WO2015076272A1 - Anodized aluminum alloy member having excellent heat resistance - Google Patents

Anodized aluminum alloy member having excellent heat resistance Download PDF

Info

Publication number
WO2015076272A1
WO2015076272A1 PCT/JP2014/080547 JP2014080547W WO2015076272A1 WO 2015076272 A1 WO2015076272 A1 WO 2015076272A1 JP 2014080547 W JP2014080547 W JP 2014080547W WO 2015076272 A1 WO2015076272 A1 WO 2015076272A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
anodized
film
alloy member
insulator
Prior art date
Application number
PCT/JP2014/080547
Other languages
French (fr)
Japanese (ja)
Inventor
高田 悟
角王 飯沼
範洋 慈幸
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2015076272A1 publication Critical patent/WO2015076272A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/142Metallic substrates having insulating layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/08Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing inorganic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/10Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing organic acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an anodized aluminum alloy member useful for an insulating member for electronics.
  • an anodized aluminum alloy member applied to an insulating member for a semiconductor or liquid crystal such as a CPU (Central Processing Unit), a power device, an LED (Light Emitting Diode), a solar cell, etc.
  • the present invention relates to an anodized aluminum alloy member capable of suppressing the occurrence of cracks at a higher temperature while simultaneously achieving high voltage resistance, large volume resistivity) and good heat dissipation.
  • members that are applied to semiconductors and liquid crystals such as CPUs (Central Processing Units), power devices, LEDs (Light Emitting Diodes), and solar cells, generate a lot of heat from these elements. At the same time, heat dissipation is required to be good.
  • insulating members materials for members that require such characteristics
  • alumina Al 2 O 3
  • silicon nitride Si 3 N 4
  • aluminum nitride AlN
  • Ceramics have been used. However, these materials are very expensive and may be cracked because they are ceramics.
  • the volume resistivity (electrical resistivity) must be large and the withstand voltage must be high. From the viewpoint of heat dissipation, the thinner the film itself, the better the heat dissipation. Therefore, the withstand voltage per unit film thickness (voltage value when a predetermined current flows: hereinafter referred to simply as “withstand voltage”). High) is desirable.
  • the insulation module manufacturing process using an insulating member may be exposed to a high temperature atmosphere, and therefore has heat resistance (high temperature crack resistance) so that cracks do not occur at high temperatures. It is also important.
  • an aluminum alloy member (anodized film-treated aluminum alloy member) in which an anodized film is formed on the surface of an aluminum alloy as an insulating member has also been studied.
  • Various techniques for improving the characteristics of the anodized film-treated aluminum alloy member have been proposed so far.
  • Patent Document 1 discloses a technique for improving the voltage resistance of a member by increasing the purity of an aluminum alloy used as a metal substrate to reduce the number of intermetallic compounds in the substrate. Proposed.
  • anodized aluminum alloy member there is a concern that cracks may occur in the anodized film at high temperatures, resulting in a decrease in insulation.
  • Patent Document 2 proposes a metal substrate with an insulating layer for solar cells, in which the withstand voltage is improved by reducing metal Si in the aluminum alloy as much as possible. Also in this technique, only the anodic oxide film is formed on the surface of the base material, and there is a problem that the leakage current tends to increase on the high voltage side and the insulating property tends to decrease.
  • the present invention has been made by paying attention to the circumstances as described above, and its purpose is to achieve both high insulation (high voltage resistance, large volume resistivity) and good heat dissipation, as well as heat resistance ( An object of the present invention is to provide an anodized aluminum alloy member excellent in high temperature crack resistance).
  • the anodized aluminum alloy member of the present invention that has achieved the above object is, in mass%, Cu: 0.02% to 4.0%, Si: 0.05%, Fe: 0.05%
  • a maximum length existing in the anodic oxide film which is composed of a base material made of an aluminum alloy satisfying the following (hereinafter also referred to as “aluminum alloy base material”) and an anodic oxide film formed on the surface of the base material.
  • aluminum alloy base material aluminum alloy base material
  • the aluminum alloy preferably further contains, by mass%, Mg: more than 3.5% and 6.5% or less. It is also a preferable requirement that the number of intermetallic compounds per 1 mm 2 is 15 or less.
  • the thickness D of the anodized film is preferably 8 ⁇ m or more and 150 ⁇ m or less.
  • the thickness d of the insulator from the surface of the anodized film is 10 ⁇ m or less, and the ratio (D / d) of the thickness D of the anodized film to the thickness d of the insulator is 2 or more. Is preferred.
  • the anodized film is preferably formed of (a) an anodizing solution containing at least oxalic acid, or (b) an anodizing solution containing at least oxalic acid and phosphoric acid.
  • the insulator examples include silicon oxide, siloxane resin, polysilazane, silicon nitride, zirconium oxide, titanium oxide, titanium nitride, aluminum oxide, and a compound containing aluminum nitride, or these compounds And compounds containing at least one of the basic skeletons and containing a hydrophobic group.
  • the contact angle with water at the surface portion of the composite coating structure is 75 ° or more.
  • a composite film structure (an anodized film coated with an insulator) necessary for insulation is necessary for insulation. Therefore, it is desirable that only one surface necessary for insulation has a composite film structure. Because the anodized film is formed by dipping in a solution and subjecting it to electrolytic treatment, a film is basically formed on the entire surface of the member, but the part necessary for insulation is basically one side, Another reason is that it hinders heat dissipation.
  • a structure in which a semiconductor element is placed on the side without the composite coating structure is (1) A semiconductor element is bonded to a portion of the aluminum alloy substrate surface that is not coated with the anodized film and the insulator, or (2) the anodized film and the insulator are formed on the surface of the aluminum alloy substrate.
  • the semiconductor element may be in contact with an uncoated portion with copper or a copper alloy, or aluminum or an aluminum alloy interposed therebetween.
  • the aluminum alloy member of the present invention is used for the cooling structure, and the composite film structure of the present invention is arranged on the aluminum alloy member. That is, (3) The surface of the aluminum alloy substrate is configured such that the cooling solution is in contact with a portion where the anodized film and the insulator are not coated.
  • the chemical composition of an aluminum alloy used as a base material and the size and number of intermetallic compounds present in the anodized film are appropriately defined, and at least a part of the anodized film is coated with an insulator.
  • an anodized aluminum alloy member having high insulation, good heat dissipation, and heat resistance (high temperature crack resistance) can be realized by forming a composite film structure with a surface modification.
  • Such anodized aluminum The alloy member is extremely useful as an insulating member applied to semiconductors such as CPU (Central Processing Unit), power devices, LEDs (Light Emitting Diode), solar cells, and liquid crystals.
  • the present inventors aim to realize an anodized aluminum alloy member that has both high insulation (high voltage resistance, large volume resistivity) and good heat dissipation, and also has high temperature crack resistance. Considered from various angles. As a result, the chemical composition of the aluminum alloy used as the base material and the size and number of intermetallic compounds present in the anodized film should be properly specified, and at least a part of the anodized film should be covered or surface-modified with an insulator. The present invention has been completed by finding that the composite film structure can have these characteristics. Hereinafter, each requirement prescribed
  • the aluminum alloy used as a substrate in the present invention contains a predetermined amount of Cu, and the reason for limiting the range of this component is as follows.
  • each chemical component amount (%) means mass%. In the present specification, the percentage based on mass (% by mass) is the same as the percentage based on weight (% by weight).
  • Cu is an element effective for improving the heat resistance (high-temperature crack resistance) of the anodized film, and its performance is further improved particularly when Mg coexists. From such a viewpoint, it is necessary to contain Cu by 0.02% or more.
  • the Cu content is preferably 0.03% or more. Further, when Mg is not included in the components of the aluminum alloy, the Cu content is preferably 0.1% or more, and more preferably 0.5% or more.
  • Cu is an element that improves the strength. By increasing the strength, the thickness of the base material can be reduced, so that heat dissipation is improved (reducing thermal resistance: reducing obstacles to heat conduction). Can do. However, if the Cu content is excessive and exceeds 4.0%, the strength becomes too high and rolling becomes difficult.
  • the Cu content is preferably 3.0% or less.
  • the basic components in the aluminum alloy of the present invention are as described above, and the balance is Al and unavoidable impurities, but Si and Fe in the unavoidable impurities must be suppressed as follows. Further, it can be allowed to contain Mg, Cr, Zn or the like as required.
  • Fe produces an Al—Fe intermetallic compound
  • Si produces an Mg—Si intermetallic compound
  • these intermetallic compounds cause a decrease in voltage resistance.
  • it is necessary to suppress both to 0.05% or less.
  • it is preferable to make each 0.02% or less.
  • Mg is an element that improves the strength of the base material. By increasing the strength, the thickness of the base material can be reduced, so that heat dissipation can be increased (heat resistance can be reduced). Moreover, the higher the Mg content in the aluminum alloy, the faster the film formation rate of the anodized film, and the lower the production cost. For these reasons, the Mg content in the aluminum alloy is desirably contained in excess of 3.5%, more preferably 3.6% or more. However, if the Mg content is excessive and exceeds 6.5%, rolling cracks are likely to occur in the aluminum alloy, which makes rolling difficult. The Mg content is more preferably 6.0% or less.
  • Cr 0.02% to 0.1%)
  • Cr is an element effective for improving the strength (by refining of recrystallized grains).
  • the Cr content is more preferably 0.03% or more, and still more preferably 0.04% or more. However, if the Cr content is excessive and exceeds 0.1%, the crystallized product size becomes coarse.
  • the Cr content is more preferably 0.08% or less, still more preferably 0.07% or less.
  • Zn 0.5% or less
  • the voids formed by melting the intermetallic compound in the aluminum alloy during anodic oxidation are filled with an insulator in the subsequent insulator introduction process, or a part of the inner surface of the void is covered or surfaced. Since the modification is performed, a decrease in withstand voltage at this portion is suppressed. For this reason, the conditions that do not greatly affect the voltage resistance without completing the dissolution are that the size (maximum length) of the intermetallic compound present in the anodized film is 4 ⁇ m or more, and the number is arbitrary. It is necessary to make it 40 or less (40 pieces / mm 2 ) per 1 mm 2 in cross section. If this requirement is satisfied, sufficient voltage resistance can be exhibited.
  • the number is preferably 15 pieces / mm 2 or less (more preferably 10 pieces / mm 2 or less).
  • the intermetallic compound to be measured in the present invention is an Al—Fe based intermetallic compound, an Mg—Si based intermetallic compound, or non-solid solution Cu.
  • the anodized aluminum alloy member of the present invention is obtained by forming an anodized film on the entire surface or a part (including one surface) of the base material made of the aluminum alloy as described above. It is preferable to use an anodizing solution containing at least oxalic acid or an anodizing solution containing at least oxalic acid and phosphoric acid. This is because high temperature crack resistance can be improved by forming an oxalic acid-based film on the aluminum alloy substrate.
  • examples of the general anodizing solution include organic acids such as oxalic acid and formic acid, and inorganic acids such as phosphoric acid, chromic acid, and sulfuric acid, but withstand voltage resistance while significantly reducing the occurrence of cracks at high temperatures.
  • organic acids such as oxalic acid and formic acid
  • inorganic acids such as phosphoric acid, chromic acid, and sulfuric acid
  • an anodizing solution containing at least oxalic acid it is preferable to use an anodizing solution containing at least oxalic acid.
  • the oxalic acid concentration in the anodizing solution may be appropriately controlled so that the desired action and effect can be effectively exhibited. However, it is preferably controlled in the range of about 10 to 40 g / L. (More preferably about 15 to 35 g / L).
  • the insulator (or a precursor thereof) covers at least a part of the surface of the anodic oxide film (including coating by filling micropores), or It becomes easy to have a composite film structure with surface modification.
  • the mixed acid of oxalic acid and phosphoric acid that is, an anodizing treatment solution containing at least oxalic acid and phosphoric acid, a predetermined thickness can be ensured and a high resistivity is ensured while ensuring a withstand voltage. Realization is possible.
  • the phosphoric acid concentration in the treatment liquid is too high, it is difficult to increase the thickness of the film.
  • the lower limit of the concentration of P is sufficient if P is included even slightly.
  • P may be introduced into the film by immersing it in a phosphoric acid solution after forming the anodized film with a solution containing an oxalic acid solution.
  • the temperature (liquid temperature) at the time of anodizing treatment may be set within a range where productivity is not lost and the dissolution of the film does not occur remarkably, and is generally preferably 0 ° C. to 50 ° C.
  • the voltage (electrolysis voltage) during the anodizing treatment is preferably about 5 to 150 V (more preferably 15 to 120 V).
  • the current density of the current that flows during the anodizing treatment is preferably 100 A / dm 2 or less (more preferably 30 A / dm 2 or less, still more preferably 5 A / dm 2 or less).
  • these conditions relate to the composition of the electrolytic treatment solution to be used, the temperature at which the anodic oxidation treatment is performed, the chemical component composition described, and the like, these conditions may be set as appropriate.
  • the thickness of the anodized film to be formed is an important factor responsible for withstand voltage, and may be adjusted according to specifications, but is preferably 8 ⁇ m or more (more preferably 15 ⁇ m or more) from the viewpoint of withstand voltage. From the viewpoint of heat resistance (high temperature crack resistance) and heat dissipation, the thickness of the anodic oxide film to be formed is preferably 150 ⁇ m or less, more preferably 100 ⁇ m or less.
  • the anodized film has a composite film structure in which the surface is coated or surface-modified with an insulator.
  • a composite film structure means that an insulating material covers or modifies at least a part of the surface of the anodic oxide film in which fine pores are present (including coating by filling micropores).
  • a structure in which an insulator is laminated on the anodized film is also included.
  • the large surface area of the surface of the anodized film where micropores exist can be reduced by filling the micropores. Further, although the surface resistance is lowered due to the adhesion of moisture, the adhesion moisture can be reduced by coating or surface modification with an insulator. That is, the volume resistivity can be improved.
  • the structure is such that the fine pores of the anodized film are filled with an insulator, it has the effect of making the film stress in the compressing direction, and therefore acts advantageously from the viewpoint of heat resistance.
  • the lamination on the anodized film is desired to be as thin as possible from the viewpoint of reducing the thermal resistance (reducing the obstacle of heat transfer).
  • the thickness of the insulator is desirably 10 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • the insulator From the viewpoint of volume resistivity, it is necessary for the insulator to cover or modify at least a part of the surface of the anodized film, and at least a part of the pores are filled, covered, or surface-modified. It is more desirable.
  • element identification in a micropore by EDX etc. is mentioned. More preferably, at least a part of the fine holes is filled with an insulating material, coated, or surface-modified, and the thickness on the anodized film is 0.001 ⁇ m or more.
  • the ratio of the thickness D of the anodized film to the thickness d of the insulator should be set to 2 or more. Is preferable (more preferably 5 or more). From the standpoint of increasing the volume resistivity, the upper limit value of this ratio (D / d) is not particularly defined since it is sufficient that the insulator covers and / or modifies at least part of the anodized film. However, from the viewpoint of coating and surface modification, it is preferably set to 100,000 or less (more preferably 50000 or less).
  • the insulator used in the present invention from the viewpoint of volume resistivity, the insulator itself preferably has a high volume resistivity, and more preferably has little moisture adsorption. Further, from the viewpoint of heat resistance, heat resistance is preferable.
  • the insulator used in the present invention is not particularly defined.
  • silicon oxide SiO 2 or the like
  • siloxane resin siloxane-based SOG or the like
  • polysilazane including heat-treated material
  • silicon nitride Si 3) N 4 etc.
  • zirconium oxide ZrO 2 etc.
  • titanium oxide TiO 2 etc.
  • titanium nitride TiN etc.
  • aluminum oxide Al 2 O 3
  • aluminum nitride AlN etc.
  • a compound containing at least one of these, or a compound containing at least one of the basic skeletons of these compounds, etc. can be appropriately selected and used.
  • These compounds may contain organic substances, organic components, and the like.
  • a hydrophobic group hydrophobic functional group
  • the surface portion of the composite film structure in which at least a part of the anodized film is coated or surface-modified with an insulating material has a water contact angle of 75 ° or more. It is preferable that A high contact angle means that the surface portion of the composite film structure is hydrophobized, the amount of water present in the surface portion can be reduced, and the electrical resistance at the surface portion can be increased. As a result, the volume resistivity can be further increased.
  • Increasing the contact angle is achieved by including a hydrophobic group such as a fluoro group or an alkyl group in the insulator as described above. This contact angle is more preferably 85 ° or more, and still more preferably 95 ° or more.
  • the upper limit of the contact angle is not particularly limited, but is about 160 ° or less (particularly 130 ° or less).
  • the above-mentioned various substances are applied to chemical vapor phase methods such as CVD, electrochemical processes such as dip coating, spin coating, spray coating, roll coating, screen coating electroless wet process, and electrodeposition. Can be adopted. Further, the compound thus introduced may be polymerized by heat treatment, ultraviolet irradiation, etc., and chemical bonding with the anodized film may be promoted.
  • siloxane-based SOG spin-on-glass
  • a siloxane polymer having a Si—O—Si bond is spin-coated on the surface of the anodized film, and then predetermined What is necessary is just to dry and heat in atmosphere.
  • polysilazane having a Si—N bond and having a basic unit of (—R 1 SiR 2 —NR 3 ) [R 1 , R 2 , R 3 are H or an alkyl group] is spin-coated on the surface of the anodized film. Then, it may be dried and heated in a predetermined atmosphere (see Examples below).
  • the composite anodic oxide film / insulator composite film structure produced as described above is preferably thin from the viewpoint of improving heat dissipation, and thick from the viewpoint of increasing insulation. In order to make these characteristics compatible, it is recommended that the withstand voltage per unit film thickness is high. For these reasons, the withstand voltage per unit film thickness is preferably 50 V / ⁇ m or more, and more preferably 60 V / ⁇ m or more.
  • the anodized aluminum alloy member of the present invention is characterized in that an anodized film and an insulator are formed on at least a part of an aluminum alloy used as a base material. That is, the entire surface of the aluminum alloy base material may have a composite film structure of this anodized film and insulator, but it is sufficient that a part of the aluminum alloy base material has this structure.
  • a member having a composite film structure on one side is manufactured, and the semiconductor element is directly bonded to the aluminum alloy side without the composite film structure, or via a copper (including copper alloy) material.
  • Solder or brazing material can be used for joining at this time, but the method is not particularly specified.
  • the copper material refers to copper or a copper alloy, and a clad material of aluminum and copper (including copper alloy) or a copper foil (copper alloy) may be formed by a dry process or plating. It is not specified.
  • the device may be arranged directly on the composite film structure side or via a copper material.
  • the said insulator can also be used instead of an adhesive agent.
  • the composite film structure can also be formed directly on the aluminum alloy of the cooling base material. Further, the side of the composite film structure can be joined to the cooling side, and the joining method is not limited, but the insulator can be used for joining with the cooler.
  • the aluminum alloy having the chemical composition shown in Table 1 below is subjected to homogenization heat treatment at a temperature of 500 ° C. at a temperature of 500 ° C., and cold-rolled until the plate thickness reaches 1.5 mm, by a conventional method. Then, annealing was performed at a temperature of 350 ° C., a 45 mm ⁇ 45 mm ⁇ 1.5 mm t base material was cut out, and the surface was ground by 50 ⁇ m to prepare a sample.
  • “-” indicates no addition (below the measurement limit).
  • the sample (base material) cut out as described above was immersed in a 50 ° C.-15% NaOH aqueous solution for 2 minutes as a degreasing step, and then washed with water.
  • the sample that had undergone the above degreasing step was immersed in a 40 ° C.-20% nitric acid solution for 2 minutes and then washed with water to clean the surface.
  • the surface of the obtained anodized aluminum alloy member was coated with a siloxane polymer or polysilazane as a raw material to form an insulator.
  • spin coating was performed with a siloxane polymer in which 15% by mass of methyl groups in total were bonded to Si atoms of the Si—O—Si bond (siloxane bond), and 350 ° C. (nitrogen atmosphere).
  • a siloxane polymer in which 15% by mass of methyl groups in total were bonded to Si atoms of the Si—O—Si bond (siloxane bond), and 350 ° C. (nitrogen atmosphere).
  • the film thickness was adjusted by diluting the chemical solution (using IPA) and adjusting the spin coating conditions, and increasing the film thickness by repeating the above steps several times.
  • a compound in which two methyl groups are bonded to Si atoms constituting the monomer unit in all monomer units and one methyl group is further bonded to N atoms is diluted with butyl acetate. Thereafter, spin coating was performed, and heating was performed at 200 ° C. (atmospheric atmosphere) for 0.5 hour to form an insulator on the anodized film.
  • the thickness d of the insulator was estimated from the cross section SEM of the sample. Further, when the micropores of the anodized film and the elements present on the film surface were investigated by EDX analysis, Si was not detected in the sample in which the insulator was not formed (Trial No. 7), but siloxane or polysilazane was added. From the sample used as a raw material, Si was detected from the micropores and the coating surface.
  • the size and number of intermetallic compounds in the anodized film, the occurrence of high temperature cracks on the insulator surface, and the thickness D of the anodized film are measured by the following methods.
  • the obtained anodized aluminum alloy member (formed with an insulator) (Test Nos. 1 to 10, but Test No. 7 does not form an insulator) was contacted with water by the following method.
  • the corners, volume resistivity and withstand voltage (average withstand voltage) were evaluated.
  • the thickness D of the anodized film was measured using an eddy current film thickness meter. In the measurement, the same part was measured five times, the average value was taken as the thickness of the part, the sample was measured at five places (so that the whole measurement was possible), and the average was taken as the thickness D of the anodized film.
  • 7) of the anodized film is 2.3 ⁇ 10 9 (2.3E9) ⁇ cm, and the volume resistivity is not sufficient.
  • a volume resistivity of 1.0 ⁇ 10 12 (1E12) ⁇ cm or more, which is improved by 3 digits or more, is assumed to be a good volume resistivity, and 1.0 ⁇ 10 12 (1E12) ⁇ cm or more, 1.0 ⁇ 10 13 (1E13) ) Less than ⁇ cm was accepted ( ⁇ ), and 1.0 ⁇ 10 13 (1E13) ⁇ cm or more was judged as excellent ( ⁇ ) [less than 1.0 ⁇ 10 12 (1E12) ⁇ cm was rejected ( ⁇ )].
  • the withstand voltage of each sample was measured by using a withstand voltage tester (“GPT-9802”, trade name: Instec Co., Ltd., DC mode), connecting the + terminal to the gold electrode probe and contacting it on the anodized film.
  • The-terminal is connected to an aluminum alloy substrate, a DC voltage (DC voltage) is gradually applied, and the voltage (average value at 10 measured points) when a current of 1 mA or more flows is defined as the average withstand voltage. did.
  • measurement in order to avoid creeping discharge, measurement was performed while N 2 gas was blown onto the gold electrode.
  • the withstand voltage (V / ⁇ m) per unit thickness was determined by dividing the measured average withstand voltage by the thickness (total thickness) of the hybrid structure.
  • the withstand voltage per unit film thickness is high, the film thickness for producing the specified withstand voltage can be reduced, and the heat dissipation can be improved. Therefore, this value passes 50 V / ⁇ m or more ( ⁇ ), 60 V / ⁇ m or more was considered excellent (() [less than 50 V / ⁇ m is rejected ( ⁇ )].
  • test no. Examples 1 to 6 are examples that satisfy the requirements defined in the present invention, and it can be seen that good voltage resistance is exhibited without cracks occurring at high temperatures. Moreover, the volume resistivity also shows a high value.
  • test no. Examples 7 to 10 are examples that do not satisfy the requirements defined in the present invention, and any of the characteristics is deteriorated. That is, test no. 7 is an anodized aluminum alloy member which does not form an insulator having a composite structure, has a small contact angle with water, and has a volume resistivity of 2.3 ⁇ 10 9 (2.3E9) ⁇ cm. It is low.
  • Test No. Nos. 8 and 10 are those using an aluminum alloy with insufficient Cu content (not added) as a base material, and the high temperature crack resistance is deteriorated (voltage resistance and volume resistivity are not measured). ).
  • Test No. No. 9 uses an aluminum alloy containing excess Si and Fe as a base material, and the number of intermetallic compounds is increased due to excess Si and Fe, resulting in insufficient voltage resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

An anodized aluminum alloy member according to the present invention comprises a base material and an anodic oxide coating film formed on the surface of the base material, wherein the base material comprises an aluminum alloy that containing, in % by mass, 0.02 to 4.0% inclusive of Cu, 0.05% or less of Si and 0.05% or less of Fe, the number of particles of an intermetallic compound which exist in the anodic oxide coating film and have a maximum length of 4 μm or more is 40 particles per 1 mm2 on an arbitrary cross section of the anodic oxide coating film, and at least a part of the anodic oxide coating film has such a composite coating film structure that the surface of the part is coated or modified with an insulating material. The anodized aluminum alloy member according to the present invention has both high insulation performance and good heat-dissipating performance and also has excellent heat resistance (cracking resistance at higher temperatures).

Description

耐熱性に優れた陽極酸化処理アルミニウム合金部材Anodized aluminum alloy member with excellent heat resistance
 本発明は、エレクトロニクス向け絶縁部材に有用な陽極酸化処理アルミニウム合金部材に関するものである。例えば、CPU(Central Processing Unit)、パワーデバイス、LED(Light Emitting Diode)、太陽電池等の半導体や液晶に関する絶縁部材に適用される陽極酸化処理アルミニウム合金部材に関するものであり、特に、高い絶縁性(高い耐電圧性、大きい体積抵抗率)、および良好な放熱性を両立しつつ、更に高温でのクラックの発生を抑制できる陽極酸化処理アルミニウム合金部材に関するものである。 The present invention relates to an anodized aluminum alloy member useful for an insulating member for electronics. For example, it relates to an anodized aluminum alloy member applied to an insulating member for a semiconductor or liquid crystal such as a CPU (Central Processing Unit), a power device, an LED (Light Emitting Diode), a solar cell, etc. The present invention relates to an anodized aluminum alloy member capable of suppressing the occurrence of cracks at a higher temperature while simultaneously achieving high voltage resistance, large volume resistivity) and good heat dissipation.
 例えば、CPU(Central Processing Unit)、パワーデバイス、LED(Light Emitting Diode)、太陽電池等の半導体や液晶に適用される部材には、これらの素子から多くの熱が発生することから、高い絶縁性と共に放熱性が良好であることが要求される。こうした特性が要求される部材(以下、こうした部材を「絶縁部材」と呼ぶ)の素材としては、これまでアルミナ(Al23)、窒化珪素(Si34)、窒化アルミ(AlN)等のセラミックスが使用されてきた。しかしながら、これらの素材は、非常に高価であり、またセラミックスであるがゆえに割れが発生する恐れがある。 For example, members that are applied to semiconductors and liquid crystals, such as CPUs (Central Processing Units), power devices, LEDs (Light Emitting Diodes), and solar cells, generate a lot of heat from these elements. At the same time, heat dissipation is required to be good. As materials for members that require such characteristics (hereinafter referred to as “insulating members”), alumina (Al 2 O 3 ), silicon nitride (Si 3 N 4 ), aluminum nitride (AlN), etc. Ceramics have been used. However, these materials are very expensive and may be cracked because they are ceramics.
 低コスト、高い絶縁性および良好な放熱性を具備する素材として、高い絶縁性および良好な放熱性を有するフィラーを含む樹脂を金属基板表面にコートした絶縁層付基板や、陽極酸化皮膜を絶縁層とする試みがなされている。 As a material with low cost, high insulation and good heat dissipation, a substrate with an insulating layer coated with a resin containing a filler having high insulation and good heat dissipation on the surface of the metal substrate, and an anodized film as an insulating layer Attempts have been made.
 絶縁性に関しては、体積抵抗率(電気抵抗率)が大きく、耐電圧性が高い必要がある。また、放熱性の観点からは、皮膜自体の厚みが薄いほど放熱性が向上することから、単位膜厚当たりの耐電圧(所定電流が流れるときの電圧値:以下、単に「耐電圧」と呼ぶことがある)が高いことが望ましい。また、絶縁部材を用いた絶縁モジュール製造プロセスにおいては、高温雰囲気に曝されることがあることから、高温でのクラック発生が生じない様な耐熱性(耐高温クラック性)を有していることも重要である。 As for insulation, the volume resistivity (electrical resistivity) must be large and the withstand voltage must be high. From the viewpoint of heat dissipation, the thinner the film itself, the better the heat dissipation. Therefore, the withstand voltage per unit film thickness (voltage value when a predetermined current flows: hereinafter referred to simply as “withstand voltage”). High) is desirable. In addition, the insulation module manufacturing process using an insulating member may be exposed to a high temperature atmosphere, and therefore has heat resistance (high temperature crack resistance) so that cracks do not occur at high temperatures. It is also important.
 アルミニウム合金の表面に陽極酸化皮膜を形成したアルミニウム合金部材(陽極酸化皮膜処理アルミニウム合金部材)を、絶縁部材として用いることも検討されている。また、陽極酸化皮膜処理アルミニウム合金部材の特性を改善するための技術についても、これまでに様々提案されている。 The use of an aluminum alloy member (anodized film-treated aluminum alloy member) in which an anodized film is formed on the surface of an aluminum alloy as an insulating member has also been studied. Various techniques for improving the characteristics of the anodized film-treated aluminum alloy member have been proposed so far.
 このような技術として、例えば、特許文献1には、金属基材として用いるアルミニウム合金の純度を上げることによって、基材中の金属間化合物の個数を減らし、部材の耐電圧性を改善する技術が提案されている。しかしながら、このような陽極酸化処理アルミニウム合金部材では、高温下において陽極酸化皮膜にクラックが発生することがあり、絶縁性が低下することが懸念される。 As such a technique, for example, Patent Document 1 discloses a technique for improving the voltage resistance of a member by increasing the purity of an aluminum alloy used as a metal substrate to reduce the number of intermetallic compounds in the substrate. Proposed. However, in such an anodized aluminum alloy member, there is a concern that cracks may occur in the anodized film at high temperatures, resulting in a decrease in insulation.
 一方、特許文献2には、アルミニウム合金中の金属Siをできるだけ低減することによって耐電圧性を改善した、太陽電池用絶縁層付き金属基材が提案されている。この技術においても、基材表面には陽極酸化皮膜だけが形成されたものであり、高電圧側で漏れ電流が増加しやすく、絶縁性が低下しやすいという問題がある。 On the other hand, Patent Document 2 proposes a metal substrate with an insulating layer for solar cells, in which the withstand voltage is improved by reducing metal Si in the aluminum alloy as much as possible. Also in this technique, only the anodic oxide film is formed on the surface of the base material, and there is a problem that the leakage current tends to increase on the high voltage side and the insulating property tends to decrease.
日本国特開2002-241992号公報Japanese Unexamined Patent Publication No. 2002-241992 日本国特開2010-283342号公報Japanese Unexamined Patent Publication No. 2010-283342
 本発明は上記のような事情に着目してなされたものであって、その目的は、高い絶縁性(高い耐電圧性、大きい体積抵抗率)および良好な放熱性を両立すると共に、耐熱性(高温耐クラック性)にも優れた陽極酸化処理アルミニウム合金部材を提供することにある。 The present invention has been made by paying attention to the circumstances as described above, and its purpose is to achieve both high insulation (high voltage resistance, large volume resistivity) and good heat dissipation, as well as heat resistance ( An object of the present invention is to provide an anodized aluminum alloy member excellent in high temperature crack resistance).
 上記目的を達成することのできた本発明の陽極酸化処理アルミニウム合金部材は、質量%で、Cu:0.02%以上4.0%以下、Si:0.05%以下、Fe:0.05%以下を満足するアルミニウム合金からなる基材(以下、「アルミニウム合金基材」ともいう)と、前記基材表面に形成された陽極酸化皮膜とから構成され、前記陽極酸化皮膜中に存在する最大長さが4μm以上の金属間化合物の任意断面での1mm2当たりの個数が40個以下であり、且つ前記陽極酸化皮膜の少なくとも一部が、その表面を絶縁物で被覆または表面修飾した複合皮膜構造になっていることを特徴とする。 The anodized aluminum alloy member of the present invention that has achieved the above object is, in mass%, Cu: 0.02% to 4.0%, Si: 0.05%, Fe: 0.05% A maximum length existing in the anodic oxide film, which is composed of a base material made of an aluminum alloy satisfying the following (hereinafter also referred to as “aluminum alloy base material”) and an anodic oxide film formed on the surface of the base material. A composite film structure in which the number of intermetallic compounds having a thickness of 4 μm or more per 1 mm 2 in an arbitrary cross section is 40 or less, and at least a part of the anodized film is coated or surface-modified with an insulator. It is characterized by becoming.
 本発明の陽極酸化処理アルミニウム合金部材において、前記アルミニウム合金は、更に、質量%で、Mg:3.5%を超え6.5%以下で含有するものが好ましい。また、前記金属間化合物の1mm2当たりの個数が15個以下であることも好ましい要件である。 In the anodized aluminum alloy member of the present invention, the aluminum alloy preferably further contains, by mass%, Mg: more than 3.5% and 6.5% or less. It is also a preferable requirement that the number of intermetallic compounds per 1 mm 2 is 15 or less.
 前記陽極酸化皮膜の厚みDは、8μm以上150μm以下であることが好ましい。また、前記陽極酸化皮膜表面からの前記絶縁物の厚みdは、10μm以下であり、且つ前記陽極酸化皮膜の厚みDと前記絶縁物の厚みdの比(D/d)が2以上であることが好ましい。 The thickness D of the anodized film is preferably 8 μm or more and 150 μm or less. The thickness d of the insulator from the surface of the anodized film is 10 μm or less, and the ratio (D / d) of the thickness D of the anodized film to the thickness d of the insulator is 2 or more. Is preferred.
 前記陽極酸化皮膜は、(a)少なくともシュウ酸を含む陽極酸化処理液、または(b)少なくともシュウ酸とリン酸を含む陽極酸化処理液で形成されたものであることが好ましい。 The anodized film is preferably formed of (a) an anodizing solution containing at least oxalic acid, or (b) an anodizing solution containing at least oxalic acid and phosphoric acid.
 前記絶縁物としては、珪素酸化物、シロキサン樹脂、ポリシラザン、珪素窒化物、ジルコニウム酸化物、チタン酸化物、チタン窒化物、アルミ酸化物およびアルミ窒化物の少なくともいずれかを含む化合物、またはこれらの化合物の基本骨格の少なくともいずれかを含む化合物であり、且つ疎水基を含むものが挙げられる。 Examples of the insulator include silicon oxide, siloxane resin, polysilazane, silicon nitride, zirconium oxide, titanium oxide, titanium nitride, aluminum oxide, and a compound containing aluminum nitride, or these compounds And compounds containing at least one of the basic skeletons and containing a hydrophobic group.
 本発明の陽極酸化処理アルミニウム合金部材において、前記複合皮膜構造の表面部分での水に対する接触角が75°以上であることが好ましい。 In the anodized aluminum alloy member of the present invention, it is preferable that the contact angle with water at the surface portion of the composite coating structure is 75 ° or more.
 例えば、パワーモジュールの絶縁・放熱構造において、本発明の陽極酸化処理アルミニウム合金部材における好ましい実施形態としては、絶縁に必要となる複合皮膜構造(絶縁物を被覆した陽極酸化皮膜)が、絶縁に必要な部分にのみ存在することであり、こうしたことから絶縁に必要な片面だけが複合皮膜構造になっていることが望ましい。なぜなら、陽極酸化皮膜は、溶液に浸漬し電解処理を施すことによって形成されることから、基本的に部材全面に皮膜が形成されるが、絶縁に必要な部分は基本的には片面であり、もう一面は放熱性の妨げになるからである。 For example, in a power module insulation / heat dissipating structure, as a preferred embodiment of the anodized aluminum alloy member of the present invention, a composite film structure (an anodized film coated with an insulator) necessary for insulation is necessary for insulation. Therefore, it is desirable that only one surface necessary for insulation has a composite film structure. Because the anodized film is formed by dipping in a solution and subjecting it to electrolytic treatment, a film is basically formed on the entire surface of the member, but the part necessary for insulation is basically one side, Another reason is that it hinders heat dissipation.
 即ち、絶縁に必要な部分のみ複合皮膜構造になっていればよく、例えば、片面に複合皮膜構造をつけた複合部材において、複合皮膜構造が無いサイドに半導体素子を置く構造としては、(1)前記アルミニウム合金基材表面で、陽極酸化皮膜と絶縁物が被覆されていない部分に、半導体素子が接合されること、或は(2)前記アルミニウム合金基材表面で、陽極酸化皮膜と絶縁物が被覆されていない部分に、銅若しくは銅合金、またはアルミニウム若しくはアルミニウム合金を挟んで半導体素子が接する様に構成されること、等が挙げられる。また、複合皮膜構造が無いサイドに冷却部を置く構造としては、本発明のアルミニウム合金部材を冷却構造に使用し、このアルミニウム合金部材上に、本発明の複合皮膜構造を配することが挙げられ、即ち(3)前記アルミニウム合金基材表面で、陽極酸化皮膜と絶縁物が被覆されていない部分に、冷却溶液が接する様に構成されること、が挙げられる。 That is, it is sufficient that only the part necessary for insulation has a composite coating structure. For example, in a composite member having a composite coating structure on one side, a structure in which a semiconductor element is placed on the side without the composite coating structure is (1) A semiconductor element is bonded to a portion of the aluminum alloy substrate surface that is not coated with the anodized film and the insulator, or (2) the anodized film and the insulator are formed on the surface of the aluminum alloy substrate. For example, the semiconductor element may be in contact with an uncoated portion with copper or a copper alloy, or aluminum or an aluminum alloy interposed therebetween. Further, as a structure in which the cooling part is placed on the side having no composite film structure, the aluminum alloy member of the present invention is used for the cooling structure, and the composite film structure of the present invention is arranged on the aluminum alloy member. That is, (3) The surface of the aluminum alloy substrate is configured such that the cooling solution is in contact with a portion where the anodized film and the insulator are not coated.
 本発明によれば、基材として用いるアルミニウム合金における化学成分組成および陽極酸化皮膜中に存在する金属間化合物の大きさや個数を適切に規定すること、陽極酸化皮膜の少なくとも一部を絶縁物で被覆または表面修飾した複合皮膜構造にすることで、高い絶縁性、良好な放熱性、および耐熱性(高温耐クラック性)を兼備した陽極酸化処理アルミニウム合金部材が実現でき、このような陽極酸化処理アルミニウム合金部材は、CPU(Central Processing Unit)、パワーデバイス、LED(Light Emitting Diode)、太陽電池等の半導体や液晶等に適用される絶縁部材として極めて有用である。 According to the present invention, the chemical composition of an aluminum alloy used as a base material and the size and number of intermetallic compounds present in the anodized film are appropriately defined, and at least a part of the anodized film is coated with an insulator. Alternatively, an anodized aluminum alloy member having high insulation, good heat dissipation, and heat resistance (high temperature crack resistance) can be realized by forming a composite film structure with a surface modification. Such anodized aluminum The alloy member is extremely useful as an insulating member applied to semiconductors such as CPU (Central Processing Unit), power devices, LEDs (Light Emitting Diode), solar cells, and liquid crystals.
 本発明者らは、高い絶縁性(高い耐電圧性、大きい体積抵抗率)、および良好な放熱性を両立しつつ、更に高温耐クラック性を兼備した陽極酸化処理アルミニウム合金部材の実現を目指して、様々な角度から検討した。その結果、基材として用いるアルミニウム合金における化学成分組成および陽極酸化皮膜中に存在する金属間化合物の大きさや個数を適切に規定すること、陽極酸化皮膜の少なくとも一部を絶縁物で被覆または表面修飾した複合皮膜構造にすれば、これらの特性を兼備できることを見出し、本発明を完成した。以下、本発明で規定する各要件について説明する。 The present inventors aim to realize an anodized aluminum alloy member that has both high insulation (high voltage resistance, large volume resistivity) and good heat dissipation, and also has high temperature crack resistance. Considered from various angles. As a result, the chemical composition of the aluminum alloy used as the base material and the size and number of intermetallic compounds present in the anodized film should be properly specified, and at least a part of the anodized film should be covered or surface-modified with an insulator. The present invention has been completed by finding that the composite film structure can have these characteristics. Hereinafter, each requirement prescribed | regulated by this invention is demonstrated.
 本発明で基材として用いるアルミニウム合金は、Cuを所定量含むものであるが、この成分の範囲限定理由は下記の通りである。なお、以下において、各化学成分量(%)は質量%を意味するものである。なお、本明細書においては、質量を基準とした百分率(質量%)は、重量を基準とした百分率(重量%)と同じである。 The aluminum alloy used as a substrate in the present invention contains a predetermined amount of Cu, and the reason for limiting the range of this component is as follows. In the following, each chemical component amount (%) means mass%. In the present specification, the percentage based on mass (% by mass) is the same as the percentage based on weight (% by weight).
(Cu:0.02%以上4.0%以下)
 Cuは陽極酸化皮膜の耐熱性(高温耐クラック性)を向上させるのに有効な元素であり、特にMgが共存した場合にはその性能がより向上する。こうした観点から、Cuは0.02%以上含有させる必要がある。Cu含有量は、好ましくは0.03%以上である。また、アルミニウム合金の成分にMgを含まない場合は、Cu含有量は0.1%以上が好ましく、より好ましくは0.5%以上である。
(Cu: 0.02% to 4.0%)
Cu is an element effective for improving the heat resistance (high-temperature crack resistance) of the anodized film, and its performance is further improved particularly when Mg coexists. From such a viewpoint, it is necessary to contain Cu by 0.02% or more. The Cu content is preferably 0.03% or more. Further, when Mg is not included in the components of the aluminum alloy, the Cu content is preferably 0.1% or more, and more preferably 0.5% or more.
 Cuは、強度を向上させる元素であり、強度を高くすることで基材厚みを薄くすることができることから、放熱性を高めること(熱抵抗を小さくすること:熱伝導の障害を小さくすること)ができる。しかしながら、Cu含有量が過剰になって4.0%を超えると、強度が高くなりすぎ、圧延が困難となる。Cu含有量は、好ましくは3.0%以下である。 Cu is an element that improves the strength. By increasing the strength, the thickness of the base material can be reduced, so that heat dissipation is improved (reducing thermal resistance: reducing obstacles to heat conduction). Can do. However, if the Cu content is excessive and exceeds 4.0%, the strength becomes too high and rolling becomes difficult. The Cu content is preferably 3.0% or less.
 本発明のアルミニウム合金における基本成分は上記の通りであり、残部はAlおよび不可避不純物であるが、不可避不純物中のSiおよびFeは下記のように抑制することが必要である。また、必要によって、Mg、Cr、Zn等を含有することも許容できる。 The basic components in the aluminum alloy of the present invention are as described above, and the balance is Al and unavoidable impurities, but Si and Fe in the unavoidable impurities must be suppressed as follows. Further, it can be allowed to contain Mg, Cr, Zn or the like as required.
(Si:0.05%以下、Fe:0.05%以下)
 FeはAl-Fe系金属間化合物、SiはMg-Si系金属間化合物を夫々生成し、これらの金属間化合物は耐電圧性を低下させる原因となることから、金属間化合物のサイズや個数を所定以下とするために、いずれも0.05%以下に抑制する必要がある。より高い耐電圧性を得るには、夫々0.02%以下とすることが好ましい。
(Si: 0.05% or less, Fe: 0.05% or less)
Fe produces an Al—Fe intermetallic compound, Si produces an Mg—Si intermetallic compound, and these intermetallic compounds cause a decrease in voltage resistance. In order to make it below a predetermined value, it is necessary to suppress both to 0.05% or less. In order to obtain higher voltage resistance, it is preferable to make each 0.02% or less.
(Mg:3.5%を超え6.5%以下)
 Mgは、基材の強度を向上させる元素であり、強度を高くすることで基材厚さを薄くすることができることから、放熱性を高めること(熱抵抗を小さくすること)ができる。またアルミニウム合金中のMg含有量が多いほど、陽極酸化皮膜の成膜速度が速くなり、製造コストを低減できる。こうした理由から、アルミニウム合金中のMg含有量は3.5%超えで含有することが望ましく、より好ましくは3.6%以上である。しかしながら、Mg含有量が過剰になって6.5%を超えると、アルミニウム合金に圧延割れが発生しやすくなり、圧延加工が困難になる。Mg含有量は、より好ましくは6.0%以下である。
(Mg: more than 3.5% and 6.5% or less)
Mg is an element that improves the strength of the base material. By increasing the strength, the thickness of the base material can be reduced, so that heat dissipation can be increased (heat resistance can be reduced). Moreover, the higher the Mg content in the aluminum alloy, the faster the film formation rate of the anodized film, and the lower the production cost. For these reasons, the Mg content in the aluminum alloy is desirably contained in excess of 3.5%, more preferably 3.6% or more. However, if the Mg content is excessive and exceeds 6.5%, rolling cracks are likely to occur in the aluminum alloy, which makes rolling difficult. The Mg content is more preferably 6.0% or less.
(Cr:0.02%以上0.1%以下)
 CrについてもMgと同様に、強度向上に有効な元素(再結晶粒の微細化による)である。こうした効果を発揮させるためには、Crは0.02%以上含有させることが好ましい。Cr含有量は、より好ましくは、0.03%以上であり、更に好ましくは0.04%以上である。しかしながら、Cr含有量が過剰になって0.1%を超えると、晶出物サイズの粗大化を招くことになる。Cr含有量は、より好ましくは0.08%以下であり、更に好ましくは0.07%以下である。
(Cr: 0.02% to 0.1%)
Similarly to Mg, Cr is an element effective for improving the strength (by refining of recrystallized grains). In order to exhibit such an effect, it is preferable to contain Cr 0.02% or more. The Cr content is more preferably 0.03% or more, and still more preferably 0.04% or more. However, if the Cr content is excessive and exceeds 0.1%, the crystallized product size becomes coarse. The Cr content is more preferably 0.08% or less, still more preferably 0.07% or less.
(Zn:0.5%以下)
 Znのようにアルミニウム合金中に均一に固溶する元素は、耐電圧性に影響を与えないので含まれていても問題はない。Znの場合、0.5%を超えると、Znの析出核が大きくなり、前処理のエッチングにより粒界部が深くエッチングされ欠陥が形成されるため、表面処理としては適切な表面状態でなくなる。Zn含有量は、より好ましくは0.3%以下である。Zn含有量の下限については、特に定めるものではないが、その含有量が0.002%未満となると、極めて高価なアルミニウム合金地金が必要となるため、0.002%以上であることが好ましい。
(Zn: 0.5% or less)
There is no problem even if an element such as Zn that dissolves uniformly in the aluminum alloy does not affect the voltage resistance. In the case of Zn, if it exceeds 0.5%, Zn precipitation nuclei become large, and the grain boundary part is etched deeply by pre-etching to form defects, so that the surface state is not suitable for surface treatment. The Zn content is more preferably 0.3% or less. The lower limit of the Zn content is not particularly defined, but if the content is less than 0.002%, an extremely expensive aluminum alloy ingot is required, so 0.002% or more is preferable. .
(陽極酸化皮膜中に存在する金属間化合物の大きさ・個数)
 耐電圧性を低下させる要因は、アルミニウム合金中に存在する金属間化合物が陽極酸化処理中に溶解すること無く、ほぼ金属の状態で陽極酸化皮膜中に取り込まれること、および溶解により形成される陽極酸化皮膜中のボイドである。陽極酸化処理中に溶解されず陽極酸化皮膜中に残る金属間化合物は、サイズ(大きさ)が大きいほど単位質量当たりの表面積が小さくなって、溶解に時間がかかるため、陽極酸化皮膜中に残る可能性が高くなる。
(Size and number of intermetallic compounds present in the anodized film)
The factors that lower the voltage resistance are that the intermetallic compound present in the aluminum alloy is not dissolved during the anodizing treatment, but is taken into the anodized film in a substantially metallic state, and the anode formed by dissolution It is a void in the oxide film. Intermetallic compounds that are not dissolved during anodization treatment and remain in the anodized film remain in the anodized film because the surface area per unit mass decreases as the size increases, and it takes time to dissolve. The possibility increases.
 また、アルミニウム合金中の金属間化合物が陽極酸化中に溶解され形成されるボイドの一部には、後工程の絶縁物導入工程で、絶縁物が充填あるいはボイドの内面の一部を被覆あるいは表面修飾することから、この部分での耐電圧性の低下は抑制される。こうしたことから、溶解を完了せずとも耐電圧性に大きく影響を与えない条件としては、陽極酸化皮膜に存在する金属間化合物の大きさ(最大長さ)が4μm以上のもので、個数が任意断面で1mm2当たり40個(40個/mm2)以下とする必要がある。この要件を満足すれば、十分な耐電圧性を発揮することができる。更に耐電圧性を高めるためには、上記個数は15個/mm2以下であることが好ましい(より好ましくは10個/mm2以下)。尚、本発明で測定対象とした金属間化合物は、Al-Fe系金属間化合物、Mg-Si系金属間化合物、または非固溶Cuである。 In addition, some of the voids formed by melting the intermetallic compound in the aluminum alloy during anodic oxidation are filled with an insulator in the subsequent insulator introduction process, or a part of the inner surface of the void is covered or surfaced. Since the modification is performed, a decrease in withstand voltage at this portion is suppressed. For this reason, the conditions that do not greatly affect the voltage resistance without completing the dissolution are that the size (maximum length) of the intermetallic compound present in the anodized film is 4 μm or more, and the number is arbitrary. It is necessary to make it 40 or less (40 pieces / mm 2 ) per 1 mm 2 in cross section. If this requirement is satisfied, sufficient voltage resistance can be exhibited. In order to further improve the voltage resistance, the number is preferably 15 pieces / mm 2 or less (more preferably 10 pieces / mm 2 or less). The intermetallic compound to be measured in the present invention is an Al—Fe based intermetallic compound, an Mg—Si based intermetallic compound, or non-solid solution Cu.
(陽極酸化皮膜)
 本発明の陽極酸化処理アルミニウム合金部材は、上記のようなアルミニウム合金からなる基材表面の全面または一部(片面も含む)に陽極酸化皮膜を形成したものであるが、この皮膜を形成するときの陽極酸化処理液としては、少なくともシュウ酸を含む陽極酸化処理液、または少なくともシュウ酸とリン酸を含む陽極酸化処理液を用いることが好ましい。これは、陽極酸化皮膜がアルミニウム合金基材にシュウ酸系皮膜を形成することで、高温耐クラック性を向上させることができるからである。
(Anodized film)
The anodized aluminum alloy member of the present invention is obtained by forming an anodized film on the entire surface or a part (including one surface) of the base material made of the aluminum alloy as described above. It is preferable to use an anodizing solution containing at least oxalic acid or an anodizing solution containing at least oxalic acid and phosphoric acid. This is because high temperature crack resistance can be improved by forming an oxalic acid-based film on the aluminum alloy substrate.
 即ち、一般的な陽極酸化処理液として、シュウ酸、ギ酸等の有機酸、リン酸、クロム酸、硫酸などの無機酸が挙げられるが、高温でのクラックの発生を著しく低減させつつ耐電圧性を向上させるという観点からして、少なくともシュウ酸を含む陽極酸化処理液を用いることが好ましい。陽極酸化処理液中のシュウ酸濃度は、所望とする作用効果を有効に発揮することができるように適宜適切に制御すれば良いが、おおむね、10~40g/Lの範囲に制御することが好ましい(より好ましくは15~35g/L程度)。 That is, examples of the general anodizing solution include organic acids such as oxalic acid and formic acid, and inorganic acids such as phosphoric acid, chromic acid, and sulfuric acid, but withstand voltage resistance while significantly reducing the occurrence of cracks at high temperatures. From the viewpoint of improving the quality, it is preferable to use an anodizing solution containing at least oxalic acid. The oxalic acid concentration in the anodizing solution may be appropriately controlled so that the desired action and effect can be effectively exhibited. However, it is preferably controlled in the range of about 10 to 40 g / L. (More preferably about 15 to 35 g / L).
 また、陽極酸化皮膜中にリン(P)を含有することで、絶縁物(またはその前駆体)が、陽極酸化皮膜表面の少なくとも一部を被覆(微細孔の充填による被覆も含む)、或は表面修飾した複合皮膜構造となりやすくなる。しかしながら、リンを含有する陽極酸化皮膜は厚膜化が難しい。こうした理由から、上記したシュウ酸とリン酸の混酸、即ち少なくともシュウ酸とリン酸を含む陽極酸化処理液にすることによって、所定の厚みを確保でき、耐電圧を確保しつつ、高抵抗率の実現が可能となる。処理液中のリン酸濃度が高すぎると厚膜化が難しくなるため、上記シュウ酸に対し、リン酸は150g/L以下(より好ましくは100g/L以下)にすることが好ましいが、リン酸の濃度の下限は、Pが若干でも含まれていればよい。また、シュウ酸溶液を含む溶液で、陽極酸化皮膜を形成した後、リン酸溶液に浸漬することで、Pを皮膜中に導入しても良い。 Further, by containing phosphorus (P) in the anodic oxide film, the insulator (or a precursor thereof) covers at least a part of the surface of the anodic oxide film (including coating by filling micropores), or It becomes easy to have a composite film structure with surface modification. However, it is difficult to thicken an anodic oxide film containing phosphorus. For these reasons, by using the mixed acid of oxalic acid and phosphoric acid, that is, an anodizing treatment solution containing at least oxalic acid and phosphoric acid, a predetermined thickness can be ensured and a high resistivity is ensured while ensuring a withstand voltage. Realization is possible. If the phosphoric acid concentration in the treatment liquid is too high, it is difficult to increase the thickness of the film. The lower limit of the concentration of P is sufficient if P is included even slightly. Alternatively, P may be introduced into the film by immersing it in a phosphoric acid solution after forming the anodized film with a solution containing an oxalic acid solution.
 陽極酸化処理を行うときの温度(液温)は、生産性を欠くことなく、また皮膜の溶解が顕著に起こらない範囲で設定すれば良く、おおむね、0℃~50℃とすることが好ましい。 The temperature (liquid temperature) at the time of anodizing treatment may be set within a range where productivity is not lost and the dissolution of the film does not occur remarkably, and is generally preferably 0 ° C. to 50 ° C.
 陽極酸化処理時の電圧(電解電圧)は、具体的には5~150V程度(より好ましくは15~120V)であることが好ましい。或いは、陽極酸化処理時に流す電流の電流密度は、100A/dm2以下(より好ましくは30A/dm2以下、更に好ましくは5A/dm2以下)が好ましい。但し、これらの条件は、使用する電解処理液の組成や、陽極酸化処理を行う温度、記載の化学成分組成等にも関係するため、適宜設定すればよい。 Specifically, the voltage (electrolysis voltage) during the anodizing treatment is preferably about 5 to 150 V (more preferably 15 to 120 V). Alternatively, the current density of the current that flows during the anodizing treatment is preferably 100 A / dm 2 or less (more preferably 30 A / dm 2 or less, still more preferably 5 A / dm 2 or less). However, since these conditions relate to the composition of the electrolytic treatment solution to be used, the temperature at which the anodic oxidation treatment is performed, the chemical component composition described, and the like, these conditions may be set as appropriate.
 形成する陽極酸化皮膜の厚みは、耐電圧性を担う重要な因子であり、仕様により調整すればよいが、耐電圧の観点からは8μm以上であることが好ましい(より好ましくは15μm以上)。また、耐熱性(高温耐クラック性)および放熱性の観点からは、形成する陽極酸化皮膜の厚みは150μm以下であることが好ましく、より好ましくは100μm以下である。 The thickness of the anodized film to be formed is an important factor responsible for withstand voltage, and may be adjusted according to specifications, but is preferably 8 μm or more (more preferably 15 μm or more) from the viewpoint of withstand voltage. From the viewpoint of heat resistance (high temperature crack resistance) and heat dissipation, the thickness of the anodic oxide film to be formed is preferably 150 μm or less, more preferably 100 μm or less.
(陽極酸化皮膜と絶縁物の複合皮膜構造)
 本発明の陽極酸化処理アルミニウム合金部材では、陽極酸化皮膜の少なくとも一部が、その表面を絶縁物で被覆または表面修飾した複合皮膜構造となっている。この様な複合皮膜構造とは、多孔質による微細孔が存在する陽極酸化皮膜表面の少なくとも一部を、絶縁物が被覆または表面修飾することにより(微細孔への充填による被覆も含む)、その陽極酸化皮膜上に絶縁物が積層した構造も含まれる。
(Composite film structure of anodized film and insulator)
In the anodized aluminum alloy member of the present invention, at least a part of the anodized film has a composite film structure in which the surface is coated or surface-modified with an insulator. Such a composite film structure means that an insulating material covers or modifies at least a part of the surface of the anodic oxide film in which fine pores are present (including coating by filling micropores). A structure in which an insulator is laminated on the anodized film is also included.
 陽極酸化皮膜と絶縁物の複合皮膜構造にすることによって、微細孔が存在する陽極酸化皮膜表面の大きな表面積を、微細孔への充填により低減できる。また、水分の付着により表面抵抗は低くなるが、絶縁物で被覆または表面修飾することで、付着水分を低減できる。即ち、体積抵抗率を向上させることができる。 By using a composite film structure of an anodized film and an insulator, the large surface area of the surface of the anodized film where micropores exist can be reduced by filling the micropores. Further, although the surface resistance is lowered due to the adhesion of moisture, the adhesion moisture can be reduced by coating or surface modification with an insulator. That is, the volume resistivity can be improved.
 また、陽極酸化皮膜の微細孔に絶縁物が充填される構造となることで、皮膜応力を圧縮方向にする効果があることから、耐熱性の観点からも有利に作用する。陽極酸化皮膜上への積層は熱抵抗を小さくする(熱伝達の障害を小さくする)という観点から、できるだけ薄いことが望まれる。こうしたことから、絶縁物の厚みは10μm以下であることが望ましく、より好ましくは5μm以下である。 Also, since the structure is such that the fine pores of the anodized film are filled with an insulator, it has the effect of making the film stress in the compressing direction, and therefore acts advantageously from the viewpoint of heat resistance. The lamination on the anodized film is desired to be as thin as possible from the viewpoint of reducing the thermal resistance (reducing the obstacle of heat transfer). For these reasons, the thickness of the insulator is desirably 10 μm or less, and more preferably 5 μm or less.
 体積抵抗率の観点からは、絶縁物は少なくとも陽極酸化皮膜表面の一部を被覆、或は表面修飾している必要があり、微細孔内についても少なくとも一部が充填、被覆、或は表面修飾していることがより望ましい。評価方法としては、EDX等による、微細孔内の元素同定が挙げられる。より好ましくは、少なくとも微細孔の一部に絶縁物が充填、被覆、或は表面修飾されており、且つ陽極酸化皮膜上の厚みが0.001μm以上である。また、絶縁物の熱伝導率が陽極酸化皮膜の熱伝導率より低い場合は、陽極酸化皮膜の厚みDと絶縁物の厚みdの比(D/d)の値は、2以上に設定することが好ましい(より好ましくは5以上)。体積抵抗率を上げるという観点からは、絶縁物が陽極酸化皮膜の少なくとも一部を被覆・表面修飾していればよいことから、この比(D/d)の上限値は、特に定めるものではないが、被覆・表面修飾の観点から、100000以下に設定することが好ましい(より好ましくは50000以下)。 From the viewpoint of volume resistivity, it is necessary for the insulator to cover or modify at least a part of the surface of the anodized film, and at least a part of the pores are filled, covered, or surface-modified. It is more desirable. As an evaluation method, element identification in a micropore by EDX etc. is mentioned. More preferably, at least a part of the fine holes is filled with an insulating material, coated, or surface-modified, and the thickness on the anodized film is 0.001 μm or more. When the thermal conductivity of the insulator is lower than the thermal conductivity of the anodized film, the ratio of the thickness D of the anodized film to the thickness d of the insulator (D / d) should be set to 2 or more. Is preferable (more preferably 5 or more). From the standpoint of increasing the volume resistivity, the upper limit value of this ratio (D / d) is not particularly defined since it is sufficient that the insulator covers and / or modifies at least part of the anodized film. However, from the viewpoint of coating and surface modification, it is preferably set to 100,000 or less (more preferably 50000 or less).
 本発明で用いる絶縁物としては、体積抵抗率の観点からは、その絶縁物自体の体積抵抗率が高いことが好ましく、水分の吸着が少ないことがより好ましい。また、耐熱性の観点からは、耐熱性があることが好ましい。本発明で用いる絶縁物としては、特に定めるものではないが、例えば、珪素酸化物(SiO2等)、シロキサン樹脂(シロキサン系SOG等)、ポリシラザン(熱処理物を含む)、珪素窒化物(Si34等)、ジルコニウム酸化物(ZrO2等)、チタン酸化物(TiO2等)、チタン窒化物(TiN等)、アルミ酸化物(Al23)、アルミ窒化物(AlN等)等が挙げられ、これらの少なくともいずれかを含む化合物、或はこれらの化合物の基本骨格の少なくともいずれかを含む化合物、等を適宜選択して使用することができる。またこれらの化合物に有機物や有機成分等が含まれても良く、例えば水分の付着を防止するために、フルオロ基、アルキル基等の疎水基(疎水性の官能基)を含むことが好ましい。 As an insulator used in the present invention, from the viewpoint of volume resistivity, the insulator itself preferably has a high volume resistivity, and more preferably has little moisture adsorption. Further, from the viewpoint of heat resistance, heat resistance is preferable. The insulator used in the present invention is not particularly defined. For example, silicon oxide (SiO 2 or the like), siloxane resin (siloxane-based SOG or the like), polysilazane (including heat-treated material), silicon nitride (Si 3) N 4 etc.), zirconium oxide (ZrO 2 etc.), titanium oxide (TiO 2 etc.), titanium nitride (TiN etc.), aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN etc.), etc. A compound containing at least one of these, or a compound containing at least one of the basic skeletons of these compounds, etc. can be appropriately selected and used. These compounds may contain organic substances, organic components, and the like. For example, in order to prevent adhesion of moisture, it is preferable to include a hydrophobic group (hydrophobic functional group) such as a fluoro group and an alkyl group.
 水分の付着を防止するという観点から、絶縁物が存在する部分、即ち陽極酸化皮膜の少なくとも一部が絶縁物で被覆または表面修飾した複合皮膜構造の表面部分は、水に対する接触角が75°以上であることが好ましい。接触角が高いことは、複合皮膜構造の表面部分を疎水化することであり、この表面部分に存在する水分量を減らすことができ、表面部分での電気抵抗を高くすることができる。その結果、体積抵抗率をより高くすることができる。接触角を高めるには、上記のようにフルオロ基、アルキル基等の疎水基を絶縁物中に含ませることによって達成される。この接触角は、より好ましくは85°以上であり、更に好ましくは95°以上である。接触角の上限は特に限定されるものではないが、160°程度以下(特には、130°以下)である。 From the standpoint of preventing moisture adhesion, the surface portion of the composite film structure in which at least a part of the anodized film is coated or surface-modified with an insulating material has a water contact angle of 75 ° or more. It is preferable that A high contact angle means that the surface portion of the composite film structure is hydrophobized, the amount of water present in the surface portion can be reduced, and the electrical resistance at the surface portion can be increased. As a result, the volume resistivity can be further increased. Increasing the contact angle is achieved by including a hydrophobic group such as a fluoro group or an alkyl group in the insulator as described above. This contact angle is more preferably 85 ° or more, and still more preferably 95 ° or more. The upper limit of the contact angle is not particularly limited, but is about 160 ° or less (particularly 130 ° or less).
 分子量が大きな絶縁物を導入する場合は、陽極酸化皮膜表面に存在する微細孔への導入が難しくなるので、分子量が小さな絶縁物を前駆体の形で微細孔に導入した後、熱処理等の方法で分子量を上げることもできる。但し、その前駆体が反応しきらず陽極酸化皮膜上(微細孔内を含む)に多少残っても不都合はない。また、例えばポリシラザンのように、熱処理過程でシリカ転化することで基本骨格が変化する場合は、完全に変化させる必要はなく、前駆体の基本骨格と、処理後の基本骨格が交じり合う化合物でも良い。 When introducing an insulator with a large molecular weight, it is difficult to introduce it into the micropores existing on the surface of the anodized film. Therefore, after introducing an insulator with a low molecular weight into the micropore in the form of a precursor, a method such as heat treatment To increase the molecular weight. However, there is no inconvenience even if the precursor does not react completely and remains on the anodized film (including the inside of the fine pores). Further, for example, when the basic skeleton is changed by silica conversion in the heat treatment process, such as polysilazane, it is not necessary to completely change the compound. .
 絶縁物の形成方法としては、上記各種物質を、CVD等の化学的気相法やディップコート、スピンコート、スプレーコート、ロールコート、スクリーンコートの無電解によるウエットプロセス、電着などの電気化学的な方法を採用することができる。またこのようして導入した化合物を熱処理、紫外線照射等で高分子化、陽極酸化皮膜との化学結合を促すようにしてもよい。 As the method of forming the insulator, the above-mentioned various substances are applied to chemical vapor phase methods such as CVD, electrochemical processes such as dip coating, spin coating, spray coating, roll coating, screen coating electroless wet process, and electrodeposition. Can be adopted. Further, the compound thus introduced may be polymerized by heat treatment, ultraviolet irradiation, etc., and chemical bonding with the anodized film may be promoted.
 例えば、絶縁物としてシロキサン系のSOG(スピンオングラス)をウエットプロセスで形成する場合には、Si-O-Si結合(シロキサン結合)を有するシロキサンポリマーを、陽極酸化皮膜表面にスピンコートし、その後所定雰囲気で乾燥・加熱すればよい。または、Si-N結合を持ち、(-R1SiR2-NR3)[R1,R2,R3はH、またはアルキル基]を基本単位とするポリシラザンを、陽極酸化皮膜表面にスピンコートし、その後所定雰囲気で乾燥・加熱すればよい(後記実施例参照)。 For example, in the case of forming siloxane-based SOG (spin-on-glass) as an insulator by a wet process, a siloxane polymer having a Si—O—Si bond (siloxane bond) is spin-coated on the surface of the anodized film, and then predetermined What is necessary is just to dry and heat in atmosphere. Alternatively, polysilazane having a Si—N bond and having a basic unit of (—R 1 SiR 2 —NR 3 ) [R 1 , R 2 , R 3 are H or an alkyl group] is spin-coated on the surface of the anodized film. Then, it may be dried and heated in a predetermined atmosphere (see Examples below).
 上述のようにして作製された陽極酸化皮膜と絶縁物の複合皮膜構造は、放熱性を高めるという観点からは、厚みは薄い方が良く、絶縁性を高くするという観点からは厚い方がよい。これらの特性を両立させるためには、単位膜厚当たりの耐電圧が高いことが推奨される。こうしたことから、単位膜厚当たりの耐電圧は50V/μm以上であることが好ましく、より好ましくは60V/μm以上である。 The composite anodic oxide film / insulator composite film structure produced as described above is preferably thin from the viewpoint of improving heat dissipation, and thick from the viewpoint of increasing insulation. In order to make these characteristics compatible, it is recommended that the withstand voltage per unit film thickness is high. For these reasons, the withstand voltage per unit film thickness is preferably 50 V / μm or more, and more preferably 60 V / μm or more.
(絶縁モジュール構造)
 本発明の陽極酸化処理アルミニウム合金部材では、基材として使用されるアルミニウム合金の少なくとも一部に、陽極酸化皮膜と絶縁物が形成されていることを特徴とする。即ち、アルミニウム合金基材の全面がこの陽極酸化皮膜と絶縁物の複合皮膜構造となっていてもよいが、アルミニウム合金基材の一部がこの構造を持てばよい。
(Insulation module structure)
The anodized aluminum alloy member of the present invention is characterized in that an anodized film and an insulator are formed on at least a part of an aluminum alloy used as a base material. That is, the entire surface of the aluminum alloy base material may have a composite film structure of this anodized film and insulator, but it is sufficient that a part of the aluminum alloy base material has this structure.
 半導体素子を搭載する観点からすれば、例えば、複合皮膜構造を片面に持つ部材を作製し、半導体素子を複合皮膜構造のないアルミニウム合金側に直接接合、或は銅(銅合金含む)材料を介して、接合することができる。このときの接合には、ハンダやロウ材などが使用できるが、特に方法を規定するものではない。また、上記銅材料とは、銅若しくは銅合金を指し、アルミニウムと銅(銅合金含む)とのクラッド材や、銅箔(銅合金)をドライプロセスやメッキで形成してもよく、特に方法を規定するものではない。また、複合皮膜構造側にデバイスを直接、或は銅材料を介して配置しても良い。また、半導体素子を複合皮膜構造に直接配置する場合は、上記絶縁物を接着剤の代わりとして使用することもできる。 From the viewpoint of mounting a semiconductor element, for example, a member having a composite film structure on one side is manufactured, and the semiconductor element is directly bonded to the aluminum alloy side without the composite film structure, or via a copper (including copper alloy) material. Can be joined. Solder or brazing material can be used for joining at this time, but the method is not particularly specified. The copper material refers to copper or a copper alloy, and a clad material of aluminum and copper (including copper alloy) or a copper foil (copper alloy) may be formed by a dry process or plating. It is not specified. Further, the device may be arranged directly on the composite film structure side or via a copper material. Moreover, when arrange | positioning a semiconductor element directly to a composite-film structure, the said insulator can also be used instead of an adhesive agent.
 冷却の観点からは、例えば複合皮膜構造を片面に持つ部材を作製する場合は、複合皮膜構造を、冷却母材のアルミニウム合金上に直接形成することもできる。また、複合皮膜構造のサイドを、冷却サイドに接合することもでき、接合の方法は問わないが、上記絶縁物を冷却器との接合に使用することもできる。 From the viewpoint of cooling, for example, when producing a member having a composite film structure on one side, the composite film structure can also be formed directly on the aluminum alloy of the cooling base material. Further, the side of the composite film structure can be joined to the cooling side, and the joining method is not limited, but the insulator can be used for joining with the cooler.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例によって制限されず、上記・下記の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and can be implemented with modifications within a range that can meet the above and the following purposes. These are all included in the technical scope of the present invention.
 下記表1に示す化学成分組成のアルミニウム合金を、通常の方法により、溶解し鋳造した鋳塊に、500℃の温度で均質化熱処理を行い、板厚が1.5mmになるまで冷間圧延を施し、350℃の温度で焼鈍を行い、45mm×45mm×1.5mmの基材を切り出し、表面を50μm研削し、試料を調製した。尚、表1中、「-」は無添加(測定限界以下)であることを示す。 The aluminum alloy having the chemical composition shown in Table 1 below is subjected to homogenization heat treatment at a temperature of 500 ° C. at a temperature of 500 ° C., and cold-rolled until the plate thickness reaches 1.5 mm, by a conventional method. Then, annealing was performed at a temperature of 350 ° C., a 45 mm × 45 mm × 1.5 mm t base material was cut out, and the surface was ground by 50 μm to prepare a sample. In Table 1, “-” indicates no addition (below the measurement limit).
 上記のように切り出した試料(基材)を、脱脂工程として、50℃-15%NaOH水溶液中に2分間浸漬した後、水洗した。次に、デスマット工程として、上記脱脂工程を経た試料を40℃-20%硝酸溶液中に2分間浸漬した後、水洗して表面を清浄化した。 The sample (base material) cut out as described above was immersed in a 50 ° C.-15% NaOH aqueous solution for 2 minutes as a degreasing step, and then washed with water. Next, as a desmutting step, the sample that had undergone the above degreasing step was immersed in a 40 ° C.-20% nitric acid solution for 2 minutes and then washed with water to clean the surface.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 次いで、上記の各試料に対し、下記表2に示す条件(処理液種類、処理液濃度、処理液温度、電解電圧)にて陽極酸化処理を行い、所定の厚みの陽極酸化皮膜を作製した後、水洗及び乾燥して、基材表面に陽極酸化皮膜を形成した各種陽極酸化処理アルミニウム合金部材を得た。 Next, after each sample was anodized under the conditions shown in Table 2 below (treatment liquid type, treatment liquid concentration, treatment liquid temperature, electrolytic voltage) to produce an anodic oxide film having a predetermined thickness. Then, it was washed with water and dried to obtain various anodized aluminum alloy members having an anodized film formed on the surface of the substrate.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 得られた陽極酸化処理アルミニウム合金部材の表面に、シロキサンポリマー又はポリシラザンを原料として塗布し、絶縁物を形成した。このとき、シロキサンポリマーを用いた試料では、全体における15質量%のメチル基がSi-O-Si結合(シロキサン結合)のSi原子に結合されているシロキサンポリマーをスピンコートし、350℃(窒素雰囲気)で1時間加熱して、絶縁物(シロキサン系のSOG)を陽極酸化皮膜上に形成した。皮膜の厚みの調整は、薬液の希釈(IPAを使用)、スピンコート条件を調整することで、また、厚膜化は上記の工程を数回繰り返すことで行った。また、ポリシラザンを用いた試料では、全モノマーユニットにおいてモノマーユニットを構成しているSi原子にメチル基2つが結合され、更にN原子にメチル基1つが結合されている化合物を、ブチルアセテートで希釈した後、スピンコートし、200℃(大気雰囲気)で0.5時間加熱して、絶縁物を陽極酸化皮膜上に形成した。 The surface of the obtained anodized aluminum alloy member was coated with a siloxane polymer or polysilazane as a raw material to form an insulator. At this time, in the sample using the siloxane polymer, spin coating was performed with a siloxane polymer in which 15% by mass of methyl groups in total were bonded to Si atoms of the Si—O—Si bond (siloxane bond), and 350 ° C. (nitrogen atmosphere). ) For 1 hour to form an insulator (siloxane-based SOG) on the anodized film. The film thickness was adjusted by diluting the chemical solution (using IPA) and adjusting the spin coating conditions, and increasing the film thickness by repeating the above steps several times. In a sample using polysilazane, a compound in which two methyl groups are bonded to Si atoms constituting the monomer unit in all monomer units and one methyl group is further bonded to N atoms is diluted with butyl acetate. Thereafter, spin coating was performed, and heating was performed at 200 ° C. (atmospheric atmosphere) for 0.5 hour to form an insulator on the anodized film.
 絶縁物の厚みdは、試料の断面SEMから厚みを見積もった。また、EDX分析により陽極酸化皮膜の微細孔および皮膜表面に存在する元素を調査したところ、絶縁物を形成しなかった試料(試No.7)ではSiが検出されなかったが、シロキサン又はポリシラザンを原料として使用した試料からは、微細孔および皮膜表面からSiが検出された。 The thickness d of the insulator was estimated from the cross section SEM of the sample. Further, when the micropores of the anodized film and the elements present on the film surface were investigated by EDX analysis, Si was not detected in the sample in which the insulator was not formed (Trial No. 7), but siloxane or polysilazane was added. From the sample used as a raw material, Si was detected from the micropores and the coating surface.
 各種の条件で陽極酸化処理を施した後、陽極酸化皮膜中の金属間化合物の大きさ・個数、絶縁物表面の高温クラックの発生状況、および陽極酸化皮膜の厚みDを下記の方法によって測定すると共に、得られた陽極酸化処理アルミニウム合金部材(絶縁物を形成したもの)について(試験No.1~10、ただし試験No.7は絶縁物を形成せず)、下記の方法によって、水に対する接触角、体積抵抗率および耐電圧性(平均耐電圧)を評価した。これらの結果を、陽極酸化皮膜の厚みDと絶縁物の厚みdの比(D/d)と共に、下記表3に示す(表3中、「-」は未測定であることを意味する)。 After anodizing under various conditions, the size and number of intermetallic compounds in the anodized film, the occurrence of high temperature cracks on the insulator surface, and the thickness D of the anodized film are measured by the following methods. In addition, the obtained anodized aluminum alloy member (formed with an insulator) (Test Nos. 1 to 10, but Test No. 7 does not form an insulator) was contacted with water by the following method. The corners, volume resistivity and withstand voltage (average withstand voltage) were evaluated. These results are shown in the following Table 3 together with the ratio (D / d) of the thickness D of the anodized film to the thickness d of the insulator (in Table 3, “−” means unmeasured).
[陽極酸化皮膜中の金属間化合物の大きさ・個数の測定]
 陽極酸化皮膜表面を、走査型電子顕微鏡(SEM)にて、倍率1000倍の反射電子像で20視野以上を観察した。母相より白く写る部分、および母相より黒く写る部分を測定対象とし、陽極酸化皮膜上にある窪みと判断がつかない場合は、その部分をEDXで元素分析することで金属間化合物かどうかの判断を行った。画像処理により最大長さを求め、最大長さが4μm以上の金属間化合物の個数を測定し、単位面積当たりの個数(個数密度)を算出した。
[Measurement of size and number of intermetallic compounds in anodized film]
The surface of the anodized film was observed with a scanning electron microscope (SEM) over 20 fields of view in a reflected electron image with a magnification of 1000 times. If the part that appears whiter than the mother phase and the part that appears blacker than the mother phase is the object of measurement and cannot be judged as a depression on the anodic oxide film, the element is analyzed by EDX to determine whether it is an intermetallic compound. Judgment was made. The maximum length was determined by image processing, the number of intermetallic compounds having a maximum length of 4 μm or more was measured, and the number per unit area (number density) was calculated.
[絶縁物表面の高温クラックの発生状況の評価]
 高温クラックの発生状況は、各試料を大気炉で350℃×5分加熱後、複合皮膜構造の表面を目視観察、および顕微鏡で観察することで(倍率:200倍)、クラック発生状況を評価した。そして、陽極酸化皮膜表面に明確なクラックが存在する場合を高温耐クラック性が悪い(×)とし、クラックが目視できない場合を高温耐クラック性が良好(◎)と判断した。
[Evaluation of high temperature cracks on insulator surface]
The occurrence of high-temperature cracks was evaluated by visually observing the surface of the composite coating structure with a microscope (magnification: 200 times) after heating each sample in an atmospheric furnace at 350 ° C. for 5 minutes. . And when the clear crack existed on the anodic oxide film surface, the high temperature crack resistance was judged as bad (x), and when the crack was not visible, the high temperature crack resistance was judged as good (◎).
[陽極酸化皮膜の厚みDの測定]
 陽極酸化皮膜膜の厚みDは、渦電流式膜厚計を用いて測定した。測定は、同一の箇所を5回測定し、その平均値を箇所の厚みとし、試料の5箇所(全体の測定ができるように)測定し、その平均を陽極酸化皮膜の厚みDとした。
[Measurement of thickness D of anodized film]
The thickness D of the anodized film was measured using an eddy current film thickness meter. In the measurement, the same part was measured five times, the average value was taken as the thickness of the part, the sample was measured at five places (so that the whole measurement was possible), and the average was taken as the thickness D of the anodized film.
 [水に対する接触角の測定]
 絶縁物を形成した表面(ただし試験No.7については陽極酸化皮膜を形成した表面)に、約0.5ミクロンリットルの純水を滴下し、接触角測定器(協和界面科学社製:商品名「CA-05型」)を用いて水に対する接触角を測定した。
[Measurement of contact angle with water]
About 0.5 microliters of pure water is dropped on the surface on which the insulator is formed (however, for test No. 7, the surface on which the anodized film is formed), and a contact angle measuring device (trade name, manufactured by Kyowa Interface Science Co., Ltd.) The contact angle with water was measured using “CA-05”.
[体積抵抗率の測定]
 高温耐クラック性を確認し、クラックがないことを確認した試料を、湿度50%、温度25℃の環境で7日間保管後、そのサンプルにφ3mmの金を蒸着し、電極とした。アドバンテスト R8340A デジタル超高抵抗/微少電流計を用い、+端子を金電極に接続し、-端子をアルミニウム合金基材に接続し、DC電圧(直流電圧)500Vを印加し、そのとき流れる電流を測定することによって、各試料の体積抵抗率(Ωcm)を求めた。陽極酸化皮膜ままの体積抵抗率(試験No.7)は、2.3×109 (2.3E9)Ωcmであり、体積抵抗率は十分でない。体積抵抗率が3桁以上向上した1.0×1012 (1E12)Ωcm以上を良好な体積抵抗率であるとし、1.0×1012 (1E12)Ωcm以上、1.0×1013 (1E13)Ωcm未満を合格(○)、1.0×1013 (1E13)Ωcm以上を優秀(◎)とした[1.0×1012 (1E12)Ωcm未満は不合格(×)]。
[Measurement of volume resistivity]
After confirming the high-temperature crack resistance and confirming that there was no crack, the sample was stored for 7 days in an environment of 50% humidity and 25 ° C., and then φ3 mm of gold was deposited on the sample to form an electrode. Advantest R8340A Using a digital ultra-high resistance / microammeter, the + terminal is connected to the gold electrode, the-terminal is connected to the aluminum alloy substrate, and a DC voltage (DC voltage) of 500 V is applied, and the current flowing at that time is measured. Thus, the volume resistivity (Ωcm) of each sample was obtained. The volume resistivity (test No. 7) of the anodized film is 2.3 × 10 9 (2.3E9) Ωcm, and the volume resistivity is not sufficient. A volume resistivity of 1.0 × 10 12 (1E12) Ωcm or more, which is improved by 3 digits or more, is assumed to be a good volume resistivity, and 1.0 × 10 12 (1E12) Ωcm or more, 1.0 × 10 13 (1E13) ) Less than Ωcm was accepted (◯), and 1.0 × 10 13 (1E13) Ωcm or more was judged as excellent (◎) [less than 1.0 × 10 12 (1E12) Ωcm was rejected (×)].
[平均耐電圧の測定]
 各試料の耐電圧は、耐電圧試験器(「GPT-9802」、商品名:インステック社製、DCモード)を用い、+端子を金電極のプローブに接続し、陽極酸化皮膜上に接触させ、-端子をアルミニウム合金基材に接続し、DC電圧(直流電圧)を徐々に印加し、1mA以上の電流が流れた時点での電圧(測定個数10点での平均値)を平均耐電圧とした。また、測定に当たっては、沿面放電を避けるため、N2ガスを金電極に吹き付けながら測定した。
[Measurement of average withstand voltage]
The withstand voltage of each sample was measured by using a withstand voltage tester (“GPT-9802”, trade name: Instec Co., Ltd., DC mode), connecting the + terminal to the gold electrode probe and contacting it on the anodized film. The-terminal is connected to an aluminum alloy substrate, a DC voltage (DC voltage) is gradually applied, and the voltage (average value at 10 measured points) when a current of 1 mA or more flows is defined as the average withstand voltage. did. In measurement, in order to avoid creeping discharge, measurement was performed while N 2 gas was blown onto the gold electrode.
 測定した平均耐電圧を、ハイブリッド構造の厚み(合計厚み)で割ることで、単位厚み当たりの耐電圧(V/μm)を求めた。単位膜厚当たりの耐電圧が高いと、仕様耐電圧を作製するための皮膜厚を薄くすることができ、放熱性を向上できることから、この値が50V/μm以上を合格(○)、60V/μm以上を優秀(◎)とした[50V/μm未満は不合格(×)]。 The withstand voltage (V / μm) per unit thickness was determined by dividing the measured average withstand voltage by the thickness (total thickness) of the hybrid structure. When the withstand voltage per unit film thickness is high, the film thickness for producing the specified withstand voltage can be reduced, and the heat dissipation can be improved. Therefore, this value passes 50 V / μm or more (◯), 60 V / μm or more was considered excellent (() [less than 50 V / μm is rejected (×)].
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 これらの結果から、以下のように考察することができる。まず試験No.1~6は、本発明で規定する要件を満足する実施例であり、高温でクラックが発生することなく、良好な耐電圧性を示していることが分かる。また、体積抵抗率も高い値を示している。 From these results, it can be considered as follows. First, test no. Examples 1 to 6 are examples that satisfy the requirements defined in the present invention, and it can be seen that good voltage resistance is exhibited without cracks occurring at high temperatures. Moreover, the volume resistivity also shows a high value.
 これに対し、試験No.7~10は、本発明で規定する要件を満足しない例であり、いずれかの特性が劣化している。即ち、試験No.7は、複合構造の絶縁物を形成しない陽極酸化処理アルミニウム合金部材を用いたものであり、水に対する接触角が小さくなっており、体積抵抗率が2.3×109(2.3E9)Ωcmと低くなっている。 In contrast, test no. Examples 7 to 10 are examples that do not satisfy the requirements defined in the present invention, and any of the characteristics is deteriorated. That is, test no. 7 is an anodized aluminum alloy member which does not form an insulator having a composite structure, has a small contact angle with water, and has a volume resistivity of 2.3 × 10 9 (2.3E9) Ωcm. It is low.
 試験No.8及び10は、Cu含有量が不足する(添加せず)アルミニウム合金を基材として用いたものであり、高温耐クラック性が劣化している(耐電圧、および体積抵抗率については測定せず)。試験No.9は、SiおよびFeが過剰なアルミニウム合金を基材として用いたものであり、過剰なSiおよびFeによって金属間化合物の個数も多くなっており、耐電圧性が不足している。 Test No. Nos. 8 and 10 are those using an aluminum alloy with insufficient Cu content (not added) as a base material, and the high temperature crack resistance is deteriorated (voltage resistance and volume resistivity are not measured). ). Test No. No. 9 uses an aluminum alloy containing excess Si and Fe as a base material, and the number of intermetallic compounds is increased due to excess Si and Fe, resulting in insufficient voltage resistance.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2013年11月19日付けで出願された日本特許出願(特願2013-239177)に基づいており、その全体が引用により援用される。
Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on November 19, 2013 (Japanese Patent Application No. 2013-239177), which is incorporated by reference in its entirety.

Claims (12)

  1.  質量%で、Cu:0.02%以上4.0%以下、Si:0.05%以下、Fe:0.05%以下を満足するアルミニウム合金からなる基材と、前記基材表面に形成された陽極酸化皮膜とから構成され、
     前記陽極酸化皮膜中に存在する最大長さが4μm以上の金属間化合物の任意断面での1mm2当たりの個数が40個以下であり、
     且つ前記陽極酸化皮膜の少なくとも一部が、その表面を絶縁物で被覆または表面修飾した複合皮膜構造になっていることを特徴とする陽極酸化処理アルミニウム合金部材。
    A base material made of an aluminum alloy satisfying Cu: 0.02% or more and 4.0% or less, Si: 0.05% or less, Fe: 0.05% or less by mass%, and formed on the surface of the base material. An anodized film,
    The number per 1 mm 2 in an arbitrary cross section of an intermetallic compound having a maximum length of 4 μm or more present in the anodized film is 40 or less,
    An anodized aluminum alloy member characterized in that at least a part of the anodized film has a composite film structure whose surface is covered or modified with an insulator.
  2.  前記アルミニウム合金は、更に、質量%で、Mg:3.5%を超え6.5%以下で含有する請求項1に記載の陽極酸化処理アルミニウム合金部材。 The anodized aluminum alloy member according to claim 1, wherein the aluminum alloy further contains, by mass%, Mg: more than 3.5% and not more than 6.5%.
  3.  前記金属間化合物の1mm2当たりの個数が15個以下である請求項1に記載の陽極酸化処理アルミニウム合金部材。 The anodized aluminum alloy member according to claim 1, wherein the number of intermetallic compounds per 1 mm 2 is 15 or less.
  4.  前記陽極酸化皮膜の厚みDが、8μm以上150μm以下である請求項1に記載の陽極酸化処理アルミニウム合金部材。 The anodized aluminum alloy member according to claim 1, wherein a thickness D of the anodized film is 8 μm or more and 150 μm or less.
  5.  前記陽極酸化皮膜表面からの前記絶縁物の厚みが10μm以下であり、且つ前記陽極酸化皮膜の厚みDと前記絶縁物の厚みdの比(D/d)が2以上である請求項4に記載の陽極酸化処理アルミニウム合金部材。 The thickness of the said insulator from the said anodic oxide film surface is 10 micrometers or less, and ratio (D / d) of the thickness D of the said anodic oxide film and the thickness d of the said insulator is 2 or more. Anodized aluminum alloy member.
  6.  前記陽極酸化皮膜は、少なくともシュウ酸を含む陽極酸化処理液で形成されたものである請求項1に記載の陽極酸化処理アルミニウム合金部材。 The anodized aluminum alloy member according to claim 1, wherein the anodized film is formed of an anodizing solution containing at least oxalic acid.
  7.  前記陽極酸化皮膜は、少なくともシュウ酸とリン酸を含む陽極酸化処理液で形成されたものである請求項1に記載の陽極酸化処理アルミニウム合金部材。 The anodized aluminum alloy member according to claim 1, wherein the anodized film is formed of an anodizing solution containing at least oxalic acid and phosphoric acid.
  8.  前記絶縁物は、珪素酸化物、シロキサン樹脂、ポリシラザン、珪素窒化物、ジルコニウム酸化物、チタン酸化物、チタン窒化物、アルミ酸化物およびアルミ窒化物の少なくともいずれかを含む化合物、またはこれらの化合物の基本骨格の少なくともいずれかを含む化合物であり、且つ疎水基を含むものである請求項1に記載の陽極酸化処理アルミニウム合金部材。 The insulator is a compound containing at least one of silicon oxide, siloxane resin, polysilazane, silicon nitride, zirconium oxide, titanium oxide, titanium nitride, aluminum oxide, and aluminum nitride, or of these compounds The anodized aluminum alloy member according to claim 1, wherein the anodized aluminum alloy member is a compound containing at least one of basic skeletons and containing a hydrophobic group.
  9.  前記複合皮膜構造の表面部分での水に対する接触角が75°以上である請求項1に記載の陽極酸化処理アルミニウム合金部材。 The anodized aluminum alloy member according to claim 1, wherein a contact angle with water at a surface portion of the composite film structure is 75 ° or more.
  10.  前記基材表面で、前記陽極酸化皮膜と前記絶縁物が被覆されていない部分に、半導体素子が接合される請求項1~9のいずれか1項に記載の陽極酸化処理アルミニウム合金部材。 The anodized aluminum alloy member according to any one of claims 1 to 9, wherein a semiconductor element is bonded to a portion of the substrate surface that is not covered with the anodized film and the insulator.
  11.  前記基材表面で、前記陽極酸化皮膜と前記絶縁物が被覆されていない部分に、銅若しくは銅合金、またはアルミニウム若しくはアルミニウム合金を挟んで半導体素子が接するように構成される請求項1~9のいずれか1項に記載の陽極酸化処理アルミニウム合金部材。 10. The semiconductor device according to claim 1, wherein a semiconductor element is in contact with a portion of the base material surface not covered with the anodized film and the insulator with copper or a copper alloy, or aluminum or an aluminum alloy interposed therebetween. The anodized aluminum alloy member according to any one of the above items.
  12.  前記基材表面で、前記陽極酸化皮膜と前記絶縁物が被覆されていない部分に、冷却溶液が接するように構成される請求項1~9のいずれか1項に記載の陽極酸化処理アルミニウム合金部材。 The anodized aluminum alloy member according to any one of claims 1 to 9, wherein a cooling solution is in contact with a portion of the substrate surface where the anodized film and the insulator are not coated. .
PCT/JP2014/080547 2013-11-19 2014-11-18 Anodized aluminum alloy member having excellent heat resistance WO2015076272A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013239177 2013-11-19
JP2013-239177 2013-11-19

Publications (1)

Publication Number Publication Date
WO2015076272A1 true WO2015076272A1 (en) 2015-05-28

Family

ID=53179533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080547 WO2015076272A1 (en) 2013-11-19 2014-11-18 Anodized aluminum alloy member having excellent heat resistance

Country Status (2)

Country Link
JP (1) JP6190791B2 (en)
WO (1) WO2015076272A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172795A (en) * 1999-12-14 2001-06-26 Ulvac Kyushu Corp Aluminum composite and method for surface-treating aluminum composite
JP2002241992A (en) * 2001-02-15 2002-08-28 Nippon Light Metal Co Ltd Parts for surface treatment apparatus having excellent voltage resistance
JP2003171727A (en) * 2001-12-03 2003-06-20 Showa Denko Kk Aluminum alloy for film deposition treatment, aluminum alloy material having excellent corrosion resistance, and production method therefor
JP2013049903A (en) * 2011-08-31 2013-03-14 Kobe Steel Ltd Method for manufacturing aluminum anodic oxide coating being superior in productivity and having high voltage endurance
WO2014017297A1 (en) * 2012-07-26 2014-01-30 株式会社神戸製鋼所 Aluminum alloy having excellent anodic oxidation treatability, and anodic-oxidation-treated aluminum alloy member

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4990737B2 (en) * 2007-11-01 2012-08-01 富士フイルム株式会社 Manufacturing method of fine structure
KR101255935B1 (en) * 2011-07-08 2013-04-23 삼성전기주식회사 Power Module Package and Method for Manufacturing the same
JP6161263B2 (en) * 2012-02-23 2017-07-12 株式会社カネカ Curable composition and thin film, and thin film transistor using the same
JP6043269B2 (en) * 2013-11-19 2016-12-14 株式会社神戸製鋼所 Anodized aluminum alloy member with excellent insulation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172795A (en) * 1999-12-14 2001-06-26 Ulvac Kyushu Corp Aluminum composite and method for surface-treating aluminum composite
JP2002241992A (en) * 2001-02-15 2002-08-28 Nippon Light Metal Co Ltd Parts for surface treatment apparatus having excellent voltage resistance
JP2003171727A (en) * 2001-12-03 2003-06-20 Showa Denko Kk Aluminum alloy for film deposition treatment, aluminum alloy material having excellent corrosion resistance, and production method therefor
JP2013049903A (en) * 2011-08-31 2013-03-14 Kobe Steel Ltd Method for manufacturing aluminum anodic oxide coating being superior in productivity and having high voltage endurance
WO2014017297A1 (en) * 2012-07-26 2014-01-30 株式会社神戸製鋼所 Aluminum alloy having excellent anodic oxidation treatability, and anodic-oxidation-treated aluminum alloy member

Also Published As

Publication number Publication date
JP2015120971A (en) 2015-07-02
JP6190791B2 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
JP5833987B2 (en) Aluminum alloy excellent in anodizing property and anodized aluminum alloy member
US11570890B2 (en) Ceramic circuit board and module using same
JP5972317B2 (en) Electronic component and manufacturing method thereof
JP6043269B2 (en) Anodized aluminum alloy member with excellent insulation
WO2006123736A1 (en) Corrosion resistance treatment method for aluminum or aluminum alloy
TW201140718A (en) Copper bonding wire for semiconductor, and bonding structure of the copper bonding wire
EP3269491B1 (en) Manufacturing method for junction, manufacturing method for substrate for power module with heat sink, and manufacturing method for heat sink
TW201246564A (en) Metal substrate with insulating layer and manufacturing method thereof and semiconductor device
US10332853B2 (en) Bonding structure and method for producing bonding structure
US10249563B2 (en) Multilayer wiring substrate
JP5932132B2 (en) Steel aluminum composite foil
JP6283301B2 (en) Anodized aluminum alloy member with excellent insulation
JP5369083B2 (en) Surface-treated aluminum member having high withstand voltage and method for producing the same
JP6190791B2 (en) Anodized aluminum alloy member excellent in heat resistance and method for producing the same
JP5630695B2 (en) Silicon nitride circuit board and manufacturing method thereof
RU2384027C2 (en) Method of chip fabrication
JP7506753B2 (en) Method for manufacturing metal-filled microstructures
JP5937937B2 (en) Aluminum anodized film
JP2014207490A (en) Insulating substrate, process of manufacturing the same, semiconductor module, and semiconductor device
JP2018044233A (en) Insulating aluminum alloy member
JP2018044227A (en) Anode oxidized aluminum alloy member excellent in voltage resistance
JP5525369B2 (en) Cu-Fe-P copper alloy strips for electronic equipment with excellent resin adhesion
JP7143659B2 (en) metal base substrate
JPS635548A (en) Heat-conductive insulating substrate for semiconductor element
TW202035341A (en) Electronic component and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14863306

Country of ref document: EP

Kind code of ref document: A1