WO2015075936A1 - Control method for ultrasonic motor and infusion device - Google Patents

Control method for ultrasonic motor and infusion device Download PDF

Info

Publication number
WO2015075936A1
WO2015075936A1 PCT/JP2014/005838 JP2014005838W WO2015075936A1 WO 2015075936 A1 WO2015075936 A1 WO 2015075936A1 JP 2014005838 W JP2014005838 W JP 2014005838W WO 2015075936 A1 WO2015075936 A1 WO 2015075936A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic motor
drive
drive signal
generation unit
drive voltage
Prior art date
Application number
PCT/JP2014/005838
Other languages
French (fr)
Japanese (ja)
Inventor
孝介 中河
根本 茂
Original Assignee
株式会社根本杏林堂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社根本杏林堂 filed Critical 株式会社根本杏林堂
Publication of WO2015075936A1 publication Critical patent/WO2015075936A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • H02N2/142Small signal circuits; Means for controlling position or derived quantities, e.g. speed, torque, starting, stopping, reversing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/007Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests for contrast media
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • A61M5/1452Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons
    • A61M5/14546Front-loading type injectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • A61M5/1452Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons
    • A61M5/1456Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons with a replaceable reservoir comprising a piston rod to be moved into the reservoir, e.g. the piston rod is part of the removable reservoir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16804Flow controllers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/502User interfaces, e.g. screens or keyboards
    • A61M2205/505Touch-screens; Virtual keyboard or keypads; Virtual buttons; Soft keys; Mouse touches

Definitions

  • the present invention relates to a method for controlling an ultrasonic motor that rotates at a low speed, and a chemical solution injection device including the ultrasonic motor.
  • an injection device for injecting a chemical solution such as a contrast medium has an injection device including an ultrasonic motor and a drive mechanism that is driven by the ultrasonic motor to send out the chemical solution.
  • a chemical injection device is required to maintain a constant chemical injection rate for a desired time. Therefore, for example, when injecting a chemical solution in a short injection time, the ultrasonic motor is rotated at a high speed and injected at a high speed. And when inject
  • a control method in which a basic signal generation unit and a switching unit are provided and the switching unit stops the basic signal generation unit is also conceivable.
  • the switching unit causes the basic signal generation unit to stop outputting the basic signal for a predetermined time, and then the switching unit cancels the output stop. Thereby, the basic signal output from the basic signal generation unit is output intermittently.
  • control methods there are a period in which the drive voltage is output to the ultrasonic motor and a period in which the drive voltage is not output to the ultrasonic motor. As a result, the stop and rotation of the ultrasonic motor are repeated, and as a result, the average rotation speed of the period combining both periods can be lowered.
  • control methods can be used when a driven part driven by an ultrasonic motor travels a certain distance while maintaining a predetermined average speed.
  • the injection of the chemical solution may be temporarily stopped if the standby period in which the drive voltage is not output is long.
  • the standby period in which the drive voltage is not output is long.
  • it is required to maintain a constant injection rate without stopping injection for a desired time. Therefore, it is necessary to provide a very short standby period.
  • the switching unit In order to realize a very short standby period, the switching unit needs to be turned on and off at high speed. However, the switching speed is limited because it depends on the performance of the switching unit. For this reason, it has been difficult to provide a very short standby period.
  • the ultrasonic motor when the ultrasonic motor is rotated at a very low speed, that is, when the injection speed is very low, the ultrasonic motor is likely to stop and difficult to rotate. For this reason, the time from when the drive voltage is input to the ultrasonic motor to when the rotation is actually started becomes longer, and this time is also added to the standby period. As a result, if the waiting period is long, fluctuations in the rotational speed of the ultrasonic motor occur, making it more difficult to maintain a constant injection speed.
  • an ultrasonic motor control method as an example of the present invention generates a drive voltage for driving an ultrasonic motor based on a set speed signal input from the control unit to the drive signal generation unit.
  • An injection device as another example of the present invention is an injection device for injecting a chemical solution, and an ultrasonic motor, and a drive mechanism driven by the ultrasonic motor so as to send out the chemical solution, Generating a drive voltage for driving the ultrasonic motor, outputting the drive voltage to the ultrasonic motor; generating a drive signal for generating the drive voltage; and driving the drive signal to the drive A drive signal generation unit that outputs to the voltage generation unit; and a control unit that outputs a set speed signal to the drive signal generation unit and controls the drive signal generation unit, and based on the set speed signal, the drive signal
  • the generation unit generates the drive signal in an output period in which the drive voltage is output, and in a standby period following the output period. It waits without generating the drive signal, characterized in that.
  • an injection device 1 for injecting a chemical liquid includes an ultrasonic motor 3 and a drive mechanism that is driven by the ultrasonic motor 3 so as to send out the chemical liquid when the ultrasonic motor 3 rotates forward. 4 and a control device 5 for controlling the ultrasonic motor 3.
  • the drive mechanism 4 and the ultrasonic motor 3 are stored in the frame 21 of the injection head 2 of the injection device 1.
  • the frame 21 has two syringe holders 92 for holding the two syringes 91.
  • the injection device 1 has a console 6 including a display on which an injection status of the chemical solution is displayed.
  • the console 6 is connected to the control device 5, and the control device 5 is connected to the injection head 2 by wire or wirelessly. Note that each of the injection head 2, the control device 5, and the console 6 can be connected to each other by wire or wireless.
  • the power source or battery of the injection device 1 can be provided in any of the injection head 2, the control device 5, or the console 6, or can be provided separately from these.
  • the injection head 2 and the control device 5 can be configured integrally with a caster stand (not shown).
  • each can be provided separately and mounted on a caster stand.
  • the injection head 2 can be remotely operated to start or stop the chemical injection.
  • the console 6 includes a touch panel as a display and is connected to the hand switch by wire or wirelessly.
  • the control device 5 stores operation pattern (injection protocol) data, drug solution data, and the like in advance.
  • injection protocol injection protocol
  • the operator operates the touch panel, and the patient's physical data such as infusion rate, infusion volume, infusion time, weight, height, body surface area, heart rate, cardiac output, and medicinal solution Enter the type of data.
  • the control apparatus 5 calculates optimal injection
  • the injection device 1 is wired or wirelessly connected to an imaging device (not shown).
  • an imaging device (not shown).
  • Various types of data are transmitted and received between the imaging device and the injection device 1 when the chemical solution is injected and when an image is taken.
  • an imaging apparatus include an MRI (Magnetic Resonance Imaging) apparatus, a CT (Computed Tomography) apparatus, an angio imaging apparatus, a PET (Positron Emission Tomography) apparatus, a SPECT (Single Photon Emission Computed Tomography) apparatus, and a CT angio apparatus.
  • MRI Magnetic Resonance Imaging
  • CT Computed Tomography
  • angio imaging apparatus an angio imaging apparatus
  • PET Positron Emission Tomography
  • SPECT Single Photon Emission Computed Tomography
  • CT angio apparatus a CT angio apparatus
  • medical imaging devices such as MR angio devices, ultrasonic diagnostic devices, and blood vessel imaging devices.
  • control device 5 determines the amount of the chemical solution and the injection protocol
  • the control device 5 displays predetermined data or a graph on the touch panel. Thereby, the operator can check the displayed data or graph.
  • the operation pattern (injection protocol) data, drug solution data, and the like can be input from an external storage medium.
  • the control device 5 is connected to the ultrasonic motor 3, and the encoder 39 is connected to the ultrasonic motor 3.
  • the encoder 39 transmits a pulse signal having a frequency corresponding to the rotational speed of the ultrasonic motor 3 to the control device 5.
  • the ultrasonic motor 3 is disposed on the rear side portion.
  • the drive mechanism 4 is disposed between the syringe holder 92 and the ultrasonic motor 3.
  • the drive mechanism 4 includes a transmission mechanism 41 connected to the shaft 35 of the ultrasonic motor 3, a ball screw shaft 411 connected to the transmission mechanism 41, a ball screw nut 412 attached to the ball screw shaft 411, and a ball screw nut. And an actuator 413 connected to 412.
  • the ball screw nut 412 is screwed into an intermediate portion of the ball screw shaft 411.
  • the transmission mechanism 41 transmits the rotation from the ultrasonic motor 3 to the ball screw shaft 411. Further, the transmission mechanism 41 has a pinion gear connected to the shaft 35 and a screw gear connected to the ball screw shaft 411. Therefore, the rotation of the shaft 35 of the ultrasonic motor 3 is transmitted to the ball screw shaft 411 via the pinion gear and the screw gear. Thereby, the ball screw shaft 411 rotates according to the transmitted rotation.
  • the ball screw nut 412 slides in the forward direction (front side direction) or the reverse direction (rear side direction) as the ball screw shaft 411 rotates. As a result, as the ball screw nut 412 slides, the actuator 413 moves forward or backward. That is, when the shaft 35 rotates forward, the actuator 413 moves forward, and when the shaft 35 rotates reversely, the actuator 413 moves backward.
  • a piston 93 that can slide in the syringe 91 is attached to the syringe 91.
  • the syringe 91 is mounted such that the rod of the piston 93 abuts on the tip of the actuator 413.
  • the actuator 413 pushes the piston 93 in the forward direction.
  • the piston 93 advances, the chemical solution in the syringe 91 is pushed out and injected into the patient's body through a catheter (not shown) connected to the tip of the syringe 91.
  • the actuator 413 pulls the piston 93 in the reverse direction.
  • the syringe 91 filled with the chemical solution may be a prefilled syringe.
  • medical solution may be manually filled into the syringe 91, and may be filled into the syringe 91 with the injection apparatus 1 or a filling device.
  • the syringe 91 can be provided with a data carrier such as an RFID or a barcode. In this data carrier, information on the filled chemical solution is recorded.
  • the injection device 1 can read the information recorded from the data carrier via the injection head 2 and control the injection pressure and the like of the chemical solution.
  • the control device 5 can calculate the optimal injection amount per body weight based on the read information (chemical iodine amount, etc.) of the liquid medicine and display it on the touch panel of the console 6.
  • the operator When injecting a chemical solution, the operator turns on the power of the injection device 1 and mounts the syringe 91 on the syringe holder 92. Thereafter, the operator presses an injection button displayed on the touch panel of the console 6. When the operation panel is provided on the injection head 2, the operator can press the injection button on the operation panel. In addition, the operator can initiate an infusion by pressing a button on the hand switch. The operator may turn on the power of the injection device 1 after mounting the syringe 91 on the syringe holder 92.
  • the control device 5 sends a normal rotation signal as a drive voltage to the ultrasonic motor 3.
  • the ultrasonic motor 3 is driven according to the forward rotation signal, and the shaft 35 rotates forward.
  • the encoder 39 detects rotation and sends a pulse signal to the control device 5.
  • the control device 5 sends a reverse rotation signal as a drive voltage to the ultrasonic motor 3 in order to move the piston 93 backward.
  • the ultrasonic motor 3 is driven in response to the reverse signal, and the shaft 35 is reversely rotated.
  • the drive voltage transmitted to the ultrasonic motor 3 is alternating current, and when one of the two types of drive voltages having different phases is delayed with respect to the other, the other is set to one. When it is late, it becomes a reverse signal.
  • the control device 5 stores an injection protocol in advance in the memory unit, and the injection of the chemical solution is automatically performed according to the injection protocol.
  • this injection protocol for example, an injection time, an injection speed, an injection amount, and an injection pressure limit value are set. Then, since the contents of the injection protocol are displayed on the console 6, the operator can check the contents of the injection protocol. Further, the control device 5 controls the injection time using a timer and monitors the injection state such as the injection pressure of the chemical solution. It is also possible to connect the storage device storing the injection protocol to the control device 5 and inject the chemical solution according to the injection protocol read from the storage medium.
  • the injection head 2 and the control device 5 are configured using a non-magnetic material so that they can be arranged in the examination room. Specifically, it is configured using stainless steel, aluminum, plastic, brass, copper, ceramics, or the like. Furthermore, the console 6 arranged in the operation room can also be arranged in the examination room by using a non-magnetic material.
  • the ultrasonic motor 3 is also made of a nonmagnetic material. Specifically, the material of the elastic body is phosphor bronze, the material of the shaft 35, the screw and the spacer is brass, the material of the case, the base and the rotor is aluminum, and the material of the bush is fluororesin.
  • the injection apparatus 1 can be used in the vicinity of a device using magnetism such as an MRI apparatus.
  • the injection head 2 and the control device 5 are made of a magnetic material when used sufficiently away from the MRI apparatus, when a magnetic shield process is performed, or when used in the vicinity of another imaging apparatus. You can also
  • the control device 5 includes a control unit 50 that controls the ultrasonic motor 3 and a power supply 55 that supplies power to the console 6 and the ultrasonic motor 3.
  • the main CPU (control unit) 51 of the control unit 50 is composed of a one-chip microcomputer, and executes processing operations such as predetermined calculation, control, and determination according to a program stored in advance in a memory unit (not shown).
  • the memory unit includes a RAM (Random Access Memory) which is a system work memory for operating a main CPU (Central Processing Unit), a ROM (Read Only Memory) storing a program or system software, a hard disk drive, or the like. Prepare.
  • a console 6 is connected to the control device 5.
  • the main CPU 51 of the control device 5 transmits and receives signals to and from the console 6.
  • the main CPU 51 stores the identification data in the memory unit. Further, the main CPU 51 controls the ultrasonic motor 3 based on a program stored in the memory unit.
  • the main CPU 51 transmits and receives signals to and from the FPGA (Field-Programmable Gate Array) 56.
  • the FPGA 56 includes a speed determination phase control unit 501, a drive signal generation unit 504, and an actual speed detection unit 505.
  • a speed determination phase control unit 501 In the control unit 50, a speed determination phase control unit 501, an integration circuit 502, a VCO (Voltage (Controlled Oscillator) 503, a drive signal generation unit 504, and a drive circuit (drive voltage generation unit) 52 are sequentially connected.
  • the drive circuit 52 is connected to the ultrasonic motor 3.
  • the rotor of the ultrasonic motor 3 is connected to an encoder 39 that outputs a pulse signal corresponding to the rotational speed of the ultrasonic motor 3.
  • the encoder 39 outputs a pulse signal to the actual speed detection unit 505.
  • a command signal for starting the injection is transmitted from the console 6 to the main CPU 51.
  • the main CPU 51 that has received the command signal outputs a set speed signal to the drive signal generation unit 504 to control the drive signal generation unit 504.
  • the drive signal generation unit 504 Based on the set speed signal, the drive signal generation unit 504 generates a sin generation signal, a ⁇ sin generation signal, a cos generation signal, a ⁇ cos generation signal, and a phase transition signal as a drive signal for generating a drive voltage. Generate. Then, the drive signal generation unit 504 outputs the drive signal and the phase transition signal to the drive circuit 52.
  • the drive circuit 52 that has received the drive signal and the like generates an AC (Alternating Current) voltage (sin wave, -sin wave, cos wave, -cos wave) as a drive voltage for driving the ultrasonic motor 3, Output to the ultrasonic motor 3.
  • AC Alternating Current
  • the encoder 39 connected to the ultrasonic motor 3 detects the rotation of the ultrasonic motor 3 and sends a pulse signal to the actual speed detection unit 505.
  • the actual speed detection unit 505 determines the actual speed and transmits a detected speed signal to the speed determination phase control unit 501.
  • the speed determination phase control unit 501 receives a pressure limit signal and a set speed signal from the main CPU 51. Then, the speed determination phase control unit 501 generates a voltage so that the actual speed matches the set speed based on the detected speed signal, the pressure limit signal, and the set speed signal.
  • the integration circuit 502 integrates the voltage generated by the speed determination phase control unit 501.
  • the VCO 503 converts the integrated drive voltage into a signal having a corresponding frequency.
  • the drive signal generation unit 504 converts the signal received from the VCO 503 into a four-phase drive signal, and generates a drive signal (sin generation signal, -sin generation signal, cos generation signal, -cos generation signal). Then, the drive circuit 52 generates a drive voltage based on the drive signal and the phase transition signal received from the drive signal generation unit 504. A signal is also transmitted from the VCO 503 to the speed determination phase control unit 501 and used for feedback control. Thereby, the control unit 50 can control the ultrasonic motor 3 to rotate at the set speed.
  • the main CPU 51 transmits a power control signal to the power source 55 to control the supplied power. Then, power is supplied from the power supply 55 to the console 6, the control unit 50 (main CPU 51, FPGA 56, drive circuit 52), and the ultrasonic motor 3.
  • the main CPU 51 sets or calculates a rotation speed by using a data table stored in advance in the memory unit, and inputs a set speed signal corresponding to the set or calculated rotation speed to the drive signal generation unit 504. Then, based on the input set speed signal, the drive signal generation unit 504 generates a drive signal for generating a drive voltage for driving the ultrasonic motor 3. Thereafter, the drive signal generation unit 504 outputs a drive signal to the drive circuit 52 that generates a drive voltage. Further, the drive circuit 52 generates and outputs a drive voltage corresponding to the drive signal. Thereby, the ultrasonic motor 3 can be rotated at a desired speed. Note that the main CPU 51 may transmit a set speed signal corresponding to the injection speed input by the operator to the drive signal generation unit 504.
  • the main CPU 51 causes the drive signal generation unit 504 to increase the pulse width of the drive voltage stepwise (in order to reduce the frequency) in the order of the high-speed mode, medium-speed mode, low-speed mode, and ultra-low-speed mode.
  • a drive signal is generated.
  • the high speed mode corresponds to the range of 100.0 rpm to 240.0 rpm (4.2 ml / sec to 10.0 ml / sec), and the medium speed mode is 30.0 rpm to less than 100.0 rpm.
  • low speed mode corresponds to the range of 10.0rpm to less than 30.0rpm (0.4ml / sec to 1.2ml / sec)
  • ultra low speed mode is 10.0
  • the range of less than rpm corresponds to the range of less than rpm (0.3ml / sec or less).
  • the main CPU 51 sets the drive signal generation unit 504 so that standby periods t2 and t4 in which the drive voltage is not output are provided after the output periods t1 and t3 in which the drive circuit 52 outputs the drive voltage.
  • the drive signal generation unit 504 generates a drive signal based on the set speed signal.
  • the drive signal generation unit 504 waits without generating a drive signal based on the set speed signal.
  • the drive signal generation unit 504 does not generate and output a drive signal during the standby periods t2 and t4.
  • the drive circuit 52 does not generate and output a drive voltage during the standby periods t2 and t4. Therefore, the rotation speed is lower in the ultra-low speed mode than in the low-speed mode.
  • the drive voltages during the standby periods t2 and t4 that are not output are indicated by dotted lines.
  • the drive signal generation unit 504 of this embodiment does not stand by based on the stop signal input from the switching unit or the like, but waits for a predetermined time based on the input set speed signal. Therefore, it is possible to shorten the standby period until the desired length is reached without depending on the performance of the switching unit. Thereby, even in the ultra-low speed mode, fluctuations in the rotational speed of the ultrasonic motor 3 can be suppressed, so that a constant injection speed can be maintained.
  • the standby periods t2 and t4 correspond to a predetermined number of waveform periods of the drive voltage. That is, it is preferable that the main CPU 51 causes the drive signal generation unit 504 to generate a drive signal so that the standby periods t2 and t4 coincide with a predetermined number of waveform periods of the drive voltage.
  • the lengths of the output periods t1 and t3 and the standby periods t2 and t4 are times that coincide with one waveform period. Thereby, a driving voltage having a desired frequency can be obtained easily and reliably.
  • the frequency of the drive voltage is 22 kHz, which is a half of 44 kHz, and is higher than the audible frequency.
  • the frequency of the drive voltage of the ultrasonic motor 3 is not limited to 44 kHz, and may be a frequency in the range of 30 to 50 kHz, for example.
  • the standby periods t2 and t4 correspond to one waveform period of the drive voltage. That is, it is more preferable that the main CPU 51 causes the drive signal generation unit 504 to generate a drive signal so that the standby periods t2 and t4 coincide with one waveform cycle of the drive voltage.
  • the waiting time can be shortened, so that fluctuations in the rotational speed of the ultrasonic motor can be suppressed even when the injection speed is very low. Therefore, a constant injection rate can be maintained. However, if the injection rate can be kept constant, the waiting period can be made to coincide with two or more waveform periods.
  • the output periods t1 and t3 correspond to one waveform period of the drive voltage. That is, the main CPU 51 may cause the drive signal generation unit 504 to generate a drive signal such that output periods t1 and t3 corresponding to one waveform period and standby periods t2 and t4 corresponding to one waveform period are alternately repeated. More preferred. Thereby, the output period t1 for one waveform period, the standby period t2 for one waveform period, the output period t3 for one waveform period, and the standby period t4 for one waveform period are repeated. Then, the drive voltage is applied to the ultrasonic motor 3 at a constant cycle without the standby period being continuous. Therefore, the ultrasonic motor can be stably rotated even in the ultra-low speed mode in which the ultrasonic motor 3 is likely to stop. As a result, the injection rate can be kept constant.
  • an output period or a standby period corresponding to two or more waveform periods can be continued.
  • an output period that matches two waveform periods and a standby period that matches two waveform periods can be alternately repeated.
  • the output period that matches the two waveform periods and the standby period that matches the one waveform period can be alternately repeated.
  • the standby period that matches one waveform cycle can be continued once or twice.
  • the lengths of the standby periods t2 and t4 are equal to the lengths of the output periods t1 and t3. Thereby, the period during which the drive voltage is applied to the ultrasonic motor 3 and the period during which the drive voltage is not applied are repeated at the same interval. Therefore, the ultrasonic motor can be stably rotated even in the ultra-low speed mode in which the ultrasonic motor 3 is likely to stop. As a result, the injection rate can be kept constant.
  • the standby period can be shortened until the desired length is reached based on the input set speed signal. Therefore, the standby period can be shortened without depending on the performance of the switching unit. Thereby, even when the injection speed is very low, fluctuations in the rotational speed of the ultrasonic motor can be suppressed, so that a constant injection speed can be maintained.
  • the drive signal is generated so that the waveform of the drive voltage in the output periods t1 and t3 for outputting the drive voltage is a sine wave.
  • the phase of the drive voltage waveform in the output periods t1 and t3 is shifted from the phase of the sine wave. ing.
  • the drive voltage includes a sine wave and a ⁇ sin wave as the drive voltage of the first phase, and a cos wave and a ⁇ cos wave as the drive voltage of the second phase, and the first phase and the second phase
  • the drive signal is generated so that the phase difference from the phase deviates from 90 degrees.
  • the main CPU 51 causes the drive signal generation unit 504 to generate a drive signal so that the output timing of the sine wave and the ⁇ sin wave is shifted or delayed as compared with the first embodiment. Therefore, the drive signal generation unit 504 determines the phase shift amount using the set speed signal received from the main CPU. Then, the drive signal generation unit 504 outputs the drive signal so that the phase difference between the phase of the sine wave and the ⁇ sin wave and the phase of the cos wave and the ⁇ cos wave is shifted from 90 degrees by an amount corresponding to the amount of deviation. Generate. As a result, the phase difference is not 90 degrees. As a result, the rotational speed of the ultrasonic motor 3 is lowered and the injection speed is also lowered. Instead of shifting the output timing of the sin wave and the ⁇ sin wave, the output timing of the cos wave and the ⁇ cos wave may be shifted.
  • the output periods t1 and t3 and the standby periods t2 and t4 correspond to one waveform period of the drive voltage, and the output period of one waveform period and the standby period of one waveform period are alternately repeated. More preferably.
  • the amount of phase difference deviation can be determined in units of one waveform period in the drive voltage output period. Therefore, the difference between the shift amount determined for each waveform cycle and the actual shift amount is smaller than when the shift amount is determined for a plurality of waveform cycles. As a result, fine control of the injection rate can be performed easily and reliably.
  • the waiting period can be shortened until the desired length is reached based on the input set speed signal. Therefore, the standby period can be shortened without depending on the performance of the switching unit. Thereby, even when the injection speed is very low, fluctuations in the rotational speed of the ultrasonic motor can be suppressed, so that a constant injection speed can be maintained.
  • the injection speed is further set by setting the phase difference of the drive voltage. Can be controlled more finely.
  • FIG. 5 is a schematic cross-sectional view of a portable injection device 301 as an example of a chemical solution injection device.
  • the ultrasonic motor 317 of the third embodiment is controlled according to the control method described in the first or second embodiment.
  • the injection device 301 injects a medical solution such as an infusion solution or an anticancer agent at a low injection rate over a long period of time.
  • the injection device 301 includes a sliding portion 316 that slides within the main body 310 in order to advance and retract the plunger 322 of the syringe 321. Further, an ultrasonic motor 317 is provided inside the main body 310 as a drive unit, and is connected to the plunger 322 via the sliding unit 316. A pulley section 371 having a pulley and a belt is connected to the ultrasonic motor 317, and the ultrasonic motor 317 applies a rotational force to the sliding section 316 via the pulley and the belt.
  • the sliding portion 316 includes a screw nut that is screwed with a ball screw or a slide screw, and slides within the main body 310 by the rotational force from the ultrasonic motor 317. That is, the sliding portion 316 slides as the screw shaft supported by the bearing rotates by the rotational force from the ultrasonic motor 317.
  • the sliding portion 316 is connected to the plunger 322 via the mounting portion 311. As the sliding portion 316 slides in the main body 310, the plunger 322 moves forward or backward.
  • the sliding portion 316 includes a ball screw shaft that is rotatably supported by the bearing, and a ball screw nut that is screwed into an intermediate portion of the ball screw shaft. Then, the ball screw nut engages with a plunger hook (mounting portion) 311 slidably attached to the main body 310.
  • the rotation of the rotating shaft of the ultrasonic motor 317 is transmitted to the ball screw shaft via a pulley and a belt (pulley portion 371). Thereby, the ball screw shaft rotates according to the transmitted rotational force, and the ball screw nut slides with the rotation of the ball screw shaft.
  • the plunger 322 moves forward or backward via the plunger hook 311. That is, the plunger 322 is taken in and out of the syringe 321.
  • the chemical liquid flows into the syringe 321 from a chemical liquid bag (not shown).
  • the plunger 322 moves forward, the drug solution in the syringe 321 flows out into the tube and is injected into the user via the catheter. By repeating the forward and reverse movements, the chemical solution can be injected into the user continuously for a long time.
  • the main body 310 of the injection apparatus 301 includes the control unit 50 (not shown) described above in order to control the ultrasonic motor 317.
  • the drive signal generation unit 504 waits without generating a drive signal based on the set speed signal in the standby periods t2 and t4 following the output periods t1 and t3 for outputting the drive voltage.
  • the standby period coincides with one waveform cycle. More preferably, the output period corresponding to one waveform period and the standby period corresponding to one waveform period are alternately repeated.
  • the waiting period can be shortened until the desired length is reached based on the input set speed signal. Therefore, the standby period can be shortened without depending on the performance of the switching unit. Thereby, even when the injection speed is very low, fluctuations in the rotational speed of the ultrasonic motor can be suppressed, so that a constant injection speed can be maintained.
  • the drive signal can be generated so that the phase difference between the first phase and the second phase of the drive voltage is shifted from 90 degrees.
  • the mode of the rotational speed of the ultrasonic motor 3 is not limited to four stages, and modes of three stages or less or five stages or more can be provided.
  • the voltage value or frequency of the drive voltage to be output can be changed so as to achieve a desired rotational speed within the range of the injection speed corresponding to each mode. Thereby, in each mode, the rotational speed of the ultrasonic motor can be controlled so as to achieve a desired injection speed.
  • the injection device may include a driving device in which the ultrasonic motor 3 and the control unit 50 are integrally provided, and the driving mechanism 4 may be driven by the driving device.
  • the drive voltage generation unit can be configured by integrally providing the drive signal generation unit 504 and the drive circuit 52.

Abstract

In the present invention, variations in rotational speed of an ultrasonic motor are suppressed and a constant infusion rate maintained even when the infusion rate is extremely low by shortening a wait period when drive voltage is not output without dependence on the performance of a switching unit. In a control method for an ultrasonic motor (3): a drive signal for generating drive voltage to drive the ultrasonic motor (3) is generated by a drive signal generating unit (504) on the basis of a setting rate signal input from a control unit (51) to the drive signal generating unit (504); the drive signal is output by the drive signal generating unit (504) to a drive voltage generating unit (52) that generates the drive voltage; and during a wait period following an output period in which the drive voltage is output, the drive signal generating unit (504) waits, without generating a drive signal, on the basis of the setting rate signal.

Description

超音波モーターの制御方法、及び注入装置Ultrasonic motor control method and injection apparatus
 本発明は、低速で回転する超音波モーターの制御方法、及び超音波モーターを備えた薬液の注入装置に関する。 The present invention relates to a method for controlling an ultrasonic motor that rotates at a low speed, and a chemical solution injection device including the ultrasonic motor.
 従来、造影剤等の薬液を注入する注入装置には、超音波モーターと、該超音波モーターによって薬液を送り出すように駆動される駆動機構とを備えた注入装置があった。薬液の注入装置には、所望の時間、一定の薬液注入速度を維持することが求められる。そのため、例えば、短い注入時間で薬液を注入する場合には、超音波モーターを高速で回転させて高速で注入する。そして、長い注入時間で薬液を注入する場合には、超音波モーターを低速で回転させて低速で注入する。 Conventionally, an injection device for injecting a chemical solution such as a contrast medium has an injection device including an ultrasonic motor and a drive mechanism that is driven by the ultrasonic motor to send out the chemical solution. A chemical injection device is required to maintain a constant chemical injection rate for a desired time. Therefore, for example, when injecting a chemical solution in a short injection time, the ultrasonic motor is rotated at a high speed and injected at a high speed. And when inject | pouring a chemical | medical solution with a long injection | pouring time, an ultrasonic motor is rotated at low speed and it injects at low speed.
 超音波モーターを低速で回転させる方法としては、基本信号生成部とスイッチング部とを設け、基本信号生成部から入力される基本信号をスイッチング部を介して間欠的に出力する制御方法があった(特許文献1)。この制御方法においては、パルス信号生成部が設けられており、スイッチング部は、パルス信号生成部から出力されたパルス信号のオン時間のみ基本信号を出力する。これにより、スイッチング部を介して出力される基本信号は、間欠的に出力される。 As a method of rotating the ultrasonic motor at a low speed, there is a control method in which a basic signal generation unit and a switching unit are provided and a basic signal input from the basic signal generation unit is intermittently output via the switching unit ( Patent Document 1). In this control method, a pulse signal generation unit is provided, and the switching unit outputs a basic signal only during the ON time of the pulse signal output from the pulse signal generation unit. Thereby, the basic signal output via a switching part is output intermittently.
 また、基本信号を間欠的に出力する方法としては、基本信号生成部とスイッチング部とを設け、スイッチング部が基本信号生成部を停止させる制御方法も考えられる。この制御方法においては、所定の時間の間、スイッチング部が基本信号生成部に基本信号の出力を停止させ、その後にスイッチング部が出力の停止を解除する。これにより、基本信号生成部から出力される基本信号は、間欠的に出力される。 Also, as a method of intermittently outputting the basic signal, a control method in which a basic signal generation unit and a switching unit are provided and the switching unit stops the basic signal generation unit is also conceivable. In this control method, the switching unit causes the basic signal generation unit to stop outputting the basic signal for a predetermined time, and then the switching unit cancels the output stop. Thereby, the basic signal output from the basic signal generation unit is output intermittently.
特開2007-244181号公報JP 2007-244181 A
 これらの制御方法においては、超音波モーターに駆動電圧が出力される期間と、超音波モーターに駆動電圧が出力されない期間とが存在する。これにより、超音波モーターの停止と回転とが繰り返される結果、両期間を合わせた期間の平均回転速度を低くすることができる。これらの制御方法は、超音波モーターによって駆動される被駆動部が、所定の平均速度を保って一定の距離を進む場合に用いることができる。 In these control methods, there are a period in which the drive voltage is output to the ultrasonic motor and a period in which the drive voltage is not output to the ultrasonic motor. As a result, the stop and rotation of the ultrasonic motor are repeated, and as a result, the average rotation speed of the period combining both periods can be lowered. These control methods can be used when a driven part driven by an ultrasonic motor travels a certain distance while maintaining a predetermined average speed.
 一方、これらの制御方法を薬液の注入装置に適用する場合、駆動電圧が出力されない待機期間が長いと薬液の注入が一時的に停止してしまう恐れがある。しかし、注入装置においては、所望の時間の間、注入を停止せずに一定の注入速度を維持することが求められている。そのため、非常に短い待機期間を設ける必要があり、非常に短い待機期間を実現するためにはスイッチング部が高速でオンオフする必要がある。しかし、スイッチング速度はスイッチング部の性能に依存するため限界がある。そのため、非常に短い待機期間を設けることは困難であった。 On the other hand, when these control methods are applied to an apparatus for injecting a chemical solution, the injection of the chemical solution may be temporarily stopped if the standby period in which the drive voltage is not output is long. However, in an injection device, it is required to maintain a constant injection rate without stopping injection for a desired time. Therefore, it is necessary to provide a very short standby period. In order to realize a very short standby period, the switching unit needs to be turned on and off at high speed. However, the switching speed is limited because it depends on the performance of the switching unit. For this reason, it has been difficult to provide a very short standby period.
 さらに、非常に低い速度で超音波モーターを回転させる場合、すなわち、注入速度が非常に低い場合は、超音波モーターが停止しやすく回転し難い。そのため、超音波モーターに駆動電圧が入力されてから実際に回転が開始される迄の時間が長くなり、この時間も待機期間に付加されてしまう。その結果、待機期間が長いと超音波モーターの回転速度の変動が生じてしまい、一定の注入速度を維持することがさらに困難になってしまう。 Furthermore, when the ultrasonic motor is rotated at a very low speed, that is, when the injection speed is very low, the ultrasonic motor is likely to stop and difficult to rotate. For this reason, the time from when the drive voltage is input to the ultrasonic motor to when the rotation is actually started becomes longer, and this time is also added to the standby period. As a result, if the waiting period is long, fluctuations in the rotational speed of the ultrasonic motor occur, making it more difficult to maintain a constant injection speed.
 上記課題を解決するため、本発明の一例としての超音波モーターの制御方法は、制御ユニットから駆動信号生成ユニットへ入力される設定速度信号に基づいて、超音波モーターを駆動する駆動電圧を生成するための駆動信号を前記駆動信号生成ユニットによって生成し、前記駆動信号生成ユニットによって、前記駆動電圧を生成する駆動電圧生成ユニットへ前記駆動信号を出力し、前記駆動電圧を出力する出力期間に続く待機期間においては、前記設定速度信号に基づいて、前記駆動信号生成ユニットが前記駆動信号を生成せずに待機する、ことを特徴とする。 In order to solve the above problems, an ultrasonic motor control method as an example of the present invention generates a drive voltage for driving an ultrasonic motor based on a set speed signal input from the control unit to the drive signal generation unit. A drive signal for generating by the drive signal generating unit, outputting the drive signal to the drive voltage generating unit for generating the drive voltage by the drive signal generating unit, and waiting for an output period for outputting the drive voltage In the period, based on the set speed signal, the drive signal generation unit waits without generating the drive signal.
 また、本発明の他の例としての注入装置は、薬液を注入するための注入装置であって、超音波モーターと、前記薬液を送り出すように、前記超音波モーターによって駆動される駆動機構と、前記超音波モーターを駆動する駆動電圧を生成し、前記駆動電圧を前記超音波モーターへ出力する駆動電圧生成ユニットと、前記駆動電圧を生成するための駆動信号を生成し、前記駆動信号を前記駆動電圧生成ユニットへ出力する駆動信号生成ユニットと、前記駆動信号生成ユニットへ設定速度信号を出力し、前記駆動信号生成ユニットを制御する制御ユニットとを備え、前記設定速度信号に基づいて、前記駆動信号生成ユニットは、前記駆動電圧が出力される出力期間において前記駆動信号を生成すると共に、前記出力期間に続く待機期間においては前記駆動信号を生成せずに待機する、ことを特徴とする。 An injection device as another example of the present invention is an injection device for injecting a chemical solution, and an ultrasonic motor, and a drive mechanism driven by the ultrasonic motor so as to send out the chemical solution, Generating a drive voltage for driving the ultrasonic motor, outputting the drive voltage to the ultrasonic motor; generating a drive signal for generating the drive voltage; and driving the drive signal to the drive A drive signal generation unit that outputs to the voltage generation unit; and a control unit that outputs a set speed signal to the drive signal generation unit and controls the drive signal generation unit, and based on the set speed signal, the drive signal The generation unit generates the drive signal in an output period in which the drive voltage is output, and in a standby period following the output period. It waits without generating the drive signal, characterized in that.
 これにより、入力される設定速度信号に基づいて、所望の長さになるまで待機期間を短くすることができる。そのため、スイッチング部の性能に依存することなく待機期間を短くすることができる。これにより、注入速度が非常に低い場合であっても、超音波モーターの回転速度の変動を抑制できるので、一定の注入速度を維持することができる。 This makes it possible to shorten the waiting period until the desired length is reached based on the input set speed signal. Therefore, the standby period can be shortened without depending on the performance of the switching unit. Thereby, even when the injection speed is very low, fluctuations in the rotational speed of the ultrasonic motor can be suppressed, so that a constant injection speed can be maintained.
 本発明のさらなる特徴は、添付図面を参照して例示的に示した以下の実施形態の説明から明らかになる。 Further features of the present invention will become apparent from the following description of embodiments, given by way of example with reference to the accompanying drawings.
第1実施形態に係る注入装置を説明する概略ブロック図である。It is a schematic block diagram explaining the injection apparatus which concerns on 1st Embodiment. 第1実施形態に係る注入装置の制御装置を説明する概略ブロック図である。It is a schematic block diagram explaining the control apparatus of the injection device which concerns on 1st Embodiment. 第1実施形態における回転速度と駆動電圧の関係を示すグラフである。It is a graph which shows the relationship between the rotational speed and drive voltage in 1st Embodiment. 第2実施形態における回転速度と駆動電圧の関係を示すグラフである。It is a graph which shows the relationship between the rotational speed and drive voltage in 2nd Embodiment. 第3実施形態に係る注入装置を説明する概略断面図である。It is a schematic sectional drawing explaining the injection apparatus which concerns on 3rd Embodiment.
 以下、本発明を実施するための例示的な実施形態を、図面を参照して詳細に説明する。ただし、以下の実施形態で説明する寸法、材料、形状、構成要素の相対的な位置等は任意であり、本発明が適用される装置の構成又は様々な条件に応じて変更できる。また、特別な記載がない限り、本発明の範囲は、以下に具体的に記載された実施形態に限定されるものではない。 Hereinafter, exemplary embodiments for carrying out the present invention will be described in detail with reference to the drawings. However, dimensions, materials, shapes, relative positions of components, and the like described in the following embodiments are arbitrary and can be changed according to the configuration of the apparatus to which the present invention is applied or various conditions. In addition, unless otherwise specified, the scope of the present invention is not limited to the embodiments specifically described below.
[第1実施形態]
 図1に示すように、薬液を注入するための注入装置1は、超音波モーター3と、超音波モーター3が正転するときに薬液を送り出すように、超音波モーター3によって駆動される駆動機構4と、超音波モーター3を制御する制御装置5とを備える。そして、駆動機構4及び超音波モーター3は、注入装置1の注入ヘッド2のフレーム21内に格納されている。このフレーム21は、2つのシリンジ91を保持するために2つのシリンジホルダー92を有する。さらに、注入装置1は、薬液の注入状況等が表示されるディスプレイを含むコンソール6を有している。このコンソール6は制御装置5に接続されており、制御装置5は注入ヘッド2に有線接続又は無線接続されている。なお、注入ヘッド2、制御装置5及びコンソール6のそれぞれは、互いに有線接続又は無線接続することができる。
[First Embodiment]
As shown in FIG. 1, an injection device 1 for injecting a chemical liquid includes an ultrasonic motor 3 and a drive mechanism that is driven by the ultrasonic motor 3 so as to send out the chemical liquid when the ultrasonic motor 3 rotates forward. 4 and a control device 5 for controlling the ultrasonic motor 3. The drive mechanism 4 and the ultrasonic motor 3 are stored in the frame 21 of the injection head 2 of the injection device 1. The frame 21 has two syringe holders 92 for holding the two syringes 91. Furthermore, the injection device 1 has a console 6 including a display on which an injection status of the chemical solution is displayed. The console 6 is connected to the control device 5, and the control device 5 is connected to the injection head 2 by wire or wirelessly. Note that each of the injection head 2, the control device 5, and the console 6 can be connected to each other by wire or wireless.
 注入装置1の電源又はバッテリーは、注入ヘッド2、制御装置5、又はコンソール6のいずれかに設けることができ、またこれらとは別に設けることもできる。また、注入ヘッド2と制御装置5は、キャスタースタンド(不図示)と一体的に構成することができる。また、それぞれをばらばらに設け、キャスタースタンドに搭載することもできる。なお、ハンドスイッチ等の遠隔操作装置を用いて、注入ヘッド2を遠隔操作して薬液注入をスタート又はストップさせることもできる。 The power source or battery of the injection device 1 can be provided in any of the injection head 2, the control device 5, or the console 6, or can be provided separately from these. Moreover, the injection head 2 and the control device 5 can be configured integrally with a caster stand (not shown). Moreover, each can be provided separately and mounted on a caster stand. In addition, using a remote control device such as a hand switch, the injection head 2 can be remotely operated to start or stop the chemical injection.
 コンソール6は、ディスプレイとしてのタッチパネルを備えると共に、ハンドスイッチに有線又は無線接続されている。そして、制御装置5には、動作パターン(注入プロトコル)のデータ、及び薬液のデータ等が予め記憶されている。患者に薬液を注入する場合、オペレーターは、タッチパネルを操作して、注入速度、注入量、注入時間、体重、身長、体表面積、心拍数、心拍出量などの患者の身体的データ、及び薬液の種類のデータ等を入力する。そして、制御装置5は、入力されたデータと予め記憶されているデータに応じて、最適な注入条件を算出する。その後、制御装置5は、算出された注入条件に基づいて、患者に注入する薬液の量及び注入プロトコルを決定する。 The console 6 includes a touch panel as a display and is connected to the hand switch by wire or wirelessly. The control device 5 stores operation pattern (injection protocol) data, drug solution data, and the like in advance. When injecting medicinal solution into the patient, the operator operates the touch panel, and the patient's physical data such as infusion rate, infusion volume, infusion time, weight, height, body surface area, heart rate, cardiac output, and medicinal solution Enter the type of data. And the control apparatus 5 calculates optimal injection | pouring conditions according to the input data and the data stored beforehand. Thereafter, the control device 5 determines the amount of the medical solution to be injected into the patient and the injection protocol based on the calculated injection conditions.
 この注入装置1は、撮像装置(不図示)に有線又は無線接続されている。そして、薬液の注入時及び画像の撮影時には、撮像装置と注入装置1との間で各種データが送受信される。このような撮像装置としては、例えば、MRI(Magnetic Resonance Imaging)装置、CT(Computed Tomography)装置、アンギオ撮像装置、PET(Positron Emission Tomography)装置、SPECT(Single Photon Emission Computed Tomography)装置、CTアンギオ装置、MRアンギオ装置、超音波診断装置、血管撮像装置等の各種医療用撮像装置がある。 The injection device 1 is wired or wirelessly connected to an imaging device (not shown). Various types of data are transmitted and received between the imaging device and the injection device 1 when the chemical solution is injected and when an image is taken. Examples of such an imaging apparatus include an MRI (Magnetic Resonance Imaging) apparatus, a CT (Computed Tomography) apparatus, an angio imaging apparatus, a PET (Positron Emission Tomography) apparatus, a SPECT (Single Photon Emission Computed Tomography) apparatus, and a CT angio apparatus. There are various medical imaging devices such as MR angio devices, ultrasonic diagnostic devices, and blood vessel imaging devices.
 制御装置5は、薬液の量及び注入プロトコルを決定すると、所定のデータ又はグラフなどをタッチパネルに表示させる。これにより、オペレーターは、表示されたデータ又はグラフなどを確認することができる。なお、動作パターン(注入プロトコル)のデータ及び薬液のデータ等は、外部の記憶媒体から入力することもできる。 When the control device 5 determines the amount of the chemical solution and the injection protocol, the control device 5 displays predetermined data or a graph on the touch panel. Thereby, the operator can check the displayed data or graph. Note that the operation pattern (injection protocol) data, drug solution data, and the like can be input from an external storage medium.
 制御装置5は、超音波モーター3に接続されており、超音波モーター3にはエンコーダー39が接続されている。そして、エンコーダー39は、超音波モーター3の回転速度に対応する周波数のパルス信号を制御装置5に送信している。なお、フレーム21内においてシリンジホルダー92が位置する側を前側とした場合に、超音波モーター3は後側部分に配置されている。また、駆動機構4は、シリンジホルダー92と超音波モーター3との間に配置されている。そして、この駆動機構4は、超音波モーター3のシャフト35に接続された伝達機構41と、伝達機構41に接続されたボールネジ軸411と、ボールネジ軸411に取り付けられたボールネジナット412と、ボールネジナット412に接続されたアクチュエーター413とを備える。 The control device 5 is connected to the ultrasonic motor 3, and the encoder 39 is connected to the ultrasonic motor 3. The encoder 39 transmits a pulse signal having a frequency corresponding to the rotational speed of the ultrasonic motor 3 to the control device 5. In addition, when the side where the syringe holder 92 is located in the frame 21 is the front side, the ultrasonic motor 3 is disposed on the rear side portion. The drive mechanism 4 is disposed between the syringe holder 92 and the ultrasonic motor 3. The drive mechanism 4 includes a transmission mechanism 41 connected to the shaft 35 of the ultrasonic motor 3, a ball screw shaft 411 connected to the transmission mechanism 41, a ball screw nut 412 attached to the ball screw shaft 411, and a ball screw nut. And an actuator 413 connected to 412.
 ボールネジナット412は、ボールネジ軸411の中間部分に螺合されている。そして、伝達機構41は、超音波モーター3からの回転をボールネジ軸411に伝達する。また、伝達機構41は、シャフト35に接続されたピニオンギアと、ボールネジ軸411に接続されたスクリューギアとを有している。そのため、超音波モーター3のシャフト35の回転は、ピニオンギア及びスクリューギアを介してボールネジ軸411に伝達される。これにより、ボールネジ軸411は、伝達された回転に従って回転する。そして、ボールネジナット412は、ボールネジ軸411の回転に伴い前進方向(前側方向)又は後進方向(後側方向)に摺動する。その結果、ボールネジナット412の摺動に伴い、アクチュエーター413が前進又は後進する。すなわち、シャフト35が正転するとアクチュエーター413が前進し、シャフト35が逆転するとアクチュエーター413が後進する。 The ball screw nut 412 is screwed into an intermediate portion of the ball screw shaft 411. The transmission mechanism 41 transmits the rotation from the ultrasonic motor 3 to the ball screw shaft 411. Further, the transmission mechanism 41 has a pinion gear connected to the shaft 35 and a screw gear connected to the ball screw shaft 411. Therefore, the rotation of the shaft 35 of the ultrasonic motor 3 is transmitted to the ball screw shaft 411 via the pinion gear and the screw gear. Thereby, the ball screw shaft 411 rotates according to the transmitted rotation. The ball screw nut 412 slides in the forward direction (front side direction) or the reverse direction (rear side direction) as the ball screw shaft 411 rotates. As a result, as the ball screw nut 412 slides, the actuator 413 moves forward or backward. That is, when the shaft 35 rotates forward, the actuator 413 moves forward, and when the shaft 35 rotates reversely, the actuator 413 moves backward.
 シリンジ91には、シリンジ91内において摺動可能であるピストン93が取り付けられている。そして、シリンジ91は、ピストン93のロッドがアクチュエーター413の先端に当接するように搭載される。これにより、シリンジ91が搭載された状態でボールネジナット412が前進方向に摺動すると、アクチュエーター413がピストン93を前進方向に押すことになる。そして、ピストン93が前進するとシリンジ91内の薬液が押し出され、シリンジ91の先端に接続される不図示のカテーテル等を介して患者の体内に注入される。また、ボールネジナット412が後進方向に摺動すると、アクチュエーター413がピストン93を後進方向に引くことになる。 A piston 93 that can slide in the syringe 91 is attached to the syringe 91. The syringe 91 is mounted such that the rod of the piston 93 abuts on the tip of the actuator 413. As a result, when the ball screw nut 412 slides in the forward direction with the syringe 91 mounted, the actuator 413 pushes the piston 93 in the forward direction. When the piston 93 advances, the chemical solution in the syringe 91 is pushed out and injected into the patient's body through a catheter (not shown) connected to the tip of the syringe 91. Further, when the ball screw nut 412 slides in the reverse direction, the actuator 413 pulls the piston 93 in the reverse direction.
 なお、薬液が充填されたシリンジ91は、プレフィルシリンジであってもよい。また、薬液は、手動でシリンジ91に充填されてもよく、注入装置1や充填器でシリンジ91に充填されてもよい。さらに、シリンジ91には、RFIDやバーコードといったデーターキャリアを設けることができる。このデーターキャリアには、充填された薬液の情報等が記録されている。そして、注入装置1は、注入ヘッド2を介してデーターキャリアから記録された情報を読み取り、薬液の注入圧力等を制御することができる。例えば、制御装置5は、読み取った薬液の情報(ヨード量等)に基づいて、体重当たりの最適な注入量を計算してコンソール6のタッチパネルに表示させることができる。 Note that the syringe 91 filled with the chemical solution may be a prefilled syringe. Moreover, a chemical | medical solution may be manually filled into the syringe 91, and may be filled into the syringe 91 with the injection apparatus 1 or a filling device. Furthermore, the syringe 91 can be provided with a data carrier such as an RFID or a barcode. In this data carrier, information on the filled chemical solution is recorded. The injection device 1 can read the information recorded from the data carrier via the injection head 2 and control the injection pressure and the like of the chemical solution. For example, the control device 5 can calculate the optimal injection amount per body weight based on the read information (chemical iodine amount, etc.) of the liquid medicine and display it on the touch panel of the console 6.
 薬液を注入する場合、オペレーターは注入装置1の電源をオンにし、シリンジ91をシリンジホルダー92に搭載する。その後、オペレーターは、コンソール6のタッチパネルに表示された注入ボタンを押す。また、注入ヘッド2に操作パネルが設けられている場合には、オペレーターは該操作パネルの注入ボタンを押すこともできる。さらに、オペレーターは、ハンドスイッチのボタンを押して注入を開始することもできる。なお、オペレーターは、シリンジ91をシリンジホルダー92に搭載した後に、注入装置1の電源をオンしてもよい。 When injecting a chemical solution, the operator turns on the power of the injection device 1 and mounts the syringe 91 on the syringe holder 92. Thereafter, the operator presses an injection button displayed on the touch panel of the console 6. When the operation panel is provided on the injection head 2, the operator can press the injection button on the operation panel. In addition, the operator can initiate an infusion by pressing a button on the hand switch. The operator may turn on the power of the injection device 1 after mounting the syringe 91 on the syringe holder 92.
 注入ボタンが押されると、制御装置5は超音波モーター3に駆動電圧として正転信号を送る。この正転信号に応じて超音波モーター3が駆動し、シャフト35が正転する。シャフト35が正転すると、エンコーダー39は回転を検出して制御装置5にパルス信号を送る。注入が終了しシリンジ91を外す場合、ピストン93を後進させるために、制御装置5は超音波モーター3に駆動電圧として逆転信号を送る。この逆転信号に応じて超音波モーター3が駆動し、シャフト35が逆転する。なお、超音波モーター3に送信される駆動電圧は交流であり、位相が異なる2種類の駆動電圧のうち一方が他方に対して遅れている場合を正転信号としたときに、他方が一方に対して遅れている場合が逆転信号となる。 When the injection button is pressed, the control device 5 sends a normal rotation signal as a drive voltage to the ultrasonic motor 3. The ultrasonic motor 3 is driven according to the forward rotation signal, and the shaft 35 rotates forward. When the shaft 35 rotates forward, the encoder 39 detects rotation and sends a pulse signal to the control device 5. When the injection is completed and the syringe 91 is removed, the control device 5 sends a reverse rotation signal as a drive voltage to the ultrasonic motor 3 in order to move the piston 93 backward. The ultrasonic motor 3 is driven in response to the reverse signal, and the shaft 35 is reversely rotated. The drive voltage transmitted to the ultrasonic motor 3 is alternating current, and when one of the two types of drive voltages having different phases is delayed with respect to the other, the other is set to one. When it is late, it becomes a reverse signal.
 制御装置5はメモリ部に予め注入プロトコルを記憶しており、薬液の注入は注入プロトコルに従って自動的に行われる。この注入プロトコルには、例えば、注入時間、注入速度、注入量及び注入圧力リミット値が設定されている。そして、注入プロトコルの内容はコンソール6に表示されるので、オペレーターは注入プロトコルの内容を確認することができる。また、制御装置5は、タイマーを利用して注入時間を制御すると共に、薬液の注入圧力等の注入状況を監視している。なお、制御装置5に注入プロトコルが記憶された記憶媒体を接続して、記憶媒体から読み込んだ注入プロトコルに従って薬液の注入行うこともできる。 The control device 5 stores an injection protocol in advance in the memory unit, and the injection of the chemical solution is automatically performed according to the injection protocol. In this injection protocol, for example, an injection time, an injection speed, an injection amount, and an injection pressure limit value are set. Then, since the contents of the injection protocol are displayed on the console 6, the operator can check the contents of the injection protocol. Further, the control device 5 controls the injection time using a timer and monitors the injection state such as the injection pressure of the chemical solution. It is also possible to connect the storage device storing the injection protocol to the control device 5 and inject the chemical solution according to the injection protocol read from the storage medium.
 注入ヘッド2及び制御装置5は、検査室内に配置できるように非磁性体材料を用いて構成されている。具体的には、ステンレス、アルミニウム、プラスチック、真鍮、銅、セラッミックス等を用いて構成されている。さらに、操作室に配置されるコンソール6も、非磁性体材料を用いて構成すれば検査室内に配置できる。また、超音波モーター3も非磁性体材料を用いて構成されている。具体的には、弾性体の材料はリン青銅であり、シャフト35、ネジ及びスペーサの材料は真鍮であり、ケース、ベース及びローターの材料はアルミニウムであり、ブッシュの材料はフッ素樹脂である。これにより、MRI装置等の磁気を利用する機器の近傍で注入装置1を使用することができる。ただし、MRI装置から十分に離して使用する場合、磁気シールド処理を施した場合、又は他の撮像装置の近傍で使用する場合には、磁性体材料を用いて注入ヘッド2及び制御装置5を構成することもできる。 The injection head 2 and the control device 5 are configured using a non-magnetic material so that they can be arranged in the examination room. Specifically, it is configured using stainless steel, aluminum, plastic, brass, copper, ceramics, or the like. Furthermore, the console 6 arranged in the operation room can also be arranged in the examination room by using a non-magnetic material. The ultrasonic motor 3 is also made of a nonmagnetic material. Specifically, the material of the elastic body is phosphor bronze, the material of the shaft 35, the screw and the spacer is brass, the material of the case, the base and the rotor is aluminum, and the material of the bush is fluororesin. Thereby, the injection apparatus 1 can be used in the vicinity of a device using magnetism such as an MRI apparatus. However, the injection head 2 and the control device 5 are made of a magnetic material when used sufficiently away from the MRI apparatus, when a magnetic shield process is performed, or when used in the vicinity of another imaging apparatus. You can also
 図2に示すように、制御装置5は、超音波モーター3を制御する制御部50と、コンソール6及び超音波モーター3に電力を供給する電源55とを有する。制御部50のメインCPU(制御ユニット)51は、ワンチップマイコンからなり、予めメモリ部(不図示)に記憶されたプログラムに応じて所定の演算、制御、判別などの処理動作を実行する。なお、メモリ部は、メインCPU(Central Processing Unit)が動作するためのシステムワークメモリであるRAM(Random Access Memory)、プログラム又はシステムソフトウェア等を格納するROM(Read Only Memory)、又はハードディスクドライブ等を備える。 As shown in FIG. 2, the control device 5 includes a control unit 50 that controls the ultrasonic motor 3 and a power supply 55 that supplies power to the console 6 and the ultrasonic motor 3. The main CPU (control unit) 51 of the control unit 50 is composed of a one-chip microcomputer, and executes processing operations such as predetermined calculation, control, and determination according to a program stored in advance in a memory unit (not shown). The memory unit includes a RAM (Random Access Memory) which is a system work memory for operating a main CPU (Central Processing Unit), a ROM (Read Only Memory) storing a program or system software, a hard disk drive, or the like. Prepare.
 制御装置5にはコンソール6が接続されている。そして、制御装置5のメインCPU51は、コンソール6と信号の送受信を行う。このコンソール6から注入ヘッド2に装着されたシリンジ91の識別データが入力されると、メインCPU51はメモリ部に識別データを記憶させる。また、メインCPU51は、メモリ部に記憶されたプログラムに基づいて、超音波モーター3を制御する。 A console 6 is connected to the control device 5. The main CPU 51 of the control device 5 transmits and receives signals to and from the console 6. When the identification data of the syringe 91 attached to the injection head 2 is input from the console 6, the main CPU 51 stores the identification data in the memory unit. Further, the main CPU 51 controls the ultrasonic motor 3 based on a program stored in the memory unit.
 メインCPU51は、FPGA(Field-Programmable Gate Array)56との間で信号の送受信を行う。このFPGA56は、速度判定位相制御ユニット501と、駆動信号生成ユニット504と、実速度検出ユニット505とを有する。そして、制御部50においては、速度判定位相制御ユニット501、積分回路502、VCO(Voltage Controlled Oscillator)503、駆動信号生成ユニット504、ドライブ回路(駆動電圧生成ユニット)52、が順番に接続されている。このドライブ回路52は、超音波モーター3に接続されている。そして、超音波モーター3のローターには、超音波モーター3の回転速度に対応するパルス信号を出力するエンコーダー39が接続されている。このエンコーダー39は、実速度検出ユニット505にパルス信号を出力する。 The main CPU 51 transmits and receives signals to and from the FPGA (Field-Programmable Gate Array) 56. The FPGA 56 includes a speed determination phase control unit 501, a drive signal generation unit 504, and an actual speed detection unit 505. In the control unit 50, a speed determination phase control unit 501, an integration circuit 502, a VCO (Voltage (Controlled Oscillator) 503, a drive signal generation unit 504, and a drive circuit (drive voltage generation unit) 52 are sequentially connected. . The drive circuit 52 is connected to the ultrasonic motor 3. The rotor of the ultrasonic motor 3 is connected to an encoder 39 that outputs a pulse signal corresponding to the rotational speed of the ultrasonic motor 3. The encoder 39 outputs a pulse signal to the actual speed detection unit 505.
 オペレーターがコンソール6を操作して薬液の注入条件を設定すると、注入を開始するための指令信号がコンソール6からメインCPU51に送信される。そして、指令信号を受信したメインCPU51は、駆動信号生成ユニット504へ設定速度信号を出力し、該駆動信号生成ユニット504を制御する。この設定速度信号に基づいて、駆動信号生成ユニット504は、駆動電圧を生成するための駆動信号としてのsin生成信号、-sin生成信号、cos生成信号及び-cos生成信号と、位相転移信号とを生成する。そして、駆動信号生成ユニット504は、該駆動信号及び位相転移信号をドライブ回路52へ出力する。さらに、駆動信号等を受信したドライブ回路52は、超音波モーター3を駆動する駆動電圧としてのAC(Alternating Current)電圧(sin波、-sin波、cos波、-cos波)を生成して、超音波モーター3へ出力する。 When the operator operates the console 6 to set the injection condition of the chemical solution, a command signal for starting the injection is transmitted from the console 6 to the main CPU 51. The main CPU 51 that has received the command signal outputs a set speed signal to the drive signal generation unit 504 to control the drive signal generation unit 504. Based on the set speed signal, the drive signal generation unit 504 generates a sin generation signal, a −sin generation signal, a cos generation signal, a −cos generation signal, and a phase transition signal as a drive signal for generating a drive voltage. Generate. Then, the drive signal generation unit 504 outputs the drive signal and the phase transition signal to the drive circuit 52. Further, the drive circuit 52 that has received the drive signal and the like generates an AC (Alternating Current) voltage (sin wave, -sin wave, cos wave, -cos wave) as a drive voltage for driving the ultrasonic motor 3, Output to the ultrasonic motor 3.
 超音波モーター3に接続されたエンコーダー39は、超音波モーター3の回転を検出して実速度検出ユニット505にパルス信号を送る。実速度検出ユニット505は、実速度を判定し、検出速度信号を速度判定位相制御ユニット501に送信する。また、速度判定位相制御ユニット501は、圧力リミット信号、設定速度信号をメインCPU51から受信する。そして、速度判定位相制御ユニット501は、検出速度信号、圧力リミット信号及び設定速度信号に基づいて、実速度を設定速度に一致させるように電圧を発生させる。積分回路502は、速度判定位相制御ユニット501が発生させた電圧を積分する。そして、VCO503は、積分された駆動電圧を対応する周波数の信号に変換する。 The encoder 39 connected to the ultrasonic motor 3 detects the rotation of the ultrasonic motor 3 and sends a pulse signal to the actual speed detection unit 505. The actual speed detection unit 505 determines the actual speed and transmits a detected speed signal to the speed determination phase control unit 501. Further, the speed determination phase control unit 501 receives a pressure limit signal and a set speed signal from the main CPU 51. Then, the speed determination phase control unit 501 generates a voltage so that the actual speed matches the set speed based on the detected speed signal, the pressure limit signal, and the set speed signal. The integration circuit 502 integrates the voltage generated by the speed determination phase control unit 501. The VCO 503 converts the integrated drive voltage into a signal having a corresponding frequency.
 駆動信号生成ユニット504は、VCO503から受信した信号を4相の駆動信号に変換し、駆動信号(sin生成信号、-sin生成信号、cos生成信号、-cos生成信号)を生成する。そして、ドライブ回路52は、駆動信号生成ユニット504から受信した駆動信号及び位相転移信号に基づき、駆動電圧を生成する。なお、VCO503からは、速度判定位相制御ユニット501にも信号が送信され、フィードバック制御に利用される。これにより、制御部50は、設定された速度で回転するように超音波モーター3を制御することができる。また、メインCPU51は、電源制御信号を電源55に送信し、供給される電力を制御する。そして、電源55からは、コンソール6と、制御部50(メインCPU51、FPGA56、ドライブ回路52)と、超音波モーター3とに電力が供給される。 The drive signal generation unit 504 converts the signal received from the VCO 503 into a four-phase drive signal, and generates a drive signal (sin generation signal, -sin generation signal, cos generation signal, -cos generation signal). Then, the drive circuit 52 generates a drive voltage based on the drive signal and the phase transition signal received from the drive signal generation unit 504. A signal is also transmitted from the VCO 503 to the speed determination phase control unit 501 and used for feedback control. Thereby, the control unit 50 can control the ultrasonic motor 3 to rotate at the set speed. The main CPU 51 transmits a power control signal to the power source 55 to control the supplied power. Then, power is supplied from the power supply 55 to the console 6, the control unit 50 (main CPU 51, FPGA 56, drive circuit 52), and the ultrasonic motor 3.
[速度制御]
 以下、図3を参照して、本実施形態の速度制御について説明する。図3においては、ドライブ回路52が出力する駆動電圧の変化を概略的に上段に示し、超音波モーター3の回転速度を下段に示しており、横軸は時間を表している。また、図面左から右に延在する矢印により駆動電圧の一波形周期の長さを表している。なお、本実施形態においては、一例として、高速、中速、低速、超低速の4段階の回転速度について説明する。
[Speed control]
Hereinafter, the speed control of the present embodiment will be described with reference to FIG. In FIG. 3, the change of the drive voltage output from the drive circuit 52 is schematically shown in the upper stage, the rotation speed of the ultrasonic motor 3 is shown in the lower stage, and the horizontal axis represents time. In addition, the length of one waveform period of the drive voltage is represented by an arrow extending from the left to the right in the drawing. In the present embodiment, as an example, four stages of rotation speeds of high speed, medium speed, low speed, and ultra-low speed will be described.
 メインCPU51は、予めメモリ部に記憶されたデータテーブルを用いることにより回転速度を設定又は演算し、設定又は演算された回転速度に応じた設定速度信号を駆動信号生成ユニット504へ入力する。そして、入力された設定速度信号に基づいて、駆動信号生成ユニット504は、超音波モーター3を駆動する駆動電圧を生成するための駆動信号を生成する。その後、駆動信号生成ユニット504は、駆動電圧を生成するドライブ回路52へ駆動信号を出力する。さらに、ドライブ回路52は、駆動信号に応じた駆動電圧を生成及び出力する。これにより、超音波モーター3を所望の速度で回転させることができる。なお、メインCPU51は、オペレーターが入力した注入速度に応じた設定速度信号を駆動信号生成ユニット504に送信してもよい。 The main CPU 51 sets or calculates a rotation speed by using a data table stored in advance in the memory unit, and inputs a set speed signal corresponding to the set or calculated rotation speed to the drive signal generation unit 504. Then, based on the input set speed signal, the drive signal generation unit 504 generates a drive signal for generating a drive voltage for driving the ultrasonic motor 3. Thereafter, the drive signal generation unit 504 outputs a drive signal to the drive circuit 52 that generates a drive voltage. Further, the drive circuit 52 generates and outputs a drive voltage corresponding to the drive signal. Thereby, the ultrasonic motor 3 can be rotated at a desired speed. Note that the main CPU 51 may transmit a set speed signal corresponding to the injection speed input by the operator to the drive signal generation unit 504.
 第1実施形態においては、高速モード、中速モード、低速モード、超低速モードの4つのモードを設けている。そして、薬液の注入速度は、高速モード、中速モード、低速モード、超低速モードの順に低くなる。そのために、メインCPU51は、高速モード、中速モード、低速モード、超低速モードの順に駆動電圧のパルス幅が段階的に広くなるように(周波数が低くなるように)、駆動信号生成ユニット504に駆動信号を生成させる。なお、例えば、20ml用のシリンジを使用する場合、高速モードは100.0rpm以上240.0rpm以下(4.2ml/sec以上10.0ml/sec以下)の範囲に対応し、中速モードは30.0rpm以上100.0rpm未満(1.3ml/sec以上4.1ml/sec以下)の範囲に対応し、低速モードは10.0rpm以上30.0rpm未満(0.4ml/sec以上1.2ml/sec以下)の範囲に対応し、超低速モードは10.0rpm未満(0.3ml/sec以下)の範囲に対応する。 In the first embodiment, four modes of a high speed mode, a medium speed mode, a low speed mode, and an ultra-low speed mode are provided. And the injection | pouring speed | velocity | rate of a chemical | medical solution becomes low in order of a high speed mode, a medium speed mode, a low speed mode, and a super-low speed mode. For this purpose, the main CPU 51 causes the drive signal generation unit 504 to increase the pulse width of the drive voltage stepwise (in order to reduce the frequency) in the order of the high-speed mode, medium-speed mode, low-speed mode, and ultra-low-speed mode. A drive signal is generated. For example, when using a syringe for 20 ml, the high speed mode corresponds to the range of 100.0 rpm to 240.0 rpm (4.2 ml / sec to 10.0 ml / sec), and the medium speed mode is 30.0 rpm to less than 100.0 rpm. Corresponding to the range of 1.3ml / sec to 4.1ml / sec, low speed mode corresponds to the range of 10.0rpm to less than 30.0rpm (0.4ml / sec to 1.2ml / sec), ultra low speed mode is 10.0 Corresponds to the range of less than rpm (0.3ml / sec or less).
 さらに、超低速モードの場合、メインCPU51は、ドライブ回路52が駆動電圧を出力する出力期間t1、t3の後に、駆動電圧を出力しない待機期間t2、t4が設けられるように、駆動信号生成ユニット504を制御する。すなわち、駆動電圧を出力する出力期間においては、駆動信号生成ユニット504が設定速度信号に基づいて駆動信号を生成する。そして、出力期間に続く待機期間においては、設定速度信号に基づいて、駆動信号生成ユニット504が駆動信号を生成せずに待機する。 Further, in the ultra-low speed mode, the main CPU 51 sets the drive signal generation unit 504 so that standby periods t2 and t4 in which the drive voltage is not output are provided after the output periods t1 and t3 in which the drive circuit 52 outputs the drive voltage. To control. That is, in the output period in which the drive voltage is output, the drive signal generation unit 504 generates a drive signal based on the set speed signal. In the standby period following the output period, the drive signal generation unit 504 waits without generating a drive signal based on the set speed signal.
 この結果、駆動信号生成ユニット504は、待機期間t2、t4においては、駆動信号を生成及び出力しない。これにより、待機期間t2、t4の間は、ドライブ回路52が駆動電圧を生成及び出力しない。そのため、超低速モードにおいては、低速モードよりも、回転速度が低くなる。なお、図3においては、説明の便宜のため、出力されない待機期間t2、t4の駆動電圧を点線で示している。 As a result, the drive signal generation unit 504 does not generate and output a drive signal during the standby periods t2 and t4. Thereby, the drive circuit 52 does not generate and output a drive voltage during the standby periods t2 and t4. Therefore, the rotation speed is lower in the ultra-low speed mode than in the low-speed mode. In FIG. 3, for convenience of explanation, the drive voltages during the standby periods t2 and t4 that are not output are indicated by dotted lines.
 このように本実施形態の駆動信号生成ユニット504は、スイッチング部等から入力される停止信号に基づいて待機するのではなく、入力される設定速度信号に基づいて所定の時間の間待機する。そのため、スイッチング部の性能に依存することなく、所望の長さになるまで待機期間を短くすることができる。これにより、超低速モードであっても、超音波モーター3の回転速度の変動を抑制できるので、一定の注入速度を維持することができる。 Thus, the drive signal generation unit 504 of this embodiment does not stand by based on the stop signal input from the switching unit or the like, but waits for a predetermined time based on the input set speed signal. Therefore, it is possible to shorten the standby period until the desired length is reached without depending on the performance of the switching unit. Thereby, even in the ultra-low speed mode, fluctuations in the rotational speed of the ultrasonic motor 3 can be suppressed, so that a constant injection speed can be maintained.
 さらに、待機期間t2、t4は、駆動電圧の所定数の波形周期に相当することが好ましい。すなわち、待機期間t2、t4が駆動電圧の所定数の波形周期と一致するように、メインCPU51が駆動信号生成ユニット504に駆動信号を生成させることが好ましい。例えば、本実施形態においては、出力期間t1、t3及び待機期間t2、t4の長さは、いずれも一波形周期に一致する時間である。これにより、所望の周波数の駆動電圧を容易且つ確実に得ることができる。例えば、人間の可聴周波数(例えば20kHz)以上の周波数が望まれる場合、超音波モーター3の仕様上の駆動電圧が44kHzだとすると、出力する駆動電圧の周期の数を二分の一に設定する。これにより、駆動電圧の周波数は、44kHzの二分の一である22kHzとなり、可聴周波数よりも大きくなる。 Furthermore, it is preferable that the standby periods t2 and t4 correspond to a predetermined number of waveform periods of the drive voltage. That is, it is preferable that the main CPU 51 causes the drive signal generation unit 504 to generate a drive signal so that the standby periods t2 and t4 coincide with a predetermined number of waveform periods of the drive voltage. For example, in the present embodiment, the lengths of the output periods t1 and t3 and the standby periods t2 and t4 are times that coincide with one waveform period. Thereby, a driving voltage having a desired frequency can be obtained easily and reliably. For example, when a frequency higher than the human audible frequency (for example, 20 kHz) is desired, assuming that the drive voltage in the specification of the ultrasonic motor 3 is 44 kHz, the number of cycles of the output drive voltage is set to ½. As a result, the frequency of the drive voltage is 22 kHz, which is a half of 44 kHz, and is higher than the audible frequency.
 なお、超音波モーター3の駆動電圧の周波数は44kHzには限られず、例えば30~50kHzの範囲の周波数であってもよい。また、待機期間t2、t4は、駆動電圧の一波形周期に相当することがより好ましい。すなわち、待機期間t2、t4が駆動電圧の一波形周期と一致するように、メインCPU51が駆動信号生成ユニット504に駆動信号を生成させることがより好ましい。これにより、待機時間を短くすることができるので、注入速度が非常に低い場合であっても、超音波モーターの回転速度の変動を抑制できる。そのため、一定の注入速度を維持することができる。ただし、注入速度を一定に維持することができる場合には、待機期間を二以上の波形周期と一致させることもできる。 Note that the frequency of the drive voltage of the ultrasonic motor 3 is not limited to 44 kHz, and may be a frequency in the range of 30 to 50 kHz, for example. More preferably, the standby periods t2 and t4 correspond to one waveform period of the drive voltage. That is, it is more preferable that the main CPU 51 causes the drive signal generation unit 504 to generate a drive signal so that the standby periods t2 and t4 coincide with one waveform cycle of the drive voltage. As a result, the waiting time can be shortened, so that fluctuations in the rotational speed of the ultrasonic motor can be suppressed even when the injection speed is very low. Therefore, a constant injection rate can be maintained. However, if the injection rate can be kept constant, the waiting period can be made to coincide with two or more waveform periods.
 さらに、出力期間t1、t3が駆動電圧の一波形周期に相当することがより好ましい。すなわち、一波形周期に相当する出力期間t1、t3と一波形周期に相当する待機期間t2、t4とが交互に繰り返されるように、メインCPU51が駆動信号生成ユニット504に駆動信号を生成させることがより好ましい。これにより、一波形周期分の出力期間t1、一波形周期分の待機期間t2、一波形周期分の出力期間t3及び一波形周期分の待機期間t4が繰り返される。そして、待機期間が連続することがなく、一定の周期で駆動電圧が超音波モーター3に印加される。そのため、超音波モーター3が停止しやすい超低速モードであっても、安定的に超音波モーターを回転させることができる。その結果、注入速度を一定に維持することができる。 Furthermore, it is more preferable that the output periods t1 and t3 correspond to one waveform period of the drive voltage. That is, the main CPU 51 may cause the drive signal generation unit 504 to generate a drive signal such that output periods t1 and t3 corresponding to one waveform period and standby periods t2 and t4 corresponding to one waveform period are alternately repeated. More preferred. Thereby, the output period t1 for one waveform period, the standby period t2 for one waveform period, the output period t3 for one waveform period, and the standby period t4 for one waveform period are repeated. Then, the drive voltage is applied to the ultrasonic motor 3 at a constant cycle without the standby period being continuous. Therefore, the ultrasonic motor can be stably rotated even in the ultra-low speed mode in which the ultrasonic motor 3 is likely to stop. As a result, the injection rate can be kept constant.
 ただし、注入速度を一定に維持することができる場合には、二以上の波形周期に相当する出力期間又は待機期間を連続させることもできる。例えば、二波形周期に一致する出力期間と二波形周期に一致する待機期間とを交互に繰り返すことができる。また、二波形周期に一致する出力期間と一波形周期に一致する待機期間とを交互に繰り返すことができる。さらに、一波形周期に一致する出力期間を二回続けた後に、一波形周期に一致する待機期間を一回又は二回続けることもできる。 However, when the injection rate can be maintained constant, an output period or a standby period corresponding to two or more waveform periods can be continued. For example, an output period that matches two waveform periods and a standby period that matches two waveform periods can be alternately repeated. Further, the output period that matches the two waveform periods and the standby period that matches the one waveform period can be alternately repeated. Furthermore, after the output period that matches one waveform cycle is continued twice, the standby period that matches one waveform cycle can be continued once or twice.
 また、待機期間t2、t4の長さは、出力期間t1、t3の長さと等しいことがより好ましい。これにより、駆動電圧が超音波モーター3に印加される期間と、駆動電圧が印加されない期間とが同じ間隔で繰り返される。そのため、超音波モーター3が停止しやすい超低速モードであっても、安定的に超音波モーターを回転させることができる。その結果、注入速度を一定に維持することができる。 Further, it is more preferable that the lengths of the standby periods t2 and t4 are equal to the lengths of the output periods t1 and t3. Thereby, the period during which the drive voltage is applied to the ultrasonic motor 3 and the period during which the drive voltage is not applied are repeated at the same interval. Therefore, the ultrasonic motor can be stably rotated even in the ultra-low speed mode in which the ultrasonic motor 3 is likely to stop. As a result, the injection rate can be kept constant.
 第1実施形態の注入装置によれば、入力される設定速度信号に基づいて、所望の長さになるまで待機期間を短くすることができる。そのため、スイッチング部の性能に依存することなく待機期間を短くすることができる。これにより、注入速度が非常に低い場合であっても、超音波モーターの回転速度の変動を抑制できるので、一定の注入速度を維持することができる。 According to the injection device of the first embodiment, the standby period can be shortened until the desired length is reached based on the input set speed signal. Therefore, the standby period can be shortened without depending on the performance of the switching unit. Thereby, even when the injection speed is very low, fluctuations in the rotational speed of the ultrasonic motor can be suppressed, so that a constant injection speed can be maintained.
[第2実施形態]
 図4を参照して、第2実施形態について説明する。図3と同様に、図4においては、ドライブ回路52が出力する駆動電圧の変化を概略的に上段に示し、超音波モーター3の回転速度を下段に示しており、横軸は時間を表している。また、図面左から右に延在する矢印により駆動電圧の一波形周期の長さを表している。なお、第2実施形態は、速度制御の方法が第1実施形態とは異なるので、以下ではこの相違について説明する。また、図4においても、説明の便宜のため、出力されない待機期間t2、t4の駆動電圧を点線で示している。
[Second Embodiment]
The second embodiment will be described with reference to FIG. Similar to FIG. 3, in FIG. 4, the change in the drive voltage output from the drive circuit 52 is schematically shown in the upper stage, the rotational speed of the ultrasonic motor 3 is shown in the lower stage, and the horizontal axis represents time. Yes. In addition, the length of one waveform period of the drive voltage is represented by an arrow extending from the left to the right in the drawing. In the second embodiment, the speed control method is different from that in the first embodiment, and therefore, this difference will be described below. Also in FIG. 4, for convenience of explanation, the driving voltages during the standby periods t2 and t4 that are not output are indicated by dotted lines.
 第1実施形態の超低速モードにおいては、駆動電圧を出力する出力期間t1、t3における駆動電圧の波形が正弦波となるように駆動信号を生成していた。一方、第2実施形態の超低速モードにおいては、駆動電圧を出力しない待機期間t2、t4が設けられることに加えて、出力期間t1、t3における駆動電圧の波形の位相を正弦波の位相からずらしている。すなわち、駆動電圧が、第1の位相の駆動電圧としてのsin波及び-sin波と、第2の位相の駆動電圧としてのcos波及び-cos波とを含み、第1の位相と第2の位相との位相差が90度からずれるように駆動信号が生成される。 In the ultra-low speed mode of the first embodiment, the drive signal is generated so that the waveform of the drive voltage in the output periods t1 and t3 for outputting the drive voltage is a sine wave. On the other hand, in the ultra-low speed mode of the second embodiment, in addition to the provision of standby periods t2 and t4 during which no drive voltage is output, the phase of the drive voltage waveform in the output periods t1 and t3 is shifted from the phase of the sine wave. ing. That is, the drive voltage includes a sine wave and a −sin wave as the drive voltage of the first phase, and a cos wave and a −cos wave as the drive voltage of the second phase, and the first phase and the second phase The drive signal is generated so that the phase difference from the phase deviates from 90 degrees.
 具体的には、メインCPU51は、第1実施形態と比較してsin波及び-sin波の出力のタイミングをずらして遅く又は早くなるように、駆動信号生成ユニット504に駆動信号を生成させる。そのため、駆動信号生成ユニット504は、メインCPUから受信した設定速度信号を用いて位相のズレ量を定める。そして、該ズレ量に応じた分だけ、sin波及び-sin波の位相と、cos波及び-cos波の位相との位相差が90度からずれるように、駆動信号生成ユニット504が駆動信号を生成する。これにより、位相差が90度ではなくなる結果、超音波モーター3の回転速度が低くなり、注入速度も低くなる。なお、sin波及び-sin波の出力のタイミングをずらすことに代えて、cos波及び-cos波の出力のタイミングをずらしてもよい。 Specifically, the main CPU 51 causes the drive signal generation unit 504 to generate a drive signal so that the output timing of the sine wave and the −sin wave is shifted or delayed as compared with the first embodiment. Therefore, the drive signal generation unit 504 determines the phase shift amount using the set speed signal received from the main CPU. Then, the drive signal generation unit 504 outputs the drive signal so that the phase difference between the phase of the sine wave and the −sin wave and the phase of the cos wave and the −cos wave is shifted from 90 degrees by an amount corresponding to the amount of deviation. Generate. As a result, the phase difference is not 90 degrees. As a result, the rotational speed of the ultrasonic motor 3 is lowered and the injection speed is also lowered. Instead of shifting the output timing of the sin wave and the −sin wave, the output timing of the cos wave and the −cos wave may be shifted.
 さらに、第2実施形態においては、出力期間t1、t3及び待機期間t2、t4が駆動電圧の一波形周期に相当すると共に、一波形周期の出力期間と一波形周期の待機期間とが交互に繰り返されることがより好ましい。これにより、駆動電圧の出力期間において一波形周期単位で位相差のズレ量を定めることができる。そのため、複数の波形周期に対してズレ量を定める場合と比較して、波形周期毎の定めたズレ量と実際のズレ量との相違が小さくなる。その結果、注入速度の細かい制御を容易且つ確実に行うことができる。 Furthermore, in the second embodiment, the output periods t1 and t3 and the standby periods t2 and t4 correspond to one waveform period of the drive voltage, and the output period of one waveform period and the standby period of one waveform period are alternately repeated. More preferably. As a result, the amount of phase difference deviation can be determined in units of one waveform period in the drive voltage output period. Therefore, the difference between the shift amount determined for each waveform cycle and the actual shift amount is smaller than when the shift amount is determined for a plurality of waveform cycles. As a result, fine control of the injection rate can be performed easily and reliably.
 このような第2実施形態の注入装置によっても、入力される設定速度信号に基づいて、所望の長さになるまで待機期間を短くすることができる。そのため、スイッチング部の性能に依存することなく待機期間を短くすることができる。これにより、注入速度が非常に低い場合であっても、超音波モーターの回転速度の変動を抑制できるので、一定の注入速度を維持することができる。さらに、第2実施形態の注入装置によれば、第1実施形態と比較して、待機期間を設けて注入速度を低下させることに加えて、さらに駆動電圧の位相差を設定することにより注入速度をさらに細かく制御することができる。 Also with such an injection device of the second embodiment, the waiting period can be shortened until the desired length is reached based on the input set speed signal. Therefore, the standby period can be shortened without depending on the performance of the switching unit. Thereby, even when the injection speed is very low, fluctuations in the rotational speed of the ultrasonic motor can be suppressed, so that a constant injection speed can be maintained. Furthermore, according to the injection device of the second embodiment, in addition to lowering the injection speed by providing a standby period as compared with the first embodiment, the injection speed is further set by setting the phase difference of the drive voltage. Can be controlled more finely.
[第3実施形態]
 図5を参照して第3実施形態について説明する。図5は、薬液の注入装置の一例としての、携帯型の注入装置301の概略断面図である。第3実施形態の超音波モーター317は、第1又は第2実施形態で説明した制御方法に従って制御される。この注入装置301は、輸液又は抗癌剤等の薬液を長時間に渡って低い注入速度で注入する。
[Third Embodiment]
A third embodiment will be described with reference to FIG. FIG. 5 is a schematic cross-sectional view of a portable injection device 301 as an example of a chemical solution injection device. The ultrasonic motor 317 of the third embodiment is controlled according to the control method described in the first or second embodiment. The injection device 301 injects a medical solution such as an infusion solution or an anticancer agent at a low injection rate over a long period of time.
 なお、第3実施形態の説明においては、第1実施形態との相違点について説明し、第1実施形態で説明した構成要素については同じ参照番号を付し、その説明を省略する。特に説明した場合を除き、同じ参照符号を付した構成要素は略同一の動作及び機能を奏し、その作用効果も略同一である。 In the description of the third embodiment, differences from the first embodiment will be described, the same reference numerals will be given to the components described in the first embodiment, and description thereof will be omitted. Except where specifically described, the constituent elements having the same reference numerals perform substantially the same operations and functions, and the effects thereof are also substantially the same.
 注入装置301は、シリンジ321のプランジャー322を進退させるために本体310内で摺動する摺動部316を備えている。また、本体310内部には、駆動部として超音波モーター317が設けられ、摺動部316を介してプランジャー322に接続されている。超音波モーター317にはプーリー及びベルトを備えたプーリー部371が接続されており、このプーリー及びベルトを介して超音波モーター317が摺動部316に回転力を加える。 The injection device 301 includes a sliding portion 316 that slides within the main body 310 in order to advance and retract the plunger 322 of the syringe 321. Further, an ultrasonic motor 317 is provided inside the main body 310 as a drive unit, and is connected to the plunger 322 via the sliding unit 316. A pulley section 371 having a pulley and a belt is connected to the ultrasonic motor 317, and the ultrasonic motor 317 applies a rotational force to the sliding section 316 via the pulley and the belt.
 摺動部316は、ボールネジ又はすべりネジと螺合するネジナットを含み、超音波モーター317からの回転力により本体310内を摺動する。すなわち、摺動部316は、超音波モーター317からの回転力により軸受に支持されたネジ軸が回転することにより摺動する。また、摺動部316は装着部311を介してプランジャー322に接続されている。そして、摺動部316が本体310内を摺動することに伴い、プランジャー322が前進又は後進する。 The sliding portion 316 includes a screw nut that is screwed with a ball screw or a slide screw, and slides within the main body 310 by the rotational force from the ultrasonic motor 317. That is, the sliding portion 316 slides as the screw shaft supported by the bearing rotates by the rotational force from the ultrasonic motor 317. The sliding portion 316 is connected to the plunger 322 via the mounting portion 311. As the sliding portion 316 slides in the main body 310, the plunger 322 moves forward or backward.
 摺動部316は、軸受に回転可能に支持されたボールネジ軸と、ボールネジ軸の中間部に螺合されたボールネジナットとを含む。そして、ボールネジナットが、本体310に摺動可能に取り付けられたプランジャーフック(装着部)311と係合する。超音波モーター317の回転軸の回転は、プーリーとベルト(プーリー部371)を介して、ボールネジ軸に伝達される。これにより、ボールネジ軸が伝達された回転力に従って回転し、ボールネジ軸の回転に伴いボールネジナットが摺動する。 The sliding portion 316 includes a ball screw shaft that is rotatably supported by the bearing, and a ball screw nut that is screwed into an intermediate portion of the ball screw shaft. Then, the ball screw nut engages with a plunger hook (mounting portion) 311 slidably attached to the main body 310. The rotation of the rotating shaft of the ultrasonic motor 317 is transmitted to the ball screw shaft via a pulley and a belt (pulley portion 371). Thereby, the ball screw shaft rotates according to the transmitted rotational force, and the ball screw nut slides with the rotation of the ball screw shaft.
 ボールネジナットが摺動すると、プランジャーフック311を介してプランジャー322が前進又は後進する。すなわち、シリンジ321に対してプランジャー322が出し入れされる。そして、プランジャー322が後進すると、不図示の薬液バッグからシリンジ321内に薬液が流入する。一方、プランジャー322が前進すると、シリンジ321内の薬液がチューブへと流出し、カテーテルを介して使用者に注入される。この前進と後進の動作を繰り返すことにより、薬液を長時間連続して使用者に注入することができる。 When the ball screw nut slides, the plunger 322 moves forward or backward via the plunger hook 311. That is, the plunger 322 is taken in and out of the syringe 321. When the plunger 322 moves backward, the chemical liquid flows into the syringe 321 from a chemical liquid bag (not shown). On the other hand, when the plunger 322 moves forward, the drug solution in the syringe 321 flows out into the tube and is injected into the user via the catheter. By repeating the forward and reverse movements, the chemical solution can be injected into the user continuously for a long time.
 注入装置301の本体310は、超音波モーター317を制御するために、上述した制御部50(不図示)を備えている。そして、超低速モードの場合、駆動信号生成ユニット504は、駆動電圧を出力する出力期間t1、t3に続く待機期間t2、t4においては、設定速度信号に基づいて、駆動信号を生成せずに待機する。なお、第3実施形態においても、待機期間は、一波形周期と一致していることがより好ましい。また、一波形周期に相当する出力期間と一波形周期に相当する待機期間とが交互に繰り返されることがより好ましい。 The main body 310 of the injection apparatus 301 includes the control unit 50 (not shown) described above in order to control the ultrasonic motor 317. In the ultra-low speed mode, the drive signal generation unit 504 waits without generating a drive signal based on the set speed signal in the standby periods t2 and t4 following the output periods t1 and t3 for outputting the drive voltage. To do. Also in the third embodiment, it is more preferable that the standby period coincides with one waveform cycle. More preferably, the output period corresponding to one waveform period and the standby period corresponding to one waveform period are alternately repeated.
 第3実施形態の注入装置によっても、入力される設定速度信号に基づいて、所望の長さになるまで待機期間を短くすることができる。そのため、スイッチング部の性能に依存することなく待機期間を短くすることができる。これにより、注入速度が非常に低い場合であっても、超音波モーターの回転速度の変動を抑制できるので、一定の注入速度を維持することができる。なお、第3実施形態においても、第2実施形態と同様に、駆動電圧の第1の位相と第2の位相との位相差が90度からずれるように、駆動信号を生成することができる。 Also with the injection device of the third embodiment, the waiting period can be shortened until the desired length is reached based on the input set speed signal. Therefore, the standby period can be shortened without depending on the performance of the switching unit. Thereby, even when the injection speed is very low, fluctuations in the rotational speed of the ultrasonic motor can be suppressed, so that a constant injection speed can be maintained. In the third embodiment, similarly to the second embodiment, the drive signal can be generated so that the phase difference between the first phase and the second phase of the drive voltage is shifted from 90 degrees.
 以上、各実施形態を参照して本発明について説明したが、本発明は上記実施形態に限定されるものではない。本発明に反しない範囲で変更された発明、及び本発明と均等な発明も本発明に含まれる。また、上述の各実施形態及び各変形例は、本発明に反しない範囲で適宜組み合わせることができる。 As mentioned above, although this invention was demonstrated with reference to each embodiment, this invention is not limited to the said embodiment. Inventions modified within the scope not departing from the present invention and inventions equivalent to the present invention are also included in the present invention. In addition, the above-described embodiments and modifications can be combined as appropriate without departing from the scope of the present invention.
 なお、上記実施形態において超音波モーター3の回転速度のモードは4段階には限定されず、3段階以下又は5段階以上のモードを設けることもできる。また、各モードに対応する注入速度の範囲内において、所望の回転速度となるように、出力する駆動電圧の電圧値又は周波数を変化させるができる。これにより、各モードにおいて、所望の注入速度を達成するように超音波モーターの回転速度を制御することができる。 In the above embodiment, the mode of the rotational speed of the ultrasonic motor 3 is not limited to four stages, and modes of three stages or less or five stages or more can be provided. In addition, the voltage value or frequency of the drive voltage to be output can be changed so as to achieve a desired rotational speed within the range of the injection speed corresponding to each mode. Thereby, in each mode, the rotational speed of the ultrasonic motor can be controlled so as to achieve a desired injection speed.
 また、上記実施形態においては、超音波モーターと制御部とが別に設けられていたが、本発明はこれに限定されない。注入装置が、超音波モーター3と制御部50とが一体的に設けられた駆動装置を備え、該駆動装置によって駆動機構4を駆動することもできる。さらに、駆動信号生成ユニット504とドライブ回路52とを一体的に設けることにより駆動電圧生成部を構成することもできる。 In the above embodiment, the ultrasonic motor and the control unit are provided separately, but the present invention is not limited to this. The injection device may include a driving device in which the ultrasonic motor 3 and the control unit 50 are integrally provided, and the driving mechanism 4 may be driven by the driving device. Further, the drive voltage generation unit can be configured by integrally providing the drive signal generation unit 504 and the drive circuit 52.
 この出願は2013年11月21日に出願された日本国特許出願第2013-240987号からの優先権を主張するものであり、その内容を引用してこの出願の一部とするものである。 This application claims priority from Japanese Patent Application No. 2013-240987 filed on Nov. 21, 2013, the contents of which are incorporated herein by reference.
 1:注入装置、2:注入ヘッド、3:超音波モーター、4:駆動機構、5:制御装置、6:コンソール、21:フレーム、35:シャフト、39:エンコーダー、41:伝達機構、50:制御部、51:メインCPU、52:ドライブ回路、55:電源、56:FPGA、91:シリンジ、92:シリンジホルダー、93:ピストン、301:注入装置、310:本体、311:装着部、316:摺動部、317:超音波モーター、321:シリンジ、322:プランジャー、371:プーリー部、411:ボールネジ軸、412:ボールネジナット、413:アクチュエーター、501:速度判定位相制御ユニット、502:積分回路、503:VCO、504:駆動信号生成ユニット、505:実速度検出ユニット

 
1: injection device, 2: injection head, 3: ultrasonic motor, 4: drive mechanism, 5: control device, 6: console, 21: frame, 35: shaft, 39: encoder, 41: transmission mechanism, 50: control Part: 51: main CPU, 52: drive circuit, 55: power supply, 56: FPGA, 91: syringe, 92: syringe holder, 93: piston, 301: injection device, 310: main body, 311: mounting part, 316: slide Moving part, 317: Ultrasonic motor, 321: Syringe, 322: Plunger, 371: Pulley part, 411: Ball screw shaft, 412: Ball screw nut, 413: Actuator, 501: Speed determination phase control unit, 502: Integration circuit, 503: VCO, 504: drive signal generation unit, 505: actual speed detection unit

Claims (6)

  1.  制御ユニットから駆動信号生成ユニットへ入力される設定速度信号に基づいて、超音波モーターを駆動する駆動電圧を生成するための駆動信号を前記駆動信号生成ユニットによって生成し、
     前記駆動信号生成ユニットによって、前記駆動電圧を生成する駆動電圧生成ユニットへ前記駆動信号を出力し、
     前記駆動電圧を出力する出力期間に続く待機期間においては、前記設定速度信号に基づいて、前記駆動信号生成ユニットが前記駆動信号を生成せずに待機する、超音波モーターの制御方法。
    Based on the set speed signal input from the control unit to the drive signal generation unit, the drive signal generation unit generates a drive signal for generating a drive voltage for driving the ultrasonic motor,
    The drive signal generation unit outputs the drive signal to a drive voltage generation unit that generates the drive voltage,
    In the standby period following the output period for outputting the drive voltage, the control method of the ultrasonic motor, wherein the drive signal generation unit waits without generating the drive signal based on the set speed signal.
  2.  前記待機期間が前記駆動電圧の所定数の波形周期に相当するように、前記駆動信号生成ユニットが待機する、請求項1に記載の超音波モーターの制御方法。 2. The method of controlling an ultrasonic motor according to claim 1, wherein the drive signal generation unit waits so that the standby period corresponds to a predetermined number of waveform periods of the drive voltage.
  3.  前記待機期間が前記駆動電圧の一波形周期に相当するように、前記駆動信号生成ユニットが待機する、請求項2に記載の超音波モーターの制御方法。 3. The method of controlling an ultrasonic motor according to claim 2, wherein the drive signal generation unit is on standby so that the standby period corresponds to one waveform period of the drive voltage.
  4.  前記出力期間が前記駆動電圧の一波形周期に相当するように、前記駆動信号を生成する、請求項3に記載の超音波モーターの制御方法。 The method of controlling an ultrasonic motor according to claim 3, wherein the drive signal is generated so that the output period corresponds to one waveform period of the drive voltage.
  5.  前記駆動電圧は、第1の位相と第2の位相とを含み、
     前記第1の位相と前記第2の位相との位相差が90度からずれるように、前記駆動信号を生成する、請求項1乃至4のいずれか1項に記載の超音波モーターの制御方法。
    The drive voltage includes a first phase and a second phase;
    5. The method of controlling an ultrasonic motor according to claim 1, wherein the drive signal is generated such that a phase difference between the first phase and the second phase is shifted from 90 degrees.
  6.  薬液を注入するための注入装置であって、
     超音波モーターと、
     前記薬液を送り出すように、前記超音波モーターによって駆動される駆動機構と、
     前記超音波モーターを駆動する駆動電圧を生成し、前記駆動電圧を前記超音波モーターへ出力する駆動電圧生成ユニットと、
     前記駆動電圧を生成するための駆動信号を生成し、前記駆動信号を前記駆動電圧生成ユニットへ出力する駆動信号生成ユニットと、
     前記駆動信号生成ユニットへ設定速度信号を出力し、前記駆動信号生成ユニットを制御する制御ユニットとを備え、
     前記設定速度信号に基づいて、前記駆動信号生成ユニットは、前記駆動電圧が出力される出力期間において前記駆動信号を生成すると共に、前記出力期間に続く待機期間においては前記駆動信号を生成せずに待機する、注入装置。

     
     
    An injection device for injecting a chemical solution,
    An ultrasonic motor,
    A drive mechanism driven by the ultrasonic motor so as to deliver the chemical solution;
    A driving voltage generating unit for generating a driving voltage for driving the ultrasonic motor and outputting the driving voltage to the ultrasonic motor;
    A drive signal generation unit that generates a drive signal for generating the drive voltage and outputs the drive signal to the drive voltage generation unit;
    A control unit that outputs a set speed signal to the drive signal generation unit and controls the drive signal generation unit;
    Based on the set speed signal, the drive signal generation unit generates the drive signal in an output period in which the drive voltage is output, and does not generate the drive signal in a standby period following the output period. An infusion device to wait.


PCT/JP2014/005838 2013-11-21 2014-11-20 Control method for ultrasonic motor and infusion device WO2015075936A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-240987 2013-11-21
JP2013240987A JP6280351B2 (en) 2013-11-21 2013-11-21 Ultrasonic motor control method and injection apparatus

Publications (1)

Publication Number Publication Date
WO2015075936A1 true WO2015075936A1 (en) 2015-05-28

Family

ID=53179218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005838 WO2015075936A1 (en) 2013-11-21 2014-11-20 Control method for ultrasonic motor and infusion device

Country Status (2)

Country Link
JP (1) JP6280351B2 (en)
WO (1) WO2015075936A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07222466A (en) * 1994-01-27 1995-08-18 Matsushita Electric Ind Co Ltd Controller of ultrasonic motor
JP2003290349A (en) * 2002-01-30 2003-10-14 Nemoto Kyorindo:Kk Injection apparatus adaptable to mri
JP2007244181A (en) * 2006-03-13 2007-09-20 Konica Minolta Opto Inc Drive unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07222466A (en) * 1994-01-27 1995-08-18 Matsushita Electric Ind Co Ltd Controller of ultrasonic motor
JP2003290349A (en) * 2002-01-30 2003-10-14 Nemoto Kyorindo:Kk Injection apparatus adaptable to mri
JP2007244181A (en) * 2006-03-13 2007-09-20 Konica Minolta Opto Inc Drive unit

Also Published As

Publication number Publication date
JP6280351B2 (en) 2018-02-14
JP2015100725A (en) 2015-06-04

Similar Documents

Publication Publication Date Title
JP7239223B2 (en) Chemical injection device and chemical injection system
JP6533314B2 (en) Systems, devices, and methods for fluid injection into the body
JPH0584296A (en) Injection apparatus for medical use
JP6817644B2 (en) Injection device and control device for injection device
CN108472437A (en) System and method for controlled drug delivery pump
CN111939386B (en) Double-side driven multi-infusion injection molding type medicine infusion device
US8500677B2 (en) Power injector with flow rate assessment
JP6884367B2 (en) Injection protocol generator, injection apparatus and imaging system equipped with the generator, injection protocol generation method, and injection protocol generation program.
JP6966112B2 (en) Injection device and imaging system
CN111939387A (en) Drug infusion device with multiple infusion modes
JP6298811B2 (en) Chemical injection device
WO2016099891A1 (en) Compact medical infusion pumps
US20220409809A1 (en) Drug delivery device with an improved mechanism for controlling the delivery rate
JP2024040279A (en) Chemical injection device
KR101648056B1 (en) Apparatus for injecting automatic drug
JP6280351B2 (en) Ultrasonic motor control method and injection apparatus
Ali Designing a low-cost and portable infusion pump
JP5468456B2 (en) Chemical injection device
JP6316618B2 (en) Injection device and adapter detection device
JP2003290348A (en) Injection apparatus adaptable to mri
JP6104538B2 (en) Injection device and method for determining injection pressure
JP4276410B2 (en) MRI compatible injection device
JPWO2013153913A1 (en) Chemical injection device
JP7019642B2 (en) Injection equipment and ultrasonic motor unit
JPWO2006109777A1 (en) Chemical injection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14863937

Country of ref document: EP

Kind code of ref document: A1