WO2015078375A1 - 传输模式切换方法及设备 - Google Patents

传输模式切换方法及设备 Download PDF

Info

Publication number
WO2015078375A1
WO2015078375A1 PCT/CN2014/092278 CN2014092278W WO2015078375A1 WO 2015078375 A1 WO2015078375 A1 WO 2015078375A1 CN 2014092278 W CN2014092278 W CN 2014092278W WO 2015078375 A1 WO2015078375 A1 WO 2015078375A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement result
information
mode switching
nodes
nodeb
Prior art date
Application number
PCT/CN2014/092278
Other languages
English (en)
French (fr)
Inventor
胡文权
赵维杰
花梦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14865455.1A priority Critical patent/EP3065460B1/en
Priority to EP19192378.8A priority patent/EP3624494B1/en
Publication of WO2015078375A1 publication Critical patent/WO2015078375A1/zh
Priority to US15/165,382 priority patent/US20160277143A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas

Definitions

  • the embodiment of the invention relates to a communication technology, in particular to a transmission mode switching method and device.
  • a combined cell is a cell corresponding to multiple coverage areas and belongs to a logical cell.
  • a user equipment User Equipment, UE for short
  • the high-level signaling interaction is not generated, and each transceiver node in the combined cell sends the primary common pilot channel using the same scrambling code.
  • the combined cell is generally composed of a high power node (High Power Node, HPN for short) and a low power node (Low Power Node, LPN for short), and the nodes are connected to the central processor of the node through a low delay link, according to the UE.
  • Mode1 is applicable to a scenario in which the downlink signal strength of one of the nodes is received is greater than that of the other nodes, and Mode 2 and Mode 3 are applicable to the scenario where the received downlink signal strengths of different nodes are equivalent.
  • the central processor is required to determine which mode the combined cell should use to send downlink data for the UE.
  • resource reconfiguration needs to be performed through high layer signaling, and signaling interaction of the handover process is performed. More, the switching delay is larger.
  • the embodiment of the invention provides a transmission mode switching method and device to reduce the delay when switching the downlink transmission mode.
  • an embodiment of the present invention provides a transmission mode switching method, including:
  • the user equipment UE monitors the pilot signals sent by the at least two nodes; wherein the pilot signals sent by different nodes are different, and the pilot signals are used to distinguish the at least two nodes;
  • the UE determines, according to the monitored pilot signal, that the measurement result of the pilot signal of the at least two nodes meets a preset trigger condition, send a physical layer measurement result report to the base station NodeB, so that the NodeB Perform downlink transmission mode switching.
  • the method further includes:
  • the UE receives a mode switching indication sent by the NodeB by using a downlink high speed shared control channel HS-SCCH; the mode switching indication includes downlink transmission mode information.
  • the mode switching indication further includes node information that sends downlink data.
  • the preset triggering condition is: the UE detects that the at least two nodes send the The parameter value of the pilot signal falls within a preset threshold range; or the UE monitors that the parameter value of the pilot signal sent by the at least two nodes leaves the preset threshold range.
  • the pilot signal parameter value is any one of the following: the pilot signal strength, the channel quality value, and the path gain value. .
  • the at least two nodes send the pilot signal by using at least one of: different time slots, Different scrambling codes, different channelization codes.
  • the physical layer measurement result report includes at least one of the following information: channel quality indication information, path gain information, chip power and noise power ratio, and received signal code. Power information.
  • an embodiment of the present invention provides a method for switching a transmission mode, including:
  • the base station NodeB receives the physical layer measurement result report sent by the user equipment UE; the physical layer measurement result report is sent by the UE to the NodeB when determining that the measurement result of the signal of the at least two nodes meets the preset trigger condition;
  • the NodeB performs downlink transmission mode switching according to the physical layer measurement result report.
  • the method further includes:
  • the NodeB sends a mode switching indication to the UE by using a downlink high speed shared control channel HS-SCCH, where the mode switching indication is used to indicate that the downlink transmission of the UE enters a different sending mode;
  • the indication includes downlink transmission mode information.
  • the mode switching indication further includes node information that sends downlink data.
  • the physical layer measurement result report includes at least one of the following information: channel quality indication information, path gain Information, chip power to noise power ratio, received signal code power information.
  • an embodiment of the present invention provides a user equipment UE, including:
  • a monitoring module configured to monitor a pilot signal sent by at least two nodes; wherein the pilot signals sent by different nodes are different, and the pilot signal is used to distinguish the at least two nodes;
  • a sending module configured to: if the UE determines, according to the monitored pilot signal, that the measurement result of the pilot signal of the at least two nodes meets a preset trigger condition, send a physical layer measurement result report to the base station NodeB, So that the NodeB performs downlink transmission mode switching.
  • the UE further includes a receiving module, configured to receive a mode switching indication sent by the NodeB by using a downlink high speed shared control channel HS-SCCH, where the mode switching indication includes Downlink transmission mode information.
  • a receiving module configured to receive a mode switching indication sent by the NodeB by using a downlink high speed shared control channel HS-SCCH, where the mode switching indication includes Downlink transmission mode information.
  • the mode switching indication further includes node information for transmitting downlink data.
  • the preset triggering condition is: the UE detects that the at least two nodes send the The parameter value of the pilot signal falls within a preset threshold range; or the UE monitors that the parameter value of the pilot signal sent by the at least two nodes leaves the preset threshold range.
  • the pilot signal parameter value is any one of the following: the pilot signal strength, the channel quality value, and the path gain value. .
  • the at least two nodes send the pilot signal by using at least one of: different time slots, Different scrambling codes, different channelization codes.
  • the physical layer measurement result report includes at least one of the following information: channel quality indication information, path gain information, chip power and noise power ratio, and received signal code. Power information.
  • an embodiment of the present invention provides a base station NodeB, including:
  • a receiving module configured to receive a physical layer measurement result report sent by the user equipment UE; the physical layer measurement node The report is that the UE sends to the NodeB when determining that the measurement result of the signal of the at least two nodes meets the preset trigger condition;
  • a processing module configured to perform downlink transmission mode switching according to the physical layer measurement result report.
  • the method further includes: a sending module, configured to send, by using a downlink high-speed shared control channel HS-SCCH, a mode switching indication to the UE, where the mode switching indication is used to indicate The downlink transmission of the UE enters a different transmission mode; the mode switching indication includes downlink transmission mode information.
  • a sending module configured to send, by using a downlink high-speed shared control channel HS-SCCH, a mode switching indication to the UE, where the mode switching indication is used to indicate The downlink transmission of the UE enters a different transmission mode; the mode switching indication includes downlink transmission mode information.
  • the mode switching indication further includes node information for transmitting downlink data.
  • the physical layer measurement result report includes at least one of the following information: channel quality indication information, path gain Information, chip power to noise power ratio, received signal code power information.
  • the pilot signal sent by at least two nodes is monitored by the UE; wherein the pilot signals sent by different nodes are different, and the pilot signal is used to distinguish the at least And if the UE determines, according to the monitored pilot signal, that the measurement result of the pilot signal of the at least two nodes meets a preset trigger condition, and sends a physical layer measurement result report to the base station (NodeB). So that the NodeB performs downlink transmission mode switching. Thereby reducing the delay when switching the downlink transmission mode.
  • Embodiment 1 is a flowchart of Embodiment 1 of a transmission mode switching method according to the present invention
  • Embodiment 2 is a flowchart of Embodiment 2 of a transmission mode switching method according to the present invention
  • FIG. 3 is a schematic structural diagram of an embodiment of a UE according to the present invention.
  • FIG. 4 is a schematic structural diagram of an embodiment of a NodeB according to the present invention.
  • FIG. 1 is a flowchart of Embodiment 1 of a transmission mode switching method according to the present invention. As shown in FIG. 1 , the method provided in this embodiment may be specifically implemented by a user equipment, and the method provided in this embodiment may specifically include:
  • Step 101 The UE monitors pilot signals sent by at least two nodes.
  • the pilot signals sent by different nodes are different, and the pilot signals are used to distinguish the at least two nodes.
  • the at least two nodes send the pilot signal by using at least one of the following: different time slots, different scrambling codes, and different channelization codes.
  • different nodes may construct different pilot signals through different time slots, or may construct different pilot signals through different scrambling codes, or construct different pilot signals through different channelization codes, or may be the above manner. Any combination of the embodiments is not limited in this embodiment.
  • Step 102 If the UE determines, according to the monitored pilot signal, that the measurement result of the pilot signal of the at least two nodes meets a preset trigger condition, send a physical layer measurement result report to the NodeB, so that the UE The NodeB performs downlink transmission mode switching.
  • the preset triggering condition may be that the parameter value of the pilot signal that is sent by the UE to the at least two nodes falls within a preset threshold range; or the preset triggering condition may be And monitoring, by the UE, that a parameter value of the pilot signal sent by the at least two nodes is out of the preset threshold range.
  • the pilot signal parameter value is any one of the following: the pilot signal strength, the channel quality value, and the path gain value. This embodiment does not limit this.
  • the UE triggers physical layer measurement result reporting. That is, a physical layer measurement result report is sent to the NodeB.
  • the physical layer measurement result report includes at least one of the following information: a channel quality indicator (CQI) information, a path gain (Path Gain) information, a chip power and a noise power ratio ( Ec/No), Received Signal Code Power (RSCP) information. This embodiment does not limit this.
  • the UE may receive after transmitting a physical layer measurement result report to the NodeB.
  • the mode switching indication may further include node information for sending downlink data.
  • the UE uses Open Loop Transmit Diversity (OLTD), in this case, the UE. It is not necessary to know which transmission mode is used by the network side, and therefore, the NodeB does not need to send a mode switching indication to the UE.
  • OLTD Open Loop Transmit Diversity
  • the technical solution of the embodiment is to monitor, by the UE, the pilot signals sent by the at least two nodes; wherein the pilot signals sent by different nodes are different, and the pilot signals are used to distinguish the at least two nodes;
  • the UE determines, according to the monitored pilot signal, that the measurement result of the pilot signal of the at least two nodes meets a preset trigger condition, and sends a physical layer measurement result report to the NodeB, so that the NodeB performs downlink transmission. Mode switching. Thereby reducing the delay when switching the downlink transmission mode.
  • FIG. 2 is a flowchart of Embodiment 2 of a transmission mode switching method according to the present invention. As shown in FIG. 2, the method provided in this embodiment may be specifically implemented by a NodeB, and the method provided in this embodiment may specifically include:
  • Step 201 The NodeB receives the report of the physical layer measurement result sent by the UE.
  • the report of the physical layer measurement result is sent by the UE to the NodeB when determining that the measurement result of the signal of the at least two nodes meets the preset trigger condition.
  • the physical layer measurement result report includes at least one of the following information: channel quality indication information, path gain information, chip power and noise power ratio, and received signal code power information.
  • Step 202 The NodeB performs downlink transmission mode switching according to the physical layer measurement result report.
  • the NodeB needs to send a mode switching indication to the UE by using the HS-SCCH after performing the downlink transmission mode switching; where the mode switching indication is used. Instructing the downlink transmission of the UE to enter a different transmission mode; the mode switching indication includes downlink transmission mode information.
  • the mode switching indication may further include node information for sending downlink data.
  • the physical layer measurement result report sent by the user equipment UE is received by the NodeB; the physical layer measurement result report is that when the UE determines that the measurement result of the signal of the at least two nodes meets the preset trigger condition, The NodeB sends the downlink transmission mode switch according to the physical layer measurement result report. Thereby reducing the delay when switching the downlink transmission mode.
  • the UE continuously monitors the pilot signals transmitted on different nodes.
  • different pilot signals need to be used between the nodes, for example, different pilot signals are constructed through different time slots, and/or different interferences are used.
  • the code constructs different pilot signals and/or constructs different pilot signals by different channelization codes for differentiation. Specifically, the UE can obtain the measurement result as shown in Table 1 by monitoring the pilot signals sent by different nodes.
  • Node identifier Measurement result 0 RSCP0 (Ec/No, Path Gain, CQI) 1 RSCP1 (Ec/No, Path Gain, CQI) 2 RSCP2 (Ec/No, Path Gain, CQI) 3 RSCP3 (Ec/No, Path Gain, CQI)
  • the UE When the parameter value of the pilot signal monitored by the UE falls within a predetermined threshold range, for example, the UE receives the strength difference between the LPN downlink pilot signal strength and the HPN downlink pilot signal strength, which falls or leaves [-3dB, 3dB.
  • the physical layer measurement result report is triggered, that is, the UE sends a physical layer measurement result report to the NodeB.
  • the physical layer measurement result report may include CQI information, and/or Path Gain information, and/or Ec. /No, and/or RSCP information, this embodiment does not limit this.
  • the NodeB After receiving the report of the physical layer measurement result, the NodeB can determine whether the downlink transmission mode enters Mode 2 or Mode 3 according to the information in the physical layer measurement result report. In order to avoid the ping-pong effect, a hysteresis mechanism can also be introduced.
  • the mode judgment criterion for determining whether the downlink transmission mode enters Mode 2 or Mode 3 is as follows:
  • the condition for entering Mode 2 or Mode 3 from Mode 1 is that at least one monitored node satisfies the first inequality:
  • the condition for entering Mode1 from Mode 2 or Mode 3 is that at least one monitored node satisfies the second inequality:
  • H 1 and H 2 may be equal or not equal, and this embodiment does not limit this.
  • the NodeB can switch according to the mode supported by the UE and the mode switch sent by the HS-SCCH. If the UE receiver capability only supports Mode1 and Mode2, and the UE uses the OLTD in Mode2, the NodeB does not need to switch to the downlink transmission mode. The UE sends a mode switching indication; if the UE uses the Closed Loop Transmit Diversity (CLTD) in Mode 2, the NodeB needs to send a mode switching indication to the UE when switching the downlink transmission mode;
  • CLTD Closed Loop Transmit Diversity
  • the NodeB needs to include the downlink transmission mode information and the downlink data transmission node information, that is, the node to which the UE NodeB will use the UE.
  • the downlink data is sent for the UE to receive correctly.
  • the measurement result reported by the UE includes a maximum of four nodes, and that the downlink data transmission can be transmitted by two nodes to one UE at the same time.
  • a combination of different nodes that transmit downlink data requires at least 3 bits to indicate the transmission mode.
  • the mapping relationship between the bit mode and the downlink transmission mode used by the mode switching indication is as shown in Table 2 and Table 3:
  • Table 2 UE uses OLTD in Mode2
  • the UE is indicated by 3 bits 000
  • the downlink transmission mode will be switched to Mode1 or Mode2
  • the UE is indicated by any 3 bits except 000
  • the downlink transmission mode will be switched to Mode3
  • the UE NodeB will be instructed to use the node X and Node Y sends downlink data to the UE for the UE to receive correctly.
  • Table 3 UE uses CLTD under Mode2
  • the UE is indicated by 4 bits 0000, the downlink transmission mode will be switched to Mode1; the UE is indicated by 4 bits XXXX, the downlink transmission mode will be switched to Mode2, and the UE NodeB will be used to send downlink data to the UE using the node X and the node Y.
  • the UE is indicated by 4 bits YYYY, the downlink transmission mode will be switched to Mode3, and the UE NodeB will be instructed to use the node X and the node Y to transmit downlink data to the UE for the UE to correctly receive.
  • Table 4 UE uses CLTD under Mode2
  • the UE is indicated by 3 bits 000, the downlink transmission mode will be switched to Mode1; the UE is indicated by 3 bits XXX other than 000, the downlink transmission mode will be switched to Mode2, and the UE NodeB will be used to use the node X and the node Y pair.
  • the UE sends downlink data.
  • the downlink transmission mode switching process may be triggered by the UE, and the mode switching is not completed by the interaction of the high layer signaling, thereby reducing the delay when the downlink transmission mode is switched.
  • FIG. 3 is a schematic structural diagram of Embodiment 1 of a UE according to the present invention.
  • the UE 10 provided in this embodiment may specifically include a monitoring module 11 and a sending module 12:
  • the monitoring module 11 may be configured to monitor pilot signals sent by at least two nodes; wherein, the pilot signals sent by different nodes are different, the pilot signals are used to distinguish the at least two nodes; and the sending module 12 And if the UE determines, according to the monitored pilot signal, that the measurement result of the pilot signal of the at least two nodes meets a preset trigger condition, and sends a physical layer measurement result report to the NodeB, so that the UE sends the physical layer measurement result report to the NodeB.
  • the NodeB performs downlink transmission mode switching.
  • the UE 10 may further include a receiving module, configured to receive a mode switching indication sent by the NodeB by using an HS-SCCH, where the mode switching indication includes downlink transmission mode information.
  • the mode switching indication further includes node information for sending downlink data.
  • the preset triggering condition may be that the UE monitors that the parameter value of the pilot signal sent by the at least two nodes falls within a preset threshold range; or the UE monitors the at least two The parameter value of the pilot signal sent by the node leaves the preset threshold range.
  • the pilot signal parameter value is any one of the following: the pilot signal strength, the channel quality value, and the path gain value.
  • the at least two nodes transmit the pilot signal by using at least one of the following: different time slots, different scrambling codes, and different channelization codes.
  • the physical layer measurement result report includes at least one of the following information: channel quality indication information, path gain information, chip power and noise power ratio, and received signal code power information. This embodiment does not limit this.
  • the UE in this embodiment may be used to implement the technical solution of the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the NodeB 20 provided in this embodiment may specifically include a receiving module 21 and a processing module 22:
  • the receiving module 21 may be configured to receive a physical layer measurement result report sent by the user equipment UE, where the physical layer measurement result report is that the UE determines that the measurement result of the signal of the at least two nodes meets the preset trigger condition. Sent by the NodeB;
  • the processing module 22 is configured to perform downlink transmission mode switching according to the physical layer measurement result report.
  • the NodeB 20 may further include a sending module, configured to send, by using an HS-SCCH, a mode switching indication to the UE, where the mode switching indication is used to indicate that the downlink transmission of the UE enters a different sending mode;
  • the downlink transmission mode information is included.
  • the mode switching indication further includes node information for sending downlink data.
  • the physical layer measurement result report includes at least one of the following information: a channel quality indicator Information, path gain information, chip power to noise power ratio, received signal code power information. This embodiment does not limit this.
  • the NodeB of this embodiment may be used to implement the technical solution of the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the methods of the various embodiments of the present invention. Part of the steps.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供一种传输模式切换方法及设备。该方法包括:用户设备UE监测至少两个节点发送的导频信号;其中,不同节点发送的所述导频信号不同,所述导频信号用于区分所述至少两个节点;若所述UE根据检测到的所述导频信号,判断出所述至少两个节点的导频信号的测量结果满足预设触发条件,向基站NodeB发送物理层测量结果报告,以使所述NodeB进行下行传输模式切换。从而减小切换下行传输模式时延。

Description

传输模式切换方法及设备
本申请要求于2013年11月26日提交中国专利局、申请号为201310608605.4、发明名称为“传输模式切换方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及一种通信技术,尤其涉及一种传输模式切换方法及设备。
背景技术
在通用移动通讯系统(Universal Mobile Telecommunications System,简称:UMTS)中,组合小区是多个覆盖区域对应的小区同属于一个逻辑小区,用户设备(User Equipment,简称:UE)在不同覆盖区域移动时,不会产生高层信令的交互,组合小区下的各个收发节点使用相同的扰码发送主公共导频信道。
组合小区一般由高功率节点(High Power Node,简称:HPN)和低功率节点(Low Power Node,简称:LPN)组成,节点之间通过低延迟链路连接到节点的中心处理器,根据UE所处位置不同,组合小区中存在三种传输模式:模式(Mode)1为节点选择、Mode2为波速形成,Mode3为空间复用。Mode1适用于接收到其中一个节点的下行信号强度相比接收其他节点的信号强度大较多的场景,Mode2和Mode3适用于接收到的不同节点的下行信号强度相当的场景。
在不同的场景下需要中心处理器判断组合小区应该使用哪种模式为UE发送下行数据,现有技术中,在进行模式切换时,需要通过高层信令完成资源重配置,切换过程的信令交互多,切换时延较大。
发明内容
本发明实施例提供一种传输模式切换方法及设备,以减小切换下行传输模式时的时延。
第一方面,本发明实施例提供一种传输模式切换方法,包括:
用户设备UE监测至少两个节点发送的导频信号;其中,不同节点发送的所述导频信号不同,所述导频信号用于区分所述至少两个节点;
若所述UE根据监测到的所述导频信号,判断出所述至少两个节点的导频信号的测量结果满足预设触发条件,向基站NodeB发送物理层测量结果报告,以使所述NodeB进行下行传输模式切换。
在第一方面的第一种可能的实现方式中,所述若所述UE根据监测到的所述导频信号,判断出所述至少两个节点的导频信号的测量结果满足预设触发条件,向NodeB发送物理层测量结果报告之后,还包括:
所述UE接收所述NodeB通过下行高速共享控制信道HS-SCCH发送的模式切换指示;所述模式切换指示中包含下行传输模式信息。
根据第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述模式切换指示中还包含发送下行数据的节点信息。
结合第一方面至第一方面的第二种可能的实现方式,在第三种可能的实现方式中,所述预设触发条件为:所述UE监测到所述至少两个节点发送的所述导频信号的参数值落入预设阈值范围;或,所述UE监测到所述至少两个节点发送的所述导频信号的参数值离开所述预设阈值范围。
根据第一方面的第三种可能的实现方式,在第四种可能的实现方式中,所述导频信号参数值为以下任一种:所述导频信号强度,信道质量值,路径增益值。
结合第一方面至第一方面的第四种可能的实现方式,在第五种可能的实现方式中,所述至少两个节点通过以下至少一种方式发送所述导频信号:不同时隙、不同扰码、不同信道化码。
在第一方面的第六种可能的实现方式中,所述物理层测量结果报告中包括以下信息中的至少一个:信道质量指示信息、路径增益信息、码片功率与噪声功率比值、接收信号码功率信息。
第二方面,本发明实施例提供一种传输模式切换方法,包括:
基站NodeB接收用户设备UE发送的物理层测量结果报告;所述物理层测量结果报告是所述UE在判断至少两个节点的信号的测量结果满足预设触发条件时向所述NodeB发送的;
所述NodeB根据所述物理层测量结果报告进行下行传输模式切换。
在第二方面的第一种可能的实现方式中,所述NodeB根据所述物理层测量结果报告进行下行传输模式切换之后,还包括:
所述NodeB通过下行高速共享控制信道HS-SCCH向所述UE发送模式切换指示;其中,所述模式切换指示用于指示所述UE下行传输进入不同的发送模式;所述模式切换 指示中包含下行传输模式信息。
根据第二方面的第一种可能的实现方式,在第二种可能的实现方式中,所述模式切换指示中还包含发送下行数据的节点信息。
结合第二方面至第二方面的第二种可能的实现方式,在第三种可能的实现方式中,所述物理层测量结果报告中包括以下信息中的至少一个:信道质量指示信息、路径增益信息、码片功率与噪声功率比值、接收信号码功率信息。
第三方面,本发明实施例提供一种用户设备UE,包括:
监测模块,用于监测至少两个节点发送的导频信号;其中,不同节点发送的所述导频信号不同,所述导频信号用于区分所述至少两个节点;
发送模块,用于若所述UE根据监测到的所述导频信号,判断出所述至少两个节点的导频信号的测量结果满足预设触发条件,向基站NodeB发送物理层测量结果报告,以使所述NodeB进行下行传输模式切换。
在第三方面的第一种可能的实现方式中,所述UE还包括接收模块,用于接收所述NodeB通过下行高速共享控制信道HS-SCCH发送的模式切换指示;所述模式切换指示中包含下行传输模式信息。
根据第三方面的第一种可能的实现方式,在第二种可能的实现方式中,所述模式切换指示中还包含发送下行数据的节点信息。
结合第三方面至第三方面的第二种可能的实现方式,在第三种可能的实现方式中,所述预设触发条件为:所述UE监测到所述至少两个节点发送的所述导频信号的参数值落入预设阈值范围;或,所述UE监测到所述至少两个节点发送的所述导频信号的参数值离开所述预设阈值范围。
根据第三方面的第三种可能的实现方式,在第四种可能的实现方式中,所述导频信号参数值为以下任一种:所述导频信号强度,信道质量值,路径增益值。
结合第三方面至第三方面的第四种可能的实现方式,在第五种可能的实现方式中,所述至少两个节点通过以下至少一种方式发送所述导频信号:不同时隙、不同扰码、不同信道化码。
在第三方面的第六种可能的实现方式中,所述物理层测量结果报告中包括以下信息中的至少一个:信道质量指示信息、路径增益信息、码片功率与噪声功率比值、接收信号码功率信息。
第四方面,本发明实施例提供一种基站NodeB,包括:
接收模块,用于接收用户设备UE发送的物理层测量结果报告;所述物理层测量结 果报告是所述UE在判断至少两个节点的信号的测量结果满足预设触发条件时向所述NodeB发送的;
处理模块,用于根据所述物理层测量结果报告进行下行传输模式切换。
在第四方面的第一种可能的实现方式中,还包括发送模块,用于通过下行高速共享控制信道HS-SCCH向所述UE发送模式切换指示;其中,所述模式切换指示用于指示所述UE下行传输进入不同的发送模式;所述模式切换指示中包含下行传输模式信息。
根据第四方面的第一种可能的实现方式,在第二种可能的实现方式中,所述模式切换指示中还包含发送下行数据的节点信息。
结合第四方面至第四方面的第二种可能的实现方式,在第三种可能的实现方式中,所述物理层测量结果报告中包括以下信息中的至少一个:信道质量指示信息、路径增益信息、码片功率与噪声功率比值、接收信号码功率信息。
本发明实施例提供的传输模式切换方法及设备,通过UE监测至少两个节点发送的导频信号;其中,不同节点发送的所述导频信号不同,所述导频信号用于区分所述至少两个节点;若所述UE根据监测到的所述导频信号,判断出所述至少两个节点的导频信号的测量结果满足预设触发条件,向基站(NodeB)发送物理层测量结果报告,以使所述NodeB进行下行传输模式切换。从而减小切换下行传输模式时的时延。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明传输模式切换方法实施例一的流程图;
图2为本发明传输模式切换方法实施例二的流程图;
图3为本发明UE实施例的结构示意图;
图4为本发明NodeB实施例的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中 的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明传输模式切换方法实施例一的流程图。如图1所示,本实施例提供的方法具体可以由用户设备执行,本实施例提供的方法具体可以包括:
步骤101、UE监测至少两个节点发送的导频信号;其中,不同节点发送的所述导频信号不同,所述导频信号用于区分所述至少两个节点。
具体的,所述至少两个节点通过以下至少一种方式发送所述导频信号:不同时隙、不同扰码、不同信道化码。例如,不同节点可以通过不同的时隙构造不同的导频信号,也可以通过不同的扰码构造不同的导频信号,或通过不同的信道化码构造不同的导频信号,也可以是以上方式的任意组合,本实施例不对此进行限制。
步骤102、若所述UE根据监测到的所述导频信号,判断出所述至少两个节点的导频信号的测量结果满足预设触发条件,向NodeB发送物理层测量结果报告,以使所述NodeB进行下行传输模式切换。
需要说明的是,所述预设触发条件可以为所述UE监测到所述至少两个节点发送的所述导频信号的参数值落入预设阈值范围;或者,所述预设触发条件可以为所述UE监测到所述至少两个节点发送的所述导频信号的参数值离开所述预设阈值范围。其中,所述导频信号参数值为以下任一种:所述导频信号强度,信道质量值,路径增益值。本实施例不对此进行限制。
例如,若所述UE监测到的LPN下行导频信号强度与HPN下行导频信号强度的强度差落入或离开预设阈值范围[-3dB,3dB],则所述UE触发物理层测量结果上报,即,向NodeB发送物理层测量结果报告。可选的,所述物理层测量结果报告中包括以下信息中的至少一个:信道质量指示(Channel Quality Indicator,简称:CQI)信息、路径增益(Path Gain)信息、码片功率与噪声功率比值(Ec/No)、接收信号码功率(Received Signal Code Power,简称:RSCP)信息。本实施例不对此进行限制。
在实际应用中,进一步,若所述UE在Mode2下,使用闭环发射分集(Closed Loop Transmit Diversity,简称:CLTD),则所述UE在向所述NodeB发送物理层测量结果报告之后,还可以接收所述NodeB通过下行高速共享控制信道(High Speed-Shared Contorl Channel,简称:HS-SCCH)发送的模式切换指示;所述模式切换指示中包含下行传输模式信息。可选的,所述模式切换指示中还可以包含发送下行数据的节点信息。
需要说明的是,若UE的接收机能力只支持Mode1和Mode2,且在Mode2下,所述UE使用开环发射分集(Open Loop Transmit Diversity,简称:OLTD),在这种情况下,所述UE不需要知道网络侧使用哪种传输模式,因此,所述NodeB不需要向所述UE发送模式切换指示。
本实施例的技术方案,通过UE监测至少两个节点发送的导频信号;其中,不同节点发送的所述导频信号不同,所述导频信号用于区分所述至少两个节点;若所述UE根据监测到的所述导频信号,判断出所述至少两个节点的导频信号的测量结果满足预设触发条件,向NodeB发送物理层测量结果报告,以使所述NodeB进行下行传输模式切换。从而减小切换下行传输模式时的时延。
图2为本发明传输模式切换方法实施例二的流程图。如图2所示,本实施例提供的方法具体可以由NodeB执行,本实施例提供的方法具体可以包括:
步骤201、NodeB接收UE发送的物理层测量结果报告;所述物理层测量结果报告是所述UE在判断至少两个节点的信号的测量结果满足预设触发条件时向所述NodeB发送的。
本步骤中,所述物理层测量结果报告中包括以下信息中的至少一个:信道质量指示信息、路径增益信息、码片功率与噪声功率比值、接收信号码功率信息。
步骤202、所述NodeB根据所述物理层测量结果报告进行下行传输模式切换。
在实际应用中,若所述UE在Mode2下使用CLTD,则所述NodeB在进行下行传输模式切换之后,还需要通过HS-SCCH向所述UE发送模式切换指示;其中,所述模式切换指示用于指示所述UE下行传输进入不同的发送模式;所述模式切换指示中包含下行传输模式信息。可选的,所述模式切换指示中还可以包含发送下行数据的节点信息。
本实施例的技术方案,通过NodeB接收用户设备UE发送的物理层测量结果报告;所述物理层测量结果报告是所述UE在判断至少两个节点的信号的测量结果满足预设触发条件时向所述NodeB发送的;所述NodeB根据所述物理层测量结果报告进行下行传输模式切换。从而减小切换下行传输模式时的时延。
通过本实施例提供的传输模式切换方法实现下行传输模式切换的过程为:
UE持续监测不同节点上发送的导频信号,为了区分不同的节点,各节点间需要使用不同的导频信号,例如,通过不同的时隙构造不同的导频信号,和/或通过不同的扰码构造不同的导频信号,和/或通过不同的信道化码构造不同的导频信号进行区分。具体的,UE通过对不同节点发送的导频信号的监测,可以获得如表1所示的测量结果。
表1 测量结果
节点标识 测量结果
0 RSCP0(Ec/No,Path Gain,CQI)
1 RSCP1(Ec/No,Path Gain,CQI)
2 RSCP2(Ec/No,Path Gain,CQI)
3 RSCP3(Ec/No,Path Gain,CQI)
当UE监测到的导频信号的参数值落入或离开预设阈值范围,例如,UE接收到LPN下行导频信号强度与HPN下行导频信号强度的强度差落入或离开[-3dB,3dB],则触发物理层测量结果上报,即,UE向NodeB发送物理层测量结果报告,可选的,在物理层测量结果报告中,可以包括CQI信息、和/或Path Gain信息、和/或Ec/No、和/或RSCP信息,本实施例不对此进行限制。
NodeB接收到物理层测量结果报告后,可以根据物理层测量结果报告中的信息,判断下行传输模式是否进入Mode2或Mode3。为避免乒乓效应,还可以引入迟滞机制。
以物理层测量结果报告中包含RSCP信息为例,假设UE的初始时使用的传输模式为Mode1,则在判断下行传输模式是否进入Mode2或Mode3的模式判断准则如下:
从Mode1进入Mode2或Mode3的条件是至少存在一个被监测的节点满足第一不等式:
|被监测节点的RSCP测量值–当前节点的RSCP值|≤3-H1,其中,H1为第一迟滞参数;
从Mode 2或Mode3进入Mode1的条件是至少存在一个被监测的节点满足第二不等式:
|当前选择的第一节点的RSCP测量值–当前选择的第二节点的RSCP值|≥3+H2,其中,H2为第二迟滞参数。
需要说明的是,H1和H2可以相等,也可以不相等,本实施例不对此进行限制。
NodeB可以根据UE支持的传输模式、通过HS-SCCH发送的模式切换指示,若UE接收机能力只支持Mode1和Mode2,且UE在Mode2下使用OLTD,则NodeB在切换下行传输模式时,不需要向UE发送模式切换指示;若UE在Mode2下使用闭环发射分集(Closed Loop Transmit Diversity,简称:CLTD),则NodeB在切换下行传输模式时,需要向UE发送模式切换指示;
若UE接收机能力支持Mode1,Mode2和Mode3,则NodeB在向UE发送模式切换指示时,不仅需要包含下行传输模式信息,还需要包含下行数据发送节点信息,即指示UE NodeB将使用哪些节点对UE发送下行数据,以便UE正确接收。
假设UE上报的测量结果中最多包含4个节点的测量结果,进行下行数据传输时最多可以同时由两个节点向一个UE发送,则在Mode 3下需要指示
Figure PCTCN2014092278-appb-000001
种不同的发送下 行数据的节点的组合,需要至少3比特(bit)指示传输模式。
例如,在UE接收机能力同时支持Mode1、Mode2和Mode3的场景中,模式切换指示使用的比特模式与下行传输模式之间的映射关系如表2和表3所示:
表2 UE在Mode2下使用OLTD
比特模式 下行传输模式
000 Mode1,Mode2
XXX Mode3+节点X+节点Y
其中,用3个比特000指示UE,下行传输模式将切换为Mode1或Mode2,用除了000之外的任意3个比特指示UE,下行传输模式将切换为Mode3,并且指示UE NodeB将使用节点X和节点Y对UE发送下行数据,以便UE正确接收。
表3 UE在Mode2下使用CLTD
比特模式 下行传输模式
0000 Mode1
XXXX Mode2+节点X+节点Y
YYYY Mode3+节点X+节点Y
其中,用4个比特0000指示UE,下行传输模式将切换为Mode1;用4个比特XXXX指示UE,下行传输模式将切换为Mode2,并指示UE NodeB将使用节点X和节点Y对UE发送下行数据;用4个比特YYYY指示UE,下行传输模式将切换为Mode3,并且指示UE NodeB将使用节点X和节点Y对UE发送下行数据,以便UE正确接收。
在UE接收机能力只支持Mode1和Mode2的场景中,模式切换指示使用的比特模式与下行传输模式之间的映射关系如表4所示:
表4 UE在Mode2下使用CLTD
比特模式 下行传输模式
000 Mode1
XXX Mode2+节点X+节点Y
其中,用3个比特000指示UE,下行传输模式将切换为Mode1;用除000外的3个比特XXX指示UE,下行传输模式将切换为Mode2,并指示UE NodeB将使用节点X和节点Y对UE发送下行数据。
本实施例的技术方案,可以由UE触发下行传输模式切换过程,不需通过高层信令的交互完成模式切换,从而减小切换下行传输模式时的时延。
图3为本发明UE实施例一的结构示意图。如图3所示,本实施例提供的UE10具体可以包括监测模块11和发送模块12:
其中,监测模块11可以用于监测至少两个节点发送的导频信号;其中,不同节点发送的所述导频信号不同,所述导频信号用于区分所述至少两个节点;发送模块12可以用于若所述UE根据监测到的所述导频信号,判断出所述至少两个节点的导频信号的测量结果满足预设触发条件,向NodeB发送物理层测量结果报告,以使所述NodeB进行下行传输模式切换。
进一步,所述UE10还可以包括接收模块,用于接收所述NodeB通过HS-SCCH发送的模式切换指示;所述模式切换指示中包含下行传输模式信息。可选的,所述模式切换指示中还包含发送下行数据的节点信息。
具体的,所述预设触发条件可以为所述UE监测到所述至少两个节点发送的所述导频信号的参数值落入预设阈值范围;或,所述UE监测到所述至少两个节点发送的所述导频信号的参数值离开所述预设阈值范围。
所述导频信号参数值为以下任一种:所述导频信号强度,信道质量值,路径增益值。所述至少两个节点通过以下至少一种方式发送所述导频信号:不同时隙、不同扰码、不同信道化码。所述物理层测量结果报告中包括以下信息中的至少一个:信道质量指示信息、路径增益信息、码片功率与噪声功率比值、接收信号码功率信息。本实施例不对此进行限制。
本实施例的UE,可用于执行上述方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图4为本发明NodeB实施例的结构示意图。如图4所示,本实施例提供的NodeB20具体可以包括接收模块21以及处理模块22:
其中,接收模块21可以用于接收用户设备UE发送的物理层测量结果报告;所述物理层测量结果报告是所述UE在判断至少两个节点的信号的测量结果满足预设触发条件时向所述NodeB发送的;
处理模块22可以用于根据所述物理层测量结果报告进行下行传输模式切换。
进一步,NodeB20还可以包括发送模块,用于通过HS-SCCH向所述UE发送模式切换指示;其中,所述模式切换指示用于指示所述UE下行传输进入不同的发送模式;所述模式切换指示中包含下行传输模式信息。可选的,所述模式切换指示中还包含发送下行数据的节点信息。
具体的,所述物理层测量结果报告中包括以下信息中的至少一个:信道质量指示信 息、路径增益信息、码片功率与噪声功率比值、接收信号码功率信息。本实施例不对此进行限制。
本实施例的NodeB,可用于执行上述方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特 征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (22)

  1. 一种传输模式切换方法,其特征在于,包括:
    用户设备UE监测至少两个节点发送的导频信号;其中,不同节点发送的所述导频信号不同,所述导频信号用于区分所述至少两个节点;
    若所述UE根据监测到的所述导频信号,判断出所述至少两个节点的导频信号的测量结果满足预设触发条件,向基站NodeB发送物理层测量结果报告,以使所述NodeB进行下行传输模式切换。
  2. 根据权利要求1所述的方法,其特征在于,所述若所述UE根据监测到的所述导频信号,判断出所述至少两个节点的导频信号的测量结果满足预设触发条件,向NodeB发送物理层测量结果报告之后,还包括:
    所述UE接收所述NodeB通过下行高速共享控制信道HS-SCCH发送的模式切换指示;所述模式切换指示中包含下行传输模式信息。
  3. 根据权利要求2所述的方法,其特征在于,所述模式切换指示中还包含发送下行数据的节点信息。
  4. 根据权利要求1-3任一所述的方法,其特征在于,所述预设触发条件为:所述UE监测到所述至少两个节点发送的所述导频信号的参数值落入预设阈值范围;或,所述UE监测到所述至少两个节点发送的所述导频信号的参数值离开所述预设阈值范围。
  5. 根据权利要求4所述的方法,其特征在于,所述导频信号参数值为以下任一种:所述导频信号强度,信道质量值,路径增益值。
  6. 根据权利要求1-5任一所述的方法,其特征在于,所述至少两个节点通过以下至少一种方式发送所述导频信号:不同时隙、不同扰码、不同信道化码。
  7. 根据权利要求1所述的方法,其特征在于,所述物理层测量结果报告中包括以下信息中的至少一个:信道质量指示信息、路径增益信息、码片功率与噪声功率比值、接收信号码功率信息。
  8. 一种传输模式切换方法,其特征在于,包括:
    基站NodeB接收用户设备UE发送的物理层测量结果报告;所述物理层测量结果报告是所述UE在判断至少两个节点的信号的测量结果满足预设触发条件时向所述NodeB发送的;
    所述NodeB根据所述物理层测量结果报告进行下行传输模式切换。
  9. 根据权利要求8所述的方法,其特征在于,所述NodeB根据所述物理层测量结 果报告进行下行传输模式切换之后,还包括:
    所述NodeB通过下行高速共享控制信道HS-SCCH向所述UE发送模式切换指示;其中,所述模式切换指示用于指示所述UE下行传输进入不同的发送模式;所述模式切换指示中包含下行传输模式信息。
  10. 根据权利要求9所述的方法,其特征在于,所述模式切换指示中还包含发送下行数据的节点信息。
  11. 根据权利要求8-10任一所述的方法,其特征在于,所述物理层测量结果报告中包括以下信息中的至少一个:信道质量指示信息、路径增益信息、码片功率与噪声功率比值、接收信号码功率信息。
  12. 一种用户设备UE,其特征在于,包括:
    监测模块,用于监测至少两个节点发送的导频信号;其中,不同节点发送的所述导频信号不同,所述导频信号用于区分所述至少两个节点;
    发送模块,用于若所述UE根据监测到的所述导频信号,判断出所述至少两个节点的导频信号的测量结果满足预设触发条件,向基站NodeB发送物理层测量结果报告,以使所述NodeB进行下行传输模式切换。
  13. 根据权利要求12所述的UE,其特征在于,还包括接收模块,用于接收所述NodeB通过下行高速共享控制信道HS-SCCH发送的模式切换指示;所述模式切换指示中包含下行传输模式信息。
  14. 根据权利要求13所述的UE,其特征在于,所述模式切换指示中还包含发送下行数据的节点信息。
  15. 根据权利要求12-14任一所述的UE,其特征在于,所述预设触发条件为:所述UE监测到所述至少两个节点发送的所述导频信号的参数值落入预设阈值范围;或,所述UE监测到所述至少两个节点发送的所述导频信号的参数值离开所述预设阈值范围。
  16. 根据权利要求15所述的UE,其特征在于,所述导频信号参数值为以下任一种:所述导频信号强度,信道质量值,路径增益值。
  17. 根据权利要求12-16任一所述的UE,其特征在于,所述至少两个节点通过以下至少一种方式发送所述导频信号:不同时隙、不同扰码、不同信道化码。
  18. 根据权利要求12所述的UE,其特征在于,所述物理层测量结果报告中包括以下信息中的至少一个:信道质量指示信息、路径增益信息、码片功率与噪声功率比值、接收信号码功率信息。
  19. 一种基站NodeB,其特征在于,包括:
    接收模块,用于接收用户设备UE发送的物理层测量结果报告;所述物理层测量结果报告是所述UE在判断至少两个节点的信号的测量结果满足预设触发条件时向所述NodeB发送的;
    处理模块,用于根据所述物理层测量结果报告进行下行传输模式切换。
  20. 根据权利要求19所述的NodeB,其特征在于,还包括发送模块,用于通过下行高速共享控制信道HS-SCCH向所述UE发送模式切换指示;其中,所述模式切换指示用于指示所述UE下行传输进入不同的发送模式;所述模式切换指示中包含下行传输模式信息。
  21. 根据权利要求20所述的NodeB,其特征在于,所述模式切换指示中还包含发送下行数据的节点信息。
  22. 根据权利要求19-21任一所述的NodeB,其特征在于,所述物理层测量结果报告中包括以下信息中的至少一个:信道质量指示信息、路径增益信息、码片功率与噪声功率比值、接收信号码功率信息。
PCT/CN2014/092278 2013-11-26 2014-11-26 传输模式切换方法及设备 WO2015078375A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14865455.1A EP3065460B1 (en) 2013-11-26 2014-11-26 Method and device for switching transmission mode
EP19192378.8A EP3624494B1 (en) 2013-11-26 2014-11-26 Transmission mode switching method and device
US15/165,382 US20160277143A1 (en) 2013-11-26 2016-05-26 Transmission mode switching method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310608605.4A CN104683079B (zh) 2013-11-26 2013-11-26 传输模式切换方法及设备
CN201310608605.4 2013-11-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/165,382 Continuation US20160277143A1 (en) 2013-11-26 2016-05-26 Transmission mode switching method and device

Publications (1)

Publication Number Publication Date
WO2015078375A1 true WO2015078375A1 (zh) 2015-06-04

Family

ID=53198373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092278 WO2015078375A1 (zh) 2013-11-26 2014-11-26 传输模式切换方法及设备

Country Status (4)

Country Link
US (1) US20160277143A1 (zh)
EP (2) EP3624494B1 (zh)
CN (1) CN104683079B (zh)
WO (1) WO2015078375A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108365878B (zh) * 2017-01-26 2021-02-05 华为技术有限公司 一种波束切换方法及相关设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102113385A (zh) * 2008-08-04 2011-06-29 高通股份有限公司 增强的空闲切换以支持毫微微小区
US20120082047A1 (en) * 2010-10-01 2012-04-05 Zte (Usa) Inc. User equipment measurement for interference management in heterogeneous networks with femto cells
US20130190000A1 (en) * 2012-01-19 2013-07-25 Telefonaktiebolaget L M Ericsson (Publ) Fractional Frequency Re-Use and Beamforming in Relay Nodes of a Heterogeneous Network
CN103313320A (zh) * 2012-03-13 2013-09-18 普天信息技术研究院有限公司 一种不同类型的小区之间切换的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9136974B2 (en) * 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
EP2612448B1 (en) * 2010-09-03 2016-08-24 Fujitsu Limited Channel state feedback for multi-cell mimo
CN103313299B (zh) * 2012-03-09 2017-12-08 中兴通讯股份有限公司 传输模式自适应方法及系统
EP2862385B1 (en) * 2012-06-19 2017-08-09 Telefonaktiebolaget LM Ericsson (publ) Method and controlling node for controlling measurements by a user equipment
WO2014074055A2 (en) * 2012-11-12 2014-05-15 Telefonaktiebolaget L M Ericsson (Publ) Transmission mode selection and downlink scheduling using primary and dedicated pilot signals
CN105684534B (zh) * 2013-08-22 2020-03-17 瑞典爱立信有限公司 用于执行下行链路mu-mimo传送的方法和设备
US9867059B2 (en) * 2013-09-06 2018-01-09 Telefonaktiebolaget Lm Ericsson (Publ) Distributed node operation in heterogeneous networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102113385A (zh) * 2008-08-04 2011-06-29 高通股份有限公司 增强的空闲切换以支持毫微微小区
US20120082047A1 (en) * 2010-10-01 2012-04-05 Zte (Usa) Inc. User equipment measurement for interference management in heterogeneous networks with femto cells
US20130190000A1 (en) * 2012-01-19 2013-07-25 Telefonaktiebolaget L M Ericsson (Publ) Fractional Frequency Re-Use and Beamforming in Relay Nodes of a Heterogeneous Network
CN103313320A (zh) * 2012-03-13 2013-09-18 普天信息技术研究院有限公司 一种不同类型的小区之间切换的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3065460A4 *

Also Published As

Publication number Publication date
EP3065460A1 (en) 2016-09-07
EP3624494B1 (en) 2022-08-31
US20160277143A1 (en) 2016-09-22
EP3624494A1 (en) 2020-03-18
CN104683079A (zh) 2015-06-03
EP3065460B1 (en) 2019-09-11
CN104683079B (zh) 2018-05-11
EP3065460A4 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
US10993134B2 (en) Radio resource measurement method, radio resource selection method, and apparatus
EP3648497B1 (en) Secondary cell activation methods and corresponding access network device and terminal device
EP3657839B1 (en) Communication method and device
US9992725B2 (en) Method and apparatus for implementing high-frequency communication
EP3280068B1 (en) Method for transmitting information, base station, and user equipment
WO2020001577A1 (zh) 发送和接收信道状态信息的方法和通信装置
WO2019020035A1 (zh) 一种选择波束的方法及设备
WO2016095688A1 (zh) 网络侧设备、用户设备及盲区管理方法
EP2401879A1 (en) Asymmetric uplink/downlink connections in a mobile communication system
KR20130036510A (ko) 무선 통신 시스템에서 무선 링크 모니터링 장치 및 방법
JP2023513237A (ja) 基地局とユーザ機器
EP4186193A2 (en) Methods and apparatus for user equipment-anticipated common beam switching
US20150078342A1 (en) Method for configuring multiflow, base station, radio network controller, and user equipment
EP3595348B1 (en) Method for determining cooperative cell, and network device
WO2018059470A1 (zh) 传输信息的方法和设备
US10798599B2 (en) System and method for controlling user equipment offloading
WO2015078375A1 (zh) 传输模式切换方法及设备
US20190280786A1 (en) Method for transmitting measurement signal and apparatus
WO2021197019A1 (zh) 一种无时隙测量方法及装置
CN111095814A (zh) 执行波束报告的用户设备
US20210250949A1 (en) Methods and Apparatus of Spatial Relation Switching in New Radio System
CN111357210A (zh) 一种处理设备及其方法
WO2021029075A1 (ja) 端末及び通信方法
KR20160091489A (ko) 이동통신 서비스를 위한 핸드오버 방법
CN113767664A (zh) 用户装置以及通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014865455

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014865455

Country of ref document: EP