WO2015074541A1 - 吸附机器人及其转向控制方法 - Google Patents

吸附机器人及其转向控制方法 Download PDF

Info

Publication number
WO2015074541A1
WO2015074541A1 PCT/CN2014/091403 CN2014091403W WO2015074541A1 WO 2015074541 A1 WO2015074541 A1 WO 2015074541A1 CN 2014091403 W CN2014091403 W CN 2014091403W WO 2015074541 A1 WO2015074541 A1 WO 2015074541A1
Authority
WO
WIPO (PCT)
Prior art keywords
suction cup
adsorption
adsorption robot
rotating mechanism
robot
Prior art date
Application number
PCT/CN2014/091403
Other languages
English (en)
French (fr)
Inventor
杨敏敏
Original Assignee
苏州科沃斯商用机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州科沃斯商用机器人有限公司 filed Critical 苏州科沃斯商用机器人有限公司
Publication of WO2015074541A1 publication Critical patent/WO2015074541A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L1/00Cleaning windows
    • A47L1/02Power-driven machines or devices
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection

Definitions

  • the invention relates to an adsorption robot and a steering control method of the adsorption robot, and belongs to the technical field of small household appliance manufacturing.
  • the current glass-cleaning robot has a driving wheel and a suction cup, and the suction cup is connected to the vacuum source through the air guiding tube.
  • Steering is achieved by controlling the differentials of the two drive wheels.
  • Such a machine is prone to slippage of the drive wheel, the steering is not in place, inaccurate, etc., and may cause damage to the adsorption surface due to mechanical reasons.
  • the existing split machine is provided with a front machine and a rear machine, the front machine and the rear machine are connected by a screw nut, and the front suction cup and the rear suction cup are respectively provided at the bottom of the front machine and the rear machine.
  • the split machine mainly uses the front and rear suction cups to alternately adsorb the working surface, and the screw nut drives the front and back of the machine to complete the creep walking of the robot.
  • a split machine that drives a straight line through a screw nut often has technical problems that cannot be turned or turned.
  • an adsorption robot and a steering method for controlling the same are provided, which can accurately control the rotation angle of the robot, can avoid the phenomenon of slippage during rotation, and reduce The possibility of damaging the adsorbed surface.
  • the invention provides an adsorption robot, comprising: a body, a bottom of the body is provided with a suction cup for adsorbing a working surface, the adsorption robot is further provided with a rotating mechanism, the suction cup is connected to the body through a rotating mechanism, and the body passes the driving rotating mechanism , the body is rotated relative to the suction cup by a preset angle, thereby completing the steering of the robot.
  • the driving mechanism controls the rotating body to rotate the preset angle of the body relative to the suction cup of the adsorption working surface by driving the rotating mechanism.
  • the rotating mechanism includes: a large gear, a pinion meshing with the large gear, and a driving mechanism for driving the pinion, the pinion gear is fixedly coupled to the body, the large gear and the large gear
  • the suction cup is fixedly connected, and the large gear is rotatably disposed on the body, and the large gear and the body are connected by a bearing.
  • the rotating mechanism includes: a large gear, a driving wheel connected to the large gear through a belt, and a drive mechanism for driving the drive wheel, the drive wheel is fixedly connected to the body, the large gear is fixedly connected to the suction cup, and the large gear is rotatably disposed on the body, such as the large gear and the body pass Bearing connection.
  • the rotating mechanism further includes a tensioning wheel that is located between the large gear and the driving wheel and that is coupled to the large gear and the driving wheel by a belt.
  • the adsorption robot is a split type adsorption robot, comprising: a front body and a rear body connected by a driving component, wherein a front suction cup and a rear suction cup are respectively arranged on a bottom of the front body and the rear body, and the driving component is driven.
  • the robot uses the front suction cup and the rear suction cup to alternately adsorb the walking surface, so that the front body and the rear body are relatively separated or closed, and the peristaltic straight walking of the person is completed, wherein the front suction cup is connected to the front body through a rotating mechanism; or The rear suction cup is coupled to the rear body by a rotating mechanism.
  • the drive assembly employs a lead screw or a screw pair, a rack and pinion pair, a cylinder piston pair, a telescopic screw or a telescopic sleeve.
  • the adsorption robot further includes: a traveling wheel disposed at a bottom of the body, the adsorption robot walking on the working surface through the traveling wheel.
  • the present invention also provides a steering control method for the above-mentioned split type adsorption robot.
  • the front suction cup or the rear suction cup is adsorbed on the working surface, and the driving mechanism drives the rotating mechanism to rotate the suction cup of the body relative to the suction working surface by a predetermined angle, thereby realizing the body. Turn.
  • the drive component drives the adsorption robot to adsorb the walking surface by the front suction cup or the rear suction cup, and controls the front body and the rear body to close together.
  • the invention also provides a steering control method for the above-mentioned integrated adsorption robot, wherein the suction cup is adsorbed on the working surface, and the rotating mechanism is driven to rotate the suction cup of the body relative to the suction working surface by a predetermined angle, thereby realizing the steering of the body.
  • the adsorption robot controls to stop driving the traveling wheel.
  • the adsorption robot provided by the invention and the steering method for controlling the adsorption robot can accurately control the rotation angle of the robot, can avoid the phenomenon of slipping during the rotation, and reduce the possibility of damaging the adsorbed surface. In particular, it solves the technical problem that the split machine cannot be turned or the steering mechanism is complicated.
  • FIG. 1 is a schematic structural view of a rotating mechanism of an adsorption robot according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a rotating mechanism of an adsorption robot according to Embodiment 2 of the present invention
  • FIG. 3 is a schematic structural view of a rotating mechanism of an adsorption robot disposed in a front body according to Embodiment 3 of the present invention
  • FIG. 4 is a schematic structural view of a rotating mechanism of an adsorption robot disposed in a rear body according to Embodiment 4 of the present invention
  • FIG. 5 is a schematic structural view of a rotating mechanism of an adsorption robot disposed on a front body and a rear body respectively according to Embodiment 5 of the present invention
  • FIG. 6 is a schematic structural view of an adsorption robot according to Embodiment 6 of the present invention.
  • FIG. 1 is a schematic structural view of a rotating mechanism according to a first embodiment of the present invention.
  • the rotating mechanism includes a large gear 11, a pinion gear 12 meshed with the large gear 11, and a driving mechanism 3 that drives the pinion gear 12, and the pinion gear 12 is fixed to the body 4.
  • the large gear 11 is fixedly connected to the suction cup, and the large gear is rotatably disposed on the body.
  • the rotating mechanism provided in this embodiment includes a large gear 11', a driving wheel 12' connected to the large gear 11' via a belt 13', a driving mechanism 3 for driving the driving wheel 12', and a sheet.
  • a tension wheel 14' the tensioning wheel 14' is located between the large gear 11' and the driving wheel 12', and is connected to the large gear 11' and the driving wheel 12' via a belt 13', the driving wheel 12'
  • the fixed connection is made to the body 4, and the large gear 11' is fixedly connected to the suction cup.
  • the large gear and the body are connected by a bearing, the large gear is connected with the outer ring of the bearing, and the body is connected with the inner ring of the bearing.
  • FIG. 3 is a schematic structural view of a rotating mechanism disposed on a front body according to a third embodiment of the present invention.
  • the rotating mechanism of the adsorption robot in this embodiment is applicable to any one of the above-mentioned rotating mechanisms.
  • the rotating body includes a body 4, and a suction cup 2 for adsorbing a working surface is disposed at the bottom of the body 4, and the adsorption robot is further provided.
  • the body 4 drives the rotating mechanism 1 so that the body rotates by a predetermined angle with respect to the suction cup, thereby completing the steering of the robot.
  • the adsorption robot is a split type adsorption robot, comprising: a body 4, the body 4 includes: a front body 41 and a rear body 42 connected by a drive assembly 5, and the drive assembly 5 can be The lead screw or the screw pair, the gear rack pair or the cylinder piston pair are used; the front body 41 and the rear body 42 are respectively provided with a front suction cup 21 and a rear suction cup 22, and the driving assembly 5 drives the robot by the front suction cup 21 and the rear.
  • the alternating suction of the suction cup 22 on the walking surface causes the front body 41 and the rear body 42 to be relatively separated or closed to complete the peristaltic straight walking of the person, wherein the front suction cup 21 is connected to the front body 41 through the rotating mechanism 1.
  • the driving assembly 5 drives the adsorption robot to alternately adsorb the walking surface by the front suction cup 21 and the rear suction cup 22, so that the front body 41 and the rear body 42 are relatively separated or closed, and the robot is completed.
  • the creeping straight-line walking when the steering is performed, the working surface is sucked by the front suction cup 21, and the driving mechanism 3 drives the rotating mechanism 1 to control the front suction cup 21 of the moving working surface to rotate by a predetermined angle to realize the steering of the robot.
  • the front body 41 and the rear body 42 are controlled to be closed to avoid the steering difficulty caused by the excessive length of the fuselage.
  • FIG. 4 is a schematic structural view of a rotating mechanism of an adsorption robot disposed in a rear body according to a fourth embodiment of the present invention.
  • the split type adsorption robot in this embodiment is basically the same as the adsorption robot in the third embodiment, except that the split type adsorption robot in this embodiment is connected to the rear suction cup 22 via the rotating mechanism 1.
  • the steering method for controlling the adsorption robot in the present embodiment is basically the same as the steering method in the third embodiment, except that in the present embodiment, when the steering is performed, the working surface is adsorbed by the rear suction cup 22.
  • the driving mechanism 3 controls the rotation of the robot body 4 relative to the rear suction cup 22 of the adsorption working surface by the rotation mechanism 1 to realize the steering of the robot.
  • FIG. 5 is a diagram showing the structure of the rotating mechanism of the adsorption robot in the front body and the rear body respectively according to the fifth embodiment of the present invention; schematic diagram.
  • the split type adsorption robot in this embodiment is basically the same as the adsorption robots in the third embodiment and the fourth embodiment, except that the split type adsorption robot in the embodiment has the front suction cup 21 rotated.
  • the mechanism 1' is coupled to the front body 41 and the rear suction cup 22 is coupled to the rear body 42 by a rotating mechanism 1".
  • the steering method for controlling the adsorption robot in the embodiment is substantially the same as the steering method according to the third embodiment and the fourth embodiment, except that in the embodiment, when the steering is performed, the adsorption robot judges by itself or The action is set to enable the front suction cup 21 or the rear suction cup 22 to rotate to drive the overall steering work of the adsorption robot. If the front suction cup 21 is activated to complete the steering work, the working surface is sucked by the front suction cup 21, and the driving mechanism 3' passes through the rotating mechanism.
  • FIG. 6 is a schematic structural view of an adsorption robot according to Embodiment 6 of the present invention.
  • the adsorption robot provided in this embodiment is an integrated adsorption robot, comprising: a body 4 having a suction cup 2 for adsorbing a working surface and a rotating mechanism 1 at the bottom of the body 4, the suction cup 2 passing through a rotating mechanism 1 is connected to the body 4, and the body 4 is steered by a rotating mechanism 1 controlled by a driving mechanism 3, the absorbing robot further comprising: a traveling wheel 6 disposed at the bottom of the body 4, the absorbing robot walking on the working surface through the traveling wheel 6.
  • the rotation mechanism of the adsorption robot in this embodiment is applicable to any one of the rotation mechanisms of the first embodiment or the second embodiment.
  • Controlling the steering method first, the control mechanism of the adsorption robot controls the stop driving of the traveling wheel 6, and then the working surface is sucked by the suction cup 2.
  • the driving mechanism 3 controls the rotation of the robot body 4 with respect to the suction cup 2 of the adsorption working surface by the rotation mechanism 1 Angle, the steering of the robot.

Landscapes

  • Manipulator (AREA)
  • Toys (AREA)

Abstract

一种吸附机器人及其转向控制方法。吸附机器人包括机体(4)和旋转机构(1)。机体(4)底部设有用于吸附作业面的吸盘(2),吸盘(2)通过旋转机构(1)连接于机体(4),机体(4)通过驱动旋转机构(1)使得机体(4)相对于吸盘(2)旋转预设角度,从而完成机器人的转向。带有旋转机构(1)和吸盘(2)的吸附机器人,可精确控制转动角度,在转动中避免出现打滑的现象,并且降低损害被吸附面的可能性。

Description

[根据细则37.2由ISA制定的发明名称] 吸附机器人及其转向控制方法 技术领域
本发明涉及一种吸附机器人及该吸附机器人的转向控制方法,属于小家电制造技术领域。
背景技术
现有大多数依靠吸盘吸附的清洁装置,其转动时依靠两驱动轮的不同转向或不同转速来实现的,例如目前的擦玻璃机器人,设有驱动轮和吸盘,吸盘通过导气管与真空源连接,通过控制两个驱动轮差动来实现转向的,这样的机器容易出现驱动轮打滑,转向不到位、不精确等情况,并且因为力学原因可能会损害到吸附面。
另外,现有的分体机设有前机和后机,前机和后机通过丝杆螺母连接,前机和后机底部分别设有前吸盘和后吸盘。该分体机主要通过前、后吸盘交替吸附作业面,丝杆螺母驱动前机和后机的分合来完成机器人的蠕动行走。然而,通过丝杆螺母驱动直线行走的分体机,其通常存在无法转向或转向复杂的技术难题。
发明内容
本发明所要解决的技术问题在于,针对现有技术的不足,提供一种吸附机器人及控制该吸附机器人的转向方法,可精确控制机器人的转动角度,在转动中可避免出现打滑的现象,并且降低了损害被吸附面的可能性。
本发明所要解决的技术问题是通过如下技术方案实现的:
本发明提供一种吸附机器人,包括:机体,所述机体底部设有用于吸附作业面的吸盘,所述吸附机器人还设有旋转机构,所述吸盘通过旋转机构连接于机体,机体通过驱动旋转机构,使得机体相对于吸盘旋转预设角度,从而完成机器人的转向。
更好地,驱动机构,所述驱动机构通过驱动旋转机构控制机体相对所述吸附作业面的吸盘旋转预设角度。
更好地,所述旋转机构包括:大齿轮,与所述大齿轮啮合的小齿轮以及驱动所述小齿轮的驱动机构,所述小齿轮与所述机体固定连接,所述大齿轮与所述吸盘固定连接,所述大齿轮可旋转的设置于机体,如所述大齿轮和机体通过轴承连接。
另一实施例,所述旋转机构包括:大齿轮,通过皮带与大齿轮连接的驱动轮以及 驱动所述驱动轮的驱动机构,所述驱动轮与所述机体固定连接,所述大齿轮与所述吸盘固定连接,所述大齿轮可旋转的设置于机体,如所述大齿轮和机体通过轴承连接。
更好地,所述旋转机构还包括:张紧轮,所述张紧轮位于所述大齿轮与驱动轮之间,并且通过皮带与大齿轮和驱动轮连接。
一种实施例,所述吸附机器人为分体式吸附机器人,包括:由驱动组件相连的前机体和后机体,前机体和后机体的机体底部分别设有前吸盘和后吸盘,所述驱动组件驱动机器人借助前吸盘和后吸盘对行走表面的交替吸附作用,使前机体和后机体相对分开或合拢,完成器人的蠕动式直线行走,其中,所述前吸盘通过旋转机构连接于前机体;或所述后吸盘通过旋转机构连接于后机体。
具体地,所述驱动组件采用丝杠或螺杆副、齿轮齿条副、气缸活塞副、伸缩螺杆或伸缩套筒。
另一种实施例,所述吸附机器人还包括:设置在所述机体底部的行进轮,所述吸附机器人通过行进轮在作业面行走。
本发明还提供一种上述分体式吸附机器人的转向控制方法,前吸盘或后吸盘吸附在作业表面,驱动机构驱动旋转机构,使得机体相对所述吸附作业面的吸盘旋转预设角度,从而实现机体转向。
当吸附机器人为分体式吸附机器人时,在旋转之前:驱动组件驱动吸附机器人借助前吸盘或后吸盘对行走表面的吸附作用,控制前机体和后机体合拢。
本发明还提供一种上述一体式吸附机器人的转向控制方法,吸盘吸附在作业表面,驱动旋转机构,使得机体相对所述吸附作业面的吸盘旋转预设角度,从而实现机体转向。
当吸附机器人为一体式吸附机器人时,在旋转之前:吸附机器人控制停止驱动行进轮。
本发明提供的吸附机器人及控制该吸附机器人的转向方法,可精确控制机器人的转动角度,在转动中可避免出现打滑的现象,并且降低了损害被吸附面的可能性。特别的,解决了分体机无法转向或转向机构复杂的技术难题。
下面结合附图和具体实施例对本发明的技术方案进行详细地说明。
附图说明
图1为本发明实施例一吸附机器人的旋转机构结构示意图;
图2为本发明实施例二吸附机器人的旋转机构结构示意图;
图3为本发明实施例三吸附机器人的旋转机构设置在前机体的结构示意图;
图4为本发明实施例四的吸附机器人旋转机构设置在后机体的结构示意图;
图5为本发明实施例五的吸附机器人旋转机构分别设置在前机体和后机体的结构示意图;
图6为本发明实施例六的吸附机器人结构示意图。
具体实施方式
实施例一
图1为本发明实施例一的旋转机构结构示意图。如图1所示,所述旋转机构包括:大齿轮11,与所述大齿轮11啮合的小齿轮12以及驱动所述小齿轮12的驱动机构3,所述小齿轮12与所述机体4固定连接,所述大齿轮11与所述吸盘固定连接,大齿轮可旋转的设置在机体上。
工作原理:当吸附机器人转向时,吸盘吸附于作业面,吸盘以及与吸盘固定连接的大齿轮11固定不动,驱动机构3驱动小齿轮12转动,因机体4与小齿轮12固定连接,所以当小齿轮12转动时,带动整个机体4以大齿轮11的圆心为旋转中心进行旋转运动,从而完成吸附机器人的转向。
实施例二
图2为本发明实施例二的旋转机构结构示意图。如图2所示,本实施例中提供的旋转机构包括:大齿轮11’,通过皮带13’与大齿轮11’连接的驱动轮12’、驱动所述驱动轮12’的驱动机构3以及张紧轮14’,所述张紧轮14’位于所述大齿轮11’与驱动轮12’之间,并且通过皮带13’与大齿轮11’和驱动轮12’连接,所述驱动轮12’与所述机体4固定连接,所述大齿轮11’与所述吸盘固定连接。所述大齿轮和机体通过轴承连接,大齿轮与轴承外圈连接,机体与轴承内圈连接。
工作原理:当吸附机器人转向时,吸盘以及与吸盘固定连接的大齿轮11’固定不动,驱动机构3驱动驱动轮12’转动,所述驱动轮12’通过皮带13’与大齿轮11’连接,而皮带13’又通过张紧轮14’张紧;因机体4与驱动轮12’固定连接,所以当驱动轮12’转动时,带动整个机体4以大齿轮11’的圆心为旋转中心进行旋转运动,从而完成吸附机器人的转向。
实施例三
图3为本发明实施例三的旋转机构设置在前机体的结构示意图。本实施例中吸附机器人的旋转机构适用于上述任何一种旋转机构,如图3所示,包括:机体4,所述机体4底部设有用于吸附作业面的吸盘2,所述吸附机器人还设有旋转机构1,所述吸盘通过旋转机构1连接于机体4,机体4通过驱动旋转机构1,使得机体相对于吸盘旋转预设角度,从而完成机器人的转向。
具体地说,在本实施例中所述吸附机器人为分体式吸附机器人,包括:机体4,所述机体4包括:由驱动组件5相连的前机体41和后机体42,所述驱动组件5可采用丝杠或螺杆副、齿轮齿条副或者气缸活塞副;前机体41和后机体42的机体底部分别设有前吸盘21和后吸盘22,所述驱动组件5驱动机器人借助前吸盘21和后吸盘22对行走表面的交替吸附作用,使前机体41和后机体42相对分开或合拢,完成器人的蠕动式直线行走,其中,所述前吸盘21通过旋转机构1连接于前机体41。
一种控制上述分体式吸附机器人的转向方法,驱动组件5驱动吸附机器人借助前吸盘21和后吸盘22对行走表面的交替吸附作用,使前机体41和后机体42相对分开或合拢,完成器人的蠕动式直线行走,在转向时,通过所述前吸盘21吸附作业表面,驱动机构3驱动旋转机构1控制机体4相对所述吸附作业面的前吸盘21旋转预设角度,实现机器人的转向,较佳的:在控制吸附机器人转向之前,首先控制前机体41和后机体42合拢,避免机身过长导致的转向困难。
实施例四
图4为本发明实施例四的吸附机器人旋转机构设置在后机体的结构示意图。如图4所示,本实施例中的分体式吸附机器人与实施例三中的吸附机器人基本一致,不同之处在于,本实施例中的分体式吸附机器人,后吸盘22通过旋转机构1连接于后机体42。
在本实施例中,控制本实施例中的吸附机器人的转向方法与实施三中的转向方法基本一致,不同之处在于,在本实施例中,转向时,通过所述后吸盘22吸附作业表面,驱动机构3通过旋转机构1控制机体4相对所述吸附作业面的后吸盘22旋转预设角度,实现机器人的转向。
实施例五
图5为本发明实施例五的吸附机器人旋转机构分别设置在前机体和后机体的结构 示意图。如图5所示,本实施例中的分体式吸附机器人与实施例三和实施例四中的吸附机器人基本一致,不同之处在于,本实施例中的分体式吸附机器人,前吸盘21通过旋转机构1’连接于前机体41并且后吸盘22通过旋转机构1”连接于后机体42。
在本实施例中,控制本实施例中的吸附机器人的转向方法与实施三和实施例四的转向方法基本一致,不同之处在于,在本实施例中,转向时,吸附机器人通过自身判断或行动设置,来启用前吸盘21或者后吸盘22旋转来带动吸附机器人整体的转向工作,如果启用前吸盘21来完成转向工作时,通过所述前吸盘21吸附作业表面,驱动机构3’通过旋转机构1’控制机器人机体相对所述吸附作业面的前吸盘21旋转预设角度,实现机器人的转向;若启用后吸盘22来完成转向工作时,通过所述后吸盘22吸附作业表面,驱动机构3”通过旋转机构1”控制机器人机体相对所述吸附作业面的后吸盘22旋转预设角度,实现机器人的转向。
实施例六
图6为本发明实施例六的吸附机器人结构示意图。如图6所示,本实施例提供的吸附机器人为一体式吸附机器人,包括:机体4,所述机体4底部设有用于吸附作业面的吸盘2以及旋转机构1,所述吸盘2通过旋转机构1连接于机体4,机体4通过驱动机构3控制的旋转机构1转向,所述吸附机器人还包括:设置在所述机体4底部的行进轮6,所述吸附机器人通过行进轮6在作业面行走;本实施例中的吸附机器人的旋转机构适用于实施例一或实施例二中的任何一种旋转机构。
控制转向方法:首先吸附机器人的控制机构控制停止驱动行进轮6,然后通过所述吸盘2吸附作业表面,驱动机构3通过旋转机构1控制机器人机体4相对所述吸附作业面的吸盘2旋转预设角度,实现机器人的转向。

Claims (12)

  1. 一种吸附机器人,包括:机体(4),所述机体(4)底部设有用于吸附作业面的吸盘(2),其特征在于,所述吸附机器人还设有旋转机构(1),所述吸盘(2)通过旋转机构(1)连接于机体(4),机体(4)通过驱动旋转机构(1),使得机体相对于吸盘(2)旋转预设角度,从而完成机器人的转向。
  2. 如权利要求1所述的吸附机器人,其特征在于,所述吸附机器人还包括:驱动机构(3),所述驱动机构通过驱动旋转机构(1)控制机体(4)相对所述吸附作业面的吸盘(2)旋转预设角度。
  3. 如权利要求1所述的吸附机器人,其特征在于,所述旋转机构(1)包括:大齿轮(11),与所述大齿轮(11)啮合的小齿轮(12)以及驱动所述小齿轮(12)的驱动机构(3),所述小齿轮(12)与所述机体(4)固定连接,所述大齿轮(11)与所述吸盘(2)固定连接。
  4. 如权利要求1所述的吸附机器人,其特征在于,所述旋转机构(1)包括:大齿轮(11’),通过皮带(13’)与大齿轮(11’)连接的驱动轮(12’)以及驱动所述驱动轮(12’)的驱动机构(3),所述驱动轮(12’)与所述机体(4)固定连接,所述大齿轮(11’)与所述吸盘(2)固定连接。
  5. 如权利要求4所述的吸附机器人,其特征在于,所述旋转机构(1)还包括:张紧轮(14’),所述张紧轮(14’)位于所述大齿轮(11’)与驱动轮(12’)之间,并且通过皮带(13’)与大齿轮(11’)和驱动轮(12’)连接。
  6. 如权利要求1-5任一项所述的吸附机器人,其特征在于,所述吸附机器人为分体式吸附机器人,包括:由驱动组件(5)相连的前机体(41)和后机体(42),前机体(41)和后机体(42)的机体底部分别设有前吸盘(21)和后吸盘(22),所述驱动组件(5)驱动吸附机器人借助前吸盘(21)和后吸盘(22)对行走表面的交替吸附作用,使前机体(41)和后机体(42)相对分开或合拢,完成器人的蠕动式直线行走,其中,
    所述前吸盘(21)通过旋转机构(1)连接于前机体(41);
    或所述后吸盘(22)通过旋转机构(1)连接于后机体(42);
    或所述前吸盘(21)和后吸盘(22)分别通过旋转机构连接于后机体前机体(41)和后机体(42)。
  7. 如权利要求6所述的吸附机器人,其特征在于,所述驱动组件(5)为丝杠或螺杆副、齿轮齿条副或者气缸活塞副、伸缩螺杆或伸缩套筒。
  8. 如权利要求1-5任一项所述的吸附机器人,其特征在于,所述吸附机器人为一体式吸附机器人,所述吸附机器人还包括:设置在所述机体(4)底部的行进轮(6),所述吸附机器人通过行进轮(6)在作业面行走。
  9. 一种如权利要求6所述的吸附机器人的转向控制方法,其特征在于,前吸盘(21)或后吸盘(22)吸附在作业表面,驱动机构(3)驱动旋转机构(1),使得机体(4)相对所述吸附作业面的吸盘旋转预设角度,从而实现机体转向。
  10. 如权利要求9所述的吸附机器人的转向控制方法,其特征在于,在旋转前,驱动组件驱动前机体(41)和后机体(42)合拢。
  11. 一种如权利要求8所述的吸附机器人的转向控制方法,其特征在于,吸盘吸附在作业表面,驱动旋转机构,使得机体(4)相对所述吸附作业面的吸盘(2)旋转预设角度,从而实现机体转向。
  12. 如权利要求11所述的吸附机器人的转向控制方法,其特征在于,在旋转前,吸附机器人控制停止驱动行进轮(6)。
PCT/CN2014/091403 2013-11-20 2014-11-18 吸附机器人及其转向控制方法 WO2015074541A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310589797.9 2013-11-20
CN201310589797.9A CN104644050B (zh) 2013-11-20 2013-11-20 吸附机器人及该吸附机器人的转向控制方法

Publications (1)

Publication Number Publication Date
WO2015074541A1 true WO2015074541A1 (zh) 2015-05-28

Family

ID=53178944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/091403 WO2015074541A1 (zh) 2013-11-20 2014-11-18 吸附机器人及其转向控制方法

Country Status (2)

Country Link
CN (1) CN104644050B (zh)
WO (1) WO2015074541A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109199207B (zh) * 2018-09-11 2021-05-11 广东聚晨知识产权代理有限公司 一种可移动式擦窗机器人
CN110900622B (zh) * 2019-11-22 2023-03-24 深圳怪虫机器人有限公司 一种清洁机器人转弯作业的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101626873A (zh) * 2007-02-09 2010-01-13 金容旭 用于清洁外墙的机器人
CN102167102A (zh) * 2011-04-08 2011-08-31 上海电机学院 吸盘式气动爬壁机器人
CN102631173A (zh) * 2012-04-16 2012-08-15 北京理工大学 履带吸盘式壁面清洁机器人
CN203234687U (zh) * 2013-04-02 2013-10-16 兰州山海环保科技有限公司 吸附式双层全转角高楼玻璃幕墙自动清洗机
CN203609367U (zh) * 2013-12-06 2014-05-28 桂林电子科技大学 爬玻璃机器人
CN203612097U (zh) * 2013-11-20 2014-05-28 苏州科沃斯商用机器人有限公司 旋转密封吸附装置及具有该装置的吸附式自移动装置
CN203609365U (zh) * 2013-11-20 2014-05-28 苏州科沃斯商用机器人有限公司 吸附机器人
CN203612096U (zh) * 2013-11-20 2014-05-28 苏州科沃斯商用机器人有限公司 带吸盘的分体式机器人
CN203766926U (zh) * 2013-11-20 2014-08-13 苏州科沃斯商用机器人有限公司 可增大摩擦力的吸盘及吸附式自移动装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005265219A (ja) * 2004-03-16 2005-09-29 Ue Ruko:Kk 強制循環式風呂用除菌洗浄剤容器、及び強制循環式風呂における湯水導管の除菌洗浄方法
CN202665434U (zh) * 2012-06-28 2013-01-16 科沃斯机器人科技(苏州)有限公司 擦玻璃机器人

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101626873A (zh) * 2007-02-09 2010-01-13 金容旭 用于清洁外墙的机器人
CN102167102A (zh) * 2011-04-08 2011-08-31 上海电机学院 吸盘式气动爬壁机器人
CN102631173A (zh) * 2012-04-16 2012-08-15 北京理工大学 履带吸盘式壁面清洁机器人
CN203234687U (zh) * 2013-04-02 2013-10-16 兰州山海环保科技有限公司 吸附式双层全转角高楼玻璃幕墙自动清洗机
CN203612097U (zh) * 2013-11-20 2014-05-28 苏州科沃斯商用机器人有限公司 旋转密封吸附装置及具有该装置的吸附式自移动装置
CN203609365U (zh) * 2013-11-20 2014-05-28 苏州科沃斯商用机器人有限公司 吸附机器人
CN203612096U (zh) * 2013-11-20 2014-05-28 苏州科沃斯商用机器人有限公司 带吸盘的分体式机器人
CN203766926U (zh) * 2013-11-20 2014-08-13 苏州科沃斯商用机器人有限公司 可增大摩擦力的吸盘及吸附式自移动装置
CN203609367U (zh) * 2013-12-06 2014-05-28 桂林电子科技大学 爬玻璃机器人

Also Published As

Publication number Publication date
CN104644050A (zh) 2015-05-27
CN104644050B (zh) 2017-11-21

Similar Documents

Publication Publication Date Title
US20190217479A1 (en) Self-moving robot and walking method thereof
EP2574263A3 (en) Robot cleaner
CN104648510B (zh) 可增大摩擦力的吸盘及吸附式自移动装置
EP2764813A3 (en) Mobile robot mopping machine
CN202665434U (zh) 擦玻璃机器人
CN209285343U (zh) 清洁机器人
CN104905728A (zh) 摆动式自行走擦窗机器人及其控制方法
CN203609365U (zh) 吸附机器人
CN103505143A (zh) 擦玻璃机器人及其行走方法
JP2013158904A (ja) 窓拭きロボットの移動方式
WO2015074541A1 (zh) 吸附机器人及其转向控制方法
CN106175564A (zh) 往复伸缩式擦玻璃机器人
WO2018191876A1 (zh) 踝关节康复训练装置
CN109484507A (zh) 用于复杂导磁壁面的定向吸附永磁磁轮双轮爬壁机器人
CN206544554U (zh) 一种可调节的机器人爬墙装置
CN204636198U (zh) 往复伸缩式擦玻璃机器人
CN204472947U (zh) 一种多平面流体吸附式爬墙机器人
WO2015074542A1 (zh) 旋转密封吸附装置及具有该装置的吸附式自移动装置
WO2016004824A1 (zh) 一种刹车机构
CN104015831B (zh) 一种有源无源组合式负压吸附连续行走爬壁机器人
CN206044517U (zh) 平行四边形擦玻璃装置
CN203766926U (zh) 可增大摩擦力的吸盘及吸附式自移动装置
CN107160822B (zh) 一种节能型无纬布生产前期加工处理设备
CN103129613A (zh) 四轮转向装置
CN106691296B (zh) 自动擦窗机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14863316

Country of ref document: EP

Kind code of ref document: A1