WO2015077732A1 - Industrial lighting support system - Google Patents

Industrial lighting support system Download PDF

Info

Publication number
WO2015077732A1
WO2015077732A1 PCT/US2014/067194 US2014067194W WO2015077732A1 WO 2015077732 A1 WO2015077732 A1 WO 2015077732A1 US 2014067194 W US2014067194 W US 2014067194W WO 2015077732 A1 WO2015077732 A1 WO 2015077732A1
Authority
WO
WIPO (PCT)
Prior art keywords
lower support
support
upper support
passage
locking assembly
Prior art date
Application number
PCT/US2014/067194
Other languages
French (fr)
Inventor
Andrew James GRANT
Allen COOGLER
Michael Walton
Jeremy KYNE
Original Assignee
Hto Holdings Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/175,666 external-priority patent/US9732949B2/en
Application filed by Hto Holdings Llc filed Critical Hto Holdings Llc
Priority to EP14863679.8A priority Critical patent/EP3074579B1/en
Priority to CA2931712A priority patent/CA2931712C/en
Priority to CN201480073906.4A priority patent/CN106414872B/en
Publication of WO2015077732A1 publication Critical patent/WO2015077732A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/18Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures movable or with movable sections, e.g. rotatable or telescopic
    • E04H12/182Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures movable or with movable sections, e.g. rotatable or telescopic telescopic

Definitions

  • the present disclosure relates generally to a telescoping light pole with an internal passage for electrical wiring and configured for a telescoping function facilitating worker access to a remote fixture.
  • Lighting systems are used in many applications, with different constructions provided for different environments. Lighting is particularly important in industrial applications, which often requires work in low light conditions (e.g., at night). However, due to environmental conditions, accessing pole-mounted lights can be difficult and often dangerous. Adjustable lighting systems have been developed for industrial applications. As a result of the perils of ladder use in industrial settings, systems have been developed to safely lower the remote end (top end) of a light pole.
  • a pole support system including a tubular lower support; a guide member interior to the lower support, the guide member extending substantially along a length of the lower support; a telescoping upper support inside the lower support and axially movable between an extended position and a retracted position, the upper support being at least partially received in an annular space between the lower support and the guide member; a biasing member biasing the upper support to the extended position; and a locking assembly partially surrounding the lower support at one end of the lower support.
  • the locking assembly may include a body having a passage in which the upper support slides therethrough, the body attached to the lower support to enclose the passage at a first end while maintaining the passage in fluid communication with the interior of the lower support; and a lock configured to selectably engage the upper support to constrain axial motion of the upper support.
  • the biasing member may include a spring in the annular space between the lower support and the housing.
  • the body may be attached to the lower support by at least one selectably sealingly engageable fastener.
  • the guide member may include fluid-tight tubular.
  • the system may include a base configured for coupling with the fluid-tight tubular and the lower support at corresponding ends opposite the locking assembly and configured to isolate an interior of the fluid-tight electrical conduit from the annular space between the lower support and the housing.
  • the base may include a channel between the first end of the base and a second end of the base in fluid-tight communication with the fluid-tight tubular.
  • the passage may be an axial passage.
  • the lock comprises a translational member configured to translate into the passage against the upper support through an opening transverse to the axial passage.
  • the locking assembly may include a raised surface in the passage opposite the translational member.
  • the raised surface may be a ledge.
  • the system may include electrical wiring, wherein a portion of the electrical wiring within the upper support is configured to conform to a length of a portion of the upper support above the locking mechanism.
  • the system may include a wiring seal.
  • the guide member may be coaxial with a longitudinal axis of the lower support.
  • FIG. 1 may depict a pole support system including a tubular lower support; a fluid-tight wiring chamber interior to the lower support, the wiring chamber extending substantially along a length of the lower support; a telescoping upper support inside the lower support and axially movable between an extended position and a retracted position, the upper support being at least partially received in an annular space between the lower support and the wiring chamber; a biasing member biasing the upper support to the extended position; and a locking assembly partially surrounding the lower support at one end of the lower support.
  • a pole support system including a tubular lower support; a fluid-tight wiring chamber interior to the lower support, the wiring chamber extending substantially along a length of the lower support; a telescoping upper support inside the lower support and axially movable between an extended position and a retracted position, the upper support being at least partially received in an annular space between the lower support and the wiring chamber; a biasing member biasing the upper support to the extended position; and a locking assembly partially surrounding the lower
  • the locking assembly may include a body having a passage in which the upper support slides therethrough, the body attached to the lower support to enclose the passage at a first end while maintaining the passage in fluid communication with the interior of the lower support; and a lock configured to selectably engage the upper support to constrain axial motion of the upper support.
  • the tubular lower support may have an interior, an upper end, and a base end, with the base end having a connector configured to connect with a pre-existing feature.
  • the fluid-tight wiring chamber may be disposed within the biasing member and may block fluid flow from the interior of the lower support to a location exterior to the lower support.
  • the pre-existing feature may be an electrical enclosure, such as a junction box or electrical fitting for industrial electrical conduit.
  • the pole support system may include a wiring assembly having a first portion disposed in the upper support and a second portion disposed in the lower support, wherein the tubular wiring chamber seals around the second portion at an opening in the lower support to prevent fluid flowing via the opening into the electrical enclosure.
  • the pole support system may include an adaptor coupled to the tubular wiring chamber, and a wiring seal coupled to the adaptor, where the wiring seal and adaptor cooperate to block fluid flow to the interior of the fluid-tight tubular wiring chamber.
  • the locking assembly may include a body having a passage configured for sliding transmission of an upper support therethrough, the body configured for selectable sealing engagement to a tubular lower support to enclose the passage at a first end while maintaining the passage in fluid communication with the interior of the lower support; and a lock configured to selectably engage the upper support to constrain axial motion of the upper support.
  • FIGS. 1-3 illustrate a pole support system for industrial lighting in accordance with embodiments of the present disclosure.
  • FIGS. 4A & 4B illustrate locking assemblies in accordance with embodiments of the present disclosure.
  • FIGS. 5A-5D illustrate a base in accordance with embodiments of the present disclosure.
  • FIG. 6 illustrates a pole support system having a wiring chamber in accordance with embodiments of the present disclosure.
  • FIGS. 7A-7L illustrate embodiments configured for various modes of use in accordance with embodiments of the present disclosure.
  • FIG. 8 illustrates a further pole support system for industrial lighting in accordance with embodiments of the present disclosure.
  • Exposed wiring for lighting systems is susceptible to environmental hazards, such as moisture.
  • Some known systems have a passage interior to the pole running to the remote end, and wiring (wires, cables, etc.) running through the passage to the light fixture.
  • Known systems are inefficient in protecting the installed wiring. Normal movement of the components often damages internal wiring (e.g., "pinching").
  • embodiments of the present disclosure may relate to spring assisted telescoping industrial light poles.
  • the upper support or upper pole
  • the telescoping supports along with the spring assist, allow the top mounted light fixture to be moved up and down.
  • aspects of the present disclosure also relate to safeguards for the wiring providing power to the fixture. Further aspects relate to general robustness and longevity of the pole support system in environmental conditions likely to be experienced upon installation in an outdoor or marine industrial setting (e.g., mines, offshore oil rigs). For example, depending on the particular materials used, a 10-foot pole support system of the present design may be rated for winds of over 300 miles per hour.
  • General embodiments of the disclosure include pole support systems and devices for incorporation within a pole support system.
  • the pole support system may be configured for use with traditional light fixtures and enable height adjustment of a fixture via a telescoping upper pole. More specific example embodiments are described below.
  • Embodiments relate to wired support systems (e.g., 'wired poles').
  • a wired pole may include wiring or cabling operatively coupled with the lighting or other mounted item.
  • FIGS. 1-3 illustrate a pole support system for industrial lighting in accordance with embodiments of the present disclosure.
  • the pole support system 100 comprises a lower support 106, a telescoping upper support 102, and a locking assembly 104 attached to the locking assembly 104.
  • the lower support 106 may be tubular. Tubular as used herein may include tubular with cylindrical, rectangular, elliptical, or irregular cross- sections.
  • the pole support system supports at least one light fixture 122.
  • Light fixture 122 may be a traditional light fixture.
  • Upper support 102 and lower support 106 may be implemented as 2-inch tubular comprising aluminum, galvanized or stainless steel, or the like, or any other material as would occur to one of skill in the art.
  • FIG. 3 shows a cross section of pole support system 100.
  • pole support system 100 further includes a guide member 108 interior to the lower support 106.
  • the guide member 108 may extend substantially along the length of the lower support 106. "Substantially along the length of the lower support 106," as described herein, may be defined as a range spanning (at either end) from 18 inches longer to 6 inches shorter than the lower support. Other embodiments may include guide member 108 extending greater than 18 inches farther than the lower support 106.
  • Upper support 102 lies inside the lower support 106 and is axially movable between an extended position and a retracted position.
  • Locking assembly 104 at least partially surrounds the lower support 106 at one end of the lower support 106.
  • the upper support 102 may be at least partially received in an annular space 109 between the lower support 106 and the guide member 108.
  • the guide member 108 may be concentric with the lower support 106 and/or upper support 102.
  • a biasing member 110 in the annular space 109 biases the upper support 102 to the extended position.
  • the biasing member 110 may be implemented as a spring (as shown), an elastomeric member, a pneumatic or hydraulic system, and so on.
  • an attached light fixture 122 is accessible by adjusting the pole support system height via the upper support 102 retracting into the lower support 106.
  • the telescoping connection between the upper support 102 and the lower support 106 is aided by the "spring assist" from the biasing member 110.
  • the spring assist reduces the amount of strength needed to raise or lower the upper support to a desired height.
  • the light fixture 122 is secured at a desired height by the lock assembly 104.
  • Locking assembly 104 includes a chamfer away from the upper support on the upper surface to resist standing water while maintaining structural strength.
  • Other embodiments may include an arched upper surface, a level upper surface, or other designs.
  • the lower surface may be the same or different than the upper surface. It is to be understood that varying designs may have associated advantages and disadvantages that recommend their use, and that all such variations are within the scope of the present disclosure.
  • FIGS. 4A & 4B illustrate locking assemblies in accordance with embodiments of the present disclosure.
  • Locking assembly 104 includes a body 114 having a passage 1 15 in which the upper support 102 (FIG.3) slides therethrough.
  • the passage 115 may be tailored to the upper support 102 to allow sliding translation of upper support 102 while discouraging ingress of moisture and particulates.
  • the body 1 14 is attached to the lower support 106 to enclose the passage 1 15 at a first end while maintaining the passage 1 15 in fluid
  • the body 1 14 may be attached to the lower support 106 by at least one selectably sealingly engageable fastener (e.g., via threaded connection or mechanical seal), by use of adhesives, epoxies, or resins, or using other fasteners.
  • Lock 116 is configured to selectably engage the upper support 102 to constrain axial motion of the upper support 102.
  • the locking assembly 104 further includes a raised surface 124 in the passage. Lock 116 may be implemented using various fasteners or biasing mechanisms.
  • the lock 1 16' may be a translational member 1 17 configured to translate into the passage 1 15 against the upper support 102 in response to tightening of threaded bolts 120 into corresponding threaded channels (not shown) in the body 114' .
  • the locking assembly 104' further includes a raised surface 126 in the passage 1 15 opposite the translational member 1 17, implemented as a ledge (i.e., a flat surface against which the upper support 102 is held upon engaging the lock 1 16'.
  • Other embodiments of lock 1 16, 1 16' may employ corresponding nuts or the like, use clasps or other fasteners, or operate using rotational versus translational motion. Any type of fastener may be used to engage the lock 1 16, 116' .
  • the electrical system is routed through the lower and upper supports and provides power to the attached light fixture 122.
  • Embodiments of the present disclosure may also include wiring 1 12 interior to the upper and lower support members and the guide member.
  • Guide member 108 may be implemented as fluid-tight electrical conduit or similar fluid -tight tubular. Additionally or alternatively to guide member 108, wiring chamber 160 may be interior to the lower support 106, as described below with reference to FIG. 6.
  • FIGS. 5A-5D illustrate a base in accordance with embodiments of the present disclosure.
  • Base 130 includes a channel 140 between the first end of the base 132 and a second end of the base 134.
  • Base 130 is configured for coupling with fluid-tight tubular (e.g., electrical conduit) and the lower support 106 at their corresponding ends opposite the locking assembly 104. Upon being coupled with the tubular and channel in fluid -tight
  • fluid-tight tubular e.g., electrical conduit
  • Threaded connections 144 and 146 enable sealing engagement with the conduit and the lower support 106, respectively.
  • base 130 is configured to isolate the interior of the fluid-tight electrical conduit from the annular space 109 between the lower support 106 and the guide member 108.
  • Threaded connection 142 at the second end 134 enables sealing engagement with interior of junction box 150.
  • Weep holes 136 allow condensation or other moisture to drain from the annular space 109.
  • wiring chamber 160 may comprise electrical conduit or the like, but may not be necessary for guiding biasing member 110 or upper support 102.
  • Wiring chamber may include an adaptor 162.
  • the adaptor 162 and the wiring chamber 160 (or guide member 108) may be coupled through threaded engagement.
  • Wiring seal 164 may be used to prevent ingress of moisture into wiring chamber 160 (or guide member 108).
  • Wire 112 includes an elastically coiled portion 166, which is configured to conform to a length of a portion of the upper support above the locking mechanism.
  • the elastically coiled portion 166 is configured such that, when the upper support 102 is lowered, the portion 166 will re-coil, thus preventing wiring 112 from bunching along the interior surface of the wiring chamber 160 (or guide member 108).
  • the light fixture 122 is connected to the upper support 102.
  • the illumination source of the light fixture 122 is powered through a connection to the electrical system, comprising a power source and wiring 1 12.
  • the power source can be externally supplied or provided in a base, which may act as a support for the first pole.
  • the wire is protected within the supports. More specifically, the wire is housed in the guide member or wiring chamber of the lower support and the interior chamber of the upper support.
  • This positioning separates the wire from the spring assist system (e.g., biasing member 1 10).
  • the provision of a separate housing for the wiring 1 12 is prevents the wire from interacting with or becoming damaged by the spring assist.
  • the sealed conduit of the guide member or wiring chamber protects the wire from moisture, which can also be problematic.
  • FIGS. 7A-7L illustrate various modes of use including wall mounting and spring mounting. As will be apparent, various means of mounting the pole support system described above will occur to those of skill in the art.
  • FIG. 8 illustrates a pole support system for industrial lighting in accordance with embodiments of the present disclosure.
  • Pole support system 800 comprises an upper support 806, a telescoping lower support 802 which retracts into the upper support 806 via the locking assembly. It is readily apparent that this configuration will have different associated advantages and disadvantages than the configurations above, but will operate in a similar manner by the telescoping support in conjunction with the spring assist.

Abstract

A pole support system suitable for lighting fixtures. The system may include a lower support; a guide member or wiring chamber interior to the lower support; a telescoping upper support inside the lower support and axially movable between an extended position and a retracted position, the upper support being at least partially received in an annular space between the lower support and the guide member or wiring chamber; a biasing member biasing the upper support to the extended position; and a locking assembly partially surrounding the lower support at one end of the lower support. The locking assembly may include a body having a passage in which the upper support slides therethrough, and enclosing the passage at a first end while maintaining the passage in fluid communication with the interior of the lower support; and a lock configured to engage the upper support to constrain motion of the upper support.

Description

TITLE: INDUSTRIAL LIGHTING SUPPORT SYSTEM
FIELD
[0001] The present disclosure relates generally to a telescoping light pole with an internal passage for electrical wiring and configured for a telescoping function facilitating worker access to a remote fixture.
BACKGROUND
[0002] Lighting systems are used in many applications, with different constructions provided for different environments. Lighting is particularly important in industrial applications, which often requires work in low light conditions (e.g., at night). However, due to environmental conditions, accessing pole-mounted lights can be difficult and often dangerous. Adjustable lighting systems have been developed for industrial applications. As a result of the perils of ladder use in industrial settings, systems have been developed to safely lower the remote end (top end) of a light pole.
SUMMARY
[0003] Aspects of the present disclosure relate to systems, methods, and devices for lighting fixture pole support. General embodiments may include a pole support system including a tubular lower support; a guide member interior to the lower support, the guide member extending substantially along a length of the lower support; a telescoping upper support inside the lower support and axially movable between an extended position and a retracted position, the upper support being at least partially received in an annular space between the lower support and the guide member; a biasing member biasing the upper support to the extended position; and a locking assembly partially surrounding the lower support at one end of the lower support. The locking assembly may include a body having a passage in which the upper support slides therethrough, the body attached to the lower support to enclose the passage at a first end while maintaining the passage in fluid communication with the interior of the lower support; and a lock configured to selectably engage the upper support to constrain axial motion of the upper support.
[0004] The biasing member may include a spring in the annular space between the lower support and the housing. The body may be attached to the lower support by at least one selectably sealingly engageable fastener. The guide member may include fluid-tight tubular. The system may include a base configured for coupling with the fluid-tight tubular and the lower support at corresponding ends opposite the locking assembly and configured to isolate an interior of the fluid-tight electrical conduit from the annular space between the lower support and the housing. The base may include a channel between the first end of the base and a second end of the base in fluid-tight communication with the fluid-tight tubular. The passage may be an axial passage. The lock comprises a translational member configured to translate into the passage against the upper support through an opening transverse to the axial passage. The locking assembly may include a raised surface in the passage opposite the translational member. The raised surface may be a ledge. The system may include electrical wiring, wherein a portion of the electrical wiring within the upper support is configured to conform to a length of a portion of the upper support above the locking mechanism. The system may include a wiring seal. The guide member may be coaxial with a longitudinal axis of the lower support.
[0005] Other general embodiments may include a pole support system including a tubular lower support; a fluid-tight wiring chamber interior to the lower support, the wiring chamber extending substantially along a length of the lower support; a telescoping upper support inside the lower support and axially movable between an extended position and a retracted position, the upper support being at least partially received in an annular space between the lower support and the wiring chamber; a biasing member biasing the upper support to the extended position; and a locking assembly partially surrounding the lower support at one end of the lower support. The locking assembly may include a body having a passage in which the upper support slides therethrough, the body attached to the lower support to enclose the passage at a first end while maintaining the passage in fluid communication with the interior of the lower support; and a lock configured to selectably engage the upper support to constrain axial motion of the upper support. The tubular lower support may have an interior, an upper end, and a base end, with the base end having a connector configured to connect with a pre-existing feature. The fluid-tight wiring chamber may be disposed within the biasing member and may block fluid flow from the interior of the lower support to a location exterior to the lower support. The pre-existing feature may be an electrical enclosure, such as a junction box or electrical fitting for industrial electrical conduit. The pole support system may include a wiring assembly having a first portion disposed in the upper support and a second portion disposed in the lower support, wherein the tubular wiring chamber seals around the second portion at an opening in the lower support to prevent fluid flowing via the opening into the electrical enclosure. The pole support system may include an adaptor coupled to the tubular wiring chamber, and a wiring seal coupled to the adaptor, where the wiring seal and adaptor cooperate to block fluid flow to the interior of the fluid-tight tubular wiring chamber.
[0006] Other general embodiments may include a locking assembly for use in a pole support system, as described herein. For example, the locking assembly may include a body having a passage configured for sliding transmission of an upper support therethrough, the body configured for selectable sealing engagement to a tubular lower support to enclose the passage at a first end while maintaining the passage in fluid communication with the interior of the lower support; and a lock configured to selectably engage the upper support to constrain axial motion of the upper support.
[0007] The foregoing and other objects, features and advantages of the disclosure will be apparent from the following more particular descriptions of exemplary embodiments of the disclosure as illustrated in the accompanying drawings wherein like reference numbers generally represent like parts of exemplary embodiments of the disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
[0008] The following figures are part of the present specification, included to demonstrate certain aspects of embodiments of the present disclosure and referenced in the detailed description herein. Unless otherwise noted, figures are not drawn to scale.
[0009] FIGS. 1-3 illustrate a pole support system for industrial lighting in accordance with embodiments of the present disclosure.
[0010] FIGS. 4A & 4B illustrate locking assemblies in accordance with embodiments of the present disclosure. [0011] FIGS. 5A-5D illustrate a base in accordance with embodiments of the present disclosure.
[0012] FIG. 6 illustrates a pole support system having a wiring chamber in accordance with embodiments of the present disclosure.
[0013] FIGS. 7A-7L illustrate embodiments configured for various modes of use in accordance with embodiments of the present disclosure.
[0014] FIG. 8 illustrates a further pole support system for industrial lighting in accordance with embodiments of the present disclosure.
DETAILED DESCRIPTION
[0015] Exposed wiring for lighting systems is susceptible to environmental hazards, such as moisture. Some known systems have a passage interior to the pole running to the remote end, and wiring (wires, cables, etc.) running through the passage to the light fixture. Known systems are inefficient in protecting the installed wiring. Normal movement of the components often damages internal wiring (e.g., "pinching").
[0016] Further, traditional industrial fixtures (particularly those with ballast hinges) are configured for use on a pole with a particular operational axis (e.g., the axis while in use). Because most industrial fixtures are not designed for use with a lowerable pole, changing the operational axis introduces instability in the fixture. One reason for the instability is the introduction when lowering the fixture of additional forces that are not present during normal operation. Forces having a component normal to the operational axis may be particularly problematic. Thus, traditional lowered poles using joints or the like for lowering may result in instability of the fixture, particularly while the pole is deviated from its operational axis. This instability may result in fixtures detaching prematurely, and possibly falling from height, which is a safety hazard.
[0017] It would be desirable to increase protection for wiring in light poles in industrial settings while still facilitating repair or maintenance of light fixtures atop the light pole by bringing the fixture to ground level. It would also be desirable to enable a single worker to perform the action of raising and/or lowering the fixture, thereby reducing the costs of labor relating to maintenance, while maintaining the pole in its operational axis. [0018] Generally, embodiments of the present disclosure may relate to spring assisted telescoping industrial light poles. As part of the telescoping nature of the present disclosure, the upper support (or upper pole) is slidably engaged with the lower support (or lower pole). The telescoping supports, along with the spring assist, allow the top mounted light fixture to be moved up and down. Thus the light fixture can be raised or lowered to the position of a user in the identical operational axis. Thus safety is increased, as there is less risk of accident when moving the light fixture in relation to a user. Aspects of the present disclosure also relate to safeguards for the wiring providing power to the fixture. Further aspects relate to general robustness and longevity of the pole support system in environmental conditions likely to be experienced upon installation in an outdoor or marine industrial setting (e.g., mines, offshore oil rigs). For example, depending on the particular materials used, a 10-foot pole support system of the present design may be rated for winds of over 300 miles per hour.
[0019] The principles of the disclosure are explained by describing in detail, specific example embodiments of devices, systems, and methods for facilitating access to industrial lighting. Aspects of the present disclosure resist deleterious conditions, such as, for example, rain, high winds, impact, conditions associated with industrial environments, and so on.
[0020] General embodiments of the disclosure include pole support systems and devices for incorporation within a pole support system. The pole support system may be configured for use with traditional light fixtures and enable height adjustment of a fixture via a telescoping upper pole. More specific example embodiments are described below. Embodiments relate to wired support systems (e.g., 'wired poles'). A wired pole may include wiring or cabling operatively coupled with the lighting or other mounted item. Some aspects of the present disclosure may allow toggling between optimal orientations for maintenance and operation more easily, safely and/or rapidly.
[0021] Example embodiments were chosen and described in order to best explain the principles of the disclosure and their practical application, and to enable others of ordinary skill in the art to understand the disclosure for various embodiments with various
modifications as are suited to the particular use contemplated. Those skilled in the art will understand, however, that the invention may be embodied as many other devices, systems, and methods. For example, various aspects of the methods and devices may be combined in various ways or with various products, including existing products. Many modifications and variations will be apparent to those of ordinary skill in the art. The scope of the invention is not intended to be limited by the details of example embodiments described herein. The scope of the disclosure should be determined through study of the appended claims.
[0022] Specific design details have been provided for illustration, but should not be considered limiting. Readers of skill in the art will recognize that many variations of telescoping pole support systems may be implemented consistent with the scope of the disclosure as described by the appended claims.
[0023] FIGS. 1-3 illustrate a pole support system for industrial lighting in accordance with embodiments of the present disclosure. Referring to FIGS. 1 and 2, the pole support system 100 comprises a lower support 106, a telescoping upper support 102, and a locking assembly 104 attached to the locking assembly 104. The lower support 106 may be tubular. Tubular as used herein may include tubular with cylindrical, rectangular, elliptical, or irregular cross- sections. The pole support system supports at least one light fixture 122. Light fixture 122 may be a traditional light fixture. Upper support 102 and lower support 106 may be implemented as 2-inch tubular comprising aluminum, galvanized or stainless steel, or the like, or any other material as would occur to one of skill in the art.
[0024] FIG. 3 shows a cross section of pole support system 100. Referring to FIG. 3, pole support system 100 further includes a guide member 108 interior to the lower support 106. The guide member 108 may extend substantially along the length of the lower support 106. "Substantially along the length of the lower support 106," as described herein, may be defined as a range spanning (at either end) from 18 inches longer to 6 inches shorter than the lower support. Other embodiments may include guide member 108 extending greater than 18 inches farther than the lower support 106.
[0025] Upper support 102 lies inside the lower support 106 and is axially movable between an extended position and a retracted position. Locking assembly 104 at least partially surrounds the lower support 106 at one end of the lower support 106. The upper support 102 may be at least partially received in an annular space 109 between the lower support 106 and the guide member 108. The guide member 108 may be concentric with the lower support 106 and/or upper support 102. A biasing member 110 in the annular space 109 biases the upper support 102 to the extended position. The biasing member 110 may be implemented as a spring (as shown), an elastomeric member, a pneumatic or hydraulic system, and so on.
[0026] In operation, an attached light fixture 122 is accessible by adjusting the pole support system height via the upper support 102 retracting into the lower support 106. The telescoping connection between the upper support 102 and the lower support 106 is aided by the "spring assist" from the biasing member 110. The spring assist reduces the amount of strength needed to raise or lower the upper support to a desired height. The light fixture 122 is secured at a desired height by the lock assembly 104.
[0027] Locking assembly 104 includes a chamfer away from the upper support on the upper surface to resist standing water while maintaining structural strength. Other embodiments may include an arched upper surface, a level upper surface, or other designs. The lower surface may be the same or different than the upper surface. It is to be understood that varying designs may have associated advantages and disadvantages that recommend their use, and that all such variations are within the scope of the present disclosure.
[0028] FIGS. 4A & 4B illustrate locking assemblies in accordance with embodiments of the present disclosure. Locking assembly 104 includes a body 114 having a passage 1 15 in which the upper support 102 (FIG.3) slides therethrough. The passage 115 may be tailored to the upper support 102 to allow sliding translation of upper support 102 while discouraging ingress of moisture and particulates. The body 1 14 is attached to the lower support 106 to enclose the passage 1 15 at a first end while maintaining the passage 1 15 in fluid
communication with the interior of the lower support 106. The body 1 14 may be attached to the lower support 106 by at least one selectably sealingly engageable fastener (e.g., via threaded connection or mechanical seal), by use of adhesives, epoxies, or resins, or using other fasteners.
[0029] Lock 116 is configured to selectably engage the upper support 102 to constrain axial motion of the upper support 102. The locking assembly 104 further includes a raised surface 124 in the passage. Lock 116 may be implemented using various fasteners or biasing mechanisms.
[0030] Referring to FIG. 4B, in example embodiments, the lock 1 16' may be a translational member 1 17 configured to translate into the passage 1 15 against the upper support 102 in response to tightening of threaded bolts 120 into corresponding threaded channels (not shown) in the body 114' . The locking assembly 104' further includes a raised surface 126 in the passage 1 15 opposite the translational member 1 17, implemented as a ledge (i.e., a flat surface against which the upper support 102 is held upon engaging the lock 1 16'. Other embodiments of lock 1 16, 1 16' may employ corresponding nuts or the like, use clasps or other fasteners, or operate using rotational versus translational motion. Any type of fastener may be used to engage the lock 1 16, 116' .
[0031] Referring to FIGS. 1 & 3, the electrical system is routed through the lower and upper supports and provides power to the attached light fixture 122. Embodiments of the present disclosure may also include wiring 1 12 interior to the upper and lower support members and the guide member. Guide member 108 may be implemented as fluid-tight electrical conduit or similar fluid -tight tubular. Additionally or alternatively to guide member 108, wiring chamber 160 may be interior to the lower support 106, as described below with reference to FIG. 6.
[0032] FIGS. 5A-5D illustrate a base in accordance with embodiments of the present disclosure. Base 130 includes a channel 140 between the first end of the base 132 and a second end of the base 134. Base 130 is configured for coupling with fluid-tight tubular (e.g., electrical conduit) and the lower support 106 at their corresponding ends opposite the locking assembly 104. Upon being coupled with the tubular and channel in fluid -tight
communication with the fluid-tight electrical conduit. Threaded connections 144 and 146 enable sealing engagement with the conduit and the lower support 106, respectively. Upon connection, base 130 is configured to isolate the interior of the fluid-tight electrical conduit from the annular space 109 between the lower support 106 and the guide member 108.
Threaded connection 142 at the second end 134 enables sealing engagement with interior of junction box 150. Weep holes 136 allow condensation or other moisture to drain from the annular space 109.
[0033] Referring to FIG. 6, wiring chamber 160 may comprise electrical conduit or the like, but may not be necessary for guiding biasing member 110 or upper support 102. Wiring chamber may include an adaptor 162. In some embodiments, the adaptor 162 and the wiring chamber 160 (or guide member 108) may be coupled through threaded engagement. Wiring seal 164 may be used to prevent ingress of moisture into wiring chamber 160 (or guide member 108). Wire 112 includes an elastically coiled portion 166, which is configured to conform to a length of a portion of the upper support above the locking mechanism. The elastically coiled portion 166 is configured such that, when the upper support 102 is lowered, the portion 166 will re-coil, thus preventing wiring 112 from bunching along the interior surface of the wiring chamber 160 (or guide member 108). [0034] The light fixture 122 is connected to the upper support 102. The illumination source of the light fixture 122 is powered through a connection to the electrical system, comprising a power source and wiring 1 12. The power source can be externally supplied or provided in a base, which may act as a support for the first pole. The wire is protected within the supports. More specifically, the wire is housed in the guide member or wiring chamber of the lower support and the interior chamber of the upper support. This positioning separates the wire from the spring assist system (e.g., biasing member 1 10). The provision of a separate housing for the wiring 1 12 is prevents the wire from interacting with or becoming damaged by the spring assist. In addition, the sealed conduit of the guide member or wiring chamber protects the wire from moisture, which can also be problematic.
[0035] FIGS. 7A-7L illustrate various modes of use including wall mounting and spring mounting. As will be apparent, various means of mounting the pole support system described above will occur to those of skill in the art.
[0036] Features of the present disclosure have been referred to herein using modifiers such as "upper" and "lower." These terms are used purely for convenience of description. As would be apparent to those of skill in the art, elements of the present disclosure may be installed and operate at various angles. Further, the elements described above as upper, lower, on top of, below, and the like may be reversed. FIG. 8 illustrates a pole support system for industrial lighting in accordance with embodiments of the present disclosure. Pole support system 800 comprises an upper support 806, a telescoping lower support 802 which retracts into the upper support 806 via the locking assembly. It is readily apparent that this configuration will have different associated advantages and disadvantages than the configurations above, but will operate in a similar manner by the telescoping support in conjunction with the spring assist.
[0037] The discussion above has focused primarily on embodiments of the disclosure for use with industrial light poles. Other embodiments may be used with other types of elongate objects, or in other environments. It should be understood that the inventive concepts disclosed herein are capable of many modifications. To the extent such modifications fall within the scope of the appended claims and their equivalents, they are intended to be covered by this patent.

Claims

CLAIMS What is claimed is:
1. A pole support system comprising: a tubular lower support; a guide member interior to the lower support, the guide member extending substantially along a length of the lower support; a telescoping upper support inside the lower support and axially movable between an extended position and a retracted position, the upper support being at least partially received in an annular space between the lower support and the guide member; a biasing member biasing the upper support to the extended position; and a locking assembly partially surrounding the lower support at one end of the lower support, the locking assembly comprising: a body having a passage in which the upper support slides therethrough, the body attached to the lower support to enclose the passage at a first end while maintaining the passage in fluid communication with the interior of the lower support; and a lock configured to selectably engage the upper support to constrain axial motion of the upper support.
2. The apparatus of claim 1 , wherein the biasing member comprises a spring in the annular space between the lower support and the housing.
3. The apparatus of claim 1 , wherein the body is attached to the lower support by at least one selectably sealingly engageable fastener.
4. The apparatus of claim 1 , wherein the guide member comprises fluid-tight tubular.
5. The apparatus of claim 1 , further comprising a base configured for coupling with the fluid-tight tubular and the lower support at corresponding ends opposite the locking assembly and configured to isolate an interior of the fluid-tight electrical conduit from the annular space between the lower support and the housing.
6. The apparatus of claim 5, wherein the base comprises a channel between the first end of the base and a second end of the base, the channel in fluid-tight communication with the fluid- tight tubular.
7. The apparatus of claim 1 , wherein the lock comprises a translational member configured to translate into the passage against the upper support.
8. The apparatus of claim 7, wherein the locking assembly further comprises a raised surface in the passage opposite the translational member.
9. The apparatus of claim 8, wherein the raised surface is a ledge.
10. The apparatus of claim 1 , further comprising electrical wiring, wherein a portion of the electrical wiring within the upper support is configured to conform to a length of a portion of the upper support above the locking mechanism.
1 1. The apparatus of claim 10, further comprising a wiring seal.
12. The apparatus of claim 1 , wherein the guide member is coaxial with a longitudinal axis of the lower support.
13. A pole support system comprising: a tubular lower support; a fluid-tight wiring chamber interior to the lower support, the wiring chamber extending substantially along a length of the lower support; a telescoping upper support inside the lower support and axially movable between an extended position and a retracted position, the upper support being at least partially received in an annular space between the lower support and the wiring chamber; a biasing member biasing the upper support to the extended position; and a locking assembly partially surrounding the lower support at one end of the lower support, the locking assembly comprising: a body having a passage in which the upper support slides therethrough, the body attached to the lower support to enclose the passage at a first end while maintaining the passage in fluid communication with the interior of the lower support; and a lock configured to selectably engage the upper support to constrain axial motion of the upper support.
14. The system of claim 13, wherein the wiring chamber blocks fluid flow from the interior of the lower support to a location exterior to the lower support.
15. A locking assembly for use in a pole support system, the locking assembly comprising: a body having a passage configured for sliding transmission of an upper support therethrough, the body configured for selectable sealing engagement to a tubular lower support to enclose the passage at a first end while maintaining the passage in fluid communication with the interior of the lower support; and a lock configured to selectably engage the upper support to constrain axial motion of the upper support.
16. A pole support system comprising: a tubular upper support; a guide member interior to the upper support, the guide member extending substantially along a length of the upper support; a telescoping lower support inside the upper support and axially movable between an extended position and a retracted position, the lower support being at least partially received in an annular space between the upper support and the guide member; a biasing member biasing the lower support to the extended position; and a locking assembly partially surrounding the upper support at one end of the upper support, the locking assembly comprising: a body having a passage in which the lower support slides therethrough, the body attached to the upper support to enclose the passage at a first end while maintaining the passage in fluid communication with the interior of the upper support; and a lock configured to selectably engage the lower support to constrain axial motion of the lower support.
17. The pole support system of claim 15, comprising a wiring chamber interior to the lower support.
18. The pole support system of claim 16, wherein the wiring chamber extends substantially along a length of the lower support.
19. A pole support system comprising: a tubular upper support; a wiring chamber interior to the upper support, the wiring chamber extending substantially along a length of the upper support; a telescoping lower support inside the upper support and axially movable between an extended position and a retracted position, the lower support being at least partially received in an annular space between the upper support and the wiring chamber; a biasing member biasing the lower support to the extended position; and a locking assembly partially surrounding the upper support at one end of the upper support, the locking assembly comprising: a body having a passage in which the lower support slides therethrough, the body attached to the upper support to enclose the passage at a first end while maintaining the passage in fluid communication with the interior of the upper support; and a lock configured to selectably engage the lower support to constrain axial motion of the lower support.
PCT/US2014/067194 2013-11-25 2014-11-24 Industrial lighting support system WO2015077732A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14863679.8A EP3074579B1 (en) 2013-11-25 2014-11-24 Pole support system
CA2931712A CA2931712C (en) 2013-11-25 2014-11-24 Industrial lighting support system
CN201480073906.4A CN106414872B (en) 2013-11-25 2014-11-24 Industrial lighting equipment support system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201361908540P 2013-11-25 2013-11-25
US61/908,540 2013-11-25
US14/175,666 2014-02-07
US14/175,666 US9732949B2 (en) 2013-11-25 2014-02-07 Industrial lighting support system
US201461939215P 2014-02-12 2014-02-12
US61/939,215 2014-02-12

Publications (1)

Publication Number Publication Date
WO2015077732A1 true WO2015077732A1 (en) 2015-05-28

Family

ID=53180277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/067194 WO2015077732A1 (en) 2013-11-25 2014-11-24 Industrial lighting support system

Country Status (1)

Country Link
WO (1) WO2015077732A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020139905A1 (en) * 2001-04-03 2002-10-03 Duncan Allen Gary Adjustable height seat support with suspension
US20070215764A1 (en) * 2006-03-14 2007-09-20 Stabilus Gmbh Height-adjustable column
US20120068026A1 (en) * 2010-09-21 2012-03-22 Foshan Nanhai Chevan Optical Electronics Co., Ltd. Telescopic tube locking structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020139905A1 (en) * 2001-04-03 2002-10-03 Duncan Allen Gary Adjustable height seat support with suspension
US20070215764A1 (en) * 2006-03-14 2007-09-20 Stabilus Gmbh Height-adjustable column
US20120068026A1 (en) * 2010-09-21 2012-03-22 Foshan Nanhai Chevan Optical Electronics Co., Ltd. Telescopic tube locking structure

Similar Documents

Publication Publication Date Title
US9732949B2 (en) Industrial lighting support system
US7550669B2 (en) Slip-joint connection for electric service conduit to service boxes
KR101145351B1 (en) Electric wire pipe for prevention of underground distribution line
RU166515U1 (en) CABLE FIXING PROTECTOR TO PUMP AND COMPRESSOR PIPES
KR101807991B1 (en) Weatherproof structure of streetlight
KR101116185B1 (en) Electric wire pipe for prevention of underground distribution line
US8544661B1 (en) Adjustable lower pole assembly
CA2931712C (en) Industrial lighting support system
WO2015077732A1 (en) Industrial lighting support system
KR102545935B1 (en) Post adjusting position for equipment
CA2964951C (en) Length alteration tool for lighting
CA2346234C (en) Ground expansion joint coupling
RU98219U1 (en) DEVICE FOR FIXING A POWER CABLE TO PIPES
KR101046397B1 (en) Connection apparatus for power-transmission line of transformer substation
CN205303738U (en) Electric wire netting earth connection
KR101597156B1 (en) Apparatus for relaxing tension of overhead line in electric power transmission tower
KR100591915B1 (en) A controllable valve operator of sluice-valve
KR102056171B1 (en) Electric wire pipe apparatus of high voltage distribution line
CN114001223B (en) Multi-channel adapter capable of preventing lightning stroke
RU2370623C9 (en) Facility for securing cable to pipeline assembled in well
RU41486U1 (en) PROTECTOR FOR FIXING ELECTRIC CABLE TO SUBMERSIBLE PUMP INSTALLATION
CN219732161U (en) Fire hydrant box
CN215980344U (en) Anticorrosive dust keeper of equipment bolt
CN215169871U (en) Sealing device for Christmas tree
KR102313346B1 (en) Switchboard connection terminal apparatus of underground distribution line

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863679

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2931712

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/006885

Country of ref document: MX

REEP Request for entry into the european phase

Ref document number: 2014863679

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014863679

Country of ref document: EP