WO2015074326A1 - 一种变电站拓扑网络遥信数据辨识实现方法 - Google Patents
一种变电站拓扑网络遥信数据辨识实现方法 Download PDFInfo
- Publication number
- WO2015074326A1 WO2015074326A1 PCT/CN2014/001039 CN2014001039W WO2015074326A1 WO 2015074326 A1 WO2015074326 A1 WO 2015074326A1 CN 2014001039 W CN2014001039 W CN 2014001039W WO 2015074326 A1 WO2015074326 A1 WO 2015074326A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- remote
- closed
- remote signal
- state
- circuit breaker
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00002—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00006—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
- H02J13/00022—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00032—Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
- H02J13/00034—Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/16—Electric power substations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/30—State monitoring, e.g. fault, temperature monitoring, insulator monitoring, corona discharge
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S40/00—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
- Y04S40/12—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
- Y04S40/126—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission
Definitions
- the invention relates to a method for realizing remote signal data identification of substation topology network, belonging to the technical field of electric power.
- measurement data of some important nodes are usually redundant in the system in which they are located or in other systems.
- the present invention provides a method for realizing remote station data identification of substation topology network.
- the purpose is to solve the problem that the prior art in the substation power system analysis, the measurement data of some important nodes are redundant in the system in which they are located or in other systems.
- a realization method for substation topology network remote signal data identification is:
- Step 1 According to the voltage level contained in the substation, the substation is divided into networks of different voltage levels. These networks usually take the transformer winding as the end point and form a star network centering on the bus bar;
- Step 2 Consider the interval as a whole in each network, and the intervals are generally used as topology nodes attached to the bus to form a topology network;
- Step 3 Use three levels of logic analysis for this particular topology network to identify bad remote signaling data
- Step 4 The logical analysis of these three levels is: logical analysis of the internal single device in the interval, logical analysis between the devices inside the interval, logical analysis between the intervals, and finally eliminating bad remote signaling.
- the power grid inside the substation is firstly based on the winding voltage of the transformer, etc.
- the classification is based on the windings; it is divided into high-voltage network, medium-voltage network and low-voltage network; these three networks are centered on the busbar, and a logical body is formed at different intervals of different bus-connected connections to form a star topology.
- the internet According to different types of busbars, different star networks are formed: 3/2 networks, double busbar networks, single busbar networks, and double busbars with bypass networks; there is one bustling interval, three incoming intervals, and three outgoing intervals. In each interval, there are circuit breakers, series knife gates, and grounding knife gates. The remote signaling state of these devices and the connection relationship between the devices form a topological connection relationship within the interval.
- the remote signal of the switching devices inside the interval may be incorrectly collected due to various reasons, and the bad remote information may be removed.
- the scheme adopts a three-level judgment rule: the first level, The relationship between the internal remote signaling of each device and the relationship between the remote signal and the quantity measurement of the device is used to determine whether the remote signaling of the device is correct or not; the second level uses the logical connection of the remote signaling state between the internal devices. Judging the remote signal to eliminate the remote signal that cannot be determined at the first level; at the third level, the devices attached to the different intervals of the same bus have many unified states and consistent connections, and further use these relationships in the second level. The undetermined remote letter is judged to determine the state of the remote signal.
- the inter-relationship between the internal telecommunication of each device and the amount measurement related to the remote signal and the device include: voltage, current, and power flowing through the device.
- the first-level logic judgment rule mainly has three, a.
- the short-circuiter and the knife-gate state they have two remote letters, a remote remote signal and a closed remote signal, and the open remote signal is 1 closed remote signal is 0.
- the status is open, the open remote signal is 0, the closed remote signal is 1 and the state is 1, otherwise the state is uncertain;
- b the circuit breaker, and the total remote signal and the three-phase remote signal, if the total remote signal is open, three-phase If the remote signal is also open, the circuit breaker is open. If both are closed, the state is closed. If the total remote signal is closed, the three-phase remote signal is closed, and the other is open, then the bad message is opened.
- the three phases are closed one open, then it is uncertain; if the total remote signal is open, the judgment of the three-phase remote signal is the same; if the total remote signal is open, the three-phase remote signal is closed, then the total The remote signal is bad data; the total remote signal is closed, the three-phase remote signal is also open; c, the circuit breaker, and the three-phase current power analog quantity, for the circuit breaker remote signal, if there is current and there is power, no matter Judging the state of the remote letter, it is judged that the remote letter is closed; if If there is no current and no power, the remote signal is turned on; if there is no current, the analog quantity may be wrong. If the remote signal cannot be judged by the remote signal, the remote signal is in an indeterminate state.
- the logic rule between the internal devices of the second stage interval generally there is a series knife switch, a circuit breaker, two knife gates juxtaposed close to the bus bar, and a side isolation knife gate;
- the first level cannot determine the state of the device, the relationship between the devices can be used to judge the state of the uncertain device; a.
- a suspicious parallel switch if one of the switches is suspicious, the suspicious state is closed, and the other One is closed, then the suspected closure is bad data.
- the parallel switch cannot be closed at the same time; if it is not sure, look at the circuit breaker.
- the suspected knife gate eliminates suspicious; if the circuit breaker is open, the suspected knife gate It is bad data; if the circuit breaker is uncertain, the suspect knife switch is still uncertain; b. If the circuit breaker is suspicious, look at the parallel switch, if it is not closed, the circuit breaker is suspicious; if the parallel switch is closed , see the series knife gate, if the series knife gate is closed, the circuit breaker should be closed, otherwise it is in suspicious state; c, if the series knife gate is suspicious, then see if the circuit breaker is closed, if closed Current power, the knife gate is closed, otherwise it is still suspicious; d. If the grounding knife is suspicious, if the circuit breaker is closed and there is current power, the ground knife will open, otherwise it will still be suspicious.
- the suspiciousness can be further excluded: a. For the bus-linking interval, if there is no voltage difference between the two mothers, the female connection And the series switch is closed. If there is a voltage difference, the branch of the bus and the series switch is in the off state; b. if the double side series switch is closed, the circuit breaker should also be closed.
- step 4 based on the three principles, a series of rules are established; whenever the switch state changes, or some dependent quantity measurement changes, if the start analysis condition is met, the analysis engine automatically analyzes according to the rule to identify the topology state. Eliminate the wrong remote signal status and complete the remote signal identification.
- the invention is a method for multi-source data fusion identification in power network topology analysis of substation power system.
- the method utilizes different network nodes in the integrated monitoring system to remotely measure the logical relationship of remote signal data, and adopts three levels of logic judgment rules for the topology network. Identification of the state of the remote signal
- the remote signaling data in the topology analysis is guaranteed to be accurate, and the interference of bad data on various service applications of the substation is reduced. It can effectively utilize the highly redundant multi-source measurement information in the substation, improve the recognition rate of bad data, and enhance the anti-interference ability of the system.
- Figure 1 is a wiring diagram of a high voltage system of a substation of the present invention
- FIG. 2 is a spacing topology diagram of the present invention.
- the invention relates to a realization method for substation topology network remote signal data identification, comprising:
- Step 1 According to the voltage level contained in the substation, the substation is divided into networks of different voltage levels. These networks usually take the transformer winding as the end point and form a star network centering on the bus bar;
- Step 2 Consider the interval as a whole in each network, and the intervals are generally used as topology nodes attached to the bus to form a topology network;
- Step 3 Use three levels of logic analysis for this particular topology network to identify bad remote signaling data
- Step 4 The logical analysis of these three levels is: logical analysis of the internal single device in the interval, logical analysis between the devices inside the interval, logical analysis between the intervals, and finally eliminating bad remote signaling.
- the present invention provides a method for realizing remote signal identification of substation topology network, that is, a method for realizing correct state identification of grid remote signal based on measurement data of a substation, comprising the following steps:
- Step 1 the grid inside the substation is classified according to the winding voltage level of the transformer, and the winding is taken as the starting point; it is divided into a high voltage network, a medium voltage network, and a low voltage network. These three networks are centered on the busbars, forming a logical body with different intervals of different bus-connected connections to form a type-topological network. According to different types of busbars, different star networks are formed: 3/2 networks, dual busbar networks, single busbar networks, and double busbars with bypass networks; as shown in Figure 1, it is For a more representative double bus network, this article uses it as a description. There is a busbar interval, 3 incoming line intervals, and 3 outgoing line intervals.
- Each interval has a circuit breaker, a series switch, and a grounding switch.
- the remote signaling status of these devices and the connection relationship between the devices form an internal interval.
- Topology connection relationship The high-voltage system wiring diagram of the substation shown in Figure 1 is shown in the simplified interval topology of Figure 2.
- Step 2 The remote signal of the switching devices inside the interval may be incorrectly collected due to various reasons, and the bad remote data may be removed.
- the scheme adopts a three-level judgment rule: the first level uses each device. The relationship between internal remote communication and the measurement of the distance between the remote device and the device, such as the relationship between the voltage, current and power flowing through the device, and the correctness of the remote signal of the device.
- the second level is between the internal devices. The logical connection exists in the state of remote signaling, judging the remote signal to eliminate the remote signal that cannot be determined at the first level; the third level, the devices connected in different intervals of the same bus have many unified states and consistent connections, utilizing These relationships further judge the undetermined remote signal in the second level and determine the state of the remote signal.
- Step 3 the first level of logic judgment rules mainly have three, a, for the short circuiter and the knife gate state, they have two remote letters, open remote and closed remote letters, open remote signal is 1 closed remote signal is 0, the status is Open, open the remote letter to 0 closed, the signal is 1, the state is 1, otherwise the state is uncertain; b, for the circuit breaker, and the total remote signal and three-phase remote signal, if the total remote signal is open, the three-phase remote signal is also On, the circuit breaker is open, if it is closed, the state is closed; if the total remote signal is closed, the three-phase remote signal is closed, the other is open, then the open is bad, if three If one is closed, it is uncertain; if the total remote signal is open, the judgment of the three-phase remote signal is the same; if the total remote signal is open and the three-phase remote signal is closed, the total remote signal is Bad data; the total remote signal is closed, the three-phase remote signal is also open; c, for the circuit breaker, and the
- Step 4 The logic rules between the internal devices of the second-level interval; as shown in the wiring diagram of the double-busbar in the high-voltage system wiring diagram of the substation, there is generally a series-connected knife gate, a circuit breaker, and two parallel-connected knives. Gate, there may be side isolation knife gate; when the first level can not be confirmed When determining the state of the device, you can use the relationship between the devices to determine the state of the indeterminate device. a. For a suspicious parallel switch, if one of the cutters is suspicious, the suspicious state is closed, and the other is closed, the suspected closure is bad data. Generally, the parallel switch cannot be closed at the same time; if it is not sure, then the open circuit is closed.
- the suspected knife gate eliminates suspiciousness; if the circuit breaker is open, the suspected knife gate is bad data; if the circuit breaker is undefined, the suspected knife gate is still uncertain. b. If the circuit breaker is suspicious, look at the parallel switch. If it is not closed, the circuit breaker is suspicious. If the parallel switch is closed, look at the series switch. If the series switch is closed, the circuit breaker should be closed. Otherwise, it is in a suspicious state. c. If the series knife is suspicious, look at whether the circuit breaker is closed. If the current is cut off, the knife gate is closed, otherwise it is still suspicious. d. If the grounding knife is suspicious, if the circuit breaker is closed and there is current power, the ground knife will open, otherwise it will still be suspicious.
- Step 5 There is a logical connection between the third-level intervals. If an interval is still in the available state, it can be further ruled out: a. For the bus-link interval, if there is no voltage difference between the two mothers, the bus-tie and series switch Closed, if there is a voltage difference, the branch of the bus couple and the series switch is in the off state; b. if the double side series switch is closed, the circuit breaker should also be closed;
- a series of rules are established. Whenever the switch state changes, or some dependent quantity measurement changes, if the start analysis condition is met, the analysis engine automatically analyzes according to the rules, discriminates the topological state and eliminates the wrong remote signal state, and completes the remote signal identification.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
Abstract
一种变电站拓扑网络遥信数据辨识实现方法。该方法利用一体化监控系统中不同的网络节点遥测遥信数据的逻辑关系,采用三个级别逻辑判断法则对拓扑网络中的遥信状态进行辨识。该方法可以剔除不良遥测遥信,保证拓扑分析中的遥信数据准确无误,减低不良数据对变电站各种业务应用的干扰。该方法能够有效利用变电站内高度冗余的多源量测信息,提高坏数据的识别率,增强系统的抗干扰能力。
Description
本发明涉及一种变电站拓扑网络遥信数据辨识实现方法,属于电力技术领域。
在变电站电力系统分析中,一些重要节点的量测数据,比如网络中的电压、电流、功率、遥信等等,通常在自身所处的系统中或者其它系统中都有冗余。
发明内容
为解决上述现有技术存在的问题,本发明提供一种变电站拓扑网络遥信数据辨识实现方法。其目的是解决现有技术在变电站电力系统分析中,一些重要节点的量测数据在自身所处的系统中或其它系统中都有冗余的问题。
本发明解决其技术问题所采用的技术方案是:
一种变电站拓扑网络遥信数据辨识实现方法,是:
步骤1、根据变电站内部所包含的电压等级,把变电站划分为不同电压等级的网络,这些网络通常以变压器绕组为终点,以母线为中心形成星形网络;
步骤2、每个网络中把间隔看做一个整体,这些间隔整体作为挂接在母线上的拓扑节点,形成拓扑网络;
步骤3、对这种特殊的拓扑网络采用三个级别的逻辑分析,辨识不良遥信数据;
步骤4、这三个级别的逻辑分析是:间隔内部单设备的逻辑分析,间隔内部的设备之间的逻辑分析,间隔之间的逻辑分析,最终排除不良遥信。
所述的步骤1,首先对变电站内部的电网根据变压器的绕组电压等
级,以绕组为出发点,进行分类;分为高压网络、中压网络、低压网络;这三种网络已母线为中心,以不同母线上连接的不同间隔的组成一个逻辑体,形成一个星型拓扑网络。根据母线不同的类型,形成不同的星形网络:3/2网络,双母线网络,单母线网络,双母线带旁路网络;共有一个母联间隔、3个进线间隔、3个出线间隔,每个间隔中有断路器、串联刀闸、接地刀闸,这些设备的遥信状态和设备之间的连接关系构成间隔内部的拓扑连接关系。
所述的步骤2,间隔内部的这些开关设备的遥信信号由于各种原因,采集到监控后台可能出现不正确的状态,剔除不良的遥信数据本方案采用三级判断法则:第一级,采用各设备内部遥信的相互关系和遥信与设备有关的量测量的关系,判断设备的遥信的正确与否;第二级,采用间隔内部设备之间的遥信状态存在的逻辑联系,对遥信进行判断剔除在第一级无法确定的遥信;第三级,挂接在同一母线的不同间隔中的设备有着许多统一的状态和一致的联系,利用这些关系进一步对第二级中尚未确定的遥信进行判断,确定遥信状态。
所述的采用各设备内部遥信的相互关系和遥信与设备有关的量测量包括:流过设备的电压、电流、功率。
所述的步骤3,第一级逻辑判断规则主要有三条,a、对于短路器和刀闸状态,它们有两个遥信,开遥信和闭遥信,开遥信为1闭遥信为0,状态为打开,开遥信为0闭遥信为1则状态是1,否则状态不确定;b、对断路器,还有总遥信和三相遥信,如果总遥信为开,三相遥信也为开,则断路器为开状态,如果都为闭,则状态为闭;如果总遥信为闭,三相遥信两个是闭,另一个是开,则开的是坏遥信,如果三相一个闭两个开,则不确定;如果总遥信是开,三相遥信两个是开的判断也类似;如果总遥信是开,三相遥信是闭,则总遥信是坏数据;对总遥信是闭,三相遥信是开也类似;c、对断路器,还有三相电流功率模拟量,对于断路器遥信,如果存在电流并且也有功率,不管遥信状态如何,都判断遥信是闭合;如果
没有电流也没用功率,则遥信是打开;如果有电流没有功率,则模拟量可能错误,如果仅凭遥信无法判断遥信状态,则遥信处于不定状态。
所述的步骤3,第二级间隔内部设备之间的逻辑规则:间隔内部一般有一个串联刀闸、一个断路器、两个并列接近母线的刀闸,还可有侧边隔离刀闸;当第一级不能确定设备的状态时,可利用设备之间的关系,对不确定的设备状态进行判断;a、对于可疑的并联刀闸,如果有一个刀闸可疑,可疑状态是闭,而另一个是闭,则可疑闭应是坏数据,一般并列开关不可能同时闭;如果不能确定,则看断路器,如果是闭,则可疑刀闸消去可疑;如果断路器是开,则可疑刀闸是坏数据;如果断路器不确定,则可疑刀闸仍不确定;b、如果断路器是可疑的,则看并列刀闸,如果没有闭合的,则断路器可疑状态;如果并列刀闸有闭合,则看串联刀闸,如果串联刀闸闭合,则断路器应闭合,否则处于可疑状态;c、如果串联刀闸可疑,则看断路器是否闭合,如果闭合切有电流功率,则刀闸闭合,否则仍然可疑;d、接地刀如果可疑,则看断路器如果闭合且有电流功率,则地刀打开,否则仍然可疑。
所述的步骤3,第三级间隔之间的有逻辑联系,如果某个间隔仍然处于可以状态,可以进一步排除可疑:a、对于母联间隔,如果双母之间没有电压差,则母联及串联开关闭合,若存在电压差,则母联及串联开关这条支路处于断开状态;b、如果双侧串联开关闭合,则断路器也应该闭合。
所述的步骤4,基于这三条原则,建立起一系列的规则;每当开关状态发生变化,或者一些依赖的量测量发生变化,如果满足启动分析条件,分析引擎按照规则自动分析,甄别拓扑状态剔除错误的遥信状态,完成遥信辨识。
本发明的优点及有益效果是:
本发明是变电站电力系统电网拓扑分析中多源数据融合辨识的一种方法,该方法利用一体化监控系统中不同的网络节点遥测遥信数据的逻辑关系,采用三个级别逻辑判断法则对拓扑网络中的遥信状态进行辨识,剔
除不良遥测遥信,保证拓扑分析中的遥信数据准确无误,减低不良数据对变电站各种业务应用的干扰。能够有效利用变电站内高度冗余的多源量测信息,提高坏数据的识别率,增强系统的抗干扰能力。
下面结合附图和具体实施例对本发明作进一步详细的说明。
图1是本发明变电站高压系统接线图;
图2是本发明间隔拓扑图。
本发明是一种变电站拓扑网络遥信数据辨识实现方法,包括:
步骤1、根据变电站内部所包含的电压等级,把变电站划分为不同电压等级的网络,这些网络通常以变压器绕组为终点,以母线为中心形成星形网络;
步骤2、每个网络中把间隔看做一个整体,这些间隔整体作为挂接在母线上的拓扑节点,形成拓扑网络;
步骤3、对这种特殊的拓扑网络采用三个级别的逻辑分析,辨识不良遥信数据;
步骤4、这三个级别的逻辑分析是:间隔内部单设备的逻辑分析,间隔内部的设备之间的逻辑分析,间隔之间的逻辑分析,最终排除不良遥信。
具体实施时,本发明一种变电站拓扑网络遥信数据辨识实现方法,即一种变电站基于量测数据的电网遥信正确状态辨识的实现方法,包括下列步骤:
步骤1,首先对变电站内部的电网根据变压器的绕组电压等级,以绕组为出发点,进行分类;分为高压网络、中压网络、低压网络。这三种网络已母线为中心,以不同母线上连接的不同间隔的组成一个逻辑体,形成一个是型拓扑网络。根据母线不同的类型,形成不同的星形网络:3/2网络,双母线网络,单母线网络,双母线带旁路网络;如图1所示,是比
较有代表性的双母线网络,本文以它为说明对象。共有一个母联间隔、3个进线间隔、3个出线间隔,每个间隔中有断路器、串联刀闸、接地刀闸,这些设备的遥信状态和设备之间的连接关系构成间隔内部的拓扑连接关系。如图1所示的变电站的高压系统接线图,图2简化的间隔拓扑图所示。
步骤2,间隔内部的这些开关设备的遥信信号由于各种原因,采集到监控后台可能出现不正确的状态,剔除不良的遥信数据本方案采用三级判断法则:第一级,采用各设备内部遥信的相互关系和遥信与设备有关的量测量,比如流过设备的电压、电流、功率的关系,判断设备的遥信的正确与否;第二级,采用间隔内部设备之间的遥信状态存在的逻辑联系,对遥信进行判断剔除在第一级无法确定的遥信;第三级,挂接在同一母线的不同间隔中的设备有着许多统一的状态和一致的联系,利用这些关系进一步对第二级中尚未确定的遥信进行判断,确定遥信状态。
步骤3,第一级逻辑判断规则主要有三条,a、对于短路器和刀闸状态,它们有两个遥信,开遥信和闭遥信,开遥信为1闭遥信为0,状态为打开,开遥信为0闭遥信为1则状态是1,否则状态不确定;b、对断路器,还有总遥信和三相遥信,如果总遥信为开,三相遥信也为开,则断路器为开状态,如果都为闭,则状态为闭;如果总遥信为闭,三相遥信两个是闭,另一个是开,则开的是坏遥信,如果三相一个闭两个开,则不确定;如果总遥信是开,三相遥信两个是开的判断也类似;如果总遥信是开,三相遥信是闭,则总遥信是坏数据;对总遥信是闭,三相遥信是开也类似;c、对断路器,还有三相电流功率模拟量,对于断路器遥信,如果存在电流并且也有功率,不管遥信状态如何,都判断遥信是闭合;如果没有电流也没用功率,则遥信是打开;如果有电流没有功率,则模拟量可能错误,如果仅凭遥信无法判断遥信状态,则遥信处于不定状态。
步骤4,第二级间隔内部设备之间的逻辑规则;如图1变电站高压系统接线图中的双母线间隔图,间隔内部一般有一个串联刀闸、一个断路器、两个并列接近母线的刀闸,还可能有侧边隔离刀闸;当第一级不能确
定设备的状态时,可以利用设备之间的关系,对不确定的设备状态进行判断。a、对于可疑的并联刀闸,如果有一个刀闸可疑,可疑状态是闭,而另一个是闭,则可疑闭应是坏数据,一般并列开关不可能同时闭;如果不能确定,则看断路器,如果是闭,则可疑刀闸消去可疑;如果断路器是开,则可疑刀闸是坏数据;如果断路器不确定,则可疑刀闸仍不确定。b、如果断路器是可疑的,则看并列刀闸,如果没有闭合的,则断路器可疑状态;如果并列刀闸有闭合,则看串联刀闸,如果串联刀闸闭合,则断路器应闭合,否则处于可疑状态。c、如果串联刀闸可疑,则看断路器是否闭合,如果闭合切有电流功率,则刀闸闭合,否则仍然可疑。d、接地刀如果可疑,则看断路器如果闭合且有电流功率,则地刀打开,否则仍然可疑。
步骤5,第三级间隔之间的有逻辑联系,如果某个间隔仍然处于可以状态,可以进一步排除可疑:a、对于母联间隔,如果双母之间没有电压差,则母联及串联开关闭合,若存在电压差,则母联及串联开关这条支路处于断开状态;b、如果双侧串联开关闭合,则断路器也应该闭合;
基于这三条原则,建立起一系列的规则。每当开关状态发生变化,或者一些依赖的量测量发生变化,如果满足启动分析条件,分析引擎按照规则自动分析,甄别拓扑状态剔除错误的遥信状态,完成遥信辨识。
Claims (8)
- 一种变电站拓扑网络遥信数据辨识实现方法,其特征是:步骤1、根据变电站内部所包含的电压等级,把变电站划分为不同电压等级的网络,这些网络通常以变压器绕组为终点,以母线为中心形成星形网络;步骤2、每个网络中把间隔看做一个整体,这些间隔整体作为挂接在母线上的拓扑节点,形成拓扑网络;步骤3、对这种特殊的拓扑网络采用三个级别的逻辑分析,辨识不良遥信数据;步骤4、这三个级别的逻辑分析是:间隔内部单设备的逻辑分析,间隔内部的设备之间的逻辑分析,间隔之间的逻辑分析,最终排除不良遥信。
- 根据权利要求1所述的一种变电站拓扑网络遥信数据辨识实现方法,其特征是:所述的步骤1,首先对变电站内部的电网根据变压器的绕组电压等级,以绕组为出发点,进行分类;分为高压网络、中压网络、低压网络;这三种网络已母线为中心,以不同母线上连接的不同间隔的组成一个逻辑体,形成一个星型拓扑网络;根据母线不同的类型,形成不同的星形网络:3/2网络,双母线网络,单母线网络,双母线带旁路网络;共有一个母联间隔、3个进线间隔、3个出线间隔,每个间隔中有断路器、串联刀闸、接地刀闸,这些设备的遥信状态和设备之间的连接关系构成间隔内部的拓扑连接关系。
- 根据权利要求1所述的一种变电站拓扑网络遥信数据辨识实现方法,其特征是:所述的步骤2,间隔内部的这些开关设备的遥信信号由于各种原因,采集到监控后台可能出现不正确的状态,剔除不良的遥信数据本方案采用三级判断法则:第一级,采用各设备内部遥信的相互关系和遥信与设备有关的量测量的关系,判断设备的遥信的正确与否;第二级,采用间隔内部设备之间的遥信状态存在的逻辑联系,对遥信进行判断剔除在 第一级无法确定的遥信;第三级,挂接在同一母线的不同间隔中的设备有着许多统一的状态和一致的联系,利用这些关系进一步对第二级中尚未确定的遥信进行判断,确定遥信状态。
- 根据权利要求3所述的一种变电站拓扑网络遥信数据辨识实现方法,其特征是:所述的采用各设备内部遥信的相互关系和遥信与设备有关的量测量包括:流过设备的电压、电流、功率。
- 根据权利要求1所述的一种变电站拓扑网络遥信数据辨识实现方法,其特征是:所述的步骤3,第一级逻辑判断规则主要有三条,a、对于短路器和刀闸状态,它们有两个遥信,开遥信和闭遥信,开遥信为1闭遥信为0,状态为打开,开遥信为0闭遥信为1则状态是1,否则状态不确定;b、对断路器,还有总遥信和三相遥信,如果总遥信为开,三相遥信也为开,则断路器为开状态,如果都为闭,则状态为闭;如果总遥信为闭,三相遥信两个是闭,另一个是开,则开的是坏遥信,如果三相一个闭两个开,则不确定;如果总遥信是开,三相遥信两个是开的判断也类似;如果总遥信是开,三相遥信是闭,则总遥信是坏数据;对总遥信是闭,三相遥信是开也类似;c、对断路器,还有三相电流功率模拟量,对于断路器遥信,如果存在电流并且也有功率,不管遥信状态如何,都判断遥信是闭合;如果没有电流也没用功率,则遥信是打开;如果有电流没有功率,则模拟量可能错误,如果仅凭遥信无法判断遥信状态,则遥信处于不定状态。
- 根据权利要求1所述的一种变电站拓扑网络遥信数据辨识实现方法,其特征是:所述的步骤3,第二级间隔内部设备之间的逻辑规则:间隔内部一般有一个串联刀闸、一个断路器、两个并列接近母线的刀闸,还可有侧边隔离刀闸;当第一级不能确定设备的状态时,可利用设备之间的关系,对不确定的设备状态进行判断;a、对于可疑的并联刀闸,如果有一个刀闸可疑,可疑状态是闭,而另一个是闭,则可疑闭应是坏数据,一般并列开关不可能同时闭;如果不能确定,则看断路器,如果是闭,则 可疑刀闸消去可疑;如果断路器是开,则可疑刀闸是坏数据;如果断路器不确定,则可疑刀闸仍不确定;b、如果断路器是可疑的,则看并列刀闸,如果没有闭合的,则断路器可疑状态;如果并列刀闸有闭合,则看串联刀闸,如果串联刀闸闭合,则断路器应闭合,否则处于可疑状态;c、如果串联刀闸可疑,则看断路器是否闭合,如果闭合切有电流功率,则刀闸闭合,否则仍然可疑;d、接地刀如果可疑,则看断路器如果闭合且有电流功率,则地刀打开,否则仍然可疑。
- 根据权利要求1所述的一种变电站拓扑网络遥信数据辨识实现方法,其特征是:所述的步骤3,第三级间隔之间的有逻辑联系,如果某个间隔仍然处于可以状态,可以进一步排除可疑;a、对于母联间隔,如果双母之间没有电压差,则母联及串联开关闭合,若存在电压差,则母联及串联开关这条支路处于断开状态;b、如果双侧串联开关闭合,则断路器也应该闭合。
- 根据权利要求1所述的一种变电站拓扑网络遥信数据辨识实现方法,其特征是:所述的步骤4,基于这三条原则,建立起一系列的规则;每当开关状态发生变化,或者一些依赖的量测量发生变化,如果满足启动分析条件,分析引擎按照规则自动分析,甄别拓扑状态剔除错误的遥信状态,完成遥信辨识。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310594655.1 | 2013-11-25 | ||
CN201310594655.1A CN103595137B (zh) | 2013-11-25 | 2013-11-25 | 一种变电站拓扑网络遥信数据辨识实现方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015074326A1 true WO2015074326A1 (zh) | 2015-05-28 |
Family
ID=50085167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/001039 WO2015074326A1 (zh) | 2013-11-25 | 2014-11-21 | 一种变电站拓扑网络遥信数据辨识实现方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103595137B (zh) |
WO (1) | WO2015074326A1 (zh) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109426677A (zh) * | 2017-08-23 | 2019-03-05 | 许昌许继软件技术有限公司 | 一种用于继电保护的电气拓扑识别方法 |
CN109494715A (zh) * | 2018-11-13 | 2019-03-19 | 国电南瑞南京控制系统有限公司 | 一种低压配电台区电气网络拓扑动态辨识系统及方法 |
CN109815272A (zh) * | 2019-01-24 | 2019-05-28 | 中国电力科学研究院有限公司 | 一种变电站数据统计方法和系统 |
CN110414782A (zh) * | 2019-06-18 | 2019-11-05 | 国网甘肃省电力公司电力科学研究院 | 一种基于输电网任意分割区域的异常功率自动修正方法 |
CN110492606A (zh) * | 2018-05-15 | 2019-11-22 | 国网天津市电力公司 | 一种厂站主接线图自动辨识方法 |
CN110879913A (zh) * | 2019-07-04 | 2020-03-13 | 中国电力科学研究院有限公司 | 一种用于电网离线和在线数据的异构网架拓扑映射方法 |
CN111624426A (zh) * | 2020-06-02 | 2020-09-04 | 西安热工研究院有限公司 | 一种双母线系统接线方式母差保护极性的校验系统及方法 |
CN111864551A (zh) * | 2020-07-06 | 2020-10-30 | 国网宁夏电力有限公司检修公司 | 一种变电站的主接线结构 |
CN111898656A (zh) * | 2020-07-14 | 2020-11-06 | 许继集团有限公司 | 一种量测平衡检测的异常数据辨识方法 |
CN111965532A (zh) * | 2020-08-17 | 2020-11-20 | 国网安徽省电力有限公司黄山供电公司 | 一种基于网络拓扑的开关真实状态判定方法 |
CN112464420A (zh) * | 2020-11-19 | 2021-03-09 | 北京中恒博瑞数字电力科技有限公司 | 一种根据典型配置自动生成站内图方法及装置 |
CN112738456A (zh) * | 2020-11-27 | 2021-04-30 | 国网河北省电力有限公司雄安新区供电公司 | 基于多站融合的一体化智能监控系统 |
CN113422429A (zh) * | 2021-01-14 | 2021-09-21 | 青岛鼎信通讯股份有限公司 | 一种应用于台区智能融合终端的遥信防误增强算法 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103595137B (zh) * | 2013-11-25 | 2016-05-11 | 国家电网公司 | 一种变电站拓扑网络遥信数据辨识实现方法 |
CN104821657B (zh) * | 2015-03-25 | 2017-08-25 | 广东电网有限责任公司电力科学研究院 | 基于ssd模型的数据辨识实现方法 |
CN104850933A (zh) * | 2015-04-10 | 2015-08-19 | 国电南瑞科技股份有限公司 | 基于可信特征值的调度自动化数据稽查系统及其稽查方法 |
CN104820884A (zh) * | 2015-04-10 | 2015-08-05 | 国电南瑞科技股份有限公司 | 一种结合电力系统特征的电网调度实时数据稽查方法 |
CN105023198A (zh) * | 2015-07-16 | 2015-11-04 | 国电南瑞科技股份有限公司 | 一种基于网络规则约束的发电厂数据异常辨识方法 |
CN105391167A (zh) * | 2015-11-16 | 2016-03-09 | 南京南瑞继保电气有限公司 | 一种基于测点评分的遥测坏数据识别方法 |
CN107785893A (zh) * | 2017-11-21 | 2018-03-09 | 国网四川省电力公司眉山供电公司 | 一种220kV及以下电网的遥信错误分析方法 |
CN108376966B (zh) * | 2018-03-09 | 2022-08-19 | 中国电力科学研究院有限公司 | 智能变电站防误闭锁逻辑间隔关联关系分析方法及系统 |
CN108429344A (zh) * | 2018-03-27 | 2018-08-21 | 国网山东省电力公司潍坊供电公司 | 一种变电站设备运行方式准确性自校核方法 |
US20220392700A1 (en) * | 2021-06-04 | 2022-12-08 | The Florida State University Research Foundation, Inc. | Systems and methods for leadless power coupling for cryogenic environments |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101917064B (zh) * | 2010-08-05 | 2012-05-23 | 河南省电力公司许昌供电公司 | 基于goose方式的数字化变电站变压器后备保护处理方法 |
CN103269279A (zh) * | 2013-04-22 | 2013-08-28 | 国家电网公司 | 一种主子站联合拓扑辨识方法 |
CN103595137A (zh) * | 2013-11-25 | 2014-02-19 | 国家电网公司 | 一种变电站拓扑网络遥信数据辨识实现方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013172524A (ja) * | 2012-02-20 | 2013-09-02 | Toshiba Corp | ネットワーク監視装置およびネットワーク監視方法 |
-
2013
- 2013-11-25 CN CN201310594655.1A patent/CN103595137B/zh active Active
-
2014
- 2014-11-21 WO PCT/CN2014/001039 patent/WO2015074326A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101917064B (zh) * | 2010-08-05 | 2012-05-23 | 河南省电力公司许昌供电公司 | 基于goose方式的数字化变电站变压器后备保护处理方法 |
CN103269279A (zh) * | 2013-04-22 | 2013-08-28 | 国家电网公司 | 一种主子站联合拓扑辨识方法 |
CN103595137A (zh) * | 2013-11-25 | 2014-02-19 | 国家电网公司 | 一种变电站拓扑网络遥信数据辨识实现方法 |
Non-Patent Citations (1)
Title |
---|
HAN, GUOZHENG.: "Power network topology analysis based on bay", CHINESE MASTER'S THESES FULL-TEXT DATABASE, EIGINEERING SCIENCE AND TECHNOLOGY II, vol. 2007, no. 5, 15 May 2007 (2007-05-15) * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109426677A (zh) * | 2017-08-23 | 2019-03-05 | 许昌许继软件技术有限公司 | 一种用于继电保护的电气拓扑识别方法 |
CN110492606B (zh) * | 2018-05-15 | 2023-03-28 | 国网天津市电力公司 | 一种厂站主接线图自动辨识方法 |
CN110492606A (zh) * | 2018-05-15 | 2019-11-22 | 国网天津市电力公司 | 一种厂站主接线图自动辨识方法 |
CN109494715A (zh) * | 2018-11-13 | 2019-03-19 | 国电南瑞南京控制系统有限公司 | 一种低压配电台区电气网络拓扑动态辨识系统及方法 |
CN109815272A (zh) * | 2019-01-24 | 2019-05-28 | 中国电力科学研究院有限公司 | 一种变电站数据统计方法和系统 |
CN110414782A (zh) * | 2019-06-18 | 2019-11-05 | 国网甘肃省电力公司电力科学研究院 | 一种基于输电网任意分割区域的异常功率自动修正方法 |
CN110879913A (zh) * | 2019-07-04 | 2020-03-13 | 中国电力科学研究院有限公司 | 一种用于电网离线和在线数据的异构网架拓扑映射方法 |
CN111624426A (zh) * | 2020-06-02 | 2020-09-04 | 西安热工研究院有限公司 | 一种双母线系统接线方式母差保护极性的校验系统及方法 |
CN111864551A (zh) * | 2020-07-06 | 2020-10-30 | 国网宁夏电力有限公司检修公司 | 一种变电站的主接线结构 |
CN111864551B (zh) * | 2020-07-06 | 2024-05-17 | 国网宁夏电力有限公司检修公司 | 一种变电站的主接线结构 |
CN111898656A (zh) * | 2020-07-14 | 2020-11-06 | 许继集团有限公司 | 一种量测平衡检测的异常数据辨识方法 |
CN111898656B (zh) * | 2020-07-14 | 2023-10-24 | 许继集团有限公司 | 一种量测平衡检测的异常数据辨识方法 |
CN111965532B (zh) * | 2020-08-17 | 2022-07-01 | 国网安徽省电力有限公司黄山供电公司 | 一种基于网络拓扑的开关真实状态判定方法 |
CN111965532A (zh) * | 2020-08-17 | 2020-11-20 | 国网安徽省电力有限公司黄山供电公司 | 一种基于网络拓扑的开关真实状态判定方法 |
CN112464420A (zh) * | 2020-11-19 | 2021-03-09 | 北京中恒博瑞数字电力科技有限公司 | 一种根据典型配置自动生成站内图方法及装置 |
CN112464420B (zh) * | 2020-11-19 | 2023-12-01 | 北京中恒博瑞数字电力科技有限公司 | 一种根据典型配置自动生成站内图方法及装置 |
CN112738456A (zh) * | 2020-11-27 | 2021-04-30 | 国网河北省电力有限公司雄安新区供电公司 | 基于多站融合的一体化智能监控系统 |
CN113422429A (zh) * | 2021-01-14 | 2021-09-21 | 青岛鼎信通讯股份有限公司 | 一种应用于台区智能融合终端的遥信防误增强算法 |
Also Published As
Publication number | Publication date |
---|---|
CN103595137A (zh) | 2014-02-19 |
CN103595137B (zh) | 2016-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015074326A1 (zh) | 一种变电站拓扑网络遥信数据辨识实现方法 | |
Liu et al. | A fast protection of multi-terminal HVDC system based on transient signal detection | |
CN103022993B (zh) | 基于goose的自适应级联方向闭锁继电保护方法 | |
CN101917064B (zh) | 基于goose方式的数字化变电站变压器后备保护处理方法 | |
CN105140894A (zh) | 一种基于相位差原理的配电网差动保护方法 | |
CN103995172B (zh) | 变电站gis母线负荷电流在线监测方法 | |
CN105548801B (zh) | 适用于配电网闭环运行的故障定位方法 | |
CN103872667A (zh) | 一种防合并单元异常大数的线路电流差动保护方法 | |
CN105119255A (zh) | 一种基于故障态的光伏微电网故障隔离方法 | |
CN106463950B (zh) | 直流电网保护方法及其系统 | |
CN111969552B (zh) | 一种适用于直流断路器重合闸方法 | |
CN103971292B (zh) | 基于实时站内图映射的故障准确辨识方法 | |
CN104215879B (zh) | 一种配电网短路故障定位方法及系统 | |
Wang et al. | Multi‐vendor interoperability in HVDC grid protection: State‐of‐the‐art and challenges ahead | |
CN104319743B (zh) | 基于站域信息的主变高压侧快速后备保护的方法与装置 | |
CN105223467B (zh) | 基于分维计算和mallat分解的配电网故障选线方法 | |
CN106329492A (zh) | 一种基于系统拓扑的简易母线保护方法 | |
CN105301442B (zh) | 基于最差原则的故障指示器单相接地故障判定实用化方法 | |
CN101958579A (zh) | 数字化变电站集中式保护装置站内信息缺失的处理方法 | |
CN110011414A (zh) | 基于同源数据比对的智能变电站采样回路故障判定方法 | |
CN104035003A (zh) | 单母线分段pt并列小电流接地选线逻辑判定方法 | |
CN106159911B (zh) | 基于变电站现有保护逻辑量的站域保护系统及方法 | |
CN107800118A (zh) | 开闭所综合智能终端的光纤自主协商式保护方法 | |
CN106324427A (zh) | 一种多端直流输电线路故障识别方法 | |
Visakh et al. | Protection of HVDC grids against temporary and permanent faults |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14863284 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14863284 Country of ref document: EP Kind code of ref document: A1 |