WO2015076260A1 - Heat-resistant xylanase - Google Patents

Heat-resistant xylanase Download PDF

Info

Publication number
WO2015076260A1
WO2015076260A1 PCT/JP2014/080514 JP2014080514W WO2015076260A1 WO 2015076260 A1 WO2015076260 A1 WO 2015076260A1 JP 2014080514 W JP2014080514 W JP 2014080514W WO 2015076260 A1 WO2015076260 A1 WO 2015076260A1
Authority
WO
WIPO (PCT)
Prior art keywords
xylanase
amino acid
encoding
protein
positions
Prior art date
Application number
PCT/JP2014/080514
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 慶
忠弘 小澤
望 柴田
大視 掛下
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Publication of WO2015076260A1 publication Critical patent/WO2015076260A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2477Hemicellulases not provided in a preceding group
    • C12N9/248Xylanases

Definitions

  • the present invention relates to a xylanase having heat resistance.
  • biomass a biomass material containing cellulose
  • biomass a biomass material containing cellulose
  • Biomass is composed of cellulose fibers and hemicellulose and lignin mainly containing xylan surrounding them. In order to increase the saccharification efficiency of cellulose and hemicellulose in biomass, it is necessary to develop an enzyme that hydrolyzes cellulose and hemicellulose. It is also necessary to remove lignin from the biomass.
  • Patent Document 1 Japanese Patent Publication No. 2011-515089
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2012-029678
  • the present invention relates to the following (1) to (6).
  • a xylanase selected from proteins represented by the following (a) to (c): (A) in the amino acid sequence represented by SEQ ID NO: 2, any one or more amino acids of alanine at position 77, serine at position 212, alanine at position 214, glutamine at position 217, serine at position 323, and alanine at position 328 The residue is the amino acid residue: 77th: Proline 212: Alanine 214: Proline 217: Proline 323: Asparagine 328: A protein comprising an amino acid sequence substituted with proline and having xylanase activity.
  • (B) consisting of an amino acid sequence of the protein of (a) and an amino acid sequence having 90% or more identity other than the amino acids at positions 77, 212, 214, 217, 323, and 328, and A protein having xylanase activity.
  • C In the amino acid sequence of the protein of (a), one or several amino acids are deleted or substituted at positions other than the amino acids at positions 77, 212, 214, 217, 323, and 328.
  • a protein comprising an added amino acid sequence and having xylanase activity.
  • the present invention relates to providing a xylanase that can saccharify biomass more efficiently and is excellent in thermal stability.
  • the present inventors have found a novel xylanase derived from bacteria belonging to the genus Cellulomonas that can exhibit high xylanase activity in a wide pH range, and have already filed a patent application (Japanese Patent Application No. 2012-119034). As a result of further investigation, it was found that the thermal stability can be improved by substituting the amino acid residue at a predetermined position of the xylanase with another amino acid residue.
  • the xylanase of the present invention has a wide range of applications because it acts over a relatively wide range of pH conditions and has excellent xylanase activity at 50-65 ° C. Therefore, if this is used, biomass can be efficiently saccharified even under severe conditions.
  • amino acid residue refers to 20 amino acid residues constituting a protein, Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr and Val are meant.
  • identity refers to the number of full-length amino acid residues in the number of positions where identical amino acid residues are present in both sequences when the two amino acid sequences are aligned. The ratio (%) to the number. Specifically, it is calculated by the Lippman-Person method (Lipman-Pearson method; Science, 227, 1435, (1985)) and homology of genetic information processing software Genetyx-Win (Ver. 5.1.1; software development). Using an analysis (Search homology) program, it can be calculated by performing an analysis with Unit size to compare (ktup) of 2.
  • xylanase activity refers to an activity of hydrolyzing a xylose ⁇ -1,4-glycoside bond in xylan.
  • the xylanase activity of a protein can be determined, for example, by reacting with the protein using xylan as a substrate and measuring the amount of xylan degradation product produced. Specific procedures for measuring xylanase activity are described in detail in the examples below.
  • amino acid residue at the corresponding position is identified by comparing the target amino acid sequence with a reference sequence using a known algorithm, and maximizing the conserved amino acid residue present in the amino acid sequence of each xylanase. This can be done by aligning the sequences so as to confer homology. By aligning the amino acid sequence of xylanase in this way, it is possible to determine the position of the homologous amino acid residue in the sequence of each xylanase regardless of insertion or deletion in the amino acid sequence.
  • the alignment can be performed manually based on, for example, the above-described Lippmann-Person method, but the Clustal W multiple alignment program (Thompson, JD et al, (1994) Nucleic Acids Res. 22, p. 4673-4680) with default settings.
  • Clustal W is, for example, the European Bioinformatics Institute (EBI, [www.ebi.ac.uk/index.html]) and the Japan DNA Data Bank (DDBJ, [DDBJ, [ www.ddbj.nig.ac.jp/Welcome-j.html]).
  • an optimal alignment is preferably determined in consideration of amino acid sequence similarity, frequency of inserted gaps, and the like.
  • the similarity of amino acid sequences means the ratio (%) of the number of positions where the same or similar amino acid residues exist in both sequences when two amino acid sequences are aligned to the total number of amino acid residues.
  • a similar amino acid residue means an amino acid residue having properties similar to each other in terms of polarity and charge among 20 kinds of amino acids constituting a protein and causing so-called conservative substitution.
  • Such groups of similar amino acid residues are well known to those skilled in the art and include, for example, arginine and lysine; glutamic acid and aspartic acid; serine and threonine; glutamine and asparagine; valine, leucine and isoleucine, respectively. However, it is not limited to these.
  • the position of the amino acid residue of the target amino acid sequence aligned with the position corresponding to the arbitrary position of the reference sequence by the above alignment is regarded as the “corresponding position” to the arbitrary position, and the amino acid residue is The amino acid residue at the position ".
  • the xylanase of the present invention includes proteins represented by the following (a) to (c).
  • the residue is the amino acid residue: 77th: Proline 212: Alanine 214: Proline 217: Proline 323: Asparagine 328: A protein comprising an amino acid sequence substituted with proline and having xylanase activity.
  • (B) consisting of an amino acid sequence of the protein of (a) and an amino acid sequence having 90% or more identity other than the amino acids at positions 77, 212, 214, 217, 323, and 328, and A protein having xylanase activity.
  • (C) In the amino acid sequence of the protein of (a), one or several amino acids are deleted or substituted at positions other than the amino acids at positions 77, 212, 214, 217, 323, and 328.
  • a protein comprising an added amino acid sequence and having xylanase activity.
  • amino acid sequence represented by SEQ ID NO: 2 represented by (a) include the xylanase derived from bacteria belonging to the genus Cellulomonas, specifically, the amino acid sequence derived from Cellulomonas fimi ATCC484-derived xylanase (Japanese Patent Application No. 2012-1119034).
  • amino acids at position 77 (77th from the N-terminal), position 214 (214th from the N-terminal) and position 328 (position 328 from the N-terminal) are alanine, and position 212
  • the amino acid at position 212 (position 212 from the N-terminus) and position 323 (position 323 from position N) is serine, and the amino acid at position 217 (position 217 from position N) is glutamine.
  • the xylanase shown in (a) is based on the xylanase consisting of the amino acid sequence shown in SEQ ID NO: 2 as a reference xylanase, and the xylanase has 77th alanine, 212th serine, 214th alanine, 217th glutamine, 323 Any one or more amino acid residues of serine at position and alanine at position 328 are as follows: 77th: Proline, 212: Alanine, 214: Proline, 217: Proline, 323: Asparagine, 328: Proline, Is a mutant (also referred to as mutant xylanase).
  • the amino acid residue substitution may be naturally occurring or artificially introduced.
  • Such a mutant xylanase has improved heat resistance compared to the reference xylanase.
  • a mutant in which any one or more of alanine at positions 77, 214, and 328 is substituted with proline is preferable.
  • the xylanase activity is not impaired.
  • xylanases with mutations eg deletions, substitutions or additions
  • the mutation at the arbitrary position may be naturally occurring or artificially introduced.
  • amino acid sequence having 90% or more identity with the amino acid sequence of the protein of (a) other than the amino acids at positions 77, 212, 214, 217, 323, and 328 Is 90% or more, preferably 95% of the remaining amino acid sequence excluding the amino acids at positions 77, 212, 214, 217, 323, and 328 in the amino acid sequence of the protein (a) More preferably, amino acid sequences having identity of 96% or more, 97% or more, 98% or more, or 99% or more are mentioned.
  • the xylanase represented by (b) has a protein having xylanase activity consisting of an amino acid sequence having 90% or more identity with the amino acid sequence represented by SEQ ID NO: 2 as a reference xylanase at position 77 of SEQ ID NO: 2.
  • substitution with alanine at the corresponding position as proline substitution with serine at the position corresponding to position 212, substitution with alanine at the position corresponding to position 214, and glutamine at the position corresponding to position 217 with proline
  • An amino acid sequence having at least one amino acid substitution selected from the substitution with serine at the position corresponding to position 323 asparagine and the substitution with alanine at position 328 as proline, and xylanase activity are included.
  • amino acid sequence of the protein of (a) an amino acid sequence in which one or several amino acids are deleted, substituted or added at positions other than the amino acids at positions 77, 214 and 328
  • 1 to 10 amino acids preferably Examples include amino acid sequences in which 1 to 5, more preferably 1 to 3, more preferably 1 to 2, are deleted, substituted, or added.
  • amino acid deletion means deletion or disappearance of an amino acid residue in the sequence
  • amino acid substitution means that an amino acid residue in the sequence is replaced with another amino acid residue.
  • amino acid addition is meant that an amino acid residue has been added.
  • ition includes insertion of another amino acid residue between amino acids in the sequence.
  • xylanase represented by (c) a protein having a xylanase activity consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added to the amino acid sequence represented by SEQ ID NO: 2 is used as a reference xylanase.
  • Substitution of alanine at position 77 corresponding to SEQ ID NO: 2 as proline, substitution at position 212 corresponding to serine as alanine, substitution at position 214 corresponding to alanine as proline, position 217 At least one amino acid substitution selected from a substitution with glutamine at the position corresponding to as a proline, a substitution at position 323 with asparagine at a position corresponding to position 323, and a substitution with alanine at a position corresponding to position 328 as a proline.
  • a protein comprising an amino acid sequence having xylanase activity
  • Arbitrary mutations made in the protein having xylanase activity in (b) and (c) above are, for example, ultraviolet irradiation or site-directed mutagenesis (Site-Directed Mutagenesis) to the gene encoding the target xylanase. It can be produced by introducing a mutation by a known mutagenesis method such as, expressing a gene having the mutation, and selecting a protein having a desired xylanase activity. The procedure for producing such a mutant is well known to those skilled in the art.
  • the gene encoding the xylanase of the present invention is a gene encoding the protein shown in the above (a) to (c), and specific examples thereof include the following genes (d) to (f).
  • the invention is not limited to this.
  • the “gene encoding xylanase” means any nucleic acid fragment (including DNA, mRNA, artificial nucleic acid, etc.) encoding the amino acid sequence of xylanase.
  • the “gene” according to the present invention may include other base sequences such as an untranslated region (UTR) in addition to the open reading frame.
  • a base encoding an alanine at positions 229 to 231 of SEQ ID NO: 1 a base encoding a serine at positions 634 to 636, and an alanine at positions 640 to 642
  • At least one of the bases encoding glutamine at positions 649 to 651, the base encoding serine at positions 967 to 969, and the base encoding alanine at positions 982 to 984 are the following amino acids: Encoding base; Positions 229 to 231: Bases encoding proline 634 to 636: Bases encoding alanine 640 to 642: Bases encoding proline 649 to 651: Bases encoding proline 967 to 969: Asparagine-encoding bases 982 to 984: A gene encoding a protein having a base sequence substituted with a proline-encoding base and having xylanase activity.
  • the xylanase of the present invention can be obtained, for example, by the following method. That is, the gene encoding the cloned reference xylanase is subjected to the mutation of the present invention using various mutagenesis techniques known in the art. For example, with respect to the gene encoding xylanase shown in SEQ ID NO: 1, the base sequence encoding the substitution target amino acid residue is mutated to the base sequence encoding the amino acid residue after substitution. Then, by transforming an appropriate host using the obtained mutant gene, culturing the recombinant host, and collecting from the culture, the mutation in which the amino acid residue to be replaced is replaced with the desired amino acid residue Xylanase can be obtained.
  • the gene encoding the reference xylanase can be isolated from bacteria belonging to the genus Cellulomonas, such as Cellulomonas fimi (ATCC 484), using any method used in the art.
  • the gene encoding the xylanase consisting of the amino acid sequence shown in SEQ ID NO: 2 is obtained by extracting the total genomic DNA of the Cellulomonas genus bacteria and then performing PCR using a primer designed based on the base sequence of SEQ ID NO: 1 Can be obtained by selectively amplifying and purifying the amplified gene.
  • the gene can be synthesized genetically or chemically based on the amino acid sequence of the xylanase of the present invention.
  • a means for mutating a gene encoding a reference xylanase basically, PCR amplification using a gene encoding a reference xylanase (for example, a DNA comprising the base sequence represented by SEQ ID NO: 1) as a template DNA or various DNA polymerases
  • site-directed mutagenesis methods well known to those skilled in the art can be used.
  • the site-directed mutagenesis method may be performed by any method such as inverse PCR method or annealing method (edited by Muramatsu et al., “Revised 4th edition Shinshin Genetic Engineering Handbook”, Yodosha, p. 82-88). Can do.
  • various commercially available site-specific mutagenesis kits such as QuickChange II Site-Directed Mutageness ⁇ Kit of Stratagene and QuickChange Multi Site-Directed Mutageness Kit can also be used.
  • the site-specific mutagenesis can be most commonly performed using a mutation primer containing a nucleotide mutation to be introduced.
  • a mutation primer is annealed to a region containing a nucleotide sequence encoding the amino acid residue to be substituted in the reference xylanase gene, and replaced in place of the nucleotide sequence (codon) encoding the amino acid residue to be substituted.
  • the base sequence which has the nucleotide sequence (codon) which codes a subsequent amino acid residue may be included.
  • Those skilled in the art can appropriately recognize and select a nucleotide sequence (codon) encoding a substitution target and a substituted amino acid residue based on a normal textbook.
  • Primers can be prepared by known oligonucleotide synthesis methods such as the phosphoramidite method (Nucleic® Acids® Research, 17, 7059-7071, 1989). Such primer synthesis can also be prepared using, for example, a commercially available oligonucleotide synthesizer (manufactured by ABI, etc.). By using a primer set containing a mutation primer and carrying out site-specific mutagenesis as described above using a reference xylanase gene as a template DNA, a gene encoding a xylanase into which the target mutation has been introduced can be obtained.
  • amino acids 77, 214 and 328 in the amino acid sequence shown in SEQ ID NO: 2 are substituted with proline using the recovered plasmid as a template.
  • a DNA fragment is amplified by PCR using an oligonucleotide containing a base sequence encoding the amino acid sequence as a primer.
  • a heat denaturation reaction for converting a double-stranded DNA into a single strand is performed at 98 ° C. for 10 seconds, and an annealing reaction for hybridizing the primer pair to the single-stranded DNA at 50 ° C.
  • An extension reaction for 15 seconds is carried out at 68 ° C. for 9 minutes, and one cycle of these is carried out for 40 cycles.
  • the DNA amplified by the PCR reaction is treated with a DpnI enzyme that specifically cleaves methylated DNA, E. coli is transformed with the enzyme, and selected on a plate medium containing antibiotics.
  • a plasmid from the transformed Escherichia coli, a gene encoding a xylanase into which the target amino acid mutation has been introduced can be obtained.
  • Production of xylanase using the obtained gene encoding the xylanase of the present invention can be performed by, for example, transforming a host bacterium by ligating the gene with a DNA vector capable of stably amplifying, or maintaining the mutated gene stably. And inoculating the host strain into a medium containing an assimilable carbon source, nitrogen source and other essential nutrients, and culturing according to a conventional method.
  • the type of the vector is not particularly limited, and vectors usually used for protein production such as plasmid, cosmid, phage, virus, YAC, BAC and the like can be mentioned.
  • a plasmid vector is preferable.
  • a commercially available plasmid vector for protein expression such as shuttle vector pHY300PLK (Takara Bio), pUC19 (Takara Bio), pUC119 (Takara Bio), pBR322 (Takara Bio) and the like can be suitably used.
  • the vector may include a DNA fragment containing a DNA replication initiation region and a DNA region containing a replication origin. Further, in the above vector, upstream of the gene encoding the xylanase of the present invention, a promoter region for initiating transcription of the gene, a secretory signal region for secreting the expressed protein outside the cell, etc.
  • the arrays may be operably linked.
  • a drug resistance gene ampicillin, neomycin, kanamycin, chloramphenicol, etc.
  • control sequences include S237egl promoter and signal sequence (Biosci. Biotechnol.
  • the xylanase gene can be linked to the above regulatory sequences and drug resistance gene by a method such as SOE (splicing by overlap extension) -PCR (Gene, 77, 61, 1989).
  • SOE splicing by overlap extension
  • -PCR Gene, 77, 61, 1989.
  • the procedure for introducing a gene into a plasmid vector is well known in the art.
  • the expression that the gene and the control sequence are “operably linked” means that the gene is arranged so that it can be expressed under the control of the control region.
  • microorganisms for introducing the constructed vector include Staphylococcus genus, Enterococcus genus, Listeria genus, bacteria belonging to the genus Bacillus, etc., among these, Bacillus genus bacteria such as Bacillus subtilis or mutants thereof (for example And a protease 9-deficient strain KA8AX described in JP-A-2006-174707) are preferred.
  • Bacillus genus bacteria such as Bacillus subtilis or mutants thereof (for example And a protease 9-deficient strain KA8AX described in JP-A-2006-174707) are preferred.
  • the introduction method a method usually used in the art such as a protoplast method and electroporation can be used. A strain into which the introduction has been appropriately carried out can obtain the desired transformant by selecting drug resistance or the like as an index.
  • the gene encoded on the vector contained in the transformant is expressed, and the xylanase of the present invention is produced.
  • the medium used for the culture can be appropriately selected by those skilled in the art according to the type of transformant.
  • the protein of the present invention can be obtained by isolating or purifying the produced xylanase from the culture by a conventional method. At this time, when the xylanase gene and the secretory signal sequence are operably linked on the vector, the produced xylanase is secreted outside the cell body, so that recovery becomes easier.
  • the recovered xylanase may be further purified by a known means.
  • biomass saccharification Since the xylanase of the present invention acts in a relatively wide range of pH conditions and has an excellent xylanase activity at 50 to 65 ° C. as shown in the examples described later, a composition containing this is used for biomass saccharification. It can be an enzyme preparation.
  • biomass refers to cellulosic and / or lignocellulosic biomass containing hemicellulose components produced by plants and algae.
  • biomass examples include various types of wood obtained from conifers such as larch and cedar, and broad-leaved trees such as oil palm (stems) and cypress; processed or pulverized products of wood such as wood chips; wood pulp produced from wood Pulp such as cotton linter pulp obtained from fibers around cotton seeds; Paper such as newspaper, cardboard, magazines, fine paper; bagasse (sugar cane residue), palm empty fruit bunch (EFB), rice straw Stalks of plants such as corn stalks or leaves, leaves, fruit bunches, etc .; plant shells such as rice husks, palm husks, coconut husks, algae and the like.
  • bagasse wood, processed or pulverized wood, plant stems, leaves, fruit bunches, etc. are preferred, bagasse, EFB, oil palm (stem) are more preferred, and bagasse is further. preferable. You may use the said biomass individually or in mixture of 2 or more types. Moreover, said biomass may be dried.
  • the enzyme preparation for biomass saccharification preferably further contains cellulase from the viewpoint of improving saccharification efficiency.
  • cellulase refers to an enzyme that hydrolyzes the glycosidic bond of ⁇ -1,4-glucan of cellulose, and is a generic term for enzymes called endoglucanase, exoglucanase or cellobiohydrolase, and ⁇ -glucosidase. It is.
  • commercially available cellulase preparations and cellulases derived from animals, plants and microorganisms may be mentioned. In the present invention, these cellulases may be used alone or in combination of two or more. From the viewpoint of improving saccharification efficiency, the cellulase preferably contains endoglucanase.
  • cellulases include cellulases derived from Trichoderma ; seisei; cellulases derived from Trichoderma viride; Bacillus sp. KSM-N145 (FERM P-19727), Bacillus sp. ) KSM-N252 (FERM P-17474), Bacillus sp. KSM-N115 (FERM P-19726), Bacillus sp. KSM-N440 (FERM P-19728), Bacillus sp.
  • Cellulases derived from various Bacillus strains such as KSM-N659 (FERM P-19730); thermostable cellulases derived from Pyrococcus horikoshii; Humicola insolens Cellulase of years, and the like.
  • KSM-N659 FERM P-19730
  • thermostable cellulases derived from Pyrococcus horikoshii derived from Pyrococcus horikoshii
  • Humicola insolens Cellulase of years and the like.
  • cellulases derived from Trichoderma reesei, Trichoderma vilide, or Humicola insolens are preferable.
  • cellulase preparations containing the above cellulase include Cellcrust (registered trademark) 1.5 L (manufactured by Novozymes), TP-60 (manufactured by Meiji Seika Co., Ltd.), Cellic (registered trademark) CTec2 (manufactured by Novozymes), Examples include Accelerase TM DUET (manufactured by Genencor) and Ultraflo (registered trademark) L (manufactured by Novozymes).
  • Cellic (registered trademark) CTec2 and AcceleraseTM DUET are preferable, and Cellic (registered trademark) CTec2 is more preferable from the viewpoint of improving saccharification efficiency, reducing manufacturing costs, and obtaining availability.
  • ⁇ -glucosidase which is a kind of cellulase
  • ⁇ -glucosidase derived from Aspergillus niger (for example, Novozymes 188 Novozymes 188 and Megazyme ⁇ -glucosidase), and Trichoderma lyase (Trichoderma ligase). reesei) or ⁇ -glucosidase derived from Penicillium emersonii.
  • Novozyme 188 and ⁇ -glucosidase derived from Trichoderma reease are preferable, and ⁇ -glucosidase derived from Trichoderma lyse is more preferable from the viewpoint of improving saccharification efficiency.
  • endoglucanase which is a kind of cellulase
  • Trichoderma reesei Acremonium celluloriticus, Humicola insolens, Clostridium thermocellum (Bacillus) ), Enzymes derived from Thermobifida, Cellulomonas, and the like.
  • Enzymes derived from Thermobifida Cellulomonas, and the like.
  • endoglucanase derived from Trichoderma reeze, Humicola insolens, Bacillus, Cellulomonas is preferable, and endoglucanase derived from Trichoderma reesei is more preferable.
  • the enzyme preparation of the present invention may contain a hemicellulase other than the xylanase of the present invention.
  • hemicellulase refers to an enzyme that hydrolyzes hemicellulose, and is a general term for enzymes called xylanase, xylosidase, galactanase, and the like.
  • Specific examples of hemicellulases other than the xylanase of the present invention include a hemicellulase derived from Trichoderma reesei; a xylanase derived from Bacillus sp.
  • KSM-N546 (FERM P-19729); an Aspergillus niger ), Trichoderma viride, Humicola insolens, or xylanase from Bacillus alcalophilus; Thermomyces, Aureobasidium, Streptomyces, Streptomyces (Clostridium), Thermomotoga, Thermoascus, Caldocellum, or Thermomonospora xylanase, Bacillus Pumilus (Bacillus pumilus) derived from ⁇ - xylosidase include Serenomonasu Ruminantiumu (Selenomonas ruminantium) from ⁇ - xylosidase.
  • the enzyme preparation of the present invention preferably contains a xylanase derived from Bacillus sp., Aspergillus niger, Trichoderma viride or Streptomyces, or ⁇ -xylosidase derived from Selenomonas luminantium, Alternatively, it is more preferable to contain Trichoderma viride-derived xinalase or Selenomonas luminantium-derived ⁇ -xylosidase.
  • the content of the xylanase of the present invention in the total protein amount of the enzyme preparation of the present invention is preferably 0.5% by mass or more, more preferably 1% by mass or more, further preferably 2% by mass from the viewpoint of improving saccharification efficiency.
  • the content of the cellulase in the total protein amount of the enzyme preparation of the present invention is preferably 10% by mass or more, more preferably 30% by mass or more, and further preferably 50% by mass or more, from the viewpoint of improving saccharification efficiency. And preferably 99% by mass or less, more preferably 95% by mass or less. Further, it is preferably 10 to 99% by mass, more preferably 30 to 95% by mass, and still more preferably 50 to 95% by mass. Further, the content of the endoglucanase in the total protein amount of the enzyme preparation of the present invention is preferably 1% by mass or more, more preferably 5% by mass or more, and further preferably 10% by mass from the viewpoint of improving saccharification efficiency.
  • 70% by mass or less more preferably 50% by mass or less, and still more preferably 40% by mass or less. Further, it is preferably 1 to 70% by mass, more preferably 5 to 50% by mass, and still more preferably 10 to 40% by mass. Further, the content of hemicellulase other than the xylanase of the present invention in the total protein amount of the enzyme preparation of the present invention is preferably 0.01% by mass or more, more preferably 0.8% from the viewpoint of improving saccharification efficiency. 1 mass% or more, More preferably, it is 0.5 or more mass%, Preferably it is 30 mass% or less, More preferably, it is 20 mass% or less. Further, it is preferably 0.01 to 30% by mass, more preferably 0.1 to 20% by mass, and further preferably 0.5 to 20% by mass.
  • the protein amount ratio of the xylanase of the present invention to the cellulase is preferably 0.01 or more, more preferably 0.05 or more, from the viewpoint of improving saccharification efficiency. And preferably 100 or less, more preferably 5 or less, still more preferably 1 or less, and still more preferably 0.5 or less. Further, it is preferably 0.01 to 100, more preferably 0.05 to 5, further preferably 0.05 to 1, and still more preferably 0.05 to 0.5.
  • the protein amount ratio of the xylanase of the present invention to the above endoglucanase is preferably 0.05 or more, more preferably 0.1, from the viewpoint of improving saccharification efficiency. And preferably 10 or less, more preferably 5 or less, still more preferably 2 or less, and still more preferably 1 or less. Further, it is preferably 0.05 to 10, more preferably 0.1 to 5, further preferably 0.1 to 2, and still more preferably 0.2 to 1.
  • the sugar production method of the present invention includes a step of saccharifying biomass with the xylanase or enzyme preparation of the present invention.
  • the conditions for the saccharification treatment are not particularly limited as long as the xylanase of the present invention and other enzymes added at the same time are not inactivated, and those skilled in the art appropriately determine the type of biomass, the procedure of the pretreatment step, and the type of enzyme used.
  • the content of biomass in the suspension is preferably 0.5% by mass or more, more preferably 3% by mass or more, and further preferably 5% by mass, from the viewpoint of improving saccharification efficiency and productivity (reducing production time).
  • 20% by mass or less more preferably 15% by mass or less, and still more preferably 10% by mass or less. Further, it is preferably 0.5 to 20% by mass, more preferably 3 to 15% by mass, and further preferably 5 to 10% by mass.
  • the amount of xylanase or enzyme preparation used for the suspension is appropriately determined depending on the pretreatment conditions, the type and properties of the enzyme to be blended, and is preferably 0.04% by mass or more, more preferably based on the biomass mass. Is 0.1% by mass or more, and preferably 600% by mass or less, more preferably 100% by mass or less, and still more preferably 50% by mass or less.
  • the reaction pH during the saccharification treatment is preferably pH 4 or more, more preferably pH 5 or more, preferably pH 9 or less, from the viewpoints of improving saccharification efficiency, improving productivity (shortening production time), and reducing production costs. More preferably, it is pH 8 or less, More preferably, it is pH 7 or less. Further, the pH is preferably 4 to 9, more preferably 5 to 8, and still more preferably 5 to 7.
  • the reaction temperature during the saccharification treatment is preferably 20 ° C or higher, more preferably 25 ° C or higher, more preferably 30 or higher, from the viewpoints of improving saccharification efficiency, improving productivity (shortening production time), and reducing production costs. Even more preferably 40 ° C or higher, still more preferably 45 ° C or higher, still more preferably 50 ° C or higher, and 90 ° C or lower is preferable, more preferably 85 ° C or lower, still more preferably 80 ° C or lower, still more preferably 75 ° C. or lower, more preferably 65 ° C. or lower, still more preferably 60 ° C. or lower.
  • reaction time of the saccharification treatment can be appropriately set according to the type or amount of biomass, the amount of enzyme, etc., but from the viewpoint of improving saccharification efficiency, improving productivity (shortening production time), and reducing production cost, It is preferably 1 to 5 days, more preferably 1 to 4 days, and further preferably 1 to 3 days.
  • the pretreatment include one or more selected from the group consisting of alkali treatment, pulverization treatment, and hydrothermal treatment. Since the xylanase of the present invention has high enzyme activity even in the alkaline region, the pretreatment is preferably alkali treatment from the viewpoint of improving saccharification efficiency, and alkali treatment and pulverization treatment are performed from the viewpoint of further improving saccharification efficiency. It is preferable to perform the alkali treatment and the pulverization treatment at the same time.
  • a xylanase selected from the proteins represented by the following (a) to (c).
  • the residue is the amino acid residue: 77th: Proline 212: Alanine 214: Proline 217: Proline 323: Asparagine 328: A protein comprising an amino acid sequence substituted with proline and having xylanase activity.
  • (B) consisting of an amino acid sequence of the protein of (a) and an amino acid sequence having 90% or more identity other than the amino acids at positions 77, 212, 214, 217, 323, and 328, and A protein having xylanase activity.
  • C In the amino acid sequence of the protein of (a), one or several amino acids are deleted or substituted at positions other than the amino acids at positions 77, 212, 214, 217, 323, and 328.
  • a protein comprising an added amino acid sequence and having xylanase activity.
  • ⁇ 6> A transformant obtained by introducing the recombinant vector of ⁇ 5> above into a host.
  • ⁇ 8> An enzyme preparation for biomass saccharification containing the xylanase of ⁇ 1> or ⁇ 2> above.
  • the content of the endoglucanase in the total protein amount of the enzyme preparation is preferably 1% by mass or more, more preferably 5% by mass or more, further preferably 10% by mass or more, and preferably 70%. % By mass or less, more preferably 50% by mass or less, further preferably 40% by mass or less, preferably 1 to 70% by mass, more preferably 5 to 50% by mass, and further preferably 10 to 40% by mass.
  • the protein amount ratio between the protein of ⁇ 1> and the cellulase is preferably 0.01 or more, more preferably 0.05 or more, and preferably 100 or less, more preferably Is 5 or less, more preferably 1 or less, even more preferably 0.5 or less, and preferably 0.01 to 100, more preferably 0.05 to 5, and even more preferably 0.05 to 1, more More preferably, the enzyme preparation for biomass saccharification according to ⁇ 9> to ⁇ 11>, which is 0.05 to 0.5.
  • the protein amount ratio of the protein ⁇ 1> or ⁇ 2> to the endoglucanase is preferably 0.05 or more, more preferably 0.1 or more, and preferably Is 10 or less, more preferably 5 or less, still more preferably 2 or less, even more preferably 1 or less, and preferably 0.05 to 10, more preferably 0.1 to 5, and still more preferably 0.1.
  • the biomass is selected from the group consisting of processed or pulverized wood, pulp, paper, bagasse, rice straw, corn stalk or leaf, palm empty fruit bunch (EFB), plant shells, and algae At least one selected from the group consisting of wood, processed or pulverized wood, plant stems, leaves, and fruit bunches, more preferably bagasse, EFB, oil palm (stem)
  • the enzyme preparation for biomass saccharification according to the above ⁇ 8> to ⁇ 13> which is at least one selected from the group, more preferably bagasse.
  • ⁇ 15> A method for producing sugar, comprising a step of saccharifying biomass with the enzyme preparation of ⁇ 8> to ⁇ 14> above.
  • ⁇ 16> The method according to ⁇ 15>, wherein, in the saccharification treatment, the protein according to ⁇ 1> or the enzyme preparation according to ⁇ 8> to ⁇ 14> is added to the suspension containing the biomass.
  • the content of the biomass in the suspension is 0.5 to 20% by mass, preferably 3 to 15% by mass, preferably 5 to 10% by mass.
  • the amount of the protein ⁇ 1> or the enzyme preparation ⁇ 8> to ⁇ 14> used in the suspension is preferably 0.04% by mass or more, more preferably, based on the mass of the biomass. Is 0.1% by mass or more, and preferably 600% by mass or less, more preferably 100% by mass or less, still more preferably 50% by mass or less, and preferably 0.04 to 600% by mass, more preferably Is 0.1 to 100% by mass, more preferably 0.1 to 50% by mass, according to the above ⁇ 16> or ⁇ 17>.
  • the reaction pH during the saccharification treatment is preferably pH 4 or more, more preferably pH 5 or more, preferably pH 9 or less, more preferably pH 8 or less, further preferably pH 7 or less, and preferably pH 4 to 9.
  • the reaction temperature during the saccharification treatment is preferably 20 ° C or higher, more preferably 25 ° C or higher, still more preferably 30 or higher, still more preferably 40 ° C or higher, still more preferably 45 ° C or higher, still more preferably.
  • a ′ a protein having an amino acid sequence in which at least one of alanine at positions 77, 214, and 328 in the amino acid sequence represented by SEQ ID NO: 2 is substituted with proline, and having xylanase activity.
  • B ′ a protein comprising an amino acid sequence having 90% or more identity other than the amino acids at positions 77, 214 and 328 with the amino acid sequence of the protein of (a ′) and having xylanase activity.
  • PCR polymerase chain reaction
  • Applied Biosystems Applied Biosystems 2720 thermal cycler
  • PrimeSTAR Max Premix GXL Takara Bio
  • DNA amplification was performed.
  • the PCR reaction solution composition was 1 ⁇ L of appropriately diluted template DNA, 10 pmol of each of the sense primer and antisense primer, and 1 ⁇ L of PrimeSTAR Max Premix GXL, so that the total amount of the reaction solution was 50 ⁇ L.
  • PCR reaction conditions were carried out by repeating 40 steps of three steps of temperature changes of 98 ° C. for 10 seconds, 50 ° C. for 15 seconds and 68 ° C. for 9 minutes.
  • Example 1 Cloning of Cellulomonas-derived cellulase gene 1-1 Extraction of genomic DNA Cellulomonas fimi ATCC 484 strain was inoculated into Growth medium (1.0% Polypeptone, 0.2% Yeast extract, 0.1% MgSO4 ⁇ 7H2O, pH 7.0) at 30 ° C. For 1 day. Genomic DNA was obtained from the cells obtained by the culture using UltraClean TM Microbial DNA Isolation Kit (manufactured by Mo Bio Laboratories, Inc.).
  • a strain carrying the plasmid into which the target gene was inserted was selected by colony PCR.
  • the selected transformant was cultured using the same LB agar medium (37 ° C., 1 day), and the plasmid was recovered and purified from the obtained bacterial cell using High® Pure® Plasmid Isolation® kit (Roche).
  • the plasmid was introduced into the host bacteria according to the protoplast transformation method (Mol. Gen. Genet., 168, 111 (1979)). At this time, Bacillus subtilis 168 protease 9-deficient strain (KA8AX) (JP 2006-174707) was used as the host bacterium.
  • Transformant regeneration medium includes tetracycline-containing DM3 regeneration agar medium (xylan from beechwood (Sigma-Aldrich) 1.0% (w / v), bactocasamino acid (Difco) 0.5% (w / v), yeast extract (Difco) 0.5% (w / v), L-tryptophan (Wako Pure Chemical Industries) 0.01% (w / v), disodium succinate hexahydrate (Wako Pure Chemical Industries) 8.1% (w / v), monophosphate Dipotassium hydrogen (Wako Pure Chemical Industries) 0.35% (w / v), Monopotassium dihydrogen phosphate (Wako Pure Chemical Industries) 0.15% (w / v), Glucose (Wako Pure Chemical Industries) 0.5% (w / v) ), Magnesium chloride (Wako Pure Chemical Industries) 20 mM, bovine serum albumin (Wako Pure Chemical Industries) 0.01% (w /
  • Example 2 Xylanase production Transformant grown on DM3 regenerated agar medium After seed culture using 5 mL of LB medium containing 15 ppm tetracycline (30 ° C., 250 rpm, 16 hours), 0.6 mL of seed culture solution was added to 20 mL of 2 ⁇ L Mal medium.
  • Example 3 Mutation Introduction 77-Pro induced Cfi Fw (SEQ ID NO: 9) and 77-Pro shown in Table 2 below (actually shown) using as a template a gene encoding a wild-type xylanase consisting of the base sequence shown in SEQ ID NO: 1 Induced Cfi Rv (SEQ ID NO: 10) primer pair, 214-Pro induced Cfi Fw (SEQ ID NO: 11) and 214-Pro induced Cfi Rv (SEQ ID NO: 12) primer pair, 328-Pro induced Cfi Fw (SEQ ID NO: 13) And 328-Pro induced Cfi Rv (SEQ ID NO: 14) primer pair, 212-Ala induced Cfi Fw (SEQ ID NO: 15) and 212-Ala induced Cfi Rv (SEQ ID NO: 16) primer pair, 217-Gly induced Cfi Fw ( PCR using a primer pair of SEQ ID NO: 17) and 217
  • the obtained PCR reaction solution was treated with DpnI to digest the template DNA, and then transformed into Escherichia coli to construct a plasmid expressing the mutant xylanase.
  • the obtained plasmid was confirmed to have a gene encoding a mutant xylanase inserted by a DNA sequencing method.
  • Example 4 Analysis of Enzymatic Properties of Mutant Xylanase 4-1 Heat Resistance Heat resistance was measured. First, the crude enzyme solution was appropriately diluted with 50 mM acetate buffer, and incubated at 62-67 ° C. (in 1 ° C. increments) for 20 minutes using a Veriti thermal cycler (Applied Biosystems). Simultaneously, 20 ⁇ L of the synthetic substrate 1 mM p-nitrophenylxylobioside solution, 20 ⁇ L of 250 mM acetate buffer and 50 ⁇ L of water were mixed to prepare 90 ⁇ L of the substrate solution. 10 ⁇ L of the crude enzyme solution after incubation was added to the substrate solution, and reacted at 50 ° C. for 10 minutes.
  • a Veriti thermal cycler Applied Biosystems
  • the xylanase of the present invention showed the maximum activity at pH 6.0 and maintained 70% or more of the maximum activity at pH 5.0 to 7.0.
  • a substrate solution 90 ⁇ L was prepared by mixing 2.0 ⁇ l (w / v) xylan from beechwood 50 ⁇ L, 250 mM acetate buffer (pH 5.0) 20 ⁇ L and water 20 ⁇ L. 10 ⁇ L of the crude enzyme solution of the mutant diluted to an appropriate concentration was added and reacted at 50 ° C. for 10 minutes. After the reaction, 100 ⁇ L of DNS solution was added to stop the reaction, and the reaction was carried out at 100 ° C. for 5 minutes. After cooling, the absorbance at 540 nm was measured with an absorbance microplate reader.
  • a blank was prepared by adding 100 ⁇ L of the DNS solution to 90 ⁇ L of the substrate solution, adding 10 ⁇ L of the enzyme solution, and performing the same operation.
  • the amount of xylooligosaccharides produced by preparing a calibration curve prepared with a xylose solution was calculated, and the value obtained by subtracting the background sugar derived from the substrate solution was taken as the amount of produced sugars.
  • the xylanase activity of the diluted enzyme solution was calculated from the amount of sugar produced, and the relative activity was measured with the wild-type activity as 100%.
  • Table 5 shows the results of specific activities related to the degradation of xylan by mutant xylanase and wild-type xylanase.
  • the xylanase of the present invention had the highest xylan decomposition activity in the vicinity of 50-60 ° C., and showed an activity of 60% or more of the maximum activity in the range of 45-65 ° C.

Abstract

Provided is a xylanase that can saccharize biomass more efficiently than conventional art and exhibits superior heat stability. This xylanase is selected from the following (a)-(c): (a) a protein exhibiting xylanase activity and comprising an amino acid sequence in which at least one from amongst a 77th position alanine, a 212th position serin, a 214th position alanine, a 217th position glutamine, a 323rd position serin, and a 328th position alanine in an amino acid sequence represented by SEQ ID NO:2, is substituted with the following amino acid residues; 77th position: proline, 212th position: alanine, 214th position: proline, 217th position: proline, 323rd position: asparagine, and 328th position: proline; (b) a xylanase protein comprising an amino acid sequence exhibiting equal to or greater than 90% similarity, other than the substitution locations, to protein (a); and (c) a xylanase protein comprising an amino acid sequence in which one or more amino acids at positions other than the substitution locations of protein (a) are either deleted, substituted, or added.

Description

耐熱性キシラナーゼThermostable xylanase
 本発明は、耐熱性を備えたキシラナーゼに関する。 The present invention relates to a xylanase having heat resistance.
 セルロースを含有するバイオマス材料(以下、「バイオマス」ということがある)中のセルロースから糖を製造し、それを発酵法などでエタノールや乳酸などへ変換する技術は以前より知られている。さらに近年、環境問題への取り組みの観点から、バイオマスを資源として効率よく利用する技術の開発が注目されている。 A technology for producing sugar from cellulose in a biomass material containing cellulose (hereinafter sometimes referred to as “biomass”) and converting it into ethanol, lactic acid, or the like by a fermentation method has been known. Furthermore, in recent years, development of technology that efficiently uses biomass as a resource has attracted attention from the viewpoint of tackling environmental problems.
 バイオマスは、セルロース繊維と、それを取り巻くキシランを主に含むヘミセルロース及びリグニンから構成されている。バイオマスにおけるセルロースやヘミセルロースの糖化効率を高めるためには、セルロースやヘミセルロースを加水分解する酵素の開発が必要となる。また、当該バイオマスからリグニンを除去することが必要である。 Biomass is composed of cellulose fibers and hemicellulose and lignin mainly containing xylan surrounding them. In order to increase the saccharification efficiency of cellulose and hemicellulose in biomass, it is necessary to develop an enzyme that hydrolyzes cellulose and hemicellulose. It is also necessary to remove lignin from the biomass.
 バイオマスのセルラーゼによる糖化や、ヘミセルラーゼやリグニナーゼによるバイオマスの酵素分解は、従来から行われている。例えば、セルラーゼにTrichoderma reesei由来のキシラナーゼやアラビノフラノシダーゼなどのヘミセルラーゼが添加された酵素組成物が開発されている(特許文献1)。また、バガス堆肥に存在する微生物群由来のキシラナーゼ活性を有するタンパク質、及び当該タンパク質とセルラーゼとをバイオマス資源に反応させることによる糖の製造方法が知られている(特許文献2)。さらに、ノボザイムズ社(Novozymes社)が製造販売しているキシラナーゼ製剤(Cellic(登録商標)HTecなど)も知られている。 Conventionally, saccharification of biomass with cellulase and enzymatic decomposition of biomass with hemicellulase and ligninase have been performed. For example, an enzyme composition in which hemicellulase such as xylanase or arabinofuranosidase derived from Trichoderma reesei is added to cellulase has been developed (Patent Document 1). Moreover, the manufacturing method of the saccharide | sugar by making the protein which has the xylanase activity derived from the microorganisms group which exists in bagasse compost, and the said protein and cellulase react with biomass resources is known (patent document 2). Furthermore, xylanase preparations (such as Cellic (registered trademark) HTec) manufactured and sold by Novozymes are also known.
 しかしながら、従来のヘミセルラーゼやキシラナーゼを用いたバイオマスの糖化方法は、糖化効率や単糖の生産性、又は酵素コストの面で未だ満足できるものではなかった。さらに、従来のキシラナーゼは、至適pH領域が比較的狭く、また熱安定性の面でも劣っているため、適用用途が制限される場合があった。 However, conventional methods for saccharification of biomass using hemicellulase or xylanase have not been satisfactory in terms of saccharification efficiency, monosaccharide productivity, or enzyme cost. Furthermore, the conventional xylanase has a relatively narrow optimum pH range and is inferior in terms of heat stability, and thus has limited applications.
  〔特許文献1〕特表2011-515089号公報
  〔特許文献2〕特開2012-029678号公報
[Patent Document 1] Japanese Patent Publication No. 2011-515089 [Patent Document 2] Japanese Patent Application Laid-Open No. 2012-029678
 本発明は、以下の(1)~(6)に係るものである。
(1)下記(a)~(c)で示されるタンパク質から選ばれるキシラナーゼ。
 (a)配列番号2で示されるアミノ酸配列において、77位のアラニン、212位のセリン、214位のアラニン、217位のグルタミン、323位のセリン及び328位のアラニンのいずれか一つ以上のアミノ酸残基が、下記のアミノ酸残基; 
  77位:プロリン
 212位:アラニン
 214位:プロリン
 217位:プロリン
 323位:アスパラギン
 328位:プロリン
に置換されたアミノ酸配列からなり、且つキシラナーゼ活性を有するタンパク質。
 (b)前記(a)のタンパク質のアミノ酸配列と、前記77位、212位、214位、217位、323位及び328位のアミノ酸以外で90%以上の同一性を有するアミノ酸配列からなり、且つキシラナーゼ活性を有するタンパク質。
 (c)前記(a)のタンパク質のアミノ酸配列において、前記77位、212位、214位、217位、323位及び328位のアミノ酸以外の位置で、1又は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、且つキシラナーゼ活性を有するタンパク質。
(2)(1)の何れかのキシラナーゼをコードする遺伝子。
(3)下記(d)~(f)記載のキシラナーゼをコードする遺伝子
 (d)配列番号1で示される塩基配列において、配列番号1の229位~231位のアラニンをコードする塩基、634位~636位のセリンをコードする塩基、640位~642位のアラニンをコードする塩基、649位~651位のグルタミンをコードする塩基、967位~969位のセリンをコードする塩基及び982位~984位のアラニンをコードする塩基のいずれか一以上が、下記のアミノ酸をコードする塩基; 
 229位~231位:プロリンをコードする塩基
 634位~636位:アラニンをコードする塩基
 640位~642位:プロリンをコードする塩基
 649位~651位:プロリンをコードする塩基
 967位~969位:アスパラギンをコードする塩基
 982位~984位:プロリンをコードする塩基
に置換された塩基配列からなり、且つキシラナーゼ活性を有するタンパク質をコードする遺伝子。
(4)(2)又は(3)の遺伝子を含有する組み換えベクター。
(5)(4)の組み換えベクターを、宿主に導入してなる形質転換体。
(6)(1)のキシラナーゼを含有するバイオマス糖化用酵素製剤。
(7)バイオマスを(6)の酵素製剤で糖化処理する工程を含む、糖の製造方法。
The present invention relates to the following (1) to (6).
(1) A xylanase selected from proteins represented by the following (a) to (c):
(A) in the amino acid sequence represented by SEQ ID NO: 2, any one or more amino acids of alanine at position 77, serine at position 212, alanine at position 214, glutamine at position 217, serine at position 323, and alanine at position 328 The residue is the amino acid residue:
77th: Proline 212: Alanine 214: Proline 217: Proline 323: Asparagine 328: A protein comprising an amino acid sequence substituted with proline and having xylanase activity.
(B) consisting of an amino acid sequence of the protein of (a) and an amino acid sequence having 90% or more identity other than the amino acids at positions 77, 212, 214, 217, 323, and 328, and A protein having xylanase activity.
(C) In the amino acid sequence of the protein of (a), one or several amino acids are deleted or substituted at positions other than the amino acids at positions 77, 212, 214, 217, 323, and 328. Alternatively, a protein comprising an added amino acid sequence and having xylanase activity.
(2) A gene encoding the xylanase according to any one of (1).
(3) Gene encoding xylanase described in (d) to (f) below (d) In the nucleotide sequence represented by SEQ ID NO: 1, nucleotides encoding alanine at positions 229 to 231 of SEQ ID NO: 1, 634 to A base encoding serine at position 636, a base encoding alanine at positions 640 to 642, a base encoding glutamine at positions 649 to 651, a base encoding serine at positions 967 to 969, and positions 982 to 984 Any one or more of the bases encoding alanine of the following amino acids:
Positions 229 to 231: Bases encoding proline 634 to 636: Bases encoding alanine 640 to 642: Bases encoding proline 649 to 651: Bases encoding proline 967 to 969: Asparagine-encoding bases 982 to 984: A gene encoding a protein having a base sequence substituted with a proline-encoding base and having xylanase activity.
(4) A recombinant vector containing the gene of (2) or (3).
(5) A transformant obtained by introducing the recombinant vector of (4) into a host.
(6) An enzyme preparation for biomass saccharification containing the xylanase of (1).
(7) A method for producing sugar, comprising a step of saccharifying biomass with the enzyme preparation of (6).
発明の詳細な説明Detailed Description of the Invention
 本発明は、より効率的にバイオマスを糖化することができ、且つ熱安定性に優れたキシラナーゼを提供することに関する。 The present invention relates to providing a xylanase that can saccharify biomass more efficiently and is excellent in thermal stability.
 本発明者らは、広いpH領域において高いキシラナーゼ活性を発揮し得る、Cellulomonas属細菌由来の新規キシラナーゼを見出し、既に特許出願した(特願2012-119034)。そして、更に検討した結果、当該キシラナーゼの所定の位置のアミノ酸残基を他のアミノ酸残基に置換することにより、熱安定性を向上できることを見出した。 The present inventors have found a novel xylanase derived from bacteria belonging to the genus Cellulomonas that can exhibit high xylanase activity in a wide pH range, and have already filed a patent application (Japanese Patent Application No. 2012-119034). As a result of further investigation, it was found that the thermal stability can be improved by substituting the amino acid residue at a predetermined position of the xylanase with another amino acid residue.
 本発明のキシラナーゼは、比較的広範囲のpH条件で作用し、且つ50-65℃で優れたキシラナーゼ活性を有することから適用範囲が広い。したがって、これを用いれば、過酷な条件においても効率的にバイオマスを糖化することができる。 The xylanase of the present invention has a wide range of applications because it acts over a relatively wide range of pH conditions and has excellent xylanase activity at 50-65 ° C. Therefore, if this is used, biomass can be efficiently saccharified even under severe conditions.
 本明細書において、「アミノ酸残基」とは、タンパク質を構成する20種のアミノ酸残基、Ala、Arg、Asn、Asp、Cys、Gln、Glu、Gly、His、Ile、Leu、Lys、Met、Phe、Pro、Ser、Thr、Trp、Tyr及びValを意味する。 As used herein, the term “amino acid residue” refers to 20 amino acid residues constituting a protein, Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr and Val are meant.
 本明細書において、「(アミノ酸配列間の)同一性」とは、2つのアミノ酸配列を整列(アラインメント)したときに両方の配列において同一のアミノ酸残基が存在する位置の数の全長アミノ酸残基数に対する割合(%)をいう。具体的には、リップマン-パーソン法(Lipman-Pearson法;Science,227,1435,(1985))によって計算され、遺伝情報処理ソフトウェアGenetyx-Win(Ver.5.1.1;ソフトウェア開発)のホモロジー解析(Search homology)プログラムを用いて、Unit size to compare(ktup)を2として解析を行なうことにより算出できる。 As used herein, “identity (between amino acid sequences)” refers to the number of full-length amino acid residues in the number of positions where identical amino acid residues are present in both sequences when the two amino acid sequences are aligned. The ratio (%) to the number. Specifically, it is calculated by the Lippman-Person method (Lipman-Pearson method; Science, 227, 1435, (1985)) and homology of genetic information processing software Genetyx-Win (Ver. 5.1.1; software development). Using an analysis (Search homology) program, it can be calculated by performing an analysis with Unit size to compare (ktup) of 2.
 本明細書において「キシラナーゼ活性」とは、キシラン中のキシロースβ-1,4-グリコシド結合を加水分解する活性をいう。タンパク質のキシラナーゼ活性は、例えば、キシランを基質として当該タンパク質と反応させ、キシラン分解産物の生成量を測定することによって決定することができる。キシラナーゼ活性の測定の具体的手順は、後述の実施例に詳述されている。 As used herein, “xylanase activity” refers to an activity of hydrolyzing a xylose β-1,4-glycoside bond in xylan. The xylanase activity of a protein can be determined, for example, by reacting with the protein using xylan as a substrate and measuring the amount of xylan degradation product produced. Specific procedures for measuring xylanase activity are described in detail in the examples below.
 本明細書において、「相当する位置のアミノ酸残基」の特定は、公知のアルゴリズムを用いて、目的アミノ酸配列を参照配列と比較し、各キシラナーゼのアミノ酸配列に存在する保存アミノ酸残基に最大の相同性を与えるように配列を整列(アラインメント)させることにより行うことができる。キシラナーゼのアミノ酸配列をこのような方法で整列させることにより、アミノ酸配列中にある挿入、欠失にかかわらず、相同アミノ酸残基の各キシラナーゼにおける配列中の位置を決めることが可能である。アラインメントは、例えば、上述のリップマン-パーソン法等に基づいて手作業で行うこともできるが、Clustal Wマルチプルアラインメントプログラム(Thompson,J.D.et al,(1994) Nucleic Acids Res.22, p.4673-4680)をデフォルト設定で用いることより行うことができる。Clustal  Wは、例えば、欧州バイオインフォマティクス研究所(European  Bioinformatics Institute:EBI,[www.ebi.ac.uk/index.html])や、国立遺伝学研究所が運営する日本DNAデータバンク(DDBJ,[www.ddbj.nig.ac.jp/Welcome-j.html])のウェブサイトから利用することができる。 In the present specification, the “amino acid residue at the corresponding position” is identified by comparing the target amino acid sequence with a reference sequence using a known algorithm, and maximizing the conserved amino acid residue present in the amino acid sequence of each xylanase. This can be done by aligning the sequences so as to confer homology. By aligning the amino acid sequence of xylanase in this way, it is possible to determine the position of the homologous amino acid residue in the sequence of each xylanase regardless of insertion or deletion in the amino acid sequence. The alignment can be performed manually based on, for example, the above-described Lippmann-Person method, but the Clustal W multiple alignment program (Thompson, JD et al, (1994) Nucleic Acids Res. 22, p. 4673-4680) with default settings. Clustal W is, for example, the European Bioinformatics Institute (EBI, [www.ebi.ac.uk/index.html]) and the Japan DNA Data Bank (DDBJ, [DDBJ, [ www.ddbj.nig.ac.jp/Welcome-j.html]).
 当業者であれば、上記で得られたアラインメントを、必要に応じて最適なアラインメントとなるようにさらに微調整することできる。そのような最適アラインメントは、アミノ酸配列の類似性や挿入されるギャップの頻度等を考慮して決定するのが好ましい。ここでアミノ酸配列の類似性とは、2つのアミノ酸配列をアラインメントしたときにその両方の配列に同一又は類似のアミノ酸残基が存在する位置の数の全長アミノ酸残基数に対する割合(%)をいう。類似のアミノ酸残基とは、タンパク質を構成する20種のアミノ酸のうち、極性や電荷の点で互いに類似した性質を有しており、いわゆる保存的置換を生じるようなアミノ酸残基を意味する。そのような類似のアミノ酸残基からなるグループは当業者にはよく知られており、例えば、アルギニン及びリジン;グルタミン酸及びアスパラギン酸;セリン及びトレオニン;グルタミン及びアスパラギン;バリン、ロイシン及びイソロイシン等がそれぞれ挙げられるが、これらに限定されない。 Those skilled in the art can further fine-tune the alignment obtained above so as to obtain an optimum alignment as necessary. Such an optimal alignment is preferably determined in consideration of amino acid sequence similarity, frequency of inserted gaps, and the like. Here, the similarity of amino acid sequences means the ratio (%) of the number of positions where the same or similar amino acid residues exist in both sequences when two amino acid sequences are aligned to the total number of amino acid residues. . A similar amino acid residue means an amino acid residue having properties similar to each other in terms of polarity and charge among 20 kinds of amino acids constituting a protein and causing so-called conservative substitution. Such groups of similar amino acid residues are well known to those skilled in the art and include, for example, arginine and lysine; glutamic acid and aspartic acid; serine and threonine; glutamine and asparagine; valine, leucine and isoleucine, respectively. However, it is not limited to these.
 上述のアラインメントにより参照配列の任意の位置に対応する位置にアラインされた目的アミノ酸配列のアミノ酸残基の位置は、当該任意の位置に「相当する位置」とみなされ、当該アミノ酸残基は「相当する位置のアミノ酸残基」と称される。 The position of the amino acid residue of the target amino acid sequence aligned with the position corresponding to the arbitrary position of the reference sequence by the above alignment is regarded as the “corresponding position” to the arbitrary position, and the amino acid residue is The amino acid residue at the position ".
 本発明のキシラナーゼは、下記(a)~(c)で示されるタンパク質を包含する。
 (a)配列番号2で示されるアミノ酸配列において、77位のアラニン、212位のセリン、214位のアラニン、217位のグルタミン、323位のセリン及び328位のアラニンのいずれか一つ以上のアミノ酸残基が、下記のアミノ酸残基; 
  77位:プロリン
 212位:アラニン
 214位:プロリン
 217位:プロリン
 323位:アスパラギン
 328位:プロリン
に置換されたアミノ酸配列からなり、且つキシラナーゼ活性を有するタンパク質。
 (b)前記(a)のタンパク質のアミノ酸配列と、前記77位、212位、214位、217位、323位及び328位のアミノ酸以外で90%以上の同一性を有するアミノ酸配列からなり、且つキシラナーゼ活性を有するタンパク質。
 (c)前記(a)のタンパク質のアミノ酸配列において、前記77位、212位、214位、217位、323位及び328位のアミノ酸以外の位置で、1又は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、且つキシラナーゼ活性を有するタンパク質。
The xylanase of the present invention includes proteins represented by the following (a) to (c).
(A) in the amino acid sequence represented by SEQ ID NO: 2, any one or more amino acids of alanine at position 77, serine at position 212, alanine at position 214, glutamine at position 217, serine at position 323, and alanine at position 328 The residue is the amino acid residue:
77th: Proline 212: Alanine 214: Proline 217: Proline 323: Asparagine 328: A protein comprising an amino acid sequence substituted with proline and having xylanase activity.
(B) consisting of an amino acid sequence of the protein of (a) and an amino acid sequence having 90% or more identity other than the amino acids at positions 77, 212, 214, 217, 323, and 328, and A protein having xylanase activity.
(C) In the amino acid sequence of the protein of (a), one or several amino acids are deleted or substituted at positions other than the amino acids at positions 77, 212, 214, 217, 323, and 328. Alternatively, a protein comprising an added amino acid sequence and having xylanase activity.
 (a)で示される「配列番号2で示されるアミノ酸配列」としては、Cellulomonas属細菌由来キシラナーゼ、具体的には、Cellulomonas fimi ATCC484由来キシラナーゼのアミノ酸配列が挙げられる(特願2012-119034)。
 斯かる配列番号2で示されるアミノ酸配列において、77位(N末端から77番目)、214位(N末端から214番目)及び328位(N末端から328番目)のアミノ酸はアラニンであり、212位(N末端から212番目)及び323位(N末端から323番目)のアミノ酸はセリンであり、217位(N末端から217番目)のアミノ酸はグルタミンである。
(a)で示されるキシラナーゼは、当該配列番号2で示されるアミノ酸配列からなるキシラナーゼを基準キシラナーゼとして、当該キシラナーゼの77位のアラニン、212位のセリン、214位のアラニン、217位のグルタミン、323位のセリン及び328位のアラニンのいずれか1以上のアミノ酸残基が、下記アミノ酸残基;
 77位:プロリン、212位:アラニン、214位:プロリン、217位:プロリン、323位:アスパラギン、328位:プロリン、
に置換された変異体(変異キシラナーゼとも称する)である。尚、当該アミノ酸残基の置換は、天然に生じたものであっても、人工的に導入したものであってもよい。
 斯かる変異キシラナーゼは、基準キシラナーゼと比べて、耐熱性が向上している。
 このうち、耐熱性向上の点から、77位、214位及び328位のいずれか一つ以上のアラニンがプロリンに置換された変異体が好適なものとして挙げられる。
Examples of the “amino acid sequence represented by SEQ ID NO: 2” represented by (a) include the xylanase derived from bacteria belonging to the genus Cellulomonas, specifically, the amino acid sequence derived from Cellulomonas fimi ATCC484-derived xylanase (Japanese Patent Application No. 2012-1119034).
In the amino acid sequence represented by SEQ ID NO: 2, the amino acids at position 77 (77th from the N-terminal), position 214 (214th from the N-terminal) and position 328 (position 328 from the N-terminal) are alanine, and position 212 The amino acid at position 212 (position 212 from the N-terminus) and position 323 (position 323 from position N) is serine, and the amino acid at position 217 (position 217 from position N) is glutamine.
The xylanase shown in (a) is based on the xylanase consisting of the amino acid sequence shown in SEQ ID NO: 2 as a reference xylanase, and the xylanase has 77th alanine, 212th serine, 214th alanine, 217th glutamine, 323 Any one or more amino acid residues of serine at position and alanine at position 328 are as follows:
77th: Proline, 212: Alanine, 214: Proline, 217: Proline, 323: Asparagine, 328: Proline,
Is a mutant (also referred to as mutant xylanase). The amino acid residue substitution may be naturally occurring or artificially introduced.
Such a mutant xylanase has improved heat resistance compared to the reference xylanase.
Among these, from the viewpoint of improving heat resistance, a mutant in which any one or more of alanine at positions 77, 214, and 328 is substituted with proline is preferable.
 本発明においては、(a)で示されるキシラナーゼの他に、(b)及び(c)の如く、(a)において示された位置のアミノ酸残基の置換に加えて、そのキシラナーゼ活性を損なわない限り、他の任意の位置における変異(例えば、欠失、置換又は付加)を有するキシラナーゼが包含される。当該任意の位置における変異もまた、天然に生じたものであっても、人工的に導入したものであってもよい。 In the present invention, in addition to the xylanase shown in (a), in addition to the substitution of the amino acid residue at the position shown in (a) as in (b) and (c), the xylanase activity is not impaired. Insofar as xylanases with mutations (eg deletions, substitutions or additions) at any other position are included. The mutation at the arbitrary position may be naturally occurring or artificially introduced.
 (b)において、「(a)のタンパク質のアミノ酸配列と、前記77位、212位、214位、217位、323位及び328位のアミノ酸以外で90%以上の同一性を有するアミノ酸配列」としては、(a)のタンパク質のアミノ酸配列のうち、前記77位、212位、214位、217位、323位及び328位のアミノ酸を除いた残余のアミノ酸配列と90%以上、好ましくは、95%以上、より好ましくは96%以上、97%以上、98%以上又は99%以上の同一性を有するアミノ酸配列が挙げられる。
 斯かる(b)で示されるキシラナーゼには、配列番号2で示されるアミノ酸配列と90%以上の同一性を有するアミノ酸配列からなるキシラナーゼ活性を有するタンパク質を基準キシラナーゼとして、配列番号2の77位に相当する位置のアラニンをプロリンとする置換、212位に相当する位置のセリンをアラニンとする置換、214位に相当する位置のアラニンをプロリンとする置換、217位に相当する位置のグルタミンをプロリンとする置換、323位に相当する位置のセリンをアスパラギンとする置換、及び328位に相当する位置のアラニンをプロリンとする置換から選ばれる少なくとも1以上のアミノ酸置換を有するアミノ酸配列からなり、且つキシラナーゼ活性を有するタンパク質が包含される。
In (b), “the amino acid sequence having 90% or more identity with the amino acid sequence of the protein of (a) other than the amino acids at positions 77, 212, 214, 217, 323, and 328” Is 90% or more, preferably 95% of the remaining amino acid sequence excluding the amino acids at positions 77, 212, 214, 217, 323, and 328 in the amino acid sequence of the protein (a) More preferably, amino acid sequences having identity of 96% or more, 97% or more, 98% or more, or 99% or more are mentioned.
The xylanase represented by (b) has a protein having xylanase activity consisting of an amino acid sequence having 90% or more identity with the amino acid sequence represented by SEQ ID NO: 2 as a reference xylanase at position 77 of SEQ ID NO: 2. Substitution with alanine at the corresponding position as proline, substitution with serine at the position corresponding to position 212, substitution with alanine at the position corresponding to position 214, and glutamine at the position corresponding to position 217 with proline An amino acid sequence having at least one amino acid substitution selected from the substitution with serine at the position corresponding to position 323 asparagine and the substitution with alanine at position 328 as proline, and xylanase activity Are included.
 (c)において、「(a)のタンパク質のアミノ酸配列において、前記77位、214位及び328位のアミノ酸以外の位置で、1又は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列」としては、(a)のタンパク質のアミノ酸配列のうち、前記77位、212位、214位、217位、323位及び328位のアミノ酸を除いた残余のアミノ酸配列において、1~10アミノ酸、好ましくは1~5個、より好ましくは1~3個、更に好ましくは1~2個が欠失、置換、付加したアミノ酸配列が挙げられる。ここで、「アミノ酸の欠失」とは配列中のアミノ酸残基の欠落もしくは消失を意味し、「アミノ酸の置換」は配列中のアミノ酸残基が別のアミノ酸残基に置き換えられていることを意味し、「アミノ酸の付加」とはアミノ酸残基が付け加えられていることを意味する。尚、「付加」には、配列中のアミノ酸の間に別のアミノ酸残基が挿入されることも含まれる。
 斯かる(c)で示されるキシラナーゼには、配列番号2で示されるアミノ酸配列に対して1又は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなるキシラナーゼ活性を有するタンパク質を基準キシラナーゼとして、配列番号2の77位に相当する位置のアラニンをプロリンとする置換、212位に相当する位置のセリンをアラニンとする置換、214位に相当する位置のアラニンをプロリンとする置換、217位に相当する位置のグルタミンをプロリンとする置換、323位に相当する位置のセリンをアスパラギンとする置換、及び328位に相当する位置のアラニンをプロリンとする置換から選ばれる少なくとも1以上のアミノ酸置換を有するアミノ酸配列からなり、且つキシラナーゼ活性を有するタンパク質が包含される。
In (c), “in the amino acid sequence of the protein of (a), an amino acid sequence in which one or several amino acids are deleted, substituted or added at positions other than the amino acids at positions 77, 214 and 328” In the amino acid sequence of the protein of (a), in the remaining amino acid sequence excluding the amino acids at positions 77, 212, 214, 217, 323, and 328, 1 to 10 amino acids, preferably Examples include amino acid sequences in which 1 to 5, more preferably 1 to 3, more preferably 1 to 2, are deleted, substituted, or added. Here, “amino acid deletion” means deletion or disappearance of an amino acid residue in the sequence, and “amino acid substitution” means that an amino acid residue in the sequence is replaced with another amino acid residue. By “amino acid addition” is meant that an amino acid residue has been added. “Addition” includes insertion of another amino acid residue between amino acids in the sequence.
In the xylanase represented by (c), a protein having a xylanase activity consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added to the amino acid sequence represented by SEQ ID NO: 2 is used as a reference xylanase. Substitution of alanine at position 77 corresponding to SEQ ID NO: 2 as proline, substitution at position 212 corresponding to serine as alanine, substitution at position 214 corresponding to alanine as proline, position 217 At least one amino acid substitution selected from a substitution with glutamine at the position corresponding to as a proline, a substitution at position 323 with asparagine at a position corresponding to position 323, and a substitution with alanine at a position corresponding to position 328 as a proline. A protein comprising an amino acid sequence having xylanase activity
 上記(b)及び(c)のキシラナーゼ活性を有するタンパク質において為される任意の変異は、例えば、対象となるキシラナーゼをコードする遺伝子に対して紫外線照射や部位特異的変異導入(Site-Directed Mutagenesis)のような公知の突然変異導入法により突然変異を導入し、当該突然変異を有する遺伝子を発現させ、所望のキシラナーゼ活性を有するタンパク質を選択することによって、作製することができる。このような変異体作製の手順は、当業者に周知である。 Arbitrary mutations made in the protein having xylanase activity in (b) and (c) above are, for example, ultraviolet irradiation or site-directed mutagenesis (Site-Directed Mutagenesis) to the gene encoding the target xylanase. It can be produced by introducing a mutation by a known mutagenesis method such as, expressing a gene having the mutation, and selecting a protein having a desired xylanase activity. The procedure for producing such a mutant is well known to those skilled in the art.
 本発明のキシラナーゼをコードする遺伝子は、上記(a)~(c)で示されるタンパク質をコードする遺伝子であり、具体的には、下記(d)~(f)の遺伝子が例示できるが、本発明はこれに限定されるものではない。なお本発明において「キシラナーゼをコードする遺伝子」とは、キシラナーゼのアミノ酸配列をコードする任意の核酸断片(DNA、mRNA、及び人工核酸等を含む)を意味する。本発明に係る「遺伝子」は、オープンリーディングフレームに加えて非翻訳領域(UTR)などの他の塩基配列を含んでもよい。
 (d)配列番号1で示される塩基配列において、配列番号1の229位~231位のアラニンをコードする塩基、634位~636位のセリンをコードする塩基、640位~642位のアラニンをコードする塩基、649位~651位のグルタミンをコードする塩基、967位~969位のセリンをコードする塩基が及び982位~984位のアラニンをコードする塩基のいずれか一以上が、下記のアミノ酸をコードする塩基; 
 229位~231位:プロリンをコードする塩基
 634位~636位:アラニンをコードする塩基
 640位~642位:プロリンをコードする塩基
 649位~651位:プロリンをコードする塩基
 967位~969位:アスパラギンをコードする塩基
 982位~984位:プロリンをコードする塩基
に置換された塩基配列からなり、且つキシラナーゼ活性を有するタンパク質をコードする遺伝子。
 (e)(d)の遺伝子の塩基配列において、配列番号1の229位~231位、634位~636位、640位~642位、649位~651位、967位~969位及び982位~984位の塩基以外で同一性が90%以上、好ましくは95%以上、さらに好ましくは96%以上、97%以上、98%以上又は99%以上の塩基配列からなり、且つキシラナーゼ活性を有するタンパク質をコードする遺伝子。
 (f)(d)の遺伝子の塩基配列において、配列番号1の229位~231位、634位~636位、640位~642位、649位~651位、967位~969位及び982位~984位の塩基以外の位置で、1又は数個、好ましくは1以上15個以下、より好ましくは1以上6個以下、さらに好ましくは1個以上5個以下、1個以上4個以下、1個以上3個以下または1個以上2個以下の塩基が、欠失、置換又は付加された塩基配列からなり、且つキシラナーゼ活性を有するタンパク質をコードする遺伝子。尚、「付加」には、配列中の塩基の間に別の塩基が挿入されることも含まれる。
The gene encoding the xylanase of the present invention is a gene encoding the protein shown in the above (a) to (c), and specific examples thereof include the following genes (d) to (f). The invention is not limited to this. In the present invention, the “gene encoding xylanase” means any nucleic acid fragment (including DNA, mRNA, artificial nucleic acid, etc.) encoding the amino acid sequence of xylanase. The “gene” according to the present invention may include other base sequences such as an untranslated region (UTR) in addition to the open reading frame.
(D) In the base sequence represented by SEQ ID NO: 1, a base encoding an alanine at positions 229 to 231 of SEQ ID NO: 1, a base encoding a serine at positions 634 to 636, and an alanine at positions 640 to 642 At least one of the bases encoding glutamine at positions 649 to 651, the base encoding serine at positions 967 to 969, and the base encoding alanine at positions 982 to 984 are the following amino acids: Encoding base;
Positions 229 to 231: Bases encoding proline 634 to 636: Bases encoding alanine 640 to 642: Bases encoding proline 649 to 651: Bases encoding proline 967 to 969: Asparagine-encoding bases 982 to 984: A gene encoding a protein having a base sequence substituted with a proline-encoding base and having xylanase activity.
(E) In the base sequence of the gene of (d), from position 229 to position 231, position 634 to position 636, position 640 to position 642, position 649 to position 651, position 967 to position 969 and position 982 to SEQ ID NO: 1 A protein having a xylanase activity having a nucleotide sequence other than the base at position 984 and having an identity of 90% or more, preferably 95% or more, more preferably 96% or more, 97% or more, 98% or more, or 99% or more. The gene to encode.
(F) In the base sequence of the gene of (d), from position 229 to position 231, position 634 to position 636, position 640 to position 642, position 649 to position 651, position 967 to position 969 and position 982 to SEQ ID NO: 1 1 or several, preferably 1 or more and 15 or less, more preferably 1 or more and 6 or less, more preferably 1 or more and 5 or less, 1 or more and 4 or less, 1 at positions other than the base at position 984 A gene encoding a protein comprising a base sequence in which 3 or less or 1 or more and 2 or less bases are deleted, substituted or added, and having xylanase activity. “Addition” includes insertion of another base between bases in the sequence.
 本発明のキシラナーゼは、例えば以下の方法により取得することができる。すなわち、クローニングされた基準キシラナーゼをコードする遺伝子に対して、当技術分野で公知の各種変異導入技術を用いて本発明の変異を施す。例えば、配列番号1で示されるキシラナーゼをコードする遺伝子に対して、置換対象アミノ酸残基をコードする塩基配列を、置換後アミノ酸残基をコードする塩基配列に変異させる。そして、得られた変異遺伝子を用いて適当な宿主を形質転換し、当該組換え宿主を培養し、培養物から採取することにより置換対象のアミノ酸残基が所望のアミノ酸残基に置換された変異キシラナーゼを得ることができる。 The xylanase of the present invention can be obtained, for example, by the following method. That is, the gene encoding the cloned reference xylanase is subjected to the mutation of the present invention using various mutagenesis techniques known in the art. For example, with respect to the gene encoding xylanase shown in SEQ ID NO: 1, the base sequence encoding the substitution target amino acid residue is mutated to the base sequence encoding the amino acid residue after substitution. Then, by transforming an appropriate host using the obtained mutant gene, culturing the recombinant host, and collecting from the culture, the mutation in which the amino acid residue to be replaced is replaced with the desired amino acid residue Xylanase can be obtained.
 基準キシラナーゼをコードする遺伝子は、Cellulomonas属細菌、例えばCellulomonas fimi(ATCC 484)等から、当該分野で用いられる任意の方法を用いて単離することができる。例えば、配列番号2で示されるアミノ酸配列からなるキシラナーゼをコードする遺伝子は、Cellulomonas属細菌の全ゲノムDNAを抽出した後、配列番号1の塩基配列を元に設計したプライマーを用いたPCRにより標的遺伝子を選択的に増幅し、増幅した遺伝子を精製することで得ることができる。あるいは、当該遺伝子は、本発明のキシラナーゼのアミノ酸配列に基づいて、遺伝子工学的又は化学的に合成することができる。 The gene encoding the reference xylanase can be isolated from bacteria belonging to the genus Cellulomonas, such as Cellulomonas fimi (ATCC 484), using any method used in the art. For example, the gene encoding the xylanase consisting of the amino acid sequence shown in SEQ ID NO: 2 is obtained by extracting the total genomic DNA of the Cellulomonas genus bacteria and then performing PCR using a primer designed based on the base sequence of SEQ ID NO: 1 Can be obtained by selectively amplifying and purifying the amplified gene. Alternatively, the gene can be synthesized genetically or chemically based on the amino acid sequence of the xylanase of the present invention.
 基準キシラナーゼをコードする遺伝子の変異手段としては、基本的には、基準キシラナーゼをコードする遺伝子(例えば、配列番号1で示される塩基配列からなるDNA)を鋳型DNAとして用いるPCR増幅や各種DNAポリメラーゼによる複製反応に基づき、当業者に周知の様々な部位特異的変異導入法を用いて行うことができる。部位特異的変異導入法は、例えば、インバースPCR法やアニーリング法など(村松ら編、「改訂第4版  新遺伝子工学ハンドブック」、羊土社、p.82-88)の任意の手法により行うことができる。必要に応じてStratagene社のQuickChange  II  Site-Directed  Mutagenesis  Kitや、QuickChange  Multi  Site-Directed  Mutagenesis  Kit等の各種の市販の部位特異的変異導入用キットを使用することもできる。 As a means for mutating a gene encoding a reference xylanase, basically, PCR amplification using a gene encoding a reference xylanase (for example, a DNA comprising the base sequence represented by SEQ ID NO: 1) as a template DNA or various DNA polymerases Based on the replication reaction, various site-directed mutagenesis methods well known to those skilled in the art can be used. The site-directed mutagenesis method may be performed by any method such as inverse PCR method or annealing method (edited by Muramatsu et al., “Revised 4th edition Shinshin Genetic Engineering Handbook”, Yodosha, p. 82-88). Can do. If necessary, various commercially available site-specific mutagenesis kits such as QuickChange II Site-Directed Mutageness の Kit of Stratagene and QuickChange Multi Site-Directed Mutageness Kit can also be used.
 部位特異的変異導入は、最も一般的には、導入すべきヌクレオチド変異を含む変異プライマーを用いて行うことができる。そのような変異プライマーは、基準キシラナーゼ遺伝子内の置換対象のアミノ酸残基をコードするヌクレオチド配列を含む領域にアニーリングし、且つその置換対象のアミノ酸残基をコードするヌクレオチド配列(コドン)に代えて置換後のアミノ酸残基をコードするヌクレオチド配列(コドン)を有する塩基配列を含むように設計すればよい。置換対象及び置換後のアミノ酸残基をコードするヌクレオチド配列(コドン)は、当業者であれば通常の教科書等に基づいて適宜認識し選択することができる。 The site-specific mutagenesis can be most commonly performed using a mutation primer containing a nucleotide mutation to be introduced. Such a mutation primer is annealed to a region containing a nucleotide sequence encoding the amino acid residue to be substituted in the reference xylanase gene, and replaced in place of the nucleotide sequence (codon) encoding the amino acid residue to be substituted. What is necessary is just to design so that the base sequence which has the nucleotide sequence (codon) which codes a subsequent amino acid residue may be included. Those skilled in the art can appropriately recognize and select a nucleotide sequence (codon) encoding a substitution target and a substituted amino acid residue based on a normal textbook.
 プライマーは、ホスホロアミダイト法(Nucleic  Acids  Research,17,7059-7071,1989)等の周知のオリゴヌクレオチド合成法により作製することができる。そのようなプライマー合成は、例えば市販のオリゴヌクレオチド合成装置(ABI社製など)を用いて作製することもできる。変異プライマーを含むプライマーセットを使用し、基準キシラナーゼ遺伝子を鋳型DNAとして上記のような部位特異的変異導入を行うことにより、目的の変異が導入されたキシラナーゼをコードする遺伝子を得ることができる。 Primers can be prepared by known oligonucleotide synthesis methods such as the phosphoramidite method (Nucleic® Acids® Research, 17, 7059-7071, 1989). Such primer synthesis can also be prepared using, for example, a commercially available oligonucleotide synthesizer (manufactured by ABI, etc.). By using a primer set containing a mutation primer and carrying out site-specific mutagenesis as described above using a reference xylanase gene as a template DNA, a gene encoding a xylanase into which the target mutation has been introduced can be obtained.
 本発明のキシラナーゼをコードする遺伝子のより具体的な調製方法としては、まず、回収したプラスミドを鋳型にして、配列番号2で示されるアミノ酸配列における77、214及び328番目のアミノ酸がプロリンに置換されたアミノ酸配列をコードする塩基配列を含むオリゴヌクレオチドをプライマーとして用い、PCR法によってDNA断片を増幅する。ここで、PCR反応条件の好ましい一例としては、2本鎖DNAを1本鎖にする熱変性反応を98℃で10秒行い、プライマー対を1本鎖DNAにハイブリダイズさせるアニーリング反応を50℃で15秒行い、DNAポリメラーゼを作用させる伸長反応を68℃で9分行い、これらを1サイクルとしたものを40サイクル行うことが挙げられる。 As a more specific method for preparing a gene encoding the xylanase of the present invention, first, amino acids 77, 214 and 328 in the amino acid sequence shown in SEQ ID NO: 2 are substituted with proline using the recovered plasmid as a template. A DNA fragment is amplified by PCR using an oligonucleotide containing a base sequence encoding the amino acid sequence as a primer. Here, as a preferable example of the PCR reaction conditions, a heat denaturation reaction for converting a double-stranded DNA into a single strand is performed at 98 ° C. for 10 seconds, and an annealing reaction for hybridizing the primer pair to the single-stranded DNA at 50 ° C. An extension reaction for 15 seconds is carried out at 68 ° C. for 9 minutes, and one cycle of these is carried out for 40 cycles.
 PCR反応で増幅したDNAを、メチル化DNAを特異的に切断するDpnI酵素で処理し、これを用いて大腸菌を形質転換し、抗生物質含有プレート培地で選択する。形質転換された大腸菌よりプラスミド抽出することで、目的のアミノ酸変異が導入されたキシラナーゼをコードする遺伝子を取得することができる。 The DNA amplified by the PCR reaction is treated with a DpnI enzyme that specifically cleaves methylated DNA, E. coli is transformed with the enzyme, and selected on a plate medium containing antibiotics. By extracting a plasmid from the transformed Escherichia coli, a gene encoding a xylanase into which the target amino acid mutation has been introduced can be obtained.
 得られた本発明のキシラナーゼをコードする遺伝子を用いたキシラナーゼの生産は、例えば当該遺伝子を安定に増幅できるDNAベクターに連結させ宿主菌を形質転換する、或いは当該変異遺伝子を安定に維持できる宿主菌の染色体DNA上に導入させ、当該宿主菌株を、資化性の炭素源、窒素源その他必須栄養素を含む培地に接種し、常法に従い培養すればよい。 Production of xylanase using the obtained gene encoding the xylanase of the present invention can be performed by, for example, transforming a host bacterium by ligating the gene with a DNA vector capable of stably amplifying, or maintaining the mutated gene stably. And inoculating the host strain into a medium containing an assimilable carbon source, nitrogen source and other essential nutrients, and culturing according to a conventional method.
 ベクターの種類としては、特に限定されず、タンパク質産生に通常用いられるベクター、例えばプラスミド、コスミド、ファージ、ウイルス、YAC、BAC等が挙げられる。プラスミドベクターが好ましく、例えば、市販のタンパク質発現用プラスミドベクター、例えばシャトルベクターpHY300PLK(タカラバイオ)、pUC19(タカラバイオ)、pUC119(タカラバイオ)、pBR322(タカラバイオ)等を好適に用いることができる。 The type of the vector is not particularly limited, and vectors usually used for protein production such as plasmid, cosmid, phage, virus, YAC, BAC and the like can be mentioned. A plasmid vector is preferable. For example, a commercially available plasmid vector for protein expression such as shuttle vector pHY300PLK (Takara Bio), pUC19 (Takara Bio), pUC119 (Takara Bio), pBR322 (Takara Bio) and the like can be suitably used.
 上記ベクターは、DNAの複製開始領域を含むDNA断片、及び複製起点を含むDNA領域を含み得る。また上記のベクターにおいては、上記本発明のキシラナーゼをコードする遺伝子の上流に、当該遺伝子の転写を開始させるためのプロモーター領域、発現されたタンパクを細胞外へ分泌させるための分泌シグナル領域などの制御配列が作動可能に連結されていてもよい。あるいは、本発明のプラスミドが適切に導入された微生物を選択するための薬剤耐性遺伝子(アンピシリン、ネオマイシン、カナマイシン、クロラムフェニコール等)がさらに組み込まれていてもよい。上記制御配列等の例としては、S237eglプロモーター及びシグナル配列(Biosci. Biotechnol. Biochem., 64(11):2281-9, 2000)、ならびにBacillus sp. KSM-237株(FERM BP-7875)及びBacillus sp. KSM-64株(FERM BP-2886)由来のセルラーゼの遺伝子の転写開始制御領域、翻訳開始領域及び分泌シグナルペプチド領域が挙げられる。あるいは、当該制御領域としては、配列番号3で示される塩基配列の塩基番号1~662の塩基配列、配列番号4で示される塩基配列からなるセルラーゼ遺伝子の塩基番号1~696の塩基配列、又はこれらの塩基配列に対して70%以上、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上、更により好ましくは96%以上、97%以上、98%以上又は99%以上の配列同一性を有し且つ転写開始制御機能、翻訳開始制御機能及び分泌シグナルペプチドとしての機能を有する塩基配列が挙げられる。キシラナーゼ遺伝子と上記制御配列、薬剤耐性遺伝子との連結は、SOE(splicing by overlap extension)-PCR法(Gene,77,61,1989)等の方法によって行うことができる。プラスミドベクターへの遺伝子の導入手順は当該分野で周知である。尚、遺伝子と制御配列が「作動可能に連結されている」とは、当該制御領域による制御の下に発現し得るように当該遺伝子が配置されていることをいう。 The vector may include a DNA fragment containing a DNA replication initiation region and a DNA region containing a replication origin. Further, in the above vector, upstream of the gene encoding the xylanase of the present invention, a promoter region for initiating transcription of the gene, a secretory signal region for secreting the expressed protein outside the cell, etc. The arrays may be operably linked. Alternatively, a drug resistance gene (ampicillin, neomycin, kanamycin, chloramphenicol, etc.) for selecting a microorganism into which the plasmid of the present invention has been appropriately introduced may be further incorporated. Examples of the control sequences include S237egl promoter and signal sequence (Biosci. Biotechnol. Biochem., 64 (11): 2281-9, 2000), and Bacillus sp. KSM-237 strain (FERM BP-7875) and Bacillus Examples include a transcription initiation regulatory region, a translation initiation region, and a secretory signal peptide region of a cellulase gene derived from sp.-KSM-64 strain (FERM BP-2886). Alternatively, as the control region, the base sequence of base numbers 1 to 662 of the base sequence represented by SEQ ID NO: 3, the base sequence of base numbers 1 to 696 of the cellulase gene comprising the base sequence represented by SEQ ID NO: 4, or these 70% or more, preferably 80% or more, more preferably 90% or more, still more preferably 95% or more, still more preferably 96% or more, 97% or more, 98% or more or 99% or more with respect to the base sequence of Examples thereof include base sequences having sequence identity and having a transcription initiation control function, a translation initiation control function, and a function as a secretory signal peptide. The xylanase gene can be linked to the above regulatory sequences and drug resistance gene by a method such as SOE (splicing by overlap extension) -PCR (Gene, 77, 61, 1989). The procedure for introducing a gene into a plasmid vector is well known in the art. In addition, the expression that the gene and the control sequence are “operably linked” means that the gene is arranged so that it can be expressed under the control of the control region.
 構築された上記ベクターを導入のための微生物としては、Staphylococcus属、Enterococcus属、Listeria属、Bacillus属に属する細菌等が挙げられるが、このうち、Bacillus属細菌、例えば枯草菌又はその変異株(例えば、特開2006-174707記載のプロテアーゼ9重欠損株KA8AX等)が好ましい。導入の方法としては、プロトプラスト法、エレクトロポレーション等の当該分野で通常使用される方法を用いることができる。導入が適切に行われた株は、薬剤耐性等を指標に選択することで目的の形質転換体を得ることができる。 Examples of microorganisms for introducing the constructed vector include Staphylococcus genus, Enterococcus genus, Listeria genus, bacteria belonging to the genus Bacillus, etc., among these, Bacillus genus bacteria such as Bacillus subtilis or mutants thereof (for example And a protease 9-deficient strain KA8AX described in JP-A-2006-174707) are preferred. As the introduction method, a method usually used in the art such as a protoplast method and electroporation can be used. A strain into which the introduction has been appropriately carried out can obtain the desired transformant by selecting drug resistance or the like as an index.
 斯くして得られた形質転換体を適切な培地で培養すれば、形質転換体が含有するベクター上にコードされた遺伝子が発現して、本発明のキシラナーゼが生産される。培養に使用する培地は、形質転換体の種類にあわせて当業者が適宜選択することができる。生成された目的のキシラナーゼを該培養物から通常の方法により単離又は精製することにより、本発明のタンパク質を取得することができる。このとき、当該ベクター上でキシラナーゼ遺伝子と分泌シグナル配列が作動可能に連結されている場合、生成されたキシラナーゼは菌体外に分泌されるため回収がより容易になる。回収されたキシラナーゼは、さらに公知の手段で精製されてもよい。 When the transformant thus obtained is cultured in an appropriate medium, the gene encoded on the vector contained in the transformant is expressed, and the xylanase of the present invention is produced. The medium used for the culture can be appropriately selected by those skilled in the art according to the type of transformant. The protein of the present invention can be obtained by isolating or purifying the produced xylanase from the culture by a conventional method. At this time, when the xylanase gene and the secretory signal sequence are operably linked on the vector, the produced xylanase is secreted outside the cell body, so that recovery becomes easier. The recovered xylanase may be further purified by a known means.
 本発明のキシラナーゼは、後述の実施例に示す通り、比較的広範囲のpH条件で作用し、且つ50-65℃で優れたキシラナーゼ活性を有することから、これを含有する組成物は、バイオマス糖化用酵素製剤となり得る。
 ここで、「バイオマス」とは、植物や藻類が生産するヘミセルロース成分を含むセルロース系および/またはリグノセルロース系バイオマスをいう。バイオマスの具体例としては、カラマツやヌマスギ等の針葉樹や、アブラヤシ(幹部)、ヒノキ等の広葉樹などから得られる各種木材;ウッドチップなどの木材の加工物または粉砕物;木材から製造されるウッドパルプ、綿の種子の周囲の繊維から得られるコットンリンターパルプなどのパルプ類;新聞紙、ダンボール、雑誌、上質紙などの紙類;バガス(サトウキビの搾りかす)、パーム空果房(EFB)、稲わら、とうもろこし茎若しくは葉などの植物の茎、葉、果房など;籾殻、パーム殻、ココナッツ殻などの植物殻類、藻類などからなる群より選ばれる1種以上が挙げられる。このうち、入手容易性および原料コストの観点から、木材、木材の加工物または粉砕物、植物の茎、葉、果房などが好ましく、バガス、EFB、アブラヤシ(幹部)がより好ましく、バガスがさらに好ましい。上記バイオマスは、単独でまたは2種以上を混合して使用してもよい。また上記のバイオマスは乾燥されていてもよい。
Since the xylanase of the present invention acts in a relatively wide range of pH conditions and has an excellent xylanase activity at 50 to 65 ° C. as shown in the examples described later, a composition containing this is used for biomass saccharification. It can be an enzyme preparation.
Here, “biomass” refers to cellulosic and / or lignocellulosic biomass containing hemicellulose components produced by plants and algae. Specific examples of biomass include various types of wood obtained from conifers such as larch and cedar, and broad-leaved trees such as oil palm (stems) and cypress; processed or pulverized products of wood such as wood chips; wood pulp produced from wood Pulp such as cotton linter pulp obtained from fibers around cotton seeds; Paper such as newspaper, cardboard, magazines, fine paper; bagasse (sugar cane residue), palm empty fruit bunch (EFB), rice straw Stalks of plants such as corn stalks or leaves, leaves, fruit bunches, etc .; plant shells such as rice husks, palm husks, coconut husks, algae and the like. Of these, from the viewpoints of availability and raw material costs, wood, processed or pulverized wood, plant stems, leaves, fruit bunches, etc. are preferred, bagasse, EFB, oil palm (stem) are more preferred, and bagasse is further. preferable. You may use the said biomass individually or in mixture of 2 or more types. Moreover, said biomass may be dried.
 当該バイオマス糖化用酵素製剤は、本発明のキシラナーゼの他、糖化効率の向上の観点から、さらにセルラーゼを含むことが好ましい。ここで、セルラーゼとは、セルロースのβ-1,4-グルカンのグリコシド結合を加水分解する酵素を指し、エンドグルカナーゼ、エクソグルカナーゼまたはセロビオハイドロラーゼ、およびβ-グルコシダーゼなどと称される酵素の総称である。本発明に使用されるセルラーゼとしては、市販のセルラーゼ製剤や、動物、植物、微生物由来のセルラーゼが挙げられ得る。
 本発明において、これらのセルラーゼは、単独で使用されても2種以上の組み合わせで使用されてもよい。糖化効率の向上の観点から、セルラーゼは、エンドグルカナーゼを含むことが好ましい。
In addition to the xylanase of the present invention, the enzyme preparation for biomass saccharification preferably further contains cellulase from the viewpoint of improving saccharification efficiency. Here, cellulase refers to an enzyme that hydrolyzes the glycosidic bond of β-1,4-glucan of cellulose, and is a generic term for enzymes called endoglucanase, exoglucanase or cellobiohydrolase, and β-glucosidase. It is. As the cellulase used in the present invention, commercially available cellulase preparations and cellulases derived from animals, plants and microorganisms may be mentioned.
In the present invention, these cellulases may be used alone or in combination of two or more. From the viewpoint of improving saccharification efficiency, the cellulase preferably contains endoglucanase.
 セルラーゼの具体例としては、トリコデルマ リーゼ(Trichoderma reesei)由来のセルラーゼ;トリコデルマ ビリデ(Trichoderma viride)由来のセルラーゼ;バチルス エスピー(Bacillus sp.)KSM-N145(FERM P-19727)、バチルス エスピー(Bacillus sp.)KSM-N252(FERM P-17474)、バチルス エスピー(Bacillus sp.)KSM-N115(FERM P-19726)、バチルス エスピー(Bacillus sp.)KSM-N440(FERM P-19728)、バチルス エスピー(Bacillus sp.)KSM-N659(FERM P-19730)などの各種バチルス株由来のセルラーゼ;パイロコッカス ホリコシ(Pyrococcus horikoshii)由来の耐熱性セルラーゼ;フミコーラ インソレンス(Humicola insolens)由来のセルラーゼ、などが挙げられる。これらの中で、糖化効率の向上の観点から、トリコデルマ リーゼ(Trichoderma reesei)、トリコデルマ ビリデ(Trichoderma viride)、またはフミコーラ インソレンス(Humicola insolens)由来のセルラーゼが好ましい。上記セルラーゼを含むセルラーゼ製剤の具体例としては、セルクラスト(登録商標)1.5L(ノボザイムズ社製)、TP-60(明治製菓株式会社製)、Cellic(登録商標)CTec2(ノボザイムズ社製)、AccelleraseTMDUET(ジェネンコア社製)、およびウルトラフロ(登録商標)L(ノボザイムズ社製)が挙げられる。このうち、糖化効率の向上の観点、製造コスト低減の観点、入手性の観点などから、Cellic(登録商標)CTec2、AccelleraseTMDUET(ジェネンコア社製)が好ましく、Cellic(登録商標)CTec2がより好ましい。 Specific examples of cellulases include cellulases derived from Trichoderma ; seisei; cellulases derived from Trichoderma viride; Bacillus sp. KSM-N145 (FERM P-19727), Bacillus sp. ) KSM-N252 (FERM P-17474), Bacillus sp. KSM-N115 (FERM P-19726), Bacillus sp. KSM-N440 (FERM P-19728), Bacillus sp. .) Cellulases derived from various Bacillus strains such as KSM-N659 (FERM P-19730); thermostable cellulases derived from Pyrococcus horikoshii; Humicola insolens Cellulase of years, and the like. Among these, from the viewpoint of improving saccharification efficiency, cellulases derived from Trichoderma reesei, Trichoderma vilide, or Humicola insolens are preferable. Specific examples of cellulase preparations containing the above cellulase include Cellcrust (registered trademark) 1.5 L (manufactured by Novozymes), TP-60 (manufactured by Meiji Seika Co., Ltd.), Cellic (registered trademark) CTec2 (manufactured by Novozymes), Examples include Accelerase ™ DUET (manufactured by Genencor) and Ultraflo (registered trademark) L (manufactured by Novozymes). Of these, Cellic (registered trademark) CTec2 and AcceleraseTM DUET (manufactured by Genencor) are preferable, and Cellic (registered trademark) CTec2 is more preferable from the viewpoint of improving saccharification efficiency, reducing manufacturing costs, and obtaining availability.
 また、セルラーゼの1種であるβ-グルコシダーゼの具体例としては、アスペルギルス ニガー(Aspergillus niger)由来のβ-グルコシダーゼ(例えば、ノボザイムズ社製ノボザイム188やメガザイム社製β-グルコシダーゼ)、ならびにトリコデルマ リーゼ(Trichoderma reesei)またはペニシリウム エメルソニイ(Penicillium emersonii)由来のβ-グルコシダーゼなどが挙げられる。このうち、糖化効率向上の観点から、ノボザイム188、トリコデルマ リーゼ由来のβ-グルコシダーゼが好ましく、トリコデルマ リーゼ由来のβ-グルコシダーゼがより好ましい。 Specific examples of β-glucosidase, which is a kind of cellulase, include β-glucosidase derived from Aspergillus niger (for example, Novozymes 188 Novozymes 188 and Megazyme β-glucosidase), and Trichoderma lyase (Trichoderma ligase). reesei) or β-glucosidase derived from Penicillium emersonii. Of these, Novozyme 188 and β-glucosidase derived from Trichoderma reease are preferable, and β-glucosidase derived from Trichoderma lyse is more preferable from the viewpoint of improving saccharification efficiency.
 また、セルラーゼの1種であるエンドグルカナーゼの具体例としては、トリコデルマ リーゼ(Trichoderma reesei)、アクレモニウム セルロリティカス(Acremonium celluloriticus)、フミコーラ インソレンス(Humicola insolens)、クロストリジウム サーモセラム(Clostridium thermocellum)、バチルス(Bacillus)、サーモビフィダ(Thermobifida)、セルロモナス(Cellulomonas)由来の酵素などが挙げられる。このうち、糖化効率向上の観点から、トリコデルマ リーゼ、フミコーラ インソレンス、バチルス、セルロモナス由来のエンドグルカナーゼが好ましく、トリコデルマ リーゼ由来のエンドグルカナーゼがより好ましい。 Specific examples of endoglucanase, which is a kind of cellulase, include Trichoderma reesei, Acremonium celluloriticus, Humicola insolens, Clostridium thermocellum (Bacillus) ), Enzymes derived from Thermobifida, Cellulomonas, and the like. Among these, from the viewpoint of improving saccharification efficiency, endoglucanase derived from Trichoderma reeze, Humicola insolens, Bacillus, Cellulomonas is preferable, and endoglucanase derived from Trichoderma reesei is more preferable.
 また、本発明の酵素製剤は、上記本発明のキシラナーゼ以外のヘミセルラーゼを含有していてもよい。ここで、ヘミセルラーゼとは、へミセルロースを加水分解する酵素を指し、キシラナーゼ、キシロシダーゼ、ガラクタナーゼなどと称される酵素の総称である。本発明のキシラナーゼ以外のヘミセルラーゼの具体例としては、トリコデルマ リーゼ(Trichoderma reesei)由来のヘミセルラーゼ;バチルス エスピー(Bacillus sp.)KSM-N546(FERM P-19729)由来のキシナラーゼ;アスペルギルス ニガー(Aspergillus niger)、トリコデルマ ビリデ(Trichoderma viride)、フミコーラ インソレンス(Humicola insolens)、またはバチルス アルカロフィルス(Bacillus alcalophilus)由来のキシラナーゼ;サーモマイセス(Thermomyces)、オウレオバシジウム(Aureobasidium)、ストレプトマイセス(Streptomyces)、クロストリジウム(Clostridium)、サーモトガ(Thermotoga)、サーモアスクス(Thermoascus)、カルドセラム(Caldocellum)、またはサーモモノスポラ(Thermomonospora)属由来のキシラナーゼ、バチルス プミルス(Bacillus pumilus)由来のβ―キシロシダーゼ、セレノモナス ルミナンティウム(Selenomonas ruminantium)由来β―キシロシダーゼが挙げられる。このうち、糖化効率向上の観点から、本発明の酵素製剤は、バチルス エスピー、アスペルギルス ニガー、トリコデルマ ビリデもしくはストレプトマイセス由来のキシラナーゼ、またはセレノモナス ルミナンティウム由来のβ-キシロシダーゼを含有することが好ましく、バチルス エスピーもしくはトリコデルマ ビリデ由来のキシナラーゼ、またはセレノモナス ルミナンティウム由来のβ-キシロシダーゼを含有することがより好ましい。 The enzyme preparation of the present invention may contain a hemicellulase other than the xylanase of the present invention. Here, hemicellulase refers to an enzyme that hydrolyzes hemicellulose, and is a general term for enzymes called xylanase, xylosidase, galactanase, and the like. Specific examples of hemicellulases other than the xylanase of the present invention include a hemicellulase derived from Trichoderma reesei; a xylanase derived from Bacillus sp. KSM-N546 (FERM P-19729); an Aspergillus niger ), Trichoderma viride, Humicola insolens, or xylanase from Bacillus alcalophilus; Thermomyces, Aureobasidium, Streptomyces, Streptomyces (Clostridium), Thermomotoga, Thermoascus, Caldocellum, or Thermomonospora xylanase, Bacillus Pumilus (Bacillus pumilus) derived from β- xylosidase include Serenomonasu Ruminantiumu (Selenomonas ruminantium) from β- xylosidase. Among these, from the viewpoint of improving saccharification efficiency, the enzyme preparation of the present invention preferably contains a xylanase derived from Bacillus sp., Aspergillus niger, Trichoderma viride or Streptomyces, or β-xylosidase derived from Selenomonas luminantium, Alternatively, it is more preferable to contain Trichoderma viride-derived xinalase or Selenomonas luminantium-derived β-xylosidase.
 本発明の酵素製剤の総タンパク質量中における、上記本発明のキシラナーゼの含有量は、糖化効率向上の観点から、好ましくは0.5質量%以上、より好ましくは1質量%以上さらに好ましくは2質量%以上であり、且つ好ましくは70質量%以下、より好ましくは50質量%以下、さらに好ましくは40質量%以下、さらにより好ましくは30質量%以下である。また、好ましくは0.5~70質量%、より好ましくは1~50質量%さらに好ましくは2~40質量%、さらにより好ましくは2~30質量%である。
 また、本発明の酵素製剤の総タンパク質量中における、上記セルラーゼの含有量は、糖化効率向上の観点から、好ましくは10質量%以上、より好ましくは30質量%以上、さらに好ましくは50質量%以上であり、且つ好ましくは99質量%以下、より好ましくは95質量%以下である。また、好ましくは10~99質量%、より好ましくは30~95質量%、さらに好ましくは50~95質量%である。
 また、本発明の酵素製剤の総タンパク質量中における、上記エンドグルカナーゼの含有量は、糖化効率向上の観点から、好ましくは1質量%以上、より好ましくは5質量%以上、さらに好ましくは10質量%以上であり、且つ好ましくは70質量%以下、より好ましくは50質量%以下、さらに好ましくは40質量%以下である。また好ましくは1~70質量%、より好ましくは5~50質量%、さらに好ましくは10~40質量%である。
 また、本発明の酵素製剤の総タンパク質量中における、上記本発明のキシラナーゼ以外のヘミセルラーゼの含有量としては、糖化効率向上の観点から、好ましくは0.01質量以上%、より好ましくは0.1質量%以上、さらに好ましくは0.5以上質量%であり、且つ好ましくは30質量%以下、より好ましくは20質量%以下である。また、好ましくは0.01~30質量%、より好ましくは0.1~20質量%、さらに好ましくは0.5~20質量%である。
The content of the xylanase of the present invention in the total protein amount of the enzyme preparation of the present invention is preferably 0.5% by mass or more, more preferably 1% by mass or more, further preferably 2% by mass from the viewpoint of improving saccharification efficiency. % And preferably 70% by mass or less, more preferably 50% by mass or less, still more preferably 40% by mass or less, and still more preferably 30% by mass or less. Further, it is preferably 0.5 to 70% by mass, more preferably 1 to 50% by mass, further preferably 2 to 40% by mass, and still more preferably 2 to 30% by mass.
The content of the cellulase in the total protein amount of the enzyme preparation of the present invention is preferably 10% by mass or more, more preferably 30% by mass or more, and further preferably 50% by mass or more, from the viewpoint of improving saccharification efficiency. And preferably 99% by mass or less, more preferably 95% by mass or less. Further, it is preferably 10 to 99% by mass, more preferably 30 to 95% by mass, and still more preferably 50 to 95% by mass.
Further, the content of the endoglucanase in the total protein amount of the enzyme preparation of the present invention is preferably 1% by mass or more, more preferably 5% by mass or more, and further preferably 10% by mass from the viewpoint of improving saccharification efficiency. And preferably 70% by mass or less, more preferably 50% by mass or less, and still more preferably 40% by mass or less. Further, it is preferably 1 to 70% by mass, more preferably 5 to 50% by mass, and still more preferably 10 to 40% by mass.
Further, the content of hemicellulase other than the xylanase of the present invention in the total protein amount of the enzyme preparation of the present invention is preferably 0.01% by mass or more, more preferably 0.8% from the viewpoint of improving saccharification efficiency. 1 mass% or more, More preferably, it is 0.5 or more mass%, Preferably it is 30 mass% or less, More preferably, it is 20 mass% or less. Further, it is preferably 0.01 to 30% by mass, more preferably 0.1 to 20% by mass, and further preferably 0.5 to 20% by mass.
 本発明の酵素製剤における、本発明のキシラナーゼと上記セルラーゼのタンパク質量比(本発明のキシラナーゼ/セルラーゼ)は、糖化効率向上の観点から、好ましくは0.01以上、より好ましくは0.05以上であり、且つ好ましくは100以下、より好ましくは5以下、さらに好ましくは1以下、よりさらに好ましくは0.5以下である。また、好ましくは0.01~100、より好ましくは0.05~5、さらに好ましくは0.05~1、よりさらに好ましくは0.05~0.5である。 In the enzyme preparation of the present invention, the protein amount ratio of the xylanase of the present invention to the cellulase (xylanase / cellulase of the present invention) is preferably 0.01 or more, more preferably 0.05 or more, from the viewpoint of improving saccharification efficiency. And preferably 100 or less, more preferably 5 or less, still more preferably 1 or less, and still more preferably 0.5 or less. Further, it is preferably 0.01 to 100, more preferably 0.05 to 5, further preferably 0.05 to 1, and still more preferably 0.05 to 0.5.
 本発明の酵素製剤における、本発明のキシラナーゼと上記エンドグルカナーゼのタンパク質量比(本発明のキシラナーゼ/エンドグルカナーゼ)は、糖化効率向上の観点から、好ましくは0.05以上、より好ましくは0.1以上であり、且つ好ましくは10以下、より好ましくは5以下、さらに好ましくは2以下、よりさらに好ましくは1以下である。また、好ましくは0.05~10、より好ましくは0.1~5、さらに好ましくは0.1~2、よりさらに好ましくは0.2~1である。 In the enzyme preparation of the present invention, the protein amount ratio of the xylanase of the present invention to the above endoglucanase (xylanase / endoglucanase of the present invention) is preferably 0.05 or more, more preferably 0.1, from the viewpoint of improving saccharification efficiency. And preferably 10 or less, more preferably 5 or less, still more preferably 2 or less, and still more preferably 1 or less. Further, it is preferably 0.05 to 10, more preferably 0.1 to 5, further preferably 0.1 to 2, and still more preferably 0.2 to 1.
 本発明の糖の製造方法は、バイオマスを、本発明のキシラナーゼまたは酵素製剤で糖化する工程を含む。
 糖化処理の条件は、本発明のキシラナーゼおよび同時に添加するその他酵素が失活しない条件であれば特に限定されず、バイオマスの種類や前処理工程の手順、使用する酵素の種類により当業者が適宜決定できるが、バイオマスを含む懸濁液に上記キシラナーゼまたは酵素製剤を添加することが好ましい。懸濁液中のバイオマスの含有量は、糖化効率向上および生産性(生産時間の短縮)の観点から、好ましくは0.5質量%以上、より好ましくは3質量%以上、さらに好ましくは5質量%以上であり、且つ好ましくは20質量%以下、より好ましくは15質量%以下、さらに好ましくは10質量%以下である。また、好ましくは0.5~20質量%、より好ましくは3~15質量%、さらに好ましくは5~10質量%である。
 上記懸濁液に対するキシラナーゼまたは酵素製剤の使用量は、前処理条件、配合される酵素の種類および性質により適宜決定されるが、バイオマス質量に対して、好ましくは0.04質量%以上、より好ましくは0.1質量%以上であり、且つ好ましくは600質量以下%、より好ましくは100質量%以下、さらに好ましくは50質量%以下である。また、好ましくは0.04~600質量%、より好ましくは0.1~100質量%、さらに好ましくは0.1~50質量%である。
 糖化処理時の反応pHとしては、糖化効率の向上、生産性(生産時間の短縮)向上、および生産コスト低減の観点から、好ましくはpH4以上、より好ましくはpH5以上であり、好ましくはpH9以下、より好ましくはpH8以下、さらに好ましくはpH7以下である。また、好ましくはpH4~9、より好ましくはpH5~8、さらに好ましくはpH5~7である。
 糖化処理時の反応温度は、糖化効率の向上、生産性(生産時間の短縮)向上、および生産コスト低減の観点から、20℃以上が好ましく、より好ましくは25℃以上、さらに好ましくは30以上、さらにより好ましくは40℃以上、なお好ましくは45℃以上、さらになお好ましくは50℃以上であり、且つ90℃以下が好ましく、より好ましくは85℃以下、さらに好ましくは80℃以下、さらにより好ましくは75℃以下、なお好ましくは65℃以下、さらになお好ましくは60℃以下である。また、20~90℃が好ましく、より好ましくは25~85℃、さらに好ましくは30~80℃、さらにより好ましくは40~75℃、なお好ましくは45~65℃、さらになお好ましくは45~60℃、よりさらになお好ましくは50~60℃である。糖化処理の反応時間は、バイオマスの種類若しくは量、酵素量などに合わせて適宜設定することができるが、糖化効率の向上、生産性(生産時間の短縮)向上、および生産コスト低減の観点から、好ましくは1~5日間、より好ましくは1~4日間、さらに好ましくは1~3日間である。
The sugar production method of the present invention includes a step of saccharifying biomass with the xylanase or enzyme preparation of the present invention.
The conditions for the saccharification treatment are not particularly limited as long as the xylanase of the present invention and other enzymes added at the same time are not inactivated, and those skilled in the art appropriately determine the type of biomass, the procedure of the pretreatment step, and the type of enzyme used. However, it is preferable to add the xylanase or enzyme preparation to a suspension containing biomass. The content of biomass in the suspension is preferably 0.5% by mass or more, more preferably 3% by mass or more, and further preferably 5% by mass, from the viewpoint of improving saccharification efficiency and productivity (reducing production time). And preferably 20% by mass or less, more preferably 15% by mass or less, and still more preferably 10% by mass or less. Further, it is preferably 0.5 to 20% by mass, more preferably 3 to 15% by mass, and further preferably 5 to 10% by mass.
The amount of xylanase or enzyme preparation used for the suspension is appropriately determined depending on the pretreatment conditions, the type and properties of the enzyme to be blended, and is preferably 0.04% by mass or more, more preferably based on the biomass mass. Is 0.1% by mass or more, and preferably 600% by mass or less, more preferably 100% by mass or less, and still more preferably 50% by mass or less. Further, it is preferably 0.04 to 600% by mass, more preferably 0.1 to 100% by mass, and still more preferably 0.1 to 50% by mass.
The reaction pH during the saccharification treatment is preferably pH 4 or more, more preferably pH 5 or more, preferably pH 9 or less, from the viewpoints of improving saccharification efficiency, improving productivity (shortening production time), and reducing production costs. More preferably, it is pH 8 or less, More preferably, it is pH 7 or less. Further, the pH is preferably 4 to 9, more preferably 5 to 8, and still more preferably 5 to 7.
The reaction temperature during the saccharification treatment is preferably 20 ° C or higher, more preferably 25 ° C or higher, more preferably 30 or higher, from the viewpoints of improving saccharification efficiency, improving productivity (shortening production time), and reducing production costs. Even more preferably 40 ° C or higher, still more preferably 45 ° C or higher, still more preferably 50 ° C or higher, and 90 ° C or lower is preferable, more preferably 85 ° C or lower, still more preferably 80 ° C or lower, still more preferably 75 ° C. or lower, more preferably 65 ° C. or lower, still more preferably 60 ° C. or lower. Further, it is preferably 20 to 90 ° C., more preferably 25 to 85 ° C., further preferably 30 to 80 ° C., still more preferably 40 to 75 ° C., still more preferably 45 to 65 ° C., and still more preferably 45 to 60 ° C. Even more preferably, it is 50-60 ° C. The reaction time of the saccharification treatment can be appropriately set according to the type or amount of biomass, the amount of enzyme, etc., but from the viewpoint of improving saccharification efficiency, improving productivity (shortening production time), and reducing production cost, It is preferably 1 to 5 days, more preferably 1 to 4 days, and further preferably 1 to 3 days.
 尚、本発明の糖の製造方法においては、粉砕効率向上、糖化効率向上、および生産効率向上(生産時間の短縮)の観点から、バイオマスを本発明のキシラナーゼまたは酵素製剤で糖化する工程の前に、当該バイオマスを前処理する工程をさらに含むことが好ましい。前処理としては、例えば、アルカリ処理、粉砕処理および水熱処理からなる群より選ばれる1種以上が挙げられる。本発明のキシラナーゼはアルカリ領域においても高い酵素活性を有するため、当該前処理としては、糖化効率向上の観点から、アルカリ処理が好ましく、糖化効率をさらに向上させる観点から、アルカリ処理と粉砕処理を行うことが好ましく、アルカリ処理と粉砕処理を同時に行うことがより好ましい。 In the sugar production method of the present invention, from the viewpoints of improving grinding efficiency, improving saccharification efficiency, and improving production efficiency (shortening production time), before the step of saccharifying biomass with the xylanase or enzyme preparation of the present invention, It is preferable to further include a step of pretreating the biomass. Examples of the pretreatment include one or more selected from the group consisting of alkali treatment, pulverization treatment, and hydrothermal treatment. Since the xylanase of the present invention has high enzyme activity even in the alkaline region, the pretreatment is preferably alkali treatment from the viewpoint of improving saccharification efficiency, and alkali treatment and pulverization treatment are performed from the viewpoint of further improving saccharification efficiency. It is preferable to perform the alkali treatment and the pulverization treatment at the same time.
 上述した実施形態に関し、本発明においては以下の態様が開示される。
 <1>下記(a)~(c)で示されるタンパク質から選ばれるキシラナーゼ。
  (a)配列番号2で示されるアミノ酸配列において、77位のアラニン、212位のセリン、214位のアラニン、217位のグルタミン、323位のセリン及び328位のアラニンのいずれか一つ以上のアミノ酸残基が、下記のアミノ酸残基; 
  77位:プロリン
 212位:アラニン
 214位:プロリン
 217位:プロリン
 323位:アスパラギン
 328位:プロリン
に置換されたアミノ酸配列からなり、且つキシラナーゼ活性を有するタンパク質。
  (b)前記(a)のタンパク質のアミノ酸配列と、前記77位、212位、214位、217位、323位及び328位のアミノ酸以外で90%以上の同一性を有するアミノ酸配列からなり、且つキシラナーゼ活性を有するタンパク質。
  (c)前記(a)のタンパク質のアミノ酸配列において、前記77位、212位、214位、217位、323位及び328位のアミノ酸以外の位置で、1又は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、且つキシラナーゼ活性を有するタンパク質。
 <2>50-60℃で最もキシラン分解活性が高く、且つ45-65℃の範囲で最大活性の60%以上の活性を示す上記<1>のキシラナーゼ。
 <3>上記<1>又は<2>の何れかのキシラナーゼをコードする遺伝子。
 <4>下記(d)~(f)記載のキシラナーゼをコードする遺伝子
 (d)配列番号1で示される塩基配列において、配列番号1の229位~231位のアラニンをコードする塩基、634位~636位のセリンをコードする塩基、640位~642位のアラニンをコードする塩基、649位~651位のグルタミンをコードする塩基、967位~969位のセリンをコードする塩基及び982位~984位のアラニンをコードする塩基のいずれか一以上が、下記のアミノ酸をコードする塩基; 
 229位~231位:プロリンをコードする塩基
 634位~636位:アラニンをコードする塩基
 640位~642位:プロリンをコードする塩基
 649位~651位:プロリンをコードする塩基
 967位~969位:アスパラギンをコードする塩基
 982位~984位:プロリンをコードする塩基
に置換された塩基配列からなり、且つキシラナーゼ活性を有するタンパク質をコードする遺伝子。
 (e)(d)の遺伝子の塩基配列において、配列番号1の229位~231位、634位~636位、640位~642位、649位~651位、967位~969位及び982位~984位の塩基以外で同一性が90%以上、好ましくは95%以上、さらに好ましくは96%以上、97%以上、98%以上又は99%以上の塩基配列からなり、且つキシラナーゼ活性を有するタンパク質をコードする遺伝子。
 (f)(d)の遺伝子の塩基配列において、配列番号1の229位~231位、634位~636位、640位~642位、649位~651位、967位~969位及び982位~984位の塩基以外の位置で、1又は数個、好ましくは1以上15個以下、より好ましくは1以上6個以下、さらに好ましくは1個以上5個以下、1個以上4個以下、1個以上3個以下または1個以上2個以下の塩基が、欠失、置換又は付加された塩基配列からなり、且つキシラナーゼ活性を有するタンパク質をコードする遺伝子。
 <5>上記<3>又は<4>の遺伝子を含有する組み換えベクター。
 <6>上記<5>の組み換えベクターを、宿主に導入してなる形質転換体。
 <7>前記宿主が微生物である<6>の形質転換体。
 <8>上記<1>又は<2>のキシラナーゼを含有するバイオマス糖化用酵素製剤。
With respect to the above-described embodiment, the following aspects are disclosed in the present invention.
<1> A xylanase selected from the proteins represented by the following (a) to (c).
(A) in the amino acid sequence represented by SEQ ID NO: 2, any one or more amino acids of alanine at position 77, serine at position 212, alanine at position 214, glutamine at position 217, serine at position 323, and alanine at position 328 The residue is the amino acid residue:
77th: Proline 212: Alanine 214: Proline 217: Proline 323: Asparagine 328: A protein comprising an amino acid sequence substituted with proline and having xylanase activity.
(B) consisting of an amino acid sequence of the protein of (a) and an amino acid sequence having 90% or more identity other than the amino acids at positions 77, 212, 214, 217, 323, and 328, and A protein having xylanase activity.
(C) In the amino acid sequence of the protein of (a), one or several amino acids are deleted or substituted at positions other than the amino acids at positions 77, 212, 214, 217, 323, and 328. Alternatively, a protein comprising an added amino acid sequence and having xylanase activity.
<2> The xylanase according to the above <1>, which exhibits the highest xylan decomposing activity at 50-60 ° C. and exhibits 60% or more of the maximum activity in the range of 45-65 ° C.
<3> A gene encoding the xylanase of <1> or <2> above.
<4> Gene encoding xylanase described in (d) to (f) below (d) In the nucleotide sequence represented by SEQ ID NO: 1, nucleotides encoding alanine at positions 229 to 231 of SEQ ID NO: 1, 634 to A base encoding serine at position 636, a base encoding alanine at positions 640 to 642, a base encoding glutamine at positions 649 to 651, a base encoding serine at positions 967 to 969, and positions 982 to 984 Any one or more of the bases encoding alanine of the following amino acids:
Positions 229 to 231: Bases encoding proline 634 to 636: Bases encoding alanine 640 to 642: Bases encoding proline 649 to 651: Bases encoding proline 967 to 969: Asparagine-encoding bases 982 to 984: A gene encoding a protein having a base sequence substituted with a proline-encoding base and having xylanase activity.
(E) In the base sequence of the gene of (d), from position 229 to position 231, position 634 to position 636, position 640 to position 642, position 649 to position 651, position 967 to position 969 and position 982 to SEQ ID NO: 1 A protein having a xylanase activity having a nucleotide sequence other than the base at position 984 and having an identity of 90% or more, preferably 95% or more, more preferably 96% or more, 97% or more, 98% or more, or 99% or more. The gene to encode.
(F) In the base sequence of the gene of (d), from position 229 to position 231, position 634 to position 636, position 640 to position 642, position 649 to position 651, position 967 to position 969 and position 982 to SEQ ID NO: 1 1 or several, preferably 1 or more and 15 or less, more preferably 1 or more and 6 or less, more preferably 1 or more and 5 or less, 1 or more and 4 or less, 1 at positions other than the base at position 984 A gene encoding a protein comprising a base sequence in which 3 or less or 1 or more and 2 or less bases are deleted, substituted or added, and having xylanase activity.
<5> A recombinant vector containing the gene of <3> or <4> above.
<6> A transformant obtained by introducing the recombinant vector of <5> above into a host.
<7> The transformant according to <6>, wherein the host is a microorganism.
<8> An enzyme preparation for biomass saccharification containing the xylanase of <1> or <2> above.
 <9>セルラーゼをさらに含む、上記<8>のバイオマス糖化用酵素製剤。
 <10>上記セルラーゼがエンドグルカナーゼを含む、上記<9>のバイオマス糖化用酵素製剤。
 <11>上記酵素製剤の総タンパク質量中における、上記エンドグルカナーゼの含有量が、好ましくは1質量%以上、より好ましくは5質量%以上、さらに好ましくは10質量%以上であり、且つ好ましくは70質量%以下、より好ましくは50質量%以下、さらに好ましくは40質量%以下である、また好ましくは1~70質量%、より好ましくは5~50質量%、さらに好ましくは10~40質量%である、上記<10>のバイオマス糖化用酵素製剤。
 <12>上記<1>のタンパク質と上記セルラーゼのタンパク質量比(該タンパク質/該セルラーゼ)が、好ましくは0.01以上、より好ましくは0.05以上であり、且つ好ましくは100以下、より好ましくは5以下、さらに好ましくは1以下、よりさらに好ましくは0.5以下である、また、好ましくは0.01~100、より好ましくは0.05~5、さらに好ましくは0.05~1、よりさらに好ましくは0.05~0.5である、上記<9>~<11>のバイオマス糖化用酵素製剤。
 <13>上記<1>又は<2>のタンパク質と上記エンドグルカナーゼのタンパク質量比(該タンパク質/該エンドグルカナーゼ)が、好ましくは0.05以上、より好ましくは0.1以上であり、且つ好ましくは10以下、より好ましくは5以下、さらに好ましくは2以下、よりさらに好ましくは1以下である、また、好ましくは0.05~10、より好ましくは0.1~5、さらに好ましくは0.1~2、よりさらに好ましくは0.2~1である、上記<10>~<11>のバイオマス糖化用酵素製剤。
 <14>上記バイオマスが、木材の加工物または粉砕物、パルプ類、紙類、バガス、稲わら、とうもろこし茎若しくは葉、パーム空果房(EFB)、植物殻類、および藻類からなる群より選ばれる1種以上、好ましくは木材、木材の加工物または粉砕物、植物の茎、葉、および果房からなる群より選ばれる1種以上、より好ましくは、バガス、EFB、アブラヤシ(幹部)からなる群より選ばれる1種以上、さらに好ましくはバガスである、上記<8>~<13>のバイオマス糖化用酵素製剤。
<9> The enzyme preparation for biomass saccharification according to <8>, further including cellulase.
<10> The enzyme preparation for biomass saccharification according to <9>, wherein the cellulase contains endoglucanase.
<11> The content of the endoglucanase in the total protein amount of the enzyme preparation is preferably 1% by mass or more, more preferably 5% by mass or more, further preferably 10% by mass or more, and preferably 70%. % By mass or less, more preferably 50% by mass or less, further preferably 40% by mass or less, preferably 1 to 70% by mass, more preferably 5 to 50% by mass, and further preferably 10 to 40% by mass. <10> The enzyme preparation for saccharification of biomass described above.
<12> The protein amount ratio between the protein of <1> and the cellulase (the protein / the cellulase) is preferably 0.01 or more, more preferably 0.05 or more, and preferably 100 or less, more preferably Is 5 or less, more preferably 1 or less, even more preferably 0.5 or less, and preferably 0.01 to 100, more preferably 0.05 to 5, and even more preferably 0.05 to 1, more More preferably, the enzyme preparation for biomass saccharification according to <9> to <11>, which is 0.05 to 0.5.
<13> The protein amount ratio of the protein <1> or <2> to the endoglucanase (the protein / the endoglucanase) is preferably 0.05 or more, more preferably 0.1 or more, and preferably Is 10 or less, more preferably 5 or less, still more preferably 2 or less, even more preferably 1 or less, and preferably 0.05 to 10, more preferably 0.1 to 5, and still more preferably 0.1. The enzyme preparation for biomass saccharification according to the above <10> to <11>, which is ˜2, more preferably 0.2˜1.
<14> The biomass is selected from the group consisting of processed or pulverized wood, pulp, paper, bagasse, rice straw, corn stalk or leaf, palm empty fruit bunch (EFB), plant shells, and algae At least one selected from the group consisting of wood, processed or pulverized wood, plant stems, leaves, and fruit bunches, more preferably bagasse, EFB, oil palm (stem) The enzyme preparation for biomass saccharification according to the above <8> to <13>, which is at least one selected from the group, more preferably bagasse.
 <15>バイオマスを、上記<8>~<14>の酵素製剤で糖化処理する工程を含む、糖の製造方法。
 <16>上記糖化処理において、上記バイオマスを含む懸濁液に上記<1>のタンパク質または上記<8>~<14>の酵素製剤を添加する、上記<15>の方法。
 <17>上記懸濁液中の上記バイオマスの含有量が、0.5~20質量%、好ましくは3~15質量%、好ましくは5~10質量%である、上記<16>の方法。
 <18>上記懸濁液に対する上記<1>のタンパク質または上記<8>~<14>の酵素製剤の使用量が、上記バイオマスの質量に対して、好ましくは0.04質量%以上、より好ましくは0.1質量%以上であり、且つ好ましくは600質量以下%、より好ましくは100質量%以下、さらに好ましくは50質量%以下である、また、好ましくは0.04~600質量%、より好ましくは0.1~100質量%、さらに好ましくは0.1~50質量%である、上記<16>または<17>に記載の方法。
<15> A method for producing sugar, comprising a step of saccharifying biomass with the enzyme preparation of <8> to <14> above.
<16> The method according to <15>, wherein, in the saccharification treatment, the protein according to <1> or the enzyme preparation according to <8> to <14> is added to the suspension containing the biomass.
<17> The method according to <16>, wherein the content of the biomass in the suspension is 0.5 to 20% by mass, preferably 3 to 15% by mass, preferably 5 to 10% by mass.
<18> The amount of the protein <1> or the enzyme preparation <8> to <14> used in the suspension is preferably 0.04% by mass or more, more preferably, based on the mass of the biomass. Is 0.1% by mass or more, and preferably 600% by mass or less, more preferably 100% by mass or less, still more preferably 50% by mass or less, and preferably 0.04 to 600% by mass, more preferably Is 0.1 to 100% by mass, more preferably 0.1 to 50% by mass, according to the above <16> or <17>.
 <19>上記糖化処理時の反応pHが、好ましくはpH4以上、より好ましくはpH5以上であり、好ましくはpH9以下、より好ましくはpH8以下、さらに好ましくはpH7以下である、また、好ましくはpH4~9、より好ましくはpH5~8、さらに好ましくはpH5~7である、上記<15>~<18>の方法。
 <20>上記糖化処理時の反応温度が、20℃以上が好ましく、より好ましくは25℃以上、さらに好ましくは30以上、さらにより好ましくは40℃以上、なお好ましくは45℃以上、さらになお好ましくは50℃以上であり、且つ90℃以下が好ましく、より好ましくは85℃以下、さらに好ましくは80℃以下、さらにより好ましくは75℃以下、なお好ましくは65℃以下、さらになお好ましくは60℃以下である、また、20~90℃が好ましく、より好ましくは25~85℃、さらに好ましくは30~80℃、さらにより好ましくは40~75℃、なお好ましくは45~65℃、さらになお好ましくは45~60℃、よりさらになお好ましくは50~60℃である、上記<15>~<19>の方法。
 <21>下記(a’)~(c’)で示されるタンパク質から選ばれるキシラナーゼ。
(a’)配列番号2で示されるアミノ酸配列において、77位、214位及び328位のいずれか一つ以上のアラニンがプロリンに置換されたアミノ酸配列を有し、且つキシラナーゼ活性を有するタンパク質。
(b’)前記(a’)のタンパク質のアミノ酸配列と、前記77位、214位及び328位のアミノ酸以外で90%以上の同一性を有するアミノ酸配列からなり、且つキシラナーゼ活性を有するタンパク質。
(c’)前記(a’)のタンパク質のアミノ酸配列において、前記77位、214位及び328位のアミノ酸以外の位置で、1又は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、且つキシラナーゼ活性を有するタンパク質。
<22>上記<21>の何れかのキシラナーゼをコードする遺伝子。
<23>上記<22>に記載の遺伝子を含有する組み換えベクター。
<24>上記<23>に記載の組み換えベクターを、宿主に導入してなる形質転換体。
<25>前記宿主が微生物である、上記<24>に記載の形質転換体。
<26>上記<21>のタンパク質を含有するバイオマス糖化用酵素製剤。
<27>バイオマスを、上記<26>に記載の酵素製剤で糖化処理する工程を含む、糖の製造方法。
<19> The reaction pH during the saccharification treatment is preferably pH 4 or more, more preferably pH 5 or more, preferably pH 9 or less, more preferably pH 8 or less, further preferably pH 7 or less, and preferably pH 4 to 9. The method according to <15> to <18> above, more preferably pH 5 to 8, further preferably pH 5 to 7.
<20> The reaction temperature during the saccharification treatment is preferably 20 ° C or higher, more preferably 25 ° C or higher, still more preferably 30 or higher, still more preferably 40 ° C or higher, still more preferably 45 ° C or higher, still more preferably. 50 ° C or higher and preferably 90 ° C or lower, more preferably 85 ° C or lower, still more preferably 80 ° C or lower, even more preferably 75 ° C or lower, still more preferably 65 ° C or lower, still more preferably 60 ° C or lower. Also, 20 to 90 ° C is preferable, more preferably 25 to 85 ° C, still more preferably 30 to 80 ° C, still more preferably 40 to 75 ° C, still more preferably 45 to 65 ° C, and still more preferably 45 to 65 ° C. The method <15> to <19> above, wherein the temperature is 60 ° C., and still more preferably 50 to 60 ° C.
<21> A xylanase selected from the following proteins (a ′) to (c ′):
(A ′) a protein having an amino acid sequence in which at least one of alanine at positions 77, 214, and 328 in the amino acid sequence represented by SEQ ID NO: 2 is substituted with proline, and having xylanase activity.
(B ′) a protein comprising an amino acid sequence having 90% or more identity other than the amino acids at positions 77, 214 and 328 with the amino acid sequence of the protein of (a ′) and having xylanase activity.
(C ′) From the amino acid sequence of the protein of (a ′) above, wherein one or several amino acids have been deleted, substituted or added at positions other than the amino acids at positions 77, 214 and 328. And a protein having xylanase activity.
<22> A gene encoding any one of the above <21> xylanases.
<23> A recombinant vector containing the gene according to <22> above.
<24> A transformant obtained by introducing the recombinant vector according to <23> above into a host.
<25> The transformant according to <24>, wherein the host is a microorganism.
<26> An enzyme preparation for saccharification of biomass containing the protein of <21> above.
<27> A method for producing sugar, comprising a step of saccharifying biomass with the enzyme preparation according to <26>.
 以下、実施例により本発明をさらに詳細に説明するが、本発明の技術的範囲はこの実施例により限定されるものではない。
 以下の実施例におけるDNA断片増幅のためのポリメラーゼ連鎖反応(PCR)には、Applied Biosystems 2720サーマルサイクラー(アプライドバイオシステムズ)を使用し、PrimeSTAR Max Premix GXL(タカラバイオ)と付属の試薬類を用いてDNA増幅を行った。PCRの反応液組成は、適宜希釈した鋳型DNAを1μL、センスプライマー及びアンチセンスプライマーを各々10 pmol、及びPrimeSTAR Max Premix GXLを1μL添加して、反応液総量を50μLとした。PCRの反応条件は、98℃で10秒間、50℃で15秒間及び68℃で9分間の3段階の温度変化を40回繰り返すことにより行った。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, the technical scope of this invention is not limited by this Example.
For the polymerase chain reaction (PCR) for DNA fragment amplification in the following examples, an Applied Biosystems 2720 thermal cycler (Applied Biosystems) is used, and PrimeSTAR Max Premix GXL (Takara Bio) and attached reagents are used. DNA amplification was performed. The PCR reaction solution composition was 1 μL of appropriately diluted template DNA, 10 pmol of each of the sense primer and antisense primer, and 1 μL of PrimeSTAR Max Premix GXL, so that the total amount of the reaction solution was 50 μL. PCR reaction conditions were carried out by repeating 40 steps of three steps of temperature changes of 98 ° C. for 10 seconds, 50 ° C. for 15 seconds and 68 ° C. for 9 minutes.
実施例1  Cellulomonas由来セルラーゼ遺伝子のクローニング1-1  ゲノムDNAの抽出
 Cellulomonas fimi ATCC 484株をGrowth medium(1.0% Polypeptone、0.2% Yeast extract、0.1% MgSO4・7H2O、pH 7.0)に植菌し、30℃にて1日間培養した。培養して得られた菌体から、UltraCleanTM Microbial DNA Isolation Kit(Mo Bio Laboratories, Inc.製)を用いてゲノムDNAを取得した。
Example 1 Cloning of Cellulomonas-derived cellulase gene 1-1 Extraction of genomic DNA Cellulomonas fimi ATCC 484 strain was inoculated into Growth medium (1.0% Polypeptone, 0.2% Yeast extract, 0.1% MgSO4 · 7H2O, pH 7.0) at 30 ° C. For 1 day. Genomic DNA was obtained from the cells obtained by the culture using UltraClean ™ Microbial DNA Isolation Kit (manufactured by Mo Bio Laboratories, Inc.).
1-2  ベクターの作製
 1-1で得られたゲノムDNAを鋳型として、表1に示したフォワードプライマー1(配列番号5)とリバースプライマー1(配列番号6)を用いて、ゲノム上のキシラナーゼ遺伝子領域(配列番号2)約1.4kbp断片(A)を増幅した。また、シャトルベクターpHY300PLK(タカラバイオ)のBamHI制限酵素切断点に、バチルス属細菌KSM-S237株(FERM BP-7875)由来のS237アルカリセルラーゼ遺伝子(特開2000-210081号公報参照)(配列番号3)をコードするDNA断片が挿入された組換えプラスミドpHY-S237を鋳型とし表1に示したフォワードプライマー2(配列番号7)とリバースプライマー2(配列番号8)を用いてS237アルカリセルラーゼ構造遺伝子を除く約5.6kbp断片(B)を増幅した。増幅した遺伝子断片をHigh Pure PCR Product Purification kit(Roche製)にて精製した。
1-2 Preparation of vector Using the genomic DNA obtained in 1-1 as a template, using forward primer 1 (SEQ ID NO: 5) and reverse primer 1 (SEQ ID NO: 6) shown in Table 1, genomic xylanase gene A region (SEQ ID NO: 2) of about 1.4 kbp fragment (A) was amplified. Further, at the BamHI restriction enzyme cleavage point of shuttle vector pHY300PLK (Takara Bio), S237 alkaline cellulase gene derived from Bacillus bacterium KSM-S237 strain (FERM BP-7875) (see JP 2000-210081) (SEQ ID NO: 3) ) Using the recombinant plasmid pHY-S237 into which the DNA fragment encoding) was inserted as a template, using the forward primer 2 (SEQ ID NO: 7) and reverse primer 2 (SEQ ID NO: 8) shown in Table 1, the S237 alkaline cellulase structural gene The approximately 5.6 kbp fragment (B) was amplified. The amplified gene fragment was purified with High Pure PCR Product Purification kit (Roche).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 精製されたDNA断片(A)1μLとDNA断片(B)1μL、In-Fusion HD Cloning Kit(タカラバイオ)に含まれる5×In-Fusion HD Enzyme Premix2μL、DNaseフリーの水6μLを混合し、50℃で15分反応させた。その後、反応液2μLを用いて、コンピテントセルE.coli HB101(タカラバイオ)20μLを形質転換した。形質転換体の再生培地には、50ppmアンピシリンナトリウム(和光純薬工業)、2.0%アガー(和光純薬工業)を含むLB寒天培地を用いた。アンピシリン耐性株として得られた形質転換体の中から、コロニーPCRにより目的の遺伝子が挿入されたプラスミドを保持する菌株を選別した。選別した形質転換体は同様のLB寒天培地を用いて培養後(37℃、1日間)、得られた菌体からプラスミドをHigh Pure Plasmid Isolation kit(Roche)を用いて回収、精製した。 1μL of purified DNA fragment (A) and 1μL of DNA fragment (B), 5 × In-Fusion HD Enzyme Premix2μL in In-Fusion HD Cloning Kit (Takara Bio), mix with 6µL of DNase-free water, 50 ℃ For 15 minutes. Thereafter, 2 μL of the reaction solution was used to transform 20 μL of competent cell E. coli HB101 (Takara Bio). An LB agar medium containing 50 ppm ampicillin sodium (Wako Pure Chemical Industries) and 2.0% agar (Wako Pure Chemical Industries) was used as a regeneration medium for transformants. From the transformants obtained as ampicillin resistant strains, a strain carrying the plasmid into which the target gene was inserted was selected by colony PCR. The selected transformant was cultured using the same LB agar medium (37 ° C., 1 day), and the plasmid was recovered and purified from the obtained bacterial cell using High® Pure® Plasmid Isolation® kit (Roche).
1-3  宿主菌への形質転換
 プラスミドの宿主菌への導入はプロトプラスト形質転換法(Mol. Gen. Genet., 168, 111(1979) )に従って行った。この際、宿主菌にはBacillus subtilis 168株プロテアーゼ9重欠損株(KA8AX)(特開2006-174707)を用いた。形質転換体の再生培地には、テトラサイクリン含有DM3再生寒天培地(キシラン from beechwood(Sigma-Aldrich)1.0%(w/v)、バクトカザミノ酸(Difco)0.5%(w/v)、酵母エキス(Difco)0.5%(w/v)、L-トリプトファン(和光純薬工業)0.01%(w/v)、コハク酸二ナトリウム六水和物(和光純薬工業)8.1%(w/v)、リン酸一水素二カリウム(和光純薬工業)0.35%(w/v)、リン酸二水素一カリウム(和光純薬工業)0.15%(w/v)、グルコース(和光純薬工業)0.5%(w/v)、塩化マグネシウム(和光純薬工業)20mM、牛血清アルブミン(和光純薬工業)0.01%(w/v)、トリパンブルー0.01%(w/v) (ACROS ORGANICS)、テトラサイクリン塩酸塩(和光純薬工業)0.005%(w/v)、 寒天1.0%(w/v))を用いた。
1-3 Transformation into Host Bacteria The plasmid was introduced into the host bacteria according to the protoplast transformation method (Mol. Gen. Genet., 168, 111 (1979)). At this time, Bacillus subtilis 168 protease 9-deficient strain (KA8AX) (JP 2006-174707) was used as the host bacterium. Transformant regeneration medium includes tetracycline-containing DM3 regeneration agar medium (xylan from beechwood (Sigma-Aldrich) 1.0% (w / v), bactocasamino acid (Difco) 0.5% (w / v), yeast extract (Difco) 0.5% (w / v), L-tryptophan (Wako Pure Chemical Industries) 0.01% (w / v), disodium succinate hexahydrate (Wako Pure Chemical Industries) 8.1% (w / v), monophosphate Dipotassium hydrogen (Wako Pure Chemical Industries) 0.35% (w / v), Monopotassium dihydrogen phosphate (Wako Pure Chemical Industries) 0.15% (w / v), Glucose (Wako Pure Chemical Industries) 0.5% (w / v) ), Magnesium chloride (Wako Pure Chemical Industries) 20 mM, bovine serum albumin (Wako Pure Chemical Industries) 0.01% (w / v), trypan blue 0.01% (w / v) (ACROS ORGANICS), tetracycline hydrochloride (Japanese Kogaku Pharmaceutical Co., Ltd.) 0.005% (w / v), 1.0% (w / v) agar).
実施例2  キシラナーゼ生産
 DM3再生寒天培地上に生育した形質転換体15ppmテトラサイクリン含有LB培地5mLを用いてシード培養後(30℃、250rpm、16時間)、シード培養液0.6mLを2×L Mal培地20mL(バクトトリプトン2%(w/v)、酵母エキス1.0%(w/v)、塩化ナトリウム1.0%(w/v)、硫酸マンガン五水和物(和光純薬工業)75ppm、マルトース一水和物(和光純薬工業)7.5%(w/v)、テトラサイクリン塩酸塩15ppm]に添加し、メイン培養を行った(30℃、230rpm、3日間)。培養後、遠心分離(11,000rpm、15分間、4℃)により培養上清を得た。培養上清3mLは脱塩カラムEcono-Pac 10DGカラム(Biorad)を用いて20mM Tris-HCl pH7.5へとバッファー交換を行うことで組換えキシラナーゼ粗酵素液を調製した。
Example 2 Xylanase production Transformant grown on DM3 regenerated agar medium After seed culture using 5 mL of LB medium containing 15 ppm tetracycline (30 ° C., 250 rpm, 16 hours), 0.6 mL of seed culture solution was added to 20 mL of 2 × L Mal medium. (Bactotryptone 2% (w / v), Yeast extract 1.0% (w / v), Sodium chloride 1.0% (w / v), Manganese sulfate pentahydrate (Wako Pure Chemical Industries) 75ppm, Maltose monohydrate Product (Wako Pure Chemical Industries, Ltd.) 7.5% (w / v), tetracycline hydrochloride 15ppm], and main culture was performed (30 ° C, 230rpm, 3 days) .After incubation, centrifugation (11,000rpm, 15 minutes) The culture supernatant was obtained by exchanging the buffer to 20 mM Tris-HCl pH 7.5 using a desalting column Econo-Pac 10DG column (Biorad). An enzyme solution was prepared.
実施例3  変異導入
 配列番号1に示す塩基配列からなる野生型キシラナーゼをコードする遺伝子を鋳型として、下記表2に示す(実際に示す)77-Pro induced Cfi Fw(配列番号9)及び77-Pro induced Cfi Rv(配列番号10)のプライマー対、 214-Pro induced Cfi Fw(配列番号11)及び214-Pro induced Cfi Rv(配列番号12)のプライマー対、328-Pro induced Cfi Fw(配列番号13)及び328-Pro induced Cfi Rv(配列番号14)のプライマー対、212-Ala induced Cfi Fw(配列番号15)及び212-Ala induced Cfi Rv(配列番号16)のプライマー対、 217-Gly induced Cfi Fw(配列番号17)及び217-Gly induced Cfi Rv(配列番号18)のプライマー対、 323-Asn induced Cfi Fw(配列番号19)及び323-Asn induced Cfi Rv(配列番号20)のプライマー対を用いたPCR反応により、配列番号1に示した野生型キシラナーゼの塩基配列の229~231番目の塩基gcc(アラニン ;A)をccg(プロリン;P)へと、640~642番目の塩基gcc(アラニン ;A)をccg(プロリン;P)へと、982~984番目の塩基gcc(アラニン ;A)をccg(プロリン;P)へと、634~636番目の塩基tcc(セリン)をgcc(アラニン)へと、967~969番目の塩基tcg(セリン)をaac(アスパラギン)へと、649~651番目の塩基cag(グルタミン)をccc(プロリン)へとそれぞれ置換された変異キシラナーゼ(夫々、A77P、A214P、A328P、A77P、A214P、A328Pと表記する)をコードする遺伝子を含むDNA断片を増幅した。得られたPCR反応溶液をDpnIで処理し、鋳型DNAを消化した後、大腸菌に形質転換して、変異キシラナーゼが発現するプラスミドを構築した。得られたプラスミドは、DNAシークエンス法によって、変異キシラナーゼをコードする遺伝子が挿入されていることを確認した。
Example 3 Mutation Introduction 77-Pro induced Cfi Fw (SEQ ID NO: 9) and 77-Pro shown in Table 2 below (actually shown) using as a template a gene encoding a wild-type xylanase consisting of the base sequence shown in SEQ ID NO: 1 Induced Cfi Rv (SEQ ID NO: 10) primer pair, 214-Pro induced Cfi Fw (SEQ ID NO: 11) and 214-Pro induced Cfi Rv (SEQ ID NO: 12) primer pair, 328-Pro induced Cfi Fw (SEQ ID NO: 13) And 328-Pro induced Cfi Rv (SEQ ID NO: 14) primer pair, 212-Ala induced Cfi Fw (SEQ ID NO: 15) and 212-Ala induced Cfi Rv (SEQ ID NO: 16) primer pair, 217-Gly induced Cfi Fw ( PCR using a primer pair of SEQ ID NO: 17) and 217-Gly induced Cfi Rv (SEQ ID NO: 18), a primer pair of 323-Asn induced Cfi Fw (SEQ ID NO: 19) and 323-Asn induced Cfi Rv (SEQ ID NO: 20) As a result of the reaction, the bases gc 229 to 231 in the base sequence of the wild type xylanase shown in SEQ ID NO: 1 c (alanine; A) to ccg (proline; P), 640-642th base gcc (alanine; A) to ccg (proline; P), 982 to 984th base gcc (alanine; A) To ccg (proline; P), 634-636th base tcc (serine) to gcc (alanine), 967-969th base tcg (serine) to aac (asparagine), 649-651th A DNA fragment containing a gene encoding a mutant xylanase (represented as A77P, A214P, A328P, A77P, A214P, A328P, respectively) in which the base cag (glutamine) was replaced with ccc (proline) was amplified. The obtained PCR reaction solution was treated with DpnI to digest the template DNA, and then transformed into Escherichia coli to construct a plasmid expressing the mutant xylanase. The obtained plasmid was confirmed to have a gene encoding a mutant xylanase inserted by a DNA sequencing method.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
実施例4  変異キシラナーゼの酵素学的性質の解析4-1  耐熱性
 耐熱性の測定を行った。まず、粗酵素液を50mM酢酸バッファーで適宜希釈し、Veriti サーマルサイクラー(アプライドバイオシステムズ)を用いて62~67℃(1℃刻み)で20分インキュベートした。同時に合成基質1mM p-nitrophenylxylobioside溶液20μL, 250mM 酢酸バッファー20μL及び水50μLを混合して基質溶液90μLを調整した。基質溶液にインキュベート後の粗酵素溶液10μLを添加し、50℃で10分間反応した。反応後、炭酸カルシウム水溶液を100μL加え、420nmの吸光度を吸光マイクロプレートリーダー VersaMax(モレキュラーデバイスジャパン)で測定した。尚、基質溶液90μLに炭酸カルシウム水溶液を100μL添加後、酵素溶液10μLを加えて、同様の操作を行ったものをブランクとした。そして、p-nitrophenol溶液で作成した検量線を作製し、生成されたp-nitrophenol量を算出した。基質液由来のバックグラウンドの分を差し引いた値をp-nitrophenol生成量とした。変異キシラナーゼと野生型の比較の結果を表3に示した。
Example 4 Analysis of Enzymatic Properties of Mutant Xylanase 4-1 Heat Resistance Heat resistance was measured. First, the crude enzyme solution was appropriately diluted with 50 mM acetate buffer, and incubated at 62-67 ° C. (in 1 ° C. increments) for 20 minutes using a Veriti thermal cycler (Applied Biosystems). Simultaneously, 20 μL of the synthetic substrate 1 mM p-nitrophenylxylobioside solution, 20 μL of 250 mM acetate buffer and 50 μL of water were mixed to prepare 90 μL of the substrate solution. 10 μL of the crude enzyme solution after incubation was added to the substrate solution, and reacted at 50 ° C. for 10 minutes. After the reaction, 100 μL of an aqueous calcium carbonate solution was added, and the absorbance at 420 nm was measured with an absorption microplate reader VersaMax (Molecular Device Japan). In addition, after adding 100 microliters of calcium carbonate aqueous solution to 90 microliters of substrate solutions, 10 microliters of enzyme solutions were added, and what performed the same operation was made into the blank. Then, a calibration curve created with the p-nitrophenol solution was prepared, and the amount of p-nitrophenol produced was calculated. The value obtained by subtracting the background derived from the substrate solution was defined as the amount of p-nitrophenol produced. Table 3 shows the results of comparison between the mutant xylanase and the wild type.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示したように、本発明のキシラナーゼは野生型よりも高い耐熱性を示していることが確認された。 As shown in Table 3, it was confirmed that the xylanase of the present invention showed higher heat resistance than the wild type.
4-2  最適反応pH
 至適pHの測定を行った。合成基質1mM p-nitrophenylxylobioside溶液20μL、250mM リン酸-クエン酸バッファー(pH 4, 5, 6, 7, 8)20μL及び水50μLを混合して基質溶液90μLを調整した。基質溶液に適当な濃度に希釈した粗酵素溶液10μLを添加し、50℃で10分間反応した。反応後、炭酸カルシウム水溶液を100μL加え、420nmの吸光度を吸光マイクロプレートリーダー VersaMax(モレキュラーデバイスジャパン)で測定した。尚、基質溶液90μLに炭酸カルシウム水溶液を100μL添加後、酵素溶液10μLを加えて、同様の操作を行ったものをブランクとした。そして、p-nitrophenol溶液で作成した検量線を作製し、生成されたp-nitrophenol量を算出した。基質液由来のバックグラウンドの分を差し引いた値をp-nitrophenol生成量とした。最大の生成糖量を示したサンプルを100%とした際の各pHでの生成糖量を相対活性として求めた。変異キシラナーゼ及び野生型キシラナーゼによるp-nitrophenylxylobiosideの分解に関する至適pHの結果を表4に示した。
4-2 Optimum reaction pH
The optimum pH was measured. Synthetic substrate 1 mM p-nitrophenylxylobioside solution 20 μL, 250 mM phosphate-citrate buffer (pH 4, 5, 6, 7, 8) 20 μL and water 50 μL were mixed to prepare substrate solution 90 μL. 10 μL of a crude enzyme solution diluted to an appropriate concentration was added to the substrate solution and reacted at 50 ° C. for 10 minutes. After the reaction, 100 μL of an aqueous calcium carbonate solution was added, and the absorbance at 420 nm was measured with an absorption microplate reader VersaMax (Molecular Device Japan). In addition, after adding 100 microliters of calcium carbonate aqueous solution to 90 microliters of substrate solutions, 10 microliters of enzyme solutions were added, and what performed the same operation was made into the blank. Then, a calibration curve created with the p-nitrophenol solution was prepared, and the amount of p-nitrophenol produced was calculated. The value obtained by subtracting the background derived from the substrate solution was defined as the amount of p-nitrophenol produced. The amount of sugar produced at each pH when the sample showing the maximum amount of sugar produced was taken as 100% was determined as the relative activity. Table 4 shows the optimum pH results for the degradation of p-nitrophenylxylobioside by mutant xylanase and wild-type xylanase.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4より、本発明のキシラナーゼは、pH6.0において最大活性を示し、pH5.0~7.0において最大活性の70%以上の活性を維持していた。 From Table 4, the xylanase of the present invention showed the maximum activity at pH 6.0 and maintained 70% or more of the maximum activity at pH 5.0 to 7.0.
4-3  比活性解析
 キシラン比活性を測定し、野生型と比較した。2.0%(w/v) キシラン from beechwood 50μL、250mM 酢酸バッファー(pH5.0) 20μL及び水20μLを混合して基質溶液90μLを調整した。適当な濃度に希釈した10μLの変異体の粗酵素溶液を添加し、50℃で10分間反応した。反応後、DNS溶液を100μL添加して反応を停止させ100℃にて5分間反応させた。冷却後、540nmの吸光度を吸光マイクロプレートリーダーで測定した。尚、基質溶液90μLにDNS溶液を100μL添加後、酵素溶液10μLを加えて、同様の操作を行ったものをブランクとした。キシロース溶液で作成した検量線を作製して生成されたキシロオリゴ糖量を算出し、基質液由来のバックグラウンドの糖を差し引いた値を生成糖量とした。その後、生成糖量から希釈酵素溶液のキシラナーゼ活性を計算し、野生型の活性を100%とし、相対活性を測定した。
 変異キシラナーゼ及び野生型キシラナーゼによるキシランの分解に関する比活性の結果を表5に示した。
4-3 Specific activity analysis The specific activity of xylan was measured and compared with the wild type. A substrate solution 90 μL was prepared by mixing 2.0 μl (w / v) xylan from beechwood 50 μL, 250 mM acetate buffer (pH 5.0) 20 μL and water 20 μL. 10 μL of the crude enzyme solution of the mutant diluted to an appropriate concentration was added and reacted at 50 ° C. for 10 minutes. After the reaction, 100 μL of DNS solution was added to stop the reaction, and the reaction was carried out at 100 ° C. for 5 minutes. After cooling, the absorbance at 540 nm was measured with an absorbance microplate reader. A blank was prepared by adding 100 μL of the DNS solution to 90 μL of the substrate solution, adding 10 μL of the enzyme solution, and performing the same operation. The amount of xylooligosaccharides produced by preparing a calibration curve prepared with a xylose solution was calculated, and the value obtained by subtracting the background sugar derived from the substrate solution was taken as the amount of produced sugars. Thereafter, the xylanase activity of the diluted enzyme solution was calculated from the amount of sugar produced, and the relative activity was measured with the wild-type activity as 100%.
Table 5 shows the results of specific activities related to the degradation of xylan by mutant xylanase and wild-type xylanase.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
4-4  最適反応温度
 最適反応温度を測定した。合成基質1mM p-nitrophenylxylobioside溶液20μL, 250mM 酢酸バッファー20μL及び水50μLを混合して基質溶液90μLを調整した。基質溶液に適当な濃度に希釈した粗酵素溶液10μLを添加し、Veriti サーマルサイクラー(アプライドバイオシステムズ)を用いて45~70℃(5℃刻み)で10分間反応させた。反応後、炭酸カルシウム水溶液を100μL加え、420nmの吸光度を吸光マイクロプレートリーダー VersaMax(モレキュラーデバイスジャパン)で測定した。尚、基質溶液90μLに炭酸カルシウム水溶液を100μL添加後、酵素溶液10μLを加えて、同様の操作を行ったものをブランクとした。そして、p-nitrophenol溶液で作成した検量線を作製し、生成されたp-nitrophenol量を算出した。基質液由来のバックグラウンドの分を差し引いた値をp-nitrophenol生成量とした。最大のp-nitrophenylxylobioside生成量を示したサンプルを100%とした際の各温度での生成量を比活性として求めた。
 変異キシラナーゼ及び野生型キシラナーゼの至適反応温度の結果を表6に示した。
4-4 Optimum reaction temperature The optimum reaction temperature was measured. Synthetic substrate 1 mM p-nitrophenylxylobioside solution 20 μL, 250 mM acetate buffer 20 μL and water 50 μL were mixed to prepare 90 μL of substrate solution. 10 μL of a crude enzyme solution diluted to an appropriate concentration was added to the substrate solution, and reacted at 45 to 70 ° C. (5 ° C. increments) for 10 minutes using a Veriti thermal cycler (Applied Biosystems). After the reaction, 100 μL of an aqueous calcium carbonate solution was added, and the absorbance at 420 nm was measured with an absorption microplate reader VersaMax (Molecular Device Japan). In addition, after adding 100 microliters of calcium carbonate aqueous solution to 90 microliters of substrate solutions, 10 microliters of enzyme solutions were added, and what performed the same operation was made into the blank. Then, a calibration curve created with the p-nitrophenol solution was prepared, and the amount of p-nitrophenol produced was calculated. The value obtained by subtracting the background derived from the substrate solution was defined as the amount of p-nitrophenol produced. The production amount at each temperature when the sample showing the maximum production amount of p-nitrophenylxylobioside was taken as 100% was determined as the specific activity.
Table 6 shows the results of the optimum reaction temperature for the mutant xylanase and the wild type xylanase.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 本発明のキシラナーゼは、50-60℃付近で最もキシラン分解活性が高く、45-65℃の範囲で最大活性の60%以上の活性を示した。 The xylanase of the present invention had the highest xylan decomposition activity in the vicinity of 50-60 ° C., and showed an activity of 60% or more of the maximum activity in the range of 45-65 ° C.

Claims (9)

  1.  下記(a)~(c)で示されるタンパク質から選ばれるキシラナーゼ。
     (a)配列番号2で示されるアミノ酸配列において、77位のアラニン、212位のセリン、214位のアラニン、217位のグルタミン、323位のセリン及び328位のアラニンのいずれか一つ以上のアミノ酸残基が、下記のアミノ酸残基;
      77位:プロリン
     212位:アラニン
     214位:プロリン
     217位:プロリン
     323位:アスパラギン
     328位:プロリン
    に置換されたアミノ酸配列からなり、且つキシラナーゼ活性を有するタンパク質。
     (b)前記(a)のタンパク質のアミノ酸配列と、前記77位、212位、214位、217位、323位及び328位のアミノ酸以外で90%以上の同一性を有するアミノ酸配列からなり、且つキシラナーゼ活性を有するタンパク質。
     (c)前記(a)のタンパク質のアミノ酸配列において、前記77位、212位、214位、217位、323位及び328位のアミノ酸以外の位置で、1又は数個のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなり、且つキシラナーゼ活性を有するタンパク質。
    A xylanase selected from the proteins represented by the following (a) to (c):
    (A) in the amino acid sequence represented by SEQ ID NO: 2, any one or more amino acids of alanine at position 77, serine at position 212, alanine at position 214, glutamine at position 217, serine at position 323, and alanine at position 328 The residue is the amino acid residue:
    77th: Proline 212: Alanine 214: Proline 217: Proline 323: Asparagine 328: A protein comprising an amino acid sequence substituted with proline and having xylanase activity.
    (B) consisting of an amino acid sequence of the protein of (a) and an amino acid sequence having 90% or more identity other than the amino acids at positions 77, 212, 214, 217, 323, and 328, and A protein having xylanase activity.
    (C) In the amino acid sequence of the protein of (a), one or several amino acids are deleted or substituted at positions other than the amino acids at positions 77, 212, 214, 217, 323, and 328. Alternatively, a protein comprising an added amino acid sequence and having xylanase activity.
  2.  50-60℃で最もキシラン分解活性が高く、且つ45-65℃の範囲で最大活性の60%以上の活性を示す請求項1記載のキシラナーゼ。 The xylanase according to claim 1, which exhibits the highest xylan decomposition activity at 50-60 ° C and 60% or more of the maximum activity in the range of 45-65 ° C.
  3.  請求項1又は2記載の何れかのキシラナーゼをコードする遺伝子。 A gene encoding any of the xylanases according to claim 1 or 2.
  4.  下記(d)~(f)記載のキシラナーゼをコードする遺伝子。
     (d)配列番号1で示される塩基配列において、配列番号1の229位~231位のアラニンをコードする塩基、634位~636位のセリンをコードする塩基、640位~642位のアラニンをコードする塩基、649位~651位のグルタミンをコードする塩基、967位~969位のセリンをコードする塩基及び982位~984位のアラニンをコードする塩基のいずれか一以上が、下記のアミノ酸をコードする塩基; 
     229位~231位:プロリンをコードする塩基
     634位~636位:アラニンをコードする塩基
     640位~642位:プロリンをコードする塩基
     649位~651位:プロリンをコードする塩基
     967位~969位:アスパラギンをコードする塩基
     982位~984位:プロリンをコードする塩基
    に置換された塩基配列からなり、且つキシラナーゼ活性を有するタンパク質をコードする遺伝子。
     (e)(d)の遺伝子の塩基配列において、配列番号1の229位~231位、634位~636位、640位~642位、649位~651位、967位~969位及び982位~984位の塩基以外で同一性が90%以上の塩基配列からなり、且つキシラナーゼ活性を有するタンパク質をコードする遺伝子。
     (f)(d)の遺伝子の塩基配列において、配列番号1の229位~231位、634位~636位、640位~642位、649位~651位、967位~969位及び982位~984位の塩基以外の位置で、1又は15個以下の塩基が、欠失、置換又は付加された塩基配列からなり、且つキシラナーゼ活性を有するタンパク質をコードする遺伝子。
    A gene encoding the xylanase described in the following (d) to (f).
    (D) In the base sequence represented by SEQ ID NO: 1, a base encoding an alanine at positions 229 to 231 of SEQ ID NO: 1, a base encoding a serine at positions 634 to 636, and an alanine at positions 640 to 642 At least one of a base encoding glutamine at positions 649 to 651, a base encoding serine at positions 967 to 969 and an alanine encoding positions alanine at positions 982 to 984 encodes the following amino acids: Base to do;
    Positions 229 to 231: Bases encoding proline 634 to 636: Bases encoding alanine 640 to 642: Bases encoding proline 649 to 651: Bases encoding proline 967 to 969: Asparagine-encoding bases 982 to 984: A gene encoding a protein having a base sequence substituted with a proline-encoding base and having xylanase activity.
    (E) In the base sequence of the gene of (d), from position 229 to position 231, position 634 to position 636, position 640 to position 642, position 649 to position 651, position 967 to position 969 and position 982 to SEQ ID NO: 1 A gene that encodes a protein having a nucleotide sequence other than the base at position 984 and having an identity of 90% or more and having xylanase activity.
    (F) In the base sequence of the gene of (d), from position 229 to position 231, position 634 to position 636, position 640 to position 642, position 649 to position 651, position 967 to position 969 and position 982 to SEQ ID NO: 1 A gene encoding a protein having a xylanase activity consisting of a base sequence in which 1 or 15 or less bases are deleted, substituted or added at positions other than the base at position 984.
  5.  請求項2又は3記載の遺伝子を含有する組み換えベクター。 A recombinant vector containing the gene according to claim 2 or 3.
  6.  請求項5記載の組み換えベクターを、宿主に導入してなる形質転換体。 A transformant obtained by introducing the recombinant vector according to claim 5 into a host.
  7.  前記宿主が微生物である、請求項6記載の形質転換体。 The transformant according to claim 6, wherein the host is a microorganism.
  8.  請求項1又は2記載のキシラナーゼを含有するバイオマス糖化用酵素製剤。 An enzyme preparation for biomass saccharification containing the xylanase according to claim 1 or 2.
  9.  バイオマスを、請求項8記載の酵素製剤で糖化処理する工程を含む、糖の製造方法。
     
    A method for producing sugar, comprising a step of saccharifying biomass with an enzyme preparation according to claim 8.
PCT/JP2014/080514 2013-11-19 2014-11-18 Heat-resistant xylanase WO2015076260A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-239223 2013-11-19
JP2013239223A JP2017035001A (en) 2013-11-19 2013-11-19 Heat resistant xylanase

Publications (1)

Publication Number Publication Date
WO2015076260A1 true WO2015076260A1 (en) 2015-05-28

Family

ID=53179522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080514 WO2015076260A1 (en) 2013-11-19 2014-11-18 Heat-resistant xylanase

Country Status (2)

Country Link
JP (1) JP2017035001A (en)
WO (1) WO2015076260A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111386341B (en) * 2017-06-07 2023-09-15 Ptt全球化学公共有限公司 Mutant clostridium thermocellum for producing cellulase and xylanase and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007115407A1 (en) * 2006-04-12 2007-10-18 National Research Council Of Canada Modification of xylanases to increase thermophilicity, thermostability and alkalophilicity
WO2011070101A1 (en) * 2009-12-09 2011-06-16 Novozymes A/S Methods of producing gh8 xylanase variants
JP2012513206A (en) * 2008-12-23 2012-06-14 ダニスコ・アクティーゼルスカブ Polypeptide having xylanase activity
WO2013176205A1 (en) * 2012-05-24 2013-11-28 花王株式会社 Xylanase, and method for producing sugar using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007115407A1 (en) * 2006-04-12 2007-10-18 National Research Council Of Canada Modification of xylanases to increase thermophilicity, thermostability and alkalophilicity
JP2012513206A (en) * 2008-12-23 2012-06-14 ダニスコ・アクティーゼルスカブ Polypeptide having xylanase activity
WO2011070101A1 (en) * 2009-12-09 2011-06-16 Novozymes A/S Methods of producing gh8 xylanase variants
WO2013176205A1 (en) * 2012-05-24 2013-11-28 花王株式会社 Xylanase, and method for producing sugar using same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANDREWS SR. ET AL.: "Substrate specificity in glycoside hydrolase family 10.", J BIOL CHEM., vol. 275, no. 30, 2000, pages 23027 - 23033 *
KANEKO S. ET AL.: "Importance of Interactions of the a-Helices in the Catalytic Domain N- and C- Terminals of the Family 10 Xylanase from Streptomyces olivaceoviridis E-86 to the Stability of the Enzyme.", JOURNAL OF APPLIED GLYCOSCIENCE, vol. 56, 2009, pages 165 - 171 *
SUGIMURA M. ET AL.: "Characterization of glycosynthase mutants derived from glycoside hydrolase family 10 xylanases.", BIOSCI BIOTECHNOL BIOCHEM., vol. 70, no. 5, 2006, pages 1210 - 1217 *

Also Published As

Publication number Publication date
JP2017035001A (en) 2017-02-16

Similar Documents

Publication Publication Date Title
US7510857B2 (en) Thermostable cellulase and methods of use
KR20120106774A (en) Methods for improving the efficiency of simultaneous saccharification and fermentation reactions
CA2891417A1 (en) Recombinant fungal polypeptides
US20130280764A1 (en) Method of improving the activity of cellulase enzyme mixtures in the saccharification (ligno)cellulosic material
US10550376B2 (en) Xylanase
CN111770996B (en) Mutant beta-glucosidase
JP7208762B2 (en) A novel arabinofuranosidase
Wang et al. Co-expression of beta-glucosidase and laccase in Trichoderma reesei by random insertion with enhanced filter paper activity
WO2015137334A1 (en) Mutant xylanases
WO2013176205A1 (en) Xylanase, and method for producing sugar using same
CN111757939B (en) Mutant beta-glucosidase
WO2015076260A1 (en) Heat-resistant xylanase
JP6849749B2 (en) New xylanase
JP6470967B2 (en) Mutant xylanase
Kumar et al. Cost effective production of cellulase using wheat bran from Bacillus subtilis BM1 and encoding endo-beta-1, 4-glucanase producing gene
JP2023145205A (en) Enzyme composition for biomass saccharification
JP2023145206A (en) Enzyme composition for biomass saccharification
JP2013243954A (en) Xylanase and method for producing sugar therewith
JP2013243953A (en) Xylanase and method for producing sugar therewith
WO2019044887A1 (en) NOVEL β-GLUCOSIDASE, ENZYME COMPOSITION INCLUDING SAME, AND METHOD FOR MANUFACTURING SUGAR SOLUTION USING SAME

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14863474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP