WO2015078034A1 - 太阳光收集装置及太阳光追踪方法 - Google Patents

太阳光收集装置及太阳光追踪方法 Download PDF

Info

Publication number
WO2015078034A1
WO2015078034A1 PCT/CN2013/088603 CN2013088603W WO2015078034A1 WO 2015078034 A1 WO2015078034 A1 WO 2015078034A1 CN 2013088603 W CN2013088603 W CN 2013088603W WO 2015078034 A1 WO2015078034 A1 WO 2015078034A1
Authority
WO
WIPO (PCT)
Prior art keywords
sunlight
light
collecting device
tracking method
controller
Prior art date
Application number
PCT/CN2013/088603
Other languages
English (en)
French (fr)
Inventor
宁超
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/131,874 priority Critical patent/US9255981B2/en
Publication of WO2015078034A1 publication Critical patent/WO2015078034A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • G01S3/786Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
    • G01S3/7861Solar tracking systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4228Photometry, e.g. photographic exposure meter using electric radiation detectors arrangements with two or more detectors, e.g. for sensitivity compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J2001/4266Photometry, e.g. photographic exposure meter using electric radiation detectors for measuring solar light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • the invention relates to the field of solar energy development automation, and in particular to a solar light collecting device and a solar light tracking method. Background technique
  • Sunlight is an inexhaustible source of green energy. People have been trying to use solar energy, such as solar water heaters and photovoltaic power generation, which are well known. In recent years, there has been a way to directly use sunlight to illuminate sunlight and transmit it to the interior using optical fibers. This is of great significance to places with strict safety requirements, such as ammunition depots, oil depots, mines and other inflammable and explosive places and buildings that cannot directly receive sunlight.
  • the core idea of this type of technology is to use a concentrating lens or a concentrating mirror to focus the sunlight onto the fiber and use the fiber to transmit the sunlight to the area where it needs to be illuminated. This lighting technology is energy efficient and optically isolated, which is a very safe way to illuminate.
  • the key to this technology is to track the sun with high precision and fully automatic, ensuring that the sun's light is accurately concentrated on the light-receiving end face of the small fiber.
  • the current solar tracking methods proposed by related patents fall into two categories: one is to control the lighting illumination device according to the earth's daily running law; the other is to use the photoelectric sensor to track the sun.
  • the solar light collecting device for tracking the sun by using the photoelectric sensor is to form a sensor array by using a plurality of photoelectric sensor components. The intensity of the sunlight signal detected by each photoelectric sensor component is different due to the different angle between the sunlight and the respective photoelectric sensor components.
  • the position of the sun can be calculated from the difference in signal intensity, thereby rotating the motor to rotate (move) the solar light collecting device in the direction toward the sun.
  • the solar light collection device can achieve better alignment accuracy.
  • the mechanical structure of the conventional solar collector is to first make a solar tracking system, and then fix the condenser lens and the optical fiber on the solar tracking system, that is, the solar tracking system is separated from the collecting lens and the optical fiber. This separate assembly mechanism requires high mechanical precision when it is fixed to ensure that the spot after the condensing lens is illuminating the light receiving end of the fiber.
  • an object of the present invention is to provide a solar light collecting device and a solar light tracking method, which can not only self-correct when a mechanical deviation occurs in the system. Adjust, and it can quickly and accurately locate sunlight.
  • a solar light collecting device provided by the present invention includes a light concentrator array composed of a plurality of concentrators and a light sensing portion electrically connected to the controller, the concentrator including a light collecting cup And a collecting lens fixed on the collecting cup, the optical fiber is penetrated and fixed to the bottom of the cup of the collecting cup, and a plurality of optical fibers connected to the controller are electrically connected around the bottom of the cup of the collecting cup Light detection unit.
  • the number of the light detecting units is four, and is respectively disposed around the optical fiber.
  • the light detecting unit is a photoelectric sensor.
  • the optical fiber receiving end is placed near the focus of the collecting lens.
  • the condensing lens is a Fresnel lens.
  • the light sensing portion is located in the middle of the concentrator array.
  • Step A includes: the light sensing portion positions the sunlight and feeds the positioning information to the controller; the controller controls the sunlight collecting device to rotate until the optical axis of the collecting lens is substantially parallel to the direction of the sunlight.
  • Step B includes: the light detecting unit positions the sunlight and feeds the positioning information to the controller; under the control of the controller, the sunlight collecting device rotates to accurately control the collecting lens. The parallelism between the optical axis and the direction of the sun.
  • the number of the light detecting units is four, and is respectively disposed around the optical fiber.
  • the light detecting unit is a photoelectric sensor.
  • the optical fiber receiving end is placed near the focus of the collecting lens.
  • the condensing lens is a Fresnel lens.
  • the light sensing portion is located in the middle of the concentrator array.
  • the optical sensing unit includes a plurality of light sensing units. According to the solar light collecting device and the solar light tracking method of the present invention, the sunlight is firstly positioned by the light sensing unit, and the optical axis of the collecting lens is kept at a certain parallelism with the direction of the sunlight, and then passed through the concentrator.
  • the light detecting unit provided at the bottom performs secondary positioning of sunlight.
  • the solar light collecting device has low mechanical precision and simple structure, and is convenient for mass production.
  • FIG. 1 is a schematic structural diagram of a solar light collecting device according to an embodiment of the present invention.
  • Figure 2 is a plan view of the light sensing portion of the solar light collecting device of Figure 1.
  • 3 is a schematic structural view of a concentrator of the solar light collecting device of FIG. 1.
  • FIG. 4 is a schematic structural view of a cup bottom of the collecting cup of FIG. detailed description
  • the solar light collecting device includes a light concentrator array composed of a plurality of concentrators 100 and a light sensing portion 200 electrically connected to the controller.
  • the optical sensing unit 200 is configured to perform a first-order tracking and positioning of the sunlight, so that the optical axis of the collecting lens 110 disposed on the concentrator 100 is parallel to the direction of the sunlight, so that the concentrator 100 is convenient. Sunlight collects more efficiently.
  • the light sensing portion 200 is disposed in the middle of the concentrator array, so that the accuracy of the solar light collecting device for positioning the sunlight can be better controlled. Of course, in other embodiments, the light sensing portion 200 can also be disposed at other locations.
  • FIG. 2 a top view of the optical sensor unit 200 of the solar energy collecting device according to the embodiment is provided.
  • the light sensing unit 200 includes a plurality of light sensing units 210 disposed thereon.
  • the upper end of the optical sensing unit 200 is a convex spherical surface, and a light sensing unit 210 is disposed in each of the front, rear, left and right directions of the convex spherical surface.
  • the sensing unit 210 is a photodiode.
  • the sensing unit 210 can also be one of photosensors such as a photodiode, a photoresistor or a phototransistor.
  • the light sensing unit 200 uses the difference in the intensity of the sunlight signals detected by the four light sensing units 210 having different positions, thereby calculating the angle between each of the sensing units 210 and the sunlight, and thereby determining the position of the sun.
  • FIG. 3 is a schematic structural diagram of a concentrator 100 and a bottom view of a cup bottom of the light collecting cup 120.
  • the concentrator 100 includes a collecting cup 120 and is fixed on the collecting cup 120.
  • Condenser lens 110 The purpose of the concentrating lens 110 is to focus the sunlight at its focus to form a spot.
  • the condensing lens 110 is a planar Fresnel lens, and the Fresnel lens has a lower cost than a conventional convex lens.
  • the optical fiber 300 is penetrated and fixed to the bottom of the cup of the collecting cup 120, wherein the optical fiber 300 receives the light end face upward and is located near the focus of the collecting lens 110.
  • the sunlight is focused by the collecting lens 110 on the light receiving end face of the optical fiber 300, and transmitted to the place where illumination is required via the optical fiber 300.
  • a plurality of light detecting units 130 connected to the controller point are provided in the vicinity of the cup bottom optical fiber 300 of the collecting cup 120.
  • the light detecting unit 130 is one of a photoelectric sensor such as a photodiode, a photodiode, a phototransistor, and a photoresistor, or the photo detecting unit 130 may be one of a photovoltaic cell, a thermal diode, a thermistor or a thermocouple.
  • the number of light detecting units 130 is four, which are respectively disposed around the optical fiber 300.
  • the illuminator 100 can use the intensity of the sunlight signals detected by the four light detecting units 130 to calculate the angle between each sensing unit 210 and the sunlight, thereby performing secondary tracking on the sunlight and accurately controlling the concentrating.
  • an embodiment of the present invention further provides a solar light tracking method, comprising the following steps: A. First-time positioning of the sunlight by the light sensing unit 200, so that the collecting lens 110 is used.
  • the optical axis is substantially parallel to the direction of the sunlight; B.
  • the light detecting unit 130 performs secondary positioning of the sunlight to precisely control the parallelism between the optical axis of the collecting lens 110 and the direction of the sunlight.
  • the step A is specifically: the light sensing unit 200 detects the sunlight signal by using four light sensing units 210 having different positions, and feeds back the detected signal information to the controller; the controller according to different light sensing The intensity of the sunlight signal detected by the unit 210 is different, so that the position of the sun is initially judged; under the control of the controller, the sunlight collecting device rotates in the direction of the sunlight. Step A is repeated until the sunlight intensity signals detected by the four light sensing units 210 having different positions are substantially identical, indicating that the sunlight collecting device is facing the sunlight, that is, the optical axis of the collecting lens 110 is substantially parallel to the direction of the sunlight. .
  • step B is specifically as follows: four light detecting units 130 detect the sunlight signal, and feed back the detected signal information to the controller.
  • the controller determines the position of the sun according to the different intensity of the sunlight signal detected by the different light detecting unit 130; under the control of the controller, the sunlight collecting device rotates in the direction of the sun.
  • Step B is repeated until the sunlight intensity signals detected by the four light detecting units 130 having different positions are substantially identical, and the optical axis of the collecting lens 110 is kept highly parallel to the direction of the sunlight.
  • the solar tracking method provided in this embodiment can accurately control the parallelism between the optical axis of the condensing lens 110 and the direction of the sunlight, so that the spot condensed by the condensing lens 110 is accurately incident on the light receiving end of the optical fiber 300. , improve the collection of light, thereby improving the utilization of light.
  • the solar light collecting device and the solar light tracking method provided by the present invention firstly position the sunlight through the light sensing portion to maintain a certain parallelism between the optical axis of the collecting lens and the direction of the sunlight.
  • the solar light is secondarily positioned by a light detecting unit provided at the bottom of the concentrator.
  • the solar light collecting device has low mechanical precision and simple structure, and is convenient for mass production.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种太阳光收集装置,包括由多个集光器(100)组成的集光器阵列和与控制器电连接的光传感部(200),所述集光器(100)包括集光杯(120)和固定在所述集光杯(120)上的聚光透镜(110),光纤(300)贯穿并固定在所述集光杯(120)的杯底,所述集光杯(120)杯底光纤(300)的周围设有多个与所述控制器电连接的光探测单元(130)。该太阳光收集装置及太阳光追踪方法,不仅可以对太阳光进行二级定位,使得定位更加的快速准确,而且还可以在该太阳光收集装置的光传感部(200)与集光器(100)出现机械偏差时进行自我修正调整,避免了出现光传感部(200)对太阳光定位准确而经聚光透镜(110)聚光后的光斑偏离光纤(300)的受光端的现象。

Description

太阳光收集装置及太阳光追踪方法 技术领域
本发明涉及太阳能开发自动化领域, 尤其涉及一种太阳光收集装置及太阳 光追踪方法。 背景技术
太阳光是一种取之不尽的绿色能源, 一直以来人们在不断尝试利用太阳 能, 比如早已熟知的太阳能热水器和光伏发电。 近些年来又兴起了一种直接利 用太阳光照明的方式, 即在室外将阳光有效收集并利用光纤传输到室内。 这对 安全要求严格的场所, 例如弹药库、 油库、 矿井等易燃易爆场所和不能直接接 收阳光的建筑来说, 其意义重大。 此类技术的核心思想是利用聚光透镜或者聚 光反射镜, 将阳光聚焦到光纤上, 利用光纤将阳光传输到需要照明的场所。 这 种照明技术节能, 且光电隔离, 是一种非常安全的照明方式。 这种技术的关键 在于高精度、 全自动地跟踪太阳, 确保太阳光准确聚集在细小的光纤受光端面 上。 目前的相关专利提出的太阳跟踪方法分为两大类: 一类是根据地球绕日运 行规律控制采光照明装置; 另一类是利用光电传感器跟踪太阳。 利用光电传感器跟踪太阳的太阳光收集装置, 是利用多个光电传感器件组 成一个传感器阵列, 由于太阳光与各个光电传感器件之间的夹角不同, 各个光 电传感器件检测到的阳光信号强度不同。 因此可以依据信号强度差计算出太阳 的位置, 从而转动电机使太阳光收集装置向朝向太阳的方向转动 (移动)。 经 过多次的探测、计算、移动之后, 即可使太阳光收集装置达到较好的对准精度。 然而, 传统太阳光收集器的机械结构是先制作一个太阳光追踪系统, 再将聚光 透镜和光纤固定在太阳光追踪系统上, 即太阳光追踪系统与聚光透镜和光纤是 分离的。 这种分离式组装的机制要求固定的时候要保持很高的机械精度, 才能 保证经聚光透镜聚光后的光斑照射到光纤的受光端。如果在系统运行过程中由 于风吹和晃动等原因使机械对准性产生了偏移, 就会出现虽然传感器阵列对太 阳光具有准确的定位而经聚光透镜聚光后的光斑偏离光纤的受光端的现象。而 现有的技术在出现这种现象时无法进行自我修复, 因而会减小光的收集度, 从 而降低光的利用率。 发明内容
为解决上述现有技术所存在的问题, 本发明的目的在于提供一种太阳光收 集装置及太阳光追踪方法, 该太阳光收集装置及太阳光追踪方法不仅可以在系 统出现机械偏差时进行自我修正调节, 而且其可以对太阳光进行快速准确的定 位。 为了实现上述目的, 本发明提供的一种太阳光收集装置, 包括由多个集光 器组成的集光器阵列和与控制器电连接的光传感部, 所述集光器包括集光杯和 固定在所述集光杯上的聚光透镜, 光纤贯穿并固定在所述集光杯的杯底, 所述 集光杯杯底光纤的周围设有多个与所述控制器电连接的光探测单元。 其中, 所述光探测单元的数量为四个, 分别设在所述光纤的四周。 其中, 所述光探测单元为光电传感器。 其中, 所述光纤受光端置于所述聚光透镜焦点附近。 其中, 所述聚光透镜为菲涅尔透镜。
其中, 所述光传感部位于所述集光器阵列的中间。 其中, 所述光传感部包括多个光传感单元。 本发明的另一目的是提供一种利用如前所述的太阳光收集装置的太阳光 追踪方法, 包括以下步骤:
A、 利用光传感部对太阳光进行一级定位, 使聚光透镜的光轴与太阳光方 向基本平行;
B、 利用光探测单元对太阳光进行二级定位, 精确控制聚光透镜的光轴与 太阳光方向之间的平行度。
其中, 步骤 A包括: 光传感部对太阳光进行定位, 同时将定位信息反馈到 控制器中; 控制器的控制太阳光收集装置转动, 直到聚光透镜的光轴与太阳光 方向基本平行。 其中, 步骤 B包括: 光探测单元对太阳光进行定位, 同时将定位信息反馈 到控制器中; 在控制器的控制下, 太阳光收集装置转动, 精确控制聚光透镜的 光轴与太阳光方向之间的平行度。
其中, 所述光探测单元的数量为四个, 分别设在所述光纤的四周。 其中, 所述光探测单元为光电传感器。 其中, 所述光纤受光端置于所述聚光透镜焦点附近。 其中, 所述聚光透镜为菲涅尔透镜。 其中, 所述光传感部位于所述集光器阵列的中间。 其中, 所述光传感部包括多个光传感单元。 本发明提供的太阳光收集装置及太阳光追踪方法, 在通过光传感部对太阳 光进行一级定位, 使聚光透镜的光轴与太阳光方向保持一定的平行度之后, 通 过集光器底部设有的光探测单元对太阳光进行二级定位。不仅使得定位更加的 快速准确, 而且还可以在该太阳光收集装置的光传感部与集光器出现机械偏差 时进行自我修正调整,避免了出现光传感部对太阳光定位准确而经聚光透镜聚 光后的光斑偏离光纤的受光端的现象。 该太阳光收集装置对其机械精度要求 低, 而且结构简单, 便于大规模生产。 附图说明
图 1为本发明一实施例提供的太阳光收集装置结构示意图。
图 2为图 1中太阳光收集装置的光传感部俯视图。 图 3为图 1中太阳光收集装置的集光器的结构示意图 图 4为图 1中的集光杯的杯底结构示意图。 具体实施方式
现在对本发明实施例进行详细的描述, 其示例表示在附图中, 其中, 相同 的标号始终表示相同部件。 下面通过参照附图对实施例进行描述以解释本发 明。 参阅图 1, 为本发实施例提供的太阳光收集装置结构示意图, 该太阳光收 集装置包括由多个集光器 100组成的集光器阵列和与控制器电连接的光传感部 200, 其中, 光传感部 200用于对太阳光进行一级追踪定位, 使得集光器 100 上设有的聚光透镜 110的光轴与太阳光方向保持平行, 这样便于集光器 100对 太阳光更有效地进行收集。 在本实施例中, 光传感部 200设置在集光器阵列的 中间, 这样可以更好地控制太阳光收集装置对太阳光定位的精度。 当然, 在其 它实施例中, 光传感部 200也可以设置在其他位置。 参阅图 2, 为本实施例提供的太阳光收集装置的光传感部 200的俯视图, 光传感部 200包括设置在其上的多个光传感单元 210。 在本实施例中, 光传感 部 200的上端为一凸球面, 在该凸球面的前、 后、 左、 右方位各设有一光传感 单元 210。 其中, 传感单元 210为光电二极管。 当然, 在其他实施例中, 传感 单元 210也可以为光敏二极管、光敏电阻或光敏三极管等光电传感器中的一种。 光传感部 200利用具有不同位置的四个光传感单元 210检测到的阳光信号强度 不同, 从而计算出各个传感单元 210与太阳光之间的角度, 进而判断太阳的位 置。
参阅图 3和图 4, 分别为本实施例提供的集光器 100的结构示意图以及集 光杯 120的杯底结构示意图,集光器 100包括集光杯 120和固定在该集光杯 120 上的聚光透镜 110。 聚光透镜 110的目的是将太阳光聚焦到其焦点处, 形成一 光斑。 在本实施例中, 聚光透镜 110为平面形的菲涅尔透镜, 与普通的凸透镜 相比,菲涅尔透镜具有更低的成本。光纤 300贯穿并固定在集光杯 120的杯底, 其中, 光纤 300受光端面朝上且位于聚光透镜 110焦点附近。 太阳光通过聚光 透镜 110聚焦在光纤 300受光端面, 经由光纤 300传输到需要照明的场所。 在 集光杯 120的杯底光纤 300的附近设有多个与控制器点连接的光探测单元 130。 其中, 光探测单元 130为光电二极管、 光敏二极管、 光敏三极管、 光敏电阻等 光电传感器中的一种, 或者光探测单元 130也可以为光伏电池、 热敏二极管、 热敏电阻或热电偶中的一种。 在一种优选的实施例中, 光探测单元 130的数量 为四个, 分别设在所述光纤 300的四周。 集光器 100可以利用这四个光探测单 元 130检测到的阳光信号强度不同, 从而计算出各个传感单元 210与太阳光之 间的角度, 进而对太阳光进行二级追踪, 精确控制聚光透镜的光轴与太阳光方 向之间的平行度。 根据本发明提供的太阳光收集装置, 本发明一实施例还提供了一种太阳光 追踪方法, 包括以下步骤: A、 利用光传感部 200对太阳光进行一级定位, 使 聚光透镜 110的光轴与太阳光方向基本平行; B、 利用光探测单元 130对太阳 光进行二级定位, 精确控制聚光透镜 110的光轴与太阳光方向之间的平行度。 其中, 步骤 A具体为:光传感部 200利用具有不同位置的四个光传感单元 210对阳光信号进行检测, 并将检测到的信号信息反馈给控制器; 控制器根据 不同的光传感单元 210检测到的阳光信号强度不同, 从而对太阳的位置进行初 略的判断; 在控制器的控制下, 太阳光收集装置向太阳光的方向进行转动。 重 复步骤 A, 直到具有不同位置的四个光传感单元 210检测到的阳光强度信号基 本一致, 说明太阳光收集装置正对太阳光, 也即聚光透镜 110的光轴与太阳光 方向基本平行。 为了更精确地控制聚光透镜 110的光轴与太阳光方向之间的平行度, 步骤 B具体为: 四个光探测单元 130对阳光信号进行检测, 并将检测到的信号信息 反馈给控制器;控制器根据不同的光探测单元 130检测到的阳光信号强度不同, 从而判断出太阳的位置; 在控制器的控制下, 太阳光收集装置朝向太阳的方向 进行转动。 重复步骤 B, 直到具有不同位置的四个光探测单元 130检测到的阳 光强度信号基本一致, 此时聚光透镜 110的光轴与太阳光方向保持高度平行。 本实施例提供的太阳光追踪方法可以精确控制聚光透镜 110的光轴与太阳 光方向之间的平行度, 使经聚光透镜 110聚光后的光斑准确的射入到光纤 300 的受光端, 提高光的收集度, 从而提高光的利用率。 综上所述, 本发明提供的太阳光收集装置及太阳光追踪方法, 在通过光传 感部对太阳光进行一级定位,使聚光透镜的光轴与太阳光方向保持一定的平行 度之后, 通过集光器底部设有的光探测单元对太阳光进行二级定位。 不仅使得 定位更加的快速准确, 而且还可以在该太阳光收集装置的光传感部与集光器出 现机械偏差时进行自我修正调整, 避免了出现光传感部对太阳光定位准确而经 聚光透镜聚光后的光斑偏离光纤的受光端的现象。该太阳光收集装置对其机械 精度要求低, 而且结构简单, 便于大规模生产。
需要说明的是, 在本文中, 诸如第一和第二等之类的关系术语仅仅用来将 一个实体或者操作与另一个实体或操作区分开来, 而不一定要求或者暗示这些 实体或操作之间存在任何这种实际的关系或者顺序。 而且, 术语"包括"、 "包 含"或者其任何其他变体意在涵盖非排他性的包含, 从而使得包括一系列要素 的过程、 方法、 物品或者设备不仅包括那些要素, 而且还包括没有明确列出的 其他要素, 或者是还包括为这种过程、 方法、 物品或者设备所固有的要素。 在 没有更多限制的情况下, 由语句 "包括一个 ...... "限定的要素, 并不排除在包括 所述要素的过程、 方法、 物品或者设备中还存在另外的相同要素。 虽然本发明是参照其示例性的实施例被具体描述和显示的,但是本领域的 普通技术人员应该理解, 在不脱离由权利要求限定的本发明的精神和范围的情 况下, 可以对其进行形式和细节的各种改变。

Claims

权利要求书
1、 一种太阳光收集装置, 包括由多个集光器组成的集光器阵列和与控制 器电连接的光传感部, 所述集光器包括集光杯和固定在所述集光杯上的聚光透 镜, 光纤贯穿并固定在所述集光杯的杯底, 所述集光杯的杯底光纤的周围设有 多个与所述控制器电连接的光探测单元。
2、 根据权利要求 1所述的太阳光收集装置, 其中 所述光探测单元的数 量为四个, 分别设在所述光纤的四周。
3、 根据权利要求 2所述的太阳光收集装置, 其中 所述光探测单元为光 电传感器。
4、 根据权利要求 1所述的太阳光收集装置, 其中 所述光探测单元为光 电传感器。
5、 根据权利要求 1所述的太阳光收集装置, 其中 所述光纤受光端置于 所述聚光透镜焦点附近。
6、 根据权利要求 1所述的太阳光收集装置, 其中 所述聚光透镜为菲涅 尔透镜。
7、 根据权利要求 1所述的太阳光收集装置, 其中 所述光传感部位于所 述集光器阵列的中间。
8、 根据权利要求 1所述的太阳光收集装置, 其中 所述光传感部包括; 个光传感单元。
9、 一种太阳光追踪方法, 使用如权利要求 1所述的太阳光收集装置, 包 括以下步骤:
A、 利用光传感部对太阳光进行一级定位, 使聚光透镜的光轴与太阳光方 向基本平行;
B、 利用光探测单元对太阳光进行二级定位, 精确控制聚光透镜的光轴与 太阳光方向之间的平行度。
10、 根据权利要求 9所述的太阳光追踪方法, 其中, 步骤 A包括: 光传感 :对太阳光进行定位, 同时将定位信息反馈到控制器中; 控制器控制太阳光收 集装置转动, 直到聚光透镜的光轴与太阳光方向基本平行。
11、 根据权利要求 9所述的太阳光追踪方法, 其中, 步骤 B包括: 光探测 单元对太阳光进行定位,同时将定位信息反馈到控制器中;在控制器的控制下, 太阳光收集装置转动, 精确控制聚光透镜的光轴与太阳光方向之间的平行度。
12、 根据权利要求 9所述的太阳光追踪方法, 其中, 所述光探测单元的数 量为四个, 分别设在所述光纤的四周。
13、 根据权利要求 9所述的太阳光追踪方法, 其中 所述光探测单元为光 电传感器。
14、 根据权利要求 9所述的太阳光追踪方法, 其中 所述光纤受光端置于 所述聚光透镜焦点附近。
15、 根据权利要求 9所述的太阳光追踪方法, 其中 所述聚光透镜为菲涅 尔透镜。
16、 根据权利要求 9所述的太阳光追踪方法, 其中 所述光传感部位于所 述集光器阵列的中间。
17、 根据权利要求 9所述的太阳光追踪方法, 其中 所述光传感部包括: 个光传感单元。
PCT/CN2013/088603 2013-11-29 2013-12-05 太阳光收集装置及太阳光追踪方法 WO2015078034A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/131,874 US9255981B2 (en) 2013-11-29 2013-12-05 Sunlight collection device and method for tracking sunlight

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310627953.6 2013-11-29
CN201310627953.6A CN103728986B (zh) 2013-11-29 2013-11-29 太阳光收集装置及太阳光追踪方法

Publications (1)

Publication Number Publication Date
WO2015078034A1 true WO2015078034A1 (zh) 2015-06-04

Family

ID=50453100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088603 WO2015078034A1 (zh) 2013-11-29 2013-12-05 太阳光收集装置及太阳光追踪方法

Country Status (3)

Country Link
US (1) US9255981B2 (zh)
CN (1) CN103728986B (zh)
WO (1) WO2015078034A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105650908A (zh) * 2014-11-11 2016-06-08 刘庆云 一种用于光热发电的光线偏离监测装置
USD768282S1 (en) * 2015-05-27 2016-10-04 Alva Alta Lda Structural support for solar envelope and solar collector
ES2946192T3 (es) * 2015-11-30 2023-07-13 Signify Holding Bv Distinción de dispositivos que tienen posiciones y direcciones
CN105509346B (zh) * 2015-12-28 2017-11-03 中海阳能源集团股份有限公司 一种塔式定日镜的偏差校正系统及其校正方法
CN105929853A (zh) * 2016-04-27 2016-09-07 广西大学 一种基于光纤阵列的太阳跟踪装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1349078A (zh) * 2001-08-30 2002-05-15 南京春辉科技实业有限公司 自动跟踪太阳的太阳能电池及光纤采光照明系统
CN1369956A (zh) * 2002-01-17 2002-09-18 南京春辉科技实业有限公司 自动跟踪太阳的光伏发电系统
CN101794155A (zh) * 2009-12-31 2010-08-04 陕西科技大学 一种高精度跟踪系统中的太阳光信号采集装置
KR20110014084A (ko) * 2009-08-04 2011-02-10 (주) 파루 태양광 추적 장치 및 그 운용방법
EP2515052A1 (de) * 2011-04-23 2012-10-24 Solar Tracking Systems SL Solartracker

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597328A (ja) * 1982-07-05 1984-01-14 Takashi Mori 太陽光収集装置
US8710353B2 (en) * 2008-06-20 2014-04-29 University Of Central Florida Research Foundation, Inc. Solar energy converter with improved photovoltaic efficiency, frequency conversion and thermal management permitting super highly concentrated collection
CN101634746B (zh) * 2008-07-23 2010-11-10 台湾基材科技股份有限公司 太阳光收集装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1349078A (zh) * 2001-08-30 2002-05-15 南京春辉科技实业有限公司 自动跟踪太阳的太阳能电池及光纤采光照明系统
CN1369956A (zh) * 2002-01-17 2002-09-18 南京春辉科技实业有限公司 自动跟踪太阳的光伏发电系统
KR20110014084A (ko) * 2009-08-04 2011-02-10 (주) 파루 태양광 추적 장치 및 그 운용방법
CN101794155A (zh) * 2009-12-31 2010-08-04 陕西科技大学 一种高精度跟踪系统中的太阳光信号采集装置
EP2515052A1 (de) * 2011-04-23 2012-10-24 Solar Tracking Systems SL Solartracker

Also Published As

Publication number Publication date
US20150153438A1 (en) 2015-06-04
CN103728986B (zh) 2017-01-18
US9255981B2 (en) 2016-02-09
CN103728986A (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
WO2015078034A1 (zh) 太阳光收集装置及太阳光追踪方法
KR100913074B1 (ko) 고효율 집광용 태양광 추적 장치 및 그 방법
CN101482246B (zh) 太阳光光纤照明装置及太阳跟踪方法
CN101661295B (zh) 太阳光自动跟踪定位装置
CN101794155B (zh) 一种高精度跟踪系统中的太阳光信号采集装置
CN101788337B (zh) 自动跟日系统中太阳光信号采集装置
CN101650173A (zh) 太阳位置光电传感器
KR100988264B1 (ko) 고효율 집광식 태양광발전시스템의 정밀 태양추적센서모듈
KR20120007374A (ko) 태양 추적장치 및 이를 이용한 태양 추적방법
CN107218576B (zh) 一种基于锥形光纤导光的光漏斗照明系统
CN104595842A (zh) 大口径反射式光导机及其工作方法
CN201499107U (zh) 一种太阳光自动跟踪定位装置
CN201408367Y (zh) 定日跟踪探头
CN105043537A (zh) 户用光伏组件跟踪的平顶三棱锥形传感器
CN104503475A (zh) 一种适用于太阳能自动跟踪装置的传感器
TWI577921B (zh) 扁平壁掛式內置感測器之追日引光裝置
CN204065843U (zh) 一种适用于太阳能自动跟踪装置的传感器
KR100930090B1 (ko) 태양광 추적센서 및 이를 이용한 태양광 집광장치
CN102707733B (zh) 一种反射镜对准检测装置及其工作方法
CN202583895U (zh) 一种全天候高精度太阳跟踪控制系统
CN204788345U (zh) 无线数字式太阳跟踪方位检测头
KR101616757B1 (ko) 집중가열이 가능한 태양 자동 추적 집광기
CN105698401A (zh) 一种加热及采光装置
KR101131160B1 (ko) 태양 추적 센서 및 이 센서가 장착된 집광 시스템
JP2013529769A (ja) 円筒状集光装置が具備された太陽位置追跡装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14131874

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13898417

Country of ref document: EP

Kind code of ref document: A1