WO2015078404A1 - 一种天线及无线信号发送、接收方法 - Google Patents

一种天线及无线信号发送、接收方法 Download PDF

Info

Publication number
WO2015078404A1
WO2015078404A1 PCT/CN2014/092449 CN2014092449W WO2015078404A1 WO 2015078404 A1 WO2015078404 A1 WO 2015078404A1 CN 2014092449 W CN2014092449 W CN 2014092449W WO 2015078404 A1 WO2015078404 A1 WO 2015078404A1
Authority
WO
WIPO (PCT)
Prior art keywords
signals
signal
antenna
antenna elements
multiplexed
Prior art date
Application number
PCT/CN2014/092449
Other languages
English (en)
French (fr)
Inventor
王琳琳
赵建平
肖伟宏
杨朝辉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14865653.1A priority Critical patent/EP3067988B1/en
Publication of WO2015078404A1 publication Critical patent/WO2015078404A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/001Crossed polarisation dual antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array

Definitions

  • the present application relates to the field of communications technologies, and in particular, to an antenna and a method for transmitting and receiving wireless signals.
  • the horizontal splitting antenna uses a multi-column antenna, so the antenna width will increase, and the vertical splitting is realized through the circuit network, so the system complexity will increase.
  • horizontal splitting and vertical splitting change the sector coverage of the original antenna, a large amount of network planning and network optimization needs to be re-implemented.
  • the macro station-based evolution technology generally has the problem of large antenna volume increase and more complicated equipment.
  • an antenna and a wireless signal transmitting and receiving method are provided to solve the problem that the system is bulky and the device is complicated due to the increase of system capacity in the prior art.
  • the present application provides an antenna, including: a first power splitter, a second power splitter, a first phase shifting network, a signal multiplexing network, a first antenna array, and a multiplexing antenna array, where
  • the first power splitter receives the first beam signal, and divides the first beam signal into k1+m first beam split signals, the second power splitter receives a second beam signal, and the second beam
  • the beam signal is divided into k2 second beam splitting signals;
  • the first phase shifting network performs phase shift processing on the m first beam splitting signals to obtain M first phase splitting phase shifts with different phases a signal multiplexing network comprising L inputs, wherein L1 inputs receive k1 of the first beam split signals, and L2 inputs receive k2 of the second beam split signals, the signals
  • the multiplexing network performs signal multiplexing and phase shift processing on the k1 first beam splitting signals and the k2 second beam splitting signals to obtain K multiplexed signals having different phases, each multiplexed signal Included
  • the M first antenna elements are located on a straight line with the K multiplex antenna elements.
  • the second power splitter is configured to divide the second beam signal into k2+n a second beam splitting signal;
  • the antenna further comprising: a second phase shifting network and a second antenna array, wherein the second phase shifting network separately phase shifts the n second beam splitting signals Processing, obtaining N second beam splitting phase shift signals having different phases, n is less than or equal to N, and N is less than M;
  • the second antenna array includes N second antenna elements, and K multiplexed antenna elements are in a straight line Arranging, N second antenna elements and M first antenna elements are respectively located at two ends of K multiplex antenna elements, and N of the second antenna elements are used for transmitting N the second beam split signals, and
  • the N second beam splitting signals and the K multiplexed signals are transmitted to form a second beam.
  • the N second antenna elements, the M first antenna elements, and the K Use the antenna array on a straight line.
  • the signal multiplexing network includes a plurality of phase shifters and a 3DB bridge a Butler matrix, wherein the Butler matrix is used for performing signal multiplexing processing on k1 of the first beam splitting signal and k2 of the second beam splitting signals to obtain a K multiplexed signal; a shift phaser disposed at an input and/or an output of the Butler matrix for shifting the first beam split signal, the second beam split signal, and/or the multiplexed signal phase.
  • the first phase shifting network when m is equal to M, includes at least M-1 a phase shifter; when m is less than M, the first phase shifting network comprises: at least M-1 phase shifters and at least one power splitter.
  • the second phase shifting network when n is equal to N, includes: at least N-1 shift phases
  • the second phase shifting network includes: at least N-1 phase shifters and at least one power splitter when n is less than N.
  • the application further provides an antenna signal sending method, including: separately receiving a first beam signal and a second beam signal; dividing the first beam signal into k1+m first beam split signals; dividing the second beam signal into k2 second beam split signals; Performing phase shift processing on the first beam splitting signal to obtain M first beam splitting signals having different phases; and multiplexing the first pair of beam splitting signals and k1 by using a signal multiplexing network comprising L input terminals
  • the second beam splitting signal is signal multiplexed and phase-shifted to obtain K multiplexed signals having different phases
  • the first antenna array including M first antenna elements is used to transmit the M first a beam splitting signal; transmitting the K multiplexed signals by using a multiplexed antenna array including K multiplexed antenna elements distributed in a straight line with the M first antenna elements; M of the first beams After the split signal and the K multiplexed signals are transmitted, a first beam is formed, and the K multiplexed signals are transmitted to form a second beam, where the first beam
  • the method further includes: dividing the second beam signal into n second beam split signals; and n to the second beam splits
  • the path signals are respectively subjected to phase shift processing to obtain N second beam split signals having different phases; and are distributed in a straight line by using the first antenna elements and the K multiplex antenna elements.
  • the second antenna array of the N second antenna elements transmits N the second beam split signals, and the N second beam split signals and the K multiplexed signals are transmitted to form a second beam.
  • the present application further provides an antenna receiving method, comprising: receiving a target beam by using a multiplexing antenna array and a first antenna array, where the multiplexing antenna array includes K multiplexing antenna elements, the first antenna The array includes M first antenna elements distributed in a straight line with K multiplex antenna elements; after phase shifting the target beams received by the M first antenna elements, m phases are different a third beam splitting signal; performing signal separation and phase shifting on the target beams received by the K multiplexed antenna elements, and obtaining k1 third beam splitting signals and k2 fourth beam splitting signals; Combining m+k1 of the third beam splitting signals To the third beam signal, or k2 of the fourth beam split signals are combined into a fourth beam signal.
  • the method further includes: receiving, by using a second antenna array, the target beam, where the second antenna array includes An antenna array, N first antenna elements in which the first antenna elements are distributed in a straight line; after phase shifting the target beams received by the N second antenna elements, n phases are obtained The same fourth beam splitting signal; synthesizing n+k2 of the fourth beam splitting signals into a fourth beam signal.
  • the antenna provided by the embodiment of the present application first divides the first beam into k1+m first beam split signals according to the requirements of the transmitted first beam and the second beam, and divides the second beam into k2 seconds respectively.
  • the beam splitting signal is then phase-shifted by the first phase shifting network to k1 the first beam splitting signal, and the signal multiplexing network is used for signal multiplexing of the k1 first beam splitting signal and the k2 second beam splitting signals.
  • phase shifting processing obtaining K multiplexed signals, transmitting M first beam splitting phase shift signals through the first antenna array 50, and transmitting K multiplexed signals by the multiplex antenna array 40, and transmitting K after
  • the multiplexed signal forms a second beam
  • the K multiplexed signals and the M first beam split phase shift signals together form a first beam.
  • the antenna provided by the embodiment of the present application can make two different beams multiplex part of the antenna array, and by adjusting the size and phase of the split signal of the beam signal, the downtilt angles of the two beams that can be formed are different.
  • the two beams are directed differently, and the coverage areas are different and do not overlap. Therefore, the antenna can achieve an increase in system capacity without an increase in the antenna volume.
  • the solution only needs to set the split signal size of the first power splitter and the second power splitter to And controlling the first phase shifting network and the signal multiplexing network to phase shift the phase of the signal, the implementation is convenient and simple, and the system complexity is low.
  • FIG. 1 is a schematic structural diagram of an antenna according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a signal multiplexing network according to an embodiment of the present application.
  • FIG. 3 is another schematic structural diagram of a signal multiplexing network according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another antenna according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an antenna in an application embodiment according to an embodiment of the present disclosure.
  • FIG. 8 is a beam comparison diagram of the antenna test provided in FIG. 5 according to an embodiment of the present application.
  • FIG. 9 is a coverage diagram of the antenna test provided in FIG. 5 according to an embodiment of the present application.
  • FIG. 10 is a schematic flowchart diagram of an antenna signal sending method according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic flowchart diagram of another antenna signal sending method according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic flowchart of a method for receiving an antenna signal according to an embodiment of the present disclosure
  • FIG. 13 is a schematic flowchart diagram of another antenna signal receiving method according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of an antenna according to an embodiment of the present application.
  • the antenna includes a first power splitter 10, a second power splitter 20, a signal multiplexing network 30, a multiplexed antenna array 40, a first antenna array 50, and a first phase shifting network 60.
  • the first splitter 10 is configured to receive the first beam signal and divide the first beam signal into k1+m first beam split signals. According to the requirement of the first beam to be transmitted, the first power splitter 10 may select an equal power splitter or an unequal power splitter, and the unequal power splitter divides the size of each first beam split signal according to the first beam. The requirements vary and vary.
  • the second power splitter 20 is configured to receive the second beam signal and divide the second beam signal into k2 second beam split signals. Similarly, depending on the requirements of the transmitted second beam, the second power divider 20 can select an equal power divider or a unequal power divider.
  • the first phase shifting network 60 performs phase shift processing on the m first beam splitting signals to obtain M first beam splitting phase shifting signals, and the phases of the M first beam phase shifting signals are different.
  • the first phase shifting network 60 is cascaded by the phase shifter and the power splitter.
  • 62 is The phase shifter 61 is a two-way splitter.
  • the first phase shifting network shown in FIG. 2 can also obtain M first beam splitting phase shift signals.
  • L input terminals of the signal multiplexing network 30 There are L input terminals of the signal multiplexing network 30, and the L input terminals are divided into two parts.
  • the first part L1 inputs receive k1 first beam split signals
  • the second part L2 inputs receive k2 second beams.
  • Split signal In the embodiment of the present application, L is less than or equal to K, and the total number of L1+L2 is less than or equal to L.
  • the above design can ensure that at least k1 first beam signals and k2 second beams are input into the signal multiplexing network, and the number of input terminals occupied by the first beam splitting signal and the second beam splitting signal is smaller than signal multiplexing. The total number of inputs to the network.
  • the function of the signal multiplexing network 30 is to perform signal multiplexing and phase shift processing on the k1 first beam splitting signals and the k2 second beam splitting signals to obtain K multiplexed signals, each of which includes There is a first beam split signal and a second beam split signal, and the phases of the different multiplexed signals are different.
  • the signal multiplexing network 30 is composed of a plurality of phase shifters 31 and a Butler matrix 32 composed of a 3DB bridge, and each input end of the Butler matrix 32 can be It is necessary to set a phase shifter 31 or not to set the phase shifter.
  • Each output end of the Butler matrix 32 is provided with one phase shifter 31 or no phase shifter as needed, and at least one output terminal may not be set. Shift phase shifter.
  • the multiplex antenna array 40 includes K multiplex antenna elements, and K multiplex antenna elements are arranged in a line, and each multiplex antenna array is respectively connected to one output end of the signal multiplexing network 40, and A multiplexed signal output by the signal multiplexing network 40 is transmitted.
  • the first antenna array 50 includes M first antenna elements, the M first antenna elements are in line with the K multiplexed antennas, and the M first antenna elements are located at one end of the K multiplexed antenna elements.
  • Each of the first antenna elements is connected to an output of the first phase shifting network 60, and a first beam splitting phase shift signal output by the first phase shifting network 60 is transmitted.
  • the second beam split signal of the K multiplexed signals transmitted by the multiplex antenna array 40 forms a second The beam
  • the first beam split signal of the K multiplexed signals transmitted by the multiplex antenna array 40 and the M first beam split phase shift signals transmitted by the first antenna array 60 form a first beam
  • the formed The direction of emission of one beam and the second beam is different.
  • the antenna provided by the embodiment of the present application can also receive a beam according to the mutual dissimilarity of the antenna.
  • the K multiplex antenna arrays in the multiplex antenna array 40 can also receive the target beam, and the signal multiplexing network is received.
  • 30 performs split phase shifting on the received target beam to obtain k1 third beam split signals and k2 fourth beam split signals.
  • the first antenna array 50 receives the target beam, and the M first antenna elements phase-shift the received target beams to obtain m third beam split signals.
  • the first splitter 10 combines k1+m third beam split signals to form a third beam signal; the second splitter 20 combines the k2 fourth beam split signals together to form a fourth beam signal.
  • the antenna provided by the embodiment of the present application first divides the first beam into k1+m first beam split signals according to the requirements of the transmitted first beam and the second beam, and divides the second beam into k2 seconds respectively.
  • the beam splitting signal is then phase-shifted by the first phase shifting network to k1 the first beam splitting signal, and the signal multiplexing network is used for signal multiplexing of the k1 first beam splitting signal and the k2 second beam splitting signals.
  • phase shifting processing obtaining K multiplexed signals, transmitting M first beam splitting phase shift signals through the first antenna array 50, and transmitting K multiplexed signals by the multiplex antenna array 40, and transmitting K after
  • the multiplexed signal forms a second beam
  • the K multiplexed signals and the M first beam split phase shift signals together form a first beam.
  • the antenna provided by the embodiment of the present application can make two different beams multiplex part of the antenna array, and by adjusting the size and phase of the split signal of the beam signal, the downtilt angles of the two beams that can be formed are different. Make the two beams point differently, and thus the coverage area is not Same and do not overlap. Therefore, the antenna can achieve an increase in system capacity without an increase in the antenna volume.
  • the solution only needs to set the split signal size of the first power splitter and the second power splitter, and control the phase shift phase of the split signal by the first phase shift network and the signal multiplexing network, which is convenient and simple to implement.
  • the system complexity is low.
  • FIG. 4 is a schematic structural diagram of another antenna according to an embodiment of the present application.
  • the first antenna array and the multiplex antenna array as a whole are taken as a whole, only part of the antenna elements of the antenna array are multiplexed, and all antenna elements of the second beam and portions of the first beam are transmitted.
  • a part of the antenna element transmitting the second beam and a part of the antenna element transmitting the first wave may be multiplexed to form a new multiplexing scheme.
  • the antenna may further include: a second antenna array 90 and a second phase shifting network 100.
  • the second power splitter 20 divides the second beam signal into k2+n second beam split signals.
  • the size of the k2 second beam splitting signals and the size of the n second beam splitting signals may be set according to the requirements of the second beam.
  • the second phase shifting network 100 performs phase shift processing on the n second beam splitting signals to obtain N second beam splitting phase shifting signals, and the phases of the N second beam phase shifting signals are different, and n is less than or equal to N. And N is less than M. That is, as a whole, the number of antenna elements forming the second beam is smaller than the number of antenna elements forming the first beam.
  • the second phase shifting network when n is equal to N, the second phase shifting network may be composed of at least N-1 phase shifter groups, and when n is less than N, the second phase shifting network may be at least N-1 The phase shifter and the at least one power splitter are combined.
  • the first phase shifting network 60 when n is equal to N, the second phase shifting network may be composed of at least N-1 phase shifter groups, and when n is less than N, the second phase shifting network may be at least N-1 The phase shifter and the at least one power splitter are combined.
  • the second antenna array 90 includes N second antenna elements, N second antenna elements and the first day
  • the line array, the multiplexed antenna elements are located on a straight line, and the first antenna array 50 and the second antenna array 100 are respectively located at both ends of the multiplexed antenna array 40.
  • the second antenna array 90 is configured to transmit the phase-shifted N second beam split phase shift signals.
  • the final phase can be made
  • the gain, downtilt, and vertical beamwidth of the resulting first and second beams may all be different. And then the coverage areas are different and do not overlap. Therefore, the antenna can achieve an increase in system capacity without an increase in the antenna volume.
  • the solution only needs to set the split signal size of the first splitter and the second splitter, and the phase shift phase of the split signal by the first phase shift network, the second phase shift network and the signal multiplexing network.
  • the implementation is simple and convenient, and the system complexity is low.
  • FIG. 5 is a schematic structural diagram of an antenna in an application embodiment according to an embodiment of the present application.
  • the antenna includes an antenna module 16, two signal multiplexing networks, four power splitters, two first phase shifting networks, two second power splitters, and two second phase shifting networks.
  • Two first radio frequency transceiver units and two second radio frequency transceiver units wherein: the antenna module adopts a double-polarized array and is arranged in a single column, and the spacing between each array is 108 mm, and the antenna array includes 2 multiplexed antenna elements, 10 first antenna elements and 2 second antenna elements, two signal multiplexing networks are respectively a main polarization signal multiplexing network 1 and a cross polarization signal multiplexing network 2, two A phase shifting network is a first main polarization phase shifting network 5 and a first cross polarization phase shifting network 6, two first power splitters 3 and 4, two second power splitters 7 and 8, two The second phase shifting network is the second main polarization phase shifting network 9 and the second cross polarization phase shifting network 11, respectively, the two first radio frequency transceiver units are 12 and 13, respectively, and the two second radio frequency transceiver units are respectively 14 And 15.
  • the first power splitters 3 and 4 are all one-seven unequal power splitters, and the second power splitters 7 and 8 are all one-third unequal split power splitters.
  • the main polarization signal multiplexing network 1 and the cross polarization signal multiplexing network 2 are both connected by a 3DB bridge And two phase shifters.
  • the structure of the first main polarization phase shifting network 5 and the first cross polarization phase shifting network 6 are similar, and are composed of two layers of 10 phase shifters and one layer one point and two equal power splitters, thereby having the first A beam has an adjustable characteristic of a downtilt angle of 0 to 12 degrees.
  • the amplitude phase characteristics of the 1-12 antenna array are as shown in Table 1.
  • the matrix in the table refers to the antenna array
  • the first beam split signal refers to the first transmission on the antenna array. Beam split signal.
  • the second main polarization phase shifting network 9 and the second cross polarization phase shifting network 11 are similar in structure and are composed of two phase shifters so as to have a characteristic that the second beam has a downtilt angle of 22 degrees.
  • the amplitude phase characteristics of the 11-14 antenna array are shown in Table 2.
  • the matrix in the table refers to the antenna array, and the second beam split signal refers to the second beam split signal transmitted on the antenna array.
  • the two first RF transceiver units 12 and 13 have a transmission power of 45 dBm, and two second shots.
  • the transmission power of the transceiving units 14 and 15 is 39 dBm.
  • FIG. 6 is a split beam direction diagram corresponding to the existing AAS scheme.
  • FIG. 7 is a coverage effect diagram corresponding to the existing AAS solution.
  • the AAS (Active Antenna System) solution increases the processing power of the vertical dimension by leaving more ports in the vertical dimension of the antenna.
  • FIG. 8 is a beam comparison diagram of the antenna test provided in FIG. 5 according to an embodiment of the present application.
  • FIG. 9 is a diagram showing the coverage effect of the antenna test shown in FIG. 5 according to an embodiment of the present application.
  • the two curves shown in Figure 7 show the received signal strength as a function of distance. The closer the curve is, the greater the interference between the two beams, the lower the SINR and the lower the throughput. It can be seen from FIG. 8 that the distance between the first beam and the second beam is 0 to 100 meters away from the antenna, compared with the received signal strength curve. The difference in signal strength is significantly greater than the existing solution, so the SINR in this area increases and the system capacity increases. In addition, in the far-end area 150 to 500 meters away from the antenna, the difference in signal strength between the first beam and the second beam is also significantly larger than the existing scheme, so the SINR in the area is increased and the system capacity is also increased.
  • the application can be described in the general context of computer-executable instructions executed by a computer, such as a program module.
  • program modules include routines, programs, objects, components, data structures, and the like that perform particular tasks or implement particular abstract data types.
  • the present application can also be practiced in distributed computing environments where tasks are performed by remote processing devices that are connected through a communication network.
  • program modules can be located in both local and remote computer storage media including storage devices.
  • the embodiment of the present application further provides an antenna signal sending method. As shown in FIG. 10 , the method may include:
  • S101 Receive a first beam signal.
  • S103 Perform phase shift processing on the m first beam splitting signals to obtain M first beam splitting signals having different phases.
  • S104 Receive a second beam signal.
  • S106 Perform signal multiplexing and phase shift processing on the k1 first beam splitting signals and the k2 second beam splitting signals by using a signal multiplexing network including L input terminals to obtain K multiplexed signals having different phases.
  • S107 transmit M first beam splitting signals, and transmit K multiplexed signals.
  • the antenna array transmits K multiplexed signals, wherein: k1, k2, M, and K are all positive An integer, M is greater than or equal to 1, m is less than or equal to M, k1 is greater than or equal to 1, k2 is greater than or equal to 1, k1 + k2 is less than or equal to L, and L is less than or equal to K.
  • the M first beam splitting signals and the K multiplexed signals are transmitted to form a first beam, and the K multiplexed signals are transmitted to form a second beam, and the first beam and the second beam have different transmission directions.
  • the first beam and the second beam can share the multiplex antenna array when transmitting, and finally
  • the gain, downtilt, and vertical beamwidth of the resulting first and second beams may all be different. Therefore, the antenna signal transmitting method can achieve an increase in system capacity without increasing the antenna volume. And only need to control the size of the first beam and the second beam splitting signal, and control the phase shifting phase of the first beam and the second beam splitting signal, which is convenient and simple, and has low system complexity.
  • the method further includes:
  • S203 transmit N second beam splitting signals.
  • N second beam split signals Transmitting N second beam split signals by using a second antenna array including N second antenna elements distributed in a straight line with M first antenna elements and K multiplex antenna elements, N second beam splits
  • the road signal and the K multiplexed signals are transmitted to form a second beam.
  • the embodiment of the present application further provides an antenna signal receiving method. As shown in FIG. 12 , the method may include:
  • S301 Receive a target beam by using a multiplexing antenna array and a first antenna array, where the multiplexing antenna array includes K multiplexing antenna elements, where the first antenna array includes K multiplexing antennas M first antenna elements distributed in a straight line;
  • S303 Perform signal separation and phase shift on the target beams received by the K multiplex antenna elements, and obtain k1 third beam split signals and k2 fourth beam split signals.
  • S304 synthesize m+k1 third beam split signals to obtain a third beam signal, or synthesize k2 fourth beam split signals into a fourth beam signal.
  • the method may further include:
  • S401 Receive a target beam by using a second antenna array, where the second antenna array includes N second antenna elements distributed in a straight line with K multiplex antenna elements and M first antenna elements;
  • S403 Synthesize n+k2 fourth beam split signals into a fourth beam signal.
  • the present application can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is better.
  • Implementation Based on such understanding, the technical solution of the present application, which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for making a A computer device (which may be a personal computer, server, or network device, etc.) performs all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a medium that can store program codes, such as a read only memory (ROK), a random access memory (RAK), a magnetic disk, or an optical disk.
  • ROK read only memory
  • RAK random access memory
  • magnetic disk or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请公开了一种天线及无线信号发送、接收方法,该天线包括将第一波束信号分成k1+m个第一波束分路信号的第一功分器将第二波束信号分成k2个第二波束分路信号的第二功分器,对m个第一波束分路信号移相处理得到M个第一波束分路移相信号的第一移相网络;对k1个第一波束分路信号和k2个第二波束分路信号进行处理得到K个复用信号的信号复用网络;用于发射M个第一波束分路信号的M个第一天线阵子的,用于发射K个复用信号的K个复用天线阵子,M个第一波束分路移相信号和K个复用信号发射后形成第一波束,K个复用信号发射后形成第二波束。该天线可以在天线体积不增加的情况下,实现系统容量增加。

Description

一种天线及无线信号发送、接收方法
本申请要求于2013年11月28日提交中国专利局、申请号为201310680446.9、发明名称为“一种天线及无线信号发送、接收方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别是涉及一种天线及无线信号发送、接收方法。
背景技术
随着无线通讯技术的迅猛发展,人们对通讯系统的容量、传输速率等不断地提出更高的要求,一系列网络容量提升技术和架构被提出,如水平劈裂、垂直劈裂等等宏站演进技术,其中水平劈裂是指在水平面上增加波束数量,从而实现系统容量翻倍,而垂直劈裂则是指在垂直面上增加波束数量。
但从实现的角度来看,水平劈裂天线使用多列天线,所以天线宽度会增加,而垂直劈裂是通过电路网络实现,所以系统复杂度会提升。另外,由于水平劈裂和垂直劈裂改变了原有天线的扇区覆盖,所以需要重新对系统进行大量的网络规划和网络优化。
因此,基于宏站的演进技术普遍存在着天线体积增加大以及设备更加复杂的问题。
发明内容
本申请中提供了一种天线及无线信号发送、接收方法,以解决现有技术中增加系统容量导致天线体积大以及设备复杂的问题。
为了解决上述技术问题,本申请实施例公开了如下技术方案:
一方面,本申请提供了一种天线,包括:第一功分器、第二功分器、第一移相网络、信号复用网络、第一天线阵列和复用天线阵列,其中,所述第一功分器接收第一波束信号,并将所述第一波束信号分成k1+m个第一波束分路信号,所述第二功分器接收第二波束信号,并将所述第二波束信号分成k2个第二波束分路信号;所述第一移相网络对m个所述第一波束分路信号进行移相处理,得到M个相位都不相同的第一波束分路移相信号;所述信号复用网络包含L个输入端,其中L1个输入端接收k1个所述第一波束分路信号,L2个输入端接收k2个所述第二波束分路信号,所述信号复用网络对k1个所述第一波束分路信号和k2个所述第二波束分路信号进行信号复用、移相处理得到K个相位都不相同的复用信号,每个复用信号内都包含有所述第一波束分路信号和所述第二波束分路信号;所述第一天线阵列包括M个第一天线阵子,所述复用天线阵列包括K个复用天线阵子;M个所述第一天线阵子用于发射M个所述第一波束分路信号,K个所述复用天线阵子用于发射K个所述复用信号,并且M个所述第一波束分路移相信号和K个所述复用信号发射后形成第一波束,K个所述复用信号发射后形成第二波束,所述第一波束和所述第二波束的发射方向不同;其中,k1、k2、M和K都为正整数,并且M大于等于1,m小于等于M,k1大于等于1,k2大于等于1,L1+L2小于等于L,L小于等于K。
结合第一方面,在第一方面的第一种可能的实现方式中,M个所述第一天线阵子与K个所述复用天线阵子位于一条直线上。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述第二功分器用于将所述第二波束信号分成k2+n个第二波束分路信号;所述天线还包括:第二移相网络和第二天线阵列,其中,所述第二移相网络对n个所述第二波束分路信号分别进行移相 处理,得到N个相位都不相同的第二波束分路移相信号,n小于等于N,N小于M;所述第二天线阵列包括N个第二天线阵子,K个复用天线阵子呈直线排列,N个第二天线阵子与M个第一天线阵子分别位于K个复用天线阵子的两端,N个所述第二天线阵子用于发射N个所述第二波束分路信号,并且N个所述第二波束分路信号和K个所述复用信号发射后形成第二波束。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,N个所述第二天线阵子、M个所述第一天线阵子和K个所述复用天线阵子位于一条直线上。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第四种可能的实现方式中,所述信号复用网络包括多个移相位器和一个3DB电桥组成的巴特勒矩阵,其中,所述巴特勒矩阵用于对k1个所述第一波束分路信号和k2个所述第二波束分路信号进行信号复用处理,得到K复用信号;多个所述移相位器设置在所述巴特勒矩阵的输入端和/或输出端,用于对所述第一波束分路信号、所述第二波束分路信号和/或所述复用信号进行移相。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第五种可能的实现方式中,当m等于M时,所述第一移相网络包括至少M-1个移相位器;当m小于M时,所述第一移相网络包括:至少M-1个移相位器和至少一个功分器。
结合第一方面的第二种可能的实现方式,在第一方面的第六种可能的实现方式中,,当n等于N时,所述第二移相网络包括:至少N-1个移相位器;当n小于N时,所述第二移相网络包括:至少N-1个移相位器和至少一个功分器。
第二方面,本申请还提供了一种天线信号发送方法,包括:分别接收 第一波束信号和第二波束信号;将所述第一波束信号分成k1+m个第一波束分路信号;将所述第二波束信号分成k2个第二波束分路信号;对m个所述第一波束分路信号进行移相处理,得到M个相位都不相同的第一波束分路信号;利用包含L个输入端的信号复用网络对k1个所述第一波束分路信号和k2个所述第二波束分路信号进行信号复用、移相处理得到K个相位都不相同的复用信号;利用包含有M个第一天线阵子的第一天线阵列发射M个所述第一波束分路信号;利用包含有与M个所述第一天线阵子在一条直线上分布的K个复用天线阵子的复用天线阵列发射K个所述复用信号;M个所述第一波束分路信号和K个所述复用信号发射后形成第一波束,K个所述复用信号发射后形成第二波束,所述第一波束和所述第二波束的发射方向不同,并且k1、k2、M和K都为正整数,M大于等于1,m小于等于M,k1大于等于1,k2大于等于1,k1+k2小于等于L,L小于等于K。
结合第二方面,在第二方面第一种可能的实现方式中,所述方法还包括:将所述第二波束信号分成n个第二波束分路信号;对n个所述第二波束分路信号分别进行移相处理,得到N个相位都不相同的第二波束分路信号;利用包含有与M个所述第一天线阵子和K个所述复用天线阵子在一条直线上分布的N个第二天线阵子的第二天线阵列发射N个所述第二波束分路信号,N个所述第二波束分路信号与K个所述复用信号发射后形成第二波束。
第三方面,本申请还提供了一种天线接收方法,包括:利用复用天线阵列和第一天线阵列接收目标波束,所述复用天线阵列包含K个复用天线阵子,所述第一天线阵列包含有与K个复用天线阵子在一条直线上分布的M个第一天线阵子;对M个所述第一天线阵子接收的所述目标波束进行移相后,得到m个相位都不相同的第三波束分路信号;对K个所述复用天线阵子接收的所述目标波束进行信号分离、移相后,得到k1个第三波束分路信号和k2个第四波束分路信号;将m+k1个所述第三波束分路信号合成得 到第三波束信号,或者,将k2个所述第四波束分路信号合成为第四波束信号。
结合第三方面,在第三方面第一种可能的实现方式中,所述方法还包括:利用第二天线阵列接收所述目标波束,所述第二天线阵列包含有与K个所述复用天线阵子、M个所述第一天线阵子在一条直线上分布的N个第二天线阵子;对N个所述第二天线阵子接收的所述目标波束进行移相后,得到n个相位都不相同的第四波束分路信号;将n+k2个所述第四波束分路信号合成为第四波束信号。
本申请实施例提供的该天线,根据发射的第一波束和第二波束的要求,首先将第一波束分成k1+m个第一波束分路信号,并且将第二波束分别分成k2个第二波束分路信号,然后利用第一移相网络对k1第一波束分路信号进行移相,利用信号复用网络对k1第一波束分路信号和k2个第二波束分路信号进行信号复用、移相处理,得到K个复用信号,将M个第一波束分路移相信号通过第一天线阵列50发射,将将K个复用信号由复用天线阵列40发射,发射后K个复用信号形成第二波束,K个复用信号和M个第一波束分路移相信号共同形成第一波束。通过控制对第一功分器和第二功分器分的的分路信号的大小以及控制对各分路信号以及复用信号进行移相的相位大小,可以使得最终得到的第一波束和第二波束的增益、下倾角以及垂直面波束宽度都可以不相同。
由此可见,本申请实施例提供的该天线,可以使得两个不同的波束复用部分天线阵子,并且通过调节波束信号的分路信号大小以及相位,可以形成的两个波束的下倾角不同,使得两个波束指向不同,进而覆盖区域不同且不重叠。因此,该天线可以在天线体积不增加的情况下,实现系统容量增加。
同时,该方案只需设置第一功分器和第二功分器的分路信号大小,以 及控制第一移相网络和信号复用网络对分路信号移相相位大小即可,实现方便简单,系统复杂度低。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供一种天线的结构示意图;
图2为本申请实施例提供的信号复用网络的一种结构示意图;
图3为本申请实施例提供的信号复用网络的另一种结构示意图;
图4为本申请实施例提供另一种天线的结构示意图;
图5为本申请实施例提供的一个应用实施例中天线的结构示意图;
图6为现有的AAS方案对应的劈裂波束方向图;
图7为现有AAS方案对应的覆盖效果图;
图8为本申请实施例图5提供的天线测试的波束对比图;
图9为本申请实施例图5提供天线测试的覆盖效果图
图10为本申请实施例提供的一种天线信号发送方法的流程示意图;
图11为本申请实施例提供的另一种天线信号发送方法的流程示意图;
图12为本申请实施例提供的一种天线信号接收方法的流程示意图;
图13为本申请实施例提供的另一种天线信号接收方法的流程示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请实施例中的技术方案,并使本申请实施例的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请实施例中技术方案作进一步详细的说明。
图1为本申请实施例提供一种天线的结构示意图。
如图1所示,该天线包括:第一功分器10、第二功分器20、信号复用网络30、复用天线阵列40、第一天线阵列50和第一移相网络60。
第一功分器10用于接收第一波束信号,并将第一波束信号分成k1+m个第一波束分路信号。根据发送的第一波束的要求,第一功分器10可以选择等功分器或不等功分器,并且不等功分器分得各个第一波束分路信号的大小,根据第一波束的要求不同而有差异。
第二功分器20用于接收第二波束信号,并将第二波束信号分成k2个第二波束分路信号。同样,根据发送的第二波束的要求,第二功分器20可以选择等功分器或不等功分器。
第一移相网络60对m个第一波束分路信号进行移相处理,得到M个第一波束分路移相信号,M个第一波束移相信号的相位都不相同。第一移相网络60包括至少M-1个移相位器62,或,M-1个移相位器和至少一个功分器组成,其中,当m=M时,第一移相网络60可以为M个移相支路组成,并且至少M-1个移相支路上都设置有一个移相位器,这样对于m个第一波束分路信号进行移相后,可以保证得到的M个第一波束分路移相信号的相位都不相同。另外,当m<M时,如图2所示,图中m=3,M=5,此时,第一移相网络60由移相位器和功分器进行级联,图中,62为移相位器,61为一分二功分器,同样,图2所示的第一移相网络也可以得到M个第一波束分路移相信号。
信号复用网络30的输入端有L个,L个输入端分为两部分,第一部分L1个输入端接收k1个第一波束分路信号,第二部分L2个输入端接收k2个第二波束分路信号。在本申请实施例中,L小于等于K,并且L1+L2的总个数小于等于L。上述设计,可以保证至少有k1个第一波束信号、k2个第二波束输入到信号复用网络中,并且第一波束分路信号和第二波束分路信号占用的输入端数量小于信号复用网络的输入端总数量。
信号复用网络30的作用是将k1个第一波束分路信号和k2个第二波束分路信号进行信号复用和移相处理,得到K个复用信号,每个复用信号内都包含有第一波束分路信号和第二波束分路信号,并且不同复用信号的相位不相同。
在本申请实施例中,如图3所示,信号复用网络30由多个移相位器31和一个3DB电桥组成的巴特勒矩阵32组成,在巴特勒矩阵32的每个输入端可以根据需要设置一个移相位器31或不设置移相位器,巴特勒矩阵32的每个输出端根据需要设置有1个移相位器31或不设置移相位器,另外,至少一个输出端上可以不设置移相位器。如图3所示巴特勒矩阵32为二进四出的网络,即k1=k2=L1=L2=1,K=4,在本申请其它实施例中,巴特勒矩阵32还可以是一个多进多出的网络。
如图1所示,复用天线阵列40包括K个复用天线阵子,K个复用天线阵子呈直线排列,每个复用天线阵子分别与信号复用网络40的一个输出端相连接,将信号复用网络40输出的一个复用信号发射出去。
第一天线阵列50包括M个第一天线阵子,M个第一天线阵子与K个复用天线位于一条直线上,并且M个第一天线阵子位于K个复用天线阵子的一端。每个第一天线阵子分别与第一移相网络60中的一个输出端相连接,将第一移相网络60输出的一个第一波束分路移相信号发射出去。
复用天线阵列40发射的K个复用信号中的第二波束分路信号形成第二 波束,复用天线阵列40发射的K个复用信号的第一波束分路信号和第一天线阵列60发射的M个第一波束分路移相信号共同形成第一波束,并且发射形成的第一波束和第二波束的发射方向不同。
另外,根据天线的互异性,本申请实施例提供的该天线还可以接收波束,在接收目标波束时,复用天线阵列40中的K个复用天线阵子还可以接收目标波束,信号复用网络30对接收到的目标波束进行分路移相后得到k1个第三波束分路信号和k2个第四波束分路信号。第一天线阵列50接收目标波束,M个第一天线阵子将接收到的目标波束移相后得到m个第三波束分路信号。第一功分器10将k1+m个第三波束分路信号合到一起形成第三波束信号;第二功分器20将k2个第四波束分路信号合到一起形成第四波束信号。
本申请实施例提供的该天线,根据发射的第一波束和第二波束的要求,首先将第一波束分成k1+m个第一波束分路信号,并且将第二波束分别分成k2个第二波束分路信号,然后利用第一移相网络对k1第一波束分路信号进行移相,利用信号复用网络对k1第一波束分路信号和k2个第二波束分路信号进行信号复用、移相处理,得到K个复用信号,将M个第一波束分路移相信号通过第一天线阵列50发射,将将K个复用信号由复用天线阵列40发射,发射后K个复用信号形成第二波束,K个复用信号和M个第一波束分路移相信号共同形成第一波束。通过控制对第一功分器和第二功分器分的的分路信号的大小以及控制对各分路信号以及复用信号进行移相的相位大小,可以使得最终得到的第一波束和第二波束的增益、下倾角以及垂直面波束宽度都可以不相同。
由此可见,本申请实施例提供的该天线,可以使得两个不同的波束复用部分天线阵子,并且通过调节波束信号的分路信号大小以及相位,可以形成的两个波束的下倾角不同,使得两个波束指向不同,进而覆盖区域不 同且不重叠。因此,该天线可以在天线体积不增加的情况下,实现系统容量增加。
同时,该方案只需设置第一功分器和第二功分器的分路信号大小,以及控制第一移相网络和信号复用网络对分路信号移相相位大小即可,实现方便简单,系统复杂度低。
图4为本申请实施例提供另一种天线的结构示意图。
在上一个实施例中,将第一天下阵列和复用天线阵列作为整体来看,仅仅将天线阵列的部分天线阵子进行复用,并且发射第二波束的全部天线阵子与发射第一波束的部分天线阵子复用,在本申请实施例中,还可以将发射第二波束的部分天线阵子与发射第一波的部分天线阵子进行复用,形成一种新的复用方案。如图4所示,该天线可以还可以包括:第二天线阵列90和第二移相网络100。
在本申请实施中,第二功分器20将第二波束信号分成k2+n个第二波束分路信号。另外,k2个第二波束分路信号的大小和n个第二波束分路信号的大小可以根据第二波束的要求而设定。
第二移相网络100对n个第二波束分路信号进行移相处理,得到N个第二波束分路移相信号,N个第二波束移相信号的相位都不相同,n小于等于N,并且N小于M。即从整体来看,形成第二波束的天线阵子的数量小于形成第一波束的天线阵子的数量。
在本申请实施例中,当n等于N时,第二移相网络可以由至少N-1个移相位器组,当n小于N时,所述第二移相网络可以由至少N-1个移相位器和至少一个功分器级联组成,详细描述可以参考上述关于第一移相网络60的描述,在此不再赘述。
第二天线阵列90包括N个第二天线阵子,N个第二天线阵子与第一天 线阵子、复用天线阵子位于一条直线上,并且第一天线阵列50和第二天线阵列100分别位于复用天线阵列40的两端。第二天线阵列90用于将移相后的N个第二波束分路移相信号发射出去。
在本申请实施例中,通过控制对第一功分器和第二功分器分的的分路信号的大小以及控制对各分路信号以及复用信号进行移相的相位大小,可以使得最终得到的第一波束和第二波束的增益、下倾角以及垂直面波束宽度都可以不相同。,进而覆盖区域不同且不重叠。因此,该天线可以在天线体积不增加的情况下,实现系统容量增加。
同时,该方案只需设置第一功分器和第二功分器的分路信号大小,以及第一移相网络、第二移相网络和信号复用网络对分路信号移相相位大小即可,实现方便简单,系统复杂度低。
图5为本申请实施例提供的一个应用实施例中天线的结构示意图。如图5所示,该天线包含有天线模块16、两个信号复用网络、四个功分器、两个第一移相网络、两个第二功分器、两个第二移相网络、两个第一射频收发单元以及两个第二射频收发单元,其中:天线模块采用双极化阵子且按照单列均匀排列的天线阵列,每个阵子之间的间距为108mm,天线阵列中包含有2个复用天线阵子、10个第一天线阵子和2个第二天线阵子,两个信号复用网络分别为主极化信号复用网络1和交叉极化信号复用网络2,两个第一移相网络分别为第一主极化移相网络5和第一交叉极化移相网络6,两个第一功分器3和4,两个第二功分器7和8,两个第二移相网络分别为第二主极化移相网络9和第二交叉极化移相网络11,两个第一射频收发单元分别为12和13,两个第二射频收发单元分别为14和15。
在本申请实施例中,第一功分器3和4都为一分七不等功分器,第二功分器7和8都为一分三不等分功分器。
主极化信号复用网络1和交叉极化信号复用网络2都由一个3DB电桥 和两个移相位器组成。
第一主极化移相网络5和第一交叉极化移相网络6的结构相似,都由两层10个移相位器、1层一分二等功分器级联组成,从而具有使得第一波束具有下倾角0~12度可调特性。当第一波束的下倾角为9度时,1-12天线阵子的幅度相位特性如表1所示,表中阵子是指天线阵子,第一波束分路信号是指天线阵子上发射的第一波束分路信号。
表1
Figure PCTCN2014092449-appb-000001
第二主极化移相网络9和第二交叉极化移相网络11的结构相似,都由两个移相位器组成,从而具有使得第二波束具有下倾角22度的特性。11-14天线阵子的幅度相位特性如表2所示,表中阵子是指天线阵子,第二波束分路信号是指天线阵子上发射的第二波束分路信号。
表2
Figure PCTCN2014092449-appb-000002
两个第一射频收发单元12和13的发射功率均为45dBm,两个第二射 频收发单元14和15的发射功率均为39dBm。
图6为现有的AAS方案对应的劈裂波束方向图。图7为现有AAS方案对应的覆盖效果图。
AAS(Active Antenna System,有源天线系统)方案通过在天线垂直维度留出更多的端口,以增加垂直维度的处理能力。
图8为本申请实施例图5提供的天线测试的波束对比图。图9为本申请实施例图5提供天线测试的覆盖效果图。
图7所示的两条曲线,表示随距离变化的接收信号强度,曲线越接近表示两个波束之间的干扰越大,SINR越低从而吞吐量越低。从图8中可见,与图7现有方案的距离与接收信号强度曲线相比,本申请实施例提供的方案在距离天线0~100米的近端区域,第一波束与第二波束之间的信号强度差异显著大于现有方案,故该区域SINR提升,系统容量也随之提升。另外,在距离天线150~500米的远端区域,第一波束与第二波束之间的信号强度差异也显著大于现有方案,故该区域SINR提升,系统容量也随之提升。
可以理解的是,本申请可用于众多通用或专用的计算系统环境或配置中。例如:个人计算机、服务器计算机、手持设备或便携式设备、平板型设备、多处理器系统、基于微处理器的系统、置顶盒、可编程的消费电子设备、网络PC、小型计算机、大型计算机、包括以上任何系统或设备的分布式计算环境等等。
本申请可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本申请,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
基于上述图1提供的天线,本申请实施例还提供了一种天线信号发送方法,如图10所示,该方法可以包括:
S101:接收第一波束信号。
S102:将第一波束信号分成k1+m个第一波束分路信号。
S103:对m个第一波束分路信号进行移相处理,得到M个相位都不相同的第一波束分路信号。
S104:接收第二波束信号。
S105:将第二波束信号分成k2个第二波束分路信号。
S106:利用包含L个输入端的信号复用网络对k1个第一波束分路信号和k2个第二波束分路信号进行信号复用、移相处理得到K个相位都不相同的复用信号。
S107:发射M个第一波束分路信号,发射K个复用信号。
利用包含有M个第一天线阵子的第一天线阵列发射M个第一波束分路信号,并利用包含有与M个第一天线阵子在一条直线上分布的K个复用天线阵子的复用天线阵列发射K个复用信号,其中:k1、k2、M和K都为正 整数,M大于等于1,m小于等于M,k1大于等于1,k2大于等于1,k1+k2小于等于L,L小于等于K。
M个第一波束分路信号和K个复用信号发射后形成第一波束,K个复用信号发射后形成第二波束,第一波束和第二波束的发射方向不同。
由此可见,本申请实施例提供的该天线信号发送方法,根据发射的第一波束和第二波束的要求,可以将第一波束和第二波束在发射时可以共用复用天线阵列,并且最终得到的第一波束和第二波束的增益、下倾角以及垂直面波束宽度都可以不相同。因此,该天线信号发送方法可以在天线体积不增加的情况下,实现系统容量增加。并且只需要控制第一波束和第二波束分路信号的大小,以及,控制第一波束和第二波束分路信号的移相相位大小即可,实现方便简单,系统复杂度低。
此外,在本申请其它实施例中,基于上述图2提供的天线,如图11所示,所述方法还包括:
S201:将所述第二波束信号分成n个第二波束分路信号;
S202:对n个所述第二波束分路信号分别进行移相处理,得到N个相位都不相同的第二波束分路信号;
S203:发射N个第二波束分路信号。
利用包含有与M个第一天线阵子和K个复用天线阵子在一条直线上分布的N个第二天线阵子的第二天线阵列发射N个第二波束分路信号,N个第二波束分路信号与K个复用信号发射后形成第二波束。
基于上述图1提供的天线,本申请实施例还提供了一种天线信号接收方法,如图12所示,该方法可以包括:
S301:利用复用天线阵列和第一天线阵列接收目标波束,所述复用天线阵列包含K个复用天线阵子,所述第一天线阵列包含有与K个复用天线 阵子在一条直线上分布的M个第一天线阵子;
S302:对M个第一天线阵子接收的目标波束进行移相后,得到m个相位都不相同的第三波束分路信号;
S303:对K个复用天线阵子接收的目标波束进行信号分离、移相后,得到k1个第三波束分路信号和k2个第四波束分路信号;
S304:将m+k1个第三波束分路信号合成得到第三波束信号,或者,将k2个第四波束分路信号合成为第四波束信号。
此外,在本申请其它实施例中,基于图2提供的天线,如图13所示,所述方法还可以包括:
S401:利用第二天线阵列接收目标波束,所述第二天线阵列包含有与K个复用天线阵子、M个第一天线阵子在一条直线上分布的N个第二天线阵子;
S402:对N个第二天线阵子接收的目标波束进行移相后,得到n个相位都不相同的第四波束分路信号;
S403:将n+k2个第四波束分路信号合成为第四波束信号。
通过以上的方法实施例的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:只读存储器(ROK)、随机存取存储器(RAK)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (11)

  1. 一种天线,其特征在于,包括:第一功分器、第二功分器、第一移相网络、信号复用网络、第一天线阵列和复用天线阵列,其中,
    所述第一功分器接收第一波束信号,并将所述第一波束信号分成k1+m个第一波束分路信号,所述第二功分器接收第二波束信号,并将所述第二波束信号分成k2个第二波束分路信号;
    所述第一移相网络对m个所述第一波束分路信号进行移相处理,得到M个相位都不相同的第一波束分路移相信号;
    所述信号复用网络包含L个输入端,其中L1个输入端接收k1个所述第一波束分路信号,L2个输入端接收k2个所述第二波束分路信号,所述信号复用网络对k1个所述第一波束分路信号和k2个所述第二波束分路信号进行信号复用、移相处理得到K个相位都不相同的复用信号,每个复用信号内都包含有所述第一波束分路信号和所述第二波束分路信号;
    所述第一天线阵列包括M个第一天线阵子,所述复用天线阵列包括K个复用天线阵子;M个所述第一天线阵子用于发射M个所述第一波束分路信号,K个所述复用天线阵子用于发射K个所述复用信号,并且M个所述第一波束分路移相信号和K个所述复用信号发射后形成第一波束,K个所述复用信号发射后形成第二波束,所述第一波束和所述第二波束的发射方向不同;
    其中,k1、k2、M和K都为正整数,并且M大于等于1,m小于等于M,k1大于等于1,k2大于等于1,L1+L2小于等于L,L小于等于K。
  2. 根据权利要求1所述的天线,其特征在于,M个所述第一天线阵子与K个所述复用天线阵子位于一条直线上。
  3. 根据权利要求1或2所述的天线,其特征在于,所述第二功分器用于将所述第二波束信号分成k2+n个第二波束分路信号;
    所述天线还包括:第二移相网络和第二天线阵列,其中,
    所述第二移相网络对n个所述第二波束分路信号分别进行移相处理,得到N个相位都不相同的第二波束分路移相信号,n小于等于N,N小于M;
    所述第二天线阵列包括N个第二天线阵子,K个复用天线阵子呈直线 排列,N个第二天线阵子与M个第一天线阵子分别位于K个复用天线阵子的两端,N个所述第二天线阵子用于发射N个所述第二波束分路信号,并且N个所述第二波束分路信号和K个所述复用信号发射后形成第二波束。
  4. 根据权利要求3所述的天线,其特征在于,N个所述第二天线阵子、M个所述第一天线阵子和K个所述复用天线阵子位于一条直线上。
  5. 根据权利要求1或2所述的天线,其特征在于,所述信号复用网络包括多个移相位器和一个3DB电桥组成的巴特勒矩阵,其中,
    所述巴特勒矩阵用于对k1个所述第一波束分路信号和k2个所述第二波束分路信号进行信号复用处理,得到K复用信号;
    多个所述移相位器设置在所述巴特勒矩阵的输入端和/或输出端,用于对所述第一波束分路信号、所述第二波束分路信号和/或所述复用信号进行移相。
  6. 根据权利要求1或2所述的天线,其特征在于,当m等于M时,所述第一移相网络包括至少M-1个移相位器;
    当m小于M时,所述第一移相网络包括:至少M-1个移相位器和至少一个功分器。
  7. 根据权利要求3所述的天线,其特征在于,当n等于N时,所述第二移相网络包括:至少N-1个移相位器;
    当n小于N时,所述第二移相网络包括:至少N-1个移相位器和至少一个功分器。
  8. 一种天线信号发送方法,其特征在于,包括:
    分别接收第一波束信号和第二波束信号;
    将所述第一波束信号分成k1+m个第一波束分路信号;
    将所述第二波束信号分成k2个第二波束分路信号;
    对m个所述第一波束分路信号进行移相处理,得到M个相位都不相同的第一波束分路信号;
    利用包含L个输入端的信号复用网络对k1个所述第一波束分路信号和k2个所述第二波束分路信号进行信号复用、移相处理得到K个相位都不相同的复用信号;
    利用包含有M个第一天线阵子的第一天线阵列发射M个所述第一波束分路信号;
    利用包含有与M个所述第一天线阵子在一条直线上分布的K个复用天线阵子的复用天线阵列发射K个所述复用信号;
    M个所述第一波束分路信号和K个所述复用信号发射后形成第一波束,K个所述复用信号发射后形成第二波束,所述第一波束和所述第二波束的发射方向不同,并且k1、k2、M和K都为正整数,M大于等于1,m小于等于M,k1大于等于1,k2大于等于1,k1+k2小于等于L,L小于等于K。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    将所述第二波束信号分成n个第二波束分路信号;
    对n个所述第二波束分路信号分别进行移相处理,得到N个相位都不相同的第二波束分路信号;
    利用包含有与M个所述第一天线阵子和K个所述复用天线阵子在一条直线上分布的N个第二天线阵子的第二天线阵列发射N个所述第二波束分路信号,N个所述第二波束分路信号与K个所述复用信号发射后形成第二波束。
  10. 一种天线接收方法,其特征在于,包括:
    利用复用天线阵列和第一天线阵列接收目标波束,所述复用天线阵列包含K个复用天线阵子,所述第一天线阵列包含有与K个复用天线阵子在一条直线上分布的M个第一天线阵子;
    对M个所述第一天线阵子接收的所述目标波束进行移相后,得到m个相位都不相同的第三波束分路信号;
    对K个所述复用天线阵子接收的所述目标波束进行信号分离、移相后,得到k1个第三波束分路信号和k2个第四波束分路信号;
    将m+k1个所述第三波束分路信号合成得到第三波束信号,或者,将k2个所述第四波束分路信号合成为第四波束信号。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    利用第二天线阵列接收所述目标波束,所述第二天线阵列包含有与K个所述复用天线阵子、M个所述第一天线阵子在一条直线上分布的N个第 二天线阵子;
    对N个所述第二天线阵子接收的所述目标波束进行移相后,得到n个相位都不相同的第四波束分路信号;
    将n+k2个所述第四波束分路信号合成为第四波束信号。
PCT/CN2014/092449 2013-11-28 2014-11-28 一种天线及无线信号发送、接收方法 WO2015078404A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14865653.1A EP3067988B1 (en) 2013-11-28 2014-11-28 Antenna and method for transmitting and receiving wireless signal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310680446.9 2013-11-28
CN201310680446.9A CN103633452B (zh) 2013-11-28 2013-11-28 一种天线及无线信号发送、接收方法

Publications (1)

Publication Number Publication Date
WO2015078404A1 true WO2015078404A1 (zh) 2015-06-04

Family

ID=50214227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092449 WO2015078404A1 (zh) 2013-11-28 2014-11-28 一种天线及无线信号发送、接收方法

Country Status (3)

Country Link
EP (1) EP3067988B1 (zh)
CN (1) CN103633452B (zh)
WO (1) WO2015078404A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103633452B (zh) * 2013-11-28 2016-09-28 华为技术有限公司 一种天线及无线信号发送、接收方法
CN105379141B (zh) 2014-04-22 2019-04-26 华为技术有限公司 信号发射装置及下行信号发射方法
CN105264938A (zh) 2014-05-12 2016-01-20 华为技术有限公司 一种天线系统
CN105098383B (zh) 2014-05-14 2019-01-25 华为技术有限公司 多波束天线系统及其相位调节方法和双极化天线系统
EP2975688B1 (en) * 2014-07-15 2019-10-09 Alcatel Lucent Antenna feed and method of configuring an antenna feed
CN104502903B (zh) * 2014-11-28 2017-12-29 成都嘉纳海威科技有限责任公司 一种基于tsv转接板的多波束接收sip系统
WO2016131164A1 (zh) * 2015-02-16 2016-08-25 富士通株式会社 信号发送方法、装置以及通信系统
CN108352606B (zh) * 2015-11-20 2020-07-21 日立金属株式会社 供电电路以及天线装置
CN106207461A (zh) * 2016-08-29 2016-12-07 苏州市吴通天线有限公司 一种5g毫米波共形多波束天线系统
CN109004366B (zh) 2017-06-06 2021-07-16 华为技术有限公司 一种天线装置以及波束调整的方法
EP4270658A3 (en) 2017-10-30 2024-02-07 Huawei Technologies Co., Ltd. Antenna, antenna assembly, and base station
CN108964800B (zh) * 2018-07-27 2021-07-27 北京小米移动软件有限公司 移动终端的天线性能检测方法及系统
CN112421224B (zh) * 2020-09-28 2023-11-17 广东盛路通信科技股份有限公司 基于蓝牙通信和5g网络通信的天线及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0896383A2 (en) * 1997-08-07 1999-02-10 Space Systems/Loral, Inc. A multibeam phased array antenna system
CN1457205A (zh) * 2002-12-31 2003-11-19 北京信威通信技术股份有限公司 天线阵多阵元信号馈电的复用传送方法及装置
CN201408844Y (zh) * 2009-04-22 2010-02-17 中兴通讯股份有限公司 一种共模天线装置
CN103220032A (zh) * 2013-03-15 2013-07-24 上海交通大学 一种自适应抗多普勒频偏的时间调制阵列天线系统
CN103633452A (zh) * 2013-11-28 2014-03-12 深圳市华为安捷信电气有限公司 一种天线及无线信号发送、接收方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4045800A (en) * 1975-05-22 1977-08-30 Hughes Aircraft Company Phase steered subarray antenna
WO1995006339A1 (en) * 1993-08-20 1995-03-02 Scan Tek, Inc. High reliability fail-soft microwave landing system having high continuity of service and integrity
CN100353776C (zh) * 2004-05-12 2007-12-05 华为技术有限公司 一种基站功率发射通道传输信号的方法和装置
CN100512044C (zh) * 2006-09-12 2009-07-08 京信通信技术(广州)有限公司 具有可变波束宽度的波束形成网络
CN201378631Y (zh) * 2008-12-08 2010-01-06 成都九洲电子信息系统有限责任公司 一种rfid定向天线阵列
CN103053071B (zh) * 2011-06-20 2016-01-20 华为技术有限公司 天线以及天线控制系统
RU2591243C2 (ru) * 2012-03-05 2016-07-20 Хуавей Текнолоджиз Ко., Лтд. Антенная система
WO2013185281A1 (zh) * 2012-06-11 2013-12-19 华为技术有限公司 一种基站天线及基站天线馈电网络
CN203277650U (zh) * 2013-03-04 2013-11-06 华为技术有限公司 一种多波束宽度天线系统和馈电网络

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0896383A2 (en) * 1997-08-07 1999-02-10 Space Systems/Loral, Inc. A multibeam phased array antenna system
CN1457205A (zh) * 2002-12-31 2003-11-19 北京信威通信技术股份有限公司 天线阵多阵元信号馈电的复用传送方法及装置
CN201408844Y (zh) * 2009-04-22 2010-02-17 中兴通讯股份有限公司 一种共模天线装置
CN103220032A (zh) * 2013-03-15 2013-07-24 上海交通大学 一种自适应抗多普勒频偏的时间调制阵列天线系统
CN103633452A (zh) * 2013-11-28 2014-03-12 深圳市华为安捷信电气有限公司 一种天线及无线信号发送、接收方法

Also Published As

Publication number Publication date
EP3067988B1 (en) 2018-04-11
CN103633452A (zh) 2014-03-12
CN103633452B (zh) 2016-09-28
EP3067988A1 (en) 2016-09-14
EP3067988A4 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
WO2015078404A1 (zh) 一种天线及无线信号发送、接收方法
EP2846400B1 (en) Antenna array, antenna device and base station
EP2685557B1 (en) Antenna and base station
TWI544829B (zh) 無線網路裝置與無線網路控制方法
US10424839B2 (en) Phase shifter assembly
KR101392073B1 (ko) 안테나, 기지국 및 빔 프로세싱 방법
CN107196684B (zh) 一种天线系统、信号处理系统以及信号处理方法
CN106602265B (zh) 波束成形网络及其输入结构、输入输出方法及三波束天线
US10103432B2 (en) Multiband antenna with variable electrical tilt
US20180138592A1 (en) Multi-beam antenna arrangement
JP2018500841A (ja) インターリーブ偏波マルチビームアンテナ
US9899736B2 (en) Low cost active antenna system
KR101795647B1 (ko) 빔포밍 네트워크 및 기지국 안테나
US9893788B2 (en) Node in a wireless communication system with four beam ports and corresponding method
US10205236B2 (en) Antenna system
US20190229790A1 (en) Communication apparatus, communication terminal, communication method, and recording medium having communication program recorded thereon
CN206003971U (zh) 波束成形网络及其输入结构、三波束天线
US20120134307A1 (en) High rate rf link technology
JP5993319B2 (ja) リフレクトアレー及び素子
Lialios et al. A mm-wave true-time-delay beamformer architecture based on a Blass matrix topology
Shaimerden et al. A 60 GHz Compact Butler Matrix Network Design
Wei et al. Experimental Realization of Wideband and Compact Analyzed Beam Forming Network
KR20150049356A (ko) 광대역, 편파 재구성 및 광범위 다중 빔 형성을 위한 안테나 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014865653

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014865653

Country of ref document: EP