WO2015078161A1 - 一种采用指向性背光结构的无辅助立体显示装置 - Google Patents

一种采用指向性背光结构的无辅助立体显示装置 Download PDF

Info

Publication number
WO2015078161A1
WO2015078161A1 PCT/CN2014/078766 CN2014078766W WO2015078161A1 WO 2015078161 A1 WO2015078161 A1 WO 2015078161A1 CN 2014078766 W CN2014078766 W CN 2014078766W WO 2015078161 A1 WO2015078161 A1 WO 2015078161A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
image
distance
directional
emitting unit
Prior art date
Application number
PCT/CN2014/078766
Other languages
English (en)
French (fr)
Inventor
王元庆
薛亚兰
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学 filed Critical 南京大学
Priority to US14/764,551 priority Critical patent/US10554960B2/en
Publication of WO2015078161A1 publication Critical patent/WO2015078161A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/32Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using arrays of controllable light sources; using moving apertures or moving light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0093Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for monitoring data relating to the user, e.g. head-tracking, eye-tracking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/24Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type involving temporal multiplexing, e.g. using sequentially activated left and right shutters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • H04N13/315Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers the parallax barriers being time-variant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking
    • H04N13/376Image reproducers using viewer tracking for tracking left-right translational head movements, i.e. lateral movements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking
    • H04N13/383Image reproducers using viewer tracking for tracking with gaze detection, i.e. detecting the lines of sight of the viewer's eyes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/398Synchronisation thereof; Control thereof

Definitions

  • the present invention relates to an unassisted stereoscopic display device, and more particularly to a directional backlight structure, which belongs to the field of information display technology.
  • Background Art Stereoscopic display technology originated in the 1930s. Wheatstone proposed the concept of parallax principle in 1838. Over the past 170 years, it has experienced many ups and downs. Since 2010, the screening of the three-dimensional film "Avatar" has once again brought a research boom in stereoscopic display.
  • the main components and solutions involved in 3D display include stereo chip, stereo panel, stereo coding propagation technology and stereo content production, and its application prospects are immeasurable, such as entertainment, medical, military, design, advertising and so on.
  • parallax stereo stereo stereo and holographic stereo
  • parallax stereo includes auxiliary and unassisted.
  • Auxiliary stereoscopic stereo glasses and stereo helmets, etc. but because they all require the wearer to wear auxiliary parts, and easily cause visual fatigue and other drawbacks, are not popular in the market; early unassisted stereo is mainly grating stereo, slit grating , cylindrical lens grating and dot matrix grating, etc., this kind of display mode will lead to such defects as image resolution degradation, brightness attenuation, multi-view input and stereoscopic view discontinuity, and the practicability is poor.
  • the object of the present invention is to provide an unassisted stereoscopic display device using a directional backlight structure, which uses a directional backlight component to assist the human eye tracking device to display left and right parallax images on a common flat display screen. Time-sharing is projected onto the viewer's left and right eyes to achieve a multi-user unassisted stereoscopic display device that is compatible with the flat display and has a continuous stereoscopic effect within the viewing range.
  • the technical solution of the present invention is: an unassisted stereoscopic display device using a directional backlight, adopting a directional backlight module,
  • the human eye position (user pupil) tracking device and the control interface module enable the ordinary image display screen to provide a stereoscopic display effect
  • the directional backlight module includes a directional optical component and an addressable optical engine, and the directionality
  • the optical component is composed of a concentrating mirror, a mirror, a refractive mirror, and a directional optical imaging module.
  • the device control module is based on the time division principle, and the addressable optical engine and the directional optical imaging module are alternately formed to form a left and right viewing area (left and right viewing field), and the timing of the left and right viewing directions and the left and right images are displayed on the display screen.
  • the refresh timing is synchronized, so that the viewer can only see the left image and the right eye can only see the right image, and the two-eye parallax image can be viewed through the brain to view the stereo image without loss of resolution.
  • the addressable optical engine is composed of a series of light emitting units and a driving circuit thereof, and each of the light emitting units can be individually controlled to be turned on and off.
  • the illumination unit of the position of the illumination array is illuminated by the observer pupil position information obtained by the human eye position (user pupil) tracking device, and the plurality of pairs of illuminated illumination units are imaged and concentrated by the directional optical imaging module, thereby The position of the eyes of each observer converges into the left and right viewing fields, that is, multiple pairs of optical fields of view.
  • the directional optical component is composed of a condensing mirror, a mirror, a refractive mirror, and a directional optical imaging module, as shown in FIG. 1 .
  • the concentrating mirror compresses the divergent light emitted by the illuminating unit into a parallel light in a plane.
  • the parallel or near-parallel light forms a flat or plate-like fan beam;
  • the directional optical imaging module compresses the divergent beam of the fan beam to form a convergence
  • the beam window that is, the observation window;
  • the mirror mainly changes the beam propagation direction, and expands the optical path for the optical imaging module to form a better quality observation window;
  • the refractive mirror changes the beam propagation direction while widening the incident beam to illuminate the beam The entire LCD screen.
  • a refracting mirror is a reflecting surface composed of a series of microstructures for changing the direction of propagation of a fan beam or a collecting fan beam, so that the collecting fan beam propagates in a direction perpendicular to the image display screen, illuminating the whole Image display.
  • the directional optical imaging module can converge the light emitted by the illuminating sources at different positions at different positions (as shown in FIG. 2) to form an observation field of view, and the width of the exit pupil is fixedly proportional to the size of the illuminating source.
  • the distance between the exit pupils is also proportional to the distance between the light-emitting spots, which has the following characteristics:
  • t represents the pupil spacing
  • t represents the distance between the centers of the light-emitting unit arrays
  • W represents the width of the pupil
  • d represents the width of the array of light-emitting cells.
  • the directional optical imaging module is composed of an imaging lens and a viewing angle extension mirror (as shown in FIG. 3); and the imaging lens can converge the light emitted by the array of the illuminating units and extend the reverse extension line to the distance imaging lens.
  • the viewing angle extension mirror has the characteristic of concentrating distant objects in close proximity, and can converge the virtual image at a far distance at an optimal viewing distance to form a viewing field of view. Out, and ensure that the light illuminates the entire screen during the convergence process, thus This allows the viewer to see the entire screen at the exit. It has the following optical properties:
  • Tut t (3)
  • t' denotes the distance between the centers of the virtual pixels
  • t denotes the distance between the light-emitting array units
  • U denotes the horizontal distance (ie, the object distance) at which the light-emitting array unit is placed in front of the imaging lens
  • V' represents the horizontal distance of the virtual image point from the imaging lens
  • t" represents the pupil distance, that is, the distance between the left and right viewing areas.
  • the viewing angle extension mirror can be summarized as follows: (1) the small angle incident light is emitted at a large angle, and the magnification ratio of the exit angle and the incident angle is constant within a certain incident angle range; (2) The incident ray and the outgoing ray are on the same side of the optical axis, that is, the object point and the image point are on the same side of the optical axis; (3) the object distance is reduced, the image distance is also reduced, and the object distance and the image distance are The ratio is constant.
  • the human eye position (user pupil) tracking module functions to detect the viewer's eye pupil position so that the control module determines the position of the illumination unit on the addressable optical engine that needs to be illuminated.
  • the module can track the movement of the user's eye pupil position in real time, and can track the position information of multiple users at the same time, thereby providing the possibility of multi-user viewing for the device.
  • the control module controls communication between the pupil tracking module and the addressable optical engine and the lighting sequence of the illumination unit on the optical engine, and the control module obtains the position information of the observer's eye pupil from the pupil tracking module, and then establishes in advance through the query.
  • a good pupil position and a light unit array serial number correspondence table are used to determine the position of the light-emitting unit that should be correspondingly lit on the addressable optical engine; meanwhile, the interface module that controls the optical engine controls the optical engine to be illuminated according to the display refresh timing
  • the lighting unit is turned on and off, keeping it in line with the refresh timing of the left and right images displayed on the display screen, that is, when the left image is displayed, the lighting unit corresponding to the left eye of the viewer is illuminated, and when the right image is displayed, the corresponding viewing is illuminated.
  • the illuminating unit of the right eye according to the directional optical imaging module, the light emitted by the illuminating unit forms a viewing area of the left eye or the right eye in front of the display (view window), so that the viewer's left and right eyes can only Alternately see the corresponding left and right images, as the display device displays the left and right images in a time-sharing manner Like, the image seen does not have resolution attenuation, so the viewer sees the full resolution stereo image.
  • the image display screen refers to an electronic control display device capable of displaying a color image, including an LCD, an LED, a plasma, and the like.
  • the beneficial effects of the present invention are: Compared with the prior art, the significant advantages are:
  • the stereo image seen is distortion-free, with strong stereoscopic fidelity, and can display high-definition images without loss of resolution;
  • the directional backlight module adopted has good imaging quality, so that the formed observation window (ie, optical exit pupil) is narrow enough to effectively reduce the crosstalk phenomenon;
  • the device can be viewed by multiple users, enabling free switching between 2D and 3D modes.
  • FIG. 1 is a side view of an overall structure of an embodiment, and a broken line portion is a directional backlight module region;
  • Figure 2 is a schematic diagram of the formation of the optical module
  • Figure 3 is a simplified diagram of the overall optical path of the device
  • Figure 4 is an arrangement diagram of the light emitting unit array
  • FIG. 1 Schematic diagram of the addressable optical engine drive circuit
  • Figure 6 is a schematic diagram of the overall system of the device when viewed by two users
  • Figure 7 is a schematic view of the action of the concentrating mirror
  • Figure 8 is a refractive diagram of the refractive mirror
  • Figure 9 is a schematic diagram of Fresnel lens imaging
  • Figure 10 is a perspective view of the structure of the extended view mirror
  • Figure 11 (a) perspective expansion lens angle magnification simulation diagram
  • Figure 12 Control module control flow chart. 5.
  • object distance U, virtual object distance V' , the optimal viewing distance V, t" is the pupil spacing, t' is the spacing between the centers of the virtual pixels, t is the distance between the centers of the light-emitting unit arrays, W is the width of the pupils, and d is the width of the array of light-emitting units.
  • a and B are observer viewpoints.
  • An unassisted stereoscopic display device using a directional backlight comprising a directional backlight module, a human eye position (user boring) tracking device and a control interface module, and a general image display screen.
  • the directional backlight module includes a directional optical component and an addressable optical engine, and the directional optical component is further composed of a condensing mirror, a mirror, a refractive mirror, and a directional optical imaging module, and the
  • the directional optical imaging module is composed of an imaging lens and a viewing angle extension mirror, and the imaging lens can converge the light emitted by the illuminating array unit within a certain range and the reverse extension line thereof is distant from the same side of the illuminating array; It has the characteristics of concentrating distant objects in close proximity, and can converge the virtual images at a far distance at an optimal viewing distance to form a viewing ⁇ , and ensure that the light illuminates the entire screen during the convergence process, thereby ensuring that the viewer is You can see the entire screen at the exit.
  • the light emitted by the light-emitting unit can be horizontally concentrated at a viewing distance in front of the display screen in a certain direction, that is, the required exit, and the convergence of the control module enables the convergence time Produced to ensure that at a specific moment, the observer can only see the corresponding left or right image in the left or right eye, and finally form a visual effect through the brain fusion.
  • the addressable optical engine is composed of a series of illuminating units and a driving circuit thereof.
  • the array of the illuminating units may be one by one.
  • the high-brightness LED is arranged closely ( Figure 4).
  • the drive circuit can be controlled by a constant current drive circuit composed of TLC5927 chip.
  • the drive circuit board is shown in Figure 5.
  • Figure 6 shows the A and B views. The overall picture of the system in the case of the person.
  • the LED array When the display content of the LCD is the left image, the LED array is lit according to the position of the left eye of the observer, and the area Ai, Bi in the figure forms a width smaller than the distance between the pupils of the human eye at the left eye of each observer.
  • the display content of the LCD is the right image, the position of the right eye of the observer is lit in the LED array, and the areas A 2 and B 2 in the figure are also formed at the right eye of each observer.
  • a viewport that is wider than the distance between the pupils of the human eye.
  • the concentrating mirror (2) in the directional optical component can perform unidirectional compression on the light beam, for example, using a prism mirror, as shown in FIG. 7, the main function of which is to divergence the light beam in the YZ plane. Converging into near-parallel or near-parallel light so that light can pass through the narrower imaging lens (4); the refractive mirror (5) in the directional optical component has a surface that is arranged neatly by the microstructure unit. As shown in Fig. 8, its main function is to fold the light propagating in the Y direction in Fig. 1 into the Z direction.
  • the imaging lens in the directional optical imaging module can be realized by a linear Fresnel lens and utilized as an optical characteristic of the virtual image.
  • the Fresnel lens is an imaging lens that has a similar performance to a conventional convex lens but has a thinner structure, which reduces the volume while satisfying the required imaging characteristics.
  • Ben In the implementation example a linear Fresnel lens is used, which has a convergence characteristic only in the xz plane, and maintains the light propagation characteristics in the other dimension. As shown in FIG. 9, the LED array is placed at a focal length of the Fresnel lens.
  • the above-mentioned non-assisted stereoscopic display device using a directional backlight is an optical component having an angle-amplifying effect, which can change a small angle of incident light into a larger angle of outgoing light.
  • the structure can be realized by a combination of a plurality of lenticular gratings. As shown in FIG. 10, when the incident ray is a parallel ray having a certain inclination angle, the exiting ray is a parallel outgoing ray having a larger inclination angle and a deviation in the same direction, as shown in FIG.
  • V' represents the distance of the object point from the viewing angle extension mirror, that is, the image distance of the light-emitting unit into the virtual image through the imaging lens
  • V represents the distance of the image point from the viewing angle extension mirror, that is, the viewing distance
  • the human eye position (user pupil) tracking device is a device combining software and hardware.
  • the hardware device includes a plurality of infrared LED lights and a camera, and utilizes the brightening effect of the human eye, that is, when the light is illuminated to the human eye, The pupil of the eye reflects the light back to the original light source.
  • the camera captures two images with almost no difference except the bright red-eye effect. The two frames are subtracted to obtain the candidate points of the human eye position, and then SVM and Adaboost are implemented by software.
  • the algorithm performs precise positioning of the pupil position of the human eye.
  • the human eye detection algorithm is a detection and localization algorithm mainly used by a human eye tracking and detecting module based on a PC or a DSP, and includes a candidate region generation algorithm with active infrared illumination and tracking.
  • SVM Support Vector Machine
  • the module gets human eye position information.
  • Human eye tracking and detection is a system of hardware and software modules, which includes knowledge of image processing, signal processing, programming language, and circuit foundation.
  • the available algorithms are as follows:
  • the method of face localization has a feature-based method, namely the feature-based AdaBoost method, which is trained.
  • a number of better-performing features constitute a cascaded strong classifier; according to the position of the candidate region of the human eye and the arrangement of the face organs, the possible face regions are detected according to different scales in turn, and the threshold comparison method is used to determine whether the region is It is a face region.
  • a filtering algorithm is used to optimize the position of the face region.
  • Common filtering algorithms are algorithms such as Kalman filtering and wavelet filtering. Face-based positioning can also be performed using knowledge-based, template-matched, or representation-based methods.
  • the method of human eye localization also has a knowledge-based, feature-based, template-matched, or object-based approach.
  • SVM representation-based support vector machine
  • several Haar features are selected as the feature space, and the support vector and corresponding weight coefficient are obtained by using lattice search and cross-validation weighted balance error rate and support vector machine training. , thus depicting the classification hyperplane.
  • the human eye region to be detected by the hyperplane is detected to determine whether the region is a human eye region.
  • the position of the human eye region can be optimized by using template matching and inter-frame correlation calculation.
  • An example of a commonly used correlation calculation method is a minimum mean square error algorithm.
  • human eye position tracking According to the current frame and the position of the human eye positioned in the previous frames, the correlation tracking algorithm can be used to predict the possible position of the human eye in the next frame. These positions are directly detected by the human eye, and face detection is no longer performed, thereby saving time for the entire personal eye positioning process in the next frame.
  • Commonly used tracking algorithms are Kalman prediction algorithm and Mean-Shift prediction algorithm.
  • control module is implemented by an AVR single-chip microcomputer, which combines the aforementioned addressable optical engine and a human eye position (user pupil) tracking device to obtain human eye position information from the pupil tracking device through the RS232 serial port, and then controls the light-emitting unit array.
  • the corresponding column is lit; at the same time, the field sync signal decoded from the DVI video signal is used as an external interrupt source input to realize the LED light-off timing control, and the flow chart for realizing the control function is shown in FIG.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种采用指向性背光结构的无辅助立体显示装置,采用指向性背光模组(M),人眼位置跟踪模块(7)和控制接口模块使普通图像的平板显示屏(6)产生立体显示效果。指向性背光模组包括指向性光学组件(9)和可寻址光学引擎。根据时分原理,平板显示屏(6)交替显示观看者左右眼观看的左右图像。采用视频场同步时序控制可寻址光学引擎的发光单元(10)的亮灭时序,当显示左图像时,只有对应观看者左眼的发光单元被点亮,当显示右图像时,只有对应观看者右眼的发光单元被点亮。指向性光学组件(9)在显示屏(6)前将发光单元(10)发出的光线形成左眼或右眼的观看窗口,使观看者的左眼只能看到左图像,右眼只能看到右图像。两眼视差图像经大脑融合,形成无分辨率损失的立体图像。

Description

一种釆用指向性背光结构的无辅助立体显示装置 一、 技术领域 本发明涉及一种无辅助立体显示装置, 特别是设计一种指向性背光结构, 属于信息显示技 术领域。 二、 背景技术 立体显示技术起源于 19世纪 30年代, Wheatstone于 1838年提出视差原理的概念。 在过去 的 170多年中, 已经历多次盛衰起伏。 自 2010年, 立体电影《阿凡达》 的放映, 再次带来了立 体显示的研究热潮。 3D显示所涉及的主要部件及解决技术包含立体芯片、 立体面板、 立体编码 传播技术以及立体内容制作等, 而其应用前景也是不可估量, 诸如娱乐、 医疗、 军事、 设计、 广告等方面。 现有的可实现的立体显示方式可分为三大类: 视差立体、 体立体和全息立体, 视差立体又 包含辅助式和无辅助式两大类。 辅助式立体有立体眼镜和立体头盔等, 但由于其都需要观看者 佩戴辅助部件, 且易造成视觉疲劳等弊端, 不为市场所欢迎; 早期无辅助立体主要是光栅式立 体, 有狭缝光栅、 柱面透镜光栅和点阵式光栅等, 该种显示方式会导致如图像分辨率下降, 亮 度衰减、 需要多视图输入以及立体视域不连续等固有缺陷, 实用性较差。 目前还有一些多层屏等集成立体显示, 如中国专利 CN201010252725.1 , 王琼华, 刘军, 陶 宇虹等, 公开了基于灰度屏的全分辨率多视点自由立体显示装置, 采用多层屏叠加实现全分辨 率, 但由于屏与屏之间存在摩尔条纹, 以及屏之间参数不易改变等, 立体效果并不是很逼真, 且难以满足普适性要求。 有鉴于此, 本发明所阐述的一种结构紧凑、 无分辨率损失的可供多人观看的自由立体显示 装置将能吸引市场眼球。 三、 发明内容 本发明的目的是: 提出采用指向性背光结构的无辅助立体显示装置, 采用一种指向性背光 部件, 辅助人眼跟踪装置, 将普通平面显示屏上显示的左、 右视差图像分时投影到观看者的 左、 右眼, 实现一种兼容平面显示并在观看范围内有连续立体效果的多用户无辅助立体显示装 置。 本发明的技术方案为: 一种采用指向性背光的无辅助立体显示装置, 采用指向性背光模组、 人眼位置 (用户瞳孔) 跟踪装置和控制接口模块, 使普通图像显示屏提供立体显示效果, 所述 的指向性背光模组包括指向性光学组件和可寻址光学引擎, 而所述的指向性光学组件又由聚光 镜、 反光镜、 折光反射镜以及指向性光学成像模组组成。 装置控制模块基于时分原理, 结合可 寻址光学引擎和指向性光学成像模组交替形成左右视域出瞳(左右观察视域), 且保证左右视域 出瞳的产生时序与显示屏显示左右图像的刷新时序同步, 从而保证观看者左眼只能看到左图像 右眼只能看到右图像, 两眼视差图像再经大脑融合, 便可观看到无分辨率损失的立体图像。
所述的可寻址光学引擎由一系列发光单元组成的发光阵列及其驱动电路组成, 每一发光单 元可以单独控制亮灭。 该发光阵列哪些位置的发光单元被点亮由人眼位置 (用户瞳孔) 跟踪装 置获得的观察者瞳孔位置信息所决定, 多对点亮的发光单元经指向性光学成像模组成像汇聚, 从而在每个观察者的双眼位置汇聚成左右视域出瞳, 即多对光学视域出瞳。
所述的指向性光学组件由聚光镜、 反光镜、 折光反射镜以及指向性光学成像模组组成, 如 图 1所示; 其特征是聚光镜将发光单元发出的发散光在一个平面内压缩成平行光或近平行光, 而保持向前传播特性不变; 此平行光或近平行光形成扁平状或板状的扇面光束; 指向性光学成 像模组则将该扇面光束的发散光束压缩成像, 形成汇聚光束窗口, 亦即观察窗口; 反光镜主要 改变光束传播方向, 扩大光程, 以供光学成像模组形成较好质量观察窗口; 折光镜改变光束传 播方向的同时, 展宽入射光束, 使光束照亮整个液晶显示屏。 一般而言, 折光反射镜是一个由 一系列微结构组成的反射面, 用于改变扇面光束或汇聚扇面光束的传播方向, 使汇聚扇面光束 沿着与图像显示屏垂直的方向传播, 照亮整个图像显示屏。 通过上述四个主要光学组件, 形成 具有指向特性的汇聚出瞳, 并保证人眼在出瞳位置处能看到整个屏幕。
所述的指向性光学成像模组可将不同位置的发光源发出的光线汇聚于不同位置处 (如图 2), 形成观察视域出瞳, 并且出瞳宽度与发光源尺寸成固定比例关系, 出瞳之间距离也与发光光点 之间的距离成比例关系, 即具有如下特性:
-= 常数 a ( 1 )
t d
式中, t"表示瞳孔间距, t表示发光单元阵列中心之间的距离, W表示出瞳宽度, d表示发光单 元阵列的宽度。
所述的指向性光学成像模组由成像透镜和视角扩展镜组成 (如图 3 ); 其特征是成像透镜可 将发光单元组成的阵列发出的光汇聚并其反向延长线交于距离成像透镜较远处, 并与发光阵列 一致位于成像透镜同侧; 视角扩展镜则具有将远处物体在近处汇聚的特性, 可将较远处的虚像 在最佳观看距离处汇聚从而形成观看视域出瞳, 并保证光线在汇聚过程中照亮整个屏幕, 从而 使得观看者在出瞳处能看到整个屏幕画面。 其具有如下光学性质:
— ^ (2)
t u t = t (3 ) 式中, t'表示虚拟像点中心之间的间距, t表示发光阵列单元之间的距离, U表示发光阵列单元 置于成像透镜前方的水平距离(即物距), V'表示虚拟像点距离成像透镜的水平距离, t"表示瞳 孔间距即左右视域出瞳之间的距离。
进一步的, 其中所述的视角扩展镜可归纳有如下特殊性质: (1 ) 将小角度入射光线以大角 度出射光线射出, 且出射角与入射角的放大比例在一定的入射角度范围内恒定; (2) 入射光线 与出射光线位于光轴的同一侧, 即物点与像点位于光轴同一侧; (3 ) 物距减小, 像距也随之减 小, 且物距与像距之比恒定。
所述的人眼位置 (用户瞳孔) 跟踪模块的作用是检测观看者眼睛瞳孔位置, 以便控制模块 决定可寻址光学引擎上需要点亮的发光单元位置。该模块能实时跟踪用户眼睛瞳孔位置的移动, 且可同时跟踪多个用户瞳孔位置信息, 从而为本装置实现多用户观看提供可能。
所述的控制模块控制瞳孔跟踪模块和可寻址光学引擎之间的通信以及光学引擎上发光单元 的亮灭时序, 控制模块从瞳孔跟踪模块处获得观察者眼睛瞳孔位置信息, 再通过查询事先建立 好的瞳孔位置和发光单元阵列序号关系对应表, 从而确定可寻址光学引擎上应该对应点亮的发 光单元位置; 同时, 控制光学引擎的接口模块根据显示屏刷新时序控制光学引擎上被点亮的发 光单元的亮、 灭时序, 保持其与显示屏显示的左右图像的刷新时序一致, 亦即显示左图像时, 点亮对应观看者左眼的发光单元, 显示右图像时, 点亮对应观看者右眼的发光单元; 据此, 指 向性光学成像模组则将发光单元发出的光线在显示器前形成左眼或右眼的视域出瞳 (观看窗 口), 使得观看者的左右眼只能交替看到对应的左图像和右图像, 由于显示装置分时显示左右图 像, 看到的图像并不存在分辨率衰减, 因此观看者观看到全分辨率的立体图像。
所述的图像显示屏是指能显示彩色图像的电控显示器件, 包括 LCD、 LED, 等离子等。 本发明的有益效果是: 与现有技术相比, 其显著优点是:
1、 图像质量较好, 观看到立体效果更逼真;
2、 无需佩戴眼镜、 头盔等辅助设备;
3、所看到的立体图像是无失真的,具有较强立体逼真度,可显示无分辨率损失的高清图像;
4、 只需提供一对具有视差的左右图像, 便可在观看范围内实现多人观看, 降低了数据处理 要求;
5、 所采取的指向性背光模组具有良好的成像质量, 使得形成的观察窗口 (即光学出瞳)足 够窄, 有效降低串影现象;
6、 该装置可供多个用户观看, 能实现 2D和 3D模式的自由切换。
四附图说明 图 1是一个实施实例的整体结构侧视图, 虚线部分为指向性背光模组区域;
图 2光学模组出瞳形成原理图;
图 3 装置整体光路简化图;
图 4发光单元阵列排布图;
图 5可寻址光学引擎驱动电路原理图;
图 6两用户观看时装置系统整体示意图;
图 7聚光镜作用示意图;
图 8 折光反射镜折光原理图;
图 9菲涅尔透镜成像原理图;
图 10视角扩展镜结构组成图;
图 11(a)视角扩展镜角度放大仿真图;
图 11(b)视角扩展镜成像特性图;
图 12控制模块控制流程图。 五具体实施方式 图中, 发光单元 1、 聚光镜 2、 反光镜 3、 成像透镜 4、 折光反射镜 5、 LCD显示屏 6、 人眼 位置(用户瞳孔)跟踪装置 7、 视角扩展镜 8、 指向性光学组件 9, LED发光单元阵列 10, 发射 光束 11、 扁平的扇面光束 12、 出瞳 13、 指向性背光模组M、虚拟像点 I、 观看区域(3。物距 U, 虚像物距 V', 最佳观看距离 V, t"为瞳孔间距, t'为虚拟像点中心之间的间距, t为发光单元阵 列中心之间的距离, W为出瞳宽度, d为发光单元阵列的宽度, A、 B均为观察者视点。
以普通 LCD显示屏作为本装置的基本显示器件, 并以此为例, 详细描述本发明的一个实施 细节。 有必要在此指出的是, 以下实施实例只用于本发明做进一步的说明, 不能理解为对本发 明保护范围的限制, 该领域技术成熟人员根据上述发明内容对本发明做出一些非本质的改进和 调整, 仍属于本发明的保护范围。
一种采用指向性背光的无辅助立体显示装置, 该装置包含指向性背光模组、 人眼位置 (用 户瞳孔) 跟踪装置和控制接口模块以及普通图像显示屏。 所述的指向性背光模组包括指向性光 学组件和可寻址光学引擎, 所述的指向性光学组件又由聚光镜、 反光镜、 折光反射镜以及指向 性光学成像模组组成, 而所述的指向性光学成像模组由成像透镜和视角扩展镜组成, 成像透镜 可将发光阵列单元发出的光在一定范围内汇聚并其反向延长线交于与发光阵列同侧较远处; 视 角扩展镜则具有将远处物体在近处汇聚的特性, 可将较远处的虚像在最佳观看距离处汇聚从而 形成观看出瞳, 并保证光线在汇聚过程中照亮整个屏幕, 从而保证观看者在出瞳处能看到整个 屏幕画面。 通过上述两个光学部件, 能够将发光单元发出的光线按一定的方向在显示屏前方观 看距离处形成水平方向的汇聚, 即需要的出瞳, 在控制模块的协同下, 使得汇聚出瞳分时产生, 从而保证在某一个具体时刻, 观察者只有左眼或是右眼能看到对应的左图像或右图像, 最终经 大脑融合成立体视觉效果。
基于上述采用指向性背光的无辅助立体显示装置, 所述的可寻址光学引擎由一系列发光单 元组成的发光阵列及其驱动电路组成,本实施实例中,发光单元组成的阵列可由一颗颗高亮 LED 紧密排布而成(如图 4), 其驱动电路可用 TLC5927芯片组成的恒流驱动电路实现单颗可控, 其 驱动电路板如图 5; 图 6为有 A、 B两个观看者的情况下的系统整体图。 当 LCD的显示内容为 左图像时, LED阵列中根据观察者左眼的位置点亮, 如图中区域 Ai、 Bi, 在每一位观察者的左 眼处形成宽度小于人眼瞳孔间距离的出瞳视域; 当 LCD的显示内容为右图像时, LED阵列中根 据观察者右眼的位置点亮, 如图中区域 A2、 B2, 在每一位观察者的右眼处同样形成宽度小于人 眼瞳孔间距离的出瞳视域。
本实施实例中, 所述的指向性光学组件中的聚光镜 (2) 可以对光束进行单方向压缩, 例 如使用棱柱镜, 如图 7所示, 其主要作用是将光束在 YZ平面内的发散光汇聚成近平行光或近 似平行光, 以便光线能全部通过较窄的成像透镜 (4); 所述的指向性光学组件中的折光反射镜 (5), 表面由微结构单元整齐排布组成, 如图 8, 其主要作用为将图 1中沿 Y方向传播的光折 变为沿 Z方向传播。
本实施实例中, 上述采用指向性背光的无辅助立体显示装置, 所述的指向性光学成像模组 中的成像透镜可用线性菲涅尔透镜实现, 并利用其成虚像的光学特性。 菲涅尔透镜是一种性能 与普通凸透镜相似的但结构较薄的成像透镜, 减少体积的同时又能满足所需要的成像特性。 本 实施实例中, 采用线性菲涅尔透镜, 只在 xz平面内有汇聚特性, 而保持另一维方向的光线传播 特性不变, 如图 9所示, LED阵列置于菲涅尔透镜一倍焦距内, 经其汇聚作用在较远处成虚像, 且物体置于不同位置处, 所成虚像也位于不同位置。 虚像像距 V'与物距 U具有如下关系:
Figure imgf000008_0001
其中 f是菲涅尔透镜的焦距, 本实施实例中, U=600mm, V' = 3259mm , f=735mm 。
本实施实例中, 上述采用指向性背光的无辅助立体显示装置, 所述的视角扩展镜是一种具 有角度放大作用的光学组件, 可将较小角度的入射光线变成较大角度的出射光线, 其结构可由 多片柱镜光栅组合实现, 如图 10所示, 当入射光线是具有一定倾角的平行光线时, 出射光线是 倾角更大的且同方向偏折的平行出射光线,如图 11(a);当入射光线是较远处点光源发出的光时, 则该装置可将光线在近距离处汇聚,如图 11(b); 物点和像点的距离比即为其角度放大倍率, 即满 足如下关系式:
― = ratio ( 5 )
V
式中, V' 表示物点距离视角扩展镜的距离, 即发光单元经成像透镜成虚像的像距, V表示 像点距离视角扩展镜的距离, 即观看距离, ratio 是视角扩展镜的角度放大倍率, 本实施实例 中, ratio=6. 5。
本实施实例中, 人眼位置 (用户瞳孔) 跟踪装置是一种软件和硬件结合的装置, 硬件装置 包含很多红外 LED灯和摄像头, 利用人眼的亮瞳效应, 即光照到人眼时, 人眼的瞳孔会将光反 射回原光源, 摄像头捕捉到着两幅除了亮瞳红眼效应外几乎没有差别的图像, 由这两帧图像相 减得到人眼位置的候选点, 再通过软件实现 SVM和 Adaboost算法完成人眼瞳孔位置的精确定 位。
本实施实例中,所述的人眼检测算法是设有基于 PC机或 DSP的人眼跟踪与检测模块主要用 到的检测和定位算法, 包括带主动红外照明的候选区生成算法、 带跟踪的连续 AdabOOSt(Real Adaboost)人脸检测算法、 使用带 Haar特征的支持向量机 (SVM: Support Vector Machine)人眼精 定位算法、 使用平衡的 Kalman滤波算法用于提高人眼定位精度; 该模块得到人眼位置信息。
人眼跟踪与检测是一个系统的软硬件模块, 其所包含了图像处理、信号处理、编程语言以及 电路基础等方面的知识, 其可利用的算法有如下:
1、 人脸定位及滤波。 人脸定位的方法有基于特征的方法即基于特征的 AdaBoost方法, 训练得到 若干性能较好的特征组成级联强分类器; 根据人眼候选区域的位置及人脸器官的排布, 依次按照 不同尺度对可能的人脸区域进行检测, 采用阈值比较的方法确定该区域是否为人脸区域; 根据 AdaBoost算法中用到的几类 Haar特征定位出人脸区域后, 采用滤波算法优化人脸区域的位置, 常用的滤波算法举例如 Kalman滤波、 小波滤波等算法。 也可采用基于知识的、 模板匹配的或基 于表象的方法进行人脸定位。
2、 人眼定位及优化。 人眼定位的方法同样也有基于知识的、 基于特征的、 模板匹配的或基于表 象的方法。 以基于表象的支持向量机(SVM)方法为例, 首先选取若干类 Haar特征作为特征空间, 利用格点搜索及、交叉验证加权平衡错误率及支持向量机训练的方法得到支持向量及相应权重系 数, 从而刻画出分类超平面。然后利用该超平面对待检测的人眼区域进行检测, 确定该区域是否 是人眼区域。定位出人眼区域后,可以采用模板匹配及帧间相关计算的方法优化人眼区域的位置。 常用的相关计算方法举例有最小均方差算法。
3、 人眼位置跟踪。 根据当前帧及前若干帧定位到的人眼位置, 采用相关跟踪算法, 可以预测得 到下一帧中人眼的可能位置。这些位置直接进行人眼检测, 不再进行人脸检测, 从而为下一帧整 个人眼定位过程的进行节省时间。 常用的跟踪算法举例有 Kalman预测算法、 Mean-Shift预测算 法。
本实施实例中, 控制模块则采用 AVR单片机实现, 它结合前述可寻址光学引擎和人眼位 置 (用户瞳孔) 跟踪装置, 通过 RS232串口从瞳孔跟踪装置得到人眼位置信息, 继而控制发光 单元阵列中相应的列点亮; 同时将从 DVI视频信号中解码出的场同步信号作为外部中断源输入 实现 LED灯亮灭时序控制, 实现该控制功能的流程图见图 9。
虽然本发明已以较佳实施例揭露如上, 然其并非用以限定本发明。 本发明所属技术领域中 具有通常知识者, 在不脱离本发明的精神范围内, 当可作各种的更动与润饰。 因此, 本发明的 保护范围当视权利要求书所界定者为准。

Claims

权利要求书
1、 一种采用指向性背光结构的无辅助立体显示装置, 其特征是采用指向性背光模组、 人眼 位置 (用户瞳孔) 跟踪模块和控制接口模块使普通图像的平板显示屏提供立体显示效果, 所述 指向性背光模组包括指向性光学组件和可寻址光学引擎; 基于时分原理, 平板化显示屏交替显 示观看者左右眼观看的左右图像; 利用视频场同步时序控制可寻址光学引擎的发光单元的亮灭 时序, 亦即显示左图像时, 只有对应观看者左眼的发光单元被点亮, 显示右图像时, 只有对应 观看者右眼的发光单元被点亮; 指向性光学组件则将发光单元发出的光线在显示器前形成左眼 或右眼的观看窗口(出瞳), 使得观看者的左眼只能看到左图像右眼只能看到右图像。
2、 根据权利要求 1 所述的采用指向性背光结构的无辅助立体显示装置, 其特征是控制接口 模块与人眼位置跟踪模块相互通信, 获得人眼位置信息, 从而确定可寻址光学引擎上应该对应 点亮的发光单元位置; 以所显示的视频或是图像内容的场同步信号同步光学引擎上被点亮的发 光单元的亮灭时序, 亦即显示左图像时, 只有对应观看者左眼的发光单元被点亮, 显示右图像 时, 只有对应观看者右眼的发光单元被点亮; 指向性光学组件则将发光单元发出的光线在显示 器前形成左眼或右眼的观看窗口(出瞳)。
3、 根据权利要求 1 所述的采用指向性背光结构的无辅助立体显示装置, 其特征是所述的可 寻址光学引擎由一系列发光单元构成的光源阵列及其驱动电路组成, 每一发光单元可单独控制 亮灭; 根据从人眼位置跟踪模块获得的观察者双眼位置信息, 可寻址光学引擎将对应的若干发 光单元点亮, 通过指向性背光模组, 在观察者的双眼位置形成一对独立出瞳; 其中, 左眼位置 的出瞳处观看到图像显示屏显示的左图像, 右眼位置的出瞳处观看到图像显示屏显示的右图 像。
4、 根据权利要求 1 所述的采用指向性背光结构的无辅助立体显示装置, 其特征是所述的指 向性光学组件中的折光反射镜 (5 ), 其表面由微结构单元平行整齐排布组成, 主要作用为扩展 光线并改变光线传播方向。
5、 根据权利要求 1 所述的采用指向性背光结构的无辅助立体显示装置, 所述的指向性光学 成像模组可将不同位置的发光源发出的光线汇聚于不同位置处形成观察视域出瞳, 并且出瞳宽 度与发光源尺寸成固定比例关系, 出瞳之间距离也与发光光点之间的距离成比例关系, 即具有 如下特性:
-= 常数 a ( 1 )
t d
式中, t"表示瞳孔间距, t表示发光单元阵列中心之间的距离, W表示出瞳宽度, d表示发光单 元阵列的宽度。
所述的指向性光学成像模组由成像透镜和视角扩展镜组成; 成像透镜将发光单元组成的阵 列发出的光汇聚并其反向延长线交于距离成像透镜较远处, 并与发光阵列一致位于成像透镜同 侧; 视角扩展镜则具有将远处物体在近处汇聚的特性, 可将较远处的虚像在最佳观看距离处汇 聚从而形成观看视域出瞳, 并保证光线在汇聚过程中照亮整个屏幕, 从而使得观看者在出瞳处 能看到整个屏幕画面。 其具有如下光学性质:
!:- ^ ( 2)
t u
t = t ( 3 )
式中, t'表示虚拟像点中心之间的间距, t表示发光阵列单元之间的距离, U表示发光阵列单元 置于成像透镜前方的水平距离 (即物距), V'表示虚拟像点距离成像透镜的水平距离, t"表示瞳 孔间距即左右视域出瞳之间的距离。
6、 根据权利要求 1和 4所述的采用指向性背光的无辅助立体显示装置, 其特征是所述的指 向性光学成像模组中的成像透镜将发光单元组成的阵列发出的光汇聚并其反向延长线交于距离 成像透镜较远处, 并与发光阵列一致位于成像透镜同侧; 且物体置于不同位置处, 汇聚光点也 位于不同位置。
7、 根据权利要求 1和 4所述的采用指向性背光的无辅助立体显示装置, 其特征是所述的视 角扩展镜是一种具有角度放大作用的光学组件, 将较小角度的入射光线变成较大角度的出射光 线, 其结构可由多片柱透镜光栅组合实现, 当入射光线是较远处点光源发出的光时, 则该装置 可将光线在近距离处汇聚; 入射光线与出射光线位于光轴的同一侧, 物点和像点的距离比即为 其角度放大倍率, 即满足如下关系式:
― = ratio
V
式中, V' 表示物点距离视角扩展镜的距离, V表示像点距离视角扩展镜的距离, ratio 是 视角扩展镜的角度放大倍率。
8、 根据权利要求 1所述的采用指向性背光的无辅助立体显示装置, 其特征是所述的图像显 示屏是指能显示彩色图像的电控显示器件如液晶显示屏或等离子显示屏等, 图像刷新率满足 f≥uo 。
PCT/CN2014/078766 2013-11-27 2014-05-29 一种采用指向性背光结构的无辅助立体显示装置 WO2015078161A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/764,551 US10554960B2 (en) 2013-11-27 2014-05-29 Unassisted stereoscopic display device using directional backlight structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310612559.5A CN103605211B (zh) 2013-11-27 2013-11-27 平板化无辅助立体显示装置及方法
CN201310612559.5 2013-11-27

Publications (1)

Publication Number Publication Date
WO2015078161A1 true WO2015078161A1 (zh) 2015-06-04

Family

ID=50123451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078766 WO2015078161A1 (zh) 2013-11-27 2014-05-29 一种采用指向性背光结构的无辅助立体显示装置

Country Status (3)

Country Link
US (1) US10554960B2 (zh)
CN (1) CN103605211B (zh)
WO (1) WO2015078161A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11146780B1 (en) 2020-07-06 2021-10-12 A.U. Vista, Inc. Artificial window with parallax effect

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103605211B (zh) 2013-11-27 2016-04-20 南京大学 平板化无辅助立体显示装置及方法
CN105676465A (zh) * 2014-12-08 2016-06-15 松下知识产权经营株式会社 图像显示装置
CN105527718B (zh) * 2016-01-19 2019-01-18 中山大学 裸眼3d显示方法、显示系统和显示系统的模拟分析方法
US9967554B2 (en) * 2016-03-02 2018-05-08 Disney Enterprises, Inc. Multi-viewer autostereoscopic tabletop display with dynamic parallax barrier and directional backlight
CN106526876A (zh) * 2016-11-25 2017-03-22 南京大学 一种采用空间光调制器的无辅助立体显示装置
CN106897041A (zh) * 2017-02-22 2017-06-27 重庆卓美华视光电有限公司 互动教学方法、装置及系统
CN106803949A (zh) * 2017-03-01 2017-06-06 广州弥德科技有限公司 一种指向式背光裸眼立体显示的背光控制方法和系统
CN106954059A (zh) * 2017-03-30 2017-07-14 合肥鑫晟光电科技有限公司 一种3d显示控制方法、装置及3d显示设备
CN106937106A (zh) 2017-04-07 2017-07-07 京东方科技集团股份有限公司 反射式3d显示装置
WO2019041035A1 (en) 2017-08-30 2019-03-07 Innovations Mindtrick Inc. STEREOSCOPIC IMAGE DISPLAY DEVICE ADJUSTED BY THE SPECTATOR
CN111684517B (zh) * 2018-02-08 2022-10-28 蒙德多凯创新有限公司 观看者调节的立体图像显示
CN110174767B (zh) * 2019-05-13 2024-02-27 成都工业学院 一种超多视点近眼显示装置
CN113126315B (zh) * 2020-01-16 2023-03-31 驻景(广州)科技有限公司 光波导矢向背光的三维显示模组
CN111273457A (zh) * 2020-02-24 2020-06-12 广州弥德科技有限公司 基于投影光学引擎的指向光源裸眼3d显示器和显示方法
CN113359312B (zh) * 2020-03-06 2023-09-15 驻景(广州)科技有限公司 基于多光源的光波导显示模组
CN114255664B (zh) * 2020-09-24 2023-11-17 京东方科技集团股份有限公司 显示基板及其制备方法、驱动方法、显示装置
CN112946912B (zh) * 2021-02-23 2023-08-04 广州弥德科技有限公司 一种无损超清分辨率、多人同时观看的裸眼3d显示装置
CN116165808A (zh) * 2022-07-27 2023-05-26 华为技术有限公司 立体显示装置、立体显示系统和交通工具

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201957179U (zh) * 2010-11-26 2011-08-31 中航华东光电有限公司 一种基于dmd的立体显示系统
CN103048835A (zh) * 2012-12-07 2013-04-17 京东方科技集团股份有限公司 一种液晶光栅及其驱动方法和立体显示装置
US20130176407A1 (en) * 2012-01-05 2013-07-11 Reald Inc. Beam scanned display apparatus and method thereof
US20130176303A1 (en) * 2011-03-23 2013-07-11 Sony Ericsson Mobile Communications Ab Rearranging pixels of a three-dimensional display to reduce pseudo-stereoscopic effect
CN103313087A (zh) * 2013-06-28 2013-09-18 冠捷显示科技(厦门)有限公司 两视角裸眼立体显示器带跟踪功能的立体显示方法
CN103605211A (zh) * 2013-11-27 2014-02-26 南京大学 平板化无辅助立体显示装置及方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69432283T2 (de) * 1993-12-01 2004-01-22 Sharp K.K. Display für dreidimensionale Bilder
US6023277A (en) * 1996-07-03 2000-02-08 Canon Kabushiki Kaisha Display control apparatus and method
JP3703225B2 (ja) * 1996-09-02 2005-10-05 キヤノン株式会社 立体画像表示方法及びそれを用いた立体画像表示装置
EP1083755A3 (en) * 1999-09-07 2003-11-12 Canon Kabushiki Kaisha Image input apparatus and image display apparatus
US7001019B2 (en) * 2000-10-26 2006-02-21 Canon Kabushiki Kaisha Image observation apparatus and system
CN1476730A (zh) * 2001-07-27 2004-02-18 皇家菲利浦电子有限公司 具有观看者跟踪系统的自动立体图像显示装置
KR100835005B1 (ko) * 2001-12-24 2008-06-04 엘지디스플레이 주식회사 백라이트 유닛
DE10359403B4 (de) * 2003-12-18 2005-12-15 Seereal Technologies Gmbh Autostereoskopisches Multi-User-Display
US20050275942A1 (en) * 2004-04-02 2005-12-15 David Hartkop Method and apparatus to retrofit a display device for autostereoscopic display of interactive computer graphics
DE102005040597A1 (de) * 2005-02-25 2007-02-22 Seereal Technologies Gmbh Verfahren und Einrichtung zum Nachführen von Sweet-Spots
WO2007039855A2 (en) * 2005-10-04 2007-04-12 Koninklijke Philips Electronics N.V. A 3d display with an improved pixel structure (pixelsplitting)
DE102007024237B4 (de) * 2007-05-21 2009-01-29 Seereal Technologies S.A. Holographisches Rekonstruktionssystem mit einer optischen Wellennachführung
US20090282429A1 (en) * 2008-05-07 2009-11-12 Sony Ericsson Mobile Communications Ab Viewer tracking for displaying three dimensional views
US20110157322A1 (en) * 2009-12-31 2011-06-30 Broadcom Corporation Controlling a pixel array to support an adaptable light manipulator
US20110234605A1 (en) * 2010-03-26 2011-09-29 Nathan James Smith Display having split sub-pixels for multiple image display functions
JP5494283B2 (ja) * 2010-06-24 2014-05-14 ソニー株式会社 立体表示装置及び立体表示装置の制御方法
US20120026161A1 (en) * 2010-07-30 2012-02-02 Industrial Technology Research Institute Stereoscopic display
WO2012087275A1 (en) * 2010-12-20 2012-06-28 Sony Ericsson Mobile Communications Ab Determining device movement and orientation for three dimensional view
WO2012127283A1 (en) * 2011-03-23 2012-09-27 Sony Ericsson Mobile Communications Ab Multi-layer optical elements of a three-dimensional display for reducing pseudo-stereoscopic effect
JP5891373B2 (ja) * 2011-04-27 2016-03-23 パナソニックIpマネジメント株式会社 表示装置
US9191661B2 (en) * 2011-08-29 2015-11-17 Microsoft Technology Licensing, Llc Virtual image display device
US8525829B2 (en) * 2011-09-19 2013-09-03 Disney Enterprises, Inc. Transparent multi-view mask for 3D display systems
JP5581307B2 (ja) * 2011-12-28 2014-08-27 パナソニック株式会社 画像表示装置
KR101958447B1 (ko) * 2012-05-16 2019-03-15 삼성디스플레이 주식회사 입체 영상 표시 장치 및 그 표시 방법
BR112014028612B1 (pt) * 2012-05-18 2021-12-28 Reald Spark, Llc Aparelho de tela direcional

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201957179U (zh) * 2010-11-26 2011-08-31 中航华东光电有限公司 一种基于dmd的立体显示系统
US20130176303A1 (en) * 2011-03-23 2013-07-11 Sony Ericsson Mobile Communications Ab Rearranging pixels of a three-dimensional display to reduce pseudo-stereoscopic effect
US20130176407A1 (en) * 2012-01-05 2013-07-11 Reald Inc. Beam scanned display apparatus and method thereof
CN103048835A (zh) * 2012-12-07 2013-04-17 京东方科技集团股份有限公司 一种液晶光栅及其驱动方法和立体显示装置
CN103313087A (zh) * 2013-06-28 2013-09-18 冠捷显示科技(厦门)有限公司 两视角裸眼立体显示器带跟踪功能的立体显示方法
CN103605211A (zh) * 2013-11-27 2014-02-26 南京大学 平板化无辅助立体显示装置及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11146780B1 (en) 2020-07-06 2021-10-12 A.U. Vista, Inc. Artificial window with parallax effect
TWI745231B (zh) * 2020-07-06 2021-11-01 友達光電股份有限公司 人造窗及其框架的三維位置之調整方法

Also Published As

Publication number Publication date
US10554960B2 (en) 2020-02-04
CN103605211B (zh) 2016-04-20
US20160105665A1 (en) 2016-04-14
CN103605211A (zh) 2014-02-26

Similar Documents

Publication Publication Date Title
WO2015078161A1 (zh) 一种采用指向性背光结构的无辅助立体显示装置
CN112042186B (zh) 具有增强偏角分离的超立体显示器
WO2011091660A1 (zh) 三维立体成像方法、系统和成像设备
JPH09105885A (ja) 頭部搭載型の立体画像表示装置
WO2015043098A1 (zh) 一种多视角裸眼立体显示系统及其显示方法
Brar et al. Laser-based head-tracked 3D display research
CN104570366A (zh) 一种具有手势识别功能的全息头盔显示器
US6788274B2 (en) Apparatus and method for displaying stereoscopic images
WO2022017447A1 (zh) 图像显示控制方法、图像显示控制装置及头戴式显示设备
JP2010136300A (ja) 立体画像表示装置
JP2000152285A (ja) 立体画像表示装置
TW476002B (en) Vertical parallax barrier bare eye three-dimensional display device
CN111338176A (zh) 折叠光路几何全息显示系统
WO2016101861A1 (zh) 头戴式显示装置
WO2021052104A1 (zh) 一种全息显示系统
CN111338175A (zh) 透射式几何全息显示系统
JP2007088536A (ja) 3次元映像提示・撮像装置
CN105049833B (zh) 一种采用对称可调式背光结构的立体视检查方法和装置
Brar et al. Multi-user glasses free 3D display using an optical array
CN211528904U (zh) 透射式几何全息显示系统
RU2301436C2 (ru) Широкоугольный виртуальный шлем с возможностью совмещения реального и виртуального пространства
Xue et al. Multi-user autostereoscopic 2D/3D switchable flat-panel display
JPH11119154A (ja) バーチャルスクリーン型立体表示装置
JP2001218231A (ja) 立体画像を表示する装置および方法
JP2004258594A (ja) 広角度から鑑賞できる立体画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865735

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14764551

Country of ref document: US

WA Withdrawal of international application
NENP Non-entry into the national phase

Ref country code: DE