WO2015079081A1 - Procedimiento de fabricaci0n auto m atizado de preformas de cuadernas y rigidizadores de materiales compuestos - Google Patents

Procedimiento de fabricaci0n auto m atizado de preformas de cuadernas y rigidizadores de materiales compuestos Download PDF

Info

Publication number
WO2015079081A1
WO2015079081A1 PCT/ES2014/000198 ES2014000198W WO2015079081A1 WO 2015079081 A1 WO2015079081 A1 WO 2015079081A1 ES 2014000198 W ES2014000198 W ES 2014000198W WO 2015079081 A1 WO2015079081 A1 WO 2015079081A1
Authority
WO
WIPO (PCT)
Prior art keywords
preforms
stiffeners
pattern
composite materials
patterns
Prior art date
Application number
PCT/ES2014/000198
Other languages
English (en)
French (fr)
Inventor
Jorge COMENDEIRO LINDIN
Original Assignee
Industrias Delta Vigo, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrias Delta Vigo, S.L. filed Critical Industrias Delta Vigo, S.L.
Publication of WO2015079081A1 publication Critical patent/WO2015079081A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/3642Bags, bleeder sheets or cauls for isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0003Producing profiled members, e.g. beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/3642Bags, bleeder sheets or cauls for isostatic pressing
    • B29C2043/3644Vacuum bags; Details thereof, e.g. fixing or clamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles

Definitions

  • the present invention relates to a process for the manufacture of preforms of frames and stiffeners of composite materials (such as fuselage frames) of aeronautical structures or any other type of structure that needs to be reinforced with this type of stiffeners.
  • These preforms will be subsequently impregnated with resin inside or on a tool, by any impregnation process, generically called LRI (Liquid Resin Infusion) processes or in particular by RTM (Resin Transfer Molding) processes.
  • LRI Liquid Resin Infusion
  • RTM Resin Transfer Molding
  • the object of the invention is to carry out the process in an automated / robotic manner, with high performance in terms of productivity and quality.
  • the same procedure can be performed manually following the same steps that are described in this invention and that are part of it.
  • the structures In the aeronautical and aerospace sector, the structures must be as light as possible, complying with the established mechanical and safety requirements, so as to maximize the payload to be transported and minimize fuel consumption.
  • the present invention relates to a process for the manufacture of preforms of frames and stiffeners of composite materials (such as fuselage frames) of aeronautical structures or any other type of structure that needs to be reinforced with this type of stiffeners.
  • These preforms will be subsequently impregnated with resin inside or on a tool, by any impregnation process, generically called LRI (Liquid Resin Infusion) processes or in particular by RTM (Resin Transfer Molding) processes.
  • LRI Liquid Resin Infusion
  • RTM Resin Transfer Molding
  • the procedure described here is an automated preform manufacturing process that includes other very efficient threads in terms of productivity, using tissue patterns as raw material. In addition, it allows you to use any pattern concept, from rectangular patterns to optimized patterns.
  • a fabric pattern referred to herein may have a width of up to 400 mm when the wicks currently used for this type of parts are less than 10 mm. This gives an idea of the clear difference, in terms of productivity, between the conventional processes and the procedure claimed in the present application, as will be discussed later.
  • the fabric roll is cut, from which patterns are cut as required by the design of the piece, to subsequently position them automatically and independently or in multi-layer packages, ensuring repeatability in placement. of all the layers and allowing to introduce local reinforcements of any type and in any position of the preform.
  • the scope of the present invention is limited to obtaining preforms that allow obtaining frames or stiffeners with a cross-section in the form of "L”, “C”, “H”, “Z”, “J", “T” or “ ⁇ £".
  • the process also allows the manufacture of frames or stiffeners that do not have a flat core for the case of the "H” section. It also applies to the rest of the sections.
  • the automated pattern forming procedure described here allows positioning patterns in their position in a very precise and repetitive manner on a forming tool, on which these patterns are folded to adapt them to the shape of the required section, and complete stacking. of all the layers defined in the design, directly over the tool, creating a rigid preform.
  • This process of automated placement of the patterns allows to control the conformation of each layer avoiding wrinkles and undulations, in addition to allowing the placement of both longitudinal and transverse local reinforcements inside the laminate, creating preforms with non-constant thicknesses and sections.
  • thickness By not having to deform a Full laminate, there is no limitation of thickness, since it can be stacked layer by layer or in multi-layer packages, until any thickness that the design of the piece may require.
  • the invention of the automated manufacturing of the preforms also implies a repetitiveness of the pieces during their mass production, managing to control their internal and external quality and in particular an excellent repeatability in the behavior of the Spring Back is achieved, an effect that always occurs due to to the thermal processes that are required for the polymerization of the resin, after the impregnation process.
  • the process of the invention comprises the following operational phases:
  • the required patterns are cut according to the orientation defined by the design of the piece.
  • All cut patterns are placed in flat and without deformation in the reverse order to that defined by the design stacking of the piece, and stored in trays with a recess that fixes the contour of the pattern to avoid errors. In this way, the operator will have the layers accessible in the tray in the order in which they must be stacked on the piece (the upper pattern will be the first one to be stacked).
  • the tray with the flat stack is introduced, in a plastic bag and sealed tightly, so that the material is protected from environmental contamination until the preform is manufactured.
  • STEP 5 Deformation of tissue patterns according to their contour. Using the stored patterns, they are positioned in a template, with a recess that defines the contour of the frame with all its surfaces deployed. The contour of the pattern is adjusted to the recess of the flat curved template.
  • the template will be a flat plate with a recess that defines the contour, while for preforms with non-flat soul, the template must copy the surface of the soul, and on it define the outline of the unfolded piece.
  • STEP 6 Transfer of the pattern to the forming tool.
  • the pattern that is positioned on the flat curved tray is picked up and transported to the position where it should be placed in the forming tool.
  • STEP 7 Setting the pattern in its nominal position.
  • the position of the pattern is fixed by vacuum or other clamping system before removing the transfer system.
  • the transfer system applies heat locally to melt the binder of the material, and glue that layer with the previous one, preventing any displacement of the pattern before forming it.
  • an elastic material is used that adjusts to the tool by means of vacuum and / or higher pressure and subsequently heat is applied to the pattern, melting the binder so that it is adhered to the previous layer if it exists.
  • STEP 9 Automatic positioning and gluing of unidirectional tape or fabric.
  • unidirectional tissue patterns are positioned in the areas where the design of the piece requires it.
  • the same device also applies heat to the pattern, melting the binder so that it adheres to the previous layer if it exists.
  • This positioning system can also be manual if it is conveniently guided.
  • STEP 10 Forming the complete preform.
  • the order of the tissue patterns is already defined in the trays created in step 3.
  • the Operation of the automatic unidirectional fabric installation device is ordered according to the requirements of the plan.
  • preforms Once the preforms have been created, they will be introduced into a tool where it will be impregnated with resin and the polymerization cycle of said resin will be carried out to obtain the final composite piece. For this, several preforms can be combined, to create pieces with different sections.
  • Figure 1. Shows the geometry of the pieces to which the invention is applicable, including as an example of pieces that of straight stiffeners, which are a particular case of the process described herein.
  • Figure 2 - Shows the detail of an example of a piece with a non-flat core.
  • Figure 3. Shows the rolls of unidirectional fabric to the required width. This type of fabric is usually used in stiffeners to locally reinforce some part of it, usually the skirts, as shown in Figure 13.
  • Figure 4. Shows the arrangement of the cut patterns of the tissue roll. These patterns will be the ones that will be used to build the preform.
  • Figure 5. Shows the placement of the patterns in the tray, according to the stacking defined in the plan of the piece.
  • Figure 6. Shows the tray with the stacked material, bagged for storage (if necessary), keeping the material free of contamination.
  • Figure 7 shows a pattern adapted within a template with the required contour.
  • Figure 8 shows the automated pattern transfer system, in its initial position, where it takes the fabric pattern of the flat template that defines its contom. This transfer could also be done manually with the appropriate references.
  • Figure 9. Shows the automated pattern transfer system, in its final position, where it positions the pattern adapted to its contour, in its nominal position of the hot forming tool. This transfer could also be done manually with the appropriate references.
  • Figure 10. Shows a section of the hot forming tool at the moment in which the pattern is fixed to the tool. This fixation can be done using a vacuum system in the tool or using any other system, which sets the pattern to it. This fixation must be done before the transfer system releases it.
  • Figure 11. Shows a schematic view and a section of the vacuum compaction system, with a frame that seals an elastic material around the hot forming tool. Compaction can also be carried out using hydrostatic or mechanical pressure from the top of the elastic material.
  • Figure 12- Shows a section once the material is compacted on the hot forming tool.
  • Figure 13. Shows the positioning of the unidirectional fabric reinforcements in the stiffener skirts (the stiffener areas that have been shaped).
  • Figure 14. It shows in example the combination of a preform in "C” and one in “L” to later introduce it into an injection tool and create a frame with "C” section stiffened in the soul (it is understood by soul to the horizontal area of the piece.
  • the deformation of the pattern defining the recess (6) is carried out, as indicated in Figure 7, with the conformation of the stiffening frame to be obtained, such that that pattern or recessed (6) curved, as shown in Figure 7, with the curvature already definitive, it is transferred, by an automated system (9), from its tray (5) to the corresponding forming tool (10), as represented in figure 10, where the carbon fiber pattern is arranged on that forming tool (10), by means of the automated transfer system (9), subsequently fixing said pattern in its nominal position, by means of vacuum or another system, before removing the transfer system (9) mentioned above, all as shown in figure 10, where the pattern (6) is fixed by vacuum or other system, before removing the so-called transfer system (9), which in turn to it will apply heat to melt the binder of the material and paste that layer with the previous one, preventing any displacement of the pattern before its forming, so that in the next step, with the pattern in its nominal position, it folds on surfaces other than the of transfer, fully adapting the pattern to the forming tool
  • the automatic positioning and gluing of unidirectional fabric or tape is carried out, as can be seen in the figures, so that the steps are repeated from the deformation of the pattern to the forming by compacting and applying heat, as well as automatic folding, to create the preform with the definitive conformation (6 ') represented in figure 12, logically obtained from the pattern or recessed (6) referred to above, applying vacuum, so that once the preform (6') is created, they are introduced into a tool where It will be impregnated with resin and a polymerization cycle of said resin will be carried out, to obtain the final composite piece, as shown in Figure 13, in order to obtain preforms with different sections, as shown in Figure 14. , where you can combine preforms (6 ', 6 "6"') that logically corresponds to the pieces or preforms (1) represented in Figures 1 and 2.
  • the described procedure makes it possible to ensure the repeatability and reliability of the configuration of the preforms obtained, during the series manufacturing thereof, managing to control the correction of spring back, also allowing to control the conformation of each layer avoiding wrinkles and undulations.
  • the preforms obtained can be achieved with radii of curvature much smaller than with traditional systems or procedures, without limiting thickness - not having to deform a complete laminate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

El procedimiento permite fabricar preformas de cuadernas y rigidizadores, tales como cuadernas de fuselaje, de estructuras aeronáuticas y similares, a base de materiales compuestos como pueden ser fibra de carbono, de vidrio, etc., de manera que las preformas obtenidas son impregnadas tras su conformación mediante resina, dentro o sobre un útil, para obtener unos rigidizadores de elevada resistencia, ligeros y con cualquier configuración para su adaptación a la estructura en la que se apliquen. Dichas preformas se obtienen a partir de rollos del material correspondiente, seccionando de dicho rollo patrones de acuerdo con las dimensiones definitivas a conseguir, de manera que de esos patrones y mediante procesos de presión, vacío y calor, se obtienen, sobre un útil de conformación, las preformas definitivas, que pueden ser reforzadas en cualquier parte o zona de las mismas.

Description

PROCEDIMIENTO DE FABRICACIÓN AUTOMATIZADO DE PREFORMAS DE CUADERNAS Y RIGIDIZADORES DE MATERIALES COMPUESTOS
D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN
La presente invención se refiere a un procedimiento para la fabricación de preformas de cuadernas y rigidizadores de materiales compuestos (tales como cuadernas de fuselaje) de estructuras aeronáuticas o cualquier otro tipo de estructura que requiera ser reforzada con este tipo de rigidizadores. Estas preformas serán posteriormente impregnadas con resina dentro o sobre un útil, mediante cualquier proceso de impregnación, genéricamente llamados procesos de LRI (Liquid Resin Infusión) o en particular mediante procesos de RTM (Resin Transfer Moulding).
El objeto de la invención es el de efectuar el proceso de forma automatizada / robotizada, con un elevado rendimiento en lo que a productividad y calidad se refiere. El mismo procedimiento puede ser realizado de forma manual siguiendo los mismos pasos que se describen en esta invención y que forman parte de ella.
ANTECEDENTES DE LA INVENCIÓN
En el sector aeronáutico y aeroespacial, las estructuras han de ser lo más ligeras posible cumpliendo con los requerimientos mecánicos y de seguridad establecidos, de forma que se maximice la carga útil a transportar y minimicen el consumo de combustible.
Actualmente, muchas estructuras se fabrican con materiales compuestos, principalmente de fibra de carbono, ya que ofrece ventajas importantes en peso, respecto a diseños que utilizan materiales metálicos.
Configuraciones actuales de cuadernas de fuselaje, fabricadas con dry fabrics (tejidos secos que posteriormente se impregnan con resina), se fabrican de dos formas diferentes: 1. - Empleo de patrones de tejido, cortados de un rollo de material de formato estándar, que luego se curvan en su plano para obtener un patrón curvo que se adapte a la curvatura de la cuaderna.
Los procesos actuales de fabricación con patrones de tejido, presentan una baja fiabilidad en el posicionado de las capas, ya que se limitan a deformar el laminado completo sin garantizar el posicionado de las mismas y sin ningún control sobre las capas internas. Esto provoca, además, que no puedan introducirse refuerzos locales en dirección transversal, lo que obliga a que se diseñe la pieza con refuerzos completos en toda la sección en zonas en las que solo sería necesario reforzar una zona local, incrementando así el peso de la estructura.
2. - Otra forma es fabricarlas partiendo de mechas de cinta unidireccional, que se colocan en plano o sobre un útil curvo, siguiendo la orientación teórica local. Estos procesos (Dry Fibre Placement, braiding, Stiring, Tailored Fibre Placement), desde un punto de vista industrial presentan el inconveniente de ser procesos poco eficientes en términos de productividad, son costosos e implican tiempos recurrentes de fabricación largos (muy baja eficiencia en cuanto a Kg de material colocado por hora).
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención se refiere a un procedimiento para la fabricación de preformas de cuadernas y rigidizadores de materiales compuestos (tales como cuadernas de fuselaje) de estructuras aeronáuticas o cualquier otro tipo de estructura que requiera ser reforzada con este tipo de rigidizadores. Estas preformas serán posteriormente impregnadas con resina dentro o sobre un útil, mediante cualquier proceso de impregnación, genéricamente llamados procesos de LRI (Liquid Resin Infusión) o en particular mediante procesos de RTM (Resin Transfer Moulding).
El procedimiento aquí descrito es un proceso de fabricación automatizado de preformas que incluye otros subprocesos muy eficientes en términos de productividad, empleando patrones de tejido como materia prima. Además, permite utilizar cualquier concepto de patrón, desde patrones rectangulares a patrones optimizados.
En cualquier caso, en la fabricación de cuadernas de fuselaje, un patrón de tejido a los que aquí se hace referencia, puede tener una anchura de hasta 400 mm cuando las mechas usadas actualmente para este tipo de piezas son inferiores a los 10 mm. Esto da una idea de la diferencia clara, en términos de productividad, entre los procesos convencionales y el procedimiento que se reivindica en la presente solicitud, como se expondrá con posterioridad.
En el procedimiento de la invención se parte del rollo de tejido, del que se cortan unos patrones según exija el diseño de la pieza, para posteriormente posicionarlos de forma automatizada y de forma independiente o en paquetes de varias capas, asegurando la repetitividad en la colocación de todas las capas y permitiendo introducir refuerzos locales de cualquier tipo y en cualquier posición de la preforma.
00EI alcance de la presente invención se limita a la obtención de preformas que permitan obtener cuadernas o rigidizadores con una sección transversal en forma de "L", "C", "H", "Z", "J" , "T" o " <£". _EI proceso permite además fabricar cuadernas o rigidizadores que no tengan el alma plana para el caso de la sección en "H". Igualmente se aplica al resto de secciones.
Ni el proceso previo de obtención de los patrones planos, ni el proceso de impregnación son objeto de la presente invención.
El procedimiento automatizado de conformado de patrones aquí descrito, permite posicionar patrones en su posición de forma muy precisa y repetitiva sobre un útil de conformado, sobre el que se pliegan estos patrones para adaptarlos a la forma de la sección requerida, y realizar el apilado completo de todas las capas definidas en el diseño, directamente sobre el útil, creando una preforma rígida.
Este proceso de colocación automatizada de los patrones, permite controlar el conformado de cada capa evitando arrugas y ondulaciones, además de permitir la colocación de refuerzos locales tanto longitudinales como transversales en el interior del laminado, creando preformas con espesores y secciones no constantes. Al no tener que deformar un laminado completo, no hay limitación de espesor, ya que se puede ir apilando capa a capa o en paquetes de varias capas, hasta conseguir cualquier espesor que pueda exigir el diseño de la pieza.
La invención de la fabricación automatizada de las preformas implica también una repetitividad de las piezas durante su fabricación en serie, consiguiendo controlar su calidad tanto interna como extema y en particular se logra una excelente repetitividad en el comportamiento del Spring Back, efecto que siempre ocurre debido a los procesos térmicos que se requieren para la polimerización de la resina, después del proceso de impregnación.
De forma más concreta, el procedimiento de la invención comprende las siguientes fases operativas:
PASO 1. Corte de tejido unidireccional.
Partiendo del rollo de material suministrado, se corta en tiras de la anchura exigida por la pieza a fabricar, y se almacena en rollos de esta anchura.
PASO 2. Corte de patrones de tejido.
Partiendo del rollo de material suministrado, se cortan los patrones requeridos según la orientación definida por el diseño de la pieza.
PASO 3. Almacenaje de patrones de tejido (en caso de necesidad).
Se colocan en plano y sin deformar, todos los patrones cortados siguiendo el orden inverso al definido por el apilado de diseño de la pieza, y se almacenan en bandejas con un cajeado que fije el contorno del patrón para evitar errores. De este modo, el operario tendrá accesible en la bandeja las capas en el orden en que deberán apilarse en la pieza (el patrón superior será el primero que se tenga que apilar).
PASO 4. Embolsado de patrones de tejido (en caso de necesidad).
Se introduce la bandeja con el apilado plano, en una bolsa de plástico y se cierra herméticamente, de forma que el material quede protegido de la contaminación del ambiente hasta que se vaya a proceder a la fabricación de la preforma.
PASO 5. Deformación de patrones de tejido según su contorno. Utilizando los patrones almacenados, se posicionan en una plantilla, con un cajeado que define el contorno de la cuaderna con todas sus superficies desplegadas. Se ajusta el contorno del patrón al cajeado de la plantilla curva plana.
Para preformas con alma plana, la plantilla será una placa plana con un cajeado que defina el contorno, mientras que para preformas con alma no plana, la plantilla debe copiar la superficie del alma, y sobre ella definir el contorno de la pieza desplegada.
PASO 6. Transferencia del patrón al útil de conformado.
Mediante un sistema de transferencia, se coge el patrón que se encuentra posicionado en la bandeja curva plana, y se transporta hasta la posición en la que debe colocarse en el útil de conformado.
PASO 7. Fijación del patrón en su posición nominal.
Se fija la posición del patrón mediante vacío u otro sistema de sujeción antes de retirar el sistema de transferencia. Además, para la segunda capa y siguientes, el sistema de transferencia aplica calor localmente para fundir el binder del material, y pegar esa capa con la anterior, impidiendo cualquier desplazamiento del patrón antes de su conformado.
PASO 8. Conformado con sistema de compactación y aplicación de calor.
Con el patrón en su posición nominal, se pliegan todas las superficies distintas a la de transferencia, adaptando totalmente el patrón al útil de conformado.
Para esto, se utiliza un material elástico que se ajusta al útil mediante vacío y/o presión superior y posteriormente se le aplica calor al patrón, fundiendo el binder para que quede adherida a la capa anterior si esta existe.
PASO 9. Posicionado y pegado automático de cinta o tejido unidireccional.
Mediante un dispositivo de posicionado automático, se posicionan patrones de tejido unidireccional en las zonas en las que lo exija el diseño de la pieza. El mismo dispositivo además, aplica calor al patrón, fundiendo el binder para que quede adherida a la capa anterior si esta existe. Este sistema de posicionamiento puede también ser manual si va convenientemente guiado.
PASO 10. Conformado de la preforma completa.
Repetir los pasos 5-9 hasta crear la preforma con la configuración definida por diseño.
El orden de los patrones de tejido ya está definido en las bandejas creadas en el paso 3. La operación del dispositivo automático de instalación del tejido unidireccional se ordena según las exigencias del plano.
Una vez creadas las preformas, se introducirán en un útil donde se impregnará con resina y se llevará a cabo el ciclo de polimerización de dicha resina para obtener la pieza de material compuesto final. Para esto, se pueden combinar varias preformas, para crear piezas con secciones distintas.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que seguidamente se va a realizar y con objeto de ayudar a una mejor comprensión de las características del invento, se acompaña la presente memoria descriptiva, formando parte integrante de la misma, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
La figura 1.- Muestra la geometría de las piezas a las que es aplicable la invención, incluyendo como ejemplo de piezas el de rígidizadores rectos, que son un caso particular del procedimiento aquí descrito.
La figura 2 - Muestra el detalle de un ejemplo de pieza con alma no plana.
La figura 3.- Muestra los rollos de tejido unidireccional a la anchura requerida. Este tipo de tejido suele ser empleado en los rígidizadores para reforzar localmente alguna parte del mismo, normalmente las faldillas, tal como se muestra en la figura 13.
La figura 4. -Muestra la disposición de los patrones cortados del rollo de tejido. Estos patrones serán los que se usarán para construir la preforma.
La figura 5.- Muestra la colocación de los patrones en la bandeja, según el apilado definido en el plano de la pieza.
La figura 6.- Muestra la bandeja con el material apilado, embolsada para su almacenaje (en caso de necesidad), conservando el material libre de contaminación.
La figura 7.- Muestra un patrón adaptado dentro de una plantilla con el contorno requerido. La figura 8.- Muestra el sistema automatizado de transferencia de patrones, en su posición inicial, donde coge el patrón de tejido de la plantilla plana que define su contomo. Esta transferencia podría también realizarse de forma manual con las referencias adecuadas.
La figura 9.- Muestra el sistema automatizado de transferencia de patrones, en su posición final, donde posiciona el patrón adaptado a su contorno, en su posición nominal del útil de conformado en caliente. Esta transferencia podría también realizarse de forma manual con las referencias adecuadas.
La figura 10.- Muestra una sección del útil de conformado en caliente en el momento en que se fija el patrón al útil. Esta fijación puede realizarse utilizando un sistema de vacío en el útil o utilizando cualquier otro sistema, lo cual fija el patrón al mismo. Esta fijación debe realizarse antes de que el sistema de transferencia suelte el mismo.
La figura 11.- Muestra una vista esquemática y una sección del sistema de compactación por vacío, con un marco que sella un material elástico alrededor del útil de conformado en caliente. La compactación puede también llevarse a cabo utilizando presión hidrostática o mecánica desde la parte superior del material elástico.
La figura 12- Muestra una sección una vez realizada la compactación del material sobre el útil de conformado en caliente.
La figura 13.- Muestra el posicionado de los refuerzos de tejido unidireccional en las faldillas del rigidizador (las zonas del rigidizador que han sido conformadas).
La figura 14.- Muestra en ejemplo de la combinación de una preforma en "C" y una en "L" para introducirla posteriormente en un útil de inyección y crear una cuaderna con sección en "C" rigidizada en el alma (se entiende por alma a la zona horizontal de la pieza.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
A la vista de las comentadas figuras, pueden verse distintas configuraciones de piezas o preformas (1) que han de obtenerse de acuerdo con el procedimiento de la invención, procedimiento que por otra parte se basa en realizar primeramente una preparación de los materiales para la obtención de las propias preformas (1) representadas en las figuras 1 y 2, para lo cual se parte de un rollo (2) de material suministrado, como puede ser fibra de carbono, tal y como se representa en la figura 3, de cuyo rollo se cortan patrones (4) requeridos según la orientación definida por el diseño de la pieza a obtener, de manera que los patrones de tejido obtenidos (4) se colocan en plano y sin deformar, como se representa en la figura 4, siguiendo el orden inverso al definido por el apilado de diseño de la pieza, almacenándose en una bandeja (5) con un cajeado (6) que fija el contorno del patrón, para evitar errores, tal y como se representa en las figuras 4 y 5, efectuándose seguidamente un embolsado de la bandeja (5) con el patrón (8) dispuesto sobre el cajeado (6), de manera que el apilado plano con la bandeja se introduce en la bolsa de plástico (7), cerrándose éste herméticamente para que el material quede protegido de la contaminación del ambiente hasta que se vaya a proceder a la fabricación de la propia preforma.
En un paso o fase posterior se lleva a cabo la deformación del patrón que define el cajeado (6), tal y como se indica en la figura 7, con la conformación de la cuaderna rigidizadora a obtener, de manera tal que ese patrón o cajeado (6) curvado, como se representa en la figura 7, con la curvatura ya definitiva, es transferido, mediante un sistema automatizado (9), desde su bandeja (5) hasta el correspondiente útil de conformado (10), tal y como se representa en la figura 10, donde el patrón de fibra de carbono se dispone sobre ese útil de conformado (10), por medio del sistema automatizado de transferencia (9), efectuándose posteriormente la fijación de dicho patrón en su posición nominal, mediante vacío u otro sistema, antes de retirar el sistema de transferencia (9) anteriormente comentado, todo ello tal y como se representa en la figura 10, donde el patrón (6) se fija mediante vacío u otro sistema, antes de retirar el llamado sistema de transferencia (9), que a su vez aplicará calor para fundir el binder del material y pegar esa capa con la anterior, impidiendo cualquier desplazamiento del patrón antes de su conformado, de manera tal que en el siguiente paso, con el patrón en su posición nominal, se pliega en superficies distintas a la de transferencia, adaptando totalmente el patrón al útil de conformado (10), utilizando para ello un material elástico (11) que se ajusta al comentado útil de conformado (10), mediante vacío y/o presión, aplicando a continuación calor al patrón, participando en esta operación una lámina separadora (12), que se ve claramente en línea de trazos en la figura 11.
En el siguiente paso se lleva a cabo el posicionado y pegado automático de tejido o cinta unidireccional, como se deja ver en las figuras, de manera que posteriormente se repiten los pasos desde la deformación del patrón hasta el conformado mediante compactación y aplicación de calor, así como el plegado automático, para crear la preforma con la conformación definitiva (6') representada en la figura 12, obtenida lógicamente a partir del patrón o cajeado (6) anteriormente referido, aplicando vacío, de manera tal que una vez creada la preforma (6'), se introducen en un útil donde se impregnará con resina y se llevará a cabo un ciclo de polimerización de dicha resina, para obtener la pieza de material compuesto final, tal y como se representa en la figura 13, para así obtener preformas con distintas secciones, como se muestra en la figura 14, donde se pueden combinar preformas (6', 6" 6"') que lógicamente corresponde a las piezas o preformas (1) representadas en las figuras 1 y 2.
Aunque el proceso se ha descrito de acuerdo con un método automatizado, también pueden realizarse los distintos pasos de forma manual, pero con la coordinación adecuada entre los diferentes elementos que conforman el proceso, permitiendo conformar preformas de forma independiente o en paquetes sin necesidad de tener que conformar el laminado completo de una vez, lo que permite colocar los patrones con precisión.
Además, el procedimiento descrito permite asegurar la repetitividad y fiabilidad de la configuración de las preformas obtenidas, durante la fabricación en serie de las mismas, consiguiendo controlar la corrección de spring back, permitiendo además controlar el conformado de cada capa evitando arrugas y ondulaciones.
Decir que según el procedimiento es posible colocar refuerzos locales (11), tal y como se representa en la figura 13, creando preformas con espesores y secciones no constantes, y cuyos refuerzos locales pueden ser tanto longitudinales como transversales y de forma precisa en el interior del laminado.
Por último decir que las preformas obtenidas pueden conseguirse con radios de curvatura mucho menores que con los sistemas o procedimientos tradicionales, no teniendo limitación de espesor - al no tener que deformar un laminado completo.
Desde el punto de vista de material empleado, aunque se ha dicho que preferentemente será fibra de carbono, pueden ser también materiales a base de fibras de vidrio, fibras cerámicas o fibras de aramida, e incluso tejidos híbridos, siendo su aplicación independiente del gramaje del tejido o de su textura (tejidos planos, satén o twill).

Claims

R E I V I N D I C A C I O N E S
1. - Procedimiento de fabricación automatizado de preformas de cuadernas y rigidizadores de materiales compuestos, aplicable en la fabricación de, por ejemplo, cuadernas de fuselaje de estructuras aeronáuticas o de cualquier tipo de estructura que requiera ser reforzada con rigidizadores que se constituyen mediante las preformas obtenidas a partir de un rollo (2) de un material apropiado, como puede ser fibra de carbono, fibra de vidrio o similar, caracterizado porque:
- a partir de dicho rollo de material (2) se cortan patrones (4) que se disponen en planos sobre una bandeja (5), afectada ésta de un cajeado (6);
disposición en el orden apropiado de los patrones (4) sobre el cajeado (6) de la bandeja (5) para obtener un patrón (8);
- embolsado en una bolsa (7) de la bandeja (5) con el patrón (8) sobre el cajeado (6), efectuándose el cierre hermético de dicha bolsa (7);
deformación del patrón que se define a partir del cajeado (6) para conseguir el contorno curvo y requerido de acuerdo al rigidizador definitivo a obtener;
- transferencia mediante un sistema mecánico (9) del patrón a un útil (10) mediante el que se realiza la conformación para obtener la preforma definitiva (6');
- fijación del patrón en su posición sobre el útil de conformado (10), estableciendo un vacío previo a la retirada del sistema de transferencia automática (9);
- aplicación de calor y sistema de compactación utilizándose un material elástico (11) con la participación de una lámina separadora (12), llevando a cabo una adaptación total del patrón al útil de conformado (10) para obtener la preforma definitiva;
- posicionado y pegado automático de cinta tejida unidireccional sobre la preforma (6') obtenida.
2. - Procedimiento de fabricación automatizado de preformas de cuadernas y rigidizadores de materiales compuestos, según reivindicación 1 , caracterizado porque opcionalmente las distintas fases o pasos del procedimiento se realizan manualmente.
3. - Procedimiento de fabricación automatizado de preformas de cuadernas y rigidizadores de materiales compuestos, según reivindicaciones anteriores, caracterizado porque opcionalmente es susceptible de aplicarse refuerzos de tejido (11), tanto en sentido longitudinal como en sentido transversal, e incluso en zonas en las que se dispone la preferiría definitiva (6').
4.- Procedimiento de fabricación automatizado de preformas de cuadernas y rigidizadores de materiales compuestos según reivindicaciones anteriores, caracterizado porque las preformas tienen distintas configuraciones, tanto rectas como curvas, y distintas secciones obtenidas como preformas definitivas o combinadas entre ellas.
PCT/ES2014/000198 2013-11-29 2014-11-28 Procedimiento de fabricaci0n auto m atizado de preformas de cuadernas y rigidizadores de materiales compuestos WO2015079081A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201301116 2013-11-29
ES201301116A ES2539312B1 (es) 2013-11-29 2013-11-29 Procedimiento de fabricación automatizado de preformas de cuadernas y rigidizadores de materiales compuestos

Publications (1)

Publication Number Publication Date
WO2015079081A1 true WO2015079081A1 (es) 2015-06-04

Family

ID=53198409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/000198 WO2015079081A1 (es) 2013-11-29 2014-11-28 Procedimiento de fabricaci0n auto m atizado de preformas de cuadernas y rigidizadores de materiales compuestos

Country Status (2)

Country Link
ES (1) ES2539312B1 (es)
WO (1) WO2015079081A1 (es)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2725897B2 (es) * 2018-03-28 2020-12-03 Torres Martinez M Procedimiento de fabricacion de estructuras reforzadas y estructura obtenida

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316462A (en) * 1993-02-18 1994-05-31 William Seemann Unitary vacuum bag for forming fiber reinforced composite articles
WO1999004964A1 (en) * 1997-07-25 1999-02-04 Tpi Technology, Inc. Large composite core structures formed by vacuum assisted resin transfer molding
US20120205835A1 (en) * 2011-02-11 2012-08-16 Rolls-Royce Plc Apparatus for forming a composite component
WO2013144389A1 (es) * 2012-03-30 2013-10-03 Industrias Delta Vigo S.L. Procedimiento de obtención de patrones para la fabricación de preformas de materiales compuestos

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316462A (en) * 1993-02-18 1994-05-31 William Seemann Unitary vacuum bag for forming fiber reinforced composite articles
WO1999004964A1 (en) * 1997-07-25 1999-02-04 Tpi Technology, Inc. Large composite core structures formed by vacuum assisted resin transfer molding
US20120205835A1 (en) * 2011-02-11 2012-08-16 Rolls-Royce Plc Apparatus for forming a composite component
WO2013144389A1 (es) * 2012-03-30 2013-10-03 Industrias Delta Vigo S.L. Procedimiento de obtención de patrones para la fabricación de preformas de materiales compuestos

Also Published As

Publication number Publication date
ES2539312A1 (es) 2015-06-29
ES2539312B1 (es) 2016-05-10

Similar Documents

Publication Publication Date Title
ES2401388T3 (es) Estructura compuesta y método asociado para obtenerla
ES2707628T3 (es) Larguerillo en forma de &#34;t&#34; con extremo del alma redondeado y su método de fabricación
ES2796001T3 (es) Método y dispositivo para la fabricación de plástico reforzado con fibra
US11518494B2 (en) Composite material structure and manufacturing method of composite material structure
CN104708890B (zh) 接合组件的系统和方法
RU2516508C2 (ru) Способ сборки и придания формы многослойной панели
ES2953533T3 (es) Estructura de rejilla compuesta
ES2341828B1 (es) Dispositivo y procedimiento para la fabricacion de elementos de material compuesto.
ES2954328T3 (es) Plantilla de moldeo de materiales compuestos y método de moldeo de materiales compuestos
CN110891772A (zh) 预成型体赋形装置
US20140166208A1 (en) Preforming pre-preg
ES2443916T3 (es) Procedimiento para fabricar vigas de material compuesto reforzado con fibras
CN105873745A (zh) Frp成型夹具和frp结构体的成型方法
CA3035953A1 (en) Method for molding composite material and jig for molding composite material
JP6415862B2 (ja) 成形治具及び成形方法
ES2945967T3 (es) Método de conformación de preformas y método de formación de materiales compuestos
WO2015079081A1 (es) Procedimiento de fabricaci0n auto m atizado de preformas de cuadernas y rigidizadores de materiales compuestos
JP2019151783A (ja) プリフォーム賦形方法、複合材成形方法、複合材及び航空機構造体
JP7193282B2 (ja) プリフォーム賦形方法及び複合材成形方法
JP4941811B2 (ja) プリフォーム、frp成形体の製造方法
ES2961745T3 (es) Conformado al vacío con cizallamiento controlado para moldear preformas
ES2978662T3 (es) Fabricación de estructuras tridimensionales a partir de piezas en bruto de preforma
JP2009083127A (ja) プリフォームの製造方法および製造装置
JP2022125261A (ja) 複合材料構造物の製造方法
CN110641043B (zh) 一种复合材料x型帽形壳体的铺层工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14866699

Country of ref document: EP

Kind code of ref document: A1