CN201499107U - 一种太阳光自动跟踪定位装置 - Google Patents
一种太阳光自动跟踪定位装置 Download PDFInfo
- Publication number
- CN201499107U CN201499107U CN2009202326221U CN200920232622U CN201499107U CN 201499107 U CN201499107 U CN 201499107U CN 2009202326221 U CN2009202326221 U CN 2009202326221U CN 200920232622 U CN200920232622 U CN 200920232622U CN 201499107 U CN201499107 U CN 201499107U
- Authority
- CN
- China
- Prior art keywords
- sensor
- optical signal
- tracking
- sunlight
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本实用新型涉及一种太阳光自动跟踪定位装置,包括控制机械传动机构的跟踪控制电路和与跟踪控制电路相连接、向跟踪控制电路传送太阳光位置信号的太阳光跟踪定位传感器,所述的跟踪控制电路还连接有调整太阳光跟踪定位传感器水平角度的第一直流减速电机和调整太阳光跟踪定位传感器俯仰角度的第二直流减速电机,所述的太阳光跟踪定位传感器又包括作为比较光信号的比较光信号接收器和作为被比较光信号的启动传感器阵列。采用本实用新型实现了对太阳无盲区、高精度的跟踪,使得跟踪装置能够对不同的天气情况和白昼情况进行识别,提高了对太阳光方位分辩能力的可靠性,并且本实用新型能够使根据太阳的日出日落进行间歇性工作,防止了无用功的产生。
Description
技术领域
本实用新型涉及一种太阳能技术领域,尤其是一种应用于太阳能光伏发电系统中的一种太阳光自动跟踪定位装置。
背景技术
太阳能是一种清洁无污染的可再生能源,在众多的太阳能利用技术中,太阳能光伏发电技术实现了直接将太阳能转化为电能,具有无噪声、无污染、可就地利用等优点,因而受到了世界各国的重视。现有的光伏发电系统一般是将太阳能电池组件定向安装,因此不能始终正对太阳,故未充分利用太阳能电池的发电能力。为了降低光伏发电系统的成本,提高太阳能电池的发电能力,主要方法分为两种:一是提高太阳能电池的光电转换效率,二是通过自动跟踪技术使太阳能电池始终对准太阳。这两种方法均可以提高太阳能电池的发电能力,但是无论太阳能电池自身的光电转换效率有多高,通过跟踪装置都可以使其发电量在原基础上再度提高,从而获得更多的发电量,达到降低投资成本的目的。目前现有的技术方案有1)“轨道同步跟踪式”,如专利申请号200510130694.1公开了一种太阳同步跟踪装置及其设计方法;2)“定时跟踪式”,如专利申请号200510043491.9公开了一种按时间控制全自动跟踪太阳的方法及装置;3)“四象限光电式”,如专利申请号200610028311.4公开了一种采用四象限光电方式的太阳光采集系统所用的太阳跟踪定位器;4)“压力差方式跟踪”,如专利申请号200710094159.4公开了一种利用冷煤储压罐两边产生的压力差,启动致动杆调整太阳能板的位置,从而达到持续跟踪太阳的目的;5)“GPS定位跟踪”如专利申请号200810052068.9公开了一种基于GPS和GIS的太阳跟踪系统及其实现方法。上述现有技术虽然均有一定的应用价值,但是还存在着以下不足之处:如跟踪范围狭小(存在跟踪盲区)、灵敏度误差大、故障率较高、跟踪装置调试复杂、性价比不高,不利于普及推广。
实用新型内容
本实用新型要解决的技术问题是:提供一种全方位跟踪、跟踪精度高、性价比较高的一种太阳光自动跟踪定位装置,用于太阳能光伏发电系统,可以提高系统的跟踪精度和系统的发电量,从而使该装置可以得到切实的推广普及。
本实用新型解决其技术问题所采用的技术方案是:一种太阳光自动跟踪定位装置,包括控制机械传动机构的跟踪控制电路和与跟踪控制电路相连接、向跟踪控制电路传送太阳光位置信号的太阳光跟踪定位传感器,所述的跟踪控制电路还连接有调整太阳光跟踪定位传感器水平角度的第一直流减速电机和调整太阳光跟踪定位传感器俯仰角度的第二直流减速电机,所述的太阳光跟踪定位传感器又包括作为比较光信号的比较光信号接收器和作为被比较光信号的启动传感器阵列。
进一步的,为了使得本实用新型能够更好、更全方位的感应太阳光信号,从而进行及时的定位跟踪,本实用新型包括所述的启动传感器阵列由至少四个不同方向的光信号传感器并联固定在比较光信号接收器的侧上方。
再进一步的,为了更好的进行跟踪控制,本实用新型包括所述的跟踪控制电路包括电源启动电路、光信号调理电路、单片机电路和电机控制电路,所述的电源启动电路为跟踪控制电路提供输入电源,光信号调理电路作为输入部分与单片机电路相连接,电机控制电路作为输出执行部分与单片机电路相连接。
又进一步的,为了更好的与被比较光信号进行精确的光信号对比,本实用新型包括所述的比较光信号接收器包括底座,底座上设置有返回传感器组合和中心传感其组合,所述的中心传感器组合(114)固定在底座(124)的中心位置,所述的返回传感器组合与中心传感器组合上方设置有印制线路板,印制线路板正面固定有象限分离器,象限分离器组合安装有微调遮光器,所述的印制线路板正面的近中部设置有微调方位传感器阵列,微调方位传感器阵列的外圈同心设置有粗调方位传感器阵列,所述的中心传感器组合包括两个光信号传感器,所述的两个光信号传感器并联分别设置在印制线路板的中心位置的正反两面,所述的比较光信号接收器还包括有透镜固定支架,透镜固定支架上安装有聚光透镜,所述的聚光透镜的光轴、微调遮光器的中心轴线和印制线路板正面设置的光信号传感器的中心轴线三者重合,所述的底座下方还设置有输出接口,比较光信号接收器外设置有保护套筒。
再进一步的,为了防止太阳光直接照射到光信号传感器上,本实用新型包括所述的中心传感器组合还包括第一遮光筒和第一遮光片,所述的第一遮光筒自下而上套接印制线路板反面设置的光信号传感器,第一遮光片安装在第一遮光筒的底部,所述的返回传感器组合包括光信号传感器、第二遮光筒和第二遮光片,所述的光信号传感器设置与印制线路板的反面,所述的第二遮光筒自下而上套接光信号传感器,第二遮光片安装在第二遮光筒的底部。
再进一步的,为了提高跟踪精度,本实用新型包括所述粗调方位传感器阵列由四个光信号传感器按照十字形式紧靠排列在象限分离器外侧的四个不同方向上,所述的微调方位传感器阵列由另外四个光信号传感器按照十字形式紧靠排列在象限分离器内侧的四个不同方向上。
本实用新型还包括所述的象限分离器的内壁和外表和所述的微调遮光器的内壁和外表均覆有光反射层。
本实用新型所述的一种太阳光自动跟踪定位装置的工作原理为:当太阳光经过聚光透镜聚焦后的光斑偏离微调遮光器中心孔的位置,即太阳光跟踪定位传感器偏离正对太阳的位置时,布置于太阳光跟踪定位传感器侧上方的启动传感器阵列起作用,此时启动传感器阵列接收到的太阳光信号强于中心传感器组合接收到的太阳光信号,从而启动跟踪控制电路开始正常工作。太阳光跟踪定位传感器把太阳位置的变化转化为电压的变化,并传送给跟踪控制电路,跟踪控制电路将信号放大、比较、处理后,控制相应方向的直流减速电机转动,调整系统角度,直至太阳光跟踪定位传感器中太阳光经过聚光透镜聚焦后的光斑位置居于微调遮光器中心孔的正中,即太阳光跟踪定位传感器正对太阳,跟踪控制电路进入待机工作。此时启动传感器阵列与中心传感器组合接收到的太阳光信号相等。
本实用新型的有益效果是,解决了背景技术中存在的缺陷,利用两路太阳光信号进行比较,再经过控制电路的分析处理,实现了对太阳无盲区、高精度的跟踪,使得跟踪装置能够对不同的天气情况和白昼情况进行识别,提高了对太阳光方位分辩能力的可靠性,并且本实用新型能够使根据太阳的日出日落进行间歇性工作,这就防止了无用功的产生。
附图说明
下面结合附图和实施例对本实用新型进一步说明。
图1是本实用新型的优选实施例的结构框图;
图2是本实用新型的使用状态参考图;
图3(a)是本实用新型的太阳光跟踪定位传感器的结构示意图,图3(b)是图3(a)的A-A截面图;
图4是本实用新型的启动传感器阵列结构示意图;
图5是本实用新型的太阳光跟踪定位传感器中的光斑位置示意图;
图6是本实用新型的跟踪控制电路原理图;
图中:100、太阳光跟踪定位传感器;200、跟踪控制电路;101、保护套筒;102、聚光透镜;103、第一遮光片;104、第二遮光片;110、比较光信号接收器;111、启动传感器阵列;112、粗调方位传感器阵列;113、微调方位传感器阵列;114、中心传感器组合;115、返回传感器组合;116、印制线路板;117、输出接口;121、透镜固定支架;122、象限分离器;123、微调遮光器;124、底座;125、第一遮光筒;126、第二遮光筒;300、光信号传感器。
具体实施方式
现在结合附图和优选实施例对本实用新型作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本实用新型的基本结构,因此其仅显示与本实用新型有关的构成。
如图1所示,一种太阳光自动跟踪定位装置,包括控制机械传动机构的跟踪控制电路200和与跟踪控制电路200相连接、向跟踪控制电路200传送太阳光位置信号的太阳光跟踪定位传感器100,所述的跟踪控制电路200还连接有调整太阳光跟踪定位传感器100水平角度的第一直流减速电机和调整太阳光跟踪定位传感器100俯仰角度的第二直流减速电机。
所述的太阳光跟踪定位传感器100又包括作为比较光信号的比较光信号接收器110和作为被比较光信号的启动传感器阵列111,其结构如图3(a)所示,比较光信号接收器110包括底座124,底座124上设置有返回传感器组合115和中心传感其组合114,所述的中心传感器组合114固定在底座124的中心位置,所述的返回传感器组合115与中心传感器组合114上方设置有印制线路板116,印制线路板116正面固定有象限分离器122,所述的象限分离器122为一个四角带有延长片的方形桶,其内壁和外表均覆有光反射层。象限分离器122组合安装有微调遮光器123,微调遮光器123也是一个四角带有延长片的方形桶,方形桶的中心位置开有小孔,所述的微调遮光器123的内壁和外表也覆有光反射层。
所述的印制线路板116正面的近中部设置有微调方位传感器阵列113,微调方位传感器阵列113由四个光信号传感器300按照十字形式紧靠排列在象限分离器122内侧的四个不同方向上。微调方位传感器阵列113的外圈同心设置有粗调方位传感器阵列112,所述粗调方位传感器阵列112由另外四个光信号传感器300按照十字形式紧靠排列在象限分离器122外侧的四个不同方向上。微调方位传感器阵列113与粗调方位传感器阵列112的位置关系如图3(b)所示,同一个方向上的两个光信号传感器300并联。
又如图3(a)所示,所述的中心传感器组合114包括两个光信号传感器300,所述的两个光信号传感器300并联分别设置在印制线路板116的中心位置的正反两面,中心传感器组合114还包括第一遮光筒125和第一遮光片103,所述的第一遮光筒125自下而上套接印制线路板116反面设置的光信号传感器300,第一遮光片103安装在第一遮光筒125的底部,所述的返回传感器组合115包括光信号传感器300、第二遮光筒126和第二遮光片104,所述的光信号传感器300设置与印制线路板116的反面,所述的第二遮光筒126自下而上套接光信号传感器300,第二遮光片104安装在第二遮光筒126的底部。所述的比较光信号接收器110还包括有透镜固定支架121,透镜固定支架121上安装有聚光透镜102,所述的聚光透镜102的光轴、微调遮光器123的中心轴线和印制线路板116正面设置的光信号传感器300的中心轴线三者重合,所述的底座124下方还设置有输出接口117,比较光信号接收器110外设置有保护套筒101。
所述的启动传感器阵列111,如图4所示,由至少四个不同方向的光信号传感器300并联固定在比较光信号接收器110的侧上方。
所述的太阳光跟踪定位传感器100的保护套筒101采用透光率较高的PC材料外壳,所述的象限分离器122和微调遮光器123的内壁和外表所覆有的反射层为粘贴铝反光膜或镶贴薄玻璃镜片或抛光基材或涂覆反光涂料,所述的光信号传感器300为硅光电池或光敏二极管或红外线接收二极管,所述的聚光镜片102为菲涅尔透镜或单面凸透镜或双凸球面凸透镜。
太阳光跟踪定位传感器100通过工业用防水电连接输出接口117输出六路光信号:启动光信号、中心光信号、第一象限光信号、第二象限光信号、第三象限光信号和第四象限光信号后,与跟踪控制电路200相连。
如图6所示,本实用新型所述的跟踪控制电路200包括电源启动电路,如图6(a)所示、光信号调理电路,如图6(b)所示、单片机电路,如图6(c)所示和电机控制电路,如图6(d)所示,所述的电源启动电路为跟踪控制电路200提供输入电源,光信号调理电路作为输入部分与单片机电路相连接,电机控制电路作为输出执行部分与单片机电路相连接。具体的来说,电源启动电路由四个二极管构成的防极性反接电路连接至三端稳压电路输出待机电源,印制线路板116正反面相并联设置的两个光信号传感器300的输出作为中心光信号、启动传感器阵列111上设置的光信号传感器300的输出作为启动光信号与信号比较电路相连,信号比较电路的输出连接继电器电路,从而控制三端稳压电路输出或关闭工作电源;光信号调理电路由并联的光信号传感器300输出作为第一象限光信号、第二象限光信号、第三象限光信号和第四象限光信号与模数转换电路相连,电压基准电路的输出作为模数转换电路的基准输入,模数转换电路的输出作为单片机电路的输入;单片机电路的四路输出控制信号分别与电机控制电路的四路输入控制相连;电机控制电路由四路继电器电路组成,其中K2、K3控制Y轴,即俯仰方向:“Y+”端接直流减速电机的正端,“Y-”端接直流减速电机的负端(“Y+”端接正电源“Y-”端接负电源时直流减速电机正转即向正Y轴方向转动),K4、K5控制X轴,即水平方向:“X+”端接直流减速电机的正端,“X-”接直流减速电机的负端(“X+”端接正电源“X-”端接负电源时直流减速电机正转即向正X轴方向转动)。
图2是本实用新型的其中一个实施例的使用状态参考图,将太阳能电池组件固定安装在支架上,再将太阳光跟踪定位传感器100与太阳能电池组件保持在同一水平面上,并且与跟踪控制电路200连接。太阳光自动跟踪定位装置安装完成后,令水平方向X轴对准东西方向,垂直方向Y轴与X轴垂直,传感器中心轴线为Z。如图5所示,当太阳光经聚光透镜102聚焦后的光斑位于微调遮光器123上的中心孔位置时,即如图5(b)所示,表明太阳光跟踪定位传感器100已经正对太阳;当光斑偏离中心位置时,如图5(a)、图5(c)所示,四个象限的光信号传感器300就会产生不同的信号,跟踪控制电路200将信号放大、比较、处理后,控制相应方向的直流减速电机运转,调整系统角度,直至光斑位置居于微调遮光器123中心孔的正中,即太阳光跟踪定位传感器100正对太阳。
具体的说:
1)当太阳光位于太阳光跟踪定位传感器100的正前方180度范围内,太阳光与传感器中心轴线Z呈某一夹角,例如太阳光线投影与正X轴、正Y轴方向都呈45°夹角。此时启动传感器阵列111接收到的太阳光强于中心传感器组合114接收到的太阳光,太阳光跟踪定位传感器100输出的启动光信号大于中心光信号,经过电源启动电路的信号比较电路控制输出工作电源,从而启动单片机电路开始工作。太阳光经过聚光透镜102聚焦后的光斑落在象限分离器122的内壁上,微调方位传感器阵列113的任何一个光信号传感器300接收不到太阳光,粗调方位传感器阵列112起主导作用,太阳光跟踪定位传感器100输出的各象限光信号取决于粗调方位传感器阵列112各个方位的光信号传感器。处在第四象限的光信号传感器300不仅受到一部分太阳光的直接照射,而且还受到另一部分经象限分离器反射后的太阳光的照射,相对方向处在第二象限的光信号传感器300由于象限分离器122的遮挡只能接收到散射光,显然第四象限光信号大于第二象限光信号;同理,处在第三象限的光信号传感器300接收到的太阳光强于处在第一象限的光信号传感器300接收到的太阳光,第三象限光信号大于第一象限光信号。太阳光跟踪定位传感器输出的四个象限光信号经光信号调理电路转换,单片机电路处理后,单片机I/O口P3.5输出高电平、P3.4输出低电平、P3.3输出高电平、P3.2输出低电平,驱动K4和K2吸合,使得“Y+”、“X+”端得到正电源,“Y-”、“X-”端得到负电源,从而控制X轴方向直流减速电机正转即向正X轴方向转动、Y轴方向直流减速电机正转即向正Y轴方向转动。当转动至太阳光经过聚光透镜102聚焦后的光斑落在微调方位传感器阵列113的某个或多个光信号传感器受光面上。由于聚光透镜102的聚焦作用,光斑所在的光信号传感器接收到的太阳光强于同方向粗调方位传感器阵列112的光信号传感器接收到的太阳光,微调方位传感器阵列113起主导作用,粗调方位传感器阵列112起辅助作用。此时第四象限光信号依然比第二象限光信号大,同理第三象光信号比第一象限光信号大。跟踪控制电路将继续控制X轴方向直流减速电机向正X轴方向转动、Y轴方向直流减速电机向正Y轴方向转动。当光斑落在微调遮光器123的中心孔位置上时,启动传感器阵列111接收到的太阳光与中心传感器组合114接收到的太阳光相同,电源启动电路的信号比较电路控制关闭工作电源,整个跟踪控制电路进入待机工作。此时太阳光与传感器中心轴线Z的夹角为0°,即太阳光跟踪定位传感器正对太阳。
2)当太阳光位于太阳光跟踪定位传感器的后方180度范围内,太阳光与传感器中心轴线Z呈某一夹角,例如太阳光线投影与正X轴、正Y轴方向都呈45°夹角。此时启动传感器阵列111接收到的太阳光强于中心传感器组合114接收到的太阳光,太阳光跟踪定位传感器输出的启动光信号大于中心光信号,经过电源启动电路的信号比较电路控制输出工作电源,从而启动单片机电路开始工作。由于太阳光位于太阳光跟踪定位传感器的后方180度范围,其正面的四个象限内的光信号传感器不能直接受到太阳光的照射,而处在第二象限的返回传感器组合115中的光信号传感器300可以受到太阳光的直接照射,显然第二象限光信号大于第四象限光信号。由于象限分离器122的遮挡第一象限的光信号传感器接收到的太阳光比第三象限接收的太阳光弱,第一象限光信号小于第三象限光信号。太阳光跟踪定位传感器输出的四个象限光信号经光信号调理电路转换,单片机电路处理后,单片机I/O口P3.5输出低电平、P3.4输出高电平、P3.3输出高电平、P3.2输出低电平,驱动K5和K2吸合,使得“Y+”、“X-”端得到正电源,“Y-”、“X+”端得到负电源,从而控制X轴方向直流减速电机反转即向负X轴方向转动、Y轴方向直流减速电机正转即向正Y轴方向转动。当转动至太阳光跟踪定位传感器的正面能接收到太阳光时,其工作原理及过程可以参照太阳光位于太阳光跟踪定位传感器的正前方180度范围内的原理及过程类推。
根据本实用新型其他实施方式,本实用新型不仅仅可以应用在太阳能光伏发电系统中,还可以应用于太阳能热水器热交换系统中。
以上述依据本实用新型的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项实用新型技术思想的范围内,进行多样的变更以及修改。
Claims (7)
1.一种太阳光自动跟踪定位装置,其特征在于:包括控制机械传动机构的跟踪控制电路(200)和与跟踪控制电路(200)相连接、向跟踪控制电路(200)传送太阳光位置信号的太阳光跟踪定位传感器(100),所述的跟踪控制电路(200)还连接有调整太阳光跟踪定位传感器(100)水平角度的第一直流减速电机和调整太阳光跟踪定位传感器(100)俯仰角度的第二直流减速电机,所述的太阳光跟踪定位传感器(100)又包括作为比较光信号的比较光信号接收器(110)和作为被比较光信号的启动传感器阵列(111)。
2.如权利要求1所述的一种太阳光自动跟踪定位装置,其特征在于:所述的启动传感器阵列(111)由至少四个不同方向的光信号传感器(300)并联固定在比较光信号接收器(110)的侧上方。
3.如权利要求1所述的一种太阳光自动跟踪定位装置,其特征在于:所述的跟踪控制电路(200)包括电源启动电路、光信号调理电路、单片机电路和电机控制电路,所述的电源启动电路为跟踪控制电路(200)提供输入电源,光信号调理电路作为输入部分与单片机电路相连接,电机控制电路作为输出执行部分与单片机电路相连接。
4.如权利要求1所述的一种太阳光自动跟踪定位装置,其特征在于:所述的比较光信号接收器(110)包括底座(124),底座(124)上设置有返回传感器组合(115)和中心传感其组合(114),所述的中心传感器组合(114)固定在底座(124)的中心位置,所述的返回传感器组合(115)与中心传感器组合(114)上方设置有印制线路板(116),印制线路板(116)正面固定有象限分离器(122),象限分离器(122)组合安装有微调遮光器(123),所述的印制线路板(116)正面的近中部设置有微调方位传感器阵列(113),微调方位传感器阵列(113)的外圈同心设置有粗调方位传感器阵列(112),所述的中心传感器组合(114)包括两个光信号传感器(300),所述的两个光信号传感器(300)并联分别设置在印制线路板(116)的中心位置的正反两面,所述的比较光信号接收器(110)还包括有透镜固定支架(121),透镜固定支架(121)上安装有聚光透镜(102),所述的聚光透镜(102)的光轴、微调遮光器(123)的中心轴线和印制线路板(116)正面设置的光信号传感器(300)的中心轴线三者重合,所述的底座(124)下方还设置有输出接口(117),比较光信号接收器(110)外设置有保护套筒(101)。
5.如权利要求4所述的一种太阳光自动跟踪定位装置,其特征在于:所述的中心传感器组合(114)还包括第一遮光筒(125)和第一遮光片(103),所述的第一遮光筒(125)自下而上套接印制线路板(116)反面设置的光信号传感器(300),第一遮光片(103)安装在第一遮光筒(125)的底部,所述的返回传感器组合(115)包括光信号传感器(300)、第二遮光筒(126)和第二遮光片(104),所述的光信号传感器(300)设置于印制线路板(116)的反面,所述的第二遮光筒(104)自下而上套接光信号传感器(300),第二遮光片(104)安装在第二遮光筒(126)的底部。
6.如权利要求4所述的一种太阳光自动跟踪定位装置,其特征在于:所述粗调方位传感器阵列(112)由四个光信号传感器(300)按照十字形式紧靠排列在象限分离器(122)外侧的四个不同方向上,所述的微调方位传感器阵列(113)由另外四个光信号传感器(300)按照十字形式紧靠排列在象限分离器(122)内侧的四个不同方向上。
7.如权利要求4所述的一种太阳光自动跟踪定位装置,其特征在于:所述的象限分离器(122)的内壁和外表和所述的微调遮光器(123)的内壁和外表均覆有光反射层。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009202326221U CN201499107U (zh) | 2009-09-11 | 2009-09-11 | 一种太阳光自动跟踪定位装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009202326221U CN201499107U (zh) | 2009-09-11 | 2009-09-11 | 一种太阳光自动跟踪定位装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201499107U true CN201499107U (zh) | 2010-06-02 |
Family
ID=42442303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009202326221U Expired - Fee Related CN201499107U (zh) | 2009-09-11 | 2009-09-11 | 一种太阳光自动跟踪定位装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201499107U (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101969280A (zh) * | 2010-09-27 | 2011-02-09 | 江苏大学 | 基于单片机的太阳能电池自动跟踪装置以及控制方法 |
CN102609006A (zh) * | 2012-03-20 | 2012-07-25 | 辽宁科技学院 | 太阳跟踪光电传感探测头 |
CN103792953A (zh) * | 2012-10-30 | 2014-05-14 | 云南师范大学 | 一种太阳跟踪控制器 |
CN104267725B (zh) * | 2014-09-23 | 2017-04-19 | 无锡华普微电子有限公司 | 扫地机器人自主充电用的室内导航定位系统 |
CN108572665A (zh) * | 2017-03-13 | 2018-09-25 | 郭延达 | 基于传感技术的定日追踪系统 |
CN109542124A (zh) * | 2018-11-01 | 2019-03-29 | 南京林业大学 | 基于太阳光照角度感知的自动旋转对准装置及对准方法 |
CN118000138A (zh) * | 2024-02-20 | 2024-05-10 | 山东省日照市渔业技术推广站 | 一种海洋水产养殖装置 |
-
2009
- 2009-09-11 CN CN2009202326221U patent/CN201499107U/zh not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101969280A (zh) * | 2010-09-27 | 2011-02-09 | 江苏大学 | 基于单片机的太阳能电池自动跟踪装置以及控制方法 |
CN101969280B (zh) * | 2010-09-27 | 2013-10-23 | 江苏大学 | 基于单片机的太阳能电池自动跟踪装置的控制方法 |
CN102609006A (zh) * | 2012-03-20 | 2012-07-25 | 辽宁科技学院 | 太阳跟踪光电传感探测头 |
CN103792953A (zh) * | 2012-10-30 | 2014-05-14 | 云南师范大学 | 一种太阳跟踪控制器 |
CN104267725B (zh) * | 2014-09-23 | 2017-04-19 | 无锡华普微电子有限公司 | 扫地机器人自主充电用的室内导航定位系统 |
CN108572665A (zh) * | 2017-03-13 | 2018-09-25 | 郭延达 | 基于传感技术的定日追踪系统 |
CN109542124A (zh) * | 2018-11-01 | 2019-03-29 | 南京林业大学 | 基于太阳光照角度感知的自动旋转对准装置及对准方法 |
CN109542124B (zh) * | 2018-11-01 | 2022-03-08 | 南京林业大学 | 基于太阳光照角度感知的自动旋转对准装置及对准方法 |
CN118000138A (zh) * | 2024-02-20 | 2024-05-10 | 山东省日照市渔业技术推广站 | 一种海洋水产养殖装置 |
CN118000138B (zh) * | 2024-02-20 | 2024-08-16 | 山东省日照市渔业技术推广站 | 一种海洋水产养殖装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101661295B (zh) | 太阳光自动跟踪定位装置 | |
CN201499107U (zh) | 一种太阳光自动跟踪定位装置 | |
CN101969280B (zh) | 基于单片机的太阳能电池自动跟踪装置的控制方法 | |
CN101561684B (zh) | 光伏发电定日自动跟踪控制系统 | |
CN201464033U (zh) | 正四棱锥形太阳方位传感器 | |
CN101227158A (zh) | 自动追踪式太阳能发电机 | |
CN102520731A (zh) | 一种自动跟踪太阳光线的方法及自动跟踪系统 | |
WO2013170563A1 (zh) | 太阳能实时跟踪系统 | |
CN102447422A (zh) | 一种光伏阵列最大功率点跟踪随动系统及控制方法 | |
CN101539419B (zh) | 太阳能跟踪位置传感器 | |
CN201623664U (zh) | 智能追日跟踪电站控制系统 | |
CN100413095C (zh) | 立体多层次光伏发电聚光器 | |
CN106054947A (zh) | 一种根据光照自动转向的光伏发电支架系统及方法 | |
CN203689162U (zh) | 太阳能自动跟踪装置 | |
CN205610519U (zh) | 具备太阳能自动跟踪调节的光伏发电设备 | |
CN101471615A (zh) | ∧型聚光双轴跟踪太阳能光伏发电装置 | |
CN201203037Y (zh) | 一种太阳能光源自动跟踪装置 | |
CN208126210U (zh) | 电动推杆式双轴太阳跟踪系统 | |
CN116505855A (zh) | 一种双轴自动跟踪光伏发电装置及自动跟踪控制方法 | |
CN103151962A (zh) | 一种具有追光传感器的太阳能发电装置 | |
CN108681341A (zh) | 一种基于闭环多模式的太阳跟踪系统及其方法 | |
CN201408367Y (zh) | 定日跟踪探头 | |
CN101923353B (zh) | 双光电传感器联合控制太阳跟踪方法及其装置 | |
CN201467026U (zh) | 定日自动跟踪光伏发电系统 | |
CN101777856B (zh) | 利用光感差的光伏跟踪装置及基于网络的监控方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100602 Termination date: 20110911 |