WO2013185281A1 - 一种基站天线及基站天线馈电网络 - Google Patents

一种基站天线及基站天线馈电网络 Download PDF

Info

Publication number
WO2013185281A1
WO2013185281A1 PCT/CN2012/076725 CN2012076725W WO2013185281A1 WO 2013185281 A1 WO2013185281 A1 WO 2013185281A1 CN 2012076725 W CN2012076725 W CN 2012076725W WO 2013185281 A1 WO2013185281 A1 WO 2013185281A1
Authority
WO
WIPO (PCT)
Prior art keywords
power divider
output
vector
bridge
phase
Prior art date
Application number
PCT/CN2012/076725
Other languages
English (en)
French (fr)
Inventor
何平华
艾鸣
肖伟宏
朱祖武
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12878891.6A priority Critical patent/EP2860822B1/en
Priority to CN201280000553.6A priority patent/CN102907168B/zh
Priority to PCT/CN2012/076725 priority patent/WO2013185281A1/zh
Publication of WO2013185281A1 publication Critical patent/WO2013185281A1/zh
Priority to US14/567,247 priority patent/US9049083B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/22Antenna units of the array energised non-uniformly in amplitude or phase, e.g. tapered array or binomial array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a base station antenna and a base station antenna feed network.
  • the base station antenna carries the dual functions of electromagnetic wave transmission and reception. Its performance directly determines the advantages and disadvantages of the mobile communication network, and the antenna downtilt angle is an important factor affecting the performance of the base station antenna.
  • multiple antenna elements can be fed through two or more TRX (Transceiver, Transceiver) and vector composite feed networks to form a radiation beam with a certain downtilt angle.
  • TRX Transceiver, Transceiver
  • the inventors have found that when the number of TRX is small, for example, only two TRXs, the base station antenna downtilt can be adjusted in a small range, which is difficult to meet the requirements of the actual communication system.
  • Embodiments of the present invention provide a base station antenna and a base station antenna feed network, which can achieve a large range of adjustment of a base station antenna downtilt angle under a condition of a small number of TRXs.
  • an embodiment of the present invention provides a base station antenna, including a transceiver TRX array, a first-stage vector synthesis network, a second-stage phase shift array, a second-stage vector synthesis network, and an antenna unit array, where the TRX array Include N TRXs for outputting N-way vector signals, N is a natural number and greater than or equal to 2; the first-stage vector synthesis network is configured to synthesize the N-way vector signal vectors to generate an M-way vector signal, where M is a natural number And M is greater than N; the secondary phase shifting array is configured to receive the output of the first level vector synthesis network An M-way vector signal, changing a phase of the M-way vector signal and outputting a phase-shifted M-way vector signal, wherein the phase shift amount of the M-way vector signal after moving through the second-order array is an arithmetic progression; a second-stage vector synthesis network, configured to receive the phase-shifted M-way vector signal, divide the M-way vector signal function into
  • an embodiment of the present invention provides a base station antenna feed network, including a first-stage vector synthesis network, a second-stage phase shift array, and a second-level vector synthesis network, where
  • the first-stage vector synthesis network is configured to receive an N-way vector signal output by the N transceivers TRX and perform vector synthesis to generate an M-way vector signal, where the N and M are natural numbers, and M is greater than N;
  • the second phase shifting array is configured to receive the M-way vector signal output by the first-stage vector synthesis network, change a phase of the M-way vector signal, and output a phase-shifted M-way vector signal,
  • the phase shift amount of the M-way vector signal after moving through the second-order array is an arithmetic progression;
  • the second-stage vector synthesis network is configured to receive the M-channel vector signal after the phase shifting,
  • the M-channel vector signal is divided into P-path vector signals, and the Q-path vectors in the P-channel vector signals are combined and the combined Q-way vector signals are outputted to the antenna unit array, and the P-way vector signals are
  • the vector signals other than the Q channel are directly output to the antenna element array, P is a natural number and P is greater than M, and Q is a natural number and less than or equal to P.
  • the base station antenna and the base station antenna feeding network provided by the embodiments of the present invention use the second-stage vector synthesis network to form a relatively continuous wavefront of the electromagnetic wave radiated by the antenna element array under the premise of fewer transceivers, and increase The base station antenna downtilt angle is adjustable.
  • FIG. 1 is a schematic structural diagram of a base station antenna according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a base station antenna according to another embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a power bridge in the prior art
  • FIG. 4 is a schematic structural diagram of a base station antenna feed network according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a base station antenna feed network according to another embodiment of the present invention.
  • An embodiment of the present invention provides a base station antenna, as shown in FIG. 1, including:
  • a TRX (Transceiver) array 101 a first-stage vector synthesis network 102, a second-order phase shift array 103, a second-stage vector synthesis network 104, and an antenna element array 105.
  • the TRX array 101 includes N TRXs for outputting N vector signals, N being a natural number and greater than or equal to 2; the amplitude and phase of the N-way vector signals are independently adjustable, that is, the above-mentioned N TRXs can output different vector signals.
  • the first-level vector synthesis network 102 is configured to synthesize the N-way vector signal vector to generate an M-way vector signal, where M is a natural number and M is greater than N; and the second-stage phase shifting array 103 is configured to receive the output of the first-level vector synthesis network.
  • An M-way vector signal changing a phase of the M-way vector signal, and outputting the phase-shifted M-way vector signal, wherein the phase shift amount of the M-way vector signal after the second-order moving to the array is an arithmetic progression;
  • a secondary vector synthesis network 104 configured to receive the phase-shifted M-way vector signal, divide the M-way vector signal function into a P-way vector signal, and synthesize the Q-way vector in the P-way vector signal Outputting the synthesized Q-path vector signal, directly outputting the vector signal other than the Q-channel in the P-way vector signal, P is a natural number and P is greater than M, Q is a natural number and is less than or equal to P;
  • antenna element array 105 P path for receiving the output of the second level vector synthesis network
  • the vector signal is converted into electromagnetic waves for radiation.
  • the signal phase of the TRX output is independently adjustable, so the TRX array can be regarded as the first-stage phase-shifting array, and the second-stage phase-shifting array further changes the phase of the vector signal output by the first-stage vector synthesis network to meet the needs of a larger downtilt angle. .
  • the electromagnetic waves radiated by the antenna unit form a plurality of independent wavefronts.
  • multiple independent wavefronts have hopping, and the base station antenna downtilt range is still difficult to meet the needs of the actual communication system.
  • the second-stage vector synthesis network smoothes the phase difference between the vector signals driving the plurality of antenna elements, and divides the M-way vector signal output of the received second-stage phase-shifted array into P-channel vector signals, and the above-mentioned P
  • the path vector signal vector is combined to make the phase change of each channel smoother, so that the electromagnetic wave radiated by the antenna unit forms a relatively continuous wavefront, and the adjustable range of the base station antenna downtilt angle is increased.
  • a preset phase line may be connected between each antenna unit in the antenna unit array and the second-stage vector synthesis network to further change the phase of the vector signal transmitted to the antenna unit, and change the base station antenna. inclination.
  • phase or amplitude of the one or more vector signals output by the first-stage vector synthesis network may not change after passing through the second-order phase shift array or the second-stage vector synthesis network.
  • the one or more vector signals are directly connected to the second-stage vector synthesis network or the antenna unit.
  • the electromagnetic wave radiated by the antenna unit forms a relatively continuous wavefront by the feed network having the second-stage vector synthesis network, and the base station antenna downtilt angle can be increased under the premise of fewer transceivers.
  • the range is adjusted, and the sidelobe suppression of the base station antenna is improved, and the coverage effect is improved.
  • the vector signal vector is synthesized into a 4-way vector signal
  • the second-order moving array includes four phase shifters for respectively changing one vector signal outputted by the first-stage vector synthesis network, and the phase shift amounts of the four phase shifters are equal.
  • the sequence, the second-stage vector synthesis network further synthesizes the vector signals output by the four phase shifters into 12-way vector signals for driving 12 antenna elements.
  • the two TRs are TRX201 1 and TRX2012, respectively
  • the first-level vector synthesis network includes a power splitter 2021 and a power splitter 2022, a bridge 2031, and a bridge 2032.
  • the secondary moving array includes a phase shifter 2041, a phase shifter 2042, a phase shifter 2043 and a phase shifter 2044.
  • the second-stage vector synthesis network includes a power splitter 2051, a power splitter 2052, a power splitter 2053, a power splitter 2054, and a bridge 2061.
  • the bridge 2062 the twelve antenna units are the antenna units 20701 to 20712, respectively.
  • TRX2011 is connected with the input terminal X of the power splitter 2021, TRX2012 and power points
  • the input terminal Y of the device 2022 is connected.
  • the power splitter 2021 and the power splitter 2022 each have one input and two output terminals.
  • the power splitter 2021 has output terminals XI and X2, and the power splitter 2022 has output terminals Y1 and Y2.
  • the output terminal XI of the divider 2021 and the output Y1 of the power divider 2022 are connected to the two input terminals of the bridge 2031; the output terminal X2 of the power divider 2021 and the output terminal Y2 of the power divider 2022 are connected to the bridge 2032.
  • the output terminals HI and H2 of the bridge 2031, the output terminals SI and S2 of the bridge 2032 are respectively connected to the phase shifter 2041, the phase shifter 2042, the phase shifter 2043 and the phase shifter 2044, and the output terminal HI and H2 is a D port and an S port respectively, and the output terminals S1 and S2 are an S port and a D port respectively; the output terminals T1, ⁇ 2, W1, W2 of the above four phase shifters are respectively connected to the power splitter 2051 and the power splitter 2052, respectively.
  • the power splitter 2053, the power splitter 2054, the above four power splitters each have an input terminal and three output terminals, the power splitter 2051 has output terminals T11, T12, T13, and the power splitter 2052 has output terminals ⁇ 21, ⁇ 22 ⁇ 23, the power splitter 2053 has outputs W11, W12, W13, and the power splitter 2054 has outputs W21, W22, W23; 12
  • the line units 20701 to 20712 are sequentially arranged; the three output terminals T11, T12, T13 of the power splitter 2051 are respectively connected to the antenna units 20701, 30702, 20703; the three output terminals W21, W22, W23 of the power splitter 2054 are respectively connected to The antenna unit 20710, 20711, 20712; the output terminal T21 of the power divider 2052 is connected to the antenna unit 20705, and the output terminal T22 of the power divider 2052 and the output terminal W11 of the power divider 2053 are
  • the two output terminals VI and V2 of the bridge 2061 are a D port and an S port, respectively, and are connected to the antenna units 20704 and 20706; the output terminal W13 of the power splitter 2053 is connected to the antenna unit 20708, the output terminal T23 of the power splitter 2052 and the output terminal W12 of the power splitter 2053 are connected to the two input ends of the bridge 2062, and the two output terminals Z1 and Z2 of the bridge 2062 are respectively connected to the S port and the D port.
  • a preset phase line may be connected between the output end of the second-stage vector synthesis network and the corresponding antenna unit.
  • the bridge in the second-stage vector synthesis network may be a 180-degree bridge or a 90-degree bridge, and the bridges in the first-level vector synthesis network may use the same type of bridge.
  • a 180-degree bridge is taken as an example to illustrate the relationship between input and output signals.
  • the bridge input ports are II, 12, the output ports are 01, 02, 01 is the bridge D port, and 02 is the bridge.
  • S port assuming that the signal parameters of port II, 12, 01, 02 are respectively, b, c, d, then the value of c is multiplied by the vector difference of a and b, and the value of d is the vector sum of a and b multiplied by.
  • the specific implementations of the 180-degree bridge and the 90-degree bridge are all prior art and will not be described here.
  • the base station antenna in the embodiment may also be used to receive a signal.
  • the antenna unit is used to receive a signal, and the power splitter is used as a combiner.
  • TRX is used to receive the signal from the power divider.
  • the foregoing signal transmission and reception processes may be performed simultaneously or at different times, and the embodiment of the present invention is not limited thereto, for example, WCDMA (Wideband Code Division Multiple Access) and CDMA (Code Division Multiple) Access, code division multiple access), in the transmission signal and The received signals are simultaneously performed, and in the TD-SCDMA (Time Division-Synchronous Code Division Multiple Access) system, the transmitted signal and the received signal are not simultaneously performed.
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • each of the four power splitters splits the input signal into three-way sub-signals
  • the embodiment of the present invention is not limited thereto, specifically, the foregoing.
  • the number of branches of the input signal by the four power dividers corresponds to the antenna unit. For example, if there are only 10 antenna elements, the number of sub-signals after the splitting of the four power splitters is also 10, Any two of the four power splitters in the embodiment can split only two sub-signals.
  • the second-stage vector synthesis network can increase the power splitter and the bridge to drive more antenna units.
  • the specific number of power splitters or bridges can be determined according to the specific number of antenna units in the antenna array, that is, the antenna. The more units, the corresponding power splitters or bridges can be increased accordingly.
  • two second-stage bridges are provided to achieve an adjustment range of the downtilt angle as large as possible in a case where the system layout area is small.
  • the base station antenna provided by the embodiment of the present invention adds a second-stage vector synthesis network to the feed network, and uses the power divider and the bridge to make the phase difference of the multi-path vector signals transmitted to the antenna unit smoother, and the number of TRXs is Under the premise that there may be less, a wide range of adjustable downtilt angles is achieved, which not only improves the suppression of the upper side lobes, but also improves the gain. Moreover, due to the application A small amount of TRX reduces the manufacturing cost and operating energy consumption of the base station antenna, and also reduces the size and weight.
  • the embodiment of the present invention further provides a base station antenna feed network. As shown in FIG. 4, the first stage vector synthesis network 102, the second stage phase shift array 103, and the second level vector synthesis network 104 are included.
  • the first-level vector synthesis network 102 is configured to receive N-way vector signals output by the N transceivers TRX and perform vector synthesis to generate M-way vector signals, wherein the N and M are natural numbers, and M is greater than N;
  • the second phase shifting array 103 is configured to receive the M vector signal outputted by the first stage vector synthesis network, change the phase of the M vector signal, and output the phase shifted M vector signal, where the M vector signal passes through
  • the amount of phase shift after the secondary moving to the array is an arithmetic progression
  • a second-stage vector synthesis network 104 configured to receive the phase-shifted M-way vector signal, divide the M-way vector signal function into a P-way vector signal, and synthesize the Q-way vector in the P-way vector signal And outputting the synthesized Q channel vector signal to the antenna unit array, and outputting the vector signal of the P channel vector signal other than the Q channel to the antenna unit array, P is a natural number and P is greater than M, and Q is a natural number and Less than or equal to P.
  • the feed network can be used to feed the antenna array of the base station. If the signal output to the array is split and used to drive multiple antenna units, usually more than 10, For example, 12 antenna units, the radiated electromagnetic waves of the antenna unit form a plurality of independent wavefronts, and a plurality of independent wavefronts have transitions, and the base station antenna downtilt range is still difficult to meet the needs of the actual communication system.
  • the second-stage vector synthesis network smoothes the phase difference between the vector signals driving the plurality of antenna elements, and divides the M-way vector signal output of the received second-stage phase-shifted array into P-channel vector signals, and the above-mentioned P
  • the path vector signal vector is combined to make the phase change of each channel smoother, so that the electromagnetic wave radiated by the antenna unit forms a relatively continuous wavefront, and the adjustable range of the base station antenna downtilt angle is increased.
  • the first-level vector synthesis network includes a power splitter 2021 and a power splitter 2022, a bridge 2031, and a bridge 2032.
  • the second-order moving array includes a phase shifter 2041 and a phase shifter 2042.
  • the phase shifter 2043 and the phase shifter 2044, the second stage vector synthesis network includes a power splitter 2051, a power splitter 2052, a power splitter 2053, and a power splitter 2054, a bridge 2061, and a bridge 2062.
  • the power splitter 2021 and the power splitter 2022 each have one input and two output terminals, the power splitter 2021 has output terminals XI and X2, and the power splitter 2022 has output terminals Y1 and Y2, and the output of the power splitter 2021.
  • the output terminal Y1 of the XI and the power splitter 2022 is connected to the two input ends of the bridge 2031; the output terminal X2 of the power splitter 2021 and the output terminal Y2 of the power splitter 2022 are connected to the two inputs of the bridge 2032;
  • the output terminals HI and H2 of the bridge 2031 and the output terminals S1 and S2 of the bridge 2032 are respectively connected to a phase shifter 2041, a phase shifter 2042, a phase shifter 2043 and a phase shifter 2044, respectively, and the output terminals HI and H2 are respectively D ports and S port, output S 1 and S2 S port and D port respectively;
  • the output terminals Tl, T2, Wl, W2 of the above four phase shifters are respectively connected to a power splitter 2051, a power splitter 2052, a power splitter 2053, a power splitter 2054, and the above four functions.
  • the splitter has an input terminal and three output terminals
  • the power splitter 2051 has output terminals T1 l, T12, T13
  • the power splitter 2052 has output terminals ⁇ 21, ⁇ 22, ⁇ 23
  • the power splitter 2053 has an output terminal W1 l, W12, W13
  • power splitter 2054 has output terminals W21, W22, W23
  • the output terminal T22 of the power splitter 2052 and the output terminal W1 1 of the power splitter 2053 are connected to the two inputs of the bridge 2061, the bridge 2061
  • the two outputs VI and V2 are respectively a D port and an S port
  • the output T23 of the power splitter 2052 and the output W12 of the power splitter 2053 are connected to the two inputs of the bridge 2062
  • Terminals Z1 and Z2 are the S port and the D port, respectively.
  • the bridge in the second-stage vector synthesis network may be a 180-degree bridge or a 90-degree bridge, and the bridges in the first-level vector synthesis network may use the same type of bridge.
  • the feed network described in the foregoing embodiment is described by taking a base station antenna transmit signal as an example.
  • the feed network in the embodiment can also be used to receive signals, and the power splitter is used as a combiner.
  • the above-mentioned signal transmission and reception processes may be performed simultaneously or at different times, and the embodiment of the present invention is not limited thereto.
  • each of the four power splitters in the second-stage vector synthesis network of the foregoing embodiment splits the input signal into three-way sub-signals
  • the embodiment of the present invention is not limited to Specifically, the number of branches of the input signals by the four power splitters corresponds to the antenna unit that needs to be driven. For example, if there are only 10 antenna elements to be driven, the four power splitters are used. There are also 10 sub-signals after the splitting, and any two of the four power splitters in the above embodiment can split only two sub-signals.
  • the base station antenna feed network provided by the embodiment of the present invention can be used to receive two or more TRX output signals, and drive the antenna unit array, by adding a second-level vector synthesis network in the feed network, using the power divider and
  • the bridge makes the phase difference of the multi-path vector signals transmitted to the antenna unit smoother.
  • the number of TRX is as small as possible, a wide range of adjustable downtilt angle is realized, which not only improves the suppression of the upper side lobes of the base station antenna. , the gain is improved, and, due to the application of a small amount of TRX, the production cost and operating energy consumption of the base station antenna are reduced, and the volume and weight are also reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明实施例提供一种基站天线和基站天线馈电网络,涉及通信技术领域,上述基站天线包括收发信机阵列、第一级矢量合成网络、二级移相阵列、第二级矢量合成网络、天线单元阵列,上述基站天线利用第二级矢量合成网络使传送到天线单元的多路矢量信号的相位差更加平滑,在收发信机数量尽可能少的前提条件下从而增大了天线下倾角的调节范围。

Description

一种基站天线及基站天线馈电网络 技术领域
本发明涉及通信技术领域, 尤其涉及一种基站天线及基站天线馈电网 络。
背景技术
基站天线作为移动通信网络的重要组成部分, 承载了电磁波发射与接 收的双重功能, 其性能的好坏直接决定移动通信网絡的优劣, 而天线下倾 角是影响基站天线性能的一个重要因素。
有源基站天线系统中, 可以通过两个或多个 TRX ( Transceiver , 收发 信机) 和矢量合成馈电网络对多个天线单元馈电, 形成具有一定下倾角的 辐射波束。 发明人发现, 在 TRX数量较少时, 例如只有两个 TRX时, 基 站天线下倾角可调范围较小, 难以满足实际通信系统需求。
发明内容
本发明的实施例提供一种基站天线和基站天线馈电网络, 在 TRX数 量较少的条件下, 能够实现较大范围调节基站天线下倾角的目的。
一方面,本发明实施例提供一种基站天线,包括收发信机 TRX阵列、 第一级矢量合成网络、 二级移相阵列、 第二级矢量合成网络、 天线单元 阵列, 其中, 所述 TRX阵列包括 N个 TRX, 用于输出 N路矢量信号, N为自然 数且大于等于 2; 所述第一级矢量合成网络, 用于将所述 N路矢量信号矢量合成产生 M路矢量信号, M为自然数, M大于 N; 所述二级移相阵列, 用于接收所述第一级矢量合成网络输出的所述 M路矢量信号,改变所述 M路矢量信号的相位并输出移相后的 M路矢量 信号,所述 M路矢量信号经过所述二级移向阵列后的相移量是等差数列; 所述第二级矢量合成网络, 用于接收所述移相后的 M路矢量信号, 将所述 M路矢量信号功分为 P路矢量信号, 将所迷 P路矢量信号中的 Q 路矢量合成并输出合成后的 Q路矢量信号, 将所述 P路矢量信号中除所 述 Q路外的矢量信号直接输出, P为自然数且 P大于 M, Q为自然数且 小于等于 P; 所述天线单元阵列, 用于接收所述第二级矢量合成网络输出的 P路 矢量信号并转化为电磁波进行辐射。
另一方面, 本发明实施例提供一种基站天线馈电网络, 包括第一级 矢量合成网络、 二级移相阵列、 第二级矢量合成网络, 其中,
所述第一级矢量合成网络, 用于接收 N个收发信机 TRX输出的 N 路矢量信号并矢量合成产生 M路矢量信号, 所述 N和 M为自然数, M大 于 N;
所述二级移相阵列, 用于接收所迷第一级矢量合成网络输出的所述 M路矢量信号,改变所述 M路矢量信号的相位并输出移相后的 M路矢量 信号,所述 M路矢量信号经过所述二级移向阵列后的相移量是等差数列; 所述第二级矢量合成网络, 用于接收所述移相后的 M路矢量信号, 将所述 M路矢量信号功分为 P路矢量信号, 将所迷 P路矢量信号中的 Q 路矢量合成并输出合成后的 Q路矢量信号至天线单元阵列, 将所述 P路 矢量信号中除所述 Q路外的矢量信号直接输出至天线单元阵列, P 为自 然数且 P大于 M, Q为自然数且小于等于 P。 本发明实施例提供的基站天线和基站天线馈电网络, 利用第二级矢量 合成网络, 在收发信机较少的前提下, 使天线单元阵列辐射的电磁波形成 相对连续的波阵面, 增大了基站天线下倾角可调范围。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下 面将对实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于 本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以 根据这些附图获得其他的附图。
图 1为本发明实施例提供的一种基站天线的结构示意图; 图 2为本发明另一实施例提供的一种基站天线的结构示意图; 图 3为现有技术中一种电桥结构示意图; 图 4为本发明实施例提供的一种基站天线馈电网络结构示意图; 图 5 为本发明另一实施例提供的一种基站天线馈电网络结构示意 图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术 方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明 一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本 领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他 实施例, 都属于本发明保护的范围。
本发明实施例提供了一种基站天线, 如图 1所示, 包括:
TRX ( Transceiver, 收发信机)阵列 101、 第一级矢量合成网络 102、 二级移相阵列 103、 第二级矢量合成网络 104、 天线单元阵列 105。
TRX阵列 101 包括 N个 TRX, 用于输出 N路矢量信号, N为自然 数且大于等于 2; 上述 N路矢量信号幅度和相位独立可调, 即上述 N个 TRX可以输 出不同的矢量信号。 第一级矢量合成网络 102 , 用于将上述 N路矢量信号矢量合成产生 M路矢量信号, M为自然数, M大于 N; 二级移相阵列 103 , 用于接收第一级矢量合成网络输出的 M路矢量 信号, 改变上述 M路矢量信号的相位, 并输出移相后的 M路矢量信号, 所述 M路矢量信号经过所述二级移向阵列后的相移量是等差数列; 第二级矢量合成网络 104, 用于接收所述移相后的 M路矢量信号, 将所述 M路矢量信号功分为 P路矢量信号, 将所述 P路矢量信号中的 Q 路矢量合成并输出合成后的 Q路矢量信号, 将所述 P路矢量信号中除所 述 Q路外的矢量信号直接输出, P为自然数且 P大于 M, Q为自然数且 小于等于 P; 天线单元阵列 105 , 用于接收所述第二级矢量合成网络输出的 P路 矢量信号并转化为电磁波进行辐射。
本实施例中, 在第一级矢量合成网络中, N、 M的优选组合是, N=2 , M=4或者 N=2 , M=6。
TRX输出的信号相位独立可调, 所以 TRX 阵列可以看作第一级移 相阵列, 二级移相阵列将第一级矢量合成网络输出的矢量信号进一步改 变相位, 可以满足更大下倾角的需要。
本实施例中, 如果将移向阵列输出的信号功分后用于驱动多个天线 单元, 通常是 10个以上, 例如 12个天线单元, 天线单元辐射的电磁波 形成多个独立的波阵面, 且多个独立的波阵面有跳变, 基站天线下倾角 范围依然难以满足实际通信系统需要。 第二级矢量合成网络将驱动多个 天线单元的矢量信号之间的相位差进行平滑, 即将接收到的二级移相阵 列输出的 M路矢量信号功分为 P路矢量信号, 并将上述 P路矢量信号矢 量合成以使得各路信号的相位变化更加平滑, 使天线单元辐射的电磁波 形成相对连续的波阵面, 增大基站天线下倾角的可调范围。
本实施例中可选的, 天线单元阵列中每个天线单元与第二级矢量合 成网络之间还可以连接预置相位线, 以进一步改变传送到天线单元的矢 量信号的相位, 改变基站天线下倾角。
需要说明的是, 第一级矢量合成网络输出的一路或多路矢量信号经 过二级移相阵列或者第二级矢量合成网络后相位或幅度可能未发生变 化, 相当于上述一路或多路矢量信号直接连接到第二级矢量合成网络或 者天线单元。
本实施例中, 通过具有第二级矢量合成网络的馈电网络, 在收发信 机较少的前提下, 使天线单元辐射的电磁波形成相对连续的波阵面, 增 大了基站天线下倾角可调范围, 同时改善了基站天线副瓣抑制, 改善了 覆盖效果。
上述实施例中, 一种优选的实施方式是, N=2, M=4, P=12, Q=4, 即基 站天线使用 2个 TRX, 第一级矢量合成网络将上述 2个 TRX输出的矢量信号 矢量合成为 4路矢量信号, 二级移向阵列包括 4个移相器, 分别用于改变第一 级矢量合成网络输出的一路矢量信号, 四个移相器的相移量是等差数列, 第二 级矢量合成网络将上述 4个移相器输出的矢量信号进一步矢量合成为 12路矢量 信号, 用以驱动 12个天线单元。
具体的, 如图 2所示, 两个 TR 分别为 TRX201 1和 TRX2012 , 第一级 矢量合成网络包括功分器 2021和功分器 2022、 电桥 2031和电桥 2032, 二级移向阵列包括移相器 2041、移相器 2042、移相器 2043和移相器 2044 , 第二级矢量合成网络包括功分器 2051、 功分器 2052、 功分器 2053和功分 器 2054、 电桥 2061 和电桥 2062, 12个天线单元分别为天线单元 20701 至 20712。
其中, TRX2011与功分器 2021的输入端 X连接, TRX2012与功分 器 2022的输入端 Y连接,功分器 2021和功分器 2022均具有一个输入端 两个输出端, 功分器 2021具有输出端 XI与 X2, 功分器 2022具有输出 端 Y1和 Y2, 功分器 2021的输出端 XI与功分器 2022的输出端 Y1连接 至电桥 2031的两个输入端; 功分器 2021 的输出端 X2与功分器 2022的 输出端 Y2连接至电桥 2032的两个输入端;电桥 2031的输出端 HI与 H2、 电桥 2032的输出端 SI和 S2分别连接移相器 2041、 移相器 2042、 移相 器 2043和移相器 2044, 输出端 HI与 H2分别为 D端口和 S端口, 输出 端 S1和 S2分别为 S端口和 D端口; 上述四个移相器的输出端 Tl、 Τ2、 Wl、 W2分别连接功分器 2051、功分器 2052、功分器 2053、功分器 2054, 上述四个功分器均具有一个输入端和三个输出端, 功分器 2051具有输出 端 Tll、 T12、 T13, 功分器 2052具有输出端 Τ21、 Τ22、 Τ23, 功分器 2053 具有输出端 Wll、 W12、 W13, 功分器 2054 具有输出端 W21、 W22、 W23; 12个天线单元 20701至 20712顺序排列; 功分器 2051的三个输出 端 Tll、 T12、 T13 分别连接至天线单元 20701、 30702、 20703; 功分器 2054的三个输出端 W21、 W22、 W23分别连接至天线单元 20710、 20711、 20712; 功分器 2052的输出端 T21连接至天线单元 20705, 功分器 2052 的输出端 T22与功分器 2053的输出端 W11连接至电桥 2061的两个输入 端, 电桥 2061 的两个输出端 VI和 V2分别为 D端口和 S端口并连接至 天线单元 20704与 20706; 功分器 2053 的输出端 W13连接至天线单元 20708 , 功分器 2052的输出端 T23与功分器 2053的输出端 W12连接至 电桥 2062的两个输入端, 电桥 2062的两个输出端 Z1和 Z2分别为 S端 口和 D端口并连接至天线单元 20707与 20709。
图 2中两条线交叉处的空心圓圈表示这两条线不相连。
进一步可选的, 第二级矢量合成网络的输出端与相应天线单元之间 还可以连接预置相位线。
本实施例中, 第二级矢量合成网络中的电桥可以是 180度电桥或者 90度电桥, 第一级矢量合成网络中的电桥可以使用相同类型的电桥。 这 里以 180度电桥为例说明输入输出信号之间的关系, 如图 3 所示, 电桥 输入端口为 II、 12 , 输出端口为 01、 02 , 01为电桥 D端口, 02为电桥 S端口, 假设端口 II、 12、 01、 02信号参数分别为 、 b、 c、 d, 则 c的 值为 a与 b的矢量差乘以 ,d的值为 a与 b的矢量和乘以 。 180 度电桥和 90度电桥的具体实现均为现有技术, 在此不再赘述。
需要说明的是, 上述实施例是以基站天线发射信号为例进行描述, 实施例 中的基站天线同样可以用于接收信号, 此时天线单元用于接收信号, 功分器作 为合路器使用, TRX用于接收功分器的信号。 上述的信号发射和接收过程可 以同时进行, 也可以不同时进行, 本发明实施例并不局限于此, 例如, 在 WCDMA(Wideband Code Division Multiple Access , 宽带码分多址)和 CDMA ( Code Division Multiple Access, 码分多址) 制式中, 发射信号和 接收信号是同时进行的, 而在 TD-SCDMA ( Time Division-Synchronous Code Division Multiple Access, 时分同步码分多址) 制式中, 发射信号和 接收信号并不是同时进行的。
另外需要说明的是,上述实施例的第二级矢量合成网络中四个功分器 的每一个均将输入信号分路成三路子信号, 本发明实施例并不局限于此, 具体地, 上述四个功分器对输入的信号进行分路的数量与天线单元是对应 的, 例如, 若天线单元只有 10个时, 则上述四个功分器分路后的子信号 也为 10个, 上述实施例中的 4个功分器的任意两个可以只分路两路子信 号。
在实际应用中,第二级矢量合成网络可以增加功分器和电桥以驱动更 多的天线单元, 功分器或电桥具体的数量可以根据天线阵列中天线单元的 具体数量确定, 即天线单元越多, 则设置的功分器或者电桥也可以相应的 增加, 但是, 由于功分器和电桥的增加会造成馈电网络的复杂度和布局面 积的增加, 因此, 在实际应用中, 优选为设置两个第二级电桥, 以实现在 系统布局面积较小的情况下, 尽可能大的增加下倾角的调节范围。
本发明实施例提供的基站天线, 通过在馈电网络中增加第二级矢量 合成网络, 利用功分器和电桥使传送到天线单元的多路矢量信号的相位 差更加平滑, 在 TRX数量尽可能少的前提条件下, 实现了大范围的可调 下倾角, 不仅提高了对上副瓣的抑制, 改善了增益, 而且, 由于应用了 少量的 TRX, 减少了基站天线的制作成本和运行能耗, 也减少了体积和 重量。
本发明实施例还提供了一种基站天线馈电网络, 如图 4所示, 包括 第一级矢量合成网络 102、 二级移相阵列 103、 第二级矢量合成网络 104。
第一级矢量合成网络 102,用于接收 N个收发信机 TRX输出的 N路 矢量信号并矢量合成产生 M路矢量信号, 所述 N和 M为自然数, M大于 N;
二级移相阵列 103 , 用于接收第一级矢量合成网络输出的 M路矢量 信号, 改变上述 M路矢量信号的相位并输出移相后的 M路矢量信号, 所 述 M路矢量信号经过所述二级移向阵列后的相移量是等差数列;
第二级矢量合成网络 104 , 用于接收所述移相后的 M路矢量信号, 将所述 M路矢量信号功分为 P路矢量信号, 将所述 P路矢量信号中的 Q 路矢量合成并输出合成后的 Q路矢量信号至天线单元阵列, 将所述 P路 矢量信号中除所述 Q路外的矢量信号直接输出至天线单元阵列, P 为自 然数且 P大于 M, Q为自然数且小于等于 P。
本实施例中, 在第一级矢量合成网络中, N、 M的优选组合是, N=2 , M=4或者 N=2 , M=6。
本实施例中, 馈电网络可以用于向基站天线单元阵列馈电, 如果将 移向阵列输出的信号功分后用于驱动多个天线单元, 通常是 10个以上, 例如 12个天线单元, 天线单元的辐射的电磁波形成多个独立的波阵面, 且多个独立的波阵面有跳变, 基站天线下倾角范围依然难以满足实际通 信系统需要。 第二级矢量合成网络将驱动多个天线单元的矢量信号之间 的相位差进行平滑, 即将接收到的二级移相阵列输出的 M路矢量信号功 分为 P路矢量信号, 并将上述 P路矢量信号矢量合成以使得各路信号的 相位变化更加平滑, 使天线单元輻射的电磁波形成相对连续的波阵面, 增大基站天线下倾角的可调范围。
上述实施例中, 一种优选的实施方式是, N=2, M=4, P=12 , Q=4。
具体的, 如图 5所示, 第一级矢量合成网络包括功分器 2021和功分器 2022、 电桥 2031 和电桥 2032 , 二级移向阵列包括移相器 2041、 移相器 2042、移相器 2043和移相器 2044,第二级矢量合成网络包括功分器 2051、 功分器 2052、 功分器 2053和功分器 2054、 电桥 2061和电桥 2062。
其中, 功分器 2021和功分器 2022均具有一个输入端两个输出端, 功分器 2021具有输出端 XI与 X2, 功分器 2022具有输出端 Y1和 Y2, 功分器 2021 的输出端 XI 与功分器 2022的输出端 Y1 连接至电桥 2031 的两个输入端; 功分器 2021的输出端 X2与功分器 2022的输出端 Y2连 接至电桥 2032的两个输入端; 电桥 2031的输出端 HI与 H2、 电桥 2032 的输出端 S1和 S2分别连接移相器 2041、 移相器 2042、 移相器 2043和 移相器 2044, 输出端 HI与 H2分别为 D端口和 S端口, 输出端 S 1和 S2 分别为 S 端口和 D 端口; 上述四个移相器的输出端 Tl、 T2、 Wl、 W2 分别连接功分器 2051、 功分器 2052、 功分器 2053、 功分器 2054, 上述 四个功分器均具有一个输入端和三个输出端, 功分器 2051 具有输出端 Tl l、 T12、 T13 , 功分器 2052具有输出端 Τ21、 Τ22、 Τ23 , 功分器 2053 具有输出端 Wl l、 W12、 W13 , 功分器 2054 具有输出端 W21、 W22、 W23 ; 功分器 2052的输出端 T22与功分器 2053的输出端 W1 1连接至电 桥 2061的两个输入端, 电桥 2061的两个输出端 VI和 V2分别为 D端口 和 S端口; 功分器 2052的输出端 T23与功分器 2053的输出端 W12连接 至电桥 2062的两个输入端, 电桥 2062的两个输出端 Z1和 Z2分别为 S 端口和 D端口。
图 5中两条线交叉处的空心圓圈表示这两条线不相连。
本实施例中, 第二级矢量合成网络中的电桥可以是 180度电桥或者 90度电桥, 第一级矢量合成网络中的电桥可以使用相同类型的电桥。
需要说明的是, 上述实施例描述的馈电网络是以基站天线发射信号为例 进行描述, 实施例中的馈电网络同样可以用于接收信号, 此时功分器作为合路 器使用。 上述的信号发射和接收过程可以同时进行, 也可以不同时进行, 本发明实施例并不局限于此。
另外需要说明的是, 上述实施例的第二级矢量合成网络中四个功分 器的每一个均将输入信号分路成三路子信号, 本发明实施例并不局限于 此, 具体地, 上述四个功分器对输入的信号进行分路的数量与其需要驱 动的天线单元是对应的, 例如, 若需驱动的天线单元只有 10个时, 则上 述四个功分器分路后的子信号也为 10个, 上述实施例中的 4个功分器的 任意两个可以只分路两路子信号。 本发明实施例提供的基站天线馈电网络可以用于接收两个或多个 TRX 的输出信号, 并驱动天线单元阵列, 通过在馈电网络中增加第二级 矢量合成网络, 利用功分器和电桥使传送到天线单元的多路矢量信号的 相位差更加平滑, 在 TRX数量尽可能少的前提条件下, 实现了大范围的 可调下倾角, 不仅提高了基站天线对上副瓣的抑制, 改善了增益, 而且, 由于应用了少量的 TRX, 减少了基站天线的制作成本和运行能耗, 也减 少了体积和重量。 以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不 局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本 发明的保护范围应以所述权利要求的保护范围为准。 以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围 并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技 术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围 之内。 因此, 本发明的保护范围应所述以权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种基站天线, 其特征在于, 包括收发信机 TRX 阵列、 第一级 矢量合成网络、 二级移相阵列、 第二级矢量合成网络、 天线单元阵列, 其中,
所述 TRX阵列包括 N个 TRX, 用于输出 N路矢量信号 , N为自然 数且大于等于 2;
所述第一级矢量合成网络, 用于将所述 N路矢量信号矢量合成产生 M路矢量信号, M为自然数, M大于 N;
所述二级移相阵列, 用于接收所述第一级矢量合成网络输出的所述 M路矢量信号,改变所述 M路矢量信号的相位并输出移相后的 M路矢量 信号,所述 M路矢量信号经过所述二级移向阵列后的相移量是等差数列; 所述第二级矢量合成网络, 用于接收所述移相后的 M路矢量信号, 将所述 M路矢量信号功分为 P路矢量信号, 将所述 P路矢量信号中的 Q 路矢量合成并输出合成后的 Q路矢量信号, 将所述 P路矢量信号中除所 述 Q路外的矢量信号直接输出, P为自然数且 P大于 M, Q为自然数且 小于等于 P;
所述天线单元阵列, 用于接收所述第二级矢量合成网络输出的 P路 矢量信号并转化为电磁波进行辐射。
2、 根据权利要求 1所述的基站天线, 其特征在于, 所述 N=2, 所述 M=4或者所述 N=2, 所迷 M=6。
3、 根据权利要求 1 所述的基站天线, 其特征在于, 所述 N=2, 所述 M=4, 所述 P=12, 所述 Q=4, 所述 TRX阵列具体包括第一 TRX ( 2011 )和 第二 TRXU012), 所述第一级矢量合成网络具体包括第一功分器(2021 ) 和第二功分器 ( 2022) 、 第一电桥 ( 2031 ) 和第二电桥 ( 2032) , 所述二 级移相阵列具体包括第一移相器 ( 2041 ) 、 第二移相器 (2042) 、 第三移 相器 ( 2043 ) 和第四移相器 (2044) , 所述第二级矢量合成网络具体包括 第三功分器 ( 2051 ) 、 第四功分器 ( 2052) 、 第五功分器 ( 2053 ) 和第六 功分器 ( 2054 ) 、 第三电桥 ( 2061 ) 和第四电桥 ( 2062) , 所述天线单元 阵列具体包括第一天线单元至第十二天线单元 ( 20701至 20712) ;
其中, 第一 TRX (2011 ) 与第一功分器 ( 2021 ) 的输入端连接, 所 述第二 TRX (2012) 与所述第二功分器 (2022) 的输入端连接, 第一功 分器 ( 2021 ) 和第二功分器 ( 2022 ) 均具有一个输入端两个输出端, 第 一功分器 ( 2021 ) 具有输出端 XI 与 X2, 第二功分器 (2022) 具有输出 端 Y1和 Y2, 第一功分器( 2021 ) 的输出端 XI与第二功分器(2022) 的 输出端 Y1连接至第一电桥 ( 2031 ) 的两个输入端; 第一功分器 ( 2021 ) 的输出端 X2与第二功分器( 2022 )的输出端 Y2连接至第二电桥( 2032 ) 的两个输入端; 第一电桥( 2031 ) 的输出端 HI与 H2、 第二电桥( 2032) 的输出端 S1和 S2分别连接第一移相器 (2041 ) 、 第二移相器 ( 2042) 、 第三移相器 ( 2043 ) 和第四移相器 (2044 ) , 输出端 HI与 H2分别为 D 端口和 S端口, 输出端 S 1和 S2分别为 S端口和 D端口; 第一至第四移 相器的输出端 Tl、 T2、 Wl、 W2分别连接第三功分器 ( 2051 ) 、 第四功 分器 ( 2052 ) 、 第五功分器 ( 2053 ) 、 第六功分器 ( 2054 ) , 第三至第 六功分器均具有一个输入端和三个输出端; 所述第一天线单元至第十二 天线单元 ( 20701至 20712 ) 顺序排列; 第三功分器 ( 2051 ) 的三个输出 端 T11、T12、T13分别连接至第一至第三天线单元( 20701 , 30702 , 20703 ); 第六功分器 ( 2054 ) 的三个输出端 W21、 W22、 W23分别连接至第十至 第十二天线单元 ( 20710、 20711、 20712 ) ; 第四功分器 ( 2052 ) 的输出 端 T21 连接至第五天线单元 ( 20705 ) , 第四功分器 ( 2052 ) 的输出端 T22与第五功分器 ( 2053 ) 的输出端 W11连接至第三电桥 ( 2061 ) 的两 个输入端, 第三电桥 ( 2061 ) 的两个输出端 VI和 V2分别为 D端口和 S 端口并连接至第四和第六天线单元( 20704与 20706 ) ;第五功分器( 2053 ) 的输出端 W13 连接至第八天线单元 ( 20708 ) , 第四功分器 ( 2052 ) 的 输出端 T23与第五功分器( 2053 )的输出端 W12连接至第四电桥 ( 2062 ) 的两个输入端, 第四电桥 ( 2062 ) 的两个输出端 Z1和 Z2分别为 S端口 和 D端口并连接至第七与第九天线单元 ( 20707与 20709 ) 。
4、 根据权利要求 3所述的基站天线, 其特征在于, 所述第一至第十 二天线单元与所述第二级矢量合成网络的输出端之间还连接有预置相位 线。
5、 根据权利要求 4所述的基站天线, 其特征在于, 所述第三电桥与 第四电桥为 180度电桥。
6、 根据权利要求 4或 5所述的基站天线, 其特征在于, 所述肆意第 一电桥与第二电桥跟所述第三电桥与第四电桥类型相同。
7、一种基站天线馈电网络, 其特征在于, 包括第一级矢量合成网络、 二级移相阵列、 第二级矢量合成网络, 其中, 所述第一级矢量合成网络, 用于接收 N个收发信机 TR 输出的 N 路矢量信号并矢量合成产生 M路矢量信号, 所述 N和 M为自然数, M大 于 N; 所述二级移相阵列, 用于接收所述第一级矢量合成网络输出的所述 M路矢量信号,改变所述 M路矢量信号的相位并输出移相后的 M路矢量 信号,所述 M路矢量信号经过所述二级移向阵列后的相移量是等差数列; 所述第二级矢量合成网络, 用于接收所述移相后的 M路矢量信号, 将所述 M路矢量信号功分为 P路矢量信号, 将所述 P路矢量信号中的 Q 路矢量合成并输出合成后的 Q路矢量信号至天线单元阵列, 将所述 P路 矢量信号中除所述 Q路外的矢量信号直接输出至天线单元阵列, P 为自 然数且 P大于 M, Q为自然数且小于等于 P。
8、 根据权利要求 7 所述的基站天线馈电网络, 其特征在于, 所述 N=2 , 所述 M=4或者所述 N=2, 所述 M=6。
9、 根据权利要求 7所述基站天线馈电网络, 其特征在于, 所述 N=2, 所述 M=4, 所述 P=12, 所述 Q=4, 所述第一级矢量合成网络包括第一功分 器( 2021 )和第二功分器( 2022 )、 第一电桥( 2031 )和第二电桥( 2032 ) , 所述二级移向阵列包括第一移相器 ( 2041 ) 、 第二移相器 ( 2042 ) 、 第三 移相器 ( 2043 ) 和第四移相器 ( 2044 ) , 所述第二级矢量合成网络包括第 三功分器 ( 2051 ) 、 第四功分器 ( 2052 ) 、 第五功分器 ( 2053 ) 和第六功 分器 ( 2054 ) 、 第三电桥 ( 2061 ) 和第四电桥 ( 2062 ) ;
其中, 第一功分器 ( 2021 ) 和第二功分器 ( 2022 ) 均具有一个输入 端两个输出端, 第一功分器 ( 2021 ) 具有输出端 XI 与 X2, 第二功分器 ( 2022 )具有输出端 Y1和 Y2, 第一功分器( 2021 ) 的输出端 XI与第二 功分器 (2022 ) 的输出端 Y1连接至第一电桥( 2031 ) 的两个输入端; 第 一功分器 ( 2021 ) 的输出端 X2与第二功分器 ( 2022 ) 的输出端 Y2连接 至第二电桥 ( 2032 ) 的两个输入端; 第一电桥 ( 2031 ) 的输出端 HI 与 H2、 第二电桥(2032 ) 的输出端 S 1和 S2分别连接第一移相器( 2041 ) 、 第二移相器 ( 2042 ) 、 第三移相器 ( 2043 ) 和第四移相器 ( 2044 ) , 输 出端 HI与 H2分别为 D端口和 S端口,输出端 S 1和 S2分别为 S端口和 D端口; 第一至第四移相器的输出端 Tl、 T2、 Wl、 W2分别连接第三功 分器 ( 2051 ) 、 第四功分器 ( 2052 ) 、 第五功分器 ( 2053 ) 、 第六功分 器 ( 2054 ) , 第三至第六功分器均具有一个输入端和三个输出端, 第三 功分器 ( 2051 ) 具有输出端 Tll、 T12、 T13, 第四功分器 ( 2052) 具有 输出端 Τ21、 Τ22、 Τ23, 第五功分器 ( 2053 ) 具有输出端 Wll、 W12、 W13, 第六功分器 ( 2054) 具有输出端 W21、 W22、 W23; 第四功分器 ( 2052 ) 的输出端 T22与第五功分器 ( 2053 ) 的输出端 W11连接至第三 电桥 ( 2061 ) 的两个输入端, 第三电桥 ( 2061 ) 的两个输出端 VI 和 V2 分别为 D端口和 S端口; 第四功分器 (2052) 的输出端 T23与第五功分 器 ( 2053 ) 的输出端 W12连接至第四电桥 ( 2062) 的两个输入端, 第四 电桥 ( 2062 ) 的两个输出端 Z1和 Z2分别为 S端口和 D端口。
10、 根据权利要求 9所述的基站天线馈电网络, 其特征在于, 所述第 三电桥与第四电桥为 180度电桥。
PCT/CN2012/076725 2012-06-11 2012-06-11 一种基站天线及基站天线馈电网络 WO2013185281A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12878891.6A EP2860822B1 (en) 2012-06-11 2012-06-11 Base station antenna and base station antenna feed network
CN201280000553.6A CN102907168B (zh) 2012-06-11 2012-06-11 一种基站天线及基站天线馈电网络
PCT/CN2012/076725 WO2013185281A1 (zh) 2012-06-11 2012-06-11 一种基站天线及基站天线馈电网络
US14/567,247 US9049083B2 (en) 2012-06-11 2014-12-11 Base station antenna and base station antenna feed network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/076725 WO2013185281A1 (zh) 2012-06-11 2012-06-11 一种基站天线及基站天线馈电网络

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/567,247 Continuation US9049083B2 (en) 2012-06-11 2014-12-11 Base station antenna and base station antenna feed network

Publications (1)

Publication Number Publication Date
WO2013185281A1 true WO2013185281A1 (zh) 2013-12-19

Family

ID=47577514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076725 WO2013185281A1 (zh) 2012-06-11 2012-06-11 一种基站天线及基站天线馈电网络

Country Status (4)

Country Link
US (1) US9049083B2 (zh)
EP (1) EP2860822B1 (zh)
CN (1) CN102907168B (zh)
WO (1) WO2013185281A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022051986A1 (zh) * 2020-09-10 2022-03-17 罗森伯格技术有限公司 一种双波束馈电网路及具有双波束馈电网络的混合网络天线
CN114497959A (zh) * 2021-12-30 2022-05-13 安徽华东光电技术研究所有限公司 微带多路功分器

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0622411D0 (en) * 2006-11-10 2006-12-20 Quintel Technology Ltd Phased array antenna system with electrical tilt control
CN103401079B (zh) * 2013-07-19 2015-06-17 华为技术有限公司 一种天线
CN103633452B (zh) * 2013-11-28 2016-09-28 华为技术有限公司 一种天线及无线信号发送、接收方法
EP3152799B1 (en) 2014-06-05 2020-11-25 CommScope Technologies LLC Independent azimuth patterns for shared aperture array antenna
EP3142457A4 (en) * 2014-06-16 2017-06-07 Huawei Technologies Co. Ltd. Wireless communications device
CN106486721B (zh) * 2015-08-28 2021-04-16 康普技术有限责任公司 移相器组件
CN105428823B (zh) * 2015-12-25 2019-03-29 成都安智杰科技有限公司 应用于车载雷达的收发复用天线结构的实现方法
CN109314291B (zh) 2016-06-17 2020-11-27 康普技术有限责任公司 具有多级移相器的相控阵天线
CN109950703B (zh) * 2017-12-21 2021-02-23 华为技术有限公司 基站天线
CN110391829B (zh) * 2018-04-20 2021-05-11 上海华为技术有限公司 馈电信号形成方法及其相关设备
CN110767985B (zh) 2019-09-24 2023-03-17 深圳三星通信技术研究有限公司 基站天线及基站
CN111276794B (zh) * 2020-03-20 2024-06-04 京信通信技术(广州)有限公司 分频基站天线及其馈电网络
CN111682321A (zh) * 2020-06-01 2020-09-18 摩比天线技术(深圳)有限公司 多波束天线
WO2022120857A1 (zh) * 2020-12-11 2022-06-16 华为技术有限公司 一种基站天线及基站设备
CN116318278B (zh) * 2023-05-16 2023-09-08 广东盛路通信科技股份有限公司 一种多波束成形网络及六波束基站天线

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1795581A (zh) * 2003-04-02 2006-06-28 昆特尔科技有限公司 具有可变电倾角的相控阵天线系统
CN1805214A (zh) * 2006-01-23 2006-07-19 京信通信技术(广州)有限公司 差分相位连续可变的波束形成网络
CN1921341A (zh) * 2006-09-12 2007-02-28 京信通信技术(广州)有限公司 具有可变波束宽度的波束形成网络
CN101578737A (zh) * 2006-11-10 2009-11-11 昆特尔科技有限公司 具有电倾斜控制的相控阵天线系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4045800A (en) 1975-05-22 1977-08-30 Hughes Aircraft Company Phase steered subarray antenna
US4228436A (en) * 1978-04-03 1980-10-14 Hughes Aircraft Company Limited scan phased array system
WO2001029926A1 (en) * 1999-10-20 2001-04-26 Andrew Corporation Telecommunication antenna system
GB0205199D0 (en) * 2002-03-06 2002-04-17 Univ Belfast Modulator/transmitter apparatus and method
WO2004102739A1 (en) 2003-05-17 2004-11-25 Quintel Technology Limited Phased array antenna system with adjustable electrical tilt
JP4292093B2 (ja) * 2004-02-24 2009-07-08 富士通株式会社 アレーアンテナシステム、ウエイト制御装置及びウエイト制御方法
US8068844B2 (en) * 2008-12-31 2011-11-29 Intel Corporation Arrangements for beam refinement in a wireless network
EP2544301B1 (en) * 2010-03-04 2017-03-22 Mitsubishi Electric Corporation Array antenna device
US20120086602A1 (en) * 2010-10-08 2012-04-12 Electronics And Telecommunications Research Institute Hybrid beam forming apparatus in wideband wireless communication system
KR20140034895A (ko) * 2011-06-02 2014-03-20 파커비전, 인크. 안테나 제어
EP2685557B1 (en) * 2012-04-20 2019-09-11 Huawei Technologies Co., Ltd. Antenna and base station

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1795581A (zh) * 2003-04-02 2006-06-28 昆特尔科技有限公司 具有可变电倾角的相控阵天线系统
CN1805214A (zh) * 2006-01-23 2006-07-19 京信通信技术(广州)有限公司 差分相位连续可变的波束形成网络
CN1921341A (zh) * 2006-09-12 2007-02-28 京信通信技术(广州)有限公司 具有可变波束宽度的波束形成网络
CN101578737A (zh) * 2006-11-10 2009-11-11 昆特尔科技有限公司 具有电倾斜控制的相控阵天线系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022051986A1 (zh) * 2020-09-10 2022-03-17 罗森伯格技术有限公司 一种双波束馈电网路及具有双波束馈电网络的混合网络天线
CN114497959A (zh) * 2021-12-30 2022-05-13 安徽华东光电技术研究所有限公司 微带多路功分器

Also Published As

Publication number Publication date
CN102907168B (zh) 2015-01-21
CN102907168A (zh) 2013-01-30
US9049083B2 (en) 2015-06-02
US20150098495A1 (en) 2015-04-09
EP2860822B1 (en) 2017-04-12
EP2860822A1 (en) 2015-04-15
EP2860822A4 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
WO2013185281A1 (zh) 一种基站天线及基站天线馈电网络
CN102812645B (zh) 天线、基站及波束处理方法
US8063822B2 (en) Antenna system
TWI544829B (zh) 無線網路裝置與無線網路控制方法
WO2015172667A1 (zh) 多波束天线系统及其相位调节方法和双极化天线系统
CN102683897B (zh) 天线、基站及波束处理方法
WO2017026107A1 (ja) 分合波器、アンテナ装置およびフェージング消去方法
JP2012523802A5 (zh)
CA2523747A1 (en) Phased array antenna system with adjustable electrical tilt
CN103311669A (zh) 具有多个独立斜度的共享天线
US9294176B2 (en) Transmitter
US9407008B2 (en) Multi-beam multi-radio antenna
WO2012118619A2 (en) Tracking system with orthogonal polarizations and a retro-directive array
US10374308B2 (en) Signal distribution network
CN111276794A (zh) 分频基站天线及其馈电网络
WO2002051034A1 (fr) Dispositif a station de base
CN109755746B (zh) 馈电网络和三波束天线
CN105186143B (zh) 三频三功能时间调制和非时间调制可重构共孔径天线阵
CN105048106B (zh) 双频时间调制方向回溯三功能可重构共孔径天线阵
WO2012162985A1 (zh) 天线以及信号发射方法
EP3272020B1 (en) A beamforming receiver
CN110767985B (zh) 基站天线及基站
WO2012067796A1 (en) Integrated phase-shifting-and-combining circuitry to support multiple antennas
ATE535962T1 (de) Phasengesteuerte gruppenantenne mit verstellbarem neigungswinkel des strahles
JP2010166291A (ja) 光制御型フェーズドアレーアンテナ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280000553.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012878891

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012878891

Country of ref document: EP