WO2015074266A1 - 一种基于自由空间传输的多播交换光开关 - Google Patents

一种基于自由空间传输的多播交换光开关 Download PDF

Info

Publication number
WO2015074266A1
WO2015074266A1 PCT/CN2013/087756 CN2013087756W WO2015074266A1 WO 2015074266 A1 WO2015074266 A1 WO 2015074266A1 CN 2013087756 W CN2013087756 W CN 2013087756W WO 2015074266 A1 WO2015074266 A1 WO 2015074266A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
optical switch
array
lens
space transmission
Prior art date
Application number
PCT/CN2013/087756
Other languages
English (en)
French (fr)
Inventor
胡强高
孙莉萍
张博
胡蕾蕾
杨柳
谢卉
杨睿
袁志林
张玉安
Original Assignee
武汉光迅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉光迅科技股份有限公司 filed Critical 武汉光迅科技股份有限公司
Priority to US15/037,427 priority Critical patent/US9720180B2/en
Publication of WO2015074266A1 publication Critical patent/WO2015074266A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35543D constellations, i.e. with switching elements and switched beams located in a volume
    • G02B6/3556NxM switch, i.e. regular arrays of switches elements of matrix type constellation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • G02B6/3518Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror the reflective optical element being an intrinsic part of a MEMS device, i.e. fabricated together with the MEMS device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/35481xN switch, i.e. one input and a selectable single output of N possible outputs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3592Means for removing polarization dependence of the switching means, i.e. polarization insensitive switching

Definitions

  • the present invention relates to an optical switch, and more particularly to an optical switch having a multicast switching function, which belongs to the field of optical fiber communication. Background technique
  • a multicast switched optical switch is a wavelength-independent optical device that splits an input signal optical signal into multiple output optical signals for transmission to different ports.
  • ROADM reconfigurable optical add-drop multiplexer One of the core devices in the system, the multicast switching optical switch and the wavelength selective optical switch can be used together to meet the non-color, non-directional, non-competitive functional requirements of the R0ADM system. Increasing the flexibility of network construction and reducing costs are very important.
  • a multi-switch optical switch using a PLC Planar Lightwave Circuit splitter and an optical switch splicing method the port between the splitter and the optical switch needs to use a large number of optical fibers to connect the optical path, and as the number of ports increases, Assembly difficulty and volume will become larger; using PLC integrated splitter and switch integrated mode multicast switching optical switch, technical difficulty, high requirements for equipment, and due to the PLC switch itself control principle, will cause a larger Power consumption; two free space schemes are mentioned in US Patent No. 2013/0202297.
  • the first scheme is a free-space type multicast switching optical switch using a PLC splitter plus a mirror or an array, which requires the use of a large number of lens pairs.
  • the spot of the PLC splitter is transformed, which is difficult to debug and costly.
  • the second solution is to use an array of mirrors with mirrors with different reflectivity to realize the function of the splitter, because the reflectivity of each mirror is not The same, resulting in assembly complexity and cost is higher than the first one.
  • the problem of interference is not explicitly solved in the optical path of the patent. When multiple ports are input, there is a phenomenon that the input port is interfered by reflected light. Summary of the invention
  • the object of the present invention is to overcome the technical deficiencies of the prior art and to provide a compact optical switch having a multicast switching function.
  • the multicast switching optical switch device of the present invention comprises M input ports, a set of optical splitting devices for generating MxN beams, a set of optical path compensation devices, a set of spot changing devices, and a set of spot reflecting devices; N output ports.
  • the input and output ports are typically fiber array collimators.
  • the spectroscopic device is composed of a 50:50 spectroscopic device and a plurality of mirrors. By reasonably selecting the size and position of the device, any one of the input signal lights can be decomposed into N beam sub-signal beams to obtain a MxN beam matrix distribution. Signal beam.
  • the spectroscopic device can be designed as an integrated structure while splitting the M beam input signal light.
  • the speckle transforming device is composed of a lens, and the parallel beams of the MxN beam matrix are converged into parallel pupils, each of which is focused by a bundle of sub-signal beams of all M-beam input signal lights.
  • the reflector is an array of lxN MEMES mirrors, each of which is independently and tunable, by which the sub-signal beam of the input signal beam is selectively output to the N output ports.
  • a multicast switching optical switch based on free space transmission comprising a ⁇ input collimator array arranged in sequence, a spectroscopic device, an optical path compensation device, a spot change device, a ⁇ output collimator array, a mirror array, and an lxN output
  • the straight array corresponds to the mirror array
  • the optical path compensation device compensates for an optical path difference between the MXN sub-signal beams generated by the spectroscopic device
  • the speckle conversion device focuses the MxN sub-signal beams into a plurality of The spot is incident on the mirror array.
  • the spectroscopic device has a 50:50 polarization-independent spectroscopic device, and the reflecting surface is a mirror disposed on the two spectroscopic devices.
  • the spectroscopic device uses a beam splitting film or a beam splitter.
  • the spectroscopic device is a profiled prism, which includes a spectroscopic surface functioning as a spectroscopic surface and an edge surface acting as a reflecting surface.
  • the spot conversion device includes a first lens, a second lens, and a third lens which are sequentially arranged, wherein the first lens and the third lens are X-direction cylindrical lenses, and the second lens is a y-direction cylindrical lens.
  • the optical path compensation device is composed of a set of glass blocks, and each glass block is correspondingly disposed in each of the sub-signal beam optical paths.
  • the optical path difference of the signal beam, ⁇ is the refractive index of the glass block.
  • the mirror array is an lxN two-dimensional MEMES mirror array.
  • An anti-interference device is disposed in front of the mirror array, and the anti-interference device is composed of a focus back-shifting device, a fifth mirror, and a shielding plate; the fifth mirror is disposed at a position of the focus back-shifting device at a rear end of the light gathering point Reflected onto the focal plane when the optical path is not set with the focus back-shifting device, and the mirror array is also placed at the convergence point, and the shielding plate is disposed between the spot conversion device and the mirror array.
  • the shielding plate is made of a reflective or opaque material.
  • the focus back shifting device is a glass plate.
  • the device of the invention has the advantages of compact structure, simple assembly and low cost, and truly realizes the requirements of no color, non-directionality and non-competitiveness.
  • FIG. 1 is a schematic overall structural view of a multicast switching optical switch device according to a first embodiment of the present invention
  • FIG. 2a is a top structural view of a multicast switching optical switch according to a first embodiment of the present invention
  • 2b is a side view showing the structure of a multicast switch optical switch according to a first embodiment of the present invention
  • FIG. 3 is a schematic diagram of a second embodiment of the device of the present invention using a profiled prism;
  • FIG. 4 is a schematic diagram of interference between channels of the device according to the present invention.
  • Figure 5 is a side structural view of a rear reflection device with an anti-interference structure added to the device of the present invention
  • 70 optical path compensation device
  • 30 spot conversion device
  • 21 a light splitting device
  • 22 a first mirror
  • 201, 202, 203, 205 light signal beams passing through the beam splitting device 21;
  • 501-516 output output collimator of the collimator array 50; 701-715: glass block;
  • 602, 603, 605 a sub-signal beam passing through the shaped beam splitting prism 60;
  • FIG. 1 is an overall structural diagram of a multicast switching optical switch device according to the present invention.
  • the overall structure of the present invention is composed of an lxM input collimator array 10, a spectroscopic device 20, an optical path compensation device 70, and a spot conversion device 30.
  • Mirror array 40 and ⁇ output collimator array 50 are comprised.
  • the ⁇ output collimator array 50 corresponds to the mirror array 40 and is located on the same side of the ⁇ input collimator array 10.
  • the spectroscopic device 20 is provided with a beam splitting surface and a reflecting surface for inputting the chirp into the input of the collimator array 10.
  • An example of the spectroscopic device 20 of the present invention is composed of a beam splitting device 21, a first mirror 22, a second mirror 23, a third mirror 24, and a fourth mirror 25, and the first mirror 22 and the second mirror 23 are formed.
  • the third mirror 24 is located on the other side of the first mirror 22, and the fourth mirror 25 is located on the other side of the second mirror 23.
  • the speckle conversion device 30 is composed of a first lens 31, a second lens 32, and a third lens 33, and the first lens 31, the second lens 32, and the third lens 33 are sequentially arranged.
  • the signal light input from any of the collimators input to the collimator array 10 can be output from any one or more unoccupied collimators of the output collimator array 50, or no output, after passing through the set of devices.
  • Each collimator of the output collimating array 50 can receive input optical signals input to any of the incident ports of the collimator array 10, and can only simultaneously Select to receive an input optical signal from an incident port.
  • the signal light input from the input collimator 101 can be output from any one or more of the output collimators 501 to 516 that are not occupied by the other input collimators 102 to 108, or has no output.
  • Each of the output collimators 501-516 can only selectively output input signal light from one of the input collimators 101-108.
  • the ⁇ input collimator array 10 has M input ports, where M is greater than 1; IxN outputs N output ports of the collimator array, where N is greater than 1; and the function of the spectroscopic device 20 is to input M input ports
  • M is greater than 1
  • the function of the spectroscopic device 20 is to input M input ports
  • Each of the input signal lights is decomposed into N sub-signal beams to obtain MxN sub-signal beams;
  • the optical path compensation device 70 is used to compensate the optical path difference between the MXN sub-signal beams generated by the spectroscopic device; the spot conversion device 30 will be split.
  • the MxN sub-signal beams obtained by the device are focused into IxN spots, so that each of the N spots is focused by a bundle of sub-signal beams of all M-beam input signal lights and is struck on the reflecting device;
  • the mirror array 40 by adjusting the reflecting means, can make each of the N output ports receive the sub-signal beam generated by any one of the M input ports, or no beam.
  • 2a and 2b are respectively a top view and a side view of the multicast switch optical switch of the present invention.
  • the entire system is defined with the light incident direction as the Z axis, and the input collimator array 10 is arranged in the Y axis, and the output collimator array is arranged.
  • the 50 alignment direction is the X axis.
  • the spectroscopic device 20 will be described with reference to the drawings.
  • the signal light 201 incident on the spectroscopic device 21 of the spectroscopic device 20 from the uppermost input collimator 101 is taken as an example.
  • the intensity of the input signal light 201 is incident on a 50:50 polarization-independent spectroscopic device 21, where the spectroscopic device 21 can be a beam splitting film or a beam splitter.
  • the input signal light 201 is divided into two signal lights 202 having a light intensity of 1/2, and the signal light of the two beams 1/2 is reflected by the first mirror 22 and the second mirror 23, respectively, and then subjected to 50:50 polarization independent.
  • the spectroscopic device 21 is divided into four pieces of signal light 203 having a light intensity of 1/4.
  • the second mirror 23, the third mirror 24, the fourth mirror 25 or more mirrors are used to make the signal light
  • N 2 n
  • l/2 n beam intensity of l/2 n
  • Those skilled in the art will appreciate that by increasing or decreasing the number of mirrors, the number of times the signal light passes through the beam splitting device 21 can be controlled, and ultimately the number and intensity of the split beam beams can be controlled by adjusting the mirrors within the beam splitting device 20. Position, you can control the distance and position between the outgoing signal lights. In addition, it can be calculated that some of the split sub-signal lights share a mirror, thereby reducing the number of mirrors, simplifying the structure and cost.
  • the optical path compensating means 70 is placed not far from the optical splitting means 20.
  • the optical path compensation device 70 is composed of a set of glass blocks 701 to 715, and the length of each glass block is determined by the optical path difference of each sub-signal beam in the X-axis direction after beam splitting. Assuming that the optical path difference between the i-th sub-beam and the longest sub-signal beam is ⁇ ⁇ ⁇ , and the refractive index of the glass block is , the glass block to be placed on the optical path of the i-th sub-signal beam
  • the M beam incident signal light input from the input collimator array 10 can pass through the beam splitting means 20 and the optical path compensating means 70.
  • the M beam incident signal light will produce a two-dimensionally distributed MxN beam sub-signal beam, the beams being parallel to each other, the optical paths being equal, and the alignment directions being parallel to the X-axis and the y-axis, respectively.
  • the spot conversion device 30 of the present invention includes three lenses, that is, the first lens 31, the second lens 32, and the third lens 33 are sequentially arranged.
  • the first lens 31, the second lens 32, and the third lens 33 may be cylindrical lenses.
  • the first lens 31 and the third lens 33 are x-direction cylindrical lenses, which have a focusing effect only on the rays arranged in the X direction
  • the second lens 32 is a y-direction cylindrical lens, which is arranged only in the y direction.
  • the light has a focusing effect.
  • the obtained MxN beam sub-signal beam by the spectroscopic device 20 passes through the speckle conversion device 30, and is focused into two spots arranged in the X direction in the XZ plane, and are respectively positioned.
  • mirror array 40 can be a MEMS mirror.
  • Each spot is focused by all M sub-signal beams in the same YZ plane.
  • Each of the mirrors of mirror array 40 is rotatable about an X-axis and a Y-axis. By rotating about the X axis, one of the M sub-signal beams can be reflected back to the spot conversion device 30 and exited from below the beam splitting device 20 and the optical path compensation device 70, and received by the output collimator array 50.
  • each of the N output ports can receive a sub-signal beam generated by any one of the M input ports, or no beam.
  • the spots reflected by the final mirrors 401-416 can again be received by the output collimators 516-501 after passing through the spot conversion system.
  • an example of the beam splitting device 20 of the present invention utilizes a four-sided mirror, that is, a first mirror 22, a second mirror 23, a third mirror 24, and a fourth mirror 25, so that the signal light is
  • a four-sided mirror that is, a first mirror 22, a second mirror 23, a third mirror 24, and a fourth mirror 25, so that the signal light is
  • 16 beams of light 205 having a light intensity of 1/16 can be generated.
  • eight fiber collimators are used in the y-direction to form the input collimator array 10. Therefore, the eight input signal lights produce an 8x16 matrix spot after passing through the beam splitting device 20.
  • an example of the spectroscopic device 20 of the present invention uses a spectroscopic film as the spectroscopic device 21, since the thickness of the spectroscopic film itself is on the order of micrometers, where the thickness of the spectroscopic film can be 2 micrometers, the signal light is hardly passed through the spectroscopic film. Will produce displacement. Thus, the use of a four-sided mirror can make the spacing between the 16 signal lights equal. Therefore, the mirrors of the rear mirror array 40 can be equally spaced. If a beam splitter is used as the beam splitting device 21, the thickness of the beam splitter itself will be the bit generated by the signal light.
  • FIG. 3 is another implementation of the spectroscopic device 20.
  • the spectroscopic device 20 is a profiled prism 61.
  • the spectroscopic prism 60 is used for splitting.
  • the profiled prism 60 includes a spectroscopic surface 61 that acts as a spectroscopic surface and an edge that acts on the reflective surface. Faces 62, 63.
  • the incident signal 601 having an intensity of 1 is incident on the spectroscopic surface 61 of the profiled prism 60, and is divided into two sub-signal beams 602 having a light intensity of 1/2, and each of the 1/2 signal lights is respectively in the profiled prism.
  • the edge faces 62, 63 are totally reflected, and again pass through the beam splitting surface 61, and are divided into four sub-signal beams 603 having a light intensity of 1/4.
  • the contour shape of the edge of the profiled prism is controlled, and multiple total reflections are performed on the edge surface, so that the signal light can be generated by the n (n ⁇ 2) sub-beam splitting beam in the above manner, and 2 n beam intensity can be generated. It is a signal light of l/2 n .
  • the structure as shown is capable of splitting each beam of input signal light into 16 beam sub-signal beams 605 of identical power and equally spaced.
  • the profiled prism can be cut by a conventional beam splitting prism, and the prism edge is used to produce the mirror in the above scheme.
  • the advantage of this is that there is no need to adjust each optics separately, and the total reflection is also higher than the mirror.
  • the prism edges are similar to the mirrors in the first type of beam splitting device, the shape of the profiled prisms can be adjusted according to the number and position of the desired splits.
  • the size of the lens will be made as small as possible, and the output collimator array 50 and the input collimator array 10 will be as close as possible. This creates a problem.
  • the reflected light of some of the other channels will be Reflected back to certain ports of the input collimator array 10, causing interference to these ports.
  • the present invention Another way to improve is provided. The improvement is shown in Figure 5. A set of anti-jamming devices is added in front of the mirror array 40.
  • the anti-jamming device is composed of a focus backward shifting device 35, a fifth reflecting mirror 36, and a shielding plate 37.
  • the focus back shifting device 35 can be a glass plate.
  • the position shown by the shifted focal plane 91 is then reflected by the fifth mirror 36 to the original focal plane 90 when the focus shifting device 35 is not placed, and the mirror array 40 is also placed.
  • a shielding plate 37 is placed between the spot changing device 30 and the mirror array 40.
  • the shielding plate 37 can be any flat plate of reflective or opaque material, which may be a plastic plate. This prevents unwanted signal light from being reflected back into the spot conversion device, thereby preventing unselected input signal light from being reflected back to the incident port.
  • the refractive prism 34 in front of the second lens 32 is located between the output collimator array 50 and the second lens 32, where the light-shielding prism 34 is placed in order to cause the reflected selected signal light to pass through the second lens 32 and the refractive prism 34. Parallel to the Z axis, the coupling of the output signal to the output collimator array 50 is facilitated.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Optical Communication System (AREA)

Abstract

一种基于自由空间传输的多播交换光开关,包括依次排列的1XM输入准直器阵列(10)、分光装置(20)、光程补偿装置(70)、光斑变换装置(30)、1XN输出准直器阵列(50)以及反射镜阵列(40)。1XN输出准直器阵列(50)同反射镜阵列(40)相对应。分光装置(20)设置有使1XM输入准直器阵列(10)的输入信号光经过n(n≥2)次分光分束而产生N=2n束子信号光的分光面和反射面。光程补偿装置(7)补偿分光装置(20)产生的MXN个子信号光束间的光程差。光斑变换装置(30)将MXN个子信号光束聚焦成1XN个光斑射于反射镜阵列(40)上。该光开关结构紧凑,组装简单,成本低廉,实现了无颜色性、无方向性和无竞争性的要求。

Description

一种基于自由空间传输的多播交换光开关 技术领域
本发明涉及一种光开关, 尤其涉及一种具有多播交换功能的光开关, 本发 明属于光纤通信领域。 背景技术
多播交换光开关是一种波长无关的光器件, 它能够将一路输入信号光信号 分成多路输出光信号传输至不同的端口。 作为下一代可重构光分插复用
(ROADM reconfigurable optical add- drop multiplexer) 系统中的核心器件之 一, 多播交换光开关和波长选择光开关配合使用, 可以满足 R0ADM系统无颜 色性、 无方向性、 无竞争性的功能要求, 对于增加网络建设的灵活性、 降低成 本都具有非常重要的意义。
多播交换光开关目前有三种实现方式, 分别是拼接方式、 集成方式和自由 空间方式。使用平面光波线路 (PLC Planar Lightwave Circuit)分路器和光开关拼 接方式的多播交换光开关, 分路器和光开关之间的端口需要使用大量的光纤对 光路进行连接, 随着端口数的增加, 装配难度和体积都会变大; 使用 PLC集成 分路器和开关的集成方式多播交换光开关, 技术难度较大, 对设备的要求较高, 又由于 PLC 开关自身控制原理, 会造成较大的功耗; 在美国专利 US2013/0202297中提及了两种自由空间的方案,方案一是使用 PLC分路器加反 射镜或者阵列制作的自由空间型多播交换光开关, 需要利用大量的透镜对 PLC 分路器的光斑进行变换, 调试难度和成本很高; 方案二是使用具有不同反射率 的反射镜组成的镜的阵列来实现分路器的功能, 由于每个反射镜的反射率都不 一样, 导致装配复杂度和成本比方案一更高。 并且在该专利的光路中并未明确 解决干扰的问题, 当多个端口输入时, 会存在输入端口被反射光干扰的现象。 发明内容
本发明的目的克服现有技术存在的技术缺陷, 提供一种结构紧凑的具有多 播交换功能的光开关。
本发明实现原理具体如下:本发明多播交换光开关装置包括 M个输入端口、 一套产生 MxN光束的分光装置、 一套光程补偿装置、一套光斑变换装置、一套 光斑的反射装置以及 N个输出端口。 输入端口与输出端口通常为光纤阵列准直 器。 分光装置由 50: 50的分光器件和多个反射镜组成, 通过合理的选择器件的 尺寸和摆放的位置, 可以将任意一束输入信号光分解成 N束子信号光束, 得到 MxN束矩阵式分布的信号光束。分光装置可以设计成一体化结构, 同时对 M束 输入信号光进行分光。光斑变换装置由透镜组成,将 MxN束矩阵式分布的平行 光束汇聚成 ΙχΝ的平行光斑,每一个光斑均由所有 M束输入信号光的一束子信 号光束聚焦而成。 反射装置为 lxN MEMES反射镜阵列,各反射镜都是独立且可 调节的, 通过它将输入信号光束的子信号光束选择输出至 N个输出端口。
本发明的技术方案是:
一种基于自由空间传输的多播交换光开关,包括依次排列的 ΙχΜ输入准直 器阵列、 分光装置、 光程补偿装置、 光斑变换装置、 ΙχΝ输出准直器阵列、 反 射镜阵列, lxN输出准直器阵列同反射镜阵列相对应, 所述分光装置设置有使 ΙχΜ输入准直器阵列的输入信号光经过 n ( n 2)次分光分束而产生 N=2n束子 信号光的分光面和反射面; 所述光程补偿装置补偿分光装置产生的 MXN个子 信号光束间的光程差; 所述光斑变换装置将 MxN个子信号光束聚焦成 ΙχΝ个 光斑射于反射镜阵列上。
所述分光装置分光面为 50:50偏振无关的分光器件, 所述反射面为设置于 分光器件两则的反射镜。
所述分光器件采用分光膜或者分光片。
所述分光装置是异形分光棱镜, 其包括起分光面作用的分光面和起反射面 作用的边缘面。
所述光斑变换装置包括依次排列的第一透镜、 第二透镜、 第三透镜, 所述 第一透镜、 第三透镜为 X方向柱透镜, 第二透镜为 y方向柱透镜。
所述光程补偿装置由一组玻璃块组成, 每个玻璃块对应设置于各子信号光 束光路中, 玻璃块的长度 4 = , Δ Ι^为第 i束子信号光束与光程最长的子 信号光束的光程差, ηι为玻璃块的折射率。
反射镜阵列是 lxN两维 MEMES反射镜阵列。
所述反射镜阵列前面设置有防干扰装置, 防干扰装置由焦点后移器件、 第 五反射镜和遮挡板组成; 所述第五反射镜设置于焦点后移器件后端将光线汇聚 点的位置反射到光路未设置焦点后移器件时的焦平面上, 且将反射镜阵列也置 于该汇聚点上, 遮挡板设置于光斑变换装置和反射镜阵列之间。
所述遮挡板采用反光或者不透光材质的平板。
所述焦点后移器件是玻璃平板。
本发明具有如下优点:
本发明装置结构紧凑, 组装简单, 成本低廉, 真正实现了无颜色性、 无方 向性和无竞争性的要求。 附图说明
图 1为本发明第一种实施例多播交换光开关装置的整体结构图; 图 2a为本发明第一种实施例多播交换光开关俯视结构图;
图 2b为本发明第一种实施例多播交换光开关侧视结构图;
图 3为本发明装置第二种实施例利用异形分光棱镜实现分光结构图: 图 4为本发明装置通道间干扰示意图;
图 5为本发明装置增加防干扰结构的后反射装置的侧面结构图; 其中:
10: 输入准直器阵列; 20: 分光装置;
70: 光程补偿装置; 30: 光斑变换装置;
40: 反射镜阵列; 50: 输出准直器阵列
21: 分光器件; 22: 第一反射镜;
23: 第二反射镜; 24: 第三反射镜;
25: 第四反射镜; 31: 第一透镜;
32: 第二透镜; 33: 第三透镜;
34: 折光棱镜; 35: 焦点后移器件;
36: 第五反射镜; 37: 遮挡板;
101-108: 输入准直器阵列 10的输入准直器;
201、 202、 203、 205: 经过分光器件 21的光信号光束;
60: 异形分光棱镜;
62、 63: 异形分光棱镜 60的边缘面;
401-416: 组成反射镜阵列 40的反射镜;
501-516: 输出准直器阵列 50的输出准直器; 701-715: 玻璃块;
61: 异形分光棱镜 60的分光面;
601: 入射信号;
602、 603、 605: 经过异形分光棱镜 60的子信号光束;
90: 焦平面;
91: 后移的焦平面; 具体实施方式
下面结合实施例和附图对本发明做出详细说明。
图 1为本发明多播交换光开关装置的整体结构图,如图所示, 本发明专利整 体结构由 lxM输入准直器阵列 10、 分光装置 20、 光程补偿装置 70、 光斑变换 装置 30、 反射镜阵列 40和 ΙχΝ输出准直器阵列 50组成。 ΙχΝ输出准直器阵列 50同反射镜阵列 40相对应, 且位于 ΙχΜ输入准直器阵列 10同侧, 所述分光 装置 20设置有分光面和反射面, 使 ΙχΜ输入准直器阵列 10的输入信号光经过 n (n^2)次分光面分束而产生 N=2n束子信号光。 本发明这里分光装置 20的一 个实例由分光器件 21、 第一反射镜 22、 第二反射镜 23、 第三反射镜 24、 第四 反射镜 25构成, 第一反射镜 22、 第二反射镜 23分别位于分光器件 21的两侧, 第三反射镜 24位于第一反射镜 22另一侧, 第四反射镜 25位于第二反射镜 23 另一侧。 光斑变换装置 30由第一透镜 31、 第二透镜 32、 第三透镜 33构成 , 第一透镜 31、 第二透镜 32、 第三透镜 33依次排列。 从输入准直器阵列 10的任 意一个准直器输入的信号光, 经过本套装置后, 可以从输出准直器阵列 50的任 意一个或多个没有被占用准直器输出, 或是无输出。输出准直阵列 50的每个准 直器可以接收输入准直器阵列 10的任意入射端口的输入光信号,并仅可以同时 选择接收一个入射端口的输入光信号。如图: 从输入准直器 101输入的信号光, 可以从任意一个或多个未被其他输入准直器 102~108 占用的输出准直器 501~516输出, 或者无输出。 输出准直器 501~516中的每一个准直器至多只能 选择输出来自输入准直器 101~108中一个端口的输入信号光。
本发明装置中 ΙχΜ输入准直器阵列 10有 M个输入端口, 其中 M大于 1 ; IxN输出准直器阵列的 N个输出端口,其中 N大于 1 ;分光装置 20的功能是将 M个输入端口的每一束输入信号光分解成 N个子信号光束, 共得到 MxN个子 信号光束; 光程补偿装置 70用来补偿分光装置产生的 MXN个子信号光束间的 光程差;光斑变换装置 30将经过分光装置得到的 MxN个子信号光束聚焦成 IxN 个光斑,使得 N个光斑中的每一个光斑均由所有 M束输入信号光的一束子信号 光束聚焦而成, 并打在反射装置上; 反射装置, 即反射镜阵列 40, 通过调节反 射装置,可以使得 N个输出端口中的每一个端口都能接收到 M个输入端口中的 任意一个输入端口产生的子信号光束, 或者无光束。
图 2a和 2b分别为本发明多播交换光开关俯视图和侧视图, 为便于说明, 定义整个系统以光线入射方向为 Z轴, 输入准直器阵列 10排列方向为 Y轴, 输出准直器阵列 50排列方向为 X轴。
这里结合图对分光装置 20进行描述, 如图 2a所示, 从最上方的输入准直 器 101, 入射至分光装置 20的分光器件 21的信号光 201为例说明。 输入信号 光 201光强入射到 50:50偏振无关的分光器件 21上, 这里分光器件 21可以是 分光膜或者是分光片。 输入信号光 201分为 2束光强为 1/2的信号光 202, 2束 1/2的信号光分别经过第一反射镜 22和第二反射镜 23反射后再次经过 50:50偏 振无关的分光器件 21, 分为 4束光强为 1/4的信号光 203。 以此类推, 利用第 二反射镜 23, 第三反射镜 24, 第四反射镜 25或者更多的反射镜使得信号光以 上述方式经过 n(n 2)次 50:50偏振无关的分光器件 21分束后,可以产生 N=2n 束光强为 l/2n的子信号光。 本领域技术人员将会理解, 通过增加或减少反射镜 的数目, 可以控制信号光通过分光器件 21的次数, 最终可以控制分束光束的数 目和强度,通过调整光束分离装置 20 内各反射镜的位置, 可以控制出射子信号 光之间的距离和位置。 另外可以通过计算, 使得某些分束后的子信号光共用一 面反射镜, 以此减少反射镜的个数, 简化结构和成本。
由于在光束分离装置即分光装置 20中每束光束经过的路程不一致,会造成 光程差, 所以在离分光装置 20不远的地方放置了光程补偿装置 70。 光程补偿 装置 70由一组玻璃块 701~715组成,每个玻璃块的长度由分束后每条子信号光 束在 X轴方向的光程差决定。 假设第 i束子光束与光程最长的子信号光束的光 程差为 Δ Ι^,玻璃块的折射率为 , 则第 i束子信号光束光路上需放置的玻璃块
如图 2b所示, 由输入准直器阵列 10输入的 M束入射信号光都可以经过分 光装置 20和光程补偿装置 70。 这样 M束入射信号光将产生二维分布的 MxN 束子信号光束, 光束之间相互平行, 光程相等, 且排列方向分别平行于 X轴和 y轴。
本发明的光斑变换装置 30包括三块透镜, 即第一透镜 31、 第二透镜 32、 第三透镜 33依次排列。 这里的第一透镜 31、 第二透镜 32、 第三透镜 33可以是 柱透镜。 如图 2a、 图 2b所示, 第一透镜 31、 第三透镜 33为 x方向柱透镜, 只 对 X方向排列的光线有聚焦效果, 第二透镜 32为 y方向柱透镜, 只对 y方向排 列的光线有聚焦效果。 由分光装置 20的得到的 MxN束子信号光束, 经过光斑 变换装置 30后, 将被聚焦为 XZ平面内沿 X方向排列的 ΙχΝ个光斑, 并分别位 于反射镜阵列 40的 N个反射镜 401~416上。这里反射镜阵列 40可以是 MEMS 反射镜。 每一个光斑均由同一个 YZ平面内所有 M个子信号光束聚焦而成。 反 射镜阵列 40的每个反射镜都可以绕 X轴和 Y轴旋转。 通过绕 X轴旋转, 可以 将 M个子信号光束中的某一束反射回光斑变换装置 30, 并从光束分离装置 20 和光程补偿装置 70的下方出射, 由输出准直器阵列 50接收。 在绕 X轴旋转的 时候, 为了实现无损伤切换, 需要反射镜先绕 Y轴旋转, 再绕 X轴旋转, 最后 绕 y轴旋转, 本领域技术人员将会理解, 这样通过增加非选择信号光与输出端 口之间的耦合角度, 来降低非选择信号光与输出端口之间的耦合度。 通过调节 反射镜阵列 40, 可以使得 N个输出端口中的每一个端口都能接收到 M个输入 端口中的任意一个输入端口产生的子信号光束, 或者无光束。 如图 2a所示, 最 终反射镜 401~416反射回的光斑再次经过光斑变换系统后可以分别被输出准直 器 516~501接收。
如图 2a所示, 本发明中分光装置 20的一个实例利用了四面反射镜, 即第 一反射镜 22、 第二反射镜 23、 第三反射镜 24、 第四反射镜 25, 使得信号光以 上述方式经过 4次 50:50偏振无关的分光器件 21分束后, 可以产生 16束光强 为 1/16的信号光 205。如图 2b所示, 在 y方向上使用了 8个光纤准直器构成输 入准直器阵列 10。 因此, 8个输入信号光在经过分光装置 20后产生了 8x16的 矩阵光斑。
如图 2a所示, 本发明中分光装置 20的一个实例使用分光膜作为分光器件 21, 由于分光膜自身厚度在微米级, 这里分光膜厚度可以为 2微米, 所以信号 光经过分光膜后几乎不会产生位移。这样使用四面反射镜就可以使得 16束信号 光之间的间距相等。所以后面的反射镜阵列 40的镜片之间可以采用等间距的设 计。 如果使用分光片作为分光器件 21, 分光片自身的厚度会对信号光产生的位 移影响, 本领域技术人员将会理解, 这样会造成分束光束间距不相等, 从而对 整个系统后面的反射镜阵列 40的接收产生影响。解决这一问题有两种方法, 一 是将反射镜阵列 40的镜片设计成不等间距的, 以此匹配前面的不等间距的分束 光束; 二是使用更多的反射镜来调整分束光束之间的距离, 使得光束间距相等。
图 3为分光装置 20的另外一种实现方式, 该分光装置 20是异形分光棱镜 60, 这里利用异形分光棱镜 60实现分光, 异形分光棱镜 60包括分光面作用的 分光面 61和反射面作用的边缘面 62、 63。 光强为 1的入射信号 601入射到异 形分光棱镜 60的分光面 61上, 分为 2束光强为 1/2的子信号光束 602, 每束 1/2的信号光分别在异形分光棱镜的边缘面 62、 63处全反射, 并再次经过分光 面 61, 分成 4束光强为 1/4的子信号光束 603。 以此类推, 控制异形分光棱镜 边缘的轮廓形状, 在边缘面上进行多次全反射, 使得信号光以上述方式经过 n (n^2) 次分光面分束后, 可以产生 2n束光强为 l/2n的信号光。 如图所示的结 构能够将每一束输入信号光信号分成功率相同且等间距的 16 束子信号光束 605。异形分光棱镜可以对常规分光棱镜切割得到, 利用棱镜边缘产生上述方案 中反射镜的作用。 这样做的好处是不需再单独调整每个光学器件, 全反射的反 射率也高于反射镜。 本领域技术人员将会理解, 由于棱镜边缘类似于第一种分 光装置中的反射镜, 所以异形分光棱镜的形状可以根据所需的分光的数目和位 置调整。
如图 2b所示, 为了减少器件的体积和成本, 透镜的尺寸会做的尽可能小, 输出准直器阵列 50和输入准直器阵列 10会挨的尽可能近。 这样就产生了一个 问题, 在如图 4所示的简化结构中, 当通过旋转反射镜阵列 40选取某一所需的 输入光信号到输出准直器阵列 50时,部分其它通道的反射光会反射回输入准直 器阵列 10的某些端口, 从而对这些端口造成干扰。 为了避免这种干扰, 本发明 提供了另外一种改进方式。改进方式如图 5所示, 在反射镜阵列 40前面加入了 一套防干扰装置。 防干扰装置由焦点后移器件 35、 第五反射镜 36和遮挡板 37 构成。 这里焦点后移器件 35可以是玻璃平板。 在光斑变换装置 30后方放置厚 度为 d, 折射率为 n2的玻璃平板作为焦点后移器件 35, 可以将第二透镜 32的 像方焦平面后移动 Lshlft=d-d/n2的距离到后移的焦平面 91所示的位置,然后利用 第五反射镜 36将光线汇聚点的位置反射到原先的没有放置焦点后移器件 35时 的焦平面 90上, 并将反射镜阵列 40也置于汇聚点上, 这样, 光线经过 MEMS 反射时, 仍位于透镜的焦平面上。 在光斑变换装置 30和反射镜阵列 40之间放 置一块遮挡板 37, 这里遮挡板 37可以是任何反光或者不透光材质的平板, 这 里可以是塑料平板。这样可以阻挡没有被选择的信号光反射回光斑变换装置内, 从而避免了没有被选择的输入信号光反射回入射端口。第二透镜 32前方的折光 棱镜 34位于输出准直器阵列 50和第二透镜 32之间, 这里放置遮光棱镜 34为 了使得经过反射的被选择的信号光在经过第二透镜 32和折光棱镜 34后与 Z轴 平行, 便于输出信号与输出准直器阵列 50的耦合。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细, 但并不能因此而理解为对本发明专利范围的限制。 应当指出的是, 对于本领域 的普通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干变形和 改进, 这些都属于本发明的保护范围。 因此, 本发明专利的保护范围应以所附 权利要求为准。

Claims

权 利 要 求 书
1. 一种基于自由空间传输的多播交换光开关, 其特征在于: 包括依次排列 的 ΙχΜ输入准直器阵列 (10)、 分光装置 (20)、 光程补偿装置 (70)、 光斑变 换装置 (30)、 ΙχΝ输出准直器阵列 (50)、 反射镜阵列 (40), ΙχΝ输出准直器 阵列 (50) 同反射镜阵列 (40) 相对应, 所述分光装置 (20) 设置有使 ΙχΜ 输入准直器阵列 (10) 的输入信号光经过 n (n^2) 次分光分束而产生 N=2n束 子信号光的分光面和反射面; 所述光程补偿装置 (7)补偿分光装置 (20)产生 的 MXN个子信号光束间的光程差; 所述光斑变换装置(30)将 MxN个子信号 光束聚焦成 lxN个光斑射于反射镜阵列 (40) 上。
2. 如权利要求 1所述的一种基于自由空间传输的多播交换光开关, 其特征 在于: 所述分光装置 (20) 分光面为 50:50偏振无关的分光器件 (21 ), 所述反 射面为设置于分光器件 (21 ) 两则的反射镜。
3. 如权利要求 2所述的一种基于自由空间传输的多播交换光开关, 其特征 在于: 所述分光器件 (21 ) 采用分光膜或者分光片。
4. 如权利要求 1所述的一种基于自由空间传输的多播交换光开关, 其特征 在于: 所述分光装置 (20) 是异形分光棱镜(60), 其包括起分光面作用的分光 面 (61 ) 和起反射面作用的边缘面 (62、 63)。
5. 如权利要求 1所述的一种基于自由空间传输的多播交换光开关, 其特征 在于:所述光斑变换装置(30)包括依次排列的第一透镜(31 )、第二透镜(32)、 第三透镜 (33), 所述第一透镜 (31 )、 第三透镜 (33 ) 为 X方向柱透镜, 第二 透镜 (32 ) 为 y方向柱透镜。
6. 如权利要求 1所述的一种基于自由空间传输的多播交换光开关, 其特征 在于: 所述光程补偿装置 (70) 由一组玻璃块(701~715 ) 组成, 每个玻璃块对 应设置于各子信号光束光路中, 玻璃块的长度为 = , Δ Ι^为第 i束子信号 光束与光程最长的子信号光束的光程差, 为玻璃块的折射率。
7. 如权利要求 1所述的一种基于自由空间传输的多播交换光开关, 其特征 在于: 反射镜阵列 (40) 是 ΙχΝ两维 MEMES反射镜阵列。
8. 如权利要求 1-7之一所述的一种基于自由空间传输的多播交换光开关, 其特征在于: 所述反射镜阵列 (40) 前面设置有防干扰装置, 防干扰装置由焦 点后移器件(35)、第五反射镜(36)和遮挡板(37)组成;所述第五反射镜 (36) 设置于焦点后移器件 (35)后端将光线汇聚点的位置反射到光路未设置焦点后移 器件 (35 ) 时的焦平面 (90) 上, 且将反射镜阵列 (40) 也置于该汇聚点上, 遮挡板 (37) 设置于光斑变换装置 (30) 和反射镜阵列 (40) 之间。
9. 如权利要求 8所述的一种基于自由空间传输的多播交换光开关, 其特征 在于: 所述遮挡板 (37 ) 采用反光或者不透光材质的平板。
10. 如权利要求 9所述的一种基于自由空间传输的多播交换光开关, 其特 征在于: 所述焦点后移器件 (35 ) 是玻璃平板。
PCT/CN2013/087756 2013-11-19 2013-11-25 一种基于自由空间传输的多播交换光开关 WO2015074266A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/037,427 US9720180B2 (en) 2013-11-19 2013-11-25 Multicast optical switch based on free-space transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310583128.0 2013-11-19
CN201310583128.0A CN103558667B (zh) 2013-11-19 2013-11-19 一种基于自由空间传输的多播交换光开关

Publications (1)

Publication Number Publication Date
WO2015074266A1 true WO2015074266A1 (zh) 2015-05-28

Family

ID=50012967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087756 WO2015074266A1 (zh) 2013-11-19 2013-11-25 一种基于自由空间传输的多播交换光开关

Country Status (3)

Country Link
US (1) US9720180B2 (zh)
CN (1) CN103558667B (zh)
WO (1) WO2015074266A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105891968A (zh) * 2016-06-23 2016-08-24 无锡宏纳科技有限公司 一种一选四光开关

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103558667B (zh) * 2013-11-19 2016-04-13 武汉光迅科技股份有限公司 一种基于自由空间传输的多播交换光开关
US9998252B2 (en) * 2014-02-21 2018-06-12 Dicon Fiberoptics, Inc. Apparatus and manufacturing method for an integrated multicast switch, for use in reconfigurable optical add-drop networks
US9488787B2 (en) 2014-03-31 2016-11-08 Lumentum Operations Llc Cross-connect switch using 1D arrays of beam steering elements
US9883263B2 (en) * 2014-03-31 2018-01-30 Lumentum Operations Llc Free-space multicast switch with elliptical beams
CN104297858A (zh) * 2014-10-31 2015-01-21 武汉光迅科技股份有限公司 一种多播交换光开关
CN107577010B (zh) * 2017-10-12 2020-04-24 贝耐特光学科技(昆山)有限公司 一种双波长选择开关
CN111290084A (zh) * 2020-03-31 2020-06-16 武汉光谷信息光电子创新中心有限公司 多播交换光开关
CN113533353A (zh) * 2021-08-20 2021-10-22 合肥御微半导体技术有限公司 一种缺陷检测装置及缺陷检测方法
CN114883908A (zh) * 2022-05-20 2022-08-09 无锡亮源激光技术有限公司 一种小体积多单管光谱合束结构装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002056521A1 (en) * 2000-11-03 2002-07-18 Network Photonics, Inc. Reduction of polarization-dependent loss from grating used in double-pass configuration
CN1762177A (zh) * 2003-07-28 2006-04-19 奥林巴斯株式会社 光开关和控制光开关的方法
CN1797062A (zh) * 2004-12-27 2006-07-05 富士通株式会社 光开关以及用于控制光开关的装置和方法
CN1831574A (zh) * 2005-03-07 2006-09-13 富士通株式会社 波长选择开关
EP2028511A1 (en) * 2007-08-20 2009-02-25 Fujitsu Limited Optical switch and control method

Family Cites Families (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4896934A (en) * 1989-02-03 1990-01-30 Bell Communications Research, Inc. Broadband optical multicast switch
US5005167A (en) * 1989-02-03 1991-04-02 Bell Communications Research, Inc. Multicast packet switching method
US5124978A (en) * 1990-11-26 1992-06-23 Bell Communications Research, Inc. Grouping network based non-buffer statistical multiplexor
US5179552A (en) * 1990-11-26 1993-01-12 Bell Communications Research, Inc. Crosspoint matrix switching element for a packet switch
US5197064A (en) * 1990-11-26 1993-03-23 Bell Communications Research, Inc. Distributed modular packet switch employing recursive partitioning
US5166926A (en) * 1990-12-18 1992-11-24 Bell Communications Research, Inc. Packet address look-ahead technique for use in implementing a high speed packet switch
US5303078A (en) * 1990-12-18 1994-04-12 Bell Communications Research, Inc. Apparatus and method for large scale ATM switching
US5130984A (en) * 1990-12-18 1992-07-14 Bell Communications Research, Inc. Large fault tolerant packet switch particularly suited for asynchronous transfer mode (ATM) communication
US5157654A (en) * 1990-12-18 1992-10-20 Bell Communications Research, Inc. Technique for resolving output port contention in a high speed packet switch
US5093743A (en) * 1990-12-28 1992-03-03 At&T Bell Laboratories Optical packet switch
EP0533391A3 (en) * 1991-09-16 1993-08-25 American Telephone And Telegraph Company Packet switching apparatus using pipeline controller
US5301055A (en) * 1991-10-01 1994-04-05 Bell Communications Research, Inc. Scheduler for multicast cell transmission
ATE260532T1 (de) * 1992-10-15 2004-03-15 Canon Kk Optischer konzentrator und optisches übertragungsnetz mit einem derartigen konzentrator
US6005698A (en) * 1995-06-08 1999-12-21 Siemens Aktiengesellschaft Non-blocking multi-cast WDM coupling arrangement
JP3481442B2 (ja) * 1997-12-22 2003-12-22 日本電気株式会社 光ネットワーク
US6442694B1 (en) * 1998-02-27 2002-08-27 Massachusetts Institute Of Technology Fault isolation for communication networks for isolating the source of faults comprising attacks, failures, and other network propagating errors
JPH11275614A (ja) * 1998-03-26 1999-10-08 Nec Corp 光交換装置
KR100271210B1 (ko) * 1998-09-01 2000-11-01 윤덕용 광회선 분배기
DE69831240T2 (de) * 1998-10-15 2006-06-01 Lucent Technologies Inc. Rekonfigurierbares faseroptisches Netzwerk für Drahtlose Übertragung
US6661789B1 (en) * 1999-09-10 2003-12-09 Alcatel Dynamic burstification based on fully/partially shared multicast entities
JP2001285323A (ja) * 2000-04-03 2001-10-12 Hitachi Ltd 光ネットワーク
JP2002214546A (ja) * 2000-11-15 2002-07-31 Oki Electric Ind Co Ltd 光スイッチ
US7010225B1 (en) * 2000-12-29 2006-03-07 Nortel Networks Limited Technique for interchanging wavelengths in a multi-wavelength system
US6934472B2 (en) * 2001-01-30 2005-08-23 The Regents Of The University Of California Optical layer multicasting using a single sub-carrier header and a multicast switch with active header insertion
US6757495B2 (en) * 2001-01-30 2004-06-29 The Regents Of The University Of California Optical layer multicasting using a multiple sub-carrier header and a multicast switch with active header insertion via single sideband optical processing
US6768871B2 (en) * 2001-01-30 2004-07-27 The Regents Of The University Of California Optical layer multicasting using a multicast switch to effect survivability and security
US6760549B2 (en) * 2001-01-30 2004-07-06 The Regents Of The University Of California Optical layer multicasting using a multiple sub-carrier header and multicasting switch
US6873797B2 (en) * 2001-01-30 2005-03-29 The Regents Of The University Of California Optical layer multicasting
US7039316B2 (en) * 2001-01-30 2006-05-02 The Regents Of The University Of California Optical layer multicasting using a multiple sub-carrier header and a multicast switch with active header insertion via reflective single sideband optical processing
US6766114B2 (en) * 2001-01-30 2004-07-20 The Regents Of The University Of California Optical layer multicasting using a single sub-carrier header and a multicast switch with active header insertion via single sideband optical processing
US6754449B2 (en) * 2001-01-30 2004-06-22 The Regents Of The University Of California Optical layer multicasting switch
US20020141408A1 (en) * 2001-01-30 2002-10-03 Gee-Kung Chang Optical layer multicasting using multiple sub-carrier headers with header detection, deletion, and insertion via transmit single sideband optical processing
US6757497B2 (en) * 2001-01-30 2004-06-29 The Regents Of The University Of California Optical layer multicasting using a single sub-carrier header and a multicast switch with active header insertion via reflective single sideband optical processing
US20020146027A1 (en) * 2001-01-30 2002-10-10 Gee-Kung Chang Optical layer multicasting using a single sub-carrier header with active header detection, deletion, and insertion via reflective single sideband optical processing
US6813276B2 (en) * 2001-01-30 2004-11-02 The Regents Of The University Of California Optical layer multicasting using a single sub-carrier header with active header detection, deletion, and re-insertion via a circulating optical path
US6754450B2 (en) * 2001-01-30 2004-06-22 The Regents Of The University Of California Optical layer multicasting using a single sub-carrier header with active header detection, deletion, and new header insertion via opto-electrical processing
US6757496B2 (en) * 2001-01-30 2004-06-29 The Regents Of The University Of California Optical layer multicasting using a single sub-carrier header and an optical multicasting switch
US6819666B2 (en) * 2001-01-30 2004-11-16 The Regents Of The University Of California Optical layer multicasting using multiple sub-carrier headers with header detection, deletion, and insertion via reflective single sideband optical processing
US6850707B1 (en) * 2001-01-30 2005-02-01 The Regents Of The University Of California Secure optical layer multicasting to effect survivability
US6850515B2 (en) * 2001-01-30 2005-02-01 The Regents Of The University Of California Optical layer multicasting using a single sub-carrier header and a multicast switch with active header insertion via light circulation
US20020114030A1 (en) * 2001-02-08 2002-08-22 Corvis Corporation Optical transmission systems including optical multi-casting systems, apparatuses,and methods
US7027733B2 (en) * 2001-03-19 2006-04-11 At&T Corp. Delivering multicast services on a wavelength division multiplexed network using a configurable four-port wavelength selective crossbar switch
FR2847748B1 (fr) * 2002-11-22 2005-03-04 Agence Spatiale Europeenne Procede et dispositif de routage pour un systeme multiplex numerique
US20040126112A1 (en) * 2002-12-12 2004-07-01 Kim Byoung Whi Method for optically copying packet
US20040146299A1 (en) * 2003-01-29 2004-07-29 George Clapp Periodic optical packet switching
US8457497B2 (en) * 2003-01-31 2013-06-04 Ciena Corporation Optimized directionless optical add/drop module systems and methods
US7308197B1 (en) * 2003-01-31 2007-12-11 Ciena Corporation Modular add/drop multiplexer including a wavelength selective switch
US7899334B2 (en) * 2003-01-31 2011-03-01 Ciena Corporation Signal distribution module for a directionless reconfigurable optical add/drop multiplexer
US7373091B2 (en) * 2003-09-25 2008-05-13 Lucent Technologies Inc. Multicasting optical switch fabric and method of detection based on novel heterodyne receiver
US7634582B2 (en) * 2003-12-19 2009-12-15 Intel Corporation Method and architecture for optical networking between server and storage area networks
US7505192B1 (en) * 2006-06-05 2009-03-17 Agiltron, Inc. Optical apparatus having a compound tri-state non-reciprocal rotator
KR100809423B1 (ko) * 2006-09-29 2008-03-05 한국전자통신연구원 물리계층 멀티캐스트 스위치를 이용한 ip-tv 방송서비스 시스템 및 그 방법
KR100819035B1 (ko) * 2006-09-29 2008-04-03 한국전자통신연구원 광회선분배기 시스템, 그 광회선분배기 시스템을 이용한wdm 시스템 및 그 wdm 시스템을 기반으로 하는광통신망
US7436580B2 (en) * 2006-12-27 2008-10-14 Lucent Technologies Inc Optical buffer employing four-wave mixing
KR100862481B1 (ko) * 2007-07-10 2008-10-08 삼성전기주식회사 다중 빔 레이저 장치
CZ2007849A3 (cs) * 2007-12-04 2009-08-12 Cesnet Zarízení pro skupinové vysílání optických signálu v Internetu a jiných sítích
US20110164876A1 (en) * 2008-10-02 2011-07-07 Enablence USA Components, Inc. Directionless reconfigurable optical add/drop multiplexer
ES2563169T3 (es) * 2008-11-20 2016-03-11 Mbda Uk Limited Generador de escenarios de blancos
US8411681B2 (en) * 2008-12-10 2013-04-02 Electronics And Telecommunications Research Institute Multicasting method in network including T-MPLS network and WDM network and apparatus therefor
US8447183B2 (en) * 2009-04-24 2013-05-21 Tellabs Operations, Inc. Methods and apparatus for performing directionless and contentionless wavelength addition and subtraction
CN102498427A (zh) * 2009-06-18 2012-06-13 奥兰若(新泽西)有限公司 多端口波长可选择路由器
US9069139B2 (en) * 2011-07-28 2015-06-30 Jds Uniphase Corporation Multicast optical switch
WO2013028241A1 (en) * 2011-08-25 2013-02-28 The Trustees Of Columbia University In The City Of New York Systems and methods for a cross-layer optical network node
RU2608300C2 (ru) * 2011-10-28 2017-01-17 Неофотоникс Корпорейшн Масштабируемые оптические коммутаторы и модули коммутации
US9158072B2 (en) * 2011-10-31 2015-10-13 Finisar Corporation Multicast optical switch
US8731403B2 (en) * 2012-02-07 2014-05-20 Ii-Vi Incorporated Multicast optical switch
US9110317B1 (en) * 2012-04-05 2015-08-18 Iowa State University Research Foundation, Inc. Advanced drive circuitry for Sagnac interferometric switch utilizing faraday rotation
US9252910B2 (en) * 2012-12-12 2016-02-02 Lumentum Operations Llc Expandable multicast optical switch
US9497519B2 (en) * 2013-03-18 2016-11-15 Oplink Communications, Inc. Twin multicast switch
US9363581B2 (en) * 2013-03-28 2016-06-07 Lumentum Operations Llc Compact multicast switches, MxN switches and MxN splitters
US9077482B2 (en) * 2013-03-28 2015-07-07 Alcatel Lucent High-throughput routing in an optical network having a mesh topology
WO2015051023A1 (en) * 2013-10-03 2015-04-09 Coadna Photonics Inc. Distributed optical switching architecture for data center networking
KR20150054232A (ko) * 2013-11-11 2015-05-20 한국전자통신연구원 멀티캐스팅 링 네트워크 노드에서 필터를 사용한 광 신호 제어 및 광 다중부에서 보호 절체 방법 및 장치
CN103558667B (zh) * 2013-11-19 2016-04-13 武汉光迅科技股份有限公司 一种基于自由空间传输的多播交换光开关
US9414135B2 (en) * 2013-12-24 2016-08-09 Nec Corporation Flexible-client, flexible-line interface transponder
US9099833B2 (en) * 2013-12-31 2015-08-04 Infinera Corporation Multiplexer having ASE suppression
US9998252B2 (en) * 2014-02-21 2018-06-12 Dicon Fiberoptics, Inc. Apparatus and manufacturing method for an integrated multicast switch, for use in reconfigurable optical add-drop networks
US9563021B2 (en) * 2014-03-17 2017-02-07 Lumentum Operations Llc Optical switching device
US9429712B2 (en) * 2014-07-23 2016-08-30 Ii-Vi Incorporated Dual-ganged optical switch
US9645333B2 (en) * 2014-10-17 2017-05-09 Lumentum Operations Llc Optomechanical assembly
US9967860B2 (en) * 2015-03-11 2018-05-08 Nec Corporation Efficient network-wide broadcasting over LTE networks
US9866315B2 (en) * 2015-04-24 2018-01-09 Lumentum Operations Llc Super-channel multiplexing and de-multiplexing using a phased array switching engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002056521A1 (en) * 2000-11-03 2002-07-18 Network Photonics, Inc. Reduction of polarization-dependent loss from grating used in double-pass configuration
CN1762177A (zh) * 2003-07-28 2006-04-19 奥林巴斯株式会社 光开关和控制光开关的方法
CN1797062A (zh) * 2004-12-27 2006-07-05 富士通株式会社 光开关以及用于控制光开关的装置和方法
CN1831574A (zh) * 2005-03-07 2006-09-13 富士通株式会社 波长选择开关
EP2028511A1 (en) * 2007-08-20 2009-02-25 Fujitsu Limited Optical switch and control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105891968A (zh) * 2016-06-23 2016-08-24 无锡宏纳科技有限公司 一种一选四光开关

Also Published As

Publication number Publication date
CN103558667B (zh) 2016-04-13
US9720180B2 (en) 2017-08-01
US20160291255A1 (en) 2016-10-06
CN103558667A (zh) 2014-02-05

Similar Documents

Publication Publication Date Title
WO2015074266A1 (zh) 一种基于自由空间传输的多播交换光开关
US8731403B2 (en) Multicast optical switch
US8854597B2 (en) Wavelength selective switch
JP4875087B2 (ja) 光波長選択ルータ
CA2867007C (en) Wavelength switch system using angle multiplexing optics
US10048445B2 (en) Multicast exchange optical switch
US6707594B2 (en) Method and device for switching wavelength division multiplexed optical signals using two-dimensional micro-electromechanical mirrors
US20120020664A1 (en) Wavelength selective light cross connect device
CN105739026B (zh) 一种高端口数目波长选择开关
US9380360B2 (en) Wavelength selective switch and wavelength selection method
KR20040036929A (ko) 인터리브된 채널들을 갖는 자유공간 파장 라우팅 시스템
JPWO2014034144A1 (ja) 光信号処理装置
CN110785689B (zh) 用于多个单元的波长选择开关
CN108897102B (zh) 一种双波长选择开关
JP2013098912A (ja) 波長選択光クロスコネクト装置
US6920258B2 (en) Optical switch
JP2001264649A (ja) 交差接続スイッチ
JP5651904B2 (ja) N×n波長選択スイッチ
CN201359648Y (zh) 一种多波长选择开关
CN103676008A (zh) 一种光梳状滤波器
CN111025739B (zh) 一种切换单元及波长选择开关
KR101832874B1 (ko) 광 교차연결 장치
CN104570225B (zh) 一种单边光开关
CN116466436A (zh) 一种波长选择开关

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898001

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15037427

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13898001

Country of ref document: EP

Kind code of ref document: A1