましい理由としては以下のように推察される。xの値が0.025より小さいと、元素Rの置換量が少ないために十分な構造変化が起きず、イオンの通る道が十分に形成されないため、結果イオン伝導率が向上しない。また、xの値が0.4より大きいと、置換元素Mの量が多くなりすぎるために結晶中で元素Rと置換に寄与しない過剰な元素Mが、結晶中で置換効果よりもイオン伝導の阻害成分として寄与することになる。 The reason why the above range of x is preferable is presumed as follows. If the value of x is less than 0.025, the substitution amount of the element R is small, so that sufficient structural change does not occur, and a path for ions is not sufficiently formed, resulting in no improvement in ionic conductivity. Also, when the value of x is larger than 0.4, the amount of the substitution element M becomes too large, and the element R in the crystal and the excess element M that does not contribute to the substitution have an effect on ion conduction rather than the substitution effect in the crystal. It will contribute as an inhibitory component.

次に、本実施形態の固体電解質の製造方法について説明する。 Next, a method for producing the solid electrolyte of this embodiment will be described.

本実施形態の固体電解質の製造方法は、一般式Li6-x1-x(BOで表される酸化物を含む固体電解質を構成する元素であるLi、R、M、またはこれらの酸化物を酸素含有雰囲気下で加熱する焼成工程を有する。(式中、Rは希土類元素Yb、Er、Ho、Tm、La、Nd、Smを含む群から選ばれる少なくとも一または二の元素であり、Mは4価の元素である。) In the method for producing a solid electrolyte of the present embodiment , elements Li , R , M , Alternatively, it has a firing step of heating these oxides in an oxygen-containing atmosphere. (Wherein, R is at least one or two elements selected from the group containing rare earth elements Yb, Er, Ho, Tm, La, Nd, and Sm, and M is a tetravalent element.)

本実施形態の固体電解質の製造方法は、該酸化物の融点未満の温度で加熱処理することによって上記一般式で表される酸化物を固相合成する仮焼成工程と、得られた酸化物を、加熱処理することによって緻密化する工程と、を含むことができる。 The method for producing a solid electrolyte of the present embodiment includes a calcination step of solid-phase synthesizing the oxide represented by the above general formula by heat-treating at a temperature below the melting point of the oxide, and and densifying by heat treatment.

以下、上記仮焼成工程と、上記本焼成と、を含む本実施形態の固体電解質の製造方法について詳細に説明するが、下記製造方法に限定されるものではない。 Hereinafter, the method for producing the solid electrolyte of the present embodiment, including the temporary sintering step and the main sintering, will be described in detail, but the production method is not limited to the following.

<仮焼成工程>
仮焼成工程では、Li6-x1-x(BOとなるように、化学試薬グレードのLiBO、HBO、Yb、Er、Ho、Tm、ZrO、CeOなどの原材料を所定の化学量論比を指標として秤量し混合する。所定の化学量論比となるように秤量する原材料は、他に、SnO、Nb、La、Nd、Smが含まれる。ここで、Rは希土類元素Yb、Er、Ho、Tm、La、Nd、Smを含む群から選ばれる少なくとも一または二の元素であり、Mは4価の元素が採用される。
<Temporary firing process>
In the calcination step, chemical reagent grade Li 3 BO 3 , H 3 BO 3 , Yb 2 O 3 , Er 2 O 3 , Ho Raw materials such as 2 O 3 , Tm 2 O 3 , ZrO 2 , and CeO 2 are weighed and mixed using a predetermined stoichiometric ratio as an index. Raw materials to be weighed to give a predetermined stoichiometric ratio also include SnO 2 , Nb 2 O 3 , La 2 O 3 , Nd 2 O 3 and Sm 2 O 3 . Here, R is at least one or two elements selected from the group including rare earth elements Yb, Er, Ho, Tm, La, Nd and Sm, and M is a tetravalent element.

混合に用いる装置は乳鉢・乳棒の他、ボールミルなどの混合機を用いることができる。 As a device used for mixing, a mixer such as a ball mill can be used in addition to a mortar and pestle.

該混合処理により上記各原材料の混合粉末を得た後、得られた混合粉末を加圧成型してペレットにする。ここで加圧成型法としては、冷間一軸成型法、冷間静水圧加圧成型法など公知の加圧成型法を用いることができる。仮焼成工程での加圧成型の条件としては、特に制限されないが、例えば圧力100~300MPaとすることができる。 After the mixed powder of the raw materials is obtained by the mixing treatment, the obtained mixed powder is press-molded into pellets. Here, as the pressure molding method, a known pressure molding method such as a cold uniaxial molding method, a cold isostatic pressure molding method, or the like can be used. Conditions for pressure molding in the calcination step are not particularly limited, but the pressure can be, for example, 100 to 300 MPa.

得られたペレットについて、大気焼成装置などを用いて500℃~800℃で仮焼成して固相合成する。仮焼成工程の時間は特に制限されないが、例えば700~750分(例えば720分)程度とすることができる。 The obtained pellets are calcined at 500° C. to 800° C. using an atmospheric calcining apparatus or the like to carry out solid-phase synthesis. The time for the calcination step is not particularly limited, but can be, for example, about 700 to 750 minutes (eg, 720 minutes).

得られた仮焼成体が、上記一般式Li6-x1-x(BOで表される酸化物である。該仮焼結体を、乳鉢・乳棒などを用いて粉砕することで仮焼成粉末を得ることができる。 The obtained calcined body is the oxide represented by the above general formula Li 6-x R 1-x M x (BO 3 ) 3 . A calcined powder can be obtained by pulverizing the calcined compact using a mortar, pestle, or the like.

<本焼成工程>
本焼成工程では、仮焼成工程で得られた仮焼成体および仮焼成体を含む群から選択される少なくとも一を加圧成型、本焼成して緻密な焼結体を得る。
<Baking process>
In the main firing step, the calcined body obtained in the calcining step and at least one selected from the group including the calcined body are subjected to pressure molding and main firing to obtain a dense sintered body.

加圧成型と本焼成は、放電プラズマ焼結やホットプレスなどを用いて同時に行ってよく、冷間一軸成型でペレットを作製してから大気雰囲気などで本焼成を行ってもよい。本焼成での加圧成型の条件としては、特に制限されないが、例えば圧力100~300MPaとすることができる。 Pressure molding and main firing may be performed simultaneously using discharge plasma sintering, hot pressing, or the like, or after pellets are produced by cold uniaxial molding, main firing may be performed in an air atmosphere or the like. Conditions for pressure molding in the main firing are not particularly limited, but the pressure can be, for example, 100 to 300 MPa.

本焼成する際の温度は、好ましくは800℃以下、より好ましくは700℃以下、さらに好ましくは680℃以下である。 The temperature for main firing is preferably 800° C. or lower, more preferably 700° C. or lower, and even more preferably 680° C. or lower.

本焼成工程の時間は、本焼成の温度等に応じて適宜変更することができるが、例えば700~750分(例えば720分)程度とすることができる。 The time for the main baking process can be appropriately changed according to the temperature of the main baking and the like, and can be, for example, about 700 to 750 minutes (eg, 720 minutes).

本焼成工程の冷却方法は特に制限されず、自然放冷してもよく、自然放冷よりも徐々に冷却してもよい。 The cooling method in the main firing step is not particularly limited, and the product may be naturally cooled, or may be cooled more slowly than naturally cooled.

次に、本実施形態の二次電池について説明する。 Next, the secondary battery of this embodiment will be described.

二次電池は一般的に、正極活物質を含む正極と、負極活物質を含む負極と、該正極及び該負極の間に配置された固体電解質を含む電解質と、必要に応じて集電体と、を有する。 A secondary battery generally includes a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode active material, an electrolyte containing a solid electrolyte disposed between the positive electrode and the negative electrode, and optionally a current collector. , have

本実施形態の二次電池は、正極活物質を含む正極と、負極活物質を含む負極と、電解質と、を少なくとも有する二次電池であって、該正極、該負極、該電解質を含む群から選択される少なくとも一が、本実施形態の固体電解質を含む。 The secondary battery of the present embodiment is a secondary battery having at least a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode active material, and an electrolyte, and selected from the group including the positive electrode, the negative electrode, and the electrolyte At least one selected contains the solid electrolyte of the present embodiment.

本実施形態の二次電池は前記電解質が、本実施形態の固体電解質からなってもよく、その他の固体電解質を含んでいてもよい。その他の固体電解質としては、特に制限されず、例えばLiPO、LiLaZr12、Li0.33La0.55TiO、Li1.5Al0.5Ge1.5(POなどが含まれていてもよい。本実施形態の二次電池における電解質中の、本実施形態の固体電解質の含有量は、好ましくは25質量%以上である。より好ましくは50質量%以上であり、さらに好ましくは75重量%以上、特に好ましくは100質量%である。 In the secondary battery of the present embodiment, the electrolyte may consist of the solid electrolyte of the present embodiment, or may contain other solid electrolytes. Other solid electrolytes are not particularly limited, and examples include Li 3 PO 4 , Li 7 La 3 Zr 2 O 12 , Li 0.33 La 0.55 TiO 3 , Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 and the like may be included. The content of the solid electrolyte of the present embodiment in the electrolyte in the secondary battery of the present embodiment is preferably 25% by mass or more. It is more preferably 50% by mass or more, still more preferably 75% by mass or more, and particularly preferably 100% by mass.

本実施形態の二次電池は、正極と固体電解質と負極を積層し、成型、加熱処理するなど、公知の方法により得ることができる。本実施形態の固体電解質は、従来技術と比較して低温の加熱処理で作製できるため、固体電解質と電極活物質が反応して生じる高抵抗相の形成を低減できるため、出力特性に優れた二次電池を得ることができる。なお、本願明細書においける「固体」とは、対象物の姿勢を変更しても一定の形・体積を保つ程度に自立性を有するものを含み、粘性が1×10cP未満(1×10Pa・秒未満)の非流動性を有するものと換言される。 The secondary battery of this embodiment can be obtained by a known method such as laminating a positive electrode, a solid electrolyte, and a negative electrode, followed by molding and heat treatment. Since the solid electrolyte of the present embodiment can be produced by heat treatment at a lower temperature than that of the conventional technology, the formation of a high-resistance phase caused by the reaction between the solid electrolyte and the electrode active material can be reduced. You can get the following batteries. In addition, the term “solid” as used in the specification of the present application includes those having self-sustainability to the extent that a certain shape and volume are maintained even if the posture of the object is changed, and the viscosity is less than 1×10 7 cP (1 ×10 4 Pa·sec).

次に、本開示にかかる物性の測定方法について説明する。 Next, a method for measuring physical properties according to the present disclosure will be described.

・R、Mの同定
採集した試料が他の材料との混合物でない場合は、採集した試料を溶液化処理したのち、誘導結合高周波プラズマ発光分光分析(ICP-AES)、波長分散型蛍光X線分析装置(WDXRF)等により試料の組成比を同定することができる。WDXRFは、WDXと換言する場合がある。
・Identification of R and M If the collected sample is not a mixture with other materials, inductively coupled high-frequency plasma atomic emission spectroscopy (ICP-AES), wavelength dispersive X-ray fluorescence analysis after solution treatment of the collected sample The composition ratio of the sample can be identified by a device (WDXRF) or the like. WDXRF may be rephrased as WDX.

一方、採集した試料が混合物である蓋然性が高い場合は、X線光電子分光分析装置(XPS,ESCA)、エネルギー分散型蛍光X線分析装置(EDXRF)を備えた走査型電子顕微鏡等の元素マッピング像が得られる走査型分析装置が適用可能である。これ以降、エネルギー分散型蛍光X線分析装置(EDXRF)を備えた走査型電子顕微鏡は、SEM/EDXと省略する場合がある。また、採集した試料が混合物である蓋然性が高い場合は、電子線回折機能を備えた透過電子顕微鏡(TEM-ED)により、結晶構造を同定しても良い。なお、EDXRFは、EDXと換言する場合がある。 On the other hand, if there is a high probability that the collected sample is a mixture, an elemental mapping image such as a scanning electron microscope equipped with an X-ray photoelectron spectrometer (XPS, ESCA) or an energy dispersive X-ray fluorescence spectrometer (EDXRF) can be applied to the scanning analyzer. Henceforth, a scanning electron microscope equipped with an energy dispersive X-ray fluorescence spectrometer (EDXRF) may be abbreviated as SEM/EDX. Further, when the collected sample is highly likely to be a mixture, the crystal structure may be identified by a transmission electron microscope (TEM-ED) equipped with an electron beam diffraction function. Note that EDXRF may be rephrased as EDX.

なお、軽元素であるLiと他のB、O、Zr、希土類等のより高い原子番号の元素との組成比を精緻に取得する点においては、ICP-AES、XPSが採用される。 ICP-AES and XPS are employed in order to precisely obtain the composition ratio of Li, which is a light element, and other elements with higher atomic numbers such as B, O, Zr, and rare earth elements.

また、採集した試料が混合物である場合は、ダイシング、イオンビーム加工等の物理的除去処理、ドライエッチング、ウエットエッチング等の化学的除去、それらの組み合わせにより、分析の非対象部位を選択的に除去する前処理が採用される。前処理には、洗浄、脱脂、切片化、粉砕、ペレット化等が採用される場合がある。 If the collected sample is a mixture, selectively remove the non-analytical parts by physical removal such as dicing or ion beam processing, chemical removal such as dry etching or wet etching, or a combination thereof. pretreatment is adopted. Pretreatment may employ washing, degreasing, sectioning, pulverization, pelleting, and the like.

標準試料について、SEM/EDXは、(株)日立ハイテクノロジーズ製S-4800を分析装置として採用可能である。 For standard samples, S-4800 manufactured by Hitachi High-Technologies Corporation can be used as an analyzer for SEM/EDX.

・X線回折ピークの測定
固体電解質のX線回折分析には、(株)リガク製RINT-2100を使用する。
• Measurement of X-ray diffraction peak RINT-2100 manufactured by Rigaku Corporation is used for X-ray diffraction analysis of solid electrolytes.

固体電解質を乳鉢・乳棒で粉砕して得た粉末を、CuKαの特性X線を用いてX線回折分析を行う。温度は室温、分析範囲は10度~70度、ステップは0.016度、スキャンスピードは0.5ステップ/秒とする。 A powder obtained by pulverizing a solid electrolyte with a mortar and pestle is subjected to X-ray diffraction analysis using characteristic X-rays of CuKα. The temperature is room temperature, the analysis range is 10 degrees to 70 degrees, the step is 0.016 degrees, and the scan speed is 0.5 steps/second.

(第2の実施形態)
<二次電池、正極の構造>
第1の実施形態に係る固体電解質44を有する電解質層40ならび電解質層40を備える二次電池100について図5(a)(b)の各図を用いて説明する。
(Second embodiment)
<Structure of secondary battery and positive electrode>
An electrolyte layer 40 having a solid electrolyte 44 according to the first embodiment and a secondary battery 100 having the electrolyte layer 40 will be described with reference to FIGS. 5(a) and 5(b).

図5(a)は、本実施形態の固体電解質44が適用される電解質層40を備える二次電池100の概略断面図である。二次電池100は、正極活物質層20と接する正極集電体層10の側とは反対側の面において、電解質層40を備えている。二次電池100は、電解質層40が正極活物質層20と接している側とは反対側において、負極70を備えている。負極70は、電解質層40の正極活物質層20と接している面とは反対面において負極活物質層50を備えている。負極70は、負極活物質層50が電解質層40と接している面とは反対面において、負極集電体層60を備えている。二次電池100は、積層方向200において、負極70、電解質層40、正極30を備えていると換言される。 FIG. 5(a) is a schematic cross-sectional view of a secondary battery 100 including an electrolyte layer 40 to which the solid electrolyte 44 of this embodiment is applied. The secondary battery 100 includes an electrolyte layer 40 on the side opposite to the side of the positive electrode current collector layer 10 in contact with the positive electrode active material layer 20 . The secondary battery 100 includes a negative electrode 70 on the side opposite to the side where the electrolyte layer 40 is in contact with the positive electrode active material layer 20 . The negative electrode 70 includes a negative electrode active material layer 50 on the surface of the electrolyte layer 40 opposite to the surface in contact with the positive electrode active material layer 20 . The negative electrode 70 has a negative electrode current collector layer 60 on the surface opposite to the surface where the negative electrode active material layer 50 is in contact with the electrolyte layer 40 . In other words, the secondary battery 100 includes the negative electrode 70 , the electrolyte layer 40 and the positive electrode 30 in the stacking direction 200 .

本実施形態の電解質44が適用される電解質層40は、図5(b)に示す通り、正極集電体層10と、活物質粒子22と正極内電解質24を含む正極活物質層20と、を有する正極30と接している。本願明細書においては、電解質層40とリチウムイオン(活物質イオン)の授受が行われる構造を正極と称するため、図5(a)の正極30から正極集電体層10を除いた正極活物質層20を、正極20と称する場合がある。また、本実施形態の正極活物質層20は、正極内電解質24を含むため、複合正極活物質層20あるいは複合正極構造20と換言される場合がある。 The electrolyte layer 40 to which the electrolyte 44 of the present embodiment is applied includes, as shown in FIG. is in contact with the positive electrode 30 having In the specification of the present application, a structure in which lithium ions (active material ions) are exchanged with the electrolyte layer 40 is referred to as a positive electrode. Layer 20 may be referred to as cathode 20 . In addition, since the positive electrode active material layer 20 of the present embodiment includes the electrolyte 24 in the positive electrode, it may be referred to as the composite positive electrode active material layer 20 or the composite positive electrode structure 20 .

集電体層10は、不図示の外部回路、活物質層との間で電子伝導を行う導体である。集電体層10は、SUS、アルミ二ウム等の金属の自立膜、金属箔、樹脂ベースとの積層形態が採用される。 The collector layer 10 is a conductor that conducts electrons with an external circuit (not shown) and an active material layer. The current collector layer 10 employs a laminate form of a self-supporting film of metal such as SUS or aluminum, metal foil, and a resin base.

正極活物質層20は、サブレイヤーとして正極活物質層20a、20b、20cを備えている。正極活物質層20a、20b、20cは、活物質粒子22、正極内電解質24が焼結される前の層厚方向200における積層する単位で区別されている。正極活物質層20a、20b、20cは、活物質粒子22と正極内電解質24の体積分率、不図示の導電助剤、空隙率(ポロシティ)等において、層厚方向の分布を有する場合がある。層厚方向200は、各層を積層する積層方向と平行か、逆平行であるため、積層方向200と換言する場合がある。 The cathode active material layer 20 includes cathode active material layers 20a, 20b, and 20c as sublayers. The positive electrode active material layers 20a, 20b, and 20c are distinguished by the unit of lamination in the layer thickness direction 200 before the active material particles 22 and the electrolyte 24 in the positive electrode are sintered. The positive electrode active material layers 20a, 20b, and 20c may have a layer thickness distribution in the volume fraction of the active material particles 22 and the electrolyte 24 in the positive electrode, the conductive aid (not shown), the porosity, and the like. . The layer thickness direction 200 is parallel or anti-parallel to the lamination direction in which the layers are laminated, so it may be rephrased as the lamination direction 200 .

本実施形態に係る固体電解質44は、複合正極活物質層20に含まれる正極内電解質24に適用される。正極内電解質24と電解質層40に含まれる固体電界質44とは、組成、粒径分布、を含めて共通のものを採用しても良いし、異なる組成、粒径分布等の特性を呈するものを採用しても良い。 The solid electrolyte 44 according to the present embodiment is applied to the intra-positive electrode electrolyte 24 included in the composite positive electrode active material layer 20 . The positive electrode electrolyte 24 and the solid electrolyte 44 contained in the electrolyte layer 40 may have a common composition and particle size distribution, or may have different compositions and particle size distributions. may be adopted.

(負極)
負極の製造方法は、公知の手法が適用可能である。本願の第2の実施形態のように、負極の作成に第1の実施形態の正極30の製造方法を準用してもよい。負極は、正極30と同様に負極活物質と固体電解質とが層内に混在する形態としされてもよいし、金属LiやIn-Li等の金属を膜として成形してもよい。
(negative electrode)
A known method can be applied to the method of manufacturing the negative electrode. As in the second embodiment of the present application, the manufacturing method of the positive electrode 30 of the first embodiment may be applied mutatis mutandis to manufacture the negative electrode. As with the positive electrode 30, the negative electrode may have a form in which the negative electrode active material and the solid electrolyte are mixed in the layer, or may be formed as a film of a metal such as metal Li or In--Li.

[負極活物質]
負極活物質としては、例えば、金属、金属繊維、炭素材料、酸化物、窒化物、珪素、珪素化合物、錫、錫化合物、各種合金材料などが挙げられる。なかでも、容量密度の観点から、金属、酸化物、炭素材料、珪素、珪素化合物、錫、錫化合物などが好ましい。金属としては、例えば、金属LiやIn-Li、酸化物としては、例えば、LiTi12(LTO:チタン酸リチウム)などが挙げられる。炭素材料としては、例えば、各種天然黒鉛(グラファイト)、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、各種人造黒鉛、非晶質炭素などが挙げられる。珪素化合物としては、例えば、珪素含有合金、珪素含有無機化合物、珪素含有有機化合物、固溶体などが挙げられる。錫化合物としては、例えば、SnO(0<b<2)、SnO、SnSiO、NiSn、MgSnなどが挙げられる。また、上記負極材料は、導電助剤を含んでいてもよい。導電助剤としては、例えば、天然黒鉛、人造黒鉛などのグラファイト、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラックが挙げられる。導電助剤は、炭素繊維、カーボンナノチューブ、金属繊維などの導電性繊維、フッ化カーボン、アルミニウムなどの金属粉末、酸化亜鉛などの導電性ウィスカー、酸化チタンなどの導電性金属酸化物、フェニレン誘電体などの有機導電性材料などが挙げられる。
[Negative electrode active material]
Examples of negative electrode active materials include metals, metal fibers, carbon materials, oxides, nitrides, silicon, silicon compounds, tin, tin compounds, and various alloy materials. Among them, metals, oxides, carbon materials, silicon, silicon compounds, tin, tin compounds, and the like are preferable from the viewpoint of capacity density. Examples of metals include metal Li and In—Li, and examples of oxides include Li 4 Ti 5 O 12 (LTO: lithium titanate). Carbon materials include, for example, various natural graphites (graphite), coke, ungraphitized carbon, carbon fibers, spherical carbon, various artificial graphites, and amorphous carbon. Silicon compounds include, for example, silicon-containing alloys, silicon-containing inorganic compounds, silicon-containing organic compounds, solid solutions, and the like. Examples of tin compounds include SnO b (0<b<2), SnO 2 , SnSiO 3 , Ni 2 Sn 4 and Mg 2 Sn. Further, the negative electrode material may contain a conductive aid. Examples of conductive aids include graphite such as natural graphite and artificial graphite, and carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black. Conductive agents include conductive fibers such as carbon fibers, carbon nanotubes, and metal fibers, carbon fluoride, metal powders such as aluminum, conductive whiskers such as zinc oxide, conductive metal oxides such as titanium oxide, and phenylene dielectrics. organic conductive materials such as

本実施形態の固体電解質を焼結体として作製・評価した例を説明する。なお、本開示は、以下の実施例に限定されるものではない。 An example of producing and evaluating the solid electrolyte of the present embodiment as a sintered body will be described. It should be noted that the present disclosure is not limited to the following examples.

[実施例1]
<仮焼成工程>
LiBO(豊島製作所製)、HBO(キシダ化学製)、Yb(高純度化学研究所製)、ZrO(新日本電工製)を固体電解質の原料として用意した。焼結後の組成がLi5.975Yb0.975Zr0.025(BOとなるように所定の化学量論比で秤量し、乳鉢・乳棒で混合した。
[Example 1]
<Temporary firing process>
Li 3 BO 3 (manufactured by Toyoshima Seisakusho), H 3 BO 3 (manufactured by Kishida Chemical), Yb 2 O 3 (manufactured by Kojundo Chemical Laboratory), and ZrO 2 (manufactured by Shin Nippon Denko) were prepared as raw materials for solid electrolytes. They were weighed in a predetermined stoichiometric ratio and mixed with a mortar and pestle so that the composition after sintering would be Li 5.975 Yb 0.975 Zr 0.025 (BO 3 ) 3 .

その後、混合した粉末を、島津製作所製油圧プレスSSP-10Aを用いて冷間一軸成型し、大気雰囲気で加熱処理した。加熱温度は650℃、保持時間は720分とした。 After that, the mixed powder was cold uniaxially molded using a hydraulic press SSP-10A manufactured by Shimadzu Corporation, and heat-treated in an air atmosphere. The heating temperature was 650° C. and the holding time was 720 minutes.

得られた仮焼成体を乳鉢・乳棒で粉砕して仮焼成粉末を作製した。 The obtained calcined body was pulverized with a mortar and pestle to prepare a calcined powder.

<本焼成工程>
上記で得られた仮焼成粉末を、仮焼成と同様の方法で成型、加熱処理して実施例1の焼結体を作製した。加熱温度は670℃、保持時間は720分とした。
<Baking process>
A sintered body of Example 1 was produced by molding and heat-treating the calcined powder obtained above in the same manner as in the calcination. The heating temperature was 670° C. and the holding time was 720 minutes.

[実施例2~4]
<仮焼成工程>
xが表1に記載された値となるように実施例1に記載の各原料を所定の化学量論比で秤量した以外は、実施例1と同じ工程で仮焼成体及び仮焼成粉末を作製した。
[Examples 2 to 4]
<Temporary firing process>
A calcined body and a calcined powder were produced in the same process as in Example 1, except that the raw materials described in Example 1 were weighed at a predetermined stoichiometric ratio so that x was the value shown in Table 1. did.

<本焼成工程>
上記で得られた仮焼結粉末を、実施例1と同じ本焼成工程で焼結体を作製した。
<Baking process>
A sintered body was produced from the pre-sintered powder obtained above in the same main firing process as in Example 1.

[実施例5]
<仮焼成工程>
LiBO(豊島製作所製)、HBO(キシダ化学製)、Yb(高純度化学研究所製)、ZrO(新日本電工製)、CeO(岩谷産業製)を固体電解質の原料として用意した。焼結後の組成がLi5.875Yb0.875Zr0.100Ce0.025(BOとなるように所定の化学量論比で秤量した以外は、実施例1と同じ工程で仮焼成体及び仮焼成粉末を作製した。
[Example 5]
<Temporary firing process>
Li 3 BO 3 (manufactured by Toyoshima Seisakusho), H 3 BO 3 (manufactured by Kishida Chemical), Yb 2 O 3 (manufactured by Kojundo Chemical Laboratory), ZrO 2 (manufactured by Shin Nippon Denko), and CeO 2 (manufactured by Iwatani Sangyo) It was prepared as a raw material for a solid electrolyte. In the same process as in Example 1, except that the composition after sintering was Li 5.875 Yb 0.875 Zr 0.100 Ce 0.025 (BO 3 ) 3 and weighed at a predetermined stoichiometric ratio. A calcined body and calcined powder were produced.

<本焼成工程>
上記で得られた仮焼結粉末を、実施例1と同じ本焼成工程で焼結体を作製した。加熱温度は650℃、保持時間は720分とした。
<Baking process>
A sintered body was produced from the pre-sintered powder obtained above in the same main firing process as in Example 1. The heating temperature was 650° C. and the holding time was 720 minutes.

[実施例6]
LiBO(豊島製作所製)、HBO(キシダ化学製)、Yb(高純度化学研究所製)、ZrO(新日本電工製)、CeO(岩谷産業製)を固体電解質の原料として用意した。焼結後の組成がLi5.850Yb0.850Zr0.100Ce0.050(BOとなるように所定の化学量論比で秤量した以外は、実施例1と同じ工程で仮焼成体及び仮焼成粉末を作製した。
[Example 6]
Li 3 BO 3 (manufactured by Toyoshima Seisakusho), H 3 BO 3 (manufactured by Kishida Chemical), Yb 2 O 3 (manufactured by Kojundo Chemical Laboratory), ZrO 2 (manufactured by Shin Nippon Denko), and CeO 2 (manufactured by Iwatani Sangyo) It was prepared as a raw material for a solid electrolyte. In the same process as in Example 1, except that the composition after sintering was Li 5.850 Yb 0.850 Zr 0.100 Ce 0.050 (BO 3 ) 3 with a predetermined stoichiometric ratio. A calcined body and calcined powder were produced.

<本焼成工程>
上記で得られた仮焼結粉末を、実施例1と同じ本焼成工程で焼結体を作製した。加熱温度は670℃、保持時間は720分とした。
<Baking process>
A sintered body was produced from the pre-sintered powder obtained above in the same main firing process as in Example 1. The heating temperature was 670° C. and the holding time was 720 minutes.

[実施例7]
<仮焼成工程>
LiBO(豊島製作所製)、HBO(キシダ化学製)、Er(高純度化学研究所製)、ZrO(新日本電工製)を固体電解質の原料として用意した。焼結後の組成がLi5.975Er0.975Zr0.025(BOとなるように所定の化学量論比で秤量し、乳鉢・乳棒で混合した。
[Example 7]
<Temporary firing process>
Li 3 BO 3 (manufactured by Toyoshima Seisakusho), H 3 BO 3 (manufactured by Kishida Chemical), Er 2 O 3 (manufactured by Kojundo Chemical Laboratory), and ZrO 2 (manufactured by Shin Nippon Denko) were prepared as raw materials for solid electrolytes. They were weighed in a predetermined stoichiometric ratio and mixed with a mortar and pestle so that the composition after sintering would be Li 5.975 Er 0.975 Zr 0.025 (BO 3 ) 3 .

その後、混合した粉末を、島津製作所製油圧プレスSSP-10Aを用いて冷間一軸成型し、大気雰囲気で加熱処理した。加熱温度は650℃、保持時間は720分とした。 After that, the mixed powder was cold uniaxially molded using a hydraulic press SSP-10A manufactured by Shimadzu Corporation, and heat-treated in an air atmosphere. The heating temperature was 650° C. and the holding time was 720 minutes.

得られた仮焼成体を乳鉢・乳棒で粉砕して仮焼成粉末を作製した。 The obtained calcined body was pulverized with a mortar and pestle to prepare a calcined powder.

<本焼成工程>
上記で得られた仮焼成粉末を、仮焼成と同様の方法で成型、加熱処理して実施例7の焼結体を作製した。加熱温度は670℃、保持時間は720分とした。
<Baking process>
A sintered body of Example 7 was produced by molding and heat-treating the calcined powder obtained above in the same manner as in the calcination. The heating temperature was 670° C. and the holding time was 720 minutes.

[実施例8~10]
<仮焼成工程>
xが表1に記載された値となるように実施例7に記載の各原料を所定の化学量論比で秤量した以外は、実施例7と同じ工程で仮焼成体及び仮焼成粉末を作製した。
[Examples 8 to 10]
<Temporary firing process>
A calcined body and a calcined powder were produced in the same process as in Example 7, except that the raw materials described in Example 7 were weighed at a predetermined stoichiometric ratio so that x was the value shown in Table 1. did.

<本焼成工程>
上記で得られた仮焼結粉末を、実施例1と同じ本焼成工程で焼結体を作製した。
<Baking process>
A sintered body was produced from the pre-sintered powder obtained above in the same main firing process as in Example 1.

[実施例11]
<仮焼成工程>
LiBO(豊島製作所製)、HBO(キシダ化学製)、Ho(高純度化学研究所製)、ZrO(新日本電工製)を固体電解質の原料として用意した。焼結後の組成がLi5.900Ho0.900Zr0.100(BOとなるように所定の化学量論比で秤量し、乳鉢・乳棒で混合した。
[Example 11]
<Temporary firing process>
Li 3 BO 3 (manufactured by Toyoshima Seisakusho), H 3 BO 3 (manufactured by Kishida Chemical), Ho 2 O 3 (manufactured by Kojundo Chemical Laboratory), and ZrO 2 (manufactured by Shin Nippon Denko) were prepared as raw materials for solid electrolytes. They were weighed in a predetermined stoichiometric ratio and mixed with a mortar and pestle so that the composition after sintering would be Li 5.900 Ho 0.900 Zr 0.100 (BO 3 ) 3 .

その後、混合した粉末を、島津製作所製油圧プレスSSP-10Aを用いて冷間一軸成型し、大気雰囲気で加熱処理した。加熱温度は650℃、保持時間は720分とした。 After that, the mixed powder was cold uniaxially molded using a hydraulic press SSP-10A manufactured by Shimadzu Corporation, and heat-treated in an air atmosphere. The heating temperature was 650° C. and the holding time was 720 minutes.

得られた仮焼成体を乳鉢・乳棒で粉砕して仮焼成粉末を作製した。 The obtained calcined body was pulverized with a mortar and pestle to prepare a calcined powder.

<本焼成工程>
上記で得られた仮焼成粉末を、仮焼成と同様の方法で成型、加熱処理して実施例11の焼結体を作製した。加熱温度は650℃、保持時間は720分とした。
<Baking process>
A sintered body of Example 11 was produced by molding and heat-treating the calcined powder obtained above in the same manner as in the calcination. The heating temperature was 650° C. and the holding time was 720 minutes.

[実施例12]
<仮焼成工程>
LiBO(豊島製作所製)、HBO(キシダ化学製)、Tm(高純度化学研究所製)、ZrO(新日本電工製)を固体電解質の原料として用意した。焼結後の組成がLi5.900Tm0.900Zr0.100(BOとなるように所定の化学量論比で秤量し、乳鉢・乳棒で混合した。
[Example 12]
<Temporary firing process>
Li 3 BO 3 (manufactured by Toshima Seisakusho), H 3 BO 3 (manufactured by Kishida Chemical), Tm 2 O 3 (manufactured by Kojundo Chemical Laboratory), and ZrO 2 (manufactured by Shin Nippon Denko) were prepared as raw materials for solid electrolytes. They were weighed in a predetermined stoichiometric ratio and mixed with a mortar and pestle so that the composition after sintering would be Li 5.900 Tm 0.900 Zr 0.100 (BO 3 ) 3 .

その後、混合した粉末を、島津製作所製油圧プレスSSP-10Aを用いて冷間一軸成型し、大気雰囲気で加熱処理した。加熱温度は650℃、保持時間は720分とした。 After that, the mixed powder was cold uniaxially molded using a hydraulic press SSP-10A manufactured by Shimadzu Corporation, and heat-treated in an air atmosphere. The heating temperature was 650° C. and the holding time was 720 minutes.

得られた仮焼成体を乳鉢・乳棒で粉砕して仮焼成粉末を作製した。 The obtained calcined body was pulverized with a mortar and pestle to prepare a calcined powder.

<本焼成工程>
上記で得られた仮焼成粉末を、仮焼成と同様の方法で成型、加熱処理して実施例12の焼結体を作製した。加熱温度は670℃、保持時間は720分とした。
<Baking process>
A sintered body of Example 12 was produced by molding and heat-treating the calcined powder obtained above in the same manner as in the calcination. The heating temperature was 670° C. and the holding time was 720 minutes.

[比較例1]
<仮焼成工程>
LiBO(豊島製作所製)、HBO(キシダ化学製)、Yb(高純度化学研究所製)を固体電解質の原料として用意した。焼結後の組成がLiYb(BOとなるように所定の化学量論比で秤量した以外は、実施例1と同じ工程で仮焼成体及び仮焼成粉末を作製した。
[Comparative Example 1]
<Temporary firing process>
Li 3 BO 3 (manufactured by Toyoshima Seisakusho), H 3 BO 3 (manufactured by Kishida Chemical), and Yb 2 O 3 (manufactured by Kojundo Chemical Laboratory) were prepared as raw materials for solid electrolytes. A calcined body and a calcined powder were produced in the same steps as in Example 1, except that the materials were weighed in a predetermined stoichiometric ratio so that the composition after sintering would be Li 6 Yb(BO 3 ) 3 .

<本焼成工程>
上記で得られた仮焼結粉末を、実施例1と同じ本焼成工程で焼結体を作製した。加熱温度は670℃、保持時間は720分とした。
<Baking process>
A sintered body was produced from the pre-sintered powder obtained above in the same main firing process as in Example 1. The heating temperature was 670° C. and the holding time was 720 minutes.

[比較例2]
<仮焼成工程>
LiBO(豊島製作所製)、HBO(キシダ化学製)、Er(高純度化学研究所製)を固体電解質の原料として用意した。焼結後の組成がLiEr(BOとなるように所定の化学量論比で秤量した以外は、実施例1と同じ工程で仮焼成体及び仮焼成粉末を作製した。
[Comparative Example 2]
<Temporary firing process>
Li 3 BO 3 (manufactured by Toshima Seisakusho), H 3 BO 3 (manufactured by Kishida Chemical), and Er 2 O 3 (manufactured by Kojundo Chemical Laboratory) were prepared as raw materials for solid electrolytes. A calcined body and calcined powder were produced in the same steps as in Example 1, except that the materials were weighed in a predetermined stoichiometric ratio so that the composition after sintering would be Li 6 Er(BO 3 ) 3 .

<本焼成工程>
上記で得られた仮焼結粉末を、実施例1と同じ本焼成工程で焼結体を作製した。加熱温度は670℃、保持時間は720分とした。
<Baking process>
A sintered body was produced from the pre-sintered powder obtained above in the same main firing process as in Example 1. The heating temperature was 670° C. and the holding time was 720 minutes.

[参考例1]
<仮焼成工程>
LiBO(豊島製作所製)、HBO(キシダ化学製)、Nd(高純度化学研究所製)、ZrO(新日本電工製)を固体電解質の原料として用意した。焼結後の組成がLi5.900Nd0.900Zr0.100(BOとなるように所定の化学量論比で秤量し、乳鉢・乳棒で混合した。
[Reference example 1]
<Temporary firing process>
Li 3 BO 3 (manufactured by Toshima Seisakusho), H 3 BO 3 (manufactured by Kishida Chemical), Nd 2 O 3 (manufactured by Kojundo Chemical Laboratory), and ZrO 2 (manufactured by Shin Nippon Denko) were prepared as raw materials for solid electrolytes. They were weighed in a predetermined stoichiometric ratio and mixed with a mortar and pestle so that the composition after sintering would be Li 5.900 Nd 0.900 Zr 0.100 (BO 3 ) 3 .

その後、混合した粉末を、島津製作所製油圧プレスSSP-10Aを用いて冷間一軸成型し、大気雰囲気で加熱処理した。加熱温度は650℃、保持時間は720分とした。 After that, the mixed powder was cold uniaxially molded using a hydraulic press SSP-10A manufactured by Shimadzu Corporation, and heat-treated in an air atmosphere. The heating temperature was 650° C. and the holding time was 720 minutes.

得られた仮焼成体を乳鉢・乳棒で粉砕して仮焼成粉末を作製した。 The obtained calcined body was pulverized with a mortar and pestle to prepare a calcined powder.

<本焼成工程>
上記で得られた仮焼成粉末を、仮焼成と同様の方法で成型、加熱処理して参考例1の焼結体を作製した。加熱温度は650℃、保持時間は720分とした。
<Baking process>
A sintered body of Reference Example 1 was produced by molding and heat-treating the calcined powder obtained above in the same manner as in the calcination. The heating temperature was 650° C. and the holding time was 720 minutes.

[参考例2]
<仮焼成工程>
LiBO(豊島製作所製)、HBO(キシダ化学製)、Sm(高純度化学研究所製)、ZrO(新日本電工製)を固体電解質の原料として用意した。焼結後の組成がLi5.900Sm0.900Zr0.100(BOとなるように所定の化学量論比で秤量し、乳鉢・乳棒で混合した。
[Reference example 2]
<Temporary firing process>
Li 3 BO 3 (manufactured by Toyoshima Seisakusho), H 3 BO 3 (manufactured by Kishida Chemical), Sm 2 O 3 (manufactured by Kojundo Chemical Laboratory), and ZrO 2 (manufactured by Shin Nippon Denko) were prepared as raw materials for solid electrolytes. They were weighed in a predetermined stoichiometric ratio and mixed with a mortar and pestle so that the composition after sintering would be Li 5.900 Sm 0.900 Zr 0.100 (BO 3 ) 3 .

その後、混合した粉末を、島津製作所製油圧プレスSSP-10Aを用いて冷間一軸成型し、大気雰囲気で加熱処理した。加熱温度は650℃、保持時間は720分とした。 After that, the mixed powder was cold uniaxially molded using a hydraulic press SSP-10A manufactured by Shimadzu Corporation, and heat-treated in an air atmosphere. The heating temperature was 650° C. and the holding time was 720 minutes.

得られた仮焼成体を乳鉢・乳棒で粉砕して仮焼成粉末を作製した。 The obtained calcined body was pulverized with a mortar and pestle to prepare a calcined powder.

<本焼成工程>
上記で得られた仮焼成粉末を、仮焼成と同様の方法で成型、加熱処理して参考例2の焼結体を作製した。加熱温度は650℃、保持時間は720分とした。
<Baking process>
A sintered body of Reference Example 2 was produced by molding and heat-treating the calcined powder obtained above in the same manner as in the calcination. The heating temperature was 650° C. and the holding time was 720 minutes.

実施例1~12、比較例1~2、参考例1~2の焼結体について、上記方法により組成分析、X線回折ピークの測定を行った。また、以下の方法によりイオン伝導率の測定を行った。イオン伝導率の測定方法を以下に述べる。また、得られた評価結果を表1に示す。 The sintered bodies of Examples 1 to 12, Comparative Examples 1 and 2, and Reference Examples 1 and 2 were subjected to composition analysis and X-ray diffraction peak measurement by the above methods. Also, ion conductivity was measured by the following method. A method for measuring ionic conductivity is described below. Table 1 shows the obtained evaluation results.

・イオン伝導率の測定
本焼成で得られた平板形状の焼結体の上下面に、(株)真空デバイス製マグネトロンスパッタ装置MSP-10を用いて、金の電極を成膜し、交流インピーダンス測定を行うための試料とした。
Measurement of ionic conductivity On the upper and lower surfaces of the flat plate-shaped sintered body obtained by main firing, a gold electrode is formed using a magnetron sputtering device MSP-10 manufactured by Vacuum Device Co., Ltd., and AC impedance is measured. It was used as a sample for performing

交流インピーダンス測定にはSolartron Analytical社製のポテンショ/ガルバノスタットSI1287A及び周波数応答アナライザー1255Bを使用した。測定条件は、室温、周波数1MHz~0.1Hzとした。 Potentiometer/galvanostat SI1287A and frequency response analyzer 1255B manufactured by Solartron Analytical were used for AC impedance measurement. The measurement conditions were room temperature and a frequency of 1 MHz to 0.1 Hz.

焼結体の抵抗は、インピーダンス測定で得られた複素インピーダンスプロットから算出した。算出した抵抗と焼結体の厚みと電極面積から、以下の式を用いてイオン伝導率を求めた。
イオン伝導率(S/cm)=焼結体の厚み(cm)/(焼結体の抵抗(Ω)×電極面積(cm))
The resistance of the sintered body was calculated from a complex impedance plot obtained by impedance measurement. From the calculated resistance, the thickness of the sintered body, and the electrode area, the ionic conductivity was determined using the following formula.
Ionic conductivity (S/cm)=thickness of sintered body (cm)/(resistance of sintered body (Ω)×electrode area (cm 2 ))

[実施例13、14]
<仮焼成工程>
LiBO(豊島製作所製)、HBO(キシダ化学製)、Yb(高純度化学研究所製)、Tm(高純度化学研究所製)、ZrO(新日本電工製)を固体電解質の原料として用意した。焼結後の組成がそれぞれLi5.900Yb0.720Tm0.180Zr0.100(BO、Li5.800Yb0.640Tm0.160Zr0.200(BOとなるように所定の化学量論比で秤量し、乳鉢・乳棒で混合した。
[Examples 13 and 14]
<Temporary firing process>
Li 3 BO 3 (manufactured by Toyoshima Seisakusho), H 3 BO 3 (manufactured by Kishida Chemical), Yb 2 O 3 (manufactured by Kojundo Chemical Laboratory), Tm 2 O 3 (manufactured by Kojundo Chemical Laboratory), ZrO 2 (manufactured by New manufactured by Nippon Denko) was prepared as a raw material for the solid electrolyte. The composition after sintering is Li5.900Yb0.720Tm0.180Zr0.100 ( BO3 ) 3 , Li5.800Yb0.640Tm0.160Zr0.200 ( BO3 ) 3 . and mixed with a mortar and pestle.

その後、混合した粉末を、島津製作所製油圧プレスSSP-10Aを用いて冷間一軸成型し、大気雰囲気で加熱処理した。加熱温度は650℃、保持時間は720分とした。 After that, the mixed powder was cold uniaxially molded using a hydraulic press SSP-10A manufactured by Shimadzu Corporation, and heat-treated in an air atmosphere. The heating temperature was 650° C. and the holding time was 720 minutes.

得られた仮焼成体を乳鉢・乳棒で粉砕して仮焼成粉末を作製した。 The obtained calcined body was pulverized with a mortar and pestle to prepare a calcined powder.

<本焼成工程>
上記で得られた仮焼成粉末を、仮焼成と同様の方法で成型、加熱処理して実施例13、14の焼結体を作製した。加熱温度は670℃、保持時間は720分とした。
<Baking process>
The sintered bodies of Examples 13 and 14 were produced by molding and heat-treating the calcined powder obtained above in the same manner as in the calcining. The heating temperature was 670° C. and the holding time was 720 minutes.

[実施例15]
<仮焼成工程>
LiBO(豊島製作所製)、HBO(キシダ化学製)、Yb(高純度化学研究所製)、Tm(高純度化学研究所製)、ZrO(新日本電工製)、CeO(岩谷産業製)を固体電解質の原料として用意した。焼結後の組成がLi5.875Yb0.700Tm0.175Zr0.100Ce0.025(BOとなるように所定の化学量論比で秤量し、乳鉢・乳棒で混合した。
[Example 15]
<Temporary firing process>
Li 3 BO 3 (manufactured by Toyoshima Seisakusho), H 3 BO 3 (manufactured by Kishida Chemical), Yb 2 O 3 (manufactured by Kojundo Chemical Laboratory), Tm 2 O 3 (manufactured by Kojundo Chemical Laboratory), ZrO 2 (manufactured by New Nippon Denko Co., Ltd.) and CeO 2 (Iwatani Sangyo Co., Ltd.) were prepared as raw materials for the solid electrolyte. Weighed in a predetermined stoichiometric ratio so that the composition after sintering would be Li 5.875 Yb 0.700 Tm 0.175 Zr 0.100 Ce 0.025 (BO 3 ) 3 and mixed with a mortar and pestle did.

その後、混合した粉末を、島津製作所製油圧プレスSSP-10Aを用いて冷間一軸成型し、大気雰囲気で加熱処理した。加熱温度は650℃、保持時間は720分とした。 After that, the mixed powder was cold uniaxially molded using a hydraulic press SSP-10A manufactured by Shimadzu Corporation, and heat-treated in an air atmosphere. The heating temperature was 650° C. and the holding time was 720 minutes.

得られた仮焼成体を乳鉢・乳棒で粉砕して仮焼成粉末を作製した。 The obtained calcined body was pulverized with a mortar and pestle to prepare a calcined powder.

<本焼成工程>
上記で得られた仮焼成粉末を、仮焼成と同様の方法で成型、加熱処理して実施例15の焼結体を作製した。加熱温度は670℃、保持時間は720分とした。
<Baking process>
A sintered body of Example 15 was produced by molding and heat-treating the calcined powder obtained above in the same manner as in the calcination. The heating temperature was 670° C. and the holding time was 720 minutes.

[実施例16、17]
<仮焼成工程>
R1、R2、R1比率、R2比率、M1成分、x=x1+x2が表2に記載された値となるように実施例15に記載の各原料を所定の化学量論比で秤量した以外は、実施例15と同じ工程で仮焼成体及び仮焼成粉末を作製した。
[Examples 16 and 17]
<Temporary firing process>
Each raw material described in Example 15 was weighed at a predetermined stoichiometric ratio so that R1, R2, R1 ratio, R2 ratio, M1 component, and x = x1 + x2 were the values shown in Table 2. A calcined body and a calcined powder were produced in the same process as in Example 15.

<本焼成工程>
上記で得られた仮焼結粉末を、実施例15と同じ本焼成工程で焼結体を作製した。
<Baking process>
A sintered body was produced from the pre-sintered powder obtained above in the same main firing process as in Example 15.

[実施例18]
<仮焼成工程>
LiBO(豊島製作所製)、HBO(キシダ化学製)、Yb(高純度化学研究所製)、Nd(高純度化学研究所製)、ZrO(新日本電工製)を固体電解質の原料として用意した。焼結後の組成がそれぞれLi5.900Yb0.720Nd0.180Zr0.100(BOとなるように所定の化学量論比で秤量し、乳鉢・乳棒で混合した。
[Example 18]
<Temporary firing process>
Li 3 BO 3 (manufactured by Toshima Seisakusho), H 3 BO 3 (manufactured by Kishida Chemical), Yb 2 O 3 (manufactured by Kojundo Chemical Laboratory), Nd 2 O 3 (manufactured by Kojundo Chemical Laboratory), ZrO 2 (manufactured by New manufactured by Nippon Denko) was prepared as a raw material for the solid electrolyte. They were weighed in a predetermined stoichiometric ratio and mixed with a mortar and pestle so that the composition after sintering would be Li 5.900 Yb 0.720 Nd 0.180 Zr 0.100 (BO 3 ) 3 .

その後、混合した粉末を、島津製作所製油圧プレスSSP-10Aを用いて冷間一軸成型し、大気雰囲気で加熱処理した。加熱温度は650℃、保持時間は720分とした。 After that, the mixed powder was cold uniaxially molded using a hydraulic press SSP-10A manufactured by Shimadzu Corporation, and heat-treated in an air atmosphere. The heating temperature was 650° C. and the holding time was 720 minutes.

得られた仮焼成体を乳鉢・乳棒で粉砕して仮焼成粉末を作製した。 The obtained calcined body was pulverized with a mortar and pestle to prepare a calcined powder.

<本焼成工程>
上記で得られた仮焼成粉末を、仮焼成と同様の方法で成型、加熱処理して実施例18の焼結体を作製した。加熱温度は670℃、保持時間は720分とした。
<Baking process>
A sintered body of Example 18 was produced by molding and heat-treating the calcined powder obtained above in the same manner as in the calcination. The heating temperature was 670° C. and the holding time was 720 minutes.

[実施例19~21]
<仮焼成工程>
R1、R2、R1比率、R2比率、M1成分、x=x1+x2が表2に記載された値となるように実施例18に記載の各原料を所定の化学量論比で秤量した以外は、実施例18と同じ工程で仮焼成体及び仮焼成粉末を作製した。
[Examples 19 to 21]
<Temporary firing process>
Each raw material described in Example 18 was weighed at a predetermined stoichiometric ratio so that R1, R2, R1 ratio, R2 ratio, M1 component, and x = x1 + x2 were the values shown in Table 2. A calcined body and a calcined powder were produced in the same process as in Example 18.

<本焼成工程>
上記で得られた仮焼結粉末を、実施例18と同じ本焼成工程で焼結体を作製した。
<Baking process>
A sintered body was produced from the pre-sintered powder obtained above in the same main firing process as in Example 18.

[実施例22、23]
<仮焼成工程>
LiBO(豊島製作所製)、HBO(キシダ化学製)、Yb(高純度化学研究所製)、Nd(高純度化学研究所製)、ZrO(新日本電工製)、CeO(岩谷産業製)を固体電解質の原料として用意した。焼結後の組成がそれぞれLi5.875Yb0.788Nd0.088Zr0.100Ce0.025(BO、Li5.875Yb0.700Nd0.175Zr0.100Ce0.025(BOとなるように所定の化学量論比で秤量した。秤量した原料を乳鉢と乳棒で攪拌、混合した。
[Examples 22 and 23]
<Temporary firing process>
Li 3 BO 3 (manufactured by Toshima Seisakusho), H 3 BO 3 (manufactured by Kishida Chemical), Yb 2 O 3 (manufactured by Kojundo Chemical Laboratory), Nd 2 O 3 (manufactured by Kojundo Chemical Laboratory), ZrO 2 (manufactured by New Nippon Denko Co., Ltd.) and CeO 2 (Iwatani Sangyo Co., Ltd.) were prepared as raw materials for the solid electrolyte. The composition after sintering is Li5.875Yb0.788Nd0.088Zr0.100Ce0.025 ( BO3 ) 3 , Li5.875Yb0.700Nd0.175Zr0.100Ce . It was weighed in a predetermined stoichiometric ratio so as to be 0.025 (BO 3 ) 3 . The weighed ingredients were stirred and mixed with a mortar and pestle.

その後、混合した粉末を、島津製作所製油圧プレスSSP-10Aを用いて冷間一軸成型し、大気雰囲気で加熱処理した。加熱温度は650℃、保持時間は720分とした。 After that, the mixed powder was cold uniaxially molded using a hydraulic press SSP-10A manufactured by Shimadzu Corporation, and heat-treated in an air atmosphere. The heating temperature was 650° C. and the holding time was 720 minutes.

得られた仮焼成体を乳鉢・乳棒で粉砕して仮焼成粉末を作製した。 The obtained calcined body was pulverized with a mortar and pestle to prepare a calcined powder.

<本焼成工程>
上記で得られた仮焼成粉末を、仮焼成と同様の方法で成型、加熱処理して実施例22、23の焼結体を作製した。加熱温度は670℃、保持時間は720分とした。
<Baking process>
The sintered bodies of Examples 22 and 23 were produced by molding and heat-treating the calcined powder obtained above in the same manner as in the calcining. The heating temperature was 670° C. and the holding time was 720 minutes.

[実施例24]
<仮焼成工程>
LiBO(豊島製作所製)、HBO(キシダ化学製)、Yb(高純度化学研究所製)、Er(高純度化学研究所製)、ZrO(新日本電工製)を固体電解質の原料として用意した。焼結後の組成がLi5.800Yb0.640Er0.160Zr0.200(BOとなるように所定の化学量論比で秤量し、乳鉢・乳棒で混合した。
[Example 24]
<Temporary firing process>
Li 3 BO 3 (manufactured by Toyoshima Seisakusho), H 3 BO 3 (manufactured by Kishida Chemical), Yb 2 O 3 (manufactured by Kojundo Chemical Laboratory), Er 2 O 3 (manufactured by Kojundo Chemical Laboratory), ZrO 2 (manufactured by New manufactured by Nippon Denko) was prepared as a raw material for the solid electrolyte. They were weighed in a predetermined stoichiometric ratio and mixed with a mortar and pestle so that the composition after sintering would be Li 5.800 Yb 0.640 Er 0.160 Zr 0.200 (BO 3 ) 3 .

その後、混合した粉末を、島津製作所製油圧プレスSSP-10Aを用いて冷間一軸成型し、大気雰囲気で加熱処理した。加熱温度は650℃、保持時間は720分とした。 After that, the mixed powder was cold uniaxially molded using a hydraulic press SSP-10A manufactured by Shimadzu Corporation, and heat-treated in an air atmosphere. The heating temperature was 650° C. and the holding time was 720 minutes.

得られた仮焼成体を乳鉢・乳棒で粉砕して仮焼成粉末を作製した。 The obtained calcined body was pulverized with a mortar and pestle to prepare a calcined powder.

<本焼成工程>
上記で得られた仮焼成粉末を、仮焼成と同様の方法で成型、加熱処理して実施例24の焼結体を作製した。加熱温度は670℃、保持時間は720分とした。
<Baking process>
A sintered body of Example 24 was produced by molding and heat-treating the calcined powder obtained above in the same manner as in the calcination. The heating temperature was 670° C. and the holding time was 720 minutes.

[実施例25]
<仮焼成工程>
LiBO(豊島製作所製)、HBO(キシダ化学製)、Yb(高純度化学研究所製)、Sm(高純度化学研究所製)、ZrO(新日本電工製)を固体電解質の原料として用意した。焼結後の組成がLi5.900Yb0.810Sm0.090Zr0.100(BOとなるように所定の化学量論比で秤量し、乳鉢・乳棒で混合した。
[Example 25]
<Temporary firing process>
Li 3 BO 3 (manufactured by Toyoshima Seisakusho), H 3 BO 3 (manufactured by Kishida Chemical), Yb 2 O 3 (manufactured by Kojundo Chemical Laboratory), Sm 2 O 3 (manufactured by Kojundo Chemical Laboratory), ZrO 2 (manufactured by New manufactured by Nippon Denko) was prepared as a raw material for the solid electrolyte. They were weighed in a predetermined stoichiometric ratio and mixed with a mortar and pestle so that the composition after sintering would be Li 5.900 Yb 0.810 Sm 0.090 Zr 0.100 (BO 3 ) 3 .

その後、混合した粉末を、島津製作所製油圧プレスSSP-10Aを用いて冷間一軸成型し、大気雰囲気で加熱処理した。加熱温度は650℃、保持時間は720分とした。 After that, the mixed powder was cold uniaxially molded using a hydraulic press SSP-10A manufactured by Shimadzu Corporation, and heat-treated in an air atmosphere. The heating temperature was 650° C. and the holding time was 720 minutes.

得られた仮焼成体を乳鉢・乳棒で粉砕して仮焼成粉末を作製した。 The obtained calcined body was pulverized with a mortar and pestle to prepare a calcined powder.

<本焼成工程>
上記で得られた仮焼成粉末を、仮焼成と同様の方法で成型、加熱処理して実施例25の焼結体を作製した。加熱温度は670℃、保持時間は720分とした。
<Baking process>
A sintered body of Example 25 was produced by molding and heat-treating the calcined powder obtained above in the same manner as in the calcination. The heating temperature was 670° C. and the holding time was 720 minutes.

[実施例26]
<仮焼成工程>
LiBO(豊島製作所製)、HBO(キシダ化学製)、Yb(高純度化学研究所製)、La(高純度化学研究所製)、ZrO(新日本電工製)を固体電解質の原料として用意した。焼結後の組成がLi5.900Yb0.810La0.090Zr0.100(BOとなるように所定の化学量論比で秤量し、乳鉢・乳棒で混合した。
[Example 26]
<Temporary firing process>
Li 3 BO 3 (manufactured by Toyoshima Seisakusho), H 3 BO 3 (manufactured by Kishida Chemical), Yb 2 O 3 (manufactured by Kojundo Chemical Laboratory), La 2 O 3 (manufactured by Kojundo Chemical Laboratory), ZrO 2 (New manufactured by Nippon Denko) was prepared as a raw material for the solid electrolyte. They were weighed in a predetermined stoichiometric ratio and mixed with a mortar and pestle so that the composition after sintering would be Li 5.900 Yb 0.810 La 0.090 Zr 0.100 (BO 3 ) 3 .

その後、混合した粉末を、島津製作所製油圧プレスSSP-10Aを用いて冷間一軸成型し、大気雰囲気で加熱処理した。加熱温度は650℃、保持時間は720分とした。 After that, the mixed powder was cold uniaxially molded using a hydraulic press SSP-10A manufactured by Shimadzu Corporation, and heat-treated in an air atmosphere. The heating temperature was 650° C. and the holding time was 720 minutes.

得られた仮焼成体を乳鉢・乳棒で粉砕して仮焼成粉末を作製した。 The obtained calcined body was pulverized with a mortar and pestle to prepare a calcined powder.

<本焼成工程>
上記で得られた仮焼成粉末を、仮焼成と同様の方法で成型、加熱処理して実施例26の焼結体を作製した。加熱温度は670℃、保持時間は720分とした。
<Baking process>
A sintered body of Example 26 was produced by molding and heat-treating the calcined powder obtained above in the same manner as in the calcination. The heating temperature was 670° C. and the holding time was 720 minutes.

[実施例27]
<仮焼成工程>
LiBO(豊島製作所製)、HBO(キシダ化学製)、Yb(高純度化学研究所製)、La(高純度化学研究所製)、ZrO(新日本電工製)、CeO(岩谷産業製)を固体電解質の原料として用意した。焼結後の組成がLi5.88Yb0.788La0.088Zr0.100Ce0.025(BOとなるように所定の化学量論比で秤量し、乳鉢・乳棒で混合した。
[Example 27]
<Temporary firing process>
Li 3 BO 3 (manufactured by Toyoshima Seisakusho), H 3 BO 3 (manufactured by Kishida Chemical), Yb 2 O 3 (manufactured by Kojundo Chemical Laboratory), La 2 O 3 (manufactured by Kojundo Chemical Laboratory), ZrO 2 (New Nippon Denko Co., Ltd.) and CeO 2 (Iwatani Sangyo Co., Ltd.) were prepared as raw materials for the solid electrolyte. Weighed in a predetermined stoichiometric ratio so that the composition after sintering would be Li 5.88 Yb 0.788 La 0.088 Zr 0.100 Ce 0.025 (BO 3 ) 3 and mixed with a mortar and pestle did.

その後、混合した粉末を、島津製作所製油圧プレスSSP-10Aを用いて冷間一軸成型し、大気雰囲気で加熱処理した。加熱温度は650℃、保持時間は720分とした。 After that, the mixed powder was cold uniaxially molded using a hydraulic press SSP-10A manufactured by Shimadzu Corporation, and heat-treated in an air atmosphere. The heating temperature was 650° C. and the holding time was 720 minutes.

得られた仮焼成体を乳鉢・乳棒で粉砕して仮焼成粉末を作製した。 The obtained calcined body was pulverized with a mortar and pestle to prepare a calcined powder.

<本焼成工程>
上記で得られた仮焼成粉末を、仮焼成と同様の方法で成型、加熱処理して実施例27の焼結体を作製した。加熱温度は670℃、保持時間は720分とした。
<Baking process>
A sintered body of Example 27 was produced by molding and heat-treating the calcined powder obtained above in the same manner as in the calcination. The heating temperature was 670° C. and the holding time was 720 minutes.

[実施例28、29]
<仮焼成工程>
R1、R2、R1比率、R2比率、M1成分、x=x1+x2が表2に記載された値となるように実施例27に記載の各原料を所定の化学量論比で秤量した以外は、実施例27と同じ工程で仮焼成体及び仮焼成粉末を作製した。
[Examples 28 and 29]
<Temporary firing process>
Each raw material described in Example 27 was weighed at a predetermined stoichiometric ratio so that R1, R2, R1 ratio, R2 ratio, M1 component, and x = x1 + x2 were the values shown in Table 2. A calcined body and a calcined powder were produced in the same process as in Example 27.

<本焼成工程>
上記で得られた仮焼結粉末を、実施例27と同じ本焼成工程で焼結体を作製した。
<Baking process>
A sintered body was produced from the pre-sintered powder obtained above in the same main firing process as in Example 27.

[比較例3~5]
LiBO(豊島製作所製)、HBO(キシダ化学製)、Yb(高純度化学研究所製)、Tm(高純度化学研究所製)、Nd(高純度化学研究所製)、La(高純度化学研究所製)を固体電解質の原料として用意した。
[Comparative Examples 3-5]
Li 3 BO 3 (manufactured by Toyoshima Seisakusho), H 3 BO 3 (manufactured by Kishida Chemical), Yb 2 O 3 (manufactured by Kojundo Chemical Laboratory), Tm 2 O 3 (manufactured by Kojundo Chemical Laboratory), Nd 2 O 3 (manufactured by Kojundo Chemical Laboratory) and La 2 O 3 (manufactured by Kojundo Chemical Laboratory) were prepared as raw materials for the solid electrolyte.

<仮焼成工程>
R1、R2、R1比率、R2比率、M1成分、x=x1+x2が表2に記載された値となるように実施例13に記載の各原料を所定の化学量論比で秤量した以外は、実施例13と同じ工程で仮焼成体及び仮焼成粉末を作製した。
<Temporary firing process>
Each raw material described in Example 13 was weighed at a predetermined stoichiometric ratio so that R1, R2, R1 ratio, R2 ratio, M1 component, and x = x1 + x2 were the values shown in Table 2. A calcined body and calcined powder were produced in the same process as in Example 13.

<本焼成工程>
上記で得られた仮焼結粉末を、実施例13と同じ本焼成工程で焼結体を作製した。
<Baking process>
A sintered body was produced from the pre-sintered powder obtained above in the same main firing process as in Example 13.

[実施例30]
<仮焼成工程>
LiBO(豊島製作所製)、HBO(キシダ化学製)、Er(高純度化学研究所製)、La(高純度化学研究所製)、ZrO(新日本電工製)、CeO(岩谷産業製)を固体電解質の原料として用意した。焼結後の組成がLi5.9Er0.81La0.090Zr0.100(BOとなるように所定の化学量論比で秤量し、乳鉢・乳棒で混合した。
[Example 30]
<Temporary firing process>
Li 3 BO 3 (manufactured by Toyoshima Seisakusho), H 3 BO 3 (manufactured by Kishida Chemical), Er 2 O 3 (manufactured by Kojundo Chemical Laboratory), La 2 O 3 (manufactured by Kojundo Chemical Laboratory), ZrO 2 (New Nippon Denko Co., Ltd.) and CeO 2 (Iwatani Sangyo Co., Ltd.) were prepared as raw materials for the solid electrolyte. They were weighed in a predetermined stoichiometric ratio and mixed with a mortar and pestle so that the composition after sintering would be Li 5.9 Er 0.81 La 0.090 Zr 0.100 (BO 3 ) 3 .

その後、混合した粉末を、島津製作所製油圧プレスSSP-10Aを用いて冷間一軸成型し、大気雰囲気で加熱処理した。加熱温度は650℃、保持時間は720分とした。 After that, the mixed powder was cold uniaxially molded using a hydraulic press SSP-10A manufactured by Shimadzu Corporation, and heat-treated in an air atmosphere. The heating temperature was 650° C. and the holding time was 720 minutes.

得られた仮焼成体を乳鉢・乳棒で粉砕して仮焼成粉末を作製した。 The obtained calcined body was pulverized with a mortar and pestle to prepare a calcined powder.

<本焼成工程>
上記で得られた仮焼成粉末を、仮焼成と同様の方法で成型、加熱処理して実施例30の焼結体を作製した。加熱温度は670℃、保持時間は720分とした。
<Baking process>
A sintered body of Example 30 was produced by molding and heat-treating the calcined powder obtained above in the same manner as in the calcination. The heating temperature was 670° C. and the holding time was 720 minutes.

[実施例31~33]
<仮焼成工程>
xが表2に記載された値となるように実施例1に記載の各原料を所定の化学量論比で秤量した以外は、実施例1と同じ工程で仮焼成体及び仮焼成粉末を作製した。
[Examples 31-33]
<Temporary firing process>
A calcined body and a calcined powder were produced in the same process as in Example 1, except that the raw materials described in Example 1 were weighed at a predetermined stoichiometric ratio so that x was the value shown in Table 2. did.

<本焼成工程>
上記で得られた仮焼結粉末を、実施例1と同じ本焼成工程で焼結体を作製した。
<Baking process>
A sintered body was produced from the pre-sintered powder obtained above in the same main firing process as in Example 1.

[参考例3]
<仮焼成工程>
xが表2に記載された値となるように実施例1に記載の各原料を所定の化学量論比で秤量した以外は、実施例1と同じ工程で仮焼成体及び仮焼成粉末を作製した。
[Reference example 3]
<Temporary firing process>
A calcined body and a calcined powder were produced in the same process as in Example 1, except that the raw materials described in Example 1 were weighed at a predetermined stoichiometric ratio so that x was the value shown in Table 2. did.

<本焼成工程>
上記で得られた仮焼結粉末を、実施例1と同じ本焼成工程で焼結体を作製した。
<Baking process>
A sintered body was produced from the pre-sintered powder obtained above in the same main firing process as in Example 1.

実施例13~33、比較例3~5、参考例1~3の焼結体について、実施例1と同様の方法により組成分析、X線回折ピークの測定を行った。また、実施例1と同様の方法によりイオン伝導率の測定を行った。 The sintered bodies of Examples 13 to 33, Comparative Examples 3 to 5, and Reference Examples 1 to 3 were subjected to composition analysis and X-ray diffraction peak measurement in the same manner as in Example 1. Also, the ion conductivity was measured in the same manner as in Example 1.

・結果
表1に、実施例1~12、比較例1~2、参考例1~2に係る固体電解質を製造する際の原料の化学量論量、本焼成時の加熱温度、回折ピーク位置、イオン伝導率を示す。また、表2に、実施例13~33、比較例3~5、参考例3に係る固体電解質を製造する際の原料の化学量論量、本焼成時の加熱温度、回折ピーク位置、イオン伝導率を示す。また、図6(a)に第1の実施形態に含まれる実施例13~33と比較例3~5に係る固体電解質のイオン伝導率と置換元素Mの組成x(x1+x2)の値との関係を示す。また、図6(b)に第1の実施形態に含まれる実施例1~12、比較例1、2、参考例1~3に係る固体電解質のイオン伝導率と置換元素Mの組成x(x1+x2)の値との関係を示す。図6(b)は、実質的に図1と同じ測定データに基づくもので、実施例13~33に対応する図6(a)とグラフの体裁を揃える意味で作成したものである。また、図7に、第1の実施形態に含まれる実施例1~33、ならびに、比較例1~5、参考例1~3に係る固体電解質のイオン伝導率と置換元素Mの組成x(x1+x2)の値との関係を示す。図7は、実質的に図6(a)の測定データと図6(b)の測定データとに基づくものである。
・Result Table 1 shows the stoichiometric amount of raw materials, the heating temperature during main firing, the diffraction peak position, Indicates ionic conductivity. In addition, Table 2 shows the stoichiometric amounts of the raw materials when producing the solid electrolytes according to Examples 13 to 33, Comparative Examples 3 to 5, and Reference Example 3, the heating temperature during main firing, the diffraction peak position, and the ion conductivity. rate. Further, FIG. 6(a) shows the relationship between the ionic conductivity of the solid electrolytes according to Examples 13 to 33 and Comparative Examples 3 to 5 included in the first embodiment and the value of the composition x(x1+x2) of the substitution element M. indicates Further, FIG. 6B shows the ionic conductivity and the composition x (x1+x2 ) values. FIG. 6(b) is based on substantially the same measurement data as in FIG. 1, and is created to match the appearance of the graph with FIG. 6(a) corresponding to Examples 13-33. Further, FIG. 7 shows the ionic conductivity and the composition x (x1+x2 ) values. FIG. 7 is substantially based on the measured data of FIG. 6(a) and the measured data of FIG. 6(b).

上記組成分析の結果、いずれの焼結体(固体電解質)も表1および表2に記載された原料の元素を有することを確認した。また、実施例1~33に係る焼結体(固体電解質)は、700℃未満の低い温度で緻密にすることが可能である上に、高いイオン伝導率を示す固体電解質であった。 As a result of the above composition analysis, it was confirmed that all the sintered bodies (solid electrolytes) had the raw material elements listed in Tables 1 and 2. Moreover, the sintered bodies (solid electrolytes) according to Examples 1 to 33 were solid electrolytes that could be densified at a low temperature of less than 700° C. and exhibited high ionic conductivity.

図1に、本実施形態に含まれ実施例1~12に係る固体電解質のイオン伝導率と、一般式中のxの値との関係を示す。一般式中のxの値は、表1に示されるx1とx2の和に該当する。 FIG. 1 shows the relationship between the ionic conductivity of the solid electrolytes according to Examples 1 to 12 included in this embodiment and the value of x in the general formula. The value of x in the general formula corresponds to the sum of x1 and x2 shown in Table 1.

図2にXRDで得られた2θ=10度~40度の範囲の回折曲線を示す。実施例1~6は結晶構造がLiYb(BO、実施例7~10は結晶構造がLiEr(BO、実施例11は結晶構造がLiHo(BO、実施例12は結晶構造がLiTm(BOの単斜晶系結晶構造であることが分かる。同様にXRD測定から実施例13~33についても結晶構造が単斜晶系結晶構造であることを確認した。 FIG. 2 shows diffraction curves in the range of 2θ=10° to 40° obtained by XRD. Examples 1 to 6 have a crystal structure of Li 6 Yb(BO 3 ) 3 , Examples 7 to 10 have a crystal structure of Li 6 Er(BO 3 ) 3 , and Example 11 have a crystal structure of Li 6 Ho(BO 3 ). 3 and Example 12 have a monoclinic crystal structure of Li 6 Tm(BO 3 ) 3 . Similarly, it was confirmed from the XRD measurement that the crystal structures of Examples 13 to 33 were monoclinic crystal structures.

図3及び図4にXRDで得られた2θ=27度以上29度以下の範囲の回折曲線を示す。実施例1~6の2θ=28.1度及び28.5度付近のピーク位置が、比較例1のピーク位置よりも高角側にシフトしていることが分かる。また、実施例7~10の2θ=28.0度及び28.4度付近のピーク位置が、比較例2のピーク位置よりも高角側にシフトしている。これらは、Mを含む群から選択される少なくとも一の元素が、希土類元素であるYb及びErの少なくとも一部を置換していることで生じた結晶構造の変化に対応するX線回折プロファイルの変化と考えている。同様の測定により実施例13~33についてもxが0のときのピーク位置よりも高角側にシフトしていることを確認した。同様に、Mを含む群から選択される少なくとも一の元素が、使用している希土類元素の少なくとも一部を置換していることで生じた結晶構造の変化に対応するX線回折プロファイルの変化と考えている。 FIG. 3 and FIG. 4 show diffraction curves in the range of 2θ=27 degrees or more and 29 degrees or less obtained by XRD. It can be seen that the peak positions near 2θ=28.1 degrees and 28.5 degrees in Examples 1 to 6 are shifted to the higher angle side than the peak position in Comparative Example 1. Also, the peak positions near 2θ=28.0 degrees and 28.4 degrees in Examples 7 to 10 are shifted to the higher angle side than the peak positions in Comparative Example 2. These are changes in the X-ray diffraction profile corresponding to changes in the crystal structure caused by at least one element selected from the group containing M substituting at least part of the rare earth elements Yb and Er. I believe. It was confirmed by the same measurement that the peak positions of Examples 13 to 33 were shifted to the higher angle side than the peak position when x was 0. Similarly, at least one element selected from the group containing M is a change in the X-ray diffraction profile corresponding to a change in the crystal structure caused by substituting at least part of the rare earth element being used. thinking.

また、イオン電導率σが1×10-7S/cm以上を呈した実施例1~33に係る固体電解質は、表1、表2に示す通り、X線回折角ピークの高角シフトに伴い、双峰型の回折角ピークの高角側へのピークシフトが認められる。すなわち、27.4度以上29.0度以下の範囲において、28.3~29.0度に認められる高角側の回折ピークと27.4~28.3度に認められる低角側の回折ピークの回折角の差2θdが0.43度以上と拡大していることが読み取れる。すなわち、本実施形態に係る固体電解質は、Liと、Yb、Er、Ho、Tm、La、Nd、Smを含む群から選ばれる元素Rと、Zr、Ce、Snを含む群から選ばれる元素Mと、を含むほう酸化物を含有するものであると換言される。さらに、本実施形態に係る固体電解質は、CuKα線を用いたXRDにおいて、回折角2θが27.4度以上29.0度以下の範囲に2つの回折ピークを呈し、高角側と低角側の回折ピークとの回折角の差2θdが0.43度以上である電解質であると換言される。 In addition, as shown in Tables 1 and 2, the solid electrolytes according to Examples 1 to 33 exhibiting an ionic conductivity σ of 1×10 −7 S/cm or more exhibit a high-angle shift of the X-ray diffraction angle peak, A peak shift to the high angle side of the bimodal diffraction angle peak is observed. That is, in the range of 27.4 degrees or more and 29.0 degrees or less, the diffraction peak on the high angle side observed at 28.3 to 29.0 degrees and the diffraction peak on the low angle side observed at 27.4 to 28.3 degrees It can be read that the difference 2θd between the diffraction angles of the two is expanded to 0.43 degrees or more. That is, the solid electrolyte according to the present embodiment includes Li, an element R selected from the group including Yb, Er, Ho, Tm, La, Nd, and Sm, and an element M selected from the group including Zr, Ce, and Sn. And, in other words, it contains a borate oxide containing. Furthermore, the solid electrolyte according to the present embodiment exhibits two diffraction peaks in the range of the diffraction angle 2θ of 27.4 degrees or more and 29.0 degrees or less in XRD using CuKα rays, one on the high angle side and the other on the low angle side. In other words, the electrolyte has a diffraction angle difference 2θd from the diffraction peak of 0.43 degrees or more.

なお、回折角2θが27.4度以上29.0度以下の範囲に認められる2つの回折角ピークは、結晶性により、さらに三峰、四峰を含む複数のピークを呈する場合がある。本願明細書においては、28.3度の回折角2θを境に、それぞれ低角側と高角側の2つの回折角ピークを1峰ずつ有するように代表させる。このようにして、双峰型の回折角プロファイルにフィッティングすることで回折角ピークを分離する。 The two diffraction angle peaks observed in the diffraction angle 2θ range of 27.4 degrees or more and 29.0 degrees or less may exhibit a plurality of peaks including three peaks and four peaks depending on the crystallinity. In the specification of the present application, two diffraction angle peaks, one on the low angle side and one on the high angle side, are represented with a diffraction angle 2θ of 28.3 degrees as a boundary. In this way, the diffraction angle peaks are separated by fitting to the bimodal diffraction angle profile.

かかる高角側の回折角ピークは、置換元素Mの成分の増大に伴い、或いは、イオン伝導率の増大に伴い、低角側の回折角ピークより顕著に、ブロード化と高角側にシフトが認められる。このことからは、本実施形態の固体電解質44は、格子間隔、結晶子サイズに分布を有する複数の結晶構造が混在しているように、無置換の比較例に比べて結晶構造が変化していると読み取られる。 The diffraction angle peak on the high angle side is broadened and shifted to the high angle side more significantly than the diffraction angle peak on the low angle side as the component of the substitution element M increases or the ionic conductivity increases. . From this, it can be seen that the solid electrolyte 44 of the present embodiment has a different crystal structure than the non-substituted comparative example, such that a plurality of crystal structures having distributions in lattice spacing and crystallite size are mixed. is read as

表2、図6(a)、図7に記載の実施例13~33に係る固体電解質、希土類元素Rが二元系(Yb、Tm)、(Yb、Nd)、(Yb、Er)、(Yb、Sm)、(Yb、La)、(Er、La)となっている点が、実施例1~12に係る固体電解質と相違する。 The solid electrolytes according to Examples 13 to 33 shown in Table 2, FIG. 6(a), and FIG. Yb, Sm), (Yb, La), and (Er, La) are different from the solid electrolytes according to Examples 1-12.

実施例14~16、18、22、23、26~33に固体電解質は、実施例2~6、12と同様にして、イオン電導率が1E-5(S/cm)以上を呈し、LCO等の正極活物質粒子と組み合わせた複合構造とすることでて全固体電池の正極に採用可能である。 The solid electrolytes in Examples 14 to 16, 18, 22, 23, and 26 to 33 exhibited ionic conductivity of 1E-5 (S/cm) or more in the same manner as in Examples 2 to 6 and 12, and LCO and the like It can be adopted as a positive electrode of an all-solid-state battery by forming a composite structure combined with the positive electrode active material particles.

また、イオン電導率が1E-7(S/cm)以上を呈する実施例1~33に係る固体電解質は、希土類元素Rに対する置換元素Mの原子濃度比[M]/[R]が、0.026以上1.500以下であった。また、イオン電導率が1E-6(S/cm)以上を呈する実施例2~6、8~10、12~33に係る固体電解質は、希土類元素Rに対する置換元素Mの原子濃度比[M]/[R]が、0.111以上0.667以下であった。さらに、また、イオン電導率が2E-5(S/cm)以上を呈する実施例2~6、12、14~16、18、22、23、26~33に係る固体電解質は、希土類元素Rに対する置換元素Mの原子濃度比[M]/[R]が、0.111以上0.290以下であった。 Further, in the solid electrolytes according to Examples 1 to 33 exhibiting an ionic conductivity of 1E-7 (S/cm) or more, the atomic concentration ratio [M]/[R] of the substitution element M to the rare earth element R was 0.5. 026 or more and 1.500 or less. Further, the solid electrolytes according to Examples 2 to 6, 8 to 10, and 12 to 33 exhibiting an ionic conductivity of 1E-6 (S/cm) or more have an atomic concentration ratio [M] of the substitution element M to the rare earth element R /[R] was 0.111 or more and 0.667 or less. Furthermore, the solid electrolytes according to Examples 2 to 6, 12, 14 to 16, 18, 22, 23, 26 to 33 exhibiting an ionic conductivity of 2E-5 (S / cm) or more are The atomic concentration ratio [M]/[R] of the substitution element M was 0.111 or more and 0.290 or less.

実施例13~33に係る多元系希土類元素を含む固体電解質のうちイオン電導率が1E-5(S/cm)以上を呈するものは、原子濃度比([R]‐[Yb])/[R]が、0.063以上0.200以下であった。 Among the solid electrolytes containing multicomponent rare earth elements according to Examples 13 to 33, those exhibiting an ionic conductivity of 1E-5 (S / cm) or more have an atomic concentration ratio ([R]-[Yb]) / [R ] was 0.063 or more and 0.200 or less.

希土類元素Rに対する置換元素Mの原子濃度比[M]/[R]は、表2に記載のR1比率、R2比率、x1、x2を用いて、[M]/[R]=(x1+x2)/(R1比率+R2比率)と代数的に記述される。同様にして、希土類元素Rに対する置換元素Mの原子濃度比[M]/[R]は、表1に記載のx1、x2を用いて、[M]/[R]=(x1+x2)/(1-x1-x2)、と代数的に記述される。 The atomic concentration ratio [M]/[R] of the substitution element M to the rare earth element R is obtained by using the R1 ratio, R2 ratio, x1, and x2 described in Table 2, [M]/[R]=(x1+x2)/ It is algebraically written as (R1 ratio+R2 ratio). Similarly, the atomic concentration ratio [M]/[R] of the substitution element M to the rare earth element R is obtained using x1 and x2 described in Table 1, [M]/[R]=(x1+x2)/(1 -x1-x2), and is algebraically described.

原子濃度比([R]‐[Yb])/[R]は、表2に記載のR1比率、R2比率を用いて、(R2比率)/(R1比率+R2比率)と代数的に記述される。 The atomic concentration ratio ([R]-[Yb])/[R] is algebraically described as (R2 ratio)/(R1 ratio+R2 ratio) using the R1 ratio and R2 ratio shown in Table 2. .

なお、表1、表2においては、置換元素Mの原子濃度比[M]/[R]は、置換元素M1の原子濃度比[M1]/[R]として示されている。 In Tables 1 and 2, the atomic concentration ratio [M]/[R] of the substitution element M is shown as the atomic concentration ratio [M1]/[R] of the substitution element M1.

Figure 2022130301000002
Figure 2022130301000002

Figure 2022130301000003
Figure 2022130301000003

44 固体電界質 44 solid state electrolyte

Claims (30)

一般式Li6-x1-xM1(BOで表される酸化物を含む、固体電解質。
但し、式中、RはYb、Er、Ho、Tmを含む群から選ばれる3価の元素であり、M1は、Zr、Ce、Snを含む群から選ばれる4価の元素であり、xは、0<x<1を満たす実数である。
A solid electrolyte comprising an oxide represented by the general formula Li 6-x R 1-x M1 x (BO 3 ) 3 .
However, in the formula, R is a trivalent element selected from the group containing Yb, Er, Ho, and Tm, M1 is a tetravalent element selected from the group containing Zr, Ce, and Sn, and x is , 0<x<1.
CuKα線を用いたX線回折分析において、2θ=27.4度以上29.0度以下の範囲に2つの回折ピークを呈し、高角側の回折ピークと低角側の回折ピークとの回折角の差2θdが0.43度以上である請求項1に記載の固体電解質。 X-ray diffraction analysis using CuKα rays shows two diffraction peaks in the range of 2θ = 27.4 degrees or more and 29.0 degrees or less. 2. The solid electrolyte according to claim 1, wherein the difference 2[theta]d is 0.43 degrees or more. 前記RがYbであり、CuKα線を用いたX線回折分析において、2θ=28.07度以上28.20度以下の範囲に回折ピークを呈する請求項1に記載の固体電解質。 2. The solid electrolyte according to claim 1, wherein R is Yb, and exhibits a diffraction peak in the range of 2θ=28.07 degrees or more and 28.20 degrees or less in X-ray diffraction analysis using CuKα rays. 前記RがYbであり、前記M1がZrであり、前記xが0<x<1を満たす、請求項1から3のいずれか1項に記載の固体電解質。 The solid electrolyte according to any one of claims 1 to 3, wherein said R is Yb, said M1 is Zr, and said x satisfies 0<x<1. 前記RがErであり、CuKα線を用いたX線回折分析において、2θ=27.94度以上28.10度以下の範囲に回折ピークを呈する請求項1に記載の固体電解質。 2. The solid electrolyte according to claim 1, wherein said R is Er, and exhibits a diffraction peak in the range of 2θ=27.94 degrees or more and 28.10 degrees or less in X-ray diffraction analysis using CuKα rays. 前記RがErであり、前記M1がZrであり、前記xが、0<x<1を満たす、請求項1、2および5のいずれか1項に記載の固体電解質。 6. The solid electrolyte according to any one of claims 1, 2 and 5, wherein said R is Er, said M1 is Zr, and said x satisfies 0<x<1. 前記固体電解質と、前記電解質との間でリチウムイオンの授受が行われる正極活物質と、前記固体電解質と前記活物質とが並べられた面を有する請求項1から6のいずれか1項に記載の正極。 7. The positive electrode active material through which lithium ions are exchanged between the solid electrolyte and the electrolyte, and a surface on which the solid electrolyte and the active material are arranged. positive electrode. 請求項7に記載の正極と、
前記面に接するように配置され前記正極とリチウムイオンの授受を行う電解質層と、
前記電解質層の前記面と接する側の反対面と接する負極と、を含む二次電池。
A positive electrode according to claim 7;
an electrolyte layer that is arranged in contact with the surface and exchanges lithium ions with the positive electrode;
a negative electrode in contact with the surface of the electrolyte layer opposite to the surface in contact with the surface.
前記固体電解質が並べられた面を有する請求項1から6のいずれか1項に記載の電解質層。 7. The electrolyte layer according to any one of claims 1 to 6, having a surface on which the solid electrolytes are arranged. 請求項9に記載の電解質層と、前記面に接するように配置され前記電解質層との間でリチウムイオンの授受が行われるように配置された正極と、前記電解質層の前記面の反対面と接する負極と、を含む二次電池。 The electrolyte layer according to claim 9, a positive electrode disposed so as to be in contact with said surface and disposed so that lithium ions are exchanged with said electrolyte layer, and a surface opposite said surface of said electrolyte layer. A secondary battery comprising: a negative electrode in contact with the battery; Liと、Yb、Er、Ho、Tm、La、Nd、Smを含む群から選ばれる元素Rと、Zr、Ce、Snを含む群から選ばれる元素Mと、を含むほう酸化物を含有する固体電解質。 A solid containing a borate containing Li, an element R selected from the group including Yb, Er, Ho, Tm, La, Nd, and Sm, and an element M selected from the group including Zr, Ce, and Sn. Electrolytes. 前記元素Rに対する前記元素Mの原子濃度比[M]/[R]が、0.026以上1.500以下である請求項11に記載の固体電解質。 12. The solid electrolyte according to claim 11, wherein the atomic concentration ratio [M]/[R] of the element M to the element R is 0.026 or more and 1.500 or less. 前記原子濃度比[M]/[R]が、0.111以上0.290以下である請求項12に記載の固体電解質。 13. The solid electrolyte according to claim 12, wherein the atomic concentration ratio [M]/[R] is 0.111 or more and 0.290 or less. Liと、Yb、Er、Ho、Tm、La、Nd、Smを含む群から選ばれる元素Rと、Zr、Ce、Snを含む群から選ばれる元素Mと、を含むほう酸化物を含有し、CuKα線を用いたX線回折分析において、回折角2θが27.4度以上29.0度以下の範囲に2つの回折ピークを呈し、高角側の回折ピークと低角側の回折ピークとの回折角の差2θdが0.43度以上である固体電解質。 containing a borate containing Li, an element R selected from the group including Yb, Er, Ho, Tm, La, Nd, and Sm, and an element M selected from the group including Zr, Ce, and Sn, In the X-ray diffraction analysis using CuKα rays, two diffraction peaks are exhibited in the range of the diffraction angle 2θ from 27.4 degrees to 29.0 degrees, and the diffraction peak on the high angle side and the diffraction peak on the low angle side A solid electrolyte having a difference 2θd of 0.43 degrees or more. 一般式Li6-x1-x(BOで表される酸化物を含む、固体電解質。
但し、式中、RはYb、Er、Ho、Tm、La、Nd、Smを含む群から選ばれる希土類元素であり、Mは、Zr、Ce、Snを含む群から選ばれる元素であり、xは、0<x<1を満たす実数である。
A solid electrolyte comprising an oxide represented by the general formula Li 6-x R 1-x M x (BO 3 ) 3 .
However, in the formula, R is a rare earth element selected from the group including Yb, Er, Ho, Tm, La, Nd, and Sm, M is an element selected from the group including Zr, Ce, and Sn, and x is a real number that satisfies 0<x<1.
CuKα線を用いたX線回折分析において、回折角2θが27.4度以上29.0度以下の範囲に2つの回折ピークを呈し、高角側の回折ピークと低角側の回折ピークとの回折角の差2θdが0.43度以上である請求項14または15に記載の固体電解質。 In the X-ray diffraction analysis using CuKα rays, two diffraction peaks are exhibited in the range of the diffraction angle 2θ from 27.4 degrees to 29.0 degrees, and the diffraction peak on the high angle side and the diffraction peak on the low angle side 16. The solid electrolyte according to claim 14 or 15, wherein the difference 2[theta]d is 0.43 degrees or more. 前記元素Mは、Zrを含む請求項11から16のいずれか1項に記載の固体電解質。 17. The solid electrolyte according to any one of claims 11 to 16, wherein said element M contains Zr. 前記元素Mは、Ceをさらに含む請求項17に記載の固体電解質。 18. The solid electrolyte according to claim 17, wherein said element M further contains Ce. 前記元素Rは、複数の希土類元素を含む請求項11から18のいずれか1項に記載の固体電解質。 19. The solid electrolyte according to any one of claims 11 to 18, wherein said element R includes a plurality of rare earth elements. 前記複数の希土類元素は、Ybを少なくとも含む請求項19に記載の固体電解質。 20. The solid electrolyte according to claim 19, wherein said plurality of rare earth elements include at least Yb. 前記希土類元素Rに占める前記Ybを除く前記元素Rに含まれる元素の原子濃度比([R]‐[Yb])/[R]が、0.063以上0.200以下である請求項20に記載の固体電解質。 21. The method according to claim 20, wherein the atomic concentration ratio ([R]-[Yb])/[R] of the elements contained in the element R excluding the Yb in the rare earth element R is 0.063 or more and 0.200 or less. The solid electrolyte described. 前記元素RがYbを含み、CuKα線を用いたX線回折分析において、回折角2θが28.07度以上28.20度以下の範囲に回折ピークを呈する請求項11から21のいずれか1項に記載の固体電解質。 22. Any one of claims 11 to 21, wherein the element R contains Yb, and exhibits a diffraction peak in a range of diffraction angles 2θ of 28.07 degrees or more and 28.20 degrees or less in X-ray diffraction analysis using CuKα rays. Solid electrolyte according to. 前記RがYbを含み、前記MがZrを含み、前記xが0<x<1を満たす、請求項15に記載の固体電解質。 16. The solid electrolyte according to claim 15, wherein said R comprises Yb, said M comprises Zr, and said x satisfies 0<x<1. 前記RがErを含み、CuKα線を用いたX線回折分析において、回折角2θが27.94度以上28.10度以下の範囲に回折ピークを呈する請求項15に記載の固体電解質。 16. The solid electrolyte according to claim 15, wherein said R contains Er, and exhibits a diffraction peak in the range of diffraction angle 2θ of 27.94 degrees or more and 28.10 degrees or less in X-ray diffraction analysis using CuKα rays. 前記RがErを含み、前記MがZrを含み、前記xが、0<x<1を満たす、請求項15に記載の固体電解質。 16. The solid electrolyte according to claim 15, wherein said R comprises Er, said M comprises Zr, and said x satisfies 0<x<1. 請求項11から25のいずれか1項に記載の固体電解質と、前記固体電解質との間でリチウムイオンの授受が行われる正極活物質と、を有する正極。 A positive electrode comprising: the solid electrolyte according to any one of claims 11 to 25; and a positive electrode active material with which lithium ions are exchanged with the solid electrolyte. 前記固体電解質と前記正極活物質とが並べられた面を有する請求項26に記載の正極。 27. The positive electrode according to claim 26, having a surface on which the solid electrolyte and the positive electrode active material are arranged. 請求項27に記載の正極と、
前記面に接するように配置され前記正極とリチウムイオンの授受を行う電解質層と、
前記電解質層の前記面と接する側の反対面と接する負極と、を含む二次電池。
A positive electrode according to claim 27;
an electrolyte layer that is arranged in contact with the surface and exchanges lithium ions with the positive electrode;
a negative electrode in contact with the surface of the electrolyte layer opposite to the surface in contact with the surface.
請求項11から28のいずれか1項に記載の固体電解質が並べられた面を有する電解質層。 An electrolyte layer having a surface on which the solid electrolyte according to any one of claims 11 to 28 is arranged. 請求項29に記載の電解質層と、前記面に接するように配置され前記電解質層との間でリチウムイオンの授受が行われるように配置された正極と、前記電解質層の前記面の反対面と接する負極と、を含む二次電池。 30. The electrolyte layer according to claim 29, a positive electrode disposed in contact with said surface and disposed so that lithium ions are exchanged with said electrolyte layer, and a surface opposite said surface of said electrolyte layer. A secondary battery comprising: a negative electrode in contact with the battery;
JP2022007354A 2021-02-25 2022-01-20 Solid electrolyte, active material layer, electrolyte layer and secondary battery Pending JP2022130301A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2022/007439 WO2022181653A1 (en) 2021-02-25 2022-02-24 Solid electrolyte, active material layer, electrolyte layer and secondary battery
EP22759688.9A EP4300618A1 (en) 2021-02-25 2022-02-24 Solid electrolyte, active material layer, electrolyte layer and secondary battery
CN202280017142.1A CN116888688A (en) 2021-02-25 2022-02-24 Solid electrolyte, active material layer, electrolyte layer, and secondary battery
US18/450,297 US20230387459A1 (en) 2021-02-25 2023-08-15 Solid electrolyte, active material layer, electrolyte layer, and secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021028807 2021-02-25
JP2021028807 2021-02-25
JP2021101742 2021-06-18
JP2021101742 2021-06-18

Publications (1)

Publication Number Publication Date
JP2022130301A true JP2022130301A (en) 2022-09-06

Family

ID=83150845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022007354A Pending JP2022130301A (en) 2021-02-25 2022-01-20 Solid electrolyte, active material layer, electrolyte layer and secondary battery

Country Status (1)

Country Link
JP (1) JP2022130301A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115939521A (en) * 2023-02-22 2023-04-07 安徽盟维新能源科技有限公司 Electrolyte for lithium metal battery containing rare earth borate and lithium metal battery
WO2023176235A1 (en) * 2022-03-14 2023-09-21 キヤノンオプトロン株式会社 Ion-conductive solid and all-solid-state battery
WO2023176251A1 (en) * 2022-03-14 2023-09-21 キヤノンオプトロン株式会社 Ion conductive solid and all-solid-state battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176235A1 (en) * 2022-03-14 2023-09-21 キヤノンオプトロン株式会社 Ion-conductive solid and all-solid-state battery
WO2023176251A1 (en) * 2022-03-14 2023-09-21 キヤノンオプトロン株式会社 Ion conductive solid and all-solid-state battery
CN115939521A (en) * 2023-02-22 2023-04-07 安徽盟维新能源科技有限公司 Electrolyte for lithium metal battery containing rare earth borate and lithium metal battery

Similar Documents

Publication Publication Date Title
JP6672848B2 (en) Lithium ion conductive oxide ceramic material having garnet type or garnet type similar crystal structure
JP6632240B2 (en) Lithium ion conductive ceramic material and lithium battery
JP2022130301A (en) Solid electrolyte, active material layer, electrolyte layer and secondary battery
CN111033859B (en) Solid electrolyte and all-solid battery
JP6242620B2 (en) All solid battery
WO2015079509A1 (en) Lithium ion-conductive oxide and electrical storage device
WO2019212026A1 (en) Ion conductive powder, ion conductive molded article, and electricity storage device
WO2019221042A1 (en) Ionic conductor and lithium battery
WO2019178099A1 (en) Thin film ceramics that offer electric and electrochemical properties using nanopowders of controlled compositions
JP6663685B2 (en) Lithium ion conductive ceramic sintered body and lithium battery
JPWO2011128979A1 (en) Solid electrolyte material, lithium battery and method for producing solid electrolyte material
US11552329B2 (en) Solid electrolyte sheet, method for producing same and all-solid-state secondary battery
EP3618162A1 (en) Lithium ion-conductive ceramic material, lithium ion-conductive ceramic body, and lithium battery
US20230387459A1 (en) Solid electrolyte, active material layer, electrolyte layer, and secondary battery
WO2023162621A1 (en) Solid electrolyte, active material layer, electrolyte layer, and secondary battery
JP7199674B2 (en) Ion-conducting solid-state and all-solid-state batteries
JP2019057495A (en) Solid electrolyte sheet, method for producing same and all-solid-state secondary battery
WO2024004587A1 (en) Solid electrolyte, positive electrode, electrolyte layer and secondary battery
JP7070833B2 (en) Solid electrolyte sheet and its manufacturing method, and all-solid-state secondary battery
CN116888688A (en) Solid electrolyte, active material layer, electrolyte layer, and secondary battery
CN113439311A (en) Ion conductor, electricity storage device, and method for producing ion conductor
JP7478414B2 (en) Amorphous composite metal oxides, garnet-type lithium composite metal oxides, sintered bodies, solid electrolyte layers, electrodes for electrochemical devices, electrochemical devices
JP7205809B2 (en) Solid electrolyte sheet with electrodes
JP7196369B1 (en) Ion-conducting solid-state and all-solid-state batteries
US11721836B2 (en) Solid electrolyte sheet, method for producing same and all-solid-state secondary battery

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20231213