WO2015076060A1 - Organic light emitting element, organic light emitting element manufacturing method, lighting apparatus, and organic light emitting display element - Google Patents

Organic light emitting element, organic light emitting element manufacturing method, lighting apparatus, and organic light emitting display element Download PDF

Info

Publication number
WO2015076060A1
WO2015076060A1 PCT/JP2014/078346 JP2014078346W WO2015076060A1 WO 2015076060 A1 WO2015076060 A1 WO 2015076060A1 JP 2014078346 W JP2014078346 W JP 2014078346W WO 2015076060 A1 WO2015076060 A1 WO 2015076060A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting element
substrate
layer
light
Prior art date
Application number
PCT/JP2014/078346
Other languages
French (fr)
Japanese (ja)
Inventor
秀謙 尾方
礼隆 遠藤
麻絵 伊藤
勝一 香村
晶子 岩田
大江 昌人
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2015076060A1 publication Critical patent/WO2015076060A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/90Assemblies of multiple devices comprising at least one organic light-emitting element
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays

Definitions

  • the present invention relates to an organic light emitting device, a method for manufacturing the organic light emitting device, a lighting device, and an organic light emitting display device.
  • organic electronic devices are made of conventional inorganic materials such as being flexible and capable of being built on a large-area substrate, low-temperature processes, and low-cost manufacturing. Utilizing advantages that are difficult to realize with electronic devices, it is expected to be put into practical use, for example, for flexible displays.
  • organic electronic devices include organic electroluminescence (hereinafter referred to as “organic EL”) devices, organic solar cells, and organic transistors (organic FETs).
  • the organic EL device includes an organic EL element having a configuration in which an organic layer containing a light emitting material is sandwiched between a pair of electrodes. Since the organic EL element has characteristics such as low voltage driving, high luminance, and self-luminescence, the organic EL element can be reduced in thickness and weight.
  • the organic EL device can be applied to a light source such as an electrophotographic copying machine and a printer, and a lighting device.
  • an organic EL lighting device has many merits such as surface light emission, which can be thinned, and easy dimming. Further, since fluorescent lamps use mercury, there is a problem of environmental load, but such problems do not occur according to the organic EL lighting device.
  • a number of individual OLED devices are combined on a single substrate, or a combination of substrates having a plurality of individual OLED devices on each substrate.
  • Groups of OLED devices are typically coupled in series and / or in parallel to yield an array of OLED devices that can be used, for example, in display, signage or lighting applications. In these large area applications, it is desirable to produce a large light emitting area in the array while minimizing non-light emitting areas.
  • Patent Document 1 discloses a structure in which an organic light emitting region on a substrate is divided into small parts and each organic light emitting region is electrically connected in series in order to manufacture a large area illumination with a high yield. A method for manufacturing a simple structure is disclosed.
  • the organic light emitting region divided into small parts described in Patent Document 1 is often directly formed on the substrate by vapor deposition or coating. For this reason, a large-sized vacuum vapor deposition apparatus capable of substrate processing or a coating apparatus in an inert gas atmosphere is required, and the apparatus cost is high.
  • a plurality of light emitting layers are stacked in order to obtain light emission of a plurality of types of light emission colors, but there is a possibility that the film thickness distribution of each layer may be different, which causes uneven brightness and uneven colors.
  • Some aspects of the present invention have been made in view of the above-described problems of the prior art, and can be manufactured at low cost, without uneven color, a method for manufacturing an organic light-emitting element, a lighting device, Another object of the present invention is to provide an organic light emitting display element.
  • An organic light-emitting device includes a light-emitting device unit including a light-transmitting first electrode, an organic light-emitting layer, and a second electrode on a first substrate made of a transparent base material, and the light-emitting device.
  • a plurality of transparent substrates having a plurality of portions, and a plurality of portions formed on the second substrate at intervals from each other and electrically connected to the first electrodes in the plurality of light emitting element portions.
  • An auxiliary electrode a terminal electrode formed on the second substrate and electrically connected to the second electrode in the plurality of light emitting element portions, and either the first substrate or the second substrate And a color conversion layer that color-converts light from the light emitting element portion and emits light.
  • the auxiliary electrode and the first substrate of the light emitting device portion may partially overlap each other.
  • the light emitting device portion may be bonded to the second substrate through an adhesive layer provided between the adjacent auxiliary electrodes.
  • the color conversion layer may be formed on one surface of the first substrate so as to cover the organic light emitting layer.
  • the color conversion layer may be formed on one surface of the second substrate so as to cover the plurality of light emitting device portions.
  • a transparent gas barrier layer for sealing the color conversion layer may be formed on the second substrate.
  • a method of manufacturing an organic light emitting device comprising: forming a color conversion layer on one of a transparent base material having a plurality of light emitting device portion forming regions and a second substrate; Forming a plurality of auxiliary electrodes, and forming a mother substrate by forming a light-transmitting first electrode, organic light-emitting layer, and second electrode in each of the plurality of light-emitting element portion forming regions. And separating the mother base material into the light emitting element portion forming regions, so that the first electrode, the organic light emitting layer, and the second electrode are formed on the first substrate composed of the transparent base material.
  • the manufacturing method of the organic light emitting element which has the process of producing several light emitting element part provided with, and the process of arrange
  • the auxiliary electrode and the first substrate of the light emitting device portion are partially overlapped. It is good also as a manufacturing method to make it.
  • a manufacturing method including a step of forming a color conversion layer on one surface of the transparent substrate may be employed.
  • the method may include a step of forming a color conversion layer on one surface of the second substrate before forming the plurality of auxiliary electrodes.
  • the method may include a step of forming a transparent gas barrier layer for sealing the color conversion layer on the one surface of the second substrate.
  • a lighting device includes a light-emitting element unit including a light-transmitting first electrode, an organic light-emitting layer, and a second electrode on a first substrate made of a transparent base material, and the light-emitting element unit. Are arranged on the second substrate at a distance from each other and electrically connected to the first electrode in the plurality of light emitting element portions.
  • an organic light-emitting element including a color conversion layer that color-converts light from the light-emitting element portion and emits light.
  • An organic light-emitting display element includes a light-emitting element unit including a light-transmitting first electrode, an organic light-emitting layer, and a second electrode on a first substrate made of a transparent base material, and the light emission.
  • a plurality of first wirings and an insulating layer electrically insulated from the first wirings are sandwiched between the first wirings and spaced apart from each other so as to form a grid with the first wirings.
  • a switching element may be provided in the first wiring and the second wiring, and energization to the first wiring and the second wiring may be controlled.
  • an organic light-emitting element having no color unevenness it is possible to provide an organic light-emitting element having no color unevenness, a method for manufacturing the organic light-emitting element, a lighting device, and an organic light-emitting display element that can be manufactured at low cost.
  • the schematic diagram showing a part of II section in FIG. 1 is a first partial cross-sectional view showing a schematic configuration of a color conversion filter layer.
  • the 2nd partial sectional view showing the schematic structure of a color conversion filter layer.
  • the top view which shows the one surface side of the transparent support substrate provided with the terminal electrode and the auxiliary electrode.
  • Sectional drawing which shows schematic structure of a light emitting element part.
  • the perspective view which shows the connection state of the anode of a light emitting element part, and an auxiliary electrode, and the connection state of the cathode of a light emitting element part, and a terminal electrode.
  • the left side in the drawing is a first perspective view showing the manufacturing process of the color conversion filter substrate, and the right side in the drawing is a first cross-sectional view showing the manufacturing process of the color conversion filter substrate.
  • the left side in the drawing is a second perspective view showing the manufacturing process of the color conversion filter substrate, and the right side in the drawing is a second cross-sectional view showing the manufacturing process of the color conversion filter substrate.
  • the left side in the drawing is a third perspective view showing the manufacturing process of the color conversion filter substrate, and the right side in the drawing is a third sectional view showing the manufacturing process of the color conversion filter substrate.
  • 1 is a perspective view showing an organic EL base (mother base material) 15 produced by a film forming apparatus 11.
  • FIG. The perspective view which shows the organic electroluminescent base (mother base material) produced with the film-forming apparatus.
  • the figure which shows the structure of the film-forming apparatus 11 based on the roll-to-roll method in detail.
  • 1st explanatory drawing which shows the manufacturing method of the light emitting element part using the roll-to-roll method.
  • 2nd explanatory drawing which shows the manufacturing method of the light emitting element part using the roll-to-roll method.
  • FIG. 9 is a second diagram for explaining a process of providing a plurality of light emitting element portions on the color conversion filter substrate 12 that has undergone an inspection process.
  • FIG. 9 is a third diagram for explaining a process of providing a plurality of light emitting element portions on the color conversion filter substrate 12 that has undergone an inspection process.
  • positioning process Sectional drawing for demonstrating the connection process between an anode and an auxiliary electrode.
  • FIG. 6 is a plan view illustrating a display portion of a dot matrix display device which is one embodiment of the present invention.
  • FIG. 10 is a plan view illustrating a display portion of a segment display device which is one embodiment of the present invention.
  • 1 is a schematic view of an electronic bulletin board according to one embodiment of the present invention.
  • 1 is a schematic diagram of a lighting device which is one embodiment of the present invention.
  • FIG. 1 is a schematic view showing an organic EL device according to the first embodiment of the present invention.
  • the organic EL device (organic light emitting element) 1 of the present embodiment has a rectangular plate shape in plan view, and a light emitting region 1a that emits white light is formed on one side. .
  • a terminal electrode 5 for connecting an external device is provided on one end side in the longitudinal direction of the organic EL device 1.
  • FIG. 2 is a schematic diagram showing a part of the II cross section in FIG.
  • the organic EL device 1 includes a color conversion filter substrate 12, a plurality of light emitting element units 3 provided on the color conversion filter substrate 12, and a seal that seals the plurality of light emitting element units 3.
  • the member 4 is mainly configured.
  • the color conversion filter substrate 12 includes a transparent support substrate (second substrate) 2.
  • the transparent support substrate 2 is provided with a color conversion filter layer (color conversion layer) 9, a gas barrier layer 8, an auxiliary electrode 6, and a terminal electrode 5 (FIG. 1) on one surface 2a.
  • the color conversion filter layer 9 is formed including a region corresponding to the light emitting region 1a on the one surface 2a.
  • the gas barrier layer 8 is formed so as to cover the color conversion filter layer 9 and seals the periphery of the color conversion filter layer 9.
  • the auxiliary electrode 6 and the terminal electrode 5 are formed on the surface of the gas barrier layer 8.
  • the transparent support substrate 2 is formed using a material having excellent visible light transmittance and almost no moisture permeability.
  • the base material (transparent base material) of the transparent support substrate 2 includes a rigid resin substrate formed of a glass substrate or a resin.
  • the material for forming the resin substrate include polyolefin, acrylic resin (including polymethyl methacrylate), polyester resin (including polyethylene terephthalate), polycarbonate resin, and polyimide resin.
  • a flexible film formed of polyolefin, acrylic resin (including polymethyl methacrylate), polyester resin (including polyethylene terephthalate), polycarbonate resin, polyimide resin, or the like may be used.
  • borosilicate glass or blue plate glass is particularly preferable.
  • the transparent support substrate 2 is, for example, in the form of a film having a width of about 1 cm, a length of about 15 cm, and a thickness of about 0.2 mm, and has a rectangular shape in plan view.
  • the shape of the transparent support substrate 2 is not limited to a rectangle, and may be another shape.
  • the form of the transparent support substrate 2 can be freely designed according to the design of the organic EL lighting device.
  • the color conversion filter layer 9 has a function of absorbing incident light and emitting light in different wavelength ranges. Specifically, the color conversion filter layer 9 absorbs a part of incident light (light emitted from the plurality of light emitting element portions 3 mounted on the transparent support substrate 2), performs wavelength distribution conversion, and performs incident light conversion. This is a layer for emitting light including non-absorbed components and converted light (light having a wavelength distribution different from incident light).
  • the color conversion filter layer 9 is a layer made of at least one kind or a plurality of kinds of color conversion dyes.
  • the color conversion filter layer 9 may be formed over the entire surface 2a of the transparent support substrate 2 or selectively formed in a part of the transparent support substrate 2 (only the region corresponding to the light emitting region 1a). May be. For example, one or more types of color conversion filter layers 9 may be selectively formed at specific positions.
  • the color conversion filter layer 9 converts blue to blue-green light emitted from the light emitting element unit 3 into white light.
  • the white light in one embodiment of the present invention includes not only light that uniformly includes a wavelength component in the visible region (400 to 700 nm) but also light that does not include a wavelength component uniformly but appears white to the naked eye.
  • the color conversion dye at least one fluorescent dye that emits fluorescence in the red region may be used, and may be combined with one or more fluorescent dyes that emit fluorescence in the green region. That is, when an organic light-emitting element that emits light in the blue or blue-green region is used as the light source as the light-emitting element unit 3, when light from the light-emitting element unit 3 is passed through a simple red filter to obtain light in the red region, Originally, the light in the red region has a small amount of light, resulting in extremely dark output light. Therefore, by converting the light in the blue or blue-green region from the light emitting element part into the light in the red region by the fluorescent dye of the color conversion filter layer, the light in the red region having sufficient intensity can be output.
  • the light in the green region may be output by converting the light from the light emitting element portion into the light in the green region by another organic fluorescent dye, similarly to the light in the red region.
  • the light emission of the light emitting element part 3 sufficiently includes light in the green region, the light from the light emitting element part 3 may be simply output through the green filter.
  • fluorescent dyes that absorb light from the blue region to the blue-green region and emit fluorescence in the red region
  • fluorescent dyes for example, rhodamine B, rhodamine 6G, rhodamine 3B, rhodamine 101, rhodamine 110, sulforhodamine, basic violet 11, basic red 2, and other rhodamine dyes, cyanine dyes, 1-ethyl-2- [4- (p-dimethylaminophenyl) -1,3-butadienyl] -pyridinium perchlorate ( Examples thereof include pyridine dyes such as pyridine 1) or oxazine dyes. Furthermore, various dyes (direct dyes, acid dyes, basic dyes, disperse dyes, etc.) can be used if they are fluorescent.
  • a fluorescent dye that absorbs light in the blue region or blue-green region and emits fluorescence in the green region for example, 3- (2′-benzothiazolyl) -7-diethylaminocoumarin (Coumarin 6), 3- (2′-benzimidazolyl) -7-N, N-diethylaminocoumarin (coumarin 7), 3- (2′-N-methylbenzimidazolyl) -7-N, N-diethylaminocoumarin (coumarin 30) ), 2,3,5,6-1H, 4H-tetrahydro-8-trifluoromethylquinolidine (9,9a, 1-gh) coumarin (coumarin 153), or a coumarin dye.
  • Basic yellow 51, naphthalimide dyes such as solvent yellow 11 and solvent yellow 116 It is below.
  • various dyes direct dyes, acid dyes, basic dyes, disperse dyes, etc.
  • various dyes can be used if they are fluorescent.
  • the organic fluorescent dye used in the present embodiment includes polymethacrylate, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer resin, alkyd resin, aromatic sulfonamide resin, urea resin, melamine resin, benzoguanamine resin, and these.
  • An organic fluorescent pigment may be obtained by kneading into a resin mixture in advance to obtain a pigment.
  • these organic fluorescent dyes and organic fluorescent pigments (hereinafter, organic fluorescent dyes and organic fluorescent pigments are collectively referred to as organic fluorescent dyes) may be used alone or in order to adjust the hue of fluorescence. You may use combining more than a seed.
  • the organic fluorescent dye used in this embodiment is contained in the color conversion filter layer 9 in an amount of 0.01 to 5% by weight, more preferably 0.1 to 2% by weight, based on the weight of the color conversion filter layer 9. . If the content of the organic fluorescent dye is less than 0.01% by weight with respect to the weight of the color conversion filter layer 9, sufficient wavelength conversion cannot be performed. Further, if the content of the organic fluorescent dye exceeds 5% by weight with respect to the weight of the color conversion filter layer 9, the color conversion efficiency is lowered due to the effect of concentration quenching or the like.
  • the matrix resin used in the color conversion filter layer 9 of the present embodiment generates radical species or ionic species by light and / or heat treatment of a photocurable or photothermal combination type curable resin (resist). Polymerized or cross-linked and insoluble and infusible.
  • the material has a photocurable or photothermal combination type curable resin and is soluble in an organic solvent or an alkaline solution in an unexposed state.
  • the photocurable or photothermal combination type curable resin comprises (1) a composition comprising an acrylic polyfunctional monomer and oligomer having a plurality of acryloyl groups and methacryloyl groups, and photo or thermal polymerization initiator, (2 ) A composition comprising a polyvinylcinnamic acid ester and a sensitizer, (3) a composition comprising a chain or cyclic olefin and bisazide, and (4) a composition comprising an epoxy group-containing monomer and an acid generator. including.
  • the composition comprising the acrylic polyfunctional monomer and oligomer (1) and photo or thermal polymerization initiator is capable of high-definition patterning and has high reliability such as solvent resistance and heat resistance. Is preferable.
  • the matrix resin is formed by applying light and / or heat to the photocurable or photothermal combination type curable resin.
  • the photopolymerization initiator, sensitizer, and acid generator that can be used in the present embodiment are preferably those that initiate polymerization by light having a wavelength that is not absorbed by the fluorescent conversion dye contained therein.
  • a photopolymerization initiator and a thermal polymerization initiator are added. It is also possible not to add.
  • a matrix resin is formed by applying a solution or dispersion containing a photocurable resin or a solution or dispersion containing a photothermal combination type curable resin and an organic fluorescent dye on a support substrate to form a resin layer. Then, the resin layer in a desired region is exposed to be polymerized to be formed.
  • patterning is performed after exposing the desired region to insolubilize the photocurable resin or photothermal combination curable resin.
  • the patterning can be performed by a conventional method such as removal using an organic solvent or an alkali solution in which the resin in the unexposed portion is dissolved or dispersed.
  • 3A and 3B are first and second partial cross-sectional views showing a schematic configuration of the color conversion filter layer.
  • the color conversion filter layer 9 has a plurality of green conversion dye layers 9G and red conversion dye layers 9R, and the green conversion dye layer 9G and the red color conversion dye layer 9R are alternately present in the arrangement direction.
  • the green conversion dye layer 9G and the red conversion dye layer 9R forming a pair and the other green conversion dye layer 9G and the red conversion dye layer 9R adjacent to each other are disposed at a predetermined interval. .
  • the width W in the short direction of the green conversion dye layer 9G and the red conversion dye layer 9R is 0.5 mm.
  • the color conversion filter layer 9 includes a plurality of red conversion dye layers 9R. Further, as shown in FIG. 3B, the color conversion filter layer 9 includes a red conversion dye and a blue conversion dye, and the organic light emitting layer 33 (FIG. 2) emits a part of blue or blue green light. Good. In addition, when the light emission of the organic light emitting layer 33 (FIG. 2) is blue-green, the color conversion filter layer 9 contains a red conversion dye, and a part of blue green that is the light emission of the organic light emitting layer 33 (FIG. 2). It is good also as a structure which permeate
  • the gas barrier layer 8 is preferably composed of a laminate of an organic planarizing layer 8A and an inorganic gas barrier layer 8B.
  • a preferable material for the organic planarizing layer 8A has high transparency in the visible region (transmittance of 50% or more in the wavelength range of 400 to 700 nm), Tg of 100 ° C. or more, and surface hardness of 2H or more pencil hardness. It is a material that can smoothly form a coating film on the color conversion filter layer 9 and does not deteriorate the function of the color conversion filter layer.
  • Examples of such materials include imide-modified silicone resins (see JP-A-5-134112, JP-A-7-218717, JP-A-7-306311, etc.), acrylics, polyimides, silicone resins, and the like. Including a material in which an inorganic metal compound (TiO, Al 2 O 3 , SiO 2 or the like) is dispersed (see JP-A-5-119306, JP-A-7-104114, etc.).
  • an inorganic metal compound TiO, Al 2 O 3 , SiO 2 or the like
  • Examples of the ultraviolet curable resin that can be used in the organic planarizing layer include epoxy-modified acrylate resins (see JP-A-7-48424), resins having reactive vinyl groups of acrylate monomers / oligomers / polymers, resist resins (special JP-A-6-300910, JP-A-7-128519, JP-A-8-273394, JP-A-9-330793, etc.), fluororesin (JP-A-5-36475, JP-A-9-330793) Photocurable resin and / or thermosetting resin.
  • inorganic compounds formed by a sol-gel method described in Monthly Display 1997, Vol. 3, No. 7, JP-A-8-27934, etc.
  • the inorganic gas barrier layer 8B has an electrical insulating property, a barrier property against gases and organic solvents, high transparency in the visible region (transmittance of 50% or more in the wavelength range of 400 to 700 nm), and an inorganic gas barrier. It is desirable to use a material having a hardness (preferably pencil hardness of 2H or more) that can withstand the formation of the terminal electrode 5 and the auxiliary electrode 6 on the layer 8B.
  • a material having a hardness preferably pencil hardness of 2H or more
  • inorganic oxides such as SiOx, AlOx, TiOx, and TaOx, inorganic nitrides such as SiNx and SiC: N, or inorganic substances such as SiNxOy and diamond-like carbon (DLC) can be used.
  • a formation method of the inorganic gas barrier layer 8B It can form by common methods, such as a sputtering method, CVD method, a vacuum evaporation method, a dip method.
  • the particle size of the light-scattering particles is preferably about 100 nm to 500 nm.
  • particles (inorganic fine particles) made of an inorganic material are used as the light scattering particles, for example, silica beads (refractive index: 1.44), alumina beads (refractive index: 1.63), titanium oxide beads (Refractive index anatase type: 2.50, rutile type 2.70), zirconia bead (refractive index: 2.05), zinc oxide bead (refractive index: 2.00), barium titanate (BaTiO 3 ) (refractive Rate: 2.4).
  • silica beads reffractive index: 1.44
  • alumina beads reffractive index: 1.63
  • titanium oxide beads Refractive index anatase type: 2.50, rutile type 2.70
  • zirconia bead reffractive index: 2.05
  • zinc oxide bead reffractive index: 2.00
  • barium titanate BaTiO 3
  • particles (organic fine particles) made of an organic material are used as the light scattering particles, for example, polymethyl methacrylate beads (refractive index: 1.49), acrylic beads (refractive index: 1.50), acrylic -Styrene copolymer beads (refractive index: 1.54), melamine beads (refractive index: 1.57), high refractive index melamine beads (refractive index: 1.65), polycarbonate beads (refractive index: 1.57) Styrene beads (refractive index: 1.60) crosslinked polystyrene beads (refractive index: 1.61), polyvinyl chloride beads (refractive index: 1.60), benzoguanamine-melamine formaldehyde beads (refractive index: 1.68), Examples thereof include silicone beads (refractive index: 1.50).
  • FIG. 4 is a plan view showing one side of a transparent support substrate provided with terminal electrodes and auxiliary electrodes. As shown in FIG. 4, the terminal electrode 5 and the auxiliary electrode 6 are formed on the surface 8a of the gas barrier layer 8 formed on the one surface 2a of the transparent support substrate 2, respectively. The terminal electrode 5 is formed along one side 2 c in the longitudinal direction of the transparent support substrate 2.
  • the auxiliary electrode 6 has a plurality of extension portions 6a, 6a,... And a common portion 6b.
  • the common part 6 b is formed along the other side 2 d in the longitudinal direction of the transparent support substrate 2.
  • the plurality of extending portions 6a, 6a,... Extend in parallel to each other at a predetermined interval L1 in the arrangement direction (X direction), and each base end (the side opposite to the end portion on the terminal electrode 5 side). ) Side is connected to the common part 6b.
  • the plurality of extension portions 6 a, 6 a,... Extend linearly from the common portion 6 b toward the terminal electrode 5, but are separated from the terminal electrode 5 so as not to be electrically connected to the terminal electrode 5. Is provided.
  • the terminal electrode 5 is a terminal for external connection.
  • the terminal electrode 5 and the auxiliary electrode 6 are formed in a thin film shape using a material having a low electric resistance value, such as gold, silver, nickel, aluminum, and the like.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of the light emitting element portion.
  • the light emitting element portion 3 of the present embodiment is obtained by dividing an organic EL base described later produced by a roll-to-roll method, and is produced independently of the color conversion filter substrate 12. is there.
  • the light emitting element unit 3 includes a band-shaped transparent base film (first substrate) 31, a light-transmitting band-shaped anode (first electrode) 32 a, and a band-shaped organic light-emitting layer (light-emitting layer). ) 33 and a strip-like cathode (second electrode) 32b.
  • the transparent base film 31 is a flexible substrate having flexibility.
  • a resin sheet such as a styrene resin, an acrylic resin, or a polyethylene terephthalate resin can be used for the transparent base film 31.
  • a material excellent in barrier properties against oxygen and water is preferable, and a single layer sheet made of a single resin or a multilayer sheet made of a plurality of resins may be used.
  • the transparent base film 31 is preferably a flexible substrate having flexibility, but may be a transparent substrate having elasticity such as glass.
  • the anode 32a and the cathode 32b can be formed using a conventional electrode material.
  • a transparent electrode can be formed using ITO, IDIXO, IZO, GZO, SnO 2 or the like.
  • a microresonator structure is constituted by the anode 32a and the cathode 32b, it is preferable to use a translucent electrode as the anode 32a.
  • the anode 32a a combination of a metal translucent electrode and a transparent electrode material can be used.
  • a material for the semitransparent electrode silver is preferable from the viewpoint of reflectance and transmittance.
  • the film thickness of the translucent electrode is preferably 5 to 30 nm. When the film thickness of the translucent electrode is less than 5 nm, the light cannot be sufficiently reflected, and the interference effect cannot be obtained sufficiently. Further, when the film thickness of the semi-transparent electrode exceeds 30 nm, the light transmittance is drastically lowered, and thus the luminance and light emission efficiency of the light emitting element portion 3 may be lowered.
  • the organic light emitting layer 33 is disposed between the anode 32a and the cathode 32b, and emits light when a voltage is applied.
  • the organic light emitting layer 33 includes, for example, a hole injection layer 34, a hole transport layer 35, an electron blocking layer 36, a light emitting layer 37, an electron transport layer 38, and an electron injection layer 39 in order from the transparent base film 31 side. (Hole injection layer / hole transport layer / electron blocking layer / light emitting layer / electron transport layer / electron injection layer).
  • the light emitting layer 37 of the present embodiment has a single layer structure that emits blue to blue-green light.
  • the cathode 32b is formed by laminating a metal having a low work function such as Ca / Al, Ce / Al, Cs / Al, Ba / Al and a stable metal in order to efficiently inject electrons into the organic light emitting layer 33, for example. Is preferably formed.
  • the cathode 32b may be formed of an alloy containing a metal having a low work function, such as a Ca: Al alloy, Mg: Ag alloy, or Li: Al alloy, or LiF / Al, LiF / Ca / Al, BaF2 or the like.
  • a thin film insulating layer such as / Ba / Al or LiF / Al / Ag may be formed in combination with a metal electrode.
  • the width W1 in the short direction of the cathode 32b in the present embodiment is substantially equal to the interval L1 between the adjacent extensions 6a, 6a in the auxiliary electrode 6 described above.
  • the light emission of the organic light emitting layer 33 can be condensed in the front direction (light extraction direction) due to the interference effect between the anode 32a and the cathode 32b.
  • the directivity can be given to the light emission of the organic light emitting layer 33, the light emission loss escaping to the periphery can be reduced, and the light emission efficiency can be increased.
  • the light emission energy generated in the organic light emitting layer 33 can be more efficiently propagated to the color conversion filter layer 9 side, and the front luminance of the light emitting element portion 3 can be increased.
  • the emission spectrum of the organic light emitting layer 33 can be adjusted, and the desired emission peak wavelength and half width can be adjusted. Thereby, the emission spectrum of the organic light emitting layer 33 can be controlled to a spectrum that can effectively excite the organic fluorescent dye in the color conversion filter layer 9.
  • a dry process such as an evaporation method, an EB method, an MBE method, or a sputtering method can be used, or a wet process such as a spin coating method, a printing method, or an ink jet method can be used. it can.
  • the hole injection layer 34 is provided in order to efficiently receive holes from the anode 32a and deliver them to the hole transport layer 35 efficiently.
  • the HOMO level of the material used for the hole injection layer 34 is preferably lower than the HOMO level used for the hole transport layer 35 and higher than the work function of the anode 32a.
  • the hole injection layer 34 may be a single layer or a multilayer.
  • polycarbonate or polyester can be used as the adhesive resin.
  • Any solvent can be used as long as it can dissolve or disperse the material.
  • pure water, methanol, ethanol, THF, chloroform, xylene, trimethylbenzene, or the like can be used as the solvent.
  • the material of the hole injection layer 34 those generally used for organic EL elements and organic photoconductors can be used.
  • inorganic p-type semiconductor materials porphyrin compounds, N, N′-bis- (3-methylphenyl) -N, N′-bis- (phenyl) -benzidine (TPD), N, N′-di (naphthalene) -1-yl) -N, N′-diphenyl-benzidine (NPD) and other aromatic tertiary amine compounds, hydrazone compounds, quinacridone compounds, styrylamine compounds and other low molecular materials, polyaniline (PANI), 3, 4 -Polymer materials such as polyethylene dioxythiophene / polystyrene sulfonate (PEDT / PSS), poly [triphenylamine derivative] (Poly-TPD), polyvinyl carbazole (PVCz), poly (p-phenylene vinylene) precursor ( Prepolymer materials such as
  • the hole transport layer 35 is provided in order to efficiently receive holes from the hole injection layer 34 and deliver them efficiently to the light emitting layer 37.
  • the HOMO level of the material used for the hole transport layer 35 is preferably higher than the HOMO level of the hole injection layer 34 and lower than the HOMO level of the light emitting layer 37. This is because holes can be injected and transported to the light emitting layer 37 more efficiently, and the effect of reducing the voltage required for light emission and the effect of improving the light emission efficiency can be obtained.
  • the LUMO level of the hole transport layer 35 is preferably lower than the LUMO level of the light emitting layer 37 so that the leakage of electrons from the light emitting layer 37 can be suppressed. If it does so, the luminous efficiency in the light emitting layer 37 can be raised.
  • the band gap of the hole transport layer 35 is preferably larger than the band gap of the light emitting layer 37. Then, excitons can be effectively confined in the light emitting layer 37.
  • the hole transport layer 35 may be a single layer or a multilayer, and can be formed in the same manner as the hole injection layer 34 using a dry process or a wet process.
  • the electron blocking layer 36 can be formed using the same material as the hole injection layer 34.
  • the absolute value of the LUMO level of the material is preferably smaller than the absolute value of the LUMO level of the material of the hole injection layer 34 included in the light emitting layer 37 in contact with the electron blocking layer 36, that is, the red light emitting layer 37a. This is because electrons can be more effectively confined in the light emitting layer 37.
  • the electron blocking layer 36 may be a single layer or a multilayer, and can be formed in the same manner as the hole injection layer 34 using a dry process or a wet process.
  • the light emitting layer 37 may be composed only of the organic light emitting material exemplified below, or may be composed of a combination of a light emitting dopant and a host material, and optionally includes a hole transport material, an electron transport material, and an additive. An agent (donor, acceptor, etc.) may be included. Moreover, the structure by which these each material was disperse
  • the organic light emitting material a known light emitting material for an organic EL element can be used. Such light-emitting materials are classified into low-molecular light-emitting materials, polymer light-emitting materials, and the like. Specific examples of these compounds are given below, but the present embodiment is not limited to these materials.
  • the organic light emitting material may be classified into a fluorescent material, a phosphorescent material, and the like. From the viewpoint of reducing power consumption, it is preferable to use a phosphorescent material with high emission efficiency.
  • aromatic dimethylidene compounds such as 4,4′-bis (2,2′-diphenylvinyl) -biphenyl (DPVBi); 5-methyl- Oxadiazole compounds such as 2- [2- [4- (5-methyl-2-benzoxazolyl) phenyl] vinyl] benzoxazole; 3- (4-biphenyl) -4-phenyl-5-t-butyl Triazole derivatives such as phenyl-1,2,4-triazole (TAZ); styrylbenzene compounds such as 1,4-bis (2-methylstyryl) benzene; thiopyrazine dioxide derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, Fluorescent organic materials such as diphenoquinone derivatives and fluorenone derivatives; azomethine zinc complexes, (8
  • Polymer light emitting materials used for the light emitting layer 37 include poly (2-decyloxy-1,4-phenylene) (DO-PPP), poly [2,5-bis- [2- (N, N, N-triethyl). Ammonium) ethoxy] -1,4-phenyl-alt-1,4-phenyllene] dibromide (PPP-NEt3 +), poly [2- (2′-ethylhexyloxy) -5-methoxy-1,4-phenylenevinylene ] (MEH-PPV), poly [5-methoxy- (2-propanoxysulfonide) -1,4-phenylenevinylene] (MPS-PPV), poly [2,5-bis- (hexyloxy) -1 , 4-phenylene- (1-cyanovinylene)] (CN-PPV) and the like; poly (9,9-dioctylfluorene) (PDAF) and the like Pyro derivatives; poly (N
  • the organic light emitting material is preferably a low molecular light emitting material, and from the viewpoint of reducing power consumption, it is preferable to use a phosphorescent material having high light emission efficiency.
  • a well-known dopant for organic EL elements can be used.
  • examples of such a dopant include p-quaterphenyl, 3,5,3,5-tetra-tert-butylsecphenyl, 3,5,3,5-tetra-tert-butyl-p for ultraviolet light-emitting materials.
  • -Fluorescent materials such as quinckphenyl.
  • a fluorescent light-emitting material such as a styryl derivative; bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium (III) (FIrpic), bis (4 ′, 6
  • Examples include phosphorescent organic metal complexes such as' -difluorophenylpolydinato) tetrakis (1-pyrazoyl) borate iridium (III) (FIr 6 ).
  • the green light emitting material include phosphorescent organic metal complexes such as tris (2-phenylpyridinate) iridium (Ir (ppy) 3 ).
  • the thickness of the light emitting layer 37 is preferably 5 to 500 nm.
  • Examples of the material for the electron transport layer 38 include an inorganic material that is an n-type semiconductor, an oxadiazole derivative, a triazole derivative, a thiopyrazine dioxide derivative, a benzoquinone derivative, a naphthoquinone derivative, an anthraquinone derivative, a diphenoquinone derivative, and a fluorenone derivative.
  • an inorganic material that is an n-type semiconductor, an oxadiazole derivative, a triazole derivative, a thiopyrazine dioxide derivative, a benzoquinone derivative, a naphthoquinone derivative, an anthraquinone derivative, a diphenoquinone derivative, and a fluorenone derivative.
  • polymer materials such as poly (oxadiazole) (Poly-OXZ) and polystyrene derivatives (PSS) can be mentioned.
  • the electron injection layer 39 is provided in order to efficiently receive electrons from the cathode 32 b and efficiently transfer them to the electron transport layer 38.
  • Examples of the material of the electron injection layer 39 include fluorides such as lithium fluoride (LiF) and barium fluoride (BaF 2 ), oxides such as lithium oxide (Li 2 O), and the like.
  • the material used for the electron injection layer 39 preferably has a higher LUMO level than the material used for the electron transport layer 38.
  • the material used for the electron transport layer 38 is preferably a material having higher electron mobility than the material used for the electron injection layer 39.
  • the structure of the organic light emitting layer 33 is not limited to this, and can be appropriately set as necessary.
  • hole transport layer / light emitting layer / electron transport layer configuration hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer configuration, hole injection layer / hole transport layer / An electron blocking layer / light emitting layer / hole blocking layer / electron injection layer can also be used.
  • a protective film may be formed so as to cover the cathode 32b in order to prevent intrusion of moisture and the like and damage caused by hitting the roll when wound.
  • Examples of the method for forming the protective film include EB vapor deposition, sputtering, ion plating, and resistance heating vapor deposition.
  • Examples of the material for the protective film include Al and Ag for metals, phthalocyanine for organic materials, and SiON, SiO, and SiN for inorganic materials.
  • each layer constituting the organic light emitting layer 33 includes a dry process such as a vacuum deposition method, and a wet process such as a doctor blade method, a dip coating method, a micro gravure method, a spray method, an inkjet method, and a printing method. Can be used.
  • a wet process in consideration of the influence of oxygen and moisture on the organic light emitting layer 33 and the like, it is preferable to perform the treatment under an inert gas atmosphere or under vacuum conditions.
  • a drying process by heating or the like in order to remove the solvent. In that case, it is preferable to perform a drying process in inert gas atmosphere, and it is more preferable to carry out under reduced pressure.
  • FIG. 6 is a plan view showing one surface side of a transparent support substrate having a plurality of light emitting element portions.
  • the plurality of light emitting element portions 3 are each formed in a rectangular band shape extending linearly with a predetermined width, and are arranged with a predetermined interval from adjacent light emitting element portions 3.
  • each of the plurality of light emitting element portions 3 has a surface 8a of the gas barrier layer 8 via a transparent adhesive layer 17 (FIG. 1) disposed between adjacent extension portions 6a of the auxiliary electrode 6. Are pasted together.
  • the light emitting element unit 3 is disposed so that the ends on both sides in the short direction of the transparent base film 31 are overlapped with a part of the auxiliary electrode 6 located on both sides of the light emitting element unit 3.
  • the transparent support substrate 2 and the transparent base film 31 (FIG. 5) have a rectangular shape, but are not necessarily rectangular, and may be any shape.
  • the anode 32a of each light emitting element portion 3 is electrically connected to the extension portion 6a of the auxiliary electrode 6 using a conductive paste 7 having a lower electrical resistance than the anode 32a and having an excellent electrical conductivity.
  • the cathode 32b of each light emitting element part 3 is electrically connected to the terminal electrode 5 using the conductive paste 7a.
  • FIG. 7 is a perspective view showing a connection state between the anode and the auxiliary electrode of the light emitting element part and a connection state between the cathode and the terminal electrode of the light emitting element part.
  • the conductive paste 7 is provided on the surface of each extension portion 6a along each extending direction.
  • the conductive paste 7 is provided from the surface of the extension portion 6a to the surface of the anode 32a through the side surfaces on both sides in the short direction of the transparent base film 31 of the light emitting element portion 3.
  • the anode 32a and the extension 6a are electrically connected through the conductive paste 7. That is, the anode 32a is electrically connected to the auxiliary electrode 6 in a wide range extending from one end to the other end in the longitudinal direction.
  • the anode 32a having a strip shape is formed using a material having high electrical resistance such as ITO or IZO. For this reason, when the anode 32a and the auxiliary electrode 6 (common portion 6b) are connected to one end in the longitudinal direction of the anode 32a facing the common portion 6b of the auxiliary electrode 6, in the longitudinal direction of the anode 32a. Voltage unevenness may occur. Therefore, in the present embodiment, the extension 6a is extended along the longitudinal direction of the anode 32a made of a material having high electrical resistance, and is electrically connected to the auxiliary electrode 6 in a wide range from one end to the other end in the longitudinal direction of the anode 32a. It has a connected configuration. Thereby, voltage unevenness in the longitudinal direction of the anode 32a does not occur.
  • a material having high electrical resistance such as ITO or IZO.
  • the current easily flows through the auxiliary electrode 6 in the anode 32a of each light emitting element section 3, and the influence of the voltage drop can be effectively suppressed.
  • the organic light emitting layer 33 is formed inside the ends of both sides in the short direction of the anode 32a, and the organic light emitting layer 33 and the conductive paste 7 are separated from each other.
  • the cathode 32b is electrically connected to the terminal electrode 5 by attaching an arch-shaped conductive paste 7a between the terminal electrode 5 and the end of each light emitting element portion 3 adjacent thereto.
  • the strip-shaped cathode 32b is connected to the conductive paste 7a at one end in the longitudinal direction. Since the cathode 32b is formed using a material having low electric resistance such as Al, voltage unevenness hardly occurs even when the connection portion with the terminal electrode 5 is on one end side in the longitudinal direction.
  • connection structure between the cathode 32b and the terminal electrode 5 is not limited to the conductive paste 7a formed by patterning a silver paste or the like, and a conductive tape may be used.
  • the sealing member 4 only needs to be capable of sealing the one surface 2 a side on which the light emitting element portion 3 and the like of the transparent support substrate 2 are provided.
  • Specific examples thereof include, for example, a method of sealing an inert gas such as nitrogen gas or argon gas with a glass substrate or a metal substrate, a method of further providing a hygroscopic agent such as barium oxide in the inert gas, or the like. Can be mentioned.
  • the organic EL device 1 described above can be easily manufactured using, for example, a manufacturing method including the following steps (1) to (5).
  • FIGS. 8A to 8C are explanatory views showing the manufacturing process of the color conversion filter substrate.
  • the left side of the drawing is a first to third perspective view showing the manufacturing process of the color conversion filter substrate
  • the right side of the drawing shows the manufacturing process of the color conversion filter substrate.
  • FIG. 3 is a first to third cross-sectional view.
  • the color conversion filter substrate of this embodiment is created by forming one or more types of color conversion filter layers in a desired pattern on the transparent support substrate 2 having a desired light emitting area.
  • a mask for obtaining a desired pattern of the color conversion filter layer 9 is formed on the transparent support substrate 2.
  • the composition containing the fluorescence conversion dye and the resist described above is applied so as to cover the mask, thereby forming a resist coating film.
  • the resist coating film is exposed and developed through a previously formed mask to form a color conversion filter layer 9 having a desired pattern (FIG. 8A).
  • the color conversion filter layer 9 has a thickness of 5 ⁇ m or more, preferably 8 to 15 ⁇ m.
  • the gas barrier layer 8 that covers the entire surface of the color conversion filter layer 9 is formed.
  • a material for forming the organic planarization layer 8A is applied on the transparent support substrate 2 so as to cover the entire surface of the color conversion filter layer 9, and exposure and development are performed through a previously formed mask.
  • an organic flattening layer 8A for sealing the periphery of the color conversion filter layer 9 is formed (FIG. 8B).
  • a material for forming the inorganic gas barrier layer 8B is applied on the transparent support substrate 2 so as to cover the entire surface of the organic planarizing layer 8A, and exposure and development are performed through a mask formed in advance. Then, an inorganic gas barrier layer 8B that seals the periphery of the organic planarizing layer 8A is formed (FIG. 8B).
  • the terminal electrode 5 and the auxiliary electrode 6 are patterned on the gas barrier layer 8 (FIG. 8C).
  • the terminal electrode 5 and the auxiliary electrode 6 can be patterned using, for example, a printing method, a vapor deposition method (resistance heating vapor deposition method, EB vapor deposition method, sputter vapor deposition method) or the like.
  • a printing method patterning can be performed by relief printing, intaglio printing, flat plate printing, ink jet method, screen printing, or the like.
  • the vapor deposition method patterning may be performed by a mask vapor deposition method using a shadow mask, or a metal film may be formed and patterned by a photolithography method using the metal film.
  • FIG. 9 is a schematic diagram of a film forming apparatus 11 based on a roll-to-roll method.
  • FIG. 10 is a perspective view showing an organic EL base (mother base material) 15 produced by the film forming apparatus 11.
  • a long transparent base substrate 13 that is a base material of the transparent base film 31 of the light emitting element portion 3 is prepared.
  • the anode 32 a, the organic light emitting layer 33, and the cathode 32 b are laminated on one surface 13 a of the transparent base substrate 13, and the organic EL base 15 as a raw roll of the light emitting element unit 3 is produced.
  • the organic EL base 15 is manufactured while continuously transporting the long transparent base substrate 13 wound in a roll shape, and then cut according to the size of each light emitting element portion 3. It is preferable to use a roll-to-roll method.
  • the organic EL base 15 (transparent base substrate 13) has a width of about 10 mm and a length of about 10 m, for example, and becomes the size of the light emitting element unit 3 by dividing the length in the length direction, for example, every 15 cm. It is.
  • various film forming means 16 such as a vapor deposition apparatus are installed. Further, a feed roller 14A for feeding the transparent base substrate 13 is provided on one end side of the chamber 11a, and a take-up roller 14B for winding the transparent base substrate 13 is provided on the other end side.
  • the transparent base substrate 13 can be wound up in a roll shape, and is configured to move from the sending roller 14A side toward the winding roller 14B side.
  • the chamber 11a of the film forming apparatus 11 is configured to be switchable to a nitrogen atmosphere or a vacuum condition.
  • various films are sequentially formed on the one surface 13a side of the transparent base substrate 13 under predetermined film forming conditions while winding the transparent base substrate 13 delivered from the delivery roller 14A by the take-up roller 14B.
  • FIG. 11 is a diagram showing in detail the configuration of the film forming apparatus 11 based on the roll-to-roll method.
  • 12A to 12E are first to fifth explanatory views showing a method for manufacturing a light emitting element portion using a roll-to-roll method.
  • the film forming apparatus 11 includes a cleaning unit 21 and an anode film forming unit 22 (film forming unit 16) between two feeding rollers 14 ⁇ / b> A and a winding roller 14 ⁇ / b> B that wind up the transparent base substrate 13.
  • Etching unit 23 organic layer deposition unit 24 (deposition unit 16), etching unit 25, cathode deposition unit 26 (deposition unit 16), etching unit 27, protective film deposition unit 28 (deposition unit 16)
  • An etching unit 29 is provided.
  • microwave plasma dry cleaning is performed on the one surface 13 a of the transparent base substrate 13 in the cleaning unit 21.
  • an ITO film is formed on the entire surface 13 a of the transparent base substrate 13 in the anode film forming unit 22. Thereafter, in the etching part 23, the ITO film is etched to form the anode 32a in a predetermined region. At this time, for example, the pattern is formed so that the short side direction of the anode 32 a is along the width direction of the transparent base substrate 13 and the long side direction of the anode 32 a is a rectangular shape along the length direction of the transparent base substrate 13.
  • the anode 32a Since the anode 32a has a rectangular shape in which the width in the short direction coincides with the width in the short direction of the transparent base substrate 13, the anode is formed on the entire surface 13a of the transparent base substrate 13 in the patterning of the anode 32a. It can be formed by performing etching without using a mask after the film is formed. For this reason, the anode 32a can be easily manufactured.
  • the organic light emitting layer 33 is formed on the entire surface of the anode 32 a in the organic layer forming part 24, and then the organic light emitting layer 33 is patterned in the etching part 25. At this time, the organic light emitting layer 33 is patterned so as to cover the anode 32a. One end in the length direction of the organic light emitting layer 33 covers the end of the anode 32a, and the other end in the length direction exposes the end of the anode 32a. To be formed.
  • the organic light emitting layer 33 is arranged so that both ends in the short direction of the organic light emitting layer 33 are positioned inside both ends in the short direction of the anode 32a, and both ends of the anode 32a in the short direction are exposed. Layer 33 is patterned. As a result, the organic light emitting layer 33 has a three-layer laminated structure of the transparent base substrate 13, the anode 32 a, and the organic light emitting layer 33 at one end and the central portion in the length direction. At both ends in the hand direction, a two-layer structure of the transparent base substrate 13 and the anode 32a is formed.
  • the cathode 32b is formed on the entire surface of the organic light emitting layer 33 in the cathode film forming portion 26, and the cathode 32b is subsequently patterned in the etching portion 27. At this time, the cathode 32b is patterned so as to cover the organic light emitting layer 33.
  • One end of the organic light emitting layer 33 in the length direction covers the end of the cathode 32b, and the other end in the length direction exposes the end of the cathode 32b. To be formed.
  • both ends in the short direction of the cathode 32b are positioned inside both ends in the short direction of the organic light emitting layer 33 so that both ends in the short direction of the organic light emitting layer 33 are exposed.
  • the cathode 32b is patterned.
  • a four-layered structure of the transparent base substrate 13, the anode 32a, the organic light emitting layer 33, and the cathode 32b is formed at one end in the length direction and the central portion of the cathode 32b.
  • a protective film made of, for example, SiO 2 is formed so as to cover the cathode 32b, and in the subsequent etching unit 29, a protective film (not shown) is patterned.
  • the anode 32a, the organic light emitting layer 33, the cathode 32b, and the protective film are formed on the transparent base substrate 13 for each formation region R of the light emitting element portion 3, and the organic EL base 15 is obtained.
  • the manufactured organic EL base 15 is wound up by the winding roller 14B.
  • the organic EL base 15 unwound from the take-up roller 14 ⁇ / b> B is cut for each light emitting element part forming region R, and a plurality of light emitting element parts 3 are obtained. At this time, the surfaces on both sides in the short direction of the anode 32a are exposed.
  • the organic EL base 15 is divided in a dry air booth or a glove box. As described above, the light emitting element portion 3 is completed through the above-described steps.
  • FIG. 13A to 13C are diagrams for explaining a process of providing a plurality of light emitting element portions on the color conversion filter substrate 12 that have undergone the inspection process.
  • FIG. 14 is a cross-sectional view for explaining the light emitting element portion arranging step.
  • FIG. 15 is a cross-sectional view for explaining a connection process between the anode and the auxiliary electrode.
  • FIG. 16 is a side view for explaining a connection process between the cathode and the terminal electrode.
  • FIG. 17 is a cross-sectional view showing a connection structure between a cathode and a terminal electrode in one light emitting element portion.
  • FIG. 18 is a cross-sectional view for explaining the sealing step.
  • a plurality of (four in the present embodiment) light emitting element portions 3 are fixed at predetermined positions of the color conversion filter substrate 12 using a transparent thermosetting resin or the like.
  • a transparent thermosetting resin is disposed between the adjacent auxiliary electrodes 6 formed on the gas barrier layer 8 of the color conversion filter substrate 12 to form the adhesive layer 17, respectively.
  • a plurality of light emitting element portions 3 are arranged on the color conversion filter substrate 12 via the adhesive layers 17. For this reason, the plurality of light emitting element portions 3 are arranged at predetermined intervals in the arrangement direction.
  • the light emitting element portion 3 when the light emitting element portion 3 is attached between two adjacent extension portions 6a and 6a on the transparent support substrate 2, the two extension portions 6a and 6a and the transparent base film of the light emitting element portion 3 are used.
  • the light emitting element portion 3 is arranged so that both ends of the 31 in the short direction overlap each other.
  • the plurality of light emitting element portions 3 arranged on the color conversion filter substrate 12 and the auxiliary electrode 6 are electrically connected using a conductive paste 7.
  • the conductive paste 7 is provided from the surface of the extension portion 6a of the auxiliary electrode 6 through the transparent base film 31 and the anode 32a of the light emitting element portion 3 to the exposed portion of the surface of the anode 32a.
  • the anode 32a of each light emitting element part 3 and the extension parts 6a and 6a located on both sides thereof are electrically connected via the conductive pastes 7 and 7.
  • each of the cathodes 32b of the plurality of light emitting element portions 3 and the terminal electrode 5 are electrically connected through a conductive paste 7a.
  • the conductive paste 7 a partially covers the surface on one end side in the longitudinal direction of the cathode 32 b formed so as to cover one end of the organic light emitting layer 33.
  • the cathode 32 b is formed in the upper layer of the light emitting element portion 3, it can be easily electrically connected to the terminal electrode 5.
  • the sealing member 4 made of a glass substrate was fixed to one surface 2 a of the transparent support substrate 2, and the plurality of light emitting element portions 3 were sealed.
  • the sealing member 4 is fixed by a UV curable resin (not shown) provided in the peripheral portion of the transparent support substrate 2.
  • a desiccant was disposed in the sealed space defined by the transparent support substrate 2 and the sealing member 4.
  • the light emitting layer 37 of the organic light emitting layer 33 in the light emitting element section 3 has a single layer structure. For this reason, compared with the light emitting layer of the laminated structure corresponding to each color, it is hard to produce film thickness nonuniformity, and it is the organic EL device 1 without color nonuniformity.
  • light (blue to blue-green light) emitted from the light emitting element unit 3 in the organic EL device 1 according to the present embodiment passes through between the adjacent extensions 6a and 6a of the auxiliary electrode 6, and the color conversion filter substrate 12 is used. Incident to.
  • the light (blue to blue-green light) incident on the color conversion filter layer 9 is color-converted in the color conversion filter layer 9 and emitted as white light (light having a wavelength distribution different from that of the incident light). Become.
  • the white light emitted from the color conversion filter layer 9 is emitted approximately isotropically, in addition to the light emitted from the light emission surface (surface opposite to the one surface 2a) side of the transparent support substrate 2, There is light emitted toward the side opposite to the transparent support substrate 2, that is, toward the light emitting element portion 3 side. Most of the light emitted toward the light emitting element unit 3 is reflected by the cathode 32b of the light emitting element unit 3, the terminal electrode 5 and the auxiliary electrode 6 provided on the transparent support substrate 2, and the transparent support substrate. 2 is emitted from the light exit surface side.
  • the light that is not reflected by any of the cathode 32b, the terminal electrode 5, and the auxiliary electrode 6 is part of the organic light emitting layer 33 (extension portion 6a and cathode 32b). May leak through the gap.
  • the width W1 in the short direction of the cathode 32b of the light emitting element portion 3 and the distance L1 between the adjacent extension portions 6a of the auxiliary electrode 6 are set to be substantially equal dimensions, and the position of the end portion of the cathode 32b. And the position of the edge part of the extension part 6a is made to correspond in the stacking direction. Furthermore, the plurality of light emitting element portions 3 are arranged so that the respective end portions on both sides in the short direction of each transparent base film 31 are overlapped with a part of the auxiliary electrode 6 located on both sides of each light emitting element portion 3. It has a configuration.
  • the interval between the adjacent extension portions 6a is wider than the width in the short direction of the cathode 32b, a part of the light emitted from the color conversion filter layer 9 is formed between the extension portion 6a and the cathode 32b. There is a risk of leaking through the gap. Further, in the case where the interval between the adjacent extension portions 6a is narrower than the width in the short direction of the cathode 32b, the light emission component from the light emitting element portion 3 that does not reach the color conversion filter layer 9 increases. May decrease. For this reason, it becomes the organic EL device 1 which suppressed light extraction loss by setting it as the structure of this embodiment mentioned above.
  • the distance between the anode 32a and the cathode 32b is an optical distance that constitutes a microresonator with respect to the wavelength emitted by the light emitting layer 37. For this reason, light with high directivity is radiated from the light emitting element part 3 toward the color conversion filter layer 9, so that the loss of light reaching the color conversion filter layer 9 from the light emitting element part 3 is low.
  • the plurality of light emitting element portions 3 are fixed to the surface of the gas barrier layer 8 through a transparent adhesive layer 17 disposed between the adjacent extension portions 6a. Thereby, the adhesiveness of the light emitting element part 3 and the gas barrier layer 8 can be improved.
  • the gas barrier layer 8 in the present embodiment is composed of a laminate of the organic planarizing layer 8A and the inorganic gas barrier layer 8B. Thereby, the flatness on the color conversion filter layer 9 and the gas barrier property with respect to the color conversion filter layer 9 are improved.
  • the color conversion filter layer 9 in the present embodiment has a single or a plurality of types of color conversion dye layers formed by forming a resin film containing a fluorescent dye arranged on the transparent support substrate 2 in a desired pattern. It is configured. For this reason, it is possible to emit light of a desired color tone by adjusting the concentration of the fluorescent dye or the thickness of the color conversion dye layer of each color.
  • the anode 32a of the light emitting element portion 3 and the extension portion 6a of the auxiliary electrode 6 cover the side surfaces on both sides in the short direction of the transparent base film 31, and are provided so as to partially run on the surface of the anode 32a.
  • the conductive paste 7 is electrically connected. Thereby, the reliability of the electrical connection between the anode 32a and the extension 6a is improved.
  • the organic EL device 1 in the present embodiment has a configuration in which a plurality of light emitting element portions 3 are sealed in a space defined by the transparent support substrate 2 and the sealing member 4.
  • the organic EL device 1 in the present embodiment manufactures a plurality of light emitting element portions 3 using a roll-to-roll method. Since a film forming apparatus having a small film forming chamber can be used as compared with the case where a plurality of laminated films (organic light emitting layers, etc.) constituting the light emitting element portion are directly formed on the transparent support substrate 2 side, The film thickness unevenness of the laminated film hardly occurs. For this reason, the light emitting element part 3 with little color unevenness in a light emission surface can be manufactured.
  • FIG. 19 is a cross-sectional view illustrating a schematic configuration of the organic EL device according to the second embodiment.
  • the organic EL device in the present embodiment is different from the above-described embodiment in that a color conversion filter layer is provided on the light emitting element portion side.
  • the organic EL device 40 includes an electrode side substrate 41, a plurality of light emitting element portions 43 provided on the electrode side substrate 41, and a sealing member 4 that seals the plurality of light emitting element portions 43. And is mainly configured.
  • the electrode side substrate 41 has the transparent support substrate 2, the auxiliary electrode 6, and a terminal electrode (not shown).
  • the auxiliary electrode 6 and the terminal electrode (not shown) are directly formed on the one surface 2 a of the transparent support substrate 2.
  • the light-emitting element unit 43 includes a strip-shaped transparent base film (first base material) 31, a strip-shaped color conversion filter layer 9, a strip-shaped gas barrier layer 8, a strip-shaped anode 32a having optical transparency, and a strip-shaped organic film.
  • the light emitting layer 33 and a strip-like cathode 32b are provided.
  • the color conversion filter layer 9 is formed so as to cover the entire surface of the transparent base film 31.
  • the gas barrier layer 8 covers the entire surface of the color conversion filter layer 9 (the surface opposite to the transparent base film 31) and is laminated on the color conversion filter layer 9.
  • the anode 32a is formed in a predetermined region on the surface of the gas barrier layer 8 (surface opposite to the color conversion filter layer 9 side). On the anode 32a, the organic light emitting layer 33 and the cathode 32b are laminated
  • the plurality of light emitting element portions 43 each having the color conversion filter layer 9 are arranged at predetermined positions on the electrode side substrate 41.
  • the anode 32 a of each light emitting element portion 43 and the auxiliary electrode 6 provided on the electrode side substrate 41 are electrically connected via the conductive paste 7.
  • the cathode 32b of each light emitting element part 43 and the terminal electrode 5 are electrically connected through the conductive paste 7a.
  • the sealing member 4 is bonded to one surface of the electrode side substrate 41 (the surface on which the plurality of light emitting element portions 43 each having the color conversion filter layer 9 are disposed). A plurality of light emitting element portions 43 are sealed in a space defined by the stop member 4.
  • the light emitting element portion 43 in the present embodiment is also obtained by dividing the organic EL base produced by the roll-to-roll method, and is produced independently from the electrode side substrate 42. is there.
  • the color conversion filter layer 9 is provided on the transparent base film 31 of the light emitting element portion 43, the color conversion filter layer is formed on the transparent support substrate 2 having a larger area than the transparent base film 31.
  • the color conversion filter layer 9 can be formed with a uniform film thickness on the transparent base film 31 more easily. Thereby, the organic EL device 40 with little color unevenness is obtained.
  • the light emitting element portions 43 are arranged in a matrix in the vertical and horizontal directions.
  • the color conversion filter layer 9 and wirings connected to the anode 32a and the cathode 32b of the light emitting element portion 43 are formed in a grid pattern.
  • an interlayer insulating film is formed at the intersection of the wiring.
  • the connection between the anode and the anode wiring (first wiring 51) is made at one end along the long axis direction of the light emitting element.
  • the conductive paste 7 or the conductive tape is used to connect to the part.
  • the connection between the cathode and the wiring for the cathode (second wiring 52) is also performed using the conductive paste 7 or the conductive tape in the same manner as the connection between the cathode and the terminal electrode in the first embodiment.
  • One of the wirings connected to the anode and the cathode of the light emitting element may not be formed on the substrate on which the light emitting element is disposed.
  • it may be a conductive wire (conductive wire) connected to the anode or cathode terminal of the light emitting element.
  • a switching element 53 may be provided for each wiring for the anode and the cathode, and an arbitrary light emitting element may be selected and lit by scanning the switch operation.
  • This coating solution is applied onto a transparent support substrate on which the line pattern of the green conversion dye layer has already been formed using a spin coat method, and patterning is performed by a photolithographic method to form a red conversion dye layer.
  • the line pattern has a line width of 0.1 mm, a pitch of 0.33 mm, and a film thickness of 10 ⁇ m. In this way, a color conversion filter layer having a green conversion dye layer and a red conversion dye layer is obtained.
  • an organic planarization layer was first formed as a gas barrier layer on the color conversion filter layer.
  • the organic flattening layer is formed with a film thickness of 8 ⁇ m (film thickness from the top of the color conversion filter layer) by applying UV curable resin (epoxy-modified acrylate) by spin coating and irradiating with a high-pressure mercury lamp. did. At this time, there was no deformation in the pattern shape of each green conversion dye layer and red conversion dye layer in the color conversion filter layer, and the surface of the organic flattening layer was flat.
  • an inorganic gas barrier layer as a passivation film is formed on the surface of the organic planarization layer.
  • a SiOx film having a thickness of 300 nm was formed by DC sputtering at room temperature.
  • a gas barrier layer is composed of a laminate of the inorganic gas barrier layer and the organic planarization layer. Si was used as the sputtering target, and a mixed gas of Ar and oxygen was used as the sputtering gas.
  • Terminal electrode and auxiliary electrode formation process Next, terminal electrodes and auxiliary electrodes were patterned on the gas barrier layer by a known screen printing method using a conductive paste containing silver. After patterning, in order to cure the conductive paste, a drying treatment was performed by heating in an atmosphere of 120 ° C. for 15 minutes. In this way, the terminal electrode and the auxiliary electrode are formed.
  • an anode made of ITO indium oxide-tin oxide
  • a transparent base substrate made of a strip-like PET film wound into a roll having a length of 10 m and a width of 20 mm.
  • ultrasonic cleaning was performed for 10 minutes with respect to the produced transparent base substrate with an anode using acetone or IPA.
  • the transparent base substrate with an anode was set in a film forming apparatus based on a roll-to-roll method, and an organic light emitting layer and a cathode were formed under predetermined conditions. Specifically, the deposition rate of each film was controlled while the transparent base substrate with an anode was transferred at a constant speed of 1 m / min to form a predetermined film thickness.
  • a hole injection layer having a thickness of 100 nm was formed by resistance heating vapor deposition using 1,1-bis-di-4-tolylamino-phenyl-cyclohexane (TAPC) as a hole injection material.
  • TAPC 1,1-bis-di-4-tolylamino-phenyl-cyclohexane
  • N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine is used as the hole transport material. Then, a hole transport layer having a film thickness of 40 nm was formed by resistance heating vapor deposition.
  • This blue light-emitting layer comprises 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis (4 ′, 6′-difluorophenylpolydinato) tetrakis (1-pyrazolyl) borate iridium (III) (FIr 6 ) (blue phosphorescent dopant) was formed by co-evaporation.
  • a hole blocking layer (thickness: 10 nm) was formed on the light emitting layer using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
  • an electron transport layer (thickness: 30 nm) was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq3).
  • an electron injection layer (thickness: 0.5 nm) was formed on the electron transport layer using lithium fluoride (LiF).
  • the produced organic EL base was divided into predetermined regions (light emitting element portion forming regions), and six light emitting element portions of 15 cm ⁇ 20 mm were produced.
  • the prepared six light emitting element portions were attached to predetermined positions of the transparent support substrate 2 on which the color conversion filter layer, the gas barrier layer, the terminal electrode, and the auxiliary electrode were formed.
  • This coating solution is applied onto a transparent support substrate on which the line pattern of the green conversion dye layer has already been formed using a spin coat method, and patterning is performed by a photolithographic method to form a red conversion dye layer.
  • a color conversion filter layer is obtained by forming a line pattern having a line width of 0.1 mm, a pitch of 0.33 mm, and a film thickness of 10 ⁇ m.
  • the gas barrier layer, terminal electrode, and auxiliary electrode are formed in the same manner as in Example 1.
  • a transparent base substrate with an anode is prepared, and after cleaning, the transparent base substrate with an anode is set in a film forming apparatus based on a roll-to-roll method.
  • the organic light emitting layer and the cathode were formed to have a predetermined film thickness by controlling the deposition rate of each film while transferring the transparent base substrate with the anode at a constant speed of 1 m / min.
  • TAPC 1,1-Bis-di-4-tolylamino-phenyl-cyclohexane
  • N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine is used as the hole transport material. Then, a hole transport layer having a film thickness of 40 nm was formed by resistance heating vapor deposition.
  • This blue-green light-emitting layer consists of 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium (III) (FIrpic) (blue-green phosphorescent dopant) was formed by co-evaporation.
  • UH-2 1,4-bis-triphenylsilyl-benzene
  • FIrpic picolinate iridium
  • a hole blocking layer (thickness: 10 nm) was formed on the light emitting layer using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
  • an electron transport layer (thickness: 30 nm) was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq 3 ).
  • an electron injection layer (thickness: 0.5 nm) was formed on the electron transport layer using lithium fluoride (LiF).
  • the produced organic EL base was divided into predetermined regions (light emitting element portion forming regions) to produce six light emitting element portions of 15 cm ⁇ 20 mm. Subsequent arrangement, connection, and sealing steps of the light emitting element portion were performed in the same manner as in Example 1.
  • terminal electrodes and auxiliary electrodes were patterned by a known screen printing method using a conductive paste containing silver. After patterning, in order to cure the conductive paste, a drying treatment was performed by heating in an atmosphere of 120 ° C. for 15 minutes. In this way, the terminal electrode and the auxiliary electrode are formed.
  • a color conversion layer, a passivation film, an anode, an organic light emitting layer, and a cathode were sequentially formed on one surface of the transparent base substrate.
  • a color conversion film made of coumarin 6 and DCM-2 was formed by vapor deposition on the surface of a transparent base substrate made of a strip-like PET film wound up in a roll shape having a length of 10 m and a width of 20 mm. .
  • the deposition rate of coumarin 6 is 0.3 nm / s
  • the deposition rate of DCM-2 is 0.005 nm / s
  • a color conversion film having a molar ratio of coumarin 6 and DCM-2 of 49: 1 is formed.
  • a film thickness of 200 nm was formed.
  • an inorganic gas barrier layer is formed as a passivation film.
  • a SiOx film having a thickness of 300 nm was formed by DC sputtering at room temperature.
  • a gas barrier layer is composed of a laminate of the inorganic gas barrier layer and the organic planarization layer. Si was used as the sputtering target, and a mixed gas of Ar and oxygen was used as the sputtering gas.
  • anode made of ITO indium oxide-tin oxide
  • an organic EL base having a plurality of light-emitting element part formation regions was manufactured in the same process as in Example 2.
  • the produced organic EL base was divided into predetermined regions (light emitting element portion forming regions), and six light emitting element portions of 15 cm ⁇ 20 mm were produced. Subsequent arrangement, connection, and sealing steps of the light emitting element portion were performed in the same manner as in Example 1.
  • the light emitting element part was singulated and sealed.
  • An organic EL device similar to that of Example 1 was manufactured, except that the gap between the auxiliary electrodes was 16 mm, and the end portions in the long axis direction of the light emitting element portion were overlapped by 2 mm.
  • FIG. 22A is a plan view illustrating a display portion of a dot matrix display device that is one embodiment of the present invention
  • FIG. 22B is a plan view illustrating a display portion of a segment display device that is one embodiment of the present invention. It is.
  • the organic EL device according to the third embodiment can be applied as a display device to a dot matrix type display device as shown in FIG. 22A, for example.
  • the light emitting element portion is formed so that the light emitting region is square.
  • the shape of the light emitting region does not need to be square as in this example, and may be circular.
  • the organic EL device according to the third embodiment can be applied to a segment type display device as shown in FIG. 22B, for example.
  • FIG. 22B shows only the case of 7-segment display, a 16-segment display element can be similarly formed.
  • a display device can be used as a display device for digital signage for displaying character information and video in a display area having a size of about a meter square or larger, or an illumination device capable of displaying images and characters. As an electronic bulletin board outdoors, as shown in FIG.
  • the present invention can be applied to a display unit 103 in an electronic bulletin board connected to a solar battery 101 and an information processing apparatus 102 via a network. Further, as shown in FIG. 24, the present invention can be applied to a lighting device having a light emitting portion 1401 in the shape of a window capable of displaying images and characters. With one embodiment of the present invention, such a system can be manufactured at a lower cost than in the past.
  • FIG. 20A is a perspective view showing a ceiling light which is an embodiment of the illumination device of the present invention
  • FIG. 20B is a perspective view showing an illumination stand which is an embodiment of the illumination device of the present invention.
  • the organic EL device according to each of the above embodiments can be applied to a ceiling light (illumination device) 1400 as an illumination device, for example, as shown in FIG. 20A.
  • a ceiling light 1400 shown in FIG. 20A includes a light emitting unit 1401, a suspended line 1402, a power cord 1403, and the like.
  • the organic EL device of each said embodiment can be applied suitably as the light emission part 1401.
  • FIG. 20A is a perspective view showing a ceiling light which is an embodiment of the illumination device of the present invention
  • FIG. 20B is a perspective view showing an illumination stand which is an embodiment of the illumination device of the present invention.
  • the organic EL device according to each of the above embodiments can be applied to a ceiling light (illumination device) 1400 as an illumination device,
  • the organic EL device according to each of the above embodiments By applying the organic EL device according to each of the above embodiments to the light emitting unit 1401 of the ceiling light 1400, it is possible to obtain illumination light of a free color tone with low power consumption, and to realize a lighting fixture with high light performance. Can do. In addition, it is possible to realize a lighting fixture capable of emitting surface light with high color purity with uniform illuminance.
  • the organic EL device according to each of the above embodiments can be applied to a lighting stand (lighting device) 1500 as a lighting device, for example, as shown in FIG. 20B.
  • An illumination stand 1500 illustrated in FIG. 20B includes a light emitting unit 1501, a stand 1502, a main switch 1503, a power cord 1504, and the like.
  • the organic EL device of each of the above embodiments can be suitably applied as the light emitting unit 1501.
  • By applying the organic EL device according to each of the above embodiments to the light emitting unit 1501 of the lighting stand 1500 it is possible to obtain illumination light of a free color tone with low power consumption, and to realize a lighting fixture with high light performance. Can do.
  • Some embodiments of the present invention can be used for an organic light-emitting element having no color unevenness that can be manufactured at low cost, a method for manufacturing the organic light-emitting element, a lighting device, an organic light-emitting display element, and the like.

Abstract

According to one embodiment of the present invention, an organic EL device (1) is provided with: light emitting element sections (3), each of which has light transmissive anode (32a), organic light emitting layer (33), and cathode (32b), which are provided on a transparent base film (31); a transparent supporting substrate (2) having the light emitting element sections (3) disposed thereon; a plurality of auxiliary electrodes (6), which are formed by being spaced apart from each other on the transparent supporting substrate (2), and each of which is electrically connected to the anode (32a) of each of the light emitting element sections (3); a terminal electrode, which is formed on the transparent supporting substrate (2), and which is electrically connected to the cathode (32b) of each of the light emitting element sections (3); and a color conversion filter layer (9), which is disposed on the transparent base film (31) or the transparent supporting substrate (2), and which outputs light by converting the color of light emitted from the light emitting element sections (3).

Description

有機発光素子、有機発光素子の製造方法、照明装置、および、有機発光表示素子ORGANIC LIGHT EMITTING ELEMENT, METHOD FOR PRODUCING ORGANIC LIGHT EMITTING ELEMENT, LIGHTING DEVICE, AND ORGANIC LIGHT EMITTING DISPLAY ELEMENT
 本発明は、有機発光素子、有機発光素子の製造方法、照明装置、および、有機発光表示素子に関するものである。
 本願は、2013年11月20日に、日本に出願された特願2013-240375号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an organic light emitting device, a method for manufacturing the organic light emitting device, a lighting device, and an organic light emitting display device.
This application claims priority based on Japanese Patent Application No. 2013-240375 filed in Japan on November 20, 2013, the contents of which are incorporated herein by reference.
 近年、有機材料を用いたこれらの電子デバイスの研究が盛んに行われている。これらの電子デバイス(有機電子デバイス)は、フレキシブルで大面積の基板上への作り込みが可能である点や、低温プロセス、低コストの製造が可能である点等の、従来の無機材料からなる電子デバイスでは実現困難な利点を活かし、例えばフレキシブルディスプレイ等への実用化が期待されている。 In recent years, research on these electronic devices using organic materials has been actively conducted. These electronic devices (organic electronic devices) are made of conventional inorganic materials such as being flexible and capable of being built on a large-area substrate, low-temperature processes, and low-cost manufacturing. Utilizing advantages that are difficult to realize with electronic devices, it is expected to be put into practical use, for example, for flexible displays.
 有機電子デバイスの例としては、有機電界発光(以下、「有機EL」という)デバイスや有機太陽電池、有機トランジスタ(有機FET)等が挙げられる。有機ELデバイスは、発光材料を含む有機層を一対の電極で挟んだ構成の有機EL素子を備えている。有機EL素子は、低電圧駆動、高輝度及び自発光等の特性を有するため薄型化及び軽量化が可能である。有機ELデバイスは、ディスプレイ以外にも、電子写真複写機、プリンター等の光源、照明装置への適用が可能である。例えば、有機EL照明装置では、面発光であり薄型化が可能であること、調光の容易性等、多くのメリットがある。また、蛍光灯では水銀を使用するため環境への負荷の問題があるが、有機EL照明装置によればかかる問題は生じない。 Examples of organic electronic devices include organic electroluminescence (hereinafter referred to as “organic EL”) devices, organic solar cells, and organic transistors (organic FETs). The organic EL device includes an organic EL element having a configuration in which an organic layer containing a light emitting material is sandwiched between a pair of electrodes. Since the organic EL element has characteristics such as low voltage driving, high luminance, and self-luminescence, the organic EL element can be reduced in thickness and weight. In addition to the display, the organic EL device can be applied to a light source such as an electrophotographic copying machine and a printer, and a lighting device. For example, an organic EL lighting device has many merits such as surface light emission, which can be thinned, and easy dimming. Further, since fluorescent lamps use mercury, there is a problem of environmental load, but such problems do not occur according to the organic EL lighting device.
 面内で連続した有機EL膜により大面積のOLEDデバイスを形成する場合、有機EL膜内に、ダスト等が原因となり、陽極/陰極間で電気的に短絡した箇所が1か所でも存在すれば、有機EL層全面が非点灯になるという課題がある。また、陽極として用いられるITO、IZO等の透明電極の抵抗率は、Al等の金属の抵抗率に比べて4桁程度高い。
 これにより、電流が供給される端子部との接続部分からの距離に伴う電圧降下によって、輝度の低下があり、輝度むらが顕著になるという課題がある。そのため、通例、一枚の基板上で多数の個別のOLEDデバイスを結合するか、或いは各基板に複数の個別OLEDデバイスを有する基板の組合せを結合する。OLEDデバイスの群は、通例、例えばディスプレイ、サイネージ又は照明用途などに使用し得るOLEDデバイスのアレイを生じるように直列及び/又は並列に結合される。これらの大面積用途では、非発光領域を最小限にしながら、アレイに大きな発光面積を生じるのが望ましい。
When an OLED device having a large area is formed by a continuous organic EL film in a plane, if there is at least one portion in the organic EL film that is electrically short-circuited between the anode and the cathode due to dust or the like. There is a problem that the entire surface of the organic EL layer is not lit. Moreover, the resistivity of transparent electrodes such as ITO and IZO used as the anode is about four orders of magnitude higher than the resistivity of metals such as Al.
As a result, there is a problem in that luminance decreases due to a voltage drop caused by a distance from a connection portion with a terminal portion to which current is supplied, and luminance unevenness becomes remarkable. Thus, typically, a number of individual OLED devices are combined on a single substrate, or a combination of substrates having a plurality of individual OLED devices on each substrate. Groups of OLED devices are typically coupled in series and / or in parallel to yield an array of OLED devices that can be used, for example, in display, signage or lighting applications. In these large area applications, it is desirable to produce a large light emitting area in the array while minimizing non-light emitting areas.
 例えば、特許文献1には、大面積の照明を高歩留まりで製造するため、基板上の有機発光領域を小さく分割し、それぞれの有機発光領域を電気的に直列に接続した構造、また、そのような構造を製造する方法が開示されている。 For example, Patent Document 1 discloses a structure in which an organic light emitting region on a substrate is divided into small parts and each organic light emitting region is electrically connected in series in order to manufacture a large area illumination with a high yield. A method for manufacturing a simple structure is disclosed.
 一方、有機EL素子を安価に量産する方法としては、ロール・トゥ・ロール方式を用いて樹脂フィルム等のフレキシブルな基板上に電極や有機層等を成層する生産技術が知られている(例えば、特許文献2)。 On the other hand, as a method for mass-producing organic EL elements at low cost, a production technique is known in which an electrode, an organic layer, or the like is formed on a flexible substrate such as a resin film using a roll-to-roll method (for example, Patent Document 2).
特表2010-510626号公報Special table 2010-510626 gazette 国際公開第01/005194号International Publication No. 01/005194
 しかしながら、特許文献1に記載されている小さく分割された有機発光領域は、蒸着あるいは塗布により基板上へ直接形成されることが多い。このため、基板処理が可能な大型の真空蒸着装置あるいは不活性ガス雰囲気内の塗布装置が必要であり、装置コストが高い。また、複数種の発光色の発光を得るために複数の発光層が積層されているが、各層の膜厚分布が異なる可能性があり、これが輝度むらや色むらの原因になってしまう。
 また、特許文献2に記載のロール・トゥ・ロール方式を用いて有機EL素子を製造する場合、基板の上に電極や有機層等を所定の形状にパターニングする必要があるため、製造コストを抑えるのは容易ではない。
However, the organic light emitting region divided into small parts described in Patent Document 1 is often directly formed on the substrate by vapor deposition or coating. For this reason, a large-sized vacuum vapor deposition apparatus capable of substrate processing or a coating apparatus in an inert gas atmosphere is required, and the apparatus cost is high. In addition, a plurality of light emitting layers are stacked in order to obtain light emission of a plurality of types of light emission colors, but there is a possibility that the film thickness distribution of each layer may be different, which causes uneven brightness and uneven colors.
Moreover, when manufacturing an organic EL element using the roll-to-roll method described in Patent Document 2, it is necessary to pattern an electrode, an organic layer, and the like on a substrate in a predetermined shape, thereby reducing manufacturing costs. It's not easy.
 本発明のいくつかの態様は、上記従来技術の問題点に鑑み成されたものであって、低コストで製造が可能な色むらのない有機発光素子、有機発光素子の製造方法、照明装置、および、有機発光表示素子を提供することを目的の一つとしている。 Some aspects of the present invention have been made in view of the above-described problems of the prior art, and can be manufactured at low cost, without uneven color, a method for manufacturing an organic light-emitting element, a lighting device, Another object of the present invention is to provide an organic light emitting display element.
 本発明の一つの態様の有機発光素子は、透明基材からなる第1基板上に、光透過性を有する第1電極、有機発光層、第2電極を備えた発光素子部と、前記発光素子部が複数配置された前記透明基材からなる第2基板と、前記第2基板上に互いに間隔をおいて形成され、前記複数の発光素子部における前記第1電極と電気的に接続される複数の補助電極と、前記第2基板上に形成され、前記複数の発光素子部における前記第2電極と電気的に接続される端子電極と、前記第1基板および前記第2基板のいずれか一方に設けられ、前記発光素子部からの光を色変換して光を放出する色変換層と、を備えている。 An organic light-emitting device according to one aspect of the present invention includes a light-emitting device unit including a light-transmitting first electrode, an organic light-emitting layer, and a second electrode on a first substrate made of a transparent base material, and the light-emitting device. A plurality of transparent substrates having a plurality of portions, and a plurality of portions formed on the second substrate at intervals from each other and electrically connected to the first electrodes in the plurality of light emitting element portions. An auxiliary electrode, a terminal electrode formed on the second substrate and electrically connected to the second electrode in the plurality of light emitting element portions, and either the first substrate or the second substrate And a color conversion layer that color-converts light from the light emitting element portion and emits light.
 本発明の一つの態様の有機発光素子において、前記補助電極と前記発光素子部の前記第1基板とが一部重畳している構成としてもよい。 In the organic light emitting device according to one aspect of the present invention, the auxiliary electrode and the first substrate of the light emitting device portion may partially overlap each other.
 本発明の一つの態様の有機発光素子において、前記発光素子部は、隣り合う前記補助電極の間に設けられた接着層を介して前記第2基板上に貼り合わされている構成としてもよい。 In the organic light emitting device according to one aspect of the present invention, the light emitting device portion may be bonded to the second substrate through an adhesive layer provided between the adjacent auxiliary electrodes.
 本発明の一つの態様の有機発光素子において、前記色変換層は、前記有機発光層を覆う大きさで前記第1基板の一面に形成されている構成としてもよい。 In the organic light emitting device of one aspect of the present invention, the color conversion layer may be formed on one surface of the first substrate so as to cover the organic light emitting layer.
 本発明の一つの態様の有機発光素子において、前記色変換層は、前記複数の発光素子部を覆う大きさで前記第2基板の一面に形成されている構成としてもよい。 In the organic light emitting device of one aspect of the present invention, the color conversion layer may be formed on one surface of the second substrate so as to cover the plurality of light emitting device portions.
 本発明の一つの態様の有機発光素子において、前記第2基板上に、前記色変換層を封止する透明なガスバリア層が形成されている構成としてもよい。 In the organic light emitting device according to one aspect of the present invention, a transparent gas barrier layer for sealing the color conversion layer may be formed on the second substrate.
 本発明の一つの態様の有機発光素子の製造方法は、複数の発光素子部形成領域を有する透明基材および第2基板のいずれか一方に色変換層を形成する工程と、前記第2基板上に複数の補助電極を形成する工程と、前記複数の発光素子部形成領域のそれぞれに、光透過性を有する第1電極、有機発光層、第2電極を形成してマザー基材を作製する工程と、前記マザー基材を前記発光素子部形成領域ごとに個片化することで、前記透明基材から構成される第1基板上に、前記第1電極、前記有機発光層、前記第2電極を備えた複数の発光素子部を作製する工程と、前記第2基板上に前記複数の発光素子部を配置する工程と、を有する有機発光素子の製造方法。 According to one aspect of the present invention, there is provided a method of manufacturing an organic light emitting device, comprising: forming a color conversion layer on one of a transparent base material having a plurality of light emitting device portion forming regions and a second substrate; Forming a plurality of auxiliary electrodes, and forming a mother substrate by forming a light-transmitting first electrode, organic light-emitting layer, and second electrode in each of the plurality of light-emitting element portion forming regions. And separating the mother base material into the light emitting element portion forming regions, so that the first electrode, the organic light emitting layer, and the second electrode are formed on the first substrate composed of the transparent base material. The manufacturing method of the organic light emitting element which has the process of producing several light emitting element part provided with, and the process of arrange | positioning these light emitting element parts on a said 2nd board | substrate.
 本発明の一つの態様の有機発光素子の製造方法において、前記複数の発光素子部を前記第2基板上に配置する際、前記補助電極と前記発光素子部の前記第1基板とを一部重畳させる製造方法としてもよい。 In the method for manufacturing an organic light emitting device according to one aspect of the present invention, when the plurality of light emitting device portions are arranged on the second substrate, the auxiliary electrode and the first substrate of the light emitting device portion are partially overlapped. It is good also as a manufacturing method to make it.
 本発明の一つの態様の有機発光素子の製造方法において、前記透明基材の一面に色変換層を形成する工程を有する製造方法としてもよい。 In the method for manufacturing an organic light-emitting device according to one aspect of the present invention, a manufacturing method including a step of forming a color conversion layer on one surface of the transparent substrate may be employed.
 本発明の一つの態様の有機発光素子の製造方法において、前記複数の補助電極を形成する前に、前記第2基板の一面に色変換層を形成する工程を有する製造方法としてもよい。 In the method for manufacturing an organic light emitting device according to one aspect of the present invention, the method may include a step of forming a color conversion layer on one surface of the second substrate before forming the plurality of auxiliary electrodes.
 本発明の一つの態様の有機発光素子の製造方法において、前記第2基板の前記一面に、前記色変換層を封止する透明なガスバリア層を形成する工程を有する製造方法としてもよい。 In the method for manufacturing an organic light-emitting element according to one aspect of the present invention, the method may include a step of forming a transparent gas barrier layer for sealing the color conversion layer on the one surface of the second substrate.
 本発明の一つの態様の照明装置は、透明基材からなる第1基板上に、光透過性を有する第1電極、有機発光層、第2電極を備えた発光素子部と、前記発光素子部が複数配置された前記透明基材からなる第2基板と、前記第2基板上に互いに間隔をおいて形成され、前記複数の発光素子部における前記第1電極と電気的に接続される複数の補助電極と、前記第2基板上に形成され、前記複数の発光素子部における前記第2電極と電気的に接続される端子電極と、前記第1基板および前記第2基板のいずれか一方に設けられ、前記発光素子部からの光を色変換して光を放出する色変換層と、を備えている有機発光素子を備えている。 A lighting device according to an aspect of the present invention includes a light-emitting element unit including a light-transmitting first electrode, an organic light-emitting layer, and a second electrode on a first substrate made of a transparent base material, and the light-emitting element unit. Are arranged on the second substrate at a distance from each other and electrically connected to the first electrode in the plurality of light emitting element portions. An auxiliary electrode, a terminal electrode formed on the second substrate and electrically connected to the second electrode in the plurality of light emitting element portions, and provided on one of the first substrate and the second substrate And an organic light-emitting element including a color conversion layer that color-converts light from the light-emitting element portion and emits light.
 本発明の一つの態様の有機発光表示素子は、透明基材からなる第1基板上に、光透過性を有する第1電極、有機発光層、第2電極を備えた発光素子部と、前記発光素子部が複数配置された前記透明基材からなる第2基板と、前記第2基板上に互いに間隔をおいて形成され、前記複数の発光素子部における前記第1電極と電気的に接続される複数の第1の配線と、前記第2基板上に前記第1の配線と電気的に絶縁される絶縁層を間に挟んで、前記第1の配線と格子状をなすように互いに間隔をおいて形成され、前記複数の発光素子部における前記第2電極と電気的に接続される複数の第2の配線と、前記第1基板および前記第2基板のいずれか一方に設けられ、前記発光素子部からの光を色変換して光を放出する色変換層と、を備えている。 An organic light-emitting display element according to one aspect of the present invention includes a light-emitting element unit including a light-transmitting first electrode, an organic light-emitting layer, and a second electrode on a first substrate made of a transparent base material, and the light emission. A second substrate made of the transparent base material in which a plurality of element portions are arranged, and formed on the second substrate at a distance from each other, and electrically connected to the first electrode in the plurality of light emitting element portions. A plurality of first wirings and an insulating layer electrically insulated from the first wirings are sandwiched between the first wirings and spaced apart from each other so as to form a grid with the first wirings. A plurality of second wirings electrically connected to the second electrodes in the plurality of light emitting element portions, and provided on any one of the first substrate and the second substrate, and the light emitting element A color conversion layer that color-converts light from the unit and emits light.
 本発明の一つの態様の有機発光表示素子において、前記第1の配線と第2の配線にはスイッチング素子が設けられ、第1の配線および第2の配線への通電が制御されてもよい。 In the organic light emitting display element according to one aspect of the present invention, a switching element may be provided in the first wiring and the second wiring, and energization to the first wiring and the second wiring may be controlled.
 本発明のいくつかの態様によれば、低コストで製造が可能な色むらのない有機発光素子、有機発光素子の製造方法、照明装置、および、有機発光表示素子を提供することができる。 According to some embodiments of the present invention, it is possible to provide an organic light-emitting element having no color unevenness, a method for manufacturing the organic light-emitting element, a lighting device, and an organic light-emitting display element that can be manufactured at low cost.
本発明の第1実施形態である有機ELデバイスを示す模式図。The schematic diagram which shows the organic EL device which is 1st Embodiment of this invention. 図1におけるI-I断面の一部を表した模式図。The schematic diagram showing a part of II section in FIG. 色変換フィルタ層の概略構成を示す第1の部分断面図。1 is a first partial cross-sectional view showing a schematic configuration of a color conversion filter layer. 色変換フィルタ層の概略構成を示す第2の部分断面図。The 2nd partial sectional view showing the schematic structure of a color conversion filter layer. 端子電極及び補助電極を備えた透明支持基板の一面側を示す平面図。The top view which shows the one surface side of the transparent support substrate provided with the terminal electrode and the auxiliary electrode. 発光素子部の概略構成を示す断面図。Sectional drawing which shows schematic structure of a light emitting element part. 複数の発光素子部を備えた透明支持基板の一面側を示す平面図。The top view which shows the one surface side of the transparent support substrate provided with the several light emitting element part. 発光素子部の陽極と補助電極との接続状態、および発光素子部の陰極と端子電極との接続状態を示す斜視図。The perspective view which shows the connection state of the anode of a light emitting element part, and an auxiliary electrode, and the connection state of the cathode of a light emitting element part, and a terminal electrode. 図中の左側は、色変換フィルタ基板の製造工程を示す第1の斜視図であり、図中の右側は、色変換フィルタ基板の製造工程を示す第1の断面図。The left side in the drawing is a first perspective view showing the manufacturing process of the color conversion filter substrate, and the right side in the drawing is a first cross-sectional view showing the manufacturing process of the color conversion filter substrate. 図中の左側は、色変換フィルタ基板の製造工程を示す第2の斜視図であり、図中の右側は、色変換フィルタ基板の製造工程を示す第2の断面図。The left side in the drawing is a second perspective view showing the manufacturing process of the color conversion filter substrate, and the right side in the drawing is a second cross-sectional view showing the manufacturing process of the color conversion filter substrate. 図中の左側は、色変換フィルタ基板の製造工程を示す第3の斜視図であり、図中の右側は、色変換フィルタ基板の製造工程を示す第3の断面図。The left side in the drawing is a third perspective view showing the manufacturing process of the color conversion filter substrate, and the right side in the drawing is a third sectional view showing the manufacturing process of the color conversion filter substrate. 成膜装置11により作製した有機ELベース(マザー基材)15を示す斜視図。1 is a perspective view showing an organic EL base (mother base material) 15 produced by a film forming apparatus 11. FIG. 成膜装置により作製した有機ELベース(マザー基材)を示す斜視図。The perspective view which shows the organic electroluminescent base (mother base material) produced with the film-forming apparatus. ロール・トゥ・ロール法に基づく成膜装置11の構成を詳細に示す図。The figure which shows the structure of the film-forming apparatus 11 based on the roll-to-roll method in detail. ロール・トゥ・ロール法を用いた発光素子部の製造方法を示す第1の説明図。1st explanatory drawing which shows the manufacturing method of the light emitting element part using the roll-to-roll method. ロール・トゥ・ロール法を用いた発光素子部の製造方法を示す第2の説明図。2nd explanatory drawing which shows the manufacturing method of the light emitting element part using the roll-to-roll method. ロール・トゥ・ロール法を用いた発光素子部の製造方法を示す第3の説明図。3rd explanatory drawing which shows the manufacturing method of the light emitting element part using a roll-to-roll method. ロール・トゥ・ロール法を用いた発光素子部の製造方法を示す第4の説明図。4th explanatory drawing which shows the manufacturing method of the light emitting element part using a roll-to-roll method. ロール・トゥ・ロール法を用いた発光素子部の製造方法を示す第5の説明図。The 5th explanatory view showing the manufacturing method of the light emitting element part using the roll to roll method. 検査工程を経た複数の発光素子部を色変換フィルタ基板12上に設ける工程を説明するための第1の図。The 1st figure for demonstrating the process which provides the several light emitting element part which passed through the test | inspection process on the color conversion filter board | substrate 12. FIG. 検査工程を経た複数の発光素子部を色変換フィルタ基板12上に設ける工程を説明するための第2の図。FIG. 9 is a second diagram for explaining a process of providing a plurality of light emitting element portions on the color conversion filter substrate 12 that has undergone an inspection process. 検査工程を経た複数の発光素子部を色変換フィルタ基板12上に設ける工程を説明するための第3の図。FIG. 9 is a third diagram for explaining a process of providing a plurality of light emitting element portions on the color conversion filter substrate 12 that has undergone an inspection process. 発光素子部配置工程を説明するための断面図。Sectional drawing for demonstrating a light emitting element part arrangement | positioning process. 陽極-補助電極間の接続工程を説明するための断面図。Sectional drawing for demonstrating the connection process between an anode and an auxiliary electrode. 陰極-端子電極間の接続工程を説明するための側面図。The side view for demonstrating the connection process between a cathode and a terminal electrode. 一つの発光素子部における陰極-端子電極間の接続構造を示す断面図。Sectional drawing which shows the connection structure between the cathode-terminal electrode in one light emitting element part. 封止工程を説明するための断面図。Sectional drawing for demonstrating a sealing process. 第2実施形態の有機ELデバイスの概略構成を示す断面図。Sectional drawing which shows schematic structure of the organic EL device of 2nd Embodiment. 本発明の照明装置の一態様であるシーリングライトを示す斜視図。The perspective view which shows the ceiling light which is one aspect | mode of the illuminating device of this invention. 本発明の照明装置の一態様である照明スタンドを示す斜視図。The perspective view which shows the lighting stand which is 1 aspect of the illuminating device of this invention. 第3実施形態の発光素子部の配置例を示す平面図。The top view which shows the example of arrangement | positioning of the light emitting element part of 3rd Embodiment. 本発明の一態様であるドットマトリクス方式の表示装置の表示部を示す平面図。FIG. 6 is a plan view illustrating a display portion of a dot matrix display device which is one embodiment of the present invention. 本発明の一態様であるセグメント方式の表示装置の表示部を示す平面図。FIG. 10 is a plan view illustrating a display portion of a segment display device which is one embodiment of the present invention. 本発明の一態様である電子掲示板の概略図。1 is a schematic view of an electronic bulletin board according to one embodiment of the present invention. 本発明の一態様である照明装置の概略図。1 is a schematic diagram of a lighting device which is one embodiment of the present invention.
 以下、本発明の実施形態につき、図面を参照して説明する。なお、以下の説明に用いる各図面では、各部材を認識可能な大きさとするため、各部材の縮尺を適宜変更している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each drawing used for the following description, the scale of each member is appropriately changed to make each member a recognizable size.
[第1実施形態]
 図1は、本発明の第1実施形態である有機ELデバイスを示す模式図である。
 図1に示すように、本実施形態の有機ELデバイス(有機発光素子)1は、平面視で矩形の板形状とされており、一面側に白色光を発光する発光領域1aが形成されている。有機ELデバイス1の長手方向一方の端部側には、外部装置接続用の端子電極5が設けられている。
[First Embodiment]
FIG. 1 is a schematic view showing an organic EL device according to the first embodiment of the present invention.
As shown in FIG. 1, the organic EL device (organic light emitting element) 1 of the present embodiment has a rectangular plate shape in plan view, and a light emitting region 1a that emits white light is formed on one side. . On one end side in the longitudinal direction of the organic EL device 1, a terminal electrode 5 for connecting an external device is provided.
 図2は、図1におけるI-I断面の一部を表した模式図である。
 図2に示すように、有機ELデバイス1は、色変換フィルタ基板12と、色変換フィルタ基板12上に設けられた複数の発光素子部3と、複数の発光素子部3を封止する封止部材4と、を主として構成されている。
FIG. 2 is a schematic diagram showing a part of the II cross section in FIG.
As shown in FIG. 2, the organic EL device 1 includes a color conversion filter substrate 12, a plurality of light emitting element units 3 provided on the color conversion filter substrate 12, and a seal that seals the plurality of light emitting element units 3. The member 4 is mainly configured.
<色変換フィルタ基板>
 色変換フィルタ基板12は、透明支持基板(第2基板)2を含む。
 透明支持基板2には、一面2aに、色変換フィルタ層(色変換層)9、ガスバリア層8、補助電極6、端子電極5(図1)が設けられている。色変換フィルタ層9は、一面2aにおける発光領域1aに対応する領域を含んで形成されている。ガスバリア層8は、色変換フィルタ層9を覆うようにして形成され、色変換フィルタ層9の周囲を封止するものである。補助電極6及び端子電極5は、ガスバリア層8の表面に形成されている。
<Color conversion filter substrate>
The color conversion filter substrate 12 includes a transparent support substrate (second substrate) 2.
The transparent support substrate 2 is provided with a color conversion filter layer (color conversion layer) 9, a gas barrier layer 8, an auxiliary electrode 6, and a terminal electrode 5 (FIG. 1) on one surface 2a. The color conversion filter layer 9 is formed including a region corresponding to the light emitting region 1a on the one surface 2a. The gas barrier layer 8 is formed so as to cover the color conversion filter layer 9 and seals the periphery of the color conversion filter layer 9. The auxiliary electrode 6 and the terminal electrode 5 are formed on the surface of the gas barrier layer 8.
(透明支持基板)
 透明支持基板2は、可視光透過率に優れるとともに透湿性がほとんどない材料を用いて形成される。透明支持基板2の基材(透明基材)には、ガラス基板や樹脂で形成された剛直性の樹脂基板を含む。樹脂基板を形成する材料としては、例えば、ポリオレフィン、アクリル樹脂(ポリメチルメタクリレートを含む)、ポリエステル樹脂(ポリエチレンテレフタレートを含む)、ポリカーボネート樹脂、またはポリイミド樹脂などが挙げられる。
 あるいは、ポリオレフィン、アクリル樹脂(ポリメチルメタクリレートを含む)、ポリエステル樹脂(ポリエチレンテレフタレートを含む)、ポリカーボネート樹脂、またはポリイミド樹脂などから形成される可撓性フィルムを用いてもよい。ガラス基板を形成する材料としては、ホウケイ酸ガラスまたは青板ガラス等が特に好ましい。
(Transparent support substrate)
The transparent support substrate 2 is formed using a material having excellent visible light transmittance and almost no moisture permeability. The base material (transparent base material) of the transparent support substrate 2 includes a rigid resin substrate formed of a glass substrate or a resin. Examples of the material for forming the resin substrate include polyolefin, acrylic resin (including polymethyl methacrylate), polyester resin (including polyethylene terephthalate), polycarbonate resin, and polyimide resin.
Alternatively, a flexible film formed of polyolefin, acrylic resin (including polymethyl methacrylate), polyester resin (including polyethylene terephthalate), polycarbonate resin, polyimide resin, or the like may be used. As a material for forming the glass substrate, borosilicate glass or blue plate glass is particularly preferable.
 透明支持基板2は、例えば、幅1cm程度、長さが15cm程度、厚さが0.2mm程度のフィルム状を成すもので、平面視矩形状とされている。透明支持基板2の形状は、矩形に限らず、他の形状であってもよい。有機EL照明装置のデザインに合わせて透明支持基板2の形態は自在に設計することができる。 The transparent support substrate 2 is, for example, in the form of a film having a width of about 1 cm, a length of about 15 cm, and a thickness of about 0.2 mm, and has a rectangular shape in plan view. The shape of the transparent support substrate 2 is not limited to a rectangle, and may be another shape. The form of the transparent support substrate 2 can be freely designed according to the design of the organic EL lighting device.
(色変換フィルタ層)
 色変換フィルタ層9は、入射光を吸収して、異なる波長域の光を放射する機能を有する。具体的に、色変換フィルタ層9は、入射光(透明支持基板2上に搭載される複数の発光素子部3から放出される光)の一部を吸収して波長分布変換を行い、入射光の非吸収分と変換光とを含む光(入射光とは異なる波長分布を有する光)を放出するための層である。
 色変換フィルタ層9は、少なくとも1種または複数種の色変換色素からなる層である。色変換フィルタ層9は、透明支持基板2の一面2a全体に亘って形成されてもよいし、透明支持基板2の一部の領域(発光領域1aに対応する領域のみ)に選択的に形成されてもよい。たとえば、1種または複数種の色変換フィルタ層9を特定の位置に選択的に形成してもよい。
(Color conversion filter layer)
The color conversion filter layer 9 has a function of absorbing incident light and emitting light in different wavelength ranges. Specifically, the color conversion filter layer 9 absorbs a part of incident light (light emitted from the plurality of light emitting element portions 3 mounted on the transparent support substrate 2), performs wavelength distribution conversion, and performs incident light conversion. This is a layer for emitting light including non-absorbed components and converted light (light having a wavelength distribution different from incident light).
The color conversion filter layer 9 is a layer made of at least one kind or a plurality of kinds of color conversion dyes. The color conversion filter layer 9 may be formed over the entire surface 2a of the transparent support substrate 2 or selectively formed in a part of the transparent support substrate 2 (only the region corresponding to the light emitting region 1a). May be. For example, one or more types of color conversion filter layers 9 may be selectively formed at specific positions.
 色変換フィルタ層9は、発光素子部3から発せられる青色~青緑色光を、白色光に変換する。本発明の一態様における白色光とは、可視領域(400~700nm)の波長成分を均一に含む光のみならず、波長成分を均一には含んでいないが肉眼で白色に見える光をも含む。 The color conversion filter layer 9 converts blue to blue-green light emitted from the light emitting element unit 3 into white light. The white light in one embodiment of the present invention includes not only light that uniformly includes a wavelength component in the visible region (400 to 700 nm) but also light that does not include a wavelength component uniformly but appears white to the naked eye.
 色変換色素は、少なくとも赤色領域の蛍光を発する蛍光色素の1種類以上を用い、さらに緑色領域の蛍光を発する蛍光色素の1種類以上と組み合わせてもよい。すなわち、光源として青色ないし青緑色領域の光を発光する有機発光素子を発光素子部3として用いる場合、発光素子部3からの光を単なる赤色フィルタに通して赤色領域の光を得ようとすると、元々赤色領域の波長の光が少ないために極めて暗い出力光になってしまう。したがって、発光素子部からの青色ないし青緑色領域の光を、色変換フィルタ層の蛍光色素によって赤色領域の光に変換することにより、十分な強度を有する赤色領域の光の出力が可能となる。 As the color conversion dye, at least one fluorescent dye that emits fluorescence in the red region may be used, and may be combined with one or more fluorescent dyes that emit fluorescence in the green region. That is, when an organic light-emitting element that emits light in the blue or blue-green region is used as the light source as the light-emitting element unit 3, when light from the light-emitting element unit 3 is passed through a simple red filter to obtain light in the red region, Originally, the light in the red region has a small amount of light, resulting in extremely dark output light. Therefore, by converting the light in the blue or blue-green region from the light emitting element part into the light in the red region by the fluorescent dye of the color conversion filter layer, the light in the red region having sufficient intensity can be output.
 一方、緑色領域の光は、赤色領域の光と同様に、発光素子部からの光を別の有機蛍光色素によって緑色領域の光に変換させて出力してもよい。あるいは、発光素子部3の発光が緑色領域の光を十分に含んでいれば、発光素子部3からの光を単に緑色フィルタを通して出力してもよい。 On the other hand, the light in the green region may be output by converting the light from the light emitting element portion into the light in the green region by another organic fluorescent dye, similarly to the light in the red region. Alternatively, if the light emission of the light emitting element part 3 sufficiently includes light in the green region, the light from the light emitting element part 3 may be simply output through the green filter.
 発光素子部3から放出された光のうち、青色領域から青緑色領域の光を吸収して、赤色領域の蛍光を発する蛍光色素としては、例えばローダミンB、ローダミン6G、ローダミン3B、ローダミン101、ローダミン110、スルホローダミン、ベーシックバイオレット11、ベーシックレッド2などのローダミン系色素、シアニン系色素、1-エチル-2-[4-(p-ジメチルアミノフェニル)-1,3-ブタジエニル〕-ピリジニウムパークロレート(ピリジン1)などのピリジン系色素、あるいはオキサジン系色素などが挙げられる。さらに、各種染料(直接染料、酸性染料、塩基性染料、分散染料など)も蛍光性があれば使用することができる。 Among the light emitted from the light emitting element portion 3, as fluorescent dyes that absorb light from the blue region to the blue-green region and emit fluorescence in the red region, for example, rhodamine B, rhodamine 6G, rhodamine 3B, rhodamine 101, rhodamine 110, sulforhodamine, basic violet 11, basic red 2, and other rhodamine dyes, cyanine dyes, 1-ethyl-2- [4- (p-dimethylaminophenyl) -1,3-butadienyl] -pyridinium perchlorate ( Examples thereof include pyridine dyes such as pyridine 1) or oxazine dyes. Furthermore, various dyes (direct dyes, acid dyes, basic dyes, disperse dyes, etc.) can be used if they are fluorescent.
 発光素子部3から放出された光のうち、青色領域ないし青緑色領域の光を吸収して、緑色領域の蛍光を発する蛍光色素としては、例えば3-(2’-ベンゾチアゾリル)-7-ジエチルアミノクマリン(クマリン6)、3-(2’-ベンゾイミダゾリル)-7-N,N-ジエチルアミノクマリン(クマリン7)、3-(2’-N-メチルベンゾイミダゾリル)-7-N,N-ジエチルアミノクマリン(クマリン30)、2,3,5,6-1H,4H-テトラヒドロ-8-トリフルオロメチルキノリジン(9,9a,1-gh)クマリン(クマリン153)などのクマリン系色素、あるいはクマリン色素系染料であるベーシックイエロー51、さらにはソルベントイエロー11、ソルベントイエロー116などのナフタルイミド系色素などが挙げられる。さらに、各種染料(直接染料、酸性染料、塩基性染料、分散染料など)も蛍光性があれば使用することができる。 Among the light emitted from the light emitting element section 3, as a fluorescent dye that absorbs light in the blue region or blue-green region and emits fluorescence in the green region, for example, 3- (2′-benzothiazolyl) -7-diethylaminocoumarin (Coumarin 6), 3- (2′-benzimidazolyl) -7-N, N-diethylaminocoumarin (coumarin 7), 3- (2′-N-methylbenzimidazolyl) -7-N, N-diethylaminocoumarin (coumarin 30) ), 2,3,5,6-1H, 4H-tetrahydro-8-trifluoromethylquinolidine (9,9a, 1-gh) coumarin (coumarin 153), or a coumarin dye. Basic yellow 51, naphthalimide dyes such as solvent yellow 11 and solvent yellow 116 It is below. Furthermore, various dyes (direct dyes, acid dyes, basic dyes, disperse dyes, etc.) can be used if they are fluorescent.
 なお、本実施形態に用いる有機蛍光色素を、ポリメタクリル酸エステル、ポリ塩化ビニル、塩化ビニル-酢酸ビニル共重合樹脂、アルキッド樹脂、芳香族スルホンアミド樹脂、ユリア樹脂、メラミン樹脂、ベンゾグアナミン樹脂及びこれらの樹脂混合物などに予め練り込んで顔料化して、有機蛍光顔料としてもよい。また、これらの有機蛍光色素や有機蛍光顔料(以下、有機蛍光色素と有機蛍光顔料とを合わせて有機蛍光色素と総称する。)は単独で用いてもよく、蛍光の色相を調整するために2種以上を組み合わせて用いてもよい。 The organic fluorescent dye used in the present embodiment includes polymethacrylate, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer resin, alkyd resin, aromatic sulfonamide resin, urea resin, melamine resin, benzoguanamine resin, and these. An organic fluorescent pigment may be obtained by kneading into a resin mixture in advance to obtain a pigment. In addition, these organic fluorescent dyes and organic fluorescent pigments (hereinafter, organic fluorescent dyes and organic fluorescent pigments are collectively referred to as organic fluorescent dyes) may be used alone or in order to adjust the hue of fluorescence. You may use combining more than a seed.
 本実施形態に用いる有機蛍光色素は、色変換フィルタ層9に対して、色変換フィルタ層9の重量を基準として0.01~5重量%、より好ましくは0.1~2重量%含有される。もし、有機蛍光色素の含有量が、色変換フィルタ層9の重量に対して0.01重量%未満ならば、十分な波長変換を行うことができない。また、有機蛍光色素の含有量が、色変換フィルタ層9の重量に対して5重量%を越えるならば、濃度消光等の効果により色変換効率の低下をもたらす。 The organic fluorescent dye used in this embodiment is contained in the color conversion filter layer 9 in an amount of 0.01 to 5% by weight, more preferably 0.1 to 2% by weight, based on the weight of the color conversion filter layer 9. . If the content of the organic fluorescent dye is less than 0.01% by weight with respect to the weight of the color conversion filter layer 9, sufficient wavelength conversion cannot be performed. Further, if the content of the organic fluorescent dye exceeds 5% by weight with respect to the weight of the color conversion filter layer 9, the color conversion efficiency is lowered due to the effect of concentration quenching or the like.
 次に、本実施形態の色変換フィルタ層9に用いられるマトリクス樹脂は、光硬化性または光熱併用型硬化性樹脂(レジスト)を、光および/または熱処理して、ラジカル種またはイオン種を発生させて重合または架橋させ、不溶不融化させたものである。 Next, the matrix resin used in the color conversion filter layer 9 of the present embodiment generates radical species or ionic species by light and / or heat treatment of a photocurable or photothermal combination type curable resin (resist). Polymerized or cross-linked and insoluble and infusible.
 また、パターニングの必要な色変換フィルタ層9の材料としては、光硬化性または光熱併用型硬化性樹脂を有するとともに、未露光の状態において有機溶媒またはアルカリ溶液に可溶性であることが望ましい。 Further, as a material of the color conversion filter layer 9 that needs to be patterned, it is desirable that the material has a photocurable or photothermal combination type curable resin and is soluble in an organic solvent or an alkaline solution in an unexposed state.
 具体的に、光硬化性または光熱併用型硬化性樹脂は、(1)アクロイル基やメタクロイル基を複数有するアクリル系多官能モノマーおよびオリゴマーと、光または熱重合開始剤とからなる組成物、(2)ボリビニル桂皮酸エステルと増感剤とからなる組成物、(3)鎖状または環状オレフィンとビスアジドとからなる組成物、および(4)エポキシ基を有するモノマーと酸発生剤とからなる組成物などを含む。特に(1)のアクリル系多官能モノマーおよびオリゴマーと光または熱重合開始剤とからなる組成物が、高精細なパターニングが可能であること、および耐溶剤性、耐熱性等の信頼性が高いことによって好ましい。前述したように、光硬化性または光熱併用型硬化性樹脂に光および/または熱を作用させて、マトリクス樹脂を形成する。 Specifically, the photocurable or photothermal combination type curable resin comprises (1) a composition comprising an acrylic polyfunctional monomer and oligomer having a plurality of acryloyl groups and methacryloyl groups, and photo or thermal polymerization initiator, (2 ) A composition comprising a polyvinylcinnamic acid ester and a sensitizer, (3) a composition comprising a chain or cyclic olefin and bisazide, and (4) a composition comprising an epoxy group-containing monomer and an acid generator. including. In particular, the composition comprising the acrylic polyfunctional monomer and oligomer (1) and photo or thermal polymerization initiator is capable of high-definition patterning and has high reliability such as solvent resistance and heat resistance. Is preferable. As described above, the matrix resin is formed by applying light and / or heat to the photocurable or photothermal combination type curable resin.
 本実施形態で用いることができる光重合開始剤、増感剤および酸発生剤は、含まれる蛍光変換色素が吸収しない波長の光によって重合を開始させるものであることが好ましい。
 色変換フィルタ層9において、光硬化性を有する樹脂または光熱併用型硬化性樹脂中の樹脂が、光または熱により重合することが可能である場合には、光重合開始剤および熱重合開始剤を添加しないことも可能である。
The photopolymerization initiator, sensitizer, and acid generator that can be used in the present embodiment are preferably those that initiate polymerization by light having a wavelength that is not absorbed by the fluorescent conversion dye contained therein.
In the color conversion filter layer 9, when the photocurable resin or the resin in the photothermal combination curable resin can be polymerized by light or heat, a photopolymerization initiator and a thermal polymerization initiator are added. It is also possible not to add.
 マトリクス樹脂は、まず、光硬化性樹脂を含有する溶液または分散液、あるいは、光熱併用型硬化性樹脂および有機蛍光色素を含有する溶液または分散液を、支持基板上に塗布して樹脂層を形成し、次いで、所望する領域の樹脂層を露光することにより、重合させて形成される。ここでは、所望する領域に露光を行って光硬化性樹脂または光熱併用型硬化性樹脂を不溶化させた後に、パターニングを行う。パターニングは、未露光部分の樹脂を溶解または分散させる有機溶媒またはアルカリ溶液を用いて除去するなどの、慣用の方法によって実施することができる。 First, a matrix resin is formed by applying a solution or dispersion containing a photocurable resin or a solution or dispersion containing a photothermal combination type curable resin and an organic fluorescent dye on a support substrate to form a resin layer. Then, the resin layer in a desired region is exposed to be polymerized to be formed. Here, patterning is performed after exposing the desired region to insolubilize the photocurable resin or photothermal combination curable resin. The patterning can be performed by a conventional method such as removal using an organic solvent or an alkali solution in which the resin in the unexposed portion is dissolved or dispersed.
 図3A及び図3Bは、色変換フィルタ層の概略構成を示す第1及び第2の部分断面図である。
 有機発光層33(図2)の発光が青色の場合、図3Aに示すように、色変換フィルタ層9は、複数の緑色変換色素層9G及び赤色変換色素層9Rを有し、緑色変換色素層9Gと赤色変換色素層9Rとが配列方向に交互に存在する。対を成す緑色変換色素層9G及び赤色変換色素層9Rと、これらと隣り合う、他の対を成す緑色変換色素層9G及び赤色変換色素層9Rとは互いに所定の間隔をおいて配置されている。緑色変換色素層9G及び赤色変換色素層9Rの短手方向の幅Wは0.5mmである。
3A and 3B are first and second partial cross-sectional views showing a schematic configuration of the color conversion filter layer.
When the light emission of the organic light emitting layer 33 (FIG. 2) is blue, as shown in FIG. 3A, the color conversion filter layer 9 has a plurality of green conversion dye layers 9G and red conversion dye layers 9R, and the green conversion dye layer 9G and the red color conversion dye layer 9R are alternately present in the arrangement direction. The green conversion dye layer 9G and the red conversion dye layer 9R forming a pair and the other green conversion dye layer 9G and the red conversion dye layer 9R adjacent to each other are disposed at a predetermined interval. . The width W in the short direction of the green conversion dye layer 9G and the red conversion dye layer 9R is 0.5 mm.
 なお、有機発光層33の発光が青緑色の場合は、色変換フィルタ層9は、複数の赤色変換色素層9Rを有してなる。
 また、色変換フィルタ層9は図3Bに示すように、赤色変換色素と青色変換色素を含み、有機発光層33(図2)の発光である青色あるいは青緑色の一部が透過する構成としてもよい。また、有機発光層33(図2)の発光が青緑色である場合、色変換フィルタ層9には赤色変換色素が含まれ、有機発光層33(図2)の発光である青緑色の一部が透過する構成としてもよい。
In addition, when the light emission of the organic light emitting layer 33 is blue-green, the color conversion filter layer 9 includes a plurality of red conversion dye layers 9R.
Further, as shown in FIG. 3B, the color conversion filter layer 9 includes a red conversion dye and a blue conversion dye, and the organic light emitting layer 33 (FIG. 2) emits a part of blue or blue green light. Good. In addition, when the light emission of the organic light emitting layer 33 (FIG. 2) is blue-green, the color conversion filter layer 9 contains a red conversion dye, and a part of blue green that is the light emission of the organic light emitting layer 33 (FIG. 2). It is good also as a structure which permeate | transmits.
(ガスバリア層)
 ガスバリア層8は、有機平坦化層8Aと無機ガスバリア層8Bとの積層体からなることが好ましい。
 有機平坦化層8Aの材料として好ましいものは、可視域における透明性が高く(波長400~700nmの範囲で透過率50%以上)、Tgが100℃以上であり、2Hの鉛筆硬度以上の表面硬度を有し、色変換フィルタ層9上に平滑に塗膜を形成することができ、色変換フィルタ層の機能を低下させない材料である。
 このような材料としては、例えば、イミド変性シリコーン樹脂(特開平5-134112号公報、特開平7-218717号公報、特開平7-306311号公報等参照)、アクリル、ポリイミド、シリコーン樹脂等中に無機金属化合物(TiO、Al、SiO等)を分散した材料(特開平5-119306号公報、特開平7-104114号公報等参照)を含む。有機平坦化層において用いることができる紫外線硬化型樹脂としては、エポキシ変性アクリレート樹脂(特開平7-48424号公報参照)、アクリレートモノマー/オリゴマー/ポリマーの反応性ビニル基を有する樹脂、レジスト樹脂(特開平6-300910号公報、特開平7-128519号公報、特開平8-273394号公報、特開平9-330793号公報等参照)、フッ素樹脂(特開平5-36475号公報、特開平9-330793号公報)等の光硬化型樹脂および/または熱硬化型樹脂を挙げることができる。あるいはまた、ゾル-ゲル法により形成される無機化合物(月刊ディスプレイ1997年、3巻、7号に記載、特開平8-27934号公報等)等が挙げられる。
(Gas barrier layer)
The gas barrier layer 8 is preferably composed of a laminate of an organic planarizing layer 8A and an inorganic gas barrier layer 8B.
A preferable material for the organic planarizing layer 8A has high transparency in the visible region (transmittance of 50% or more in the wavelength range of 400 to 700 nm), Tg of 100 ° C. or more, and surface hardness of 2H or more pencil hardness. It is a material that can smoothly form a coating film on the color conversion filter layer 9 and does not deteriorate the function of the color conversion filter layer.
Examples of such materials include imide-modified silicone resins (see JP-A-5-134112, JP-A-7-218717, JP-A-7-306311, etc.), acrylics, polyimides, silicone resins, and the like. Including a material in which an inorganic metal compound (TiO, Al 2 O 3 , SiO 2 or the like) is dispersed (see JP-A-5-119306, JP-A-7-104114, etc.). Examples of the ultraviolet curable resin that can be used in the organic planarizing layer include epoxy-modified acrylate resins (see JP-A-7-48424), resins having reactive vinyl groups of acrylate monomers / oligomers / polymers, resist resins (special JP-A-6-300910, JP-A-7-128519, JP-A-8-273394, JP-A-9-330793, etc.), fluororesin (JP-A-5-36475, JP-A-9-330793) Photocurable resin and / or thermosetting resin. Alternatively, inorganic compounds formed by a sol-gel method (described in Monthly Display 1997, Vol. 3, No. 7, JP-A-8-27934, etc.) and the like can be mentioned.
 有機平坦化層8Aの形成法には、特に制約はなく、たとえば、乾式法(スパッタ法、蒸着法、CVD法等)、あるいは湿式法(スピンコート法、ロールコート法、キャスト法)等の慣用の手段により形成することができる。 There is no restriction | limiting in particular in the formation method of 8 A of organic planarization layers, For example, conventional methods, such as a dry method (sputtering method, vapor deposition method, CVD method, etc.) or a wet method (spin coating method, roll coating method, casting method), etc. It can form by the means of.
 また、無機ガスバリア層8Bとして、電気絶縁性を有し、ガスおよび有機溶剤に対するバリア性を有し、可視域における透明性が高く(波長400~700nmの範囲で透過率50%以上)、無機ガスバリア層8B上への端子電極5および補助電極6の成膜に耐えうる硬度(好ましくは2H以上の鉛筆硬度)を有する材料を用いることが望ましい。
 例えば、SiOx、AlOx、TiOx、TaOx、等の無機酸化物、SiNx、SiC:N等の無機窒化物、あるいはSiNxOy、ダイアモンドライクカーボン(DLC)等の無機物等を使用することができる。無機ガスバリア層8Bの形成方法としては、特に制約はなく、スパッタ法、CVD法、真空蒸着法、ディップ法等の慣用の手法により形成することができる。
Further, the inorganic gas barrier layer 8B has an electrical insulating property, a barrier property against gases and organic solvents, high transparency in the visible region (transmittance of 50% or more in the wavelength range of 400 to 700 nm), and an inorganic gas barrier. It is desirable to use a material having a hardness (preferably pencil hardness of 2H or more) that can withstand the formation of the terminal electrode 5 and the auxiliary electrode 6 on the layer 8B.
For example, inorganic oxides such as SiOx, AlOx, TiOx, and TaOx, inorganic nitrides such as SiNx and SiC: N, or inorganic substances such as SiNxOy and diamond-like carbon (DLC) can be used. There is no restriction | limiting in particular as a formation method of the inorganic gas barrier layer 8B, It can form by common methods, such as a sputtering method, CVD method, a vacuum evaporation method, a dip method.
 2層の積層構造とした有機平坦化層8の場合、下層の樹脂には光散乱粒子を分散したものを用いるのが好ましい。青色光が効果的に散乱するためには、光散乱性の粒子がミー散乱の領域にあることが必要であるので、光散乱性粒子の粒径は100nm~500nm程度が好ましい。 In the case of the organic planarization layer 8 having a two-layer structure, it is preferable to use a resin in which light scattering particles are dispersed as the lower layer resin. In order to scatter blue light effectively, it is necessary that the light-scattering particles are in the Mie scattering region. Therefore, the particle size of the light-scattering particles is preferably about 100 nm to 500 nm.
 光散乱性粒子として、無機材料により構成された粒子(無機微粒子)を用いる場合には、例えば、シリカビーズ(屈折率:1.44)、アルミナビーズ(屈折率:1.63)、酸化チタンビーズ(屈折率 アナタース型:2.50、ルチル型2.70)、酸化ジルコニアビーズ(屈折率:2.05)、酸化亜鉛ビーズ(屈折率:2.00)、チタン酸バリウム(BaTiO)(屈折率:2.4)等が挙げられる。 When particles (inorganic fine particles) made of an inorganic material are used as the light scattering particles, for example, silica beads (refractive index: 1.44), alumina beads (refractive index: 1.63), titanium oxide beads (Refractive index anatase type: 2.50, rutile type 2.70), zirconia bead (refractive index: 2.05), zinc oxide bead (refractive index: 2.00), barium titanate (BaTiO 3 ) (refractive Rate: 2.4).
 光散乱性粒子として、有機材料により構成された粒子(有機微粒子)を用いる場合には、例えば、ポリメチルメタクリレートビーズ(屈折率:1.49)、アクリルビーズ(屈折率:1.50)、アクリル-スチレン共重合体ビーズ(屈折率:1.54)、メラミンビーズ(屈折率:1.57)、高屈折率メラミンビーズ(屈折率:1.65)、ポリカーボネートビーズ(屈折率:1.57)、スチレンビーズ(屈折率:1.60)架橋ポリスチレンビーズ(屈折率:1.61)、ポリ塩化ビニルビーズ(屈折率:1.60)、ベンゾグアミン-メラミンホルムアルデヒドビーズ(屈折率:1.68)、シリコーンビーズ(屈折率:1.50)等が挙げられる。 When particles (organic fine particles) made of an organic material are used as the light scattering particles, for example, polymethyl methacrylate beads (refractive index: 1.49), acrylic beads (refractive index: 1.50), acrylic -Styrene copolymer beads (refractive index: 1.54), melamine beads (refractive index: 1.57), high refractive index melamine beads (refractive index: 1.65), polycarbonate beads (refractive index: 1.57) Styrene beads (refractive index: 1.60) crosslinked polystyrene beads (refractive index: 1.61), polyvinyl chloride beads (refractive index: 1.60), benzoguanamine-melamine formaldehyde beads (refractive index: 1.68), Examples thereof include silicone beads (refractive index: 1.50).
(端子電極および補助電極)
 図4は、端子電極及び補助電極を備えた透明支持基板の一面側を示す平面図である。
 図4に示すように、透明支持基板2の一面2aに形成されたガスバリア層8の表面8aには、端子電極5と補助電極6とがそれぞれ形成されている。
 端子電極5は、透明支持基板2の長手方向一方の側辺2cに沿って形成されている。
(Terminal electrode and auxiliary electrode)
FIG. 4 is a plan view showing one side of a transparent support substrate provided with terminal electrodes and auxiliary electrodes.
As shown in FIG. 4, the terminal electrode 5 and the auxiliary electrode 6 are formed on the surface 8a of the gas barrier layer 8 formed on the one surface 2a of the transparent support substrate 2, respectively.
The terminal electrode 5 is formed along one side 2 c in the longitudinal direction of the transparent support substrate 2.
 補助電極6は、複数の延長部6a、6a、…と、共通部6bとを有する。共通部6bは、透明支持基板2の長手方向他方の側辺2dに沿って形成されている。複数の延長部6a、6a、…は、配列方向(X方向)に所定の間隔L1をおいて互いに平行に延在しており、それぞれの基端(端子電極5側の端部とは反対側)側が共通部6bに接続されている。
 複数の延長部6a、6a、…は、共通部6bから端子電極5に向かってそれぞれ直線状に延在しているが、端子電極5とは電気的に接続しないように端子電極5から離間して設けられている。端子電極5は、外部接続用の端子である。
The auxiliary electrode 6 has a plurality of extension portions 6a, 6a,... And a common portion 6b. The common part 6 b is formed along the other side 2 d in the longitudinal direction of the transparent support substrate 2. The plurality of extending portions 6a, 6a,... Extend in parallel to each other at a predetermined interval L1 in the arrangement direction (X direction), and each base end (the side opposite to the end portion on the terminal electrode 5 side). ) Side is connected to the common part 6b.
The plurality of extension portions 6 a, 6 a,... Extend linearly from the common portion 6 b toward the terminal electrode 5, but are separated from the terminal electrode 5 so as not to be electrically connected to the terminal electrode 5. Is provided. The terminal electrode 5 is a terminal for external connection.
 端子電極5及び補助電極6は、例えば、金や銀、ニッケル、アルミニウム等の電気伝導率に優れた、電気抵抗値の低い素材を用いて薄膜状に形成されている。 The terminal electrode 5 and the auxiliary electrode 6 are formed in a thin film shape using a material having a low electric resistance value, such as gold, silver, nickel, aluminum, and the like.
<発光素子部>
 図5は、発光素子部の概略構成を示す断面図である。
 本実施形態の発光素子部3は、ロール・トゥ・ロール方式で作製した後述の有機ELベースを分断して得られたもので、色変換フィルタ基板12とは別に独立して作製されたものである。
<Light emitting element portion>
FIG. 5 is a cross-sectional view showing a schematic configuration of the light emitting element portion.
The light emitting element portion 3 of the present embodiment is obtained by dividing an organic EL base described later produced by a roll-to-roll method, and is produced independently of the color conversion filter substrate 12. is there.
 図5に示すように、発光素子部3は、帯状の透明ベースフィルム(第1基板)31と、光透過性を有する帯状の陽極(第1電極)32aと、帯状の有機発光層(発光層)33と、帯状の陰極(第2電極)32bと、を備えて構成されている。 As shown in FIG. 5, the light emitting element unit 3 includes a band-shaped transparent base film (first substrate) 31, a light-transmitting band-shaped anode (first electrode) 32 a, and a band-shaped organic light-emitting layer (light-emitting layer). ) 33 and a strip-like cathode (second electrode) 32b.
 透明ベースフィルム31は、可撓性を有するフレキシブルな基板である。例えば、スチレン樹脂やアクリル樹脂、ポリエチレンテレフタレート樹脂等の樹脂シートを透明ベースフィルム31に用いることができる。酸素や水に対するバリア性に優れた素材が好ましく、単一の樹脂からなる単層シートであってもよいし、複数の樹脂からなる多層シートであってもよい。
 透明ベースフィルム31は、可撓性を有するフレキシブルな基板であることが好ましいが、ガラス等の弾性を有する透明基板でもよい。
The transparent base film 31 is a flexible substrate having flexibility. For example, a resin sheet such as a styrene resin, an acrylic resin, or a polyethylene terephthalate resin can be used for the transparent base film 31. A material excellent in barrier properties against oxygen and water is preferable, and a single layer sheet made of a single resin or a multilayer sheet made of a plurality of resins may be used.
The transparent base film 31 is preferably a flexible substrate having flexibility, but may be a transparent substrate having elasticity such as glass.
 陽極32a及び陰極32bは、従来の電極材料を用いて形成することができる。陽極32aは、ITOやIDIXO、IZO、GZO、SnOなどを用いて透明電極を形成することができる。 The anode 32a and the cathode 32b can be formed using a conventional electrode material. As the anode 32a, a transparent electrode can be formed using ITO, IDIXO, IZO, GZO, SnO 2 or the like.
 陽極32aと陰極32bにより微小共振器構造を構成する場合、陽極32aとして半透明電極を用いることが好ましい。 When a microresonator structure is constituted by the anode 32a and the cathode 32b, it is preferable to use a translucent electrode as the anode 32a.
 陽極32aとしては、金属の半透明電極と透明電極材料を組み合わせたものを用いることができる。特に、半透明電極の材料としては、反射率と透過率の観点から、銀が好ましい。半透明電極の膜厚は、5~30nmが好ましい。半透明電極の膜厚が5nm未満の場合には、光の反射が十分行えず、干渉の効果を十分得ることができない。また、半透明電極の膜厚が30nmを超える場合には、光の透過率が急激に低下することから、発光素子部3の輝度および発光効率が低下するおそれがある。 As the anode 32a, a combination of a metal translucent electrode and a transparent electrode material can be used. In particular, as a material for the semitransparent electrode, silver is preferable from the viewpoint of reflectance and transmittance. The film thickness of the translucent electrode is preferably 5 to 30 nm. When the film thickness of the translucent electrode is less than 5 nm, the light cannot be sufficiently reflected, and the interference effect cannot be obtained sufficiently. Further, when the film thickness of the semi-transparent electrode exceeds 30 nm, the light transmittance is drastically lowered, and thus the luminance and light emission efficiency of the light emitting element portion 3 may be lowered.
 有機発光層33は、陽極32aと陰極32bとの間に配置され、電圧が印加されることによって発光する。有機発光層33は、例えば、透明ベースフィルム31側から順に、正孔注入層34、正孔輸送層35、電子ブロッキング層36、発光層37、電子輸送層38、電子注入層39が設けられている(正孔注入層/正孔輸送層/電子ブロッキング層/発光層/電子輸送層/電子注入層)。本実施形態の発光層37は、青色~青緑色光を発光する単層構造とされている。 The organic light emitting layer 33 is disposed between the anode 32a and the cathode 32b, and emits light when a voltage is applied. The organic light emitting layer 33 includes, for example, a hole injection layer 34, a hole transport layer 35, an electron blocking layer 36, a light emitting layer 37, an electron transport layer 38, and an electron injection layer 39 in order from the transparent base film 31 side. (Hole injection layer / hole transport layer / electron blocking layer / light emitting layer / electron transport layer / electron injection layer). The light emitting layer 37 of the present embodiment has a single layer structure that emits blue to blue-green light.
 陰極32bは、例えば、有機発光層33に電子を効率良く注入するために、Ca/AlやCe/Al、Cs/Al、Ba/Alなどの仕事関数の低い金属と安定な金属とを積層して形成するのが好ましい。また、陰極32bは、Ca:Al合金やMg:Ag合金、Li:Al合金などの仕事関数の低い金属を含有する合金で形成してもよいし、LiF/AlやLiF/Ca/Al、BaF2/Ba/Al、LiF/Al/Agなどの薄膜の絶縁層と金属電極とを組み合わせて形成してもよい。 The cathode 32b is formed by laminating a metal having a low work function such as Ca / Al, Ce / Al, Cs / Al, Ba / Al and a stable metal in order to efficiently inject electrons into the organic light emitting layer 33, for example. Is preferably formed. The cathode 32b may be formed of an alloy containing a metal having a low work function, such as a Ca: Al alloy, Mg: Ag alloy, or Li: Al alloy, or LiF / Al, LiF / Ca / Al, BaF2 or the like. A thin film insulating layer such as / Ba / Al or LiF / Al / Ag may be formed in combination with a metal electrode.
 本実施形態における陰極32bの短手方向における幅W1は、上述した補助電極6において隣り合う延長部6a、6a同士の間の間隔L1と略等しい。 The width W1 in the short direction of the cathode 32b in the present embodiment is substantially equal to the interval L1 between the adjacent extensions 6a, 6a in the auxiliary electrode 6 described above.
 陽極32aと陰極32bにより微小共振器構造が構成されると、陽極32aと陰極32bとの干渉効果により、有機発光層33の発光を正面方向(光取り出し方向)に集光することができる。その際、有機発光層33の発光に指向性を持たせることができるため、周囲に逃げる発光損失を低減することができ、その発光効率を高めることができる。これにより、有機発光層33で生じる発光エネルギーをより効率良く、色変換フィルタ層9側へ伝搬することができ、ひいては、発光素子部3の正面輝度を高めることができる。また、陽極32aと陰極32bにより構成される微小共振器構造によれば、有機発光層33の発光スペクトルを調整することも可能となり、所望の発光ピーク波長および半値幅に調整することができる。これにより、有機発光層33の発光スペクトルを、色変換フィルタ層9中の有機蛍光色素を効果的に励起することが可能なスペクトルに制御することができる。 When the microresonator structure is configured by the anode 32a and the cathode 32b, the light emission of the organic light emitting layer 33 can be condensed in the front direction (light extraction direction) due to the interference effect between the anode 32a and the cathode 32b. In that case, since the directivity can be given to the light emission of the organic light emitting layer 33, the light emission loss escaping to the periphery can be reduced, and the light emission efficiency can be increased. Thereby, the light emission energy generated in the organic light emitting layer 33 can be more efficiently propagated to the color conversion filter layer 9 side, and the front luminance of the light emitting element portion 3 can be increased. In addition, according to the microresonator structure constituted by the anode 32a and the cathode 32b, the emission spectrum of the organic light emitting layer 33 can be adjusted, and the desired emission peak wavelength and half width can be adjusted. Thereby, the emission spectrum of the organic light emitting layer 33 can be controlled to a spectrum that can effectively excite the organic fluorescent dye in the color conversion filter layer 9.
 陽極32a及び陰極32bの形成には、蒸着法やEB法、MBE法、スパッタ法等のドライプロセスを用いることできるし、また、スピンコート法や印刷法、インクジェット法等のウエットプロセスを用いることもできる。 For the formation of the anode 32a and the cathode 32b, a dry process such as an evaporation method, an EB method, an MBE method, or a sputtering method can be used, or a wet process such as a spin coating method, a printing method, or an ink jet method can be used. it can.
 正孔注入層34は、陽極32aから効率良く正孔を受け取り、正孔輸送層35へ効率良く受け渡すために設けられている。正孔注入層34に用いられる材料のHOMOレベルは、正孔輸送層35に用いられるHOMOレベルよりも低く、陽極32aの仕事関数よりも高いのが好ましい。正孔注入層34は、単層でも多層であってもよい。 The hole injection layer 34 is provided in order to efficiently receive holes from the anode 32a and deliver them to the hole transport layer 35 efficiently. The HOMO level of the material used for the hole injection layer 34 is preferably lower than the HOMO level used for the hole transport layer 35 and higher than the work function of the anode 32a. The hole injection layer 34 may be a single layer or a multilayer.
 接着用の樹脂には、例えば、ポリカーボネートやポリエステル等を用いることができる。溶剤は、材料を溶解、または分散できるものであればく、例えば、純水、メタノール、エタノール、THF、クロロホルム、キシレン、トリメチルベンゼン等を溶剤に用いることができる。 For example, polycarbonate or polyester can be used as the adhesive resin. Any solvent can be used as long as it can dissolve or disperse the material. For example, pure water, methanol, ethanol, THF, chloroform, xylene, trimethylbenzene, or the like can be used as the solvent.
 正孔注入層34の材料には、有機EL素子や有機光導電体に対して一般に用いられているものを用いることができる。例えば、無機p型半導体材料や、ポルフィリン化合物、N,N'-ビス-(3‐メチルフェニル)-N,N'-ビス-(フェニル)-ベンジジン(TPD)、N,N'-ジ(ナフタレン‐1‐イル)-N,N'-ジフェニル-ベンジジン(NPD)等の芳香族第三級アミン化合物、ヒドラゾン化合物、キナクリドン化合物、スチリルアミン化合物等の低分子材料、ポリアニリン(PANI)、3,4-ポリエチレンジオキシチオフェン/ポリスチレンサルフォネイト(PEDT/PSS)、ポリ[トリフェニルアミン誘導体](Poly-TPD)、ポリビニルカルバゾール(PVCz)等の高分子材料、ポリ(p-フェニレンビニレン)前駆体(Pre-PPV)、ポリ(p-ナフタレンビニレン)前駆体(Pre-PNV)等の高分子材料前駆体などを用いることができる。 As the material of the hole injection layer 34, those generally used for organic EL elements and organic photoconductors can be used. For example, inorganic p-type semiconductor materials, porphyrin compounds, N, N′-bis- (3-methylphenyl) -N, N′-bis- (phenyl) -benzidine (TPD), N, N′-di (naphthalene) -1-yl) -N, N′-diphenyl-benzidine (NPD) and other aromatic tertiary amine compounds, hydrazone compounds, quinacridone compounds, styrylamine compounds and other low molecular materials, polyaniline (PANI), 3, 4 -Polymer materials such as polyethylene dioxythiophene / polystyrene sulfonate (PEDT / PSS), poly [triphenylamine derivative] (Poly-TPD), polyvinyl carbazole (PVCz), poly (p-phenylene vinylene) precursor ( Prepolymer materials such as Pre-PPV) and poly (p-naphthalene vinylene) precursor (Pre-PNV) The body can be used.
 正孔輸送層35は、正孔注入層34から効率良く正孔を受け取り、発光層37へ効率良く受け渡すために設けられている。正孔輸送層35に用いられる材料のHOMOレベルは、正孔注入層34のHOMOレベルよりも高く、発光層37のHOMOレベルよりも低いのが好ましい。正孔をより効率よく発光層37に注入、輸送でき、発光に要する電圧の低減効果や発光効率の向上効果を得ることができるからである。 The hole transport layer 35 is provided in order to efficiently receive holes from the hole injection layer 34 and deliver them efficiently to the light emitting layer 37. The HOMO level of the material used for the hole transport layer 35 is preferably higher than the HOMO level of the hole injection layer 34 and lower than the HOMO level of the light emitting layer 37. This is because holes can be injected and transported to the light emitting layer 37 more efficiently, and the effect of reducing the voltage required for light emission and the effect of improving the light emission efficiency can be obtained.
 また、発光層37からの電子の漏れが抑制できるように、正孔輸送層35のLUMOレベルは発光層37のLUMOレベルより低くするのが好ましい。そうすれば、発光層37での発光効率を高めることができる。また、正孔輸送層35のバンドギャップは発光層37のバンドギャップより大きくするのが好ましい。そうすれば、発光層37中に励起子を効果的に閉じ込めることができる。 Also, the LUMO level of the hole transport layer 35 is preferably lower than the LUMO level of the light emitting layer 37 so that the leakage of electrons from the light emitting layer 37 can be suppressed. If it does so, the luminous efficiency in the light emitting layer 37 can be raised. The band gap of the hole transport layer 35 is preferably larger than the band gap of the light emitting layer 37. Then, excitons can be effectively confined in the light emitting layer 37.
 正孔輸送層35は、単層でも多層でもよく、ドライプロセスやウエットプロセスを用い、正孔注入層34と同じようにして形成することができる。 The hole transport layer 35 may be a single layer or a multilayer, and can be formed in the same manner as the hole injection layer 34 using a dry process or a wet process.
 電子ブロッキング層36は、正孔注入層34と同種の材料を用いて形成することができる。但し、その材料のLUMOレベルの絶対値は、電子ブロッキング層36と接する発光層37、つまり赤色発光層37aが含む正孔注入層34の材料のLUMOレベルの絶対値より小さいのが好ましい。電子をより効果的に発光層37中に閉じ込めることができるからである。 The electron blocking layer 36 can be formed using the same material as the hole injection layer 34. However, the absolute value of the LUMO level of the material is preferably smaller than the absolute value of the LUMO level of the material of the hole injection layer 34 included in the light emitting layer 37 in contact with the electron blocking layer 36, that is, the red light emitting layer 37a. This is because electrons can be more effectively confined in the light emitting layer 37.
 電子ブロッキング層36もまた、単層でも多層であってもよく、ドライプロセスやウエットプロセスを用い、正孔注入層34と同じようにして形成することができる。
 発光層37は、以下に例示する有機発光材料のみから構成されていてもよく、発光性のドーパントとホスト材料の組み合わせから構成されていてもよく、任意に正孔輸送材料、電子輸送材料、添加剤(ドナー、アクセプター等)等を含んでいてもよい。また、これらの各材料が高分子材料(接着用樹脂)または無機材料中に分散された構成であってもよい。発光効率および耐久性の観点からは、発光層37の材質は、ホスト材料中に発光性のドーパントが分散されたものが好ましい。
The electron blocking layer 36 may be a single layer or a multilayer, and can be formed in the same manner as the hole injection layer 34 using a dry process or a wet process.
The light emitting layer 37 may be composed only of the organic light emitting material exemplified below, or may be composed of a combination of a light emitting dopant and a host material, and optionally includes a hole transport material, an electron transport material, and an additive. An agent (donor, acceptor, etc.) may be included. Moreover, the structure by which these each material was disperse | distributed in the polymer material (adhesive resin) or the inorganic material may be sufficient. From the viewpoint of light emission efficiency and durability, the material of the light emitting layer 37 is preferably a material in which a light emitting dopant is dispersed in a host material.
 有機発光材料としては、有機EL素子向けの公知の発光材料を用いることができる。
 このような発光材料は、低分子発光材料、高分子発光材料等に分類され、これらの具体的な化合物を以下に例示するが、本実施形態はこれらの材料に限定されるものではない。
 また、有機発光材料は、蛍光材料、燐光材料等に分類されるものでもよく、低消費電力化の観点から、発光効率の高い燐光材料を用いることが好ましい。
As the organic light emitting material, a known light emitting material for an organic EL element can be used.
Such light-emitting materials are classified into low-molecular light-emitting materials, polymer light-emitting materials, and the like. Specific examples of these compounds are given below, but the present embodiment is not limited to these materials.
The organic light emitting material may be classified into a fluorescent material, a phosphorescent material, and the like. From the viewpoint of reducing power consumption, it is preferable to use a phosphorescent material with high emission efficiency.
 発光層37に用いられる低分子発光材料(ホスト材料を含む)としては、4,4’-ビス(2,2’-ジフェニルビニル)-ビフェニル(DPVBi)等の芳香族ジメチリデン化合物;5-メチル-2-[2-[4-(5-メチル-2-ベンゾオキサゾリル)フェニル]ビニル]ベンゾオキサゾール等のオキサジアゾール化合物;3-(4-ビフェニル)-4-フェニル-5-t-ブチルフェニル-1,2,4-トリアゾール(TAZ)等のトリアゾール誘導体;1,4-ビス(2-メチルスチリル)ベンゼン等のスチリルベンゼン化合物;チオピラジンジオキシド誘導体、ベンゾキノン誘導体、ナフトキノン誘導体、アントラキノン誘導体、ジフェノキノン誘導体、フルオレノン誘導体等の蛍光性有機材料;アゾメチン亜鉛錯体、(8-ヒドロキシキノリナト)アルミニウム錯体(Alq3)等の蛍光発光有機金属錯体;BeBq(ビス(ベンゾキノリノラト)ベリリウム錯体);4,4’-ビス-(2,2-ジ-p-トリル-ビニル)-ビフェニル(DTVBi);トリス(1,3-ジフェニル-1,3-プロパンジオノ)(モノフェナントロリン)Eu(III)(Eu(DBM)3(Phen));ジフェニルエチレン誘導体;トリス[4-(9-フェニルフルオレン-9-イル)フェニル]アミン(TFTPA)等のトリフェニルアミン誘導体;ジアミノカルバゾール誘導体;ビススチリル誘導体;芳香族ジアミン誘導体;キナクリドン系化合物;ペリレン系化合物;クマリン系化合物;ジスチリルアリーレン誘導体(DPVBi);オリゴチオフェン誘導体(BMA-3T);4,4’-ジ(トリフェニルシリル)-ビフェニル(BSB)、ジフェニル-ジ(o-トリル)シラン(UGH1)、1,4-ビストリフェニルシリルベンゼン(UGH2)、1,3-ビス(トリフェニルシリル)ベンゼン(UGH3)、トリフェニル-(4-(9-フェニル-9H-フルオレン-9-イル)フェニル)シラン(TPSi-F)等のシラン誘導体;9,9-ジ(4-ジカルバゾール-ベンジル)フルオレン(CPF)、3,6-ビス(トリフェニルシリル)カルバゾール(mCP)、4,4’-ビス(カルバゾール-9-イル)ビフェニル(CBP)、4,4’-ビス(カルバゾール-9-イル)-2,2’-ジメチルビフェニル(CDBP)、N,N-ジカルバゾリル-3,5-ベンゼン(m-CP)、3-(ジフェニルホスホリル)-9-フェニル-9H-カルバゾール(PPO1)、3,6-ジ(9-カルバゾリル)-9-(2-エチルヘキシル)カルバゾール(TCz1)、9,9’-(5-(トリフェニルシリル)-1,3-フェニレン)ビス(9H-カルバゾール)(SimCP)、ビス(3,5-ジ(9H-カルバゾール-9-イル)フェニル)ジフェニルシラン(SimCP2)、3-(ジフェニルホスホリル)-9-(4-ジフェニルホスホリル)フェニル)-9H-カルバゾール(PPO21)、2,2-ビス(4-カルバゾリルフェニル)-1,1-ビフェニル(4CzPBP)、3,6-ビス(ジフェニルホスホリル)-9-フェニル-9H-カルバゾール(PPO2)、9-(4-tert-ブチルフェニル)-3,6-ビス(トリフェニルシリル)-9H-カルバゾール(CzSi)、3,6-ビス[(3,5-ジフェニル)フェニル]-9-フェニル-カルバゾール(CzTP)、9-(4-tert-ブチルフェニル)-3,6-ジトリチル-9H-カルバゾール(CzC)、9-(4-tert-ブチルフェニル)-3,6-ビス(9-(4-メトキシフェニル)-9H-フルオレン-9-イル)-9H-カルバゾール(DFC)、2,2’-ビス(4-カルバゾール-9-イル)フェニル)-ビフェニル(BCBP)、9,9’-((2,6-ジフェニルベンゾ[1,2-b:4,5-b’]ジフラン-3,7-ジイル)ビス(4,1-フェニレン))ビス(9H-カルバゾール)(CZBDF)等のカルバゾール誘導体;4-(ジフェニルフォスフォイル)-N,N-ジフェニルアニリン(HM-A1)等のアニリン誘導体;1,3-ビス(9-フェニル-9H-フルオレン-9-イル)ベンゼン(mDPFB)、1,4-ビス(9-フェニル-9H-フルオレン-9-イル)ベンゼン(pDPFB)、2,7-ビス(カルバゾール-9-イル)-9,9-ジメチルフルオレン(DMFL-CBP)、2-[9,9-ジ(4-メチルフェニル)-フルオレン-2-イル]-9,9-ジ(4-メチルフェニル)フルオレン(BDAF)、2-(9,9-スピロビフルオレン-2-イル)-9,9-スピロビフルオレン(BSBF)、9,9-ビス[4-(ピレニル)フェニル]-9H-フルオレン(BPPF)、2,2’-ジピレニル-9,9-スピロビフルオレン(Spiro-Pye)、2,7-ジピレニル-9,9-スピロビフルオレン(2,2’-Spiro-Pye)、2,7-ビス[9,9-ジ(4-メチルフェニル)-フルオレン-2-イル]-9,9-ジ(4-メチルフェニル)フルオレン(TDAF)、2,7-ビス(9,9-スピロビフルオレン-2-イル)-9,9-スピロビフルオレン(TSBF)、9,9-スピロビフルオレン-2-イル-ジフェニル-フォスフィンオキサイド(SPPO1)等のフルオレン誘導体;1,3-ジ(ピレン-1-イル)ベンゼン(m-Bpye)等のピレン誘導体;プロパン-2,2’-ジイルビス(4,1-フェニレン)ジベンゾエート(MMA1)等のベンゾエート誘導体;4,4’-ビス(ジフェニルフォスフィンオキサイド)ビフェニル(PO1)、2,8-ビス(ジフェニルフォスフォリル)ジベンゾ[b,d]チオフェン(PPT)等のフォスフィンオキサイド誘導体;4,4”-ジ(トリフェニルシリル)-p-ターフェニル(BST)等のターフェニル誘導体;2,4-ビス(フェノキシ)-6-(3-メチルジフェニルアミノ)-1,3,5-トリアジン(BPMT)等トリアジン誘導体等が挙げられる。 As the low-molecular light-emitting materials (including host materials) used for the light-emitting layer 37, aromatic dimethylidene compounds such as 4,4′-bis (2,2′-diphenylvinyl) -biphenyl (DPVBi); 5-methyl- Oxadiazole compounds such as 2- [2- [4- (5-methyl-2-benzoxazolyl) phenyl] vinyl] benzoxazole; 3- (4-biphenyl) -4-phenyl-5-t-butyl Triazole derivatives such as phenyl-1,2,4-triazole (TAZ); styrylbenzene compounds such as 1,4-bis (2-methylstyryl) benzene; thiopyrazine dioxide derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, Fluorescent organic materials such as diphenoquinone derivatives and fluorenone derivatives; azomethine zinc complexes, (8- Fluorescent organic metal complexes such as droxyquinolinato) aluminum complex (Alq3); BeBq (bis (benzoquinolinolato) beryllium complex); 4,4′-bis- (2,2-di-p-tolyl-vinyl ) -Biphenyl (DTVBi); tris (1,3-diphenyl-1,3-propanediono) (monophenanthroline) Eu (III) (Eu (DBM) 3 (Phen)); diphenylethylene derivative; tris [4- ( Triphenylamine derivatives such as 9-phenylfluoren-9-yl) phenyl] amine (TTPPA); diaminocarbazole derivatives; bisstyryl derivatives; aromatic diamine derivatives; quinacridone compounds; perylene compounds; coumarin compounds; distyrylarylene derivatives (DPVBi); oligothiophene derivative (BMA 3T); 4,4′-di (triphenylsilyl) -biphenyl (BSB), diphenyl-di (o-tolyl) silane (UGH1), 1,4-bistriphenylsilylbenzene (UGH2), 1,3-bis Silane derivatives such as (triphenylsilyl) benzene (UGH3), triphenyl- (4- (9-phenyl-9H-fluoren-9-yl) phenyl) silane (TPSi-F); 9,9-di (4- Dicarbazole-benzyl) fluorene (CPF), 3,6-bis (triphenylsilyl) carbazole (mCP), 4,4′-bis (carbazol-9-yl) biphenyl (CBP), 4,4′-bis ( Carbazol-9-yl) -2,2′-dimethylbiphenyl (CDBP), N, N-dicarbazolyl-3,5-benzene (m-CP), 3- (di Phenylphosphoryl) -9-phenyl-9H-carbazole (PPO1), 3,6-di (9-carbazolyl) -9- (2-ethylhexyl) carbazole (TCz1), 9,9 ′-(5- (triphenylsilyl) ) -1,3-phenylene) bis (9H-carbazole) (SimCP), bis (3,5-di (9H-carbazol-9-yl) phenyl) diphenylsilane (SimCP2), 3- (diphenylphosphoryl) -9 -(4-Diphenylphosphoryl) phenyl) -9H-carbazole (PPO21), 2,2-bis (4-carbazolylphenyl) -1,1-biphenyl (4CzPBP), 3,6-bis (diphenylphosphoryl)- 9-phenyl-9H-carbazole (PPO2), 9- (4-tert-butylphenyl) -3,6-bis Triphenylsilyl) -9H-carbazole (CzSi), 3,6-bis [(3,5-diphenyl) phenyl] -9-phenyl-carbazole (CzTP), 9- (4-tert-butylphenyl) -3, 6-ditrityl-9H-carbazole (CzC), 9- (4-tert-butylphenyl) -3,6-bis (9- (4-methoxyphenyl) -9H-fluoren-9-yl) -9H-carbazole ( DFC), 2,2′-bis (4-carbazol-9-yl) phenyl) -biphenyl (BCBP), 9,9 ′-((2,6-diphenylbenzo [1,2-b: 4,5- b ′] carbazole derivatives such as difuran-3,7-diyl) bis (4,1-phenylene)) bis (9H-carbazole) (CZBDF); 4- (diphenylphosphory ) -N, N-diphenylaniline (HM-A1) and other aniline derivatives; 1,3-bis (9-phenyl-9H-fluoren-9-yl) benzene (mDPFB), 1,4-bis (9-phenyl) -9H-fluoren-9-yl) benzene (pDPFB), 2,7-bis (carbazol-9-yl) -9,9-dimethylfluorene (DMFL-CBP), 2- [9,9-di (4- Methylphenyl) -fluoren-2-yl] -9,9-di (4-methylphenyl) fluorene (BDAF), 2- (9,9-spirobifluoren-2-yl) -9,9-spirobifluorene (BSBF), 9,9-bis [4- (pyrenyl) phenyl] -9H-fluorene (BPPF), 2,2′-dipyrenyl-9,9-spirobifluorene (Spiro-Pye), 2, 7-dipyrenyl-9,9-spirobifluorene (2,2'-Spiro-Pye), 2,7-bis [9,9-di (4-methylphenyl) -fluoren-2-yl] -9,9 -Di (4-methylphenyl) fluorene (TDAF), 2,7-bis (9,9-spirobifluoren-2-yl) -9,9-spirobifluorene (TSBF), 9,9-spirobifluorene Fluorene derivatives such as -2-yl-diphenyl-phosphine oxide (SPPO1); pyrene derivatives such as 1,3-di (pyren-1-yl) benzene (m-Bpye); propane-2,2′-diylbis ( Benzoate derivatives such as 4,1-phenylene) dibenzoate (MMA1); 4,4′-bis (diphenylphosphine oxide) biphenyl (PO1), 2,8-bis ( Phosphine oxide derivatives such as phenylphosphoryl) dibenzo [b, d] thiophene (PPT); Terphenyl derivatives such as 4,4 ″ -di (triphenylsilyl) -p-terphenyl (BST); 2,4 And triazine derivatives such as -bis (phenoxy) -6- (3-methyldiphenylamino) -1,3,5-triazine (BPMT).
 発光層37に用いられる高分子発光材料としては、ポリ(2-デシルオキシ-1,4-フェニレン)(DO-PPP)、ポリ[2,5-ビス-[2-(N,N,N-トリエチルアンモニウム)エトキシ]-1,4-フェニル-アルト-1,4-フェニルレン]ジブロマイド(PPP-NEt3+)、ポリ[2-(2’-エチルヘキシルオキシ)-5-メトキシ-1,4-フェニレンビニレン](MEH-PPV)、ポリ[5-メトキシ-(2-プロパノキシサルフォニド)-1,4-フェニレンビニレン](MPS-PPV)、ポリ[2,5-ビス-(ヘキシルオキシ)-1,4-フェニレン-(1-シアノビニレン)](CN-PPV)等のポリフェニレンビニレン誘導体;ポリ(9,9-ジオクチルフルオレン)(PDAF)等のポリスピロ誘導体;ポリ(N-ビニルカルバゾール)(PVK)等のカルバゾール誘導体等が挙げられる。 Polymer light emitting materials used for the light emitting layer 37 include poly (2-decyloxy-1,4-phenylene) (DO-PPP), poly [2,5-bis- [2- (N, N, N-triethyl). Ammonium) ethoxy] -1,4-phenyl-alt-1,4-phenyllene] dibromide (PPP-NEt3 +), poly [2- (2′-ethylhexyloxy) -5-methoxy-1,4-phenylenevinylene ] (MEH-PPV), poly [5-methoxy- (2-propanoxysulfonide) -1,4-phenylenevinylene] (MPS-PPV), poly [2,5-bis- (hexyloxy) -1 , 4-phenylene- (1-cyanovinylene)] (CN-PPV) and the like; poly (9,9-dioctylfluorene) (PDAF) and the like Pyro derivatives; poly (N- vinylcarbazole) (PVK), etc. carbazole derivatives, and the like.
 有機発光材料は、低分子発光材料が好ましく、低消費電力化の観点から、発光効率の高い燐光材料を用いることが好ましい。 The organic light emitting material is preferably a low molecular light emitting material, and from the viewpoint of reducing power consumption, it is preferable to use a phosphorescent material having high light emission efficiency.
 発光層37に用いられる発光性のドーパントとしては、有機EL素子用の公知のドーパントを用いることができる。このようなドーパントとしては、紫外発光材料であれば、p-クォーターフェニル、3,5,3,5-テトラ-tert-ブチルセクシフェニル、3,5,3,5-テトラ-tert-ブチル-p-クィンクフェニル等の蛍光発光材料等が挙げられる。また、青色発光材料であれば、スチリル誘導体等の蛍光発光材料;ビス[(4,6-ジフルオロフェニル)-ピリジナト-N,C2’]ピコリネート イリジウム(III)(FIrpic)、ビス(4’,6’-ジフルオロフェニルポリジナト)テトラキス(1-ピラゾイル)ボレート イリジウム(III)(FIr)等の燐光発光有機金属錯体等が挙げられる。また、緑色発光材料であれば、トリス(2-フェニルピリジナート)イリジウム(Ir(ppy))等の燐光発光有機金属錯体等が挙げられる。発光層37の膜厚は、5~500nmであることが好ましい。 As a luminescent dopant used for the light emitting layer 37, a well-known dopant for organic EL elements can be used. Examples of such a dopant include p-quaterphenyl, 3,5,3,5-tetra-tert-butylsecphenyl, 3,5,3,5-tetra-tert-butyl-p for ultraviolet light-emitting materials. -Fluorescent materials such as quinckphenyl. Further, in the case of a blue light-emitting material, a fluorescent light-emitting material such as a styryl derivative; bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium (III) (FIrpic), bis (4 ′, 6 Examples include phosphorescent organic metal complexes such as' -difluorophenylpolydinato) tetrakis (1-pyrazoyl) borate iridium (III) (FIr 6 ). Examples of the green light emitting material include phosphorescent organic metal complexes such as tris (2-phenylpyridinate) iridium (Ir (ppy) 3 ). The thickness of the light emitting layer 37 is preferably 5 to 500 nm.
 電子輸送層38の材料としては、例えば、n型半導体である無機材料、オキサジアゾール誘導体、トリアゾール誘導体、チオピラジンジオキシド誘導体、ベンゾキノン誘導体、ナフトキノン誘導体、アントラキノン誘導体、ジフェノキノン誘導体、フルオレノン誘導体等の低分子材料;ポリ(オキサジアゾール)(Poly-OXZ)、ポリスチレン誘導体(PSS)等の高分子材料を挙げることができる。 Examples of the material for the electron transport layer 38 include an inorganic material that is an n-type semiconductor, an oxadiazole derivative, a triazole derivative, a thiopyrazine dioxide derivative, a benzoquinone derivative, a naphthoquinone derivative, an anthraquinone derivative, a diphenoquinone derivative, and a fluorenone derivative. Molecular materials; polymer materials such as poly (oxadiazole) (Poly-OXZ) and polystyrene derivatives (PSS) can be mentioned.
 電子注入層39は、陰極32bから効率良く電子を受け取り、電子輸送層38へ効率良く受け渡すために設けられている。電子注入層39の材料としては、例えば、フッ化リチウム(LiF)やフッ化バリウム(BaF)等のフッ化物、酸化リチウム(LiO)等の酸化物等を挙げることができる。 The electron injection layer 39 is provided in order to efficiently receive electrons from the cathode 32 b and efficiently transfer them to the electron transport layer 38. Examples of the material of the electron injection layer 39 include fluorides such as lithium fluoride (LiF) and barium fluoride (BaF 2 ), oxides such as lithium oxide (Li 2 O), and the like.
 電子の注入、輸送をより効率よく行うために、電子注入層39に用いる材料は、電子輸送層38に用いられる材料よりもLUMOレベルが高いものが好ましい。また、電子輸送層38に用いる材料は、電子注入層39に用いられる材料より電子の移動度が高い材料を用いることが好ましい。 In order to perform electron injection and transport more efficiently, the material used for the electron injection layer 39 preferably has a higher LUMO level than the material used for the electron transport layer 38. The material used for the electron transport layer 38 is preferably a material having higher electron mobility than the material used for the electron injection layer 39.
 なお、有機発光層33の構成はこれに限らず、必要に応じて適宜設定することができる。例えば、正孔輸送層/発光層/電子輸送層の構成や、正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層の構成、正孔注入層/正孔輸送層/電子ブロッキング層/発光層/正孔ブロッキング層/電子注入層の構成にすることもできる。 In addition, the structure of the organic light emitting layer 33 is not limited to this, and can be appropriately set as necessary. For example, hole transport layer / light emitting layer / electron transport layer configuration, hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer configuration, hole injection layer / hole transport layer / An electron blocking layer / light emitting layer / hole blocking layer / electron injection layer can also be used.
 また、陰極32bの形成後には、水分等の浸入や、ロールを巻き取る際にぶつけて生じる傷等を防ぐために、陰極32bを覆うように保護膜を形成してもよい。 Further, after the formation of the cathode 32b, a protective film may be formed so as to cover the cathode 32b in order to prevent intrusion of moisture and the like and damage caused by hitting the roll when wound.
 保護膜の形成方法としては、例えば、EB蒸着法、スパッタリング法、イオンプレーティング法、抵抗加熱蒸着法等を挙げることができる。また、保護膜の材料としては、金属であればAl、Ag等が、有機物であればフタロシアニン等が、無機物であればSiONやSiO、SiN等が挙げられる。 Examples of the method for forming the protective film include EB vapor deposition, sputtering, ion plating, and resistance heating vapor deposition. Examples of the material for the protective film include Al and Ag for metals, phthalocyanine for organic materials, and SiON, SiO, and SiN for inorganic materials.
 有機発光層33を構成している各層の形成方法には、真空蒸着法等のドライプロセスや、ドクターブレード法、ディップコート法、マイクログラビア法、スプレー法、インクジェット法、印刷法等のウエットプロセスを用いることができる。ウエットプロセスでは、有機発光層33等に対する酸素や水分による影響を考慮すると、不活性ガス雰囲気下や真空条件下で処理するのが好ましい。また、各層の形成後には、溶媒を除去するために加熱等による乾燥処理を行うのが好ましい。その際、乾燥処理は、不活性ガス雰囲気下で行うのが好ましく、減圧下で行うのがより好ましい。 The formation method of each layer constituting the organic light emitting layer 33 includes a dry process such as a vacuum deposition method, and a wet process such as a doctor blade method, a dip coating method, a micro gravure method, a spray method, an inkjet method, and a printing method. Can be used. In the wet process, in consideration of the influence of oxygen and moisture on the organic light emitting layer 33 and the like, it is preferable to perform the treatment under an inert gas atmosphere or under vacuum conditions. Moreover, after forming each layer, it is preferable to perform a drying process by heating or the like in order to remove the solvent. In that case, it is preferable to perform a drying process in inert gas atmosphere, and it is more preferable to carry out under reduced pressure.
 図6は、複数の発光素子部を備えた透明支持基板の一面側を示す平面図である。
 図6に示すように、複数の発光素子部3は、それぞれ所定幅で直線状に延びた矩形帯状に形成され、隣り合う発光素子部3と所定の間隔を隔てて配置されている。本実施形態では、複数の発光素子部3の各々が、補助電極6のうち隣り合う延長部6a同士の間に配置された透明な接着層17(図1)を介してガスバリア層8の表面8aに貼り合わされている。具体的に、発光素子部3は、透明ベースフィルム31の短手方向両側の端部それぞれを、発光素子部3の両側に位置する補助電極6の一部と重畳させて配置されている。
 図6では、透明支持基板2および透明ベースフィルム31(図5)は矩形の形状となっているが、必ずしも矩形である必要はなく、任意の形状でもよい。
FIG. 6 is a plan view showing one surface side of a transparent support substrate having a plurality of light emitting element portions.
As shown in FIG. 6, the plurality of light emitting element portions 3 are each formed in a rectangular band shape extending linearly with a predetermined width, and are arranged with a predetermined interval from adjacent light emitting element portions 3. In the present embodiment, each of the plurality of light emitting element portions 3 has a surface 8a of the gas barrier layer 8 via a transparent adhesive layer 17 (FIG. 1) disposed between adjacent extension portions 6a of the auxiliary electrode 6. Are pasted together. Specifically, the light emitting element unit 3 is disposed so that the ends on both sides in the short direction of the transparent base film 31 are overlapped with a part of the auxiliary electrode 6 located on both sides of the light emitting element unit 3.
In FIG. 6, the transparent support substrate 2 and the transparent base film 31 (FIG. 5) have a rectangular shape, but are not necessarily rectangular, and may be any shape.
 各発光素子部3の陽極32aは、陽極32aよりも電気抵抗値が低く、電気伝導率に優れた導電性ペースト7を用いて補助電極6の延長部6aに電気的に接続されている。また、各発光素子部3の陰極32bは、導電性ペースト7aを用いて端子電極5に電気的に接続されている。 The anode 32a of each light emitting element portion 3 is electrically connected to the extension portion 6a of the auxiliary electrode 6 using a conductive paste 7 having a lower electrical resistance than the anode 32a and having an excellent electrical conductivity. Moreover, the cathode 32b of each light emitting element part 3 is electrically connected to the terminal electrode 5 using the conductive paste 7a.
 図7は、発光素子部の陽極と補助電極との接続状態、および発光素子部の陰極と端子電極との接続状態を示す斜視図である。
 図7に示すように、各延長部6aの表面には、各々の延在方向に沿って導電性ペースト7が設けられている。導電性ペースト7は、延長部6aの表面から発光素子部3の透明ベースフィルム31の短手方向両側の側面を経て陽極32aの表面にかけて設けられている。この導電性ペースト7を介して陽極32aと延長部6aとが電気的に接続されている。
 すなわち、陽極32aは、その長手方向の一端から他端にわたる広い範囲で補助電極6と電気的に接続されている。
FIG. 7 is a perspective view showing a connection state between the anode and the auxiliary electrode of the light emitting element part and a connection state between the cathode and the terminal electrode of the light emitting element part.
As shown in FIG. 7, the conductive paste 7 is provided on the surface of each extension portion 6a along each extending direction. The conductive paste 7 is provided from the surface of the extension portion 6a to the surface of the anode 32a through the side surfaces on both sides in the short direction of the transparent base film 31 of the light emitting element portion 3. The anode 32a and the extension 6a are electrically connected through the conductive paste 7.
That is, the anode 32a is electrically connected to the auxiliary electrode 6 in a wide range extending from one end to the other end in the longitudinal direction.
 帯状を呈する陽極32aは、ITOやIZO等の電気抵抗の高い材料を用いて形成されている。このため、補助電極6の共通部6bと対向している陽極32aの長手方向一端側において当該陽極32aと補助電極6(共通部6b)とを接続させた場合には、陽極32aの長手方向で電圧むらが生じてしまうおそれがある。そこで本実施形態では、電気抵抗の高い材料からなる陽極32aの長手方向に沿って延長部6aを延在させ、陽極32aの長手方向の一端から他端にわたる広い範囲で補助電極6と電気的に接続した構成となっている。これにより、陽極32aの長手方向での電圧むらは生じない。 The anode 32a having a strip shape is formed using a material having high electrical resistance such as ITO or IZO. For this reason, when the anode 32a and the auxiliary electrode 6 (common portion 6b) are connected to one end in the longitudinal direction of the anode 32a facing the common portion 6b of the auxiliary electrode 6, in the longitudinal direction of the anode 32a. Voltage unevenness may occur. Therefore, in the present embodiment, the extension 6a is extended along the longitudinal direction of the anode 32a made of a material having high electrical resistance, and is electrically connected to the auxiliary electrode 6 in a wide range from one end to the other end in the longitudinal direction of the anode 32a. It has a connected configuration. Thereby, voltage unevenness in the longitudinal direction of the anode 32a does not occur.
 したがって、各発光素子部3の陽極32aは、補助電極6を介して電流が容易に流れるようになっており、電圧降下の影響を効果的に抑制することができる。なお、有機発光層33は、陽極32aの短手方向両側の端部よりも内側に形成されており、有機発光層33と導電性ペースト7とは離間している。 Therefore, the current easily flows through the auxiliary electrode 6 in the anode 32a of each light emitting element section 3, and the influence of the voltage drop can be effectively suppressed. In addition, the organic light emitting layer 33 is formed inside the ends of both sides in the short direction of the anode 32a, and the organic light emitting layer 33 and the conductive paste 7 are separated from each other.
 一方、陰極32bは、端子電極5と、これに近接している各発光素子部3の端部との間に、アーチ状の導電性ペースト7aを取り付けることにより、端子電極5と電気的に接続されている。帯状を呈する陰極32bは、長手方向一端側において導電性ペースト7aと接続されている。陰極32bは、Al等の電気抵抗の低い材料を用いて形成されているため、端子電極5との接続箇所が長手方向一端側であっても電圧むらが生じにくい。 On the other hand, the cathode 32b is electrically connected to the terminal electrode 5 by attaching an arch-shaped conductive paste 7a between the terminal electrode 5 and the end of each light emitting element portion 3 adjacent thereto. Has been. The strip-shaped cathode 32b is connected to the conductive paste 7a at one end in the longitudinal direction. Since the cathode 32b is formed using a material having low electric resistance such as Al, voltage unevenness hardly occurs even when the connection portion with the terminal electrode 5 is on one end side in the longitudinal direction.
 なお、陰極32bと端子電極5との接続構造については、銀ペースト等をパターニングすることで形成する導電性ペースト7aに限らず、導電テープを用いてもよい。 The connection structure between the cathode 32b and the terminal electrode 5 is not limited to the conductive paste 7a formed by patterning a silver paste or the like, and a conductive tape may be used.
<封止部>
 図2に戻り、封止部材4は、透明支持基板2の発光素子部3等が設けられている一面2a側を密閉できるものであればよい。その具体例としては、例えば、窒素ガスやアルゴンガス等の不活性ガスをガラス基板や金属基板等で封止する方法や、更に、不活性ガス中に酸化バリウム等の吸湿剤等を設ける方法などを挙げることができる。封止部材4を設けることにより、有機発光層33が酸素や水分に曝されるのを防ぐことができるので、有機ELデバイス1の寿命を向上させることができる。
<Sealing part>
Returning to FIG. 2, the sealing member 4 only needs to be capable of sealing the one surface 2 a side on which the light emitting element portion 3 and the like of the transparent support substrate 2 are provided. Specific examples thereof include, for example, a method of sealing an inert gas such as nitrogen gas or argon gas with a glass substrate or a metal substrate, a method of further providing a hygroscopic agent such as barium oxide in the inert gas, or the like. Can be mentioned. By providing the sealing member 4, it is possible to prevent the organic light emitting layer 33 from being exposed to oxygen or moisture, so that the lifetime of the organic EL device 1 can be improved.
<有機ELデバイスの製造方法>
 次に、有機ELデバイスの製造方法について述べる。
 上述した有機ELデバイス1は、例えば、次のような(1)~(5)の工程を含む製造方法を用いて容易に製造することができる。
<Method for manufacturing organic EL device>
Next, a method for manufacturing an organic EL device will be described.
The organic EL device 1 described above can be easily manufactured using, for example, a manufacturing method including the following steps (1) to (5).
(1)色変換フィルタ基板の作成
 図8A~図8Cは、色変換フィルタ基板の製造工程を示す説明図である。なお、図8A~図8Cにおいて、図中の左側は、色変換フィルタ基板の製造工程を示す第1~第3の斜視図であり、図中の右側は、色変換フィルタ基板の製造工程を示す第1~第3の断面図である。
 所望の発光面積を有する透明支持基板2に、1種または複数種の色変換フィルタ層を所望されるパターンに形成することにより、本実施形態の色変換フィルタ基板を作成する。
(1) Creation of Color Conversion Filter Substrate FIGS. 8A to 8C are explanatory views showing the manufacturing process of the color conversion filter substrate. 8A to 8C, the left side of the drawing is a first to third perspective view showing the manufacturing process of the color conversion filter substrate, and the right side of the drawing shows the manufacturing process of the color conversion filter substrate. FIG. 3 is a first to third cross-sectional view.
The color conversion filter substrate of this embodiment is created by forming one or more types of color conversion filter layers in a desired pattern on the transparent support substrate 2 having a desired light emitting area.
 まず、透明支持基板2上に、色変換フィルタ層9の所望パターンを得るためのマスクを形成する。次に、マスクを覆うようにして、前述した蛍光変換色素およびレジストを含む組成物を塗布し、レジスト塗布膜を形成する。その後、予め形成しておいたマスクを通してレジスト塗布膜を露光・現像を行うことにより、所望パターンの色変換フィルタ層9を形成する(図8A)。色変換フィルタ層9は、5μm以上、好ましくは8~15μmの厚さを有する。 First, a mask for obtaining a desired pattern of the color conversion filter layer 9 is formed on the transparent support substrate 2. Next, the composition containing the fluorescence conversion dye and the resist described above is applied so as to cover the mask, thereby forming a resist coating film. Thereafter, the resist coating film is exposed and developed through a previously formed mask to form a color conversion filter layer 9 having a desired pattern (FIG. 8A). The color conversion filter layer 9 has a thickness of 5 μm or more, preferably 8 to 15 μm.
 次に、色変換フィルタ層9の表面全体を覆うガスバリア層8を形成する。
 まず、透明支持基板2上に、色変換フィルタ層9の表面全体を覆うようにして、有機平坦化層8Aの形成材料を塗布し、予め形成しておいたマスクを介して露光・現像を行い、色変換フィルタ層9の周囲を封止する有機平坦化層8Aを形成する(図8B)。
Next, the gas barrier layer 8 that covers the entire surface of the color conversion filter layer 9 is formed.
First, a material for forming the organic planarization layer 8A is applied on the transparent support substrate 2 so as to cover the entire surface of the color conversion filter layer 9, and exposure and development are performed through a previously formed mask. Then, an organic flattening layer 8A for sealing the periphery of the color conversion filter layer 9 is formed (FIG. 8B).
 次に、透明支持基板2上に、有機平坦化層8Aの表面全体を覆うようにして、無機ガスバリア層8Bの形成材料を塗布し、予め形成しておいたマスクを介して露光・現像を行い、有機平坦化層8Aの周囲を封止する無機ガスバリア層8Bを形成する(図8B)。 Next, a material for forming the inorganic gas barrier layer 8B is applied on the transparent support substrate 2 so as to cover the entire surface of the organic planarizing layer 8A, and exposure and development are performed through a mask formed in advance. Then, an inorganic gas barrier layer 8B that seals the periphery of the organic planarizing layer 8A is formed (FIG. 8B).
 次に、ガスバリア層8上に、端子電極5及び補助電極6をパターンニングする(図8C)。端子電極5及び補助電極6は、例えば、印刷法、蒸着法(抵抗加熱蒸着法、EB蒸着法、スパッタ蒸着法)などを用いてパターンニングすることができる。具体的には、印刷法の場合であれば、凸版印刷や凹版印刷、平板印刷、インクジェット法、スクリーン印刷等でパターンニングすることができる。蒸着法の場合であれば、シャドーマスクを用いてマスク蒸着法によりパターンニングしてもよいし、金属膜を成膜し、その金属膜を用いてフォトリソグラフィー法によりパターンニングしてもよい。 Next, the terminal electrode 5 and the auxiliary electrode 6 are patterned on the gas barrier layer 8 (FIG. 8C). The terminal electrode 5 and the auxiliary electrode 6 can be patterned using, for example, a printing method, a vapor deposition method (resistance heating vapor deposition method, EB vapor deposition method, sputter vapor deposition method) or the like. Specifically, in the case of a printing method, patterning can be performed by relief printing, intaglio printing, flat plate printing, ink jet method, screen printing, or the like. In the case of the vapor deposition method, patterning may be performed by a mask vapor deposition method using a shadow mask, or a metal film may be formed and patterned by a photolithography method using the metal film.
(2)発光素子部の製造方法
 図9は、ロール・トゥ・ロール法に基づく成膜装置11の模式図を示す。図10は、成膜装置11により作製した有機ELベース(マザー基材)15を示す斜視図である。
 図9及び図10に示すように、発光素子部3を製造するには、まず、発光素子部3の透明ベースフィルム31の母材となる長尺の透明ベース基板13を用意する。この透明ベース基板13の一面13aに、陽極32a、有機発光層33、陰極32bを積層し、発光素子部3の原反ロールとしての有機ELベース15を作製する。本工程においては、ロール状に巻回された長尺の透明ベース基板13を連続的に搬送しながら上記有機ELベース15を製造した後、個々の発光素子部3のサイズに合わせて切断する方式である、ロール・トゥ・ロール法を用いるのが好ましい。
(2) Method for Manufacturing Light-Emitting Element Section FIG. 9 is a schematic diagram of a film forming apparatus 11 based on a roll-to-roll method. FIG. 10 is a perspective view showing an organic EL base (mother base material) 15 produced by the film forming apparatus 11.
As shown in FIGS. 9 and 10, in order to manufacture the light emitting element portion 3, first, a long transparent base substrate 13 that is a base material of the transparent base film 31 of the light emitting element portion 3 is prepared. The anode 32 a, the organic light emitting layer 33, and the cathode 32 b are laminated on one surface 13 a of the transparent base substrate 13, and the organic EL base 15 as a raw roll of the light emitting element unit 3 is produced. In this step, the organic EL base 15 is manufactured while continuously transporting the long transparent base substrate 13 wound in a roll shape, and then cut according to the size of each light emitting element portion 3. It is preferable to use a roll-to-roll method.
 有機ELベース15(透明ベース基板13)は、例えば、幅が10mm程度及び長さが10m程度であり、長さ方向に、例えば、15cm毎に分割することによって発光素子部3のサイズとなるものである。 The organic EL base 15 (transparent base substrate 13) has a width of about 10 mm and a length of about 10 m, for example, and becomes the size of the light emitting element unit 3 by dividing the length in the length direction, for example, every 15 cm. It is.
 成膜装置11の室内11aには、蒸着装置等の各種の成膜手段16等が設置されている。また、室内11aの一端側に透明ベース基板13を送り出す送出ローラー14Aが設けられ、他端側には透明ベース基板13を巻き取る巻取ローラー14Bが設けられている。
 透明ベース基板13はロール状に巻き取り可能となっており、送出ローラー14A側から巻取ローラー14B側に向けて移動する構成となっている。
In the room 11a of the film forming apparatus 11, various film forming means 16 such as a vapor deposition apparatus are installed. Further, a feed roller 14A for feeding the transparent base substrate 13 is provided on one end side of the chamber 11a, and a take-up roller 14B for winding the transparent base substrate 13 is provided on the other end side.
The transparent base substrate 13 can be wound up in a roll shape, and is configured to move from the sending roller 14A side toward the winding roller 14B side.
 成膜装置11の室内11aは、窒素雰囲気や真空条件に切り替え可能に構成されている。このような成膜装置11を用いれば、送出ローラー14Aから送り出した透明ベース基板13を巻取ローラー14Bにおいて巻き取りながら、順次、所定の成膜条件で透明ベース基板13の一面13a側に各種膜を形成し、積層していくことができる。従って、材質や構成、成膜方法の異なる複数の層であっても、比較的容易に積層することができ、有機ELベース15を低コストで量産できる。 The chamber 11a of the film forming apparatus 11 is configured to be switchable to a nitrogen atmosphere or a vacuum condition. When such a film forming apparatus 11 is used, various films are sequentially formed on the one surface 13a side of the transparent base substrate 13 under predetermined film forming conditions while winding the transparent base substrate 13 delivered from the delivery roller 14A by the take-up roller 14B. Can be formed and stacked. Therefore, even a plurality of layers having different materials, configurations, and film forming methods can be stacked relatively easily, and the organic EL base 15 can be mass-produced at low cost.
(有機ELデバイスの製造方法)
 以下、有機ELデバイスの製造方法について詳しく説明する。
 図11は、ロール・トゥ・ロール法に基づく成膜装置11の構成を詳細に示す図である。
 図12A~図12Eは、ロール・トゥ・ロール法を用いた発光素子部の製造方法を示す第1~第5の説明図である。
(Method for manufacturing organic EL device)
Hereinafter, the manufacturing method of an organic EL device will be described in detail.
FIG. 11 is a diagram showing in detail the configuration of the film forming apparatus 11 based on the roll-to-roll method.
12A to 12E are first to fifth explanatory views showing a method for manufacturing a light emitting element portion using a roll-to-roll method.
 図11に示すように、成膜装置11は、透明ベース基板13を巻き取る2つの送出ローラー14Aと巻取ローラー14Bとの間に、洗浄部21、陽極成膜部22(成膜手段16)、エッチング部23、有機層成膜部24(成膜手段16)、エッチング部25、陰極成膜部26(成膜手段16)、エッチング部27、保護膜成膜部28(成膜手段16)、エッチング部29を備えている。 As shown in FIG. 11, the film forming apparatus 11 includes a cleaning unit 21 and an anode film forming unit 22 (film forming unit 16) between two feeding rollers 14 </ b> A and a winding roller 14 </ b> B that wind up the transparent base substrate 13. Etching unit 23, organic layer deposition unit 24 (deposition unit 16), etching unit 25, cathode deposition unit 26 (deposition unit 16), etching unit 27, protective film deposition unit 28 (deposition unit 16) An etching unit 29 is provided.
 先ず、図11及び図12Aに示すように、洗浄部21において、透明ベース基板13の一面13aに対して、例えば、マイクロ波プラズマドライ洗浄を行う。 First, as shown in FIG. 11 and FIG. 12A, for example, microwave plasma dry cleaning is performed on the one surface 13 a of the transparent base substrate 13 in the cleaning unit 21.
(陽極形成工程)
 次に、図11及び図12Bに示すように、陽極成膜部22において、例えば、ITO膜を透明ベース基板13の一面13aの全面に形成する。その後、エッチング部23において、ITO膜をエッチングして、所定領域に陽極32aを形成する。このとき、例えば、陽極32aの短手方向が透明ベース基板13の幅方向に沿うとともに、陽極32aの長手方向が透明ベース基板13の長さ方向に沿う矩形形状となるよう、パターン形成する。陽極32aは、短手方向の幅が、透明ベース基板13の短手方向の幅と一致した矩形形状であるため、陽極32aのパターニングにおいて、透明ベース基板13の一面13aの全面に、陽極の形成膜を成膜した後にマスクを用いないエッチングを行うことにより形成することが可能である。このため、陽極32aの製造を容易に行うことができる。
(Anode formation process)
Next, as shown in FIGS. 11 and 12B, for example, an ITO film is formed on the entire surface 13 a of the transparent base substrate 13 in the anode film forming unit 22. Thereafter, in the etching part 23, the ITO film is etched to form the anode 32a in a predetermined region. At this time, for example, the pattern is formed so that the short side direction of the anode 32 a is along the width direction of the transparent base substrate 13 and the long side direction of the anode 32 a is a rectangular shape along the length direction of the transparent base substrate 13. Since the anode 32a has a rectangular shape in which the width in the short direction coincides with the width in the short direction of the transparent base substrate 13, the anode is formed on the entire surface 13a of the transparent base substrate 13 in the patterning of the anode 32a. It can be formed by performing etching without using a mask after the film is formed. For this reason, the anode 32a can be easily manufactured.
(有機層形成工程)
 次に、図11及び図12Cに示すように、有機層成膜部24において陽極32aの全面に有機発光層33を成膜し、続く、エッチング部25において、有機発光層33のパターニングを行う。このとき、陽極32aを覆うように有機発光層33をパターニングするが、有機発光層33の長さ方向一端側は陽極32aの端を覆うとともに、長さ方向他端側は陽極32aの端を露出するように形成する。さらに、本実施形態では、有機発光層33の短手方向における両端が、陽極32aの短手方向における両端よりも内側に位置するようにし、陽極32aの短手方向両端を露出させるように有機発光層33をパターニングする。
 これにより、有機発光層33の長さ方向一端および中央部分においては、透明ベース基板13、陽極32a、有機発光層33の3層積層構造となり、有機発光層33の長さ方向他端側及び短手方向両端側においては、透明ベース基板13、陽極32aの2層積層構造となる。
(Organic layer formation process)
Next, as shown in FIG. 11 and FIG. 12C, the organic light emitting layer 33 is formed on the entire surface of the anode 32 a in the organic layer forming part 24, and then the organic light emitting layer 33 is patterned in the etching part 25. At this time, the organic light emitting layer 33 is patterned so as to cover the anode 32a. One end in the length direction of the organic light emitting layer 33 covers the end of the anode 32a, and the other end in the length direction exposes the end of the anode 32a. To be formed. Further, in the present embodiment, the organic light emitting layer 33 is arranged so that both ends in the short direction of the organic light emitting layer 33 are positioned inside both ends in the short direction of the anode 32a, and both ends of the anode 32a in the short direction are exposed. Layer 33 is patterned.
As a result, the organic light emitting layer 33 has a three-layer laminated structure of the transparent base substrate 13, the anode 32 a, and the organic light emitting layer 33 at one end and the central portion in the length direction. At both ends in the hand direction, a two-layer structure of the transparent base substrate 13 and the anode 32a is formed.
(陰極形成工程)
 次に、図11及び図12Dに示すように、陰極成膜部26において有機発光層33の上の全面に陰極32bの形成を行い、続く、エッチング部27において陰極32bのパターニングを行う。このとき、有機発光層33を覆うように陰極32bをパターニングするが、有機発光層33の長さ方向一端側は陰極32bの端を覆うとともに、長さ方向他端側は陰極32bの端を露出するように形成する。さらに、本実施形態では、陰極32bの短手方向における両端が、有機発光層33の短手方向における両端よりも内側に位置するようにし、有機発光層33の短手方向両端を露出させるように陰極32bをパターニングする。
 これにより、陰極32bの長さ方向一端及び中央部分においては、透明ベース基板13、陽極32a、有機発光層33、陰極32bの4層積層構造となる。
(Cathode formation process)
Next, as shown in FIG. 11 and FIG. 12D, the cathode 32b is formed on the entire surface of the organic light emitting layer 33 in the cathode film forming portion 26, and the cathode 32b is subsequently patterned in the etching portion 27. At this time, the cathode 32b is patterned so as to cover the organic light emitting layer 33. One end of the organic light emitting layer 33 in the length direction covers the end of the cathode 32b, and the other end in the length direction exposes the end of the cathode 32b. To be formed. Furthermore, in the present embodiment, both ends in the short direction of the cathode 32b are positioned inside both ends in the short direction of the organic light emitting layer 33 so that both ends in the short direction of the organic light emitting layer 33 are exposed. The cathode 32b is patterned.
As a result, a four-layered structure of the transparent base substrate 13, the anode 32a, the organic light emitting layer 33, and the cathode 32b is formed at one end in the length direction and the central portion of the cathode 32b.
(保護膜形成工程)
 次に、保護膜成膜部28において、陰極32bを覆うように、例えばSiOからなる保護膜を形成し、続くエッチング部29において保護膜(不図示)のパターニングを行う。
(Protective film formation process)
Next, in the protective film forming unit 28, a protective film made of, for example, SiO 2 is formed so as to cover the cathode 32b, and in the subsequent etching unit 29, a protective film (not shown) is patterned.
 このようにして、発光素子部3の形成領域R毎に、透明ベース基板13上に陽極32a、有機発光層33、陰極32b及び保護膜を形成し、有機ELベース15を得る。製造された有機ELベース15は、巻取ローラー14Bにおいて巻き取られる。 In this manner, the anode 32a, the organic light emitting layer 33, the cathode 32b, and the protective film are formed on the transparent base substrate 13 for each formation region R of the light emitting element portion 3, and the organic EL base 15 is obtained. The manufactured organic EL base 15 is wound up by the winding roller 14B.
(切断工程)
 次に、図12Eに示すように、巻取ローラー14Bから巻き出された有機ELベース15を発光素子部形成領域R毎に切断し、複数の発光素子部3を得る。このとき、陽極32aの短手方向両側の表面が露出している。なお、発光素子部3の有機発光層33が水分等で劣化するのを防ぐために、有機ELベース15の分断処理は、ドライエアーブースやグローブボックスの中で行う。
 以上、上述した工程を経て、発光素子部3が完成する。
(Cutting process)
Next, as shown in FIG. 12E, the organic EL base 15 unwound from the take-up roller 14 </ b> B is cut for each light emitting element part forming region R, and a plurality of light emitting element parts 3 are obtained. At this time, the surfaces on both sides in the short direction of the anode 32a are exposed. In order to prevent the organic light emitting layer 33 of the light emitting element section 3 from being deteriorated by moisture or the like, the organic EL base 15 is divided in a dry air booth or a glove box.
As described above, the light emitting element portion 3 is completed through the above-described steps.
 図13A~図13Cは、検査工程を経た複数の発光素子部を色変換フィルタ基板12上に設ける工程を説明するための図である。図14は、発光素子部配置工程を説明するための断面図である。図15は、陽極-補助電極間の接続工程を説明するための断面図である。図16は、陰極-端子電極間の接続工程を説明するための側面図である。図17は、一つの発光素子部における陰極-端子電極間の接続構造を示す断面図である。図18は、封止工程を説明するための断面図である。 13A to 13C are diagrams for explaining a process of providing a plurality of light emitting element portions on the color conversion filter substrate 12 that have undergone the inspection process. FIG. 14 is a cross-sectional view for explaining the light emitting element portion arranging step. FIG. 15 is a cross-sectional view for explaining a connection process between the anode and the auxiliary electrode. FIG. 16 is a side view for explaining a connection process between the cathode and the terminal electrode. FIG. 17 is a cross-sectional view showing a connection structure between a cathode and a terminal electrode in one light emitting element portion. FIG. 18 is a cross-sectional view for explaining the sealing step.
(検査工程)
 次に、図13Aに示す作製した複数の発光素子部3の全てに対して、公知の方法によって作製した発光素子部3の検査を行う。そして、図13Bに示すように不良品と判断された発光素子部3を取り除き、良品と判断された発光素子部3のみを残す。
(Inspection process)
Next, the inspection of the light emitting element portion 3 manufactured by a known method is performed on all the plurality of light emitting element portions 3 shown in FIG. 13A. Then, as shown in FIG. 13B, the light emitting element portion 3 determined to be defective is removed, and only the light emitting element portion 3 determined to be non-defective is left.
(発光素子部配置工程)
 次に、図13Cに示すように、色変換フィルタ基板12の所定位置に、透明熱硬化樹脂等を用いて、複数(本実施形態では4つ)の発光素子部3を固定する。具体的には、図14に示すように、色変換フィルタ基板12のガスバリア層8上に形成した隣り合う補助電極6同士の間に透明熱硬化樹脂をそれぞれ配置して接着層17を形成し、各接着層17を介して複数の発光素子部3を色変換フィルタ基板12上に配置する。このため、複数の発光素子部3は、配列方向に互いに所定の間隔をおいて配置される。
(Light emitting element arrangement step)
Next, as shown in FIG. 13C, a plurality of (four in the present embodiment) light emitting element portions 3 are fixed at predetermined positions of the color conversion filter substrate 12 using a transparent thermosetting resin or the like. Specifically, as shown in FIG. 14, a transparent thermosetting resin is disposed between the adjacent auxiliary electrodes 6 formed on the gas barrier layer 8 of the color conversion filter substrate 12 to form the adhesive layer 17, respectively. A plurality of light emitting element portions 3 are arranged on the color conversion filter substrate 12 via the adhesive layers 17. For this reason, the plurality of light emitting element portions 3 are arranged at predetermined intervals in the arrangement direction.
 本工程において、発光素子部3を、透明支持基板2上で隣り合う2つの延長部6a,6aの間に貼り付ける際、これら2つの延長部6a,6aと、発光素子部3の透明ベースフィルム31の短手方向両端と、をそれぞれ重畳させるように発光素子部3を配置する。 In this step, when the light emitting element portion 3 is attached between two adjacent extension portions 6a and 6a on the transparent support substrate 2, the two extension portions 6a and 6a and the transparent base film of the light emitting element portion 3 are used. The light emitting element portion 3 is arranged so that both ends of the 31 in the short direction overlap each other.
(陽極-補助電極間の接続工程)
 次に、図15に示すように、色変換フィルタ基板12に配置された複数の発光素子部3と補助電極6とを導電性ペースト7を用いて電気的に接続する。導電性ペースト7は、補助電極6の延長部6aの表面から、発光素子部3の透明ベースフィルム31及び陽極32aの各側面を経て、陽極32aの表面における露出部分にかけて設けられる。このようにして、各発光素子部3の陽極32aと、その両側に位置する延長部6a、6aとを、導電性ペースト7、7を介して電気的に接続する。
(Connecting process between anode and auxiliary electrode)
Next, as shown in FIG. 15, the plurality of light emitting element portions 3 arranged on the color conversion filter substrate 12 and the auxiliary electrode 6 are electrically connected using a conductive paste 7. The conductive paste 7 is provided from the surface of the extension portion 6a of the auxiliary electrode 6 through the transparent base film 31 and the anode 32a of the light emitting element portion 3 to the exposed portion of the surface of the anode 32a. Thus, the anode 32a of each light emitting element part 3 and the extension parts 6a and 6a located on both sides thereof are electrically connected via the conductive pastes 7 and 7.
(陰極-端子電極間の接続工程)
 また、図16に示すように、複数の発光素子部3の陰極32bの各々と端子電極5とを導電性ペースト7aを介して電気的に接続する。具体的には図17に示すように、導電性ペースト7aは、有機発光層33の一端を覆うようにして形成された陰極32bの長手方向一方の端部側の表面を部分的に覆うようにして、当該陰極32bの表面から端子電極5の表面にかけて設けられている。陰極32bは、発光素子部3の上層に形成されているので、端子電極5と容易に電気的に接続することができる。
(Connection process between cathode and terminal electrode)
Further, as shown in FIG. 16, each of the cathodes 32b of the plurality of light emitting element portions 3 and the terminal electrode 5 are electrically connected through a conductive paste 7a. Specifically, as shown in FIG. 17, the conductive paste 7 a partially covers the surface on one end side in the longitudinal direction of the cathode 32 b formed so as to cover one end of the organic light emitting layer 33. Thus, it is provided from the surface of the cathode 32 b to the surface of the terminal electrode 5. Since the cathode 32 b is formed in the upper layer of the light emitting element portion 3, it can be easily electrically connected to the terminal electrode 5.
(封止工程)
 次に、図18に示すように、ガラス基板からなる封止部材4を透明支持基板2の一面2aに固定し、複数の発光素子部3を密閉した。本実施形態においては、透明支持基板2の周辺部に設けた不図示のUV硬化樹脂により、封止部材4を固定している。透明支持基板2と封止部材4とで区画形成された密閉空間には、乾燥材を配置した。
(Sealing process)
Next, as shown in FIG. 18, the sealing member 4 made of a glass substrate was fixed to one surface 2 a of the transparent support substrate 2, and the plurality of light emitting element portions 3 were sealed. In the present embodiment, the sealing member 4 is fixed by a UV curable resin (not shown) provided in the peripheral portion of the transparent support substrate 2. A desiccant was disposed in the sealed space defined by the transparent support substrate 2 and the sealing member 4.
 完成した有機ELデバイス1では、発光素子部3における有機発光層33の発光層37が単層構造とされている。このため、各色に対応した積層構造の発光層に比べて膜厚むらが生じにくく、色むらのない有機ELデバイス1となっている。 In the completed organic EL device 1, the light emitting layer 37 of the organic light emitting layer 33 in the light emitting element section 3 has a single layer structure. For this reason, compared with the light emitting layer of the laminated structure corresponding to each color, it is hard to produce film thickness nonuniformity, and it is the organic EL device 1 without color nonuniformity.
 また、本実施形態における有機ELデバイス1において発光素子部3から射出された光(青色~青緑色光)は、補助電極6のうち隣り合う延長部6a,6a同士の間を通じて色変換フィルタ基板12へと入射する。色変換フィルタ層9に入射した光(青色~青緑色光)は、色変換フィルタ層9において色変換され、白色光(入射光とは異なる波長分布を有する光)となって放射されることになる。色変換フィルタ層9から放射された白色光は略等方的に放射されるため、透明支持基板2の光射出面(一面2aとは反対側の面)側から射出される光の他に、透明支持基板2とは反対側、つまり、発光素子部3側へ向けて放射される光が存在する。発光素子部3側へ向けて放射された光のうちの大部分は、発光素子部3の陰極32b、透明支持基板2上に設けられた端子電極5や補助電極6において反射され、透明支持基板2の光射出面側から射出する。 In addition, light (blue to blue-green light) emitted from the light emitting element unit 3 in the organic EL device 1 according to the present embodiment passes through between the adjacent extensions 6a and 6a of the auxiliary electrode 6, and the color conversion filter substrate 12 is used. Incident to. The light (blue to blue-green light) incident on the color conversion filter layer 9 is color-converted in the color conversion filter layer 9 and emitted as white light (light having a wavelength distribution different from that of the incident light). Become. Since the white light emitted from the color conversion filter layer 9 is emitted approximately isotropically, in addition to the light emitted from the light emission surface (surface opposite to the one surface 2a) side of the transparent support substrate 2, There is light emitted toward the side opposite to the transparent support substrate 2, that is, toward the light emitting element portion 3 side. Most of the light emitted toward the light emitting element unit 3 is reflected by the cathode 32b of the light emitting element unit 3, the terminal electrode 5 and the auxiliary electrode 6 provided on the transparent support substrate 2, and the transparent support substrate. 2 is emitted from the light exit surface side.
 しかしながら、発光素子部3側へ放射された光のうち、陰極32b、端子電極5、補助電極6のいずれにおいても反射されなかった光が、有機発光層33の一部(延長部6aと陰極32bとの隙間)を通過して漏れ出る可能性がある。 However, of the light radiated to the light emitting element portion 3 side, the light that is not reflected by any of the cathode 32b, the terminal electrode 5, and the auxiliary electrode 6 is part of the organic light emitting layer 33 (extension portion 6a and cathode 32b). May leak through the gap.
 そこで、本実施形態では、発光素子部3の陰極32bの短手方向における幅W1と、補助電極6の隣り合う延長部6a同士の間隔L1とを略等しい寸法とし、陰極32bの端部の位置と、延長部6aの端部の位置とを積層方向において一致させた構成となっている。
 さらに、複数の発光素子部3が、各々の透明ベースフィルム31の短手方向両側の端部それぞれを、各発光素子部3の両側に位置する補助電極6の一部と重畳させて配置された構成となっている。
Therefore, in the present embodiment, the width W1 in the short direction of the cathode 32b of the light emitting element portion 3 and the distance L1 between the adjacent extension portions 6a of the auxiliary electrode 6 are set to be substantially equal dimensions, and the position of the end portion of the cathode 32b. And the position of the edge part of the extension part 6a is made to correspond in the stacking direction.
Furthermore, the plurality of light emitting element portions 3 are arranged so that the respective end portions on both sides in the short direction of each transparent base film 31 are overlapped with a part of the auxiliary electrode 6 located on both sides of each light emitting element portion 3. It has a configuration.
 このような構成により、色変換フィルタ層9から発光素子部3側へ向けて放射された光のうち、陰極32b、端子電極5、補助電極6のいずれにおいても反射されなかった一部の光は、補助電極6の延長部6aにおいて反射され、透明支持基板2の光射出面側から射出する。したがって、光の利用効率が向上し、より明るい照明光が得られる。 With such a configuration, a part of the light emitted from the color conversion filter layer 9 toward the light emitting element unit 3 is not reflected at any of the cathode 32b, the terminal electrode 5, and the auxiliary electrode 6. The light is reflected by the extension 6 a of the auxiliary electrode 6 and is emitted from the light emission surface side of the transparent support substrate 2. Therefore, the light use efficiency is improved and brighter illumination light can be obtained.
 ここで、隣り合う延長部6a同士の間隔が陰極32bの短手方向における幅よりも広い構成の場合は、色変換フィルタ層9から放射される光の一部が、延長部6aと陰極32bとの隙間から漏れ出るおそれがある。また、隣り合う延長部6a同士の間隔が陰極32bの短手方向における幅よりも狭い構成の場合は、色変換フィルタ層9に達しない発光素子部3からの発光成分が多くなるため、発光効率が低下するおそれがある。
 このため、上述した本実施形態の構成とすることにより、光取り出し損失を抑えた有機ELデバイス1となる。
Here, when the interval between the adjacent extension portions 6a is wider than the width in the short direction of the cathode 32b, a part of the light emitted from the color conversion filter layer 9 is formed between the extension portion 6a and the cathode 32b. There is a risk of leaking through the gap. Further, in the case where the interval between the adjacent extension portions 6a is narrower than the width in the short direction of the cathode 32b, the light emission component from the light emitting element portion 3 that does not reach the color conversion filter layer 9 increases. May decrease.
For this reason, it becomes the organic EL device 1 which suppressed light extraction loss by setting it as the structure of this embodiment mentioned above.
 また、本実施形態の発光素子部3においては、陽極32aと陰極32bとの間隔が発光層37で発光する波長に対して微小共振器を構成する光学距離とされている。
 このため、発光素子部3から色変換フィルタ層9へ向けて指向性の高い光が放射されるので、発光素子部3から色変換フィルタ層9に到達する光の損失は低い。
In the light emitting element section 3 of the present embodiment, the distance between the anode 32a and the cathode 32b is an optical distance that constitutes a microresonator with respect to the wavelength emitted by the light emitting layer 37.
For this reason, light with high directivity is radiated from the light emitting element part 3 toward the color conversion filter layer 9, so that the loss of light reaching the color conversion filter layer 9 from the light emitting element part 3 is low.
 また、複数の発光素子部3は、隣り合う延長部6a同士の間に配置された透明な接着層17を介してガスバリア層8の表面に固定されている。これにより、発光素子部3とガスバリア層8との密着性を向上させることができる。 Further, the plurality of light emitting element portions 3 are fixed to the surface of the gas barrier layer 8 through a transparent adhesive layer 17 disposed between the adjacent extension portions 6a. Thereby, the adhesiveness of the light emitting element part 3 and the gas barrier layer 8 can be improved.
 また、本実施形態におけるガスバリア層8は、有機平坦化層8Aと無機ガスバリア層8Bとの積層体から構成されている。これにより、色変換フィルタ層9上の平坦性と、色変換フィルタ層9に対するガスバリア性が向上する。 Further, the gas barrier layer 8 in the present embodiment is composed of a laminate of the organic planarizing layer 8A and the inorganic gas barrier layer 8B. Thereby, the flatness on the color conversion filter layer 9 and the gas barrier property with respect to the color conversion filter layer 9 are improved.
 また、本実施形態における色変換フィルタ層9は、透明支持基板2上に配置された蛍光色素を含有する樹脂膜を所望のパターンに形成してなる単一または複数種類の色変換色素層を有する構成とされている。このため、蛍光色素の濃度あるいは各色の色変換色素層の膜厚を調整することにより、所望の色調の光を放射させることが可能である。 Further, the color conversion filter layer 9 in the present embodiment has a single or a plurality of types of color conversion dye layers formed by forming a resin film containing a fluorescent dye arranged on the transparent support substrate 2 in a desired pattern. It is configured. For this reason, it is possible to emit light of a desired color tone by adjusting the concentration of the fluorescent dye or the thickness of the color conversion dye layer of each color.
 また、発光素子部3の陽極32aと補助電極6の延長部6aとが、透明ベースフィルム31の短手方向両側の側面を覆うとともに、陽極32aの表面に一部乗り上げるようにして設けられた導電性ペースト7により、電気的に接続されている。これにより、陽極32aと延長部6aとの電気的な接続の信頼性が向上する。 Further, the anode 32a of the light emitting element portion 3 and the extension portion 6a of the auxiliary electrode 6 cover the side surfaces on both sides in the short direction of the transparent base film 31, and are provided so as to partially run on the surface of the anode 32a. The conductive paste 7 is electrically connected. Thereby, the reliability of the electrical connection between the anode 32a and the extension 6a is improved.
 また、本実施形態における有機ELデバイス1は、透明支持基板2と封止部材4とによって区画された空間内に、複数の発光素子部3が封止された構成となっている。これにより、発光素子部3がガスバリア機能を備えていない場合でも、外部からの酸素等のガスの浸入による有機発光層33の劣化を防止することができる。また、複数の発光素子部3の各々にガスバリア機能を付与しなくてもいいため、コストの削減にもつながる。 Further, the organic EL device 1 in the present embodiment has a configuration in which a plurality of light emitting element portions 3 are sealed in a space defined by the transparent support substrate 2 and the sealing member 4. Thereby, even when the light emitting element part 3 is not provided with a gas barrier function, deterioration of the organic light emitting layer 33 due to intrusion of a gas such as oxygen from the outside can be prevented. Moreover, since it is not necessary to provide a gas barrier function to each of the plurality of light emitting element portions 3, it leads to cost reduction.
 また、本実施形態における有機ELデバイス1は、ロール・トゥ・ロール方式を用いて複数の発光素子部3を製造している。透明支持基板2側に、発光素子部を構成する複数の積層膜(有機発光層等)を直接形成する場合に比べて、小さい成膜室を有した成膜装置を用いることができるため、各積層膜の膜厚むらが生じにくい。このため、発光面内で色むらの少ない発光素子部3を製造することができる。 Further, the organic EL device 1 in the present embodiment manufactures a plurality of light emitting element portions 3 using a roll-to-roll method. Since a film forming apparatus having a small film forming chamber can be used as compared with the case where a plurality of laminated films (organic light emitting layers, etc.) constituting the light emitting element portion are directly formed on the transparent support substrate 2 side, The film thickness unevenness of the laminated film hardly occurs. For this reason, the light emitting element part 3 with little color unevenness in a light emission surface can be manufactured.
 以上のことから、色むらや輝度むらの少ない大面積の有機ELデバイス1を低コストで得ることが可能である。 From the above, it is possible to obtain a large-area organic EL device 1 with little color unevenness and brightness unevenness at low cost.
[第2実施形態]
 次に、本発明における第2実施形態の有機ELデバイスについて図19を用いて説明する。図19は、第2実施形態の有機ELデバイスの概略構成を示す断面図である。
 第2実施形態において、第1実施形態と同様の構成を有する部分については、それらの説明を省略する。
 本実施形態における有機ELデバイスは、発光素子部側に色変換フィルタ層が設けられている点において上記実施形態とは異なる。
[Second Embodiment]
Next, an organic EL device according to a second embodiment of the present invention will be described with reference to FIG. FIG. 19 is a cross-sectional view illustrating a schematic configuration of the organic EL device according to the second embodiment.
In the second embodiment, descriptions of parts having the same configuration as in the first embodiment are omitted.
The organic EL device in the present embodiment is different from the above-described embodiment in that a color conversion filter layer is provided on the light emitting element portion side.
 図19に示すように、有機ELデバイス40は、電極側基板41と、電極側基板41上に設けられた複数の発光素子部43と、複数の発光素子部43を封止する封止部材4と、を主として構成されている。 As shown in FIG. 19, the organic EL device 40 includes an electrode side substrate 41, a plurality of light emitting element portions 43 provided on the electrode side substrate 41, and a sealing member 4 that seals the plurality of light emitting element portions 43. And is mainly configured.
 電極側基板41は、透明支持基板2、補助電極6及び端子電極(不図示)を有する。補助電極6及び端子電極(不図示)は、透明支持基板2の一面2aに直接形成されている。 The electrode side substrate 41 has the transparent support substrate 2, the auxiliary electrode 6, and a terminal electrode (not shown). The auxiliary electrode 6 and the terminal electrode (not shown) are directly formed on the one surface 2 a of the transparent support substrate 2.
 発光素子部43は、帯状の透明ベースフィルム(第1基材)31と、帯状の色変換フィルタ層9と、帯状のガスバリア層8と、光透過性を有する帯状の陽極32aと、帯状の有機発光層33と、帯状の陰極32bと、を備えて構成されている。 The light-emitting element unit 43 includes a strip-shaped transparent base film (first base material) 31, a strip-shaped color conversion filter layer 9, a strip-shaped gas barrier layer 8, a strip-shaped anode 32a having optical transparency, and a strip-shaped organic film. The light emitting layer 33 and a strip-like cathode 32b are provided.
 色変換フィルタ層9は、透明ベースフィルム31の一面全体を覆って形成されている。
 ガスバリア層8は、色変換フィルタ層9の表面(透明ベースフィルム31とは反対側の面)の全体を覆って、色変換フィルタ層9上に積層されている。陽極32aは、ガスバリア層8の表面(色変換フィルタ層9側とは反対側の面)における所定領域に形成されている。陽極32a上には有機発光層33及び陰極32bが順に積層され、陰極32bが最表層に位置する。
The color conversion filter layer 9 is formed so as to cover the entire surface of the transparent base film 31.
The gas barrier layer 8 covers the entire surface of the color conversion filter layer 9 (the surface opposite to the transparent base film 31) and is laminated on the color conversion filter layer 9. The anode 32a is formed in a predetermined region on the surface of the gas barrier layer 8 (surface opposite to the color conversion filter layer 9 side). On the anode 32a, the organic light emitting layer 33 and the cathode 32b are laminated | stacked in order, and the cathode 32b is located in the outermost layer.
 各々が色変換フィルタ層9を備えた複数の発光素子部43は、電極側基板41の所定の位置に配置されている。各発光素子部43の陽極32aと、電極側基板41に設けられた補助電極6と、が導電性ペースト7を介して電気的に接続されている。また、各発光素子部43の陰極32bと端子電極5とが導電性ペースト7aを介して電気的に接続されている。電極側基板41の一面(各々が色変換フィルタ層9を有した複数の発光素子部43が配置されている面)側には、封止部材4が貼り合わされており、電極側基板41と封止部材4とによって区画される空間内に複数の発光素子部43が密閉されている。 The plurality of light emitting element portions 43 each having the color conversion filter layer 9 are arranged at predetermined positions on the electrode side substrate 41. The anode 32 a of each light emitting element portion 43 and the auxiliary electrode 6 provided on the electrode side substrate 41 are electrically connected via the conductive paste 7. Moreover, the cathode 32b of each light emitting element part 43 and the terminal electrode 5 are electrically connected through the conductive paste 7a. The sealing member 4 is bonded to one surface of the electrode side substrate 41 (the surface on which the plurality of light emitting element portions 43 each having the color conversion filter layer 9 are disposed). A plurality of light emitting element portions 43 are sealed in a space defined by the stop member 4.
 本実施形態における発光素子部43においても、ロール・トゥ・ロール方式で作製した有機ELベースを分断して得られたものであって、電極側基板42とは別に独立して作製されたものである。 The light emitting element portion 43 in the present embodiment is also obtained by dividing the organic EL base produced by the roll-to-roll method, and is produced independently from the electrode side substrate 42. is there.
 本実施形態の構成によれば、発光素子部43の透明ベースフィルム31上に色変換フィルタ層9を設けたため、透明ベースフィルム31よりも面積の広い透明支持基板2上に色変換フィルタ層を形成するよりも容易に、透明ベースフィルム31上に色変換フィルタ層9を均一な膜厚で形成することができる。これにより、色むらの少ない有機ELデバイス40が得られる。 According to the configuration of the present embodiment, since the color conversion filter layer 9 is provided on the transparent base film 31 of the light emitting element portion 43, the color conversion filter layer is formed on the transparent support substrate 2 having a larger area than the transparent base film 31. The color conversion filter layer 9 can be formed with a uniform film thickness on the transparent base film 31 more easily. Thereby, the organic EL device 40 with little color unevenness is obtained.
[第3実施形態]
 第3実施形態において、第1又は第2実施形態と同様の構成を有する部分については、それらの説明を省略する。
 図21に示すように、発光素子部43を縦および横方向にマトリクス状に配置する。発光素子部43を配置する基板には、色変換フィルタ層9、および、発光素子部43の陽極32aと陰極32bに接続する配線を格子状に形成する。配線の交差部には短絡を防ぐために層間絶縁膜を形成する。陽極32aが透明導電膜で形成され、光取り出しが陽極側からなされる場合、陽極と陽極用の配線(第1の配線51)との接続は、発光素子の長軸方向に沿った一方の端部に、第1実施形態における陽極と補助電極との接続と同様に、導電性ペースト7あるいは、導電テープを用いて接続する。また、陰極と陰極用の配線(第2の配線52)との接続も、第1実施形態における陰極と端子電極との接続と同様に、導電性ペースト7あるいは、導電テープを用いて接続する。発光素子の陽極と陰極に接続する配線の一方は、発光素子を配置する基板上に形成されていなくてもよい。すなわち、発光素子の陽極あるいは陰極の端子に接続される導電性のワイヤー(導線)であってもよい。また、陽極および陰極用の各配線にはスイッチング素子53を設けてもよく、さらにスイッチ動作を走査させることにより任意の発光素子を選んで点灯させることができる構成としてもよい。
[Third Embodiment]
In the third embodiment, descriptions of parts having the same configurations as those of the first or second embodiment are omitted.
As shown in FIG. 21, the light emitting element portions 43 are arranged in a matrix in the vertical and horizontal directions. On the substrate on which the light emitting element portion 43 is arranged, the color conversion filter layer 9 and wirings connected to the anode 32a and the cathode 32b of the light emitting element portion 43 are formed in a grid pattern. In order to prevent a short circuit, an interlayer insulating film is formed at the intersection of the wiring. When the anode 32a is formed of a transparent conductive film and light extraction is performed from the anode side, the connection between the anode and the anode wiring (first wiring 51) is made at one end along the long axis direction of the light emitting element. Similarly to the connection between the anode and the auxiliary electrode in the first embodiment, the conductive paste 7 or the conductive tape is used to connect to the part. Further, the connection between the cathode and the wiring for the cathode (second wiring 52) is also performed using the conductive paste 7 or the conductive tape in the same manner as the connection between the cathode and the terminal electrode in the first embodiment. One of the wirings connected to the anode and the cathode of the light emitting element may not be formed on the substrate on which the light emitting element is disposed. In other words, it may be a conductive wire (conductive wire) connected to the anode or cathode terminal of the light emitting element. In addition, a switching element 53 may be provided for each wiring for the anode and the cathode, and an arbitrary light emitting element may be selected and lit by scanning the switch operation.
 以下、有機ELデバイスの製造方法における一実施例について述べる。 Hereinafter, an embodiment of the method for manufacturing an organic EL device will be described.
(色変換フィルタ層の製造工程:緑色変換色素層)
 蛍光色素として、まず、クマリン6(0.7重量部)を溶剤のプロピレングリコールモノエチルアセテート(PCMEA)120重量部へ溶解させた。そこへ、光重合性樹脂の「VPA100/P5」(商品名、新日鐵化成工業株式会社)100重量部を加えて溶解させ、塗布液を得た。この塗布液を透明支持基板上にスピンコート法を用いて塗布し、フォトリソグラフ法によりパターニングを実施することによって、緑色変換色素層を形成する。本実施例では、線幅0.1mm、ピッチ0.33mm、膜厚10μmのラインパターンとする。
(Manufacturing process of color conversion filter layer: green conversion dye layer)
As a fluorescent dye, coumarin 6 (0.7 parts by weight) was first dissolved in 120 parts by weight of a solvent, propylene glycol monoethyl acetate (PCMEA). Thereto, 100 parts by weight of photopolymerizable resin “VPA100 / P5” (trade name, Nippon Steel Chemical Co., Ltd.) was added and dissolved to obtain a coating solution. The coating liquid is applied on a transparent support substrate by using a spin coating method, and patterning is performed by a photolithographic method, thereby forming a green conversion dye layer. In this embodiment, the line pattern has a line width of 0.1 mm, a pitch of 0.33 mm, and a film thickness of 10 μm.
(色変換フィルタ層の製造工程:赤色変換色素層)
 蛍光色素として、クマリン6(0.6重量部)、ローダミン6G(0.3重量部)、ベーシックバイオレット11(0.3重量部)を溶剤のプロピレングリコールモノエチルアセテート(PCMEA)120重量部へ溶解させた。そこへ、光重合性樹脂の「VPA100/P5」(商品名、新日鐵化成工業株式会社)100重量部を加えて溶解させ、塗布液を得た。この塗布液を、緑色変換色素層のラインパターンが既に形成されている透明支持基板上にスピンコート法を用いて塗布し、フォトリソグラフ法により、パターニングを実施することによって、赤色変換色素層を形成する。本実施例では、線幅0.1mm、ピッチ0.33mm、膜厚10μmのラインパターンとする。
 このようにして、緑色変換色素層及び赤色変換色素層を有する色変換フィルタ層を得る。
(Manufacturing process of color conversion filter layer: red conversion dye layer)
As fluorescent dyes, Coumarin 6 (0.6 parts by weight), Rhodamine 6G (0.3 parts by weight) and Basic Violet 11 (0.3 parts by weight) are dissolved in 120 parts by weight of propylene glycol monoethyl acetate (PCMEA) as a solvent. I let you. Thereto, 100 parts by weight of photopolymerizable resin “VPA100 / P5” (trade name, Nippon Steel Chemical Co., Ltd.) was added and dissolved to obtain a coating solution. This coating solution is applied onto a transparent support substrate on which the line pattern of the green conversion dye layer has already been formed using a spin coat method, and patterning is performed by a photolithographic method to form a red conversion dye layer. To do. In this embodiment, the line pattern has a line width of 0.1 mm, a pitch of 0.33 mm, and a film thickness of 10 μm.
In this way, a color conversion filter layer having a green conversion dye layer and a red conversion dye layer is obtained.
(ガスバリア層形成工程)
 次に、色変換フィルタ層の上に、ガスバリア層としてまず有機平坦化層を形成した。有機平坦化層は、UV硬化型樹脂(エポキシ変性アクリレート)をスピンコート法にて塗布し、高圧水銀灯を照射することにより、膜厚を8μm(色変換フィルタ層の上部からの膜厚)で形成した。このとき、色変換フィルタ層における各緑色変換色素層及び赤色変換色素層のパターン形状に変形はなく、且つ、有機平坦化層の表面は平坦であった。
(Gas barrier layer formation process)
Next, an organic planarization layer was first formed as a gas barrier layer on the color conversion filter layer. The organic flattening layer is formed with a film thickness of 8 μm (film thickness from the top of the color conversion filter layer) by applying UV curable resin (epoxy-modified acrylate) by spin coating and irradiating with a high-pressure mercury lamp. did. At this time, there was no deformation in the pattern shape of each green conversion dye layer and red conversion dye layer in the color conversion filter layer, and the surface of the organic flattening layer was flat.
 次に、有機平坦化層の表面に、パッシベーション膜としての無機ガスバリア層を形成する。ここでは、室温においてDCスパッタ法を用いて、SiOx膜を300nmの膜厚で形成した。この無機ガスバリア層と有機平坦化層との積層体によりガスバリア層が構成される。スパッタターゲットにはSiを用い、スパッタガスとしてArおよび酸素の混合ガスを用いた。 Next, an inorganic gas barrier layer as a passivation film is formed on the surface of the organic planarization layer. Here, a SiOx film having a thickness of 300 nm was formed by DC sputtering at room temperature. A gas barrier layer is composed of a laminate of the inorganic gas barrier layer and the organic planarization layer. Si was used as the sputtering target, and a mixed gas of Ar and oxygen was used as the sputtering gas.
(端子電極及び補助電極の形成工程)
 次に、ガスバリア層上に、銀を含む導電性ペーストを用い、公知のスクリーン印刷法により、端子電極および補助電極をパターニングした。パターニングした後、導電性ペーストを硬化させるために、120℃の雰囲気下で15分間加熱する乾燥処理を行った。このようにして、端子電極及び補助電極を形成する。
(Terminal electrode and auxiliary electrode formation process)
Next, terminal electrodes and auxiliary electrodes were patterned on the gas barrier layer by a known screen printing method using a conductive paste containing silver. After patterning, in order to cure the conductive paste, a drying treatment was performed by heating in an atmosphere of 120 ° C. for 15 minutes. In this way, the terminal electrode and the auxiliary electrode are formed.
(発光素子部の形成工程)
 一方、透明支持基板上の処理と並行して、透明ベース基板の一面に、陽極、有機発光層及び陰極を順次形成した。
(Process for forming light emitting element)
On the other hand, in parallel with the treatment on the transparent support substrate, an anode, an organic light emitting layer, and a cathode were sequentially formed on one surface of the transparent base substrate.
 具体的には、まず、長さ10m、幅20mmのロール状に巻き取られた帯状のPETフィルムからなる透明ベース基板の表面に、ITO(酸化インジウム-酸化錫)からなる陽極を形成する。その後、異物を除去するために、作製した陽極付きの透明ベース基板に対し、アセトンやIPAを用いて超音波洗浄を10分間行った。 Specifically, first, an anode made of ITO (indium oxide-tin oxide) is formed on the surface of a transparent base substrate made of a strip-like PET film wound into a roll having a length of 10 m and a width of 20 mm. Then, in order to remove a foreign material, ultrasonic cleaning was performed for 10 minutes with respect to the produced transparent base substrate with an anode using acetone or IPA.
 洗浄後、陽極付きの透明ベース基板をロール・トゥ・ロール方式に基づく成膜装置にセットし、所定の条件の下で有機発光層、陰極を成膜した。具体的には、陽極付きの透明ベース基板を1m/minの一定速度で移送しながら各膜の蒸着速度を制御し、所定の膜厚に形成した。 After cleaning, the transparent base substrate with an anode was set in a film forming apparatus based on a roll-to-roll method, and an organic light emitting layer and a cathode were formed under predetermined conditions. Specifically, the deposition rate of each film was controlled while the transparent base substrate with an anode was transferred at a constant speed of 1 m / min to form a predetermined film thickness.
 具体的には、まず、正孔注入材料として1,1-ビス-ジ-4-トリルアミノ-フェニル-シクロヘキサン(TAPC)を用い、抵抗加熱蒸着法により膜厚100nmの正孔注入層を形成した。 Specifically, first, a hole injection layer having a thickness of 100 nm was formed by resistance heating vapor deposition using 1,1-bis-di-4-tolylamino-phenyl-cyclohexane (TAPC) as a hole injection material.
 次いで、正孔輸送材料としてN,N’-di-l-ナフチル-N,N’-ジフェニル-1,1’-ビフェニル-1,1’-ビフェニル-4,4’-ジアミン(NPD)を用い、抵抗加熱蒸着法により膜厚40nmの正孔輸送層を形成した。 Next, N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine (NPD) is used as the hole transport material. Then, a hole transport layer having a film thickness of 40 nm was formed by resistance heating vapor deposition.
 次いで、正孔輸送層上の所望の位置に、青色の発光層(厚さ:30nm)を形成した。
 この青色の発光層は、1,4-ビス-トリフェニルシリル-ベンゼン(UGH-2)(ホスト材料)と、ビス(4’,6’-ジフルオロフェニルポリジナト)テトラキス(1-ピラゾイル)ボレート イリジウム(III)(FIr)(青色燐光発光ドーパント)とを、共蒸着することによって形成した。
Next, a blue light emitting layer (thickness: 30 nm) was formed at a desired position on the hole transport layer.
This blue light-emitting layer comprises 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis (4 ′, 6′-difluorophenylpolydinato) tetrakis (1-pyrazolyl) borate iridium (III) (FIr 6 ) (blue phosphorescent dopant) was formed by co-evaporation.
 次いで、発光層の上に、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP)を用いて、正孔防止層(厚さ:10nm)を形成した。 Next, a hole blocking layer (thickness: 10 nm) was formed on the light emitting layer using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
 次いで、正孔防止層上に、トリス(8-ヒドロキシキノリン)アルミニウム(Alq3)を用いて電子輸送層(厚さ:30nm)を形成した。次いで、電子輸送層上に、フッ化リチウム(LiF)を用いて電子注入層(厚さ:0.5nm)を形成した。
 以上の処理によって、発光素子部を構成する各層を形成した。
Next, an electron transport layer (thickness: 30 nm) was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq3). Next, an electron injection layer (thickness: 0.5 nm) was formed on the electron transport layer using lithium fluoride (LiF).
Through the above processing, each layer constituting the light emitting element portion was formed.
 作製した有機ELベースを所定領域(発光素子部形成領域)毎に分断し、15cm×20mmの発光素子部を6つ作製した。 The produced organic EL base was divided into predetermined regions (light emitting element portion forming regions), and six light emitting element portions of 15 cm × 20 mm were produced.
(発光素子部配置工程)
 作製した6つの発光素子部を、それぞれ、色変換フィルタ層、ガスバリア層、端子電極、補助電極が形成されている透明支持基板2の所定位置に貼り付けた。
(Light emitting element arrangement step)
The prepared six light emitting element portions were attached to predetermined positions of the transparent support substrate 2 on which the color conversion filter layer, the gas barrier layer, the terminal electrode, and the auxiliary electrode were formed.
(接続工程)
 次に、UV硬化型の導電性ペーストを用いて、各発光素子部の陽極と補助電極とを電気的に接続した。また、UV硬化型の導電性ペーストを用いて、発光素子部の陰極と端子電極と電気的に接続した。
(Connection process)
Next, the anode of each light emitting element part and the auxiliary electrode were electrically connected using a UV curable conductive paste. Further, the cathode of the light emitting element portion and the terminal electrode were electrically connected using a UV curable conductive paste.
(封止工程)
 最後に、UV硬化樹脂を用いて、ガラス基板からなる封止基板と透明支持基板とを貼り合わせることにより、透明支持基板上に配置された複数の発光素子部を封止した。透明支持基板と封止基板とによって形成される密閉空間には乾燥剤を配置した。
(Sealing process)
Finally, a plurality of light-emitting element portions arranged on the transparent support substrate were sealed by bonding a sealing substrate made of a glass substrate and a transparent support substrate using a UV curable resin. A desiccant was disposed in a sealed space formed by the transparent support substrate and the sealing substrate.
(色変換フィルタ層の製造工程:赤色変換色素層)
 蛍光色素として、クマリン6(0.6重量部)、ローダミン6G(0.3重量部)、ベーシックバイオレット11(0.3重量部)を溶剤のプロピレングリコールモノエチルアセテート(PCMEA)120重量部へ溶解させた。そこへ、光重合性樹脂の「VPA100/P5」(商品名、新日鐵化成工業株式会社)100重量部を加えて溶解させ、塗布液を得た。この塗布液を、緑色変換色素層のラインパターンが既に形成されている透明支持基板上にスピンコート法を用いて塗布し、フォトリソグラフ法により、パターニングを実施することによって、赤色変換色素層を形成する。本実施例では、線幅0.1mm、ピッチ0.33mm、膜厚10μmのラインパターンとすることにより、色変換フィルタ層を得る。
 なお、ガスバリア層、端子電極及び補助電極は、実施例1と同様に形成する。
(Manufacturing process of color conversion filter layer: red conversion dye layer)
As fluorescent dyes, Coumarin 6 (0.6 parts by weight), Rhodamine 6G (0.3 parts by weight) and Basic Violet 11 (0.3 parts by weight) are dissolved in 120 parts by weight of propylene glycol monoethyl acetate (PCMEA) as a solvent. I let you. Thereto, 100 parts by weight of photopolymerizable resin “VPA100 / P5” (trade name, Nippon Steel Chemical Co., Ltd.) was added and dissolved to obtain a coating solution. This coating solution is applied onto a transparent support substrate on which the line pattern of the green conversion dye layer has already been formed using a spin coat method, and patterning is performed by a photolithographic method to form a red conversion dye layer. To do. In this embodiment, a color conversion filter layer is obtained by forming a line pattern having a line width of 0.1 mm, a pitch of 0.33 mm, and a film thickness of 10 μm.
The gas barrier layer, terminal electrode, and auxiliary electrode are formed in the same manner as in Example 1.
(発光素子部の形成工程)
 実施例1と同様に、陽極付きの透明ベース基板を作製し、洗浄後、陽極付きの透明ベース基板をロール・トゥ・ロール方式に基づく成膜装置にセットする。有機発光層、陰極の成膜は、陽極付きの透明ベース基板を1m/minの一定速度で移送しながら各膜の蒸着速度を制御し、所定の膜厚に形成した。
(Process for forming light emitting element)
Similarly to Example 1, a transparent base substrate with an anode is prepared, and after cleaning, the transparent base substrate with an anode is set in a film forming apparatus based on a roll-to-roll method. The organic light emitting layer and the cathode were formed to have a predetermined film thickness by controlling the deposition rate of each film while transferring the transparent base substrate with the anode at a constant speed of 1 m / min.
 正孔注入材料として1,1-ビス-ジ-4-トリルアミノ-フェニル-シクロヘキサン(TAPC)を用い、抵抗加熱蒸着法により膜厚100nmの正孔注入層を形成した。 1,1-Bis-di-4-tolylamino-phenyl-cyclohexane (TAPC) was used as a hole injection material, and a hole injection layer having a thickness of 100 nm was formed by a resistance heating vapor deposition method.
 次いで、正孔輸送材料としてN,N’-di-l-ナフチル-N,N’-ジフェニル-1,1’-ビフェニル-1,1’-ビフェニル-4,4’-ジアミン(NPD)を用い、抵抗加熱蒸着法により膜厚40nmの正孔輸送層を形成した。 Next, N, N′-di-1-naphthyl-N, N′-diphenyl-1,1′-biphenyl-1,1′-biphenyl-4,4′-diamine (NPD) is used as the hole transport material. Then, a hole transport layer having a film thickness of 40 nm was formed by resistance heating vapor deposition.
 次いで、正孔輸送層上の所望の位置に、青緑色の発光層(厚さ:30nm)を形成した。この青緑色の発光層は、1,4-ビス-トリフェニルシリル-ベンゼン(UGH-2)(ホスト材料)と、ビス[(4,6-ジフルオロフェニル)-ピリジナト-N,C2’]ピコリネート イリジウム(III)(FIrpic)(青緑色燐光発光ドーパント)とを、共蒸着することによって形成した。 Next, a blue-green light emitting layer (thickness: 30 nm) was formed at a desired position on the hole transport layer. This blue-green light-emitting layer consists of 1,4-bis-triphenylsilyl-benzene (UGH-2) (host material) and bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium (III) (FIrpic) (blue-green phosphorescent dopant) was formed by co-evaporation.
 次いで、発光層の上に、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP)を用いて、正孔防止層(厚さ:10nm)を形成した。 Next, a hole blocking layer (thickness: 10 nm) was formed on the light emitting layer using 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP).
 次いで、正孔防止層上に、トリス(8-ヒドロキシキノリン)アルミニウム(Alq)を用いて電子輸送層(厚さ:30nm)を形成した。次いで、電子輸送層上に、フッ化リチウム(LiF)を用いて電子注入層(厚さ:0.5nm)を形成した。
 以上の処理によって、発光素子部を構成する各層を形成し、複数の発光素子部形成領域を有する有機ELベースを得た。
Next, an electron transport layer (thickness: 30 nm) was formed on the hole blocking layer using tris (8-hydroxyquinoline) aluminum (Alq 3 ). Next, an electron injection layer (thickness: 0.5 nm) was formed on the electron transport layer using lithium fluoride (LiF).
Through the above processing, each layer constituting the light emitting element part was formed, and an organic EL base having a plurality of light emitting element part forming regions was obtained.
 作製した有機ELベースを所定領域(発光素子部形成領域)毎に分断し、15cm×20mmの発光素子部を6つ作製した。
 以降に行う発光素子部の配置、接続、封止工程は、実施例1と同様にして作製した。
The produced organic EL base was divided into predetermined regions (light emitting element portion forming regions) to produce six light emitting element portions of 15 cm × 20 mm.
Subsequent arrangement, connection, and sealing steps of the light emitting element portion were performed in the same manner as in Example 1.
(電極基板の製造工程)
 透明支持基板上に、銀を含む導電性ペーストを用い、公知のスクリーン印刷法により、端子電極および補助電極をパターニングした。パターニングした後、導電性ペーストを硬化させるために、120℃の雰囲気下で15分間加熱する乾燥処理を行った。このようにして、端子電極及び補助電極を形成する。
(Electrode substrate manufacturing process)
On the transparent support substrate, terminal electrodes and auxiliary electrodes were patterned by a known screen printing method using a conductive paste containing silver. After patterning, in order to cure the conductive paste, a drying treatment was performed by heating in an atmosphere of 120 ° C. for 15 minutes. In this way, the terminal electrode and the auxiliary electrode are formed.
(発光素子部の形成工程)
 一方、透明支持基板2上の処理と並行して、透明ベース基板の一面に、色変換層、パッシベーション膜、陽極、有機発光層及び陰極を順次形成した。
 具体的には、まず、長さ10m、幅20mmのロール状に巻き取られた帯状のPETフィルムからなる透明ベース基板の表面に、クマリン6およびDCM-2からなる色変換膜を蒸着により形成した。この際に、クマリン6の蒸着速度を0.3nm/s、DCM-2の蒸着速度を0.005nm/sで蒸着し、クマリン6とDCM-2のモル比が49:1の色変換膜を膜厚200nm形成した。
(Process for forming light emitting element)
On the other hand, in parallel with the treatment on the transparent support substrate 2, a color conversion layer, a passivation film, an anode, an organic light emitting layer, and a cathode were sequentially formed on one surface of the transparent base substrate.
Specifically, first, a color conversion film made of coumarin 6 and DCM-2 was formed by vapor deposition on the surface of a transparent base substrate made of a strip-like PET film wound up in a roll shape having a length of 10 m and a width of 20 mm. . At this time, the deposition rate of coumarin 6 is 0.3 nm / s, the deposition rate of DCM-2 is 0.005 nm / s, and a color conversion film having a molar ratio of coumarin 6 and DCM-2 of 49: 1 is formed. A film thickness of 200 nm was formed.
 次に、パッシベーション膜としての無機ガスバリア層を形成する。ここでは、室温においてDCスパッタ法を用いて、SiOx膜を300nmの膜厚で形成した。この無機ガスバリア層と有機平坦化層との積層体によりガスバリア層が構成される。スパッタターゲットにはSiを用い、スパッタガスとしてArおよび酸素の混合ガスを用いた。 Next, an inorganic gas barrier layer is formed as a passivation film. Here, a SiOx film having a thickness of 300 nm was formed by DC sputtering at room temperature. A gas barrier layer is composed of a laminate of the inorganic gas barrier layer and the organic planarization layer. Si was used as the sputtering target, and a mixed gas of Ar and oxygen was used as the sputtering gas.
 次に、パッシベーション膜上に、ITO(酸化インジウム-酸化錫)からなる陽極を形成した。
 以降、実施例2と同様の工程で、複数の発光素子部の形成領域を有する有機ELベースを作製した。
Next, an anode made of ITO (indium oxide-tin oxide) was formed on the passivation film.
Thereafter, an organic EL base having a plurality of light-emitting element part formation regions was manufactured in the same process as in Example 2.
 その後、作製した有機ELベースを所定領域(発光素子部形成領域)毎に分断し、15cm×20mmの発光素子部を6つ作製した。
 以降に行う発光素子部の配置、接続、封止工程は、実施例1と同様にして作製した。
Thereafter, the produced organic EL base was divided into predetermined regions (light emitting element portion forming regions), and six light emitting element portions of 15 cm × 20 mm were produced.
Subsequent arrangement, connection, and sealing steps of the light emitting element portion were performed in the same manner as in Example 1.
 なお、発光素子部の個片化および封止処理は、水分による有機発光層の劣化を防ぐため、グローブボックス内で行った。 In addition, in order to prevent deterioration of the organic light emitting layer due to moisture, the light emitting element part was singulated and sealed.
 補助電極間の間隙を16mmとし、発光素子部の長軸方向の端部が2mmずつ重畳していることを除いては、実施例1と同様の有機ELデバイスを作製した。 An organic EL device similar to that of Example 1 was manufactured, except that the gap between the auxiliary electrodes was 16 mm, and the end portions in the long axis direction of the light emitting element portion were overlapped by 2 mm.
 このようにして作製した有機ELデバイスを点灯させると、色ムラ、輝度ムラのない、均一な発光が得られた。 When the organic EL device produced in this way was turned on, uniform light emission without color unevenness and brightness unevenness was obtained.
 図22Aは、本発明の一態様であるドットマトリクス方式の表示装置の表示部を示す平面図であり、図22Bは、本発明の一態様であるセグメント方式の表示装置の表示部を示す平面図である。
 上記第3実施形態に係る有機ELデバイスは、表示装置として、例えば図22Aに示すようにドットマトリクス方式の表示装置に適用できる。図22Aの例では、発光領域は正方形となるように発光素子部が形成されている。この例のように発光領域の形状は正方形である必要はなく、円状であってもよい。また、上記第3実施形態に係る有機ELデバイスは、表示装置として、例えば図22Bに示すようにセグメント方式の表示装置に適用できる。この場合、7つの発光素子部を8の字に配置することにより形成できる。図22Bには7セグメント表示の場合のみを示したが、16セグメント表示素子も同様に形成できる。また、図22Aに示される1点のドットを3つの発光素子部で構成し、それぞれRGBで発光するようにすればカラー表示も可能となる。このような表示装置は、メートル角前後あるいはそれ以上の大きさの表示領域に文字情報および映像を表示するデジタルサイネージ用途の表示装置、あるいは画像や文字表示ができる照明装置として用いることができる。屋外における電子掲示板として、図23に示すように、太陽電池101、およびネットワークを介した情報処理装置102に接続された電子掲示板における表示部103に適用できる。また、図24に示すように、画像や文字表示ができる窓の形状をした発光部1401を有する照明装置に適用できる。本発明の一態様を用いると、このようなシステムが従来よりも低コストで作製できる。
22A is a plan view illustrating a display portion of a dot matrix display device that is one embodiment of the present invention, and FIG. 22B is a plan view illustrating a display portion of a segment display device that is one embodiment of the present invention. It is.
The organic EL device according to the third embodiment can be applied as a display device to a dot matrix type display device as shown in FIG. 22A, for example. In the example of FIG. 22A, the light emitting element portion is formed so that the light emitting region is square. The shape of the light emitting region does not need to be square as in this example, and may be circular. Further, the organic EL device according to the third embodiment can be applied to a segment type display device as shown in FIG. 22B, for example. In this case, it can be formed by arranging seven light emitting element portions in the shape of figure 8. Although FIG. 22B shows only the case of 7-segment display, a 16-segment display element can be similarly formed. Further, if one dot shown in FIG. 22A is constituted by three light emitting element portions and each emits light in RGB, color display is also possible. Such a display device can be used as a display device for digital signage for displaying character information and video in a display area having a size of about a meter square or larger, or an illumination device capable of displaying images and characters. As an electronic bulletin board outdoors, as shown in FIG. 23, it can be applied to a display unit 103 in an electronic bulletin board connected to a solar battery 101 and an information processing apparatus 102 via a network. Further, as shown in FIG. 24, the present invention can be applied to a lighting device having a light emitting portion 1401 in the shape of a window capable of displaying images and characters. With one embodiment of the present invention, such a system can be manufactured at a lower cost than in the past.
 図20Aは、本発明の照明装置の一態様であるシーリングライトを示す斜視図であり、図20Bは、本発明の照明装置の一態様である照明スタンドを示す斜視図である。
 上記各実施形態に係る有機ELデバイスは、照明装置として、例えば図20Aに示すように、シーリングライト(照明装置)1400に適用できる。図20Aに示すシーリングライト1400は、発光部1401、吊下線1402、および電源コード1403等を備えている。そして、発光部1401として上記各実施形態の有機ELデバイスが好適に適用できる。上記各実施形態に係る有機ELデバイスをシーリングライト1400の発光部1401に適用することにより、少ない消費電力で自在な色調の照明光を得ることができ、光演出性の高い照明器具を実現することができる。また、均一な照度で色純度の高い面発光が可能な照明器具を実現することができる。
FIG. 20A is a perspective view showing a ceiling light which is an embodiment of the illumination device of the present invention, and FIG. 20B is a perspective view showing an illumination stand which is an embodiment of the illumination device of the present invention.
The organic EL device according to each of the above embodiments can be applied to a ceiling light (illumination device) 1400 as an illumination device, for example, as shown in FIG. 20A. A ceiling light 1400 shown in FIG. 20A includes a light emitting unit 1401, a suspended line 1402, a power cord 1403, and the like. And the organic EL device of each said embodiment can be applied suitably as the light emission part 1401. FIG. By applying the organic EL device according to each of the above embodiments to the light emitting unit 1401 of the ceiling light 1400, it is possible to obtain illumination light of a free color tone with low power consumption, and to realize a lighting fixture with high light performance. Can do. In addition, it is possible to realize a lighting fixture capable of emitting surface light with high color purity with uniform illuminance.
 上記の各実施形態に係る有機ELデバイスは、照明装置として、例えば図20Bに示すように、照明スタンド(照明装置)1500に適用できる。図20Bに示す照明スタンド1500は、発光部1501、スタンド1502、メインスイッチ1503、および電源コード1504等を備えている。そして、発光部1501として上記各実施形態の有機ELデバイスが好適に適用できる。上記各実施形態に係る有機ELデバイスを照明スタンド1500の発光部1501に適用することによって、少ない消費電力で自在な色調の照明光を得ることができ、光演出性の高い照明器具を実現することができる。また、均一な照度で色純度の高い面発光が可能な照明器具を実現することができる。 The organic EL device according to each of the above embodiments can be applied to a lighting stand (lighting device) 1500 as a lighting device, for example, as shown in FIG. 20B. An illumination stand 1500 illustrated in FIG. 20B includes a light emitting unit 1501, a stand 1502, a main switch 1503, a power cord 1504, and the like. The organic EL device of each of the above embodiments can be suitably applied as the light emitting unit 1501. By applying the organic EL device according to each of the above embodiments to the light emitting unit 1501 of the lighting stand 1500, it is possible to obtain illumination light of a free color tone with low power consumption, and to realize a lighting fixture with high light performance. Can do. In addition, it is possible to realize a lighting fixture capable of emitting surface light with high color purity with uniform illuminance.
 以上、添付図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 As described above, the preferred embodiments according to the present invention have been described with reference to the accompanying drawings, but it goes without saying that the present invention is not limited to such examples. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to.
 本発明のいくつかの態様は、低コストで製造が可能な色むらのない有機発光素子、有機発光素子の製造方法、照明装置、および、有機発光表示素子などに利用可能である。 Some embodiments of the present invention can be used for an organic light-emitting element having no color unevenness that can be manufactured at low cost, a method for manufacturing the organic light-emitting element, a lighting device, an organic light-emitting display element, and the like.
 1…有機ELデバイス(有機発光素子)、2…透明支持基板(第2基板)、2a…一面、3,43…発光素子部、5…端子電極、6…補助電極、7…導電性ペースト、8…ガスバリア層、9…色変換フィルタ層(色変換層)、R…発光素子部形成領域、15…有機ELベース(マザー基材)、17…接着層、32a…陽極(第1電極)、32b…陰極(第2電極)、33…有機発光層(発光層)、37…発光層、L1…延長部同士の間隔、1400…シーリングライト(照明装置)、1500…照明スタンド(照明装置) DESCRIPTION OF SYMBOLS 1 ... Organic EL device (organic light emitting element), 2 ... Transparent support substrate (2nd board | substrate), 2a ... One side, 3,43 ... Light emitting element part, 5 ... Terminal electrode, 6 ... Auxiliary electrode, 7 ... Conductive paste, 8 ... Gas barrier layer, 9 ... Color conversion filter layer (color conversion layer), R ... Light emitting element portion forming region, 15 ... Organic EL base (mother base material), 17 ... Adhesive layer, 32a ... Anode (first electrode), 32b ... cathode (second electrode), 33 ... organic light emitting layer (light emitting layer), 37 ... light emitting layer, L1 ... spacing between extensions, 1400 ... ceiling light (lighting device), 1500 ... lighting stand (lighting device)

Claims (14)

  1.  透明基材からなる第1基板上に、光透過性を有する第1電極、有機発光層、第2電極を備えた発光素子部と、
     前記発光素子部が複数配置された前記透明基材からなる第2基板と、
     前記第2基板上に互いに間隔をおいて形成され、前記複数の発光素子部における前記第1電極と電気的に接続される複数の補助電極と、
     前記第2基板上に形成され、前記複数の発光素子部における前記第2電極と電気的に接続される端子電極と、
     前記第1基板および前記第2基板のいずれか一方に設けられ、前記発光素子部からの光を色変換して光を放出する色変換層と、を備えている有機発光素子。
    On a first substrate made of a transparent base material, a light-emitting element portion including a light-transmitting first electrode, an organic light-emitting layer, and a second electrode;
    A second substrate made of the transparent base material in which a plurality of the light emitting element portions are arranged;
    A plurality of auxiliary electrodes formed on the second substrate and spaced apart from each other and electrically connected to the first electrodes in the plurality of light emitting element portions;
    A terminal electrode formed on the second substrate and electrically connected to the second electrode in the plurality of light emitting element portions;
    An organic light emitting device comprising: a color conversion layer that is provided on any one of the first substrate and the second substrate and color-converts light from the light emitting device portion to emit light.
  2.  前記補助電極と前記発光素子部の前記第1基板とが一部重畳している請求項1に記載の有機発光素子。 The organic light-emitting element according to claim 1, wherein the auxiliary electrode and the first substrate of the light-emitting element part are partially overlapped.
  3.  前記発光素子部は、隣り合う前記補助電極の間に設けられた接着層を介して前記第2基板上に貼り合わされている請求項1または2に記載の有機発光素子。 The organic light-emitting element according to claim 1, wherein the light-emitting element unit is bonded onto the second substrate via an adhesive layer provided between the adjacent auxiliary electrodes.
  4.  前記色変換層は、前記有機発光層を覆う大きさで前記第1基板の一面に形成されている請求項1から3のいずれか一項に記載の有機発光素子。 The organic light-emitting element according to any one of claims 1 to 3, wherein the color conversion layer is formed on one surface of the first substrate so as to cover the organic light-emitting layer.
  5.  前記色変換層は、前記複数の発光素子部を覆う大きさで前記第2基板の一面に形成されている請求項1から3のいずれか一項に記載の有機発光素子。 The organic light emitting device according to any one of claims 1 to 3, wherein the color conversion layer is formed on one surface of the second substrate so as to cover the plurality of light emitting device portions.
  6.  前記第2基板上に、前記色変換層を封止する透明なガスバリア層が形成されている請求項5に記載の有機発光素子。 6. The organic light emitting device according to claim 5, wherein a transparent gas barrier layer for sealing the color conversion layer is formed on the second substrate.
  7.  複数の発光素子部形成領域を有する透明基材および第2基板のいずれか一方に色変換層を形成する工程と、
     前記第2基板上に複数の補助電極を形成する工程と、
     前記複数の発光素子部形成領域のそれぞれに、光透過性を有する第1電極、有機発光層、第2電極を形成してマザー基材を作製する工程と、
     前記マザー基材を前記発光素子部形成領域ごとに個片化することで、前記透明基材から構成される第1基板上に、前記第1電極、前記有機発光層、前記第2電極を備えた複数の発光素子部を作製する工程と、
     前記第2基板上に前記複数の発光素子部を配置する工程と、を有する有機発光素子の製造方法。
    Forming a color conversion layer on any one of the transparent substrate and the second substrate having a plurality of light emitting element portion forming regions;
    Forming a plurality of auxiliary electrodes on the second substrate;
    Forming a mother base material by forming a first electrode, an organic light emitting layer, and a second electrode having optical transparency in each of the plurality of light emitting element portion formation regions;
    By separating the mother base into individual light emitting element part forming regions, the first electrode, the organic light emitting layer, and the second electrode are provided on a first substrate composed of the transparent base. Producing a plurality of light emitting element portions;
    Disposing the plurality of light emitting element portions on the second substrate.
  8.  前記複数の発光素子部を前記第2基板上に配置する際、
     前記補助電極と前記発光素子部の前記第1基板とを一部重畳させる請求項7に記載の有機発光素子の製造方法。
    When arranging the plurality of light emitting element portions on the second substrate,
    The method of manufacturing an organic light emitting element according to claim 7, wherein the auxiliary electrode and the first substrate of the light emitting element part are partially overlapped.
  9.  前記透明基材の一面に色変換層を形成する工程を有する請求項7または8に記載の有機発光素子の製造方法。 The method for producing an organic light-emitting element according to claim 7 or 8, further comprising a step of forming a color conversion layer on one surface of the transparent substrate.
  10.  前記複数の補助電極を形成する前に、前記第2基板の一面に色変換層を形成する工程を有する請求項7または8に記載の有機発光素子の製造方法。 The method for manufacturing an organic light-emitting element according to claim 7 or 8, further comprising a step of forming a color conversion layer on one surface of the second substrate before forming the plurality of auxiliary electrodes.
  11.  前記第2基板の前記一面に、前記色変換層を封止する透明なガスバリア層を形成する工程を有する請求項10に記載の有機発光素子の製造方法。 The method for manufacturing an organic light-emitting element according to claim 10, further comprising forming a transparent gas barrier layer for sealing the color conversion layer on the one surface of the second substrate.
  12.  透明基材からなる第1基板上に、光透過性を有する第1電極、有機発光層、第2電極を備えた発光素子部と、
     前記発光素子部が複数配置された前記透明基材からなる第2基板と、
     前記第2基板上に互いに間隔をおいて形成され、前記複数の発光素子部における前記第1電極と電気的に接続される複数の補助電極と、
     前記第2基板上に形成され、前記複数の発光素子部における前記第2電極と電気的に接続される端子電極と、
     前記第1基板および前記第2基板のいずれか一方に設けられ、前記発光素子部からの光を色変換して光を放出する色変換層と、を備えている有機発光素子を備えている照明装置。
    On a first substrate made of a transparent base material, a light-emitting element portion including a light-transmitting first electrode, an organic light-emitting layer, and a second electrode;
    A second substrate made of the transparent base material in which a plurality of the light emitting element portions are arranged;
    A plurality of auxiliary electrodes formed on the second substrate and spaced apart from each other and electrically connected to the first electrodes in the plurality of light emitting element portions;
    A terminal electrode formed on the second substrate and electrically connected to the second electrode in the plurality of light emitting element portions;
    Illumination provided with an organic light emitting element provided on any one of the first substrate and the second substrate, and having a color conversion layer that color-converts light from the light emitting element portion and emits light apparatus.
  13.  透明基材からなる第1基板上に、光透過性を有する第1電極、有機発光層、第2電極を備えた発光素子部と、
     前記発光素子部が複数配置された前記透明基材からなる第2基板と、
     前記第2基板上に互いに間隔をおいて形成され、前記複数の発光素子部における前記第1電極と電気的に接続される複数の第1の配線と、
     前記第2基板上に前記第1の配線と電気的に絶縁される絶縁層を間に挟んで、前記第1の配線と格子状をなすように互いに間隔をおいて形成され、前記複数の発光素子部における前記第2電極と電気的に接続される複数の第2の配線と、
     前記第1基板および前記第2基板のいずれか一方に設けられ、前記発光素子部からの光を色変換して光を放出する色変換層と、
     を備えている有機発光表示素子。
    On a first substrate made of a transparent base material, a light-emitting element portion including a light-transmitting first electrode, an organic light-emitting layer, and a second electrode;
    A second substrate made of the transparent base material in which a plurality of the light emitting element portions are arranged;
    A plurality of first wirings formed on the second substrate and spaced apart from each other and electrically connected to the first electrodes in the plurality of light emitting element portions;
    The plurality of light emitting elements are formed on the second substrate so as to form a grid with the first wiring with an insulating layer electrically insulated from the first wiring interposed therebetween. A plurality of second wirings electrically connected to the second electrode in the element portion;
    A color conversion layer that is provided on any one of the first substrate and the second substrate, and color-converts light from the light-emitting element unit to emit light;
    An organic light emitting display device comprising:
  14.  前記第1の配線と第2の配線にはスイッチング素子が設けられ、第1の配線および第2の配線への通電が制御される請求項13に記載の有機発光表示素子。 14. The organic light emitting display element according to claim 13, wherein a switching element is provided in the first wiring and the second wiring, and energization to the first wiring and the second wiring is controlled.
PCT/JP2014/078346 2013-11-20 2014-10-24 Organic light emitting element, organic light emitting element manufacturing method, lighting apparatus, and organic light emitting display element WO2015076060A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-240375 2013-11-20
JP2013240375 2013-11-20

Publications (1)

Publication Number Publication Date
WO2015076060A1 true WO2015076060A1 (en) 2015-05-28

Family

ID=53179330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078346 WO2015076060A1 (en) 2013-11-20 2014-10-24 Organic light emitting element, organic light emitting element manufacturing method, lighting apparatus, and organic light emitting display element

Country Status (1)

Country Link
WO (1) WO2015076060A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302440A (en) * 2004-04-08 2005-10-27 Mitsubishi Electric Corp Organic electroluminescence display
JP2006032057A (en) * 2004-07-14 2006-02-02 Harison Toshiba Lighting Corp Light emitting device
JP2006164618A (en) * 2004-12-03 2006-06-22 Fuji Electric Holdings Co Ltd Display device using a plurality of organic el elements
JP2006163325A (en) * 2004-11-11 2006-06-22 Fuji Electric Holdings Co Ltd Organic el display
JP2009520214A (en) * 2005-11-14 2009-05-21 キリュスシェフ、イリナ Display module and tiled display manufacturing method
WO2011007480A1 (en) * 2009-07-17 2011-01-20 シャープ株式会社 Organic el device, organic el device producing method, and organic el illumination device
WO2011052209A1 (en) * 2009-10-30 2011-05-05 シャープ株式会社 Electro-optic device and method for manufacturing same
WO2011090039A1 (en) * 2010-01-19 2011-07-28 パナソニック電工株式会社 Surface light emitting device
WO2012005158A1 (en) * 2010-07-06 2012-01-12 シャープ株式会社 Lighting device and method for manufacturing same
WO2012102194A1 (en) * 2011-01-25 2012-08-02 パナソニック株式会社 Planar light emitting device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302440A (en) * 2004-04-08 2005-10-27 Mitsubishi Electric Corp Organic electroluminescence display
JP2006032057A (en) * 2004-07-14 2006-02-02 Harison Toshiba Lighting Corp Light emitting device
JP2006163325A (en) * 2004-11-11 2006-06-22 Fuji Electric Holdings Co Ltd Organic el display
JP2006164618A (en) * 2004-12-03 2006-06-22 Fuji Electric Holdings Co Ltd Display device using a plurality of organic el elements
JP2009520214A (en) * 2005-11-14 2009-05-21 キリュスシェフ、イリナ Display module and tiled display manufacturing method
WO2011007480A1 (en) * 2009-07-17 2011-01-20 シャープ株式会社 Organic el device, organic el device producing method, and organic el illumination device
WO2011052209A1 (en) * 2009-10-30 2011-05-05 シャープ株式会社 Electro-optic device and method for manufacturing same
WO2011090039A1 (en) * 2010-01-19 2011-07-28 パナソニック電工株式会社 Surface light emitting device
WO2012005158A1 (en) * 2010-07-06 2012-01-12 シャープ株式会社 Lighting device and method for manufacturing same
WO2012102194A1 (en) * 2011-01-25 2012-08-02 パナソニック株式会社 Planar light emitting device

Similar Documents

Publication Publication Date Title
US9099409B2 (en) Organic electroluminescent display device, electronic apparatus including the same, and method for producing organic electroluminescent display device
JP5676867B2 (en) Organic electroluminescence device
JP4947095B2 (en) Light extraction structure
WO2013039072A1 (en) Light-emitting device, display apparatus, illumination apparatus, and electricity-generating apparatus
JP5625448B2 (en) Method for manufacturing organic EL element and organic EL image display device
US9082730B2 (en) Organic EL display unit and organic EL display device
JP2015128027A (en) Organic el device and display device
US20140009905A1 (en) Fluorescent substrate, display apparatus, and lighting apparatus
JP2016164855A (en) Light-emitting device, and display device, lighting device, and electronic apparatus each including the same
JP2016122606A (en) Wavelength conversion system light-emitting device and display device including the same, lighting system and electronic apparatus
WO2015174464A1 (en) Organic electroluminescence display device
WO2013073521A1 (en) Organic electroluminescent display device, electronic apparatus using same, and method for producing organic electroluminescent display device
JP5910496B2 (en) Organic electroluminescence device
JP2015220215A (en) Organic electroluminescence display device
JP2016143658A (en) Light emitting element and display device
WO2016171207A1 (en) Wavelength conversion substrate, light emitting device, and display apparatus, lighting apparatus and electronic equipment that are provided therewith
JP2014038702A (en) Wavelength conversion substrate and display device using the same, and electronic apparatus
US8547013B2 (en) Organic EL display device with a color converting layer
JP2015008036A (en) Organic light-emitting element
JP2013191464A (en) Organic electroluminescent element and manufacturing method therefor, liquid crystal display device
WO2013094645A1 (en) Optical substrate and method for manufacturing same, light-emitting element, liquid crystal element, display device, liquid crystal device, and illumination device
JP2007335327A (en) Organic electroluminescence element, and method for manufacturing the element
JP2014225328A (en) Light-emitting device, display device and luminaire
WO2015076060A1 (en) Organic light emitting element, organic light emitting element manufacturing method, lighting apparatus, and organic light emitting display element
US20120306359A1 (en) Organic electroluminescent component and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864090

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14864090

Country of ref document: EP

Kind code of ref document: A1