WO2015072509A1 - High-efficiency heat exchanger and high-efficiency heat exchange method - Google Patents

High-efficiency heat exchanger and high-efficiency heat exchange method Download PDF

Info

Publication number
WO2015072509A1
WO2015072509A1 PCT/JP2014/080055 JP2014080055W WO2015072509A1 WO 2015072509 A1 WO2015072509 A1 WO 2015072509A1 JP 2014080055 W JP2014080055 W JP 2014080055W WO 2015072509 A1 WO2015072509 A1 WO 2015072509A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
chamber
heat exchanger
heat exchange
fluid
Prior art date
Application number
PCT/JP2014/080055
Other languages
French (fr)
Japanese (ja)
Inventor
木村 洋一
Original Assignee
四国計測工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四国計測工業株式会社 filed Critical 四国計測工業株式会社
Publication of WO2015072509A1 publication Critical patent/WO2015072509A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/28Methods of steam generation characterised by form of heating method in boilers heated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/06Other direct-contact heat-exchange apparatus the heat-exchange media being a liquid and a gas or vapour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/04Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of rubber; of plastics material; of varnish
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/028Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using inserts for modifying the pattern of flow inside the header box, e.g. by using flow restrictors or permeable bodies or blocks with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/06Other direct-contact heat-exchange apparatus the heat-exchange media being a liquid and a gas or vapour
    • F28C3/08Other direct-contact heat-exchange apparatus the heat-exchange media being a liquid and a gas or vapour with change of state, e.g. absorption, evaporation, condensation

Definitions

  • the present invention relates to a heat exchange technique in which the field of application is not limited. It is particularly useful for heat exchange of gases or liquids of corrosive substances such as acids and alkalis, temperature control of high-purity water, high-purity silicon compounds when manufacturing semiconductors, etc. To solve the problems of corrosion of equipment and contamination of high-purity substances and to improve the heat exchange rate. That is, the present invention can provide a high-efficiency heat exchanger and heat exchange method with less corrosion of the apparatus and contamination by impurities in all technical fields that require cooling, heating, and temperature control of substances.
  • a heat source not only a heat source but also a heat absorption source may be referred to as a “heat source”.
  • the “fluid” in the present specification includes those accompanied by a phase change (for example, a phase change from liquid to gas) by heating or endotherm.
  • a heat exchanger is a device that heats or cools one object by directly or indirectly contacting two objects with different temperatures, and heats or cools one object.
  • Boilers, steam generators, food production, chemical production, refrigeration For industrial use such as storage, it is used for cooling, heating, and refrigeration.
  • a heat exchanger usually has a structure corresponding to the characteristics of the heat exchange material. For example, for a chemical solution that performs heat exchange with a highly corrosive chemical solution such as hydrofluoric acid, nitric acid, and sulfuric acid.
  • a heat exchanger it is necessary to heat and cool fluids such as highly corrosive strong acids and strong alkalis using chemical resistant heat exchangers. In this case, resin materials that are not easily affected by acids and alkalis.
  • the indirect heating in which the contact portion material made of is immersed in a heat medium to perform heat exchange is typical.
  • FIG. 1 is a schematic diagram showing a typical indirect heat exchange. While a heat exchange fluid (acid, alkali, water, etc.) is conveyed from the inlet 2 to the outlet 3 in the resin pipe 1, FIG. Heat exchange is performed through the resin pipe 1 by the heat medium 4 whose temperature is adjusted by the heat source 5.
  • This method can increase the surface area of the resin pipe 1 on the contact side, for example, lengthen the pipe 1 in the heat medium 4 to increase the contact area with the heat medium 4 and improve the heat exchange efficiency.
  • this may result in a costly device including a device and containers for adjusting the temperature of the fluid with a heat source.
  • a typical example of a direct heating method in which heat is exchanged directly with a heat source without using a heat medium is shown in FIG.
  • the heat source 5 comes into contact with the tube 1 made of the above material to exchange heat directly.
  • the heat exchange fluid or the heat exchange medium does not corrode the equipment such as the transfer pipe, the heat exchange process does not contaminate the heat exchange fluid, and the heat exchange is performed efficiently. ,Is required.
  • the transport pipe is protected by being covered with a resin or ceramics so that the transport pipe is not affected by the heat exchange medium or the heat exchange fluid.
  • fluororesins are known to be excellent in corrosion resistance and heat resistance against various chemicals.
  • the transport tube is made of only fluororesin, the fluororesin itself is a poor conductor of heat.
  • the fluororesin is used on the surface of metal with good thermal conductivity. Many proposals have been made to form a film.
  • Patent Document 1 used as a heat exchanger or the like having a coating film that is increased and the content of inorganic filler is sequentially reduced
  • the present invention provides a plate fin type heat exchanger and a plate type heat exchanger using the aluminum alloy material in a heat transfer part using an aluminum alloy material having excellent corrosion resistance and a corrosive fluid as a medium. It has an organic phosphonic acid undercoat on the aluminum alloy material surface used in plate fin type heat exchangers, plate type heat exchangers, etc. using a heat transfer part with a fluid as a medium, and further after drying It has a fluorine resin paint film with an average thickness of 1 to 100 ⁇ m and improves the durability of the adhesion of the paint film, and has excellent corrosion resistance against corrosive fluids such as seawater (Patent Literature) 2) has been proposed.
  • a method of exchanging heat by bringing a member in contact with the fluid into contact with a heat medium such as a heat source or a refrigerant is generally used. It was selected according to. However, the material of the selected contact member is not necessarily excellent in heat conduction. In this case, for example, a large number of electric heaters that are heat sources or a large-capacity electric heater can be used. It may be necessary to compensate for the disadvantages of low members. As a result, it was often encountered that the energy efficiency of heat exchange was low and the equipment was large.
  • the present invention is composed of the technical matters described below. 1st invention discharges the fluid in a chamber, the nozzle which sprays the pressurized fluid supplied from the fluid supply path in the chamber, the heat source which gives heat or cold to the fluid sprayed to the chamber, and the chamber
  • the heat exchanger includes an orifice that communicates with an outlet and maintains an interior of the chamber at a higher pressure than atmospheric pressure.
  • heat exchange is performed by generating convection in a chamber.
  • the third invention is the second invention, wherein the flow rate of the nozzle is the orifice. It is characterized in that it is substantially directly proportional to the square of the aperture diameter.
  • the pressurized fluid supplied from the fluid supply path is a pressurized liquid
  • the nozzle sprays the pressurized liquid using a mist having a diameter of 20 to 60 ⁇ m. It is characterized by being a nozzle.
  • the inner wall surface of the chamber has a zigzag structure.
  • a sixth invention is the invention according to any one of the first to fourth inventions, comprising: an inner wall member constituting the inner wall surface of the chamber; and a heat conductor that transfers heat from a heat source to the inner wall member. Is made of a material having a higher thermal conductivity than the inner wall member.
  • the surface of the heat conductor in contact with the inner wall member is a surface of a zigzag structure, and the surface of the inner wall member in contact with the heat conductor is a surface of a zigzag structure. It is characterized by.
  • the nozzle is a diffusion nozzle that sprays so that a part of the fluid supplied from the fluid supply path collides with the inner wall surface of the chamber.
  • a ninth invention is characterized in that, in the eighth invention, a heat conductor having a vertical length shorter than that of the heat source is arranged at a portion where the fluid sprayed from the nozzle collides.
  • a tenth invention is characterized in that, in any one of the first to fourth inventions, the chamber is constituted by connecting a plurality of hollow blocks.
  • An eleventh invention is characterized in that, in the tenth invention, the block is a pipe having a dimension defined by an industry standard. According to a twelfth aspect, in the eleventh aspect, the block includes a pair of flanges provided at end portions, and the flanges have dimensions defined by an industry standard.
  • a thirteenth aspect of the present invention is a heat exchange method for performing heat transfer type heat exchange with a fluid jetted from a nozzle into a chamber using the heat exchanger according to any one of the first to fourth aspects.
  • a fourteenth aspect of the invention is a heat exchange method that uses the heat exchanger according to the fourth aspect of the invention to vaporize the fluid ejected from the nozzle into the chamber and to exchange heat.
  • the present invention there is no corrosion of equipment due to a heat exchange fluid, and highly efficient heat exchange can be realized. Further, the present invention can provide technical means for vaporizing or atomizing a liquid simultaneously with heat exchange. Furthermore, it is possible to provide a heat exchanger in which the length and inner diameter can be easily adjusted according to the application.
  • FIG. 3 is a schematic side sectional view of the heat exchanger 10 according to the first embodiment of the present invention.
  • the heat exchanger 10 of the present invention includes a spray nozzle 15 serving as a fluid inlet, an outlet pipe 16 serving as a fluid outlet, and a cylindrical chamber 17.
  • the spray nozzle 15 is in fluid communication with the fluid supply pipe 14 and sprays fluid into the chamber 17.
  • the fluid to be sprayed is a liquid
  • the total surface area when the mist diameter is 30 ⁇ m is about 2.6 times the total surface area when the mist diameter is 80 ⁇ m.
  • the spray nozzle 15 is preferably made of a material such as a resin having a low thermal conductivity. This is because when the spray nozzle 15 is heated, there is a problem that a reaction occurs in the nozzle portion and a blockage occurs.
  • the spray nozzle 15 can be selectively used as a one-fluid nozzle or a two-fluid nozzle depending on the application.
  • the outlet pipe 16 having an orifice maintains the internal pressure of the chamber 17 at a higher pressure (for example, atmospheric pressure + 0.15 to 0.25 atm) than the atmospheric pressure by restricting the outlet of the chamber 17.
  • the heat source 13 installed around the side of the chamber 17 exchanges heat with the inner space of the chamber 17 via the cylindrical inner wall member 11 and the heat transfer member 12.
  • the heat source 13 may be a heating source (for example, a stainless steel heater plate having a nichrome wire with a capacity of 2 kW) or a heat absorbing source (for example, a cooler plate having a flow path through which an antifreeze liquid or a gas refrigerant circulates).
  • a heating source for example, a stainless steel heater plate having a nichrome wire with a capacity of 2 kW
  • a heat absorbing source for example, a cooler plate having a flow path through which an antifreeze liquid or a gas refrigerant circulates.
  • the inner wall member 11 is made of, for example, a metal (including an inner wall surface coated with a resin) or a resin.
  • the heat transfer member 12 is made of a material having better thermal conductivity than the inner wall member 11.
  • the cylindrical chamber 17 is configured with a length sufficient to cause convection in the internal space, and is closed by an upper flange portion 18 and a lower flange portion 19.
  • a plurality of chambers can be connected by a flange portion.
  • the heat exchanger of the present invention is an atomizer type heat exchanger that realizes highly efficient heat exchange using all the methods (1) to (3).
  • the fluids to be heat exchanged by the heat exchanger are liquid and gas.
  • heat exchange may or may not involve phase change. Specifically, liquid is introduced and gas is discharged, liquid is introduced and liquid is discharged, liquid is introduced and steam is discharged, and gas is introduced. It is disclosed that the heat exchange is performed in such a manner that the liquid is discharged, the gas is introduced, and the gas is discharged. In this mode, the liquid is introduced and the liquid is discharged.
  • the fluid of a ° C. introduced into the spray nozzle is injected from the spray nozzle 15 into the heat exchange chamber 17, collides with the inner wall of the heat exchange chamber 17, and is heat exchanged.
  • the fluid that has just been sprayed from the spray nozzle 15 and has not reached the desired b ° C. undergoes heat exchange with the gas (including mist) that has reached the desired temperature near b ° C. by air contact.
  • the heat exchange chamber 17 is a closed space provided with an orifice opening. A swirling flow is generated in the heat exchange chamber 17 by the action of the orifice, and heat exchange is performed with high efficiency (swirl effect).
  • the swirl effect is particularly effective in an aspect in which liquid is introduced and gas is discharged, and an aspect in which liquid is introduced and vapor is discharged.
  • the fluid swirling in the heat exchange chamber 17 is subjected to heat exchange by making physical contact with the inner wall of the heat exchange chamber 17.
  • the fluid that has reached the desired temperature b ° C. through the above process flows out from the outlet of the outlet pipe 16 having an orifice.
  • a heat transfer member 12 that transfers heat from the heat source 13 to the inner wall member 11 is disposed on the inner surface of the cylindrical heat source 13. That is, the heat transfer member 12 is disposed so that the zigzag surface is in contact with the space and the flat surface is in contact with the heat source 13.
  • the zigzag shape refers to a structure in which annular peaks are continuous in the longitudinal direction of the outer surfaces of the inner wall member 11 and the heat transfer member 12 (that is, a structure in which peaks and valleys are alternately continued).
  • the structure in which the annular ridges are continuous includes a case where ridges and grooves are formed in a spiral shape like a thread ridge and a groove.
  • the zigzag structure is used so that the surface areas of the outer surface of the inner wall member 11 and the heat transfer member 12 are, for example, 1.5 to 3 times the surface area of the outer surface of a cylindrical body having the same diameter without a mountain (convex portion). Form.
  • the heat exchange efficiency on the surface is improved.
  • the heat transfer member 12 is made of a material having a better thermal conductivity than the inner wall member 11.
  • the better heat conductivity is a relative comparison of the values of both materials, and an absolute value is specified. It is not something.
  • the thermal conductivity of plastic is about 0.2 W / (m ⁇ K), about 0.25 fluorine resin, about 47 carbon steel, about 15 stainless steel, aluminum 237, pure copper 386, Pyrex glass (PYREX: A value of about 1 is usually indicated.
  • the material may be selected in consideration of the relative thermal conductivity. Since the fluororesin has a low value, the material of any material is used when the fluororesin is used as the inner wall member 11. Even if the heat transfer member 12 is adopted, the thermal efficiency is improved.
  • the heat transfer member is made of a metal having a higher thermal conductivity than the material of the inner wall member 11, such as carbon steel, aluminum, or pure copper
  • the heat transfer member 12 can be selected.
  • the material (material) of the heat transfer member 12 is preferably as the heat conductivity is higher.
  • a heat exchanger in which the contact surface of the inner wall member 11 is coated with fluorine resin and the inner wall member 11 itself is made of stainless steel is known.
  • a plate having a corrosion-resistant coating made of 8 mm stainless steel and fluorine resin is known.
  • the overall heat transfer coefficient is measured, it is 1070 W / (m 2 ⁇ K) for stainless steel alone, but when the 500 ⁇ m corrosion resistant coating is provided, the coefficient is 291 and the heat transfer amount is 1/3. It has been. It has also been reported that when a 50 ⁇ m corrosion resistant coating is provided, the heat transfer coefficient is 845. Therefore, it is preferable to make the distance between the heat transfer member 12 and the heat exchange fluid as close as possible.
  • the inner wall member 11 is made of a material that is stable with respect to the heat exchange fluid 7. That is, a material that does not react with the inner surface of the inner wall member 11 and the heat exchange fluid or a material that does not elute components of the inner wall member 11 from the inner surface is selected in a temperature range where heat exchange is performed.
  • the reactivity (corrosiveness) of the heat exchange fluid varies depending on the material of the surface of the heat transfer structure and the contact temperature, and the allowable range of purity after heat exchange also depends on the application and properties of the heat exchange fluid 7. Because they are different, it is not possible to specify them in general.
  • a metal halide or an etching agent used for manufacturing a semiconductor device uses a high-purity substance, so that a decrease in purity due to heat exchange treatment is not allowed.
  • a heat exchanger for turbines changes in the purity of the heat exchange fluid due to the heat exchange process are often not a problem.
  • the material (material) of the inner wall member 11 is appropriately selected from metals such as iron, carbon steel, stainless steel, aluminum and titanium, synthetic resins such as fluorine resin and polyester, ceramics, etc. In the case of exchanging heat with highly corrosive acids, it is preferable that at least the inner surface portion is made of a fluorine resin.
  • fluorine resin examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polychlorotrifluoroethylene ( PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), tetrafluoroethylene-ethylene copolymer (ETFE), polyvinyl fluoride (PVF), fluorinated polypropylene (FLPP), polyvinylidene fluoride (PVDF), etc. Can be illustrated.
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PCTFE polychlorotrifluoroethylene
  • ECTFE ethylene-ch
  • the inner wall member 11 has a zigzag structure on the inner peripheral wall of the heat exchange chamber 17. That is, the inner surface of the inner wall member 11 has a structure in which an annular crest is continuous in the longitudinal direction.
  • FIG. 4 a configuration example is disclosed in which the inner surface of the inner wall member 11 in contact with the heat exchange fluid 7 has a zigzag structure in which an equilateral triangle with a cross section of 2 mm is continuous, and the surface area is doubled.
  • the surface area of the inner surface of the inner wall member 11 is twice that of the flat inner surface without the zigzag structure, so that the heat exchange efficiency can be doubled.
  • the zigzag structure of the inner wall member 11 is not limited to that shown in FIG. 4, and the zigzag structure is such that the surface area of the inner surface of the inner wall member 11 is, for example, 1.5 to 3 times that of the inner surface without peaks (convex parts). Is disclosed.
  • the heat exchange chamber 17 may be constituted by a detachable cylindrical member, and a plurality of cylindrical members having different pitches may be prepared.
  • FIG. 5 is a graph showing the difference in heating ability between when the unevenness (zigzag structure) is provided on the inner peripheral wall of the heat exchange chamber 17 and when it is not provided.
  • the heat exchange fluid 7 is water
  • the temperature of the heater as the heat source 13 is set to 150 ° C.
  • the water temperature at the chamber outlet is measured.
  • the temperature increase rate is 54.3 to 58.5%.
  • the temperature increase rate was 45.0 to 48.5% when the unevenness was not provided.
  • the test results in FIG. 5 are for the case where the inner wall member 11 is of a metal type (SUS316), but generally the difference in temperature rise rate when the inner wall member is of a metal free type (PTFE) is about 10%.
  • the temperature rise rate when the inner wall member is a metal-free type is estimated to be about 45 to 50%.
  • the internal pressure in the chamber 17 is increased by restricting the outlet of the chamber 17 with the orifice 16.
  • constricting the outlet of the chamber 17 with the orifice 16 leads to an increase in internal pressure, which is disadvantageous for atomizing or vaporizing the liquid, but on the other hand, convection is generated, thereby increasing the heating efficiency.
  • the outlet of the chamber 17 is appropriately narrowed by the orifice 16 to realize high-efficiency heat exchange in harmony with atomization or vaporization performance reduction and heating efficiency improvement.
  • FIG. 6 is a graph showing the relationship between orifice orifice diameter and spray nozzle flow rate.
  • the relationship between the spray nozzle flow rate and the orifice throttle diameter is presumed not to change even when the chamber inner diameter or the differential pressure changes.
  • the heat exchange fluid 7 in the present invention is not particularly limited, and examples thereof include hydrochloric acid, sulfuric acid, nitric acid, chromic acid, phosphoric acid, hydrofluoric acid, acetic acid, perchloric acid, hydrobromic acid, and fluorination.
  • Examples include solutions or gases such as corrosive acids such as silicic acid and boric acid, alkalis such as ammonia, potassium hydroxide and sodium hydroxide, and metal salts such as chlorinated silicon, and high-purity water.
  • These heat exchange fluids are used as raw materials for reaction with other substances or as chemicals used in reaction processes such as etching liquids, and are used for purposes that are controlled to an appropriate temperature by a heat exchanger.
  • the heat exchanger of the present invention can heat, cool, or control the temperature of these heat exchange fluids with high efficiency and without contamination by trace impurities.
  • tin tetrachloride (SnCl 4 ) used in the TCO (transparent electrode film) SiO 2 film forming process is difficult to control ON / OFF because the vaporization is controlled by the conventional bubbling method, and the concentration also changes over time.
  • the heat exchanger 10 of the present invention the problem can be solved and the yield can be improved, although the purity of SnCl 4 is unstable and the product is deposited inside the injector. It becomes possible.
  • FIG. 7 is a side schematic cross-sectional view illustrating the configuration of the heat exchanger 20 according to the second embodiment of the present invention.
  • the heat exchanger 20 is an atomizer type heat exchanger, and includes a cylindrical chamber portion 24, a spray nozzle 25, and an orifice 26 provided at the lower end of the chamber portion 24 as main components.
  • the spray nozzle 25 is a two-fluid nozzle.
  • a pressurized gas such as nitrogen gas is supplied from a gas supply pipe 61 communicating with the gas supply apparatus 60, and a liquid supply pipe 62 communicating with a liquid reservoir (not shown). Pressurized liquid is supplied.
  • the inner wall of the heat exchange chamber 27 is constituted by a heat transfer inner wall 21 having a zigzag structure.
  • This zigzag structure is preferably provided in a portion that occupies half or more of the total area of the inner surface of the heat exchange chamber 27, and more preferably in a portion that occupies 2/3 or more of the total area of the inner surface.
  • the heat transfer inner wall 21 may be made of a single material, or, as in the first embodiment, the chamber side is made of a first material that is highly corrosive, and the side in contact with the heat source 22 is the first material. In some cases, the second material may have a higher thermal conductivity than the material.
  • the length of the heat exchange chamber 27 in the vertical direction is preferably 50 cm or less.
  • the heat transfer inner wall 21 is covered with a heat source 22, and the liquid vaporized or atomized in the heat exchange chamber exchanges heat with the heat transfer inner wall 21 while convection.
  • the heat source 22 is a heater or a cooler that covers the heat transfer inner wall 21, for example, a curved plate-like heat source configured by a heating wire or Peltier, and a spiral flow path in a cylindrical member having a convection space. And a structure in which a gas or liquid for heat exchange flows and a tube in which a gas or liquid for heat exchange flows are spirally wound around the cylindrical member.
  • the length of the heat source 22 in the vertical direction is preferably set to a length that covers the entire heat exchange chamber 27 or substantially the whole.
  • the outer surface of the heat source 22 is covered with a heat insulating material 23 so as not to be affected by the outside air temperature.
  • the spray nozzle 25 and the orifice 26 are provided so as to face each other at the center of the chamber portion 24 in the vertical direction.
  • a spray nozzle made of metal or Teflon (registered trademark) with a flow rate of several tens g / min is used.
  • FIG. 8 is a diagram illustrating a vaporization performance test method for the heat exchanger 20 according to the second embodiment.
  • pressurized nitrogen gas and water are supplied to the spray nozzle 25 of the second embodiment and the comparative example 1, sprayed into the heat exchange chamber 27, and glass is discharged from the outlet pipe 16 communicating with the orifice 26.
  • the fluid was jetted onto the plate, and the glass surface was visually determined.
  • Judgment criteria are as follows.
  • the heat exchanger 20 of the present embodiment example having a zigzag structure on the inner wall surface of the chamber has high vaporization performance.
  • FIG. 9 is a schematic side cross-sectional view showing the configuration of the heat exchanger 30 according to the third embodiment.
  • the heat transfer member 32 that transfers the heat from the heat source 33 into the chamber 37 is disposed above the heat exchange chamber 37 (near the discharge port of the spray nozzle 35). Yes.
  • the vertical length of the heat transfer member 32 is configured to be shorter than the length of the heat source 33.
  • the length of the heat source 33 is not limited to the illustrated mode.
  • the vertical length of the heat transfer member 32 is provided so as to cover 1/5 to 1/2 of the vertical length of the heat exchange chamber 37. Is disclosed.
  • the heat transfer member 32 is made of a material having a higher thermal conductivity than the inner wall member 31.
  • the inner wall member 31 is made of stainless steel and the heat transfer member 32 is made of copper.
  • the inner wall surface of the inner wall member 31 has a zigzag structure to increase the surface area, thereby increasing the heat exchange capability.
  • the contact surface between the inner wall member 31 and the heat transfer member 32 is a flat surface.
  • the contact surface between the inner wall member 31 and the heat transfer member 32 has a zigzag structure. This is preferable from the viewpoint of replacement.
  • the heat exchange capability of the inner wall surface of the part which the mist ejected from the spray nozzle 35 collides increases, it is possible to perform heat exchange efficiently. That is, compared with the bottom part of the heat exchange chamber 37, the upper part of the heat exchange chamber 37 has a large temperature difference from the desired temperature (a heat exchange is necessary), and thus the heat exchange capacity of the upper part of the heat exchange chamber 37 is increased. This makes it possible to distribute a large amount of heat to the necessary places. Moreover, at the time of cooling, the synergistic effect with the natural cooling by the heat of vaporization when a fluid turns into a mist form can be expected. That is, it contributes to a reduction in operating energy of the heat exchanger.
  • An orifice 36 is provided at the outlet of the heat exchange chamber 37 to cause convection in the sprayed fluid to be heated. The heated fluid that has undergone heat exchange in the heat exchange chamber 37 is sent out from the outlet pipe 38.
  • FIG. 10 is a side view of the heat exchanger 100 according to the fourth embodiment.
  • the heat exchanger 100 of the fourth embodiment is a connected heat exchanger that can adjust the length of the heat exchange chamber 47.
  • the 1st block 110, the 2nd block 120, and the 3rd block 130 are being fixed by the connecting rod 53 which penetrates the flange part of each block.
  • the upper part of the first block 110 is closed by a plate flange 111, and the lower part of the third block 130 is closed by a plate flange 131.
  • the heat exchange chamber is configured by connecting three blocks.
  • the present invention is not limited to this, and the number of blocks may be one or more.
  • FIG. 11 is a diagram showing the configuration of one block (110, 120, 130), where (a) is a plan view and (b) is a side sectional view.
  • the upper flange 48 is an industrial standard product including JIS, JPI, ANSI, and ISO provided with twelve bolt holes 112. The length in the vertical direction of one block is, for example, 20 to 40 cm.
  • the upper flange 48 is fixed to the upper end portion of the side wall 41 of the heat exchange chamber by welding.
  • the corrugated resin pipe constituting the side wall 41 is a pipe having dimensions of industrial standards including JIS, ANSI, and ISO, and the manufacturing cost can be remarkably suppressed while the inner peripheral wall of the heat exchange chamber 47 has a zigzag structure. .
  • a lower flange 49 of a JIS 5K type is fixed to the lower end portion of the side wall 41 by welding.
  • the side wall 41 and the flanges 48 and 49 are both made of PVC (polyvinyl chloride), and the inner diameter of the heat exchange chamber 47 defined by the side wall 41 is ⁇ 253 mm.
  • the side wall 41 and the flanges 48 and 49 can be made of industrial standard size products, so that the length and the inner diameter can be easily adjusted according to the application.
  • a large number of annular grooves are formed in the length direction on the outer periphery of the side wall 41, and these annular grooves are filled with a heat transfer member 42.
  • a heat transfer member 42 for example, use of a heat transfer cement or a heat conductive adhesive is disclosed.
  • the outer peripheral surfaces of the side wall 41 and the heat transfer member 42 are covered with a cylindrical heat conduction jacket 43 so as to be in surface contact.
  • the heat conduction jacket 43 is made of a metal having good heat conductivity, such as carbon steel, aluminum, or pure copper.
  • a spiral groove is formed in the heat conduction jacket 43, and the heat medium pipe 44 is wound at a high density along the spiral groove.
  • the heat medium pipe 44 is pressed against the heat conduction jacket 43 by the cylindrical pressing member 45, and even if expansion due to heat occurs, the contact between the heat conduction jacket 43 and the heat medium pipe 44 is maintained. ing.
  • the heat medium pipe 44 is made of copper
  • the pressing member 45 is made of SUS.
  • the heat medium pipe 44 is connected to a supply pipe 51 that supplies the refrigerant or the heat medium and a delivery pipe 52 that sends the refrigerant or the heat medium to the next place.
  • the heat medium pipe 44 that performs heat exchange in each block is configured by a single pipe connected between the blocks, but is not limited thereto, and is connected to an independent heat exchange medium supply source. You may comprise, and you may comprise so that it may connect with the independent heat exchange medium supply source in multiple units.
  • the first block 110 located at the uppermost stage is provided with a drill-type spray nozzle extending in the vertical direction.
  • the spray nozzle has a tapered shape, and has a discharge channel that is a tapered space communicating with the fluid supply channel at the center, and includes a discharge port that opens spirally.
  • Table 3 shows the results of measuring the outlet temperature by using the apparatus of this embodiment and testing at a set temperature of ⁇ 5 ° C. and a flow rate of 15 to 30 L / min.
  • ethylene glycol is used as the refrigerant
  • other refrigerants may be used.
  • the amount of heat taken from the fluid to be cooled was found to be 1500 W or more in the entire flow rate range, and the heat conversion rate was 50% or more.
  • a heat exchanger that mainly performs heat exchange of liquids such as chemicals and pure water.
  • a heated steam generator for generating steam having a boiling point or higher, which is used for sterilization, cooking, and drying in the food field and the like.
  • a vaporizer that efficiently vaporizes a precursor in a semiconductor / solar cell material or the like.
  • a device for producing ozone water, hydrogen water or the like that creates the most active condition (temperature) of the material to be mixed and efficiently mixes two kinds of fluids.
  • a heavy metal concentrator for wastewater treatment or the like that creates a state in which heavy metal and water are easily separated by raising the temperature to water vapor and efficiently recovers heavy metal by passing water vapor through the separator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

[Problem] To provide a heat exchange technique with which a highly efficient heat exchange can be achieved without corrosion of the device by the fluid subjected to heat exchange, and a technical means for vaporizing and atomizing a fluid simultaneous with the exchange of heat, and a heat exchanger for which the heat exchange capability can be adjusted in accordance with the use. [Solution] A heat exchanger equipped with: a chamber; a nozzle that sprays a pressurized fluid, supplied from a fluid supply path, into the chamber; a thermal source that imparts heat or cold to the atomized fluid in the chamber; and a orifice that is connected to an outlet through which fluid in the chamber is discharged, and that keeps the interior of the chamber at a higher pressure than atmospheric pressure.

Description

高効率熱交換器および高効率熱交換方法High efficiency heat exchanger and high efficiency heat exchange method
 本発明は、適用分野が限定されることのない熱交換技術に関するものである。特に、酸やアルカリなどの腐食性物質の気体または液体の熱交換や、高純度水、半導体を製造する際の高純度ケイ素化合物などを温度制御する際に有用であり、熱交換の際に生起する装置類の腐食や高純度物質の汚染の問題の解決および熱交換率の向上が実現される。
 すなわち、本発明は、物質の冷却、加熱や温度調節を必要とする技術分野全般において、装置の腐食、不純物による汚染が少なく高効率の熱交換器および熱交換方法を提供することができる。
 なお、本明細書では、加熱源のみならず、吸熱源も含めて「熱源」と呼ぶ場合がある。また、本明細書における「流体」には、加熱または吸熱により相変化(例えば、液体から気体への相変化)を伴うものも含まれる。
The present invention relates to a heat exchange technique in which the field of application is not limited. It is particularly useful for heat exchange of gases or liquids of corrosive substances such as acids and alkalis, temperature control of high-purity water, high-purity silicon compounds when manufacturing semiconductors, etc. To solve the problems of corrosion of equipment and contamination of high-purity substances and to improve the heat exchange rate.
That is, the present invention can provide a high-efficiency heat exchanger and heat exchange method with less corrosion of the apparatus and contamination by impurities in all technical fields that require cooling, heating, and temperature control of substances.
In this specification, not only a heat source but also a heat absorption source may be referred to as a “heat source”. In addition, the “fluid” in the present specification includes those accompanied by a phase change (for example, a phase change from liquid to gas) by heating or endotherm.
 熱交換器は温度の異なる2つの物体を直接または間接的に接触させて熱を伝達して一方の物体を加熱あるいは冷却する装置であり、ボイラー、蒸気発生器、食品製造や化学薬品製造、冷蔵保管といった産業用として、冷却工程、加熱工程、冷蔵に使用されている。
 熱交換器は、通常、被熱交換物質の特性に応じた構造を備えたものであり、例えば、弗化水素酸、硝酸、硫酸などの腐食性の大きい薬液に対して熱交換を行う薬液用熱交換器としては、耐薬品性のある熱交換器を用いて腐食性の高い強酸、強アルカリなどの流体を加熱および冷却する必要があり、この場合は、酸やアルカリに侵されにくい樹脂材料からなる接触部材料を熱媒体中に浸し熱交換を行う間接加熱が代表的なものである。
A heat exchanger is a device that heats or cools one object by directly or indirectly contacting two objects with different temperatures, and heats or cools one object. Boilers, steam generators, food production, chemical production, refrigeration For industrial use such as storage, it is used for cooling, heating, and refrigeration.
A heat exchanger usually has a structure corresponding to the characteristics of the heat exchange material. For example, for a chemical solution that performs heat exchange with a highly corrosive chemical solution such as hydrofluoric acid, nitric acid, and sulfuric acid. As a heat exchanger, it is necessary to heat and cool fluids such as highly corrosive strong acids and strong alkalis using chemical resistant heat exchangers. In this case, resin materials that are not easily affected by acids and alkalis. The indirect heating in which the contact portion material made of is immersed in a heat medium to perform heat exchange is typical.
 図1は、代表的な間接熱交換を示した模式図であり、樹脂製管1内を被熱交換流体(酸、アルカリ、水など)が入り口2から出口3へと搬送される間に、熱源5により温度が調整された熱媒体4により樹脂製管1を介して熱交換が行われる。この方法は接触側の樹脂製パイプ1の表面積を増やすこと、例えば、熱媒体4中の管1を長くすることで熱媒体4との接触面積を増加させて熱交換効率を向上させることが出来るが、それにより、熱源で流体を温度調節する装置や容器類を含めてコスト的にも高価な装置となることがある。また、熱媒体を介さないで直接熱源との熱交換をする直接加熱方式の代表的な例を図2に示すと、被熱交換流体に対して耐食性が良好な材質からなり、温度特性に優れた材料からなる管1に熱源5が接触して直接熱交換する。
 いずれの方式においても、被熱交換流体あるいは熱交換媒体により搬送管などの装置が腐食されないこと、熱交換工程において被熱交換流体を汚染することがないこと、および熱交換が効率よく行われること、が必要となる。
FIG. 1 is a schematic diagram showing a typical indirect heat exchange. While a heat exchange fluid (acid, alkali, water, etc.) is conveyed from the inlet 2 to the outlet 3 in the resin pipe 1, FIG. Heat exchange is performed through the resin pipe 1 by the heat medium 4 whose temperature is adjusted by the heat source 5. This method can increase the surface area of the resin pipe 1 on the contact side, for example, lengthen the pipe 1 in the heat medium 4 to increase the contact area with the heat medium 4 and improve the heat exchange efficiency. However, this may result in a costly device including a device and containers for adjusting the temperature of the fluid with a heat source. A typical example of a direct heating method in which heat is exchanged directly with a heat source without using a heat medium is shown in FIG. 2 and is made of a material having good corrosion resistance with respect to the heat exchange fluid, and has excellent temperature characteristics. The heat source 5 comes into contact with the tube 1 made of the above material to exchange heat directly.
In any method, the heat exchange fluid or the heat exchange medium does not corrode the equipment such as the transfer pipe, the heat exchange process does not contaminate the heat exchange fluid, and the heat exchange is performed efficiently. ,Is required.
 そこで、搬送管が熱交換媒体あるいは被熱交換流体により腐食などの影響がなされないように、搬送管を樹脂やセラミックス類で被覆して保護することが行われている。
 例えば、弗素樹脂は、各種の薬剤に対して耐食性および耐熱性に優れることが知られているが、搬送管を弗素樹脂のみで構成すると、弗素樹脂自体が本来熱の不良導体であるために熱交換効率が低く、所定温度に到達するために長時間を要し、また所定温度での温度制御の精度も悪いという欠点を改善するために、弗素樹脂を熱伝導性の良好な金属などの表面に被膜形成する提案が数多くなされてきた。
 例えば、基体上に弗素樹脂を含有する少なくとも2層の塗膜を有するガス使用設備用部材において、基材上に塗装される最下層膜から最上層膜に従って、各層中弗素樹脂の含有量を順次増大させ、且つ無機充填剤の含有量を順次減少させた塗膜を有する熱交換器などとして用いられるガス使用設備用部材(特許文献1)や、
Therefore, the transport pipe is protected by being covered with a resin or ceramics so that the transport pipe is not affected by the heat exchange medium or the heat exchange fluid.
For example, fluororesins are known to be excellent in corrosion resistance and heat resistance against various chemicals. However, if the transport tube is made of only fluororesin, the fluororesin itself is a poor conductor of heat. In order to improve the disadvantages of low exchange efficiency, long time to reach the specified temperature, and poor temperature control accuracy at the specified temperature, the fluororesin is used on the surface of metal with good thermal conductivity. Many proposals have been made to form a film.
For example, in a gas-use facility member having at least two layers of a coating film containing a fluorine resin on a substrate, the content of the fluorine resin in each layer is sequentially changed in accordance with the uppermost layer film from the lowermost layer film coated on the substrate. Gas use equipment member (Patent Document 1) used as a heat exchanger or the like having a coating film that is increased and the content of inorganic filler is sequentially reduced,
 耐食性が優れたアルミニウム合金材および腐食性を有する流体を媒体とする伝熱部に前記アルミニウム合金材を用いたプレートフィン式熱交換器、プレート式熱交換器を提供するものであって、腐食性を有する流体を媒体とする伝熱部を用いたプレートフィン式熱交換器、プレート式熱交換器などに用いるアルミニウム合金材表面に、有機ホスホン酸下地皮膜を有し、更にその上に、乾燥後の膜厚で1~100μmの平均厚みの弗素樹脂塗料皮膜を有して、塗膜密着の耐久性を向上させて、海水などの腐食性を有する流体に対する耐食性が優れるものとすること(特許文献2)が提案されている。
 このように、熱伝導の良い金属に樹脂コーティングする方法が一般的にあるが、2種類の材料の熱膨張が異なることから、膨張収縮に対応しがたくコーティング層が剥離することがあり、金属部の腐食および金属類による汚染の原因となる問題が生じることがある。更にこの方法では、樹脂コーティング部のピンホールからの対象流体が浸透し同様の問題が避けられない。
The present invention provides a plate fin type heat exchanger and a plate type heat exchanger using the aluminum alloy material in a heat transfer part using an aluminum alloy material having excellent corrosion resistance and a corrosive fluid as a medium. It has an organic phosphonic acid undercoat on the aluminum alloy material surface used in plate fin type heat exchangers, plate type heat exchangers, etc. using a heat transfer part with a fluid as a medium, and further after drying It has a fluorine resin paint film with an average thickness of 1 to 100 μm and improves the durability of the adhesion of the paint film, and has excellent corrosion resistance against corrosive fluids such as seawater (Patent Literature) 2) has been proposed.
As described above, there is a general method of resin coating on a metal having good thermal conductivity. However, since the two materials have different thermal expansion, the coating layer may peel off in response to expansion and contraction. Problems that cause corrosion of parts and contamination by metals may occur. Furthermore, in this method, the target fluid from the pinhole in the resin coating portion permeates and the same problem cannot be avoided.
特開2004-283699号公報JP 2004-283699 A 特開2008-156748号公報JP 2008-156748 A
 従来の熱交換器では被熱交換流体を熱交換する際に流体が接触する部材を熱源、冷媒などの熱媒体に接触させ熱交換する方法が一般的であり、接触部材の材質は流体の特性に合わせて選択されていた。しかしながら、選択した接触部材の材質が必ずしも熱伝導に優れていると限らず、その場合には、例えば、熱源である電熱ヒーターを多数使用したり、容量の大きい電熱ヒーターを用いることにより熱伝導の低い部材の欠点を補うことが必要となることがあった。そうすると、熱交換でのエネルギー効率は低く、機器も大型となることにしばしば遭遇した。 In a conventional heat exchanger, when heat exchange is performed on a heat exchange fluid, a method of exchanging heat by bringing a member in contact with the fluid into contact with a heat medium such as a heat source or a refrigerant is generally used. It was selected according to. However, the material of the selected contact member is not necessarily excellent in heat conduction. In this case, for example, a large number of electric heaters that are heat sources or a large-capacity electric heater can be used. It may be necessary to compensate for the disadvantages of low members. As a result, it was often encountered that the energy efficiency of heat exchange was low and the equipment was large.
 本発明は、被熱交換流体による機器の腐食が無く、また、高効率な熱交換を実現可能とする熱交換技術を提供することを目的とする。
 また、本発明は、熱交換と同時に液体を気化ないし霧化する技術手段を提供することを目的とする。
 さらに、用途に応じて熱交換能力を調節することができる熱交換器を提供することを目的とする。
It is an object of the present invention to provide a heat exchange technique that does not cause corrosion of equipment due to a heat exchange fluid and that can realize highly efficient heat exchange.
Another object of the present invention is to provide technical means for vaporizing or atomizing a liquid simultaneously with heat exchange.
Furthermore, it aims at providing the heat exchanger which can adjust heat exchange capability according to a use.
 本発明は以下に記載の技術的事項から構成される。
 第1の発明は、チャンバーと、流体供給路から供給された加圧流体をチャンバー内に噴霧するノズルと、チャンバーに噴霧された流体に熱または冷熱を与える熱源と、チャンバー内の流体を排出する出口と連通し、チャンバー内を大気圧と比べ高圧に維持するオリフィスとを備える熱交換器である。
 第2の発明は、第1の発明において、チャンバー内で対流を生じさせることにより熱交換を行うことを特徴とする
 第3の発明は、第2の発明において、前記ノズルの流量が、前記オリフィスの絞り径の2乗と実質的に正比例することを特徴とする。
 第4の発明は、第1の発明において、前記流体供給路から供給される加圧流体が、加圧液体であり、前記ノズルが、前記加圧液体を直径が20~60μmのミストにして噴霧するノズルであることを特徴とする。
 第5の発明は、第1ないし4のいずれかの発明において、チャンバーの内壁面が、ジグザグ構造であることを特徴とする。
The present invention is composed of the technical matters described below.
1st invention discharges the fluid in a chamber, the nozzle which sprays the pressurized fluid supplied from the fluid supply path in the chamber, the heat source which gives heat or cold to the fluid sprayed to the chamber, and the chamber The heat exchanger includes an orifice that communicates with an outlet and maintains an interior of the chamber at a higher pressure than atmospheric pressure.
According to a second invention, in the first invention, heat exchange is performed by generating convection in a chamber. The third invention is the second invention, wherein the flow rate of the nozzle is the orifice. It is characterized in that it is substantially directly proportional to the square of the aperture diameter.
According to a fourth invention, in the first invention, the pressurized fluid supplied from the fluid supply path is a pressurized liquid, and the nozzle sprays the pressurized liquid using a mist having a diameter of 20 to 60 μm. It is characterized by being a nozzle.
According to a fifth invention, in any one of the first to fourth inventions, the inner wall surface of the chamber has a zigzag structure.
 第6の発明は、第1ないし4のいずれかの発明において、前記チャンバーの内壁面を構成する内壁部材と、内壁部材に熱源からの熱を伝熱する熱伝導体とを備え、熱伝導体が、内壁部材より熱伝導率の良い材料からなることを特徴とする。
 第7の発明は、第6の発明において、内壁部材と接触する熱伝導体の面が、ジグザグ構造の面であり、熱伝導体と接触する内壁部材の面が、ジグザグ構造の面であることを特徴とする。
 第8の発明は、第1ないし4のいずれかの発明において、前記ノズルが、流体供給路から供給された流体の一部がチャンバー内壁面に衝突するように噴霧する拡散ノズルであることを特徴とする。
 第9の発明は、第8の発明において、ノズルから噴霧された流体が衝突する部分に、鉛直方向の長さが熱源よりも短い熱伝導体が配置されることを特徴とする。
 第10の発明は、第1ないし4のいずれかの発明において、前記チャンバーが、中空のブロックを複数連結して構成されることを特徴とする。
 第11の発明は、第10の発明において、前記ブロックが工業規格により規定された寸法を有する管であることを特徴とする。
 第12の発明は、第11の発明において、前記ブロックが、端部に設けられた一対のフランジを備え、当該フランジが工業規格により規定された寸法を有することを特徴とする。
A sixth invention is the invention according to any one of the first to fourth inventions, comprising: an inner wall member constituting the inner wall surface of the chamber; and a heat conductor that transfers heat from a heat source to the inner wall member. Is made of a material having a higher thermal conductivity than the inner wall member.
According to a seventh aspect, in the sixth aspect, the surface of the heat conductor in contact with the inner wall member is a surface of a zigzag structure, and the surface of the inner wall member in contact with the heat conductor is a surface of a zigzag structure. It is characterized by.
According to an eighth invention, in any one of the first to fourth inventions, the nozzle is a diffusion nozzle that sprays so that a part of the fluid supplied from the fluid supply path collides with the inner wall surface of the chamber. And
A ninth invention is characterized in that, in the eighth invention, a heat conductor having a vertical length shorter than that of the heat source is arranged at a portion where the fluid sprayed from the nozzle collides.
A tenth invention is characterized in that, in any one of the first to fourth inventions, the chamber is constituted by connecting a plurality of hollow blocks.
An eleventh invention is characterized in that, in the tenth invention, the block is a pipe having a dimension defined by an industry standard.
According to a twelfth aspect, in the eleventh aspect, the block includes a pair of flanges provided at end portions, and the flanges have dimensions defined by an industry standard.
 第13の発明は、第1ないし4のいずれかの発明に係る熱交換器を用いて、ノズルからチャンバー内に噴射した流体と伝熱型熱交換を行う熱交換方法である。
 第14の発明は、第4の発明に係る熱交換器を用いて、ノズルからチャンバー内に噴射した流体を気化すると共に熱交換を行う熱交換方法である。
A thirteenth aspect of the present invention is a heat exchange method for performing heat transfer type heat exchange with a fluid jetted from a nozzle into a chamber using the heat exchanger according to any one of the first to fourth aspects.
A fourteenth aspect of the invention is a heat exchange method that uses the heat exchanger according to the fourth aspect of the invention to vaporize the fluid ejected from the nozzle into the chamber and to exchange heat.
 本発明によれば、被熱交換流体による機器の腐食が無く、また、高効率な熱交換を実現することが可能となる。
 また、本発明は、熱交換と同時に液体を気化ないし霧化する技術手段を提供することが可能となる。
 さらに、用途に応じて長さおよび内径を簡単に調節できる熱交換器を提供することが可能となる。
According to the present invention, there is no corrosion of equipment due to a heat exchange fluid, and highly efficient heat exchange can be realized.
Further, the present invention can provide technical means for vaporizing or atomizing a liquid simultaneously with heat exchange.
Furthermore, it is possible to provide a heat exchanger in which the length and inner diameter can be easily adjusted according to the application.
従来の代表的間接加熱による熱交換を示す概略図である。It is the schematic which shows the heat exchange by the conventional typical indirect heating. 従来の代表的な直接加熱による熱交換を示す概略図である。It is the schematic which shows the heat exchange by the conventional typical direct heating. 第1実施形態例に係る熱交換器の側方概略断面図である。It is a side schematic sectional drawing of the heat exchanger which concerns on the example of 1st Embodiment. 熱交換チャンバーの内周壁のジグザグ構造を説明する模式断面図であって、表面積を2倍とする場合を説明する図である。It is a schematic cross section explaining the zigzag structure of the inner peripheral wall of a heat exchange chamber, Comprising: It is a figure explaining the case where a surface area is doubled. 熱交換チャンバーの内周壁に凹凸を設けた場合と設けない場合の加熱能力の違いを示すグラフである。It is a graph which shows the difference in the heating capability when not providing with the unevenness | corrugation in the inner peripheral wall of a heat exchange chamber. オリフィス絞り径とスプレーノズル流量の関係を示すグラフである。It is a graph which shows the relationship between an orifice aperture diameter and a spray nozzle flow rate. 第2実施形態例に係る熱交換器の構成を説明する側方概略断面図である。It is a side schematic sectional drawing explaining the structure of the heat exchanger which concerns on the example of 2nd Embodiment. 第2実施形態例に係る熱交換器の気化性能試験方法を説明する図である。It is a figure explaining the vaporization performance test method of the heat exchanger which concerns on the example of 2nd Embodiment. 第3実施形態例に係る熱交換器の構成を示す側方概略断面図である。It is a side schematic sectional drawing which shows the structure of the heat exchanger which concerns on the example of 3rd Embodiment. 第4実施形態例に係る熱交換器の側面図である。It is a side view of the heat exchanger which concerns on the example of 4th Embodiment. 一つのブロックの構成を示す図であって、(a)は平面図、(b)は側方断面図である。It is a figure which shows the structure of one block, Comprising: (a) is a top view, (b) is a sectional side view.
 以下では、本発明の熱交換器の実施形態例を説明する。
《第1実施形態例》
 図3は、本発明の第1実施形態例に係る熱交換器10の側方概略断面図である。
 図3に示すように、本発明の熱交換器10は、流体の流入口となるスプレーノズル15と、流体の流出口となる出口管16と、筒状のチャンバー17とを備えている。
 スプレーノズル15は、流体供給管14と流体的に連通され、チャンバー17内に流体を噴霧する。噴霧する流体が液体である場合、スプレーノズル15を通過する流体のミスト直径を小径とすることでミスト化された流体の表面積を大きくすることが好ましく、例えばミスト直径が20~60μm(好ましくは20~40μm)となるように設定する。ミスト直径が30μmの場合の総表面積は、ミスト直径が80μmの場合の総表面積の約2.6倍となる。さらに、スプレーノズル15は、熱伝導率の低い樹脂等の材料により構成することが好ましい。スプレーノズル15が加熱されると当該ノズル部分で反応が生じ、閉塞が生じるという課題があるからである。スプレーノズル15は、用途に応じて、一流体ノズルと二流体ノズルを使い分けることができる。
 オリフィスを有する出口管16は、チャンバー17の出口を絞ることにより、チャンバー17内圧を大気圧と比べ高圧(例えば、大気圧+0.15~0.25atm)に維持している。
Below, the embodiment of the heat exchanger of this invention is described.
<< First Embodiment >>
FIG. 3 is a schematic side sectional view of the heat exchanger 10 according to the first embodiment of the present invention.
As shown in FIG. 3, the heat exchanger 10 of the present invention includes a spray nozzle 15 serving as a fluid inlet, an outlet pipe 16 serving as a fluid outlet, and a cylindrical chamber 17.
The spray nozzle 15 is in fluid communication with the fluid supply pipe 14 and sprays fluid into the chamber 17. When the fluid to be sprayed is a liquid, it is preferable to increase the surface area of the misted fluid by reducing the mist diameter of the fluid passing through the spray nozzle 15, for example, the mist diameter is 20 to 60 μm (preferably 20 μm). To 40 μm). The total surface area when the mist diameter is 30 μm is about 2.6 times the total surface area when the mist diameter is 80 μm. Further, the spray nozzle 15 is preferably made of a material such as a resin having a low thermal conductivity. This is because when the spray nozzle 15 is heated, there is a problem that a reaction occurs in the nozzle portion and a blockage occurs. The spray nozzle 15 can be selectively used as a one-fluid nozzle or a two-fluid nozzle depending on the application.
The outlet pipe 16 having an orifice maintains the internal pressure of the chamber 17 at a higher pressure (for example, atmospheric pressure + 0.15 to 0.25 atm) than the atmospheric pressure by restricting the outlet of the chamber 17.
 チャンバー17の側方周囲に設置された熱源13は、筒状の内壁部材11および熱伝部材12を介してチャンバー17内空間と熱交換を行う。熱源13は、加熱源(例えば、容量2kWのニクロム線を有するステンレス製ヒータープレート)の場合もあれば、吸熱源(例えば、不凍液、ガス冷媒が循環する流路が張り巡らされたクーラープレート)の場合もある。内壁部材11は、例えば、金属(内壁面が樹脂コーティングされたものを含む)または樹脂により構成される。熱伝部材12は、後述するように、内壁部材11よりも熱伝導率の良い材質により構成される。
 筒状のチャンバー17は、内部空間で対流を生じさせるのに足りる長さをもって構成され、上方フランジ部18および下方フランジ部19で閉塞されている。好ましい態様の本発明は、フランジ部により複数のチャンバーを連結することが可能である。
The heat source 13 installed around the side of the chamber 17 exchanges heat with the inner space of the chamber 17 via the cylindrical inner wall member 11 and the heat transfer member 12. The heat source 13 may be a heating source (for example, a stainless steel heater plate having a nichrome wire with a capacity of 2 kW) or a heat absorbing source (for example, a cooler plate having a flow path through which an antifreeze liquid or a gas refrigerant circulates). In some cases. The inner wall member 11 is made of, for example, a metal (including an inner wall surface coated with a resin) or a resin. As will be described later, the heat transfer member 12 is made of a material having better thermal conductivity than the inner wall member 11.
The cylindrical chamber 17 is configured with a length sufficient to cause convection in the internal space, and is closed by an upper flange portion 18 and a lower flange portion 19. In the preferred embodiment of the present invention, a plurality of chambers can be connected by a flange portion.
 続いて、本発明の熱交換器10の熱交換メカニズムを説明する。流体の熱交換の態様としては、(1)衝突方式、(2)気中接触方式、(3)物理接触方式がある(図3参照)。本発明の熱交換器は、(1)~(3)の全ての方式を利用して高効率な熱交換を実現するアトマイザー型の熱交換器である。熱交換器が熱交換の対象とする流体は、液体および気体である。ここで熱交換は、相変化を伴う場合と伴わない場合があり、具体的には、液体を導入し気体を排出、液体を導入し液体を排出、液体を導入し蒸気を排出、気体を導入し液体を排出、気体を導入し気体を排出する態様で熱交換を行うことが開示されるが、最も好ましい態様は液体を導入し気体を排出する態様、液体を導入し蒸気を排出する態様または液体を導入し液体を排出する態様である。 Subsequently, the heat exchange mechanism of the heat exchanger 10 of the present invention will be described. There are (1) a collision method, (2) an air contact method, and (3) a physical contact method (see FIG. 3). The heat exchanger of the present invention is an atomizer type heat exchanger that realizes highly efficient heat exchange using all the methods (1) to (3). The fluids to be heat exchanged by the heat exchanger are liquid and gas. Here, heat exchange may or may not involve phase change. Specifically, liquid is introduced and gas is discharged, liquid is introduced and liquid is discharged, liquid is introduced and steam is discharged, and gas is introduced. It is disclosed that the heat exchange is performed in such a manner that the liquid is discharged, the gas is introduced, and the gas is discharged. In this mode, the liquid is introduced and the liquid is discharged.
 (1)スプレーノズルに導入されたa℃の流体は、スプレーノズル15から熱交換チャンバー17内に噴射され、熱交換チャンバー17の内壁に衝突し、熱交換される。(2)次に、スプレーノズル15から噴射されたばかりで所望のb℃に到達していない流体は、所望の温度b℃付近に到達した気体(霧を含む)と気中接触により熱交換を行う。ここで、熱交換チャンバー17はオリフィス開口が設けられた閉空間であり、オリフィスの作用により熱交換チャンバー17内には旋回流が発生し、高効率で熱交換が行われる(スワール効果)。スワール効果は、液体を導入し気体を排出する態様および液体を導入し蒸気を排出する態様で特に効果的である。(3)更に、熱交換チャンバー17内を旋回する流体は、熱交換チャンバー17の内壁と物理接触をすることにより、熱交換が行われる。
 以上の過程を経て所望の温度b℃に到達した流体が、オリフィスを有する出口管16の吐出口から流出されることとなる。
(1) The fluid of a ° C. introduced into the spray nozzle is injected from the spray nozzle 15 into the heat exchange chamber 17, collides with the inner wall of the heat exchange chamber 17, and is heat exchanged. (2) Next, the fluid that has just been sprayed from the spray nozzle 15 and has not reached the desired b ° C. undergoes heat exchange with the gas (including mist) that has reached the desired temperature near b ° C. by air contact. . Here, the heat exchange chamber 17 is a closed space provided with an orifice opening. A swirling flow is generated in the heat exchange chamber 17 by the action of the orifice, and heat exchange is performed with high efficiency (swirl effect). The swirl effect is particularly effective in an aspect in which liquid is introduced and gas is discharged, and an aspect in which liquid is introduced and vapor is discharged. (3) Furthermore, the fluid swirling in the heat exchange chamber 17 is subjected to heat exchange by making physical contact with the inner wall of the heat exchange chamber 17.
The fluid that has reached the desired temperature b ° C. through the above process flows out from the outlet of the outlet pipe 16 having an orifice.
[熱伝部材]
 円筒型の熱源13の内面には、内壁部材11に熱源13からの熱を伝達する熱伝部材12が配置される。すなわち、熱伝部材12はジグザグ形状をした面を空間側に、平坦な面を熱源13に接するよう配置されている。ここで、ジグザグ形状とは、内壁部材11および熱伝部材12の外面の長手方向に環状の山が連続する構造(すなわち、山と谷が交互に連続する構造)をいう。ここにいう環状の山が連続する構造には、ネジの山と溝のようにらせん状に山および溝が形成される場合も含まれる。好ましくは、内壁部材11および熱伝部材12の外側面の表面積が、山(凸部)が無い同径の円柱体の外側面の表面積の例えば1.5~3倍となるようにジグザグ構造を形成する。接触表面積を増したジグザグ形状にすることにより表面での熱交換効率が向上する。
[Heat transfer member]
A heat transfer member 12 that transfers heat from the heat source 13 to the inner wall member 11 is disposed on the inner surface of the cylindrical heat source 13. That is, the heat transfer member 12 is disposed so that the zigzag surface is in contact with the space and the flat surface is in contact with the heat source 13. Here, the zigzag shape refers to a structure in which annular peaks are continuous in the longitudinal direction of the outer surfaces of the inner wall member 11 and the heat transfer member 12 (that is, a structure in which peaks and valleys are alternately continued). The structure in which the annular ridges are continuous includes a case where ridges and grooves are formed in a spiral shape like a thread ridge and a groove. Preferably, the zigzag structure is used so that the surface areas of the outer surface of the inner wall member 11 and the heat transfer member 12 are, for example, 1.5 to 3 times the surface area of the outer surface of a cylindrical body having the same diameter without a mountain (convex portion). Form. By making the zigzag shape with an increased contact surface area, the heat exchange efficiency on the surface is improved.
 熱伝部材12は内壁部材11よりも熱伝導率の良い材質物質が用いられるが、熱伝導率が良いとは、両者の材質の値の相対的な対比であり、絶対的な値が特定されるものではない。例えば、熱伝導率は、プラスチックで約0.2W/(m・K)であり、弗素樹脂約0.25、炭素鋼約47、ステンレス鋼約15、アルミニウム237、純銅386、パイレックスガラス(PYREX:登録商標)約1、の値を通常示す。これらの中から材質を相対的な熱伝導率を考慮して選択すればよく、弗素樹脂はこれらの中では低い値であるから、弗素樹脂を内壁部材11とする場合はいずれの材質のものを熱伝部材12に採用しても熱効率は向上することとなる。また、内壁部材11の材料が金属である場合、例えばステンレス鋼を内壁部材とする場合は、熱伝部材が、内壁部材11の材料より熱伝導率の良い金属、例えば炭素鋼、アルミニウム、純銅を熱伝部材12として選択することが可能である。ただし、熱伝部材12の材質(材料)は熱伝導率が高いほど好ましい。 The heat transfer member 12 is made of a material having a better thermal conductivity than the inner wall member 11. The better heat conductivity is a relative comparison of the values of both materials, and an absolute value is specified. It is not something. For example, the thermal conductivity of plastic is about 0.2 W / (m · K), about 0.25 fluorine resin, about 47 carbon steel, about 15 stainless steel, aluminum 237, pure copper 386, Pyrex glass (PYREX: A value of about 1 is usually indicated. Of these, the material may be selected in consideration of the relative thermal conductivity. Since the fluororesin has a low value, the material of any material is used when the fluororesin is used as the inner wall member 11. Even if the heat transfer member 12 is adopted, the thermal efficiency is improved. Further, when the material of the inner wall member 11 is a metal, for example, when stainless steel is used as the inner wall member, the heat transfer member is made of a metal having a higher thermal conductivity than the material of the inner wall member 11, such as carbon steel, aluminum, or pure copper The heat transfer member 12 can be selected. However, the material (material) of the heat transfer member 12 is preferably as the heat conductivity is higher.
 例えば、内壁部材11の接触面を弗素樹脂のコーティングとなし内壁部材11自体をステンレス鋼とする熱交換器が知られているが、8mm厚のステンレス鋼と弗素樹脂による耐食被覆を施した板の総括伝熱係数を測定した例では、ステンレスのみでは1070W/(m・K)であるのに対し、500μmの耐食被覆を設けると同係数は291となり伝熱量が1/3となる結果が得られている。また、50μmの耐食被覆を設ける場合は845の伝熱係数となることが報告されている。したがって、熱伝部材12と被熱交換流体との距離ができるだけ近くなるようにすることが好ましい。 For example, a heat exchanger in which the contact surface of the inner wall member 11 is coated with fluorine resin and the inner wall member 11 itself is made of stainless steel is known. However, a plate having a corrosion-resistant coating made of 8 mm stainless steel and fluorine resin is known. In the example where the overall heat transfer coefficient is measured, it is 1070 W / (m 2 · K) for stainless steel alone, but when the 500 μm corrosion resistant coating is provided, the coefficient is 291 and the heat transfer amount is 1/3. It has been. It has also been reported that when a 50 μm corrosion resistant coating is provided, the heat transfer coefficient is 845. Therefore, it is preferable to make the distance between the heat transfer member 12 and the heat exchange fluid as close as possible.
[内壁部材]
 内壁部材11は、被熱交換流体7に対して安定な材質からなる。すなわち、熱交換が行われる温度領域において、内壁部材11の内面と被熱交換流体が反応することがない材質あるいは内面から内壁部材11の成分が溶出しない材質が選択される。被熱交換流体の反応性(腐食性)は、熱伝達構造体の表面の材質および接触温度などにより異なり、また、被熱交換流体7の用途、性状によっても熱交換後の純度の許容範囲が異なるため一概に特定することはできない。例えば、半導体装置の製造に使用される金属ハロゲン化物やエッチング剤では高純度の物質が使用されるため、熱交換処理による純度の低下は許されない。しかし、タービン用の熱交換器であれば熱交換処理による被熱交換流体の純度の変化は問題とされない場合が多い。
[Inner wall member]
The inner wall member 11 is made of a material that is stable with respect to the heat exchange fluid 7. That is, a material that does not react with the inner surface of the inner wall member 11 and the heat exchange fluid or a material that does not elute components of the inner wall member 11 from the inner surface is selected in a temperature range where heat exchange is performed. The reactivity (corrosiveness) of the heat exchange fluid varies depending on the material of the surface of the heat transfer structure and the contact temperature, and the allowable range of purity after heat exchange also depends on the application and properties of the heat exchange fluid 7. Because they are different, it is not possible to specify them in general. For example, a metal halide or an etching agent used for manufacturing a semiconductor device uses a high-purity substance, so that a decrease in purity due to heat exchange treatment is not allowed. However, in the case of a heat exchanger for turbines, changes in the purity of the heat exchange fluid due to the heat exchange process are often not a problem.
 内壁部材11の材質(材料)としては、鉄、炭素鋼、ステンレス鋼、アルミニウム、チタンなどの金属類、弗素樹脂、ポリエステルなどの合成樹脂類、セラミックス類などから適宜選択して使用されるが、腐食性の強い酸類を熱交換する場合には少なくとも内面部分を弗素樹脂により構成することが好ましい。弗素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)、テトラフルオロエチレン-エチレン共重合体(ETFE)、ポリビニルフルオライド(PVF)、弗化ポリプロピレン(FLPP)、ポリビニリデンフルオライド(PVDF)などを例示することが出来る。 The material (material) of the inner wall member 11 is appropriately selected from metals such as iron, carbon steel, stainless steel, aluminum and titanium, synthetic resins such as fluorine resin and polyester, ceramics, etc. In the case of exchanging heat with highly corrosive acids, it is preferable that at least the inner surface portion is made of a fluorine resin. Examples of the fluorine resin include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polychlorotrifluoroethylene ( PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), tetrafluoroethylene-ethylene copolymer (ETFE), polyvinyl fluoride (PVF), fluorinated polypropylene (FLPP), polyvinylidene fluoride (PVDF), etc. Can be illustrated.
[内壁部材のジグザグ構造]
 内壁部材11は、図4に示すように、熱交換チャンバー17の内周壁にジグザグ構造を有している。すなわち、内壁部材11の内側面は、その長手方向に環状の山が連続する構造となっている。図4では、被熱交換流体7と接触する内壁部材11の内側面を、その断面が1辺2mmの正三角形が連続するようなジグザグ構造とし、表面積を2倍とする構成例が開示されている。このジグザグ構造によれば、内壁部材11の内側面の表面積が、ジグザグ構造の無いフラットな内側面の2倍となるので、熱交換効率を倍増させることが可能である。内壁部材11のジグザグ構造は図4に示すものに限定されず、内壁部材11の内側面の表面積が、山(凸部)が無い内側面の例えば1.5~3倍となるようにジグザグ構造を形成することが開示される。熱交換チャンバー17を着脱自在の円筒部材により構成し、ピッチの異なる複数の円筒部材を準備するようにしてもよい。
[Zigzag structure of inner wall member]
As shown in FIG. 4, the inner wall member 11 has a zigzag structure on the inner peripheral wall of the heat exchange chamber 17. That is, the inner surface of the inner wall member 11 has a structure in which an annular crest is continuous in the longitudinal direction. In FIG. 4, a configuration example is disclosed in which the inner surface of the inner wall member 11 in contact with the heat exchange fluid 7 has a zigzag structure in which an equilateral triangle with a cross section of 2 mm is continuous, and the surface area is doubled. Yes. According to this zigzag structure, the surface area of the inner surface of the inner wall member 11 is twice that of the flat inner surface without the zigzag structure, so that the heat exchange efficiency can be doubled. The zigzag structure of the inner wall member 11 is not limited to that shown in FIG. 4, and the zigzag structure is such that the surface area of the inner surface of the inner wall member 11 is, for example, 1.5 to 3 times that of the inner surface without peaks (convex parts). Is disclosed. The heat exchange chamber 17 may be constituted by a detachable cylindrical member, and a plurality of cylindrical members having different pitches may be prepared.
 図5は、熱交換チャンバー17の内周壁に凹凸(ジグザグ構造)を設けた場合と設けない場合の加熱能力の違いを示すグラフである。被熱交換流体7は水であり、熱源13であるヒーターの温度を150℃に設定し、チャンバー出口における水温を測定したところ、凹凸を設けた場合は昇温率54.3~58.5%であるのに対し、凹凸を設けない場合は昇温率45.0~48.5%であることが確認された。図5の試験結果は、内壁部材11がメタルタイプ(SUS316)である場合のものであるが、一般に内壁部材をメタルフリータイプ(PTFE)とした場合の昇温率の差異が10%程度であるところ、内壁部材をメタルフリータイプとした場合の昇温率は約45~50%程度になると推察される。 FIG. 5 is a graph showing the difference in heating ability between when the unevenness (zigzag structure) is provided on the inner peripheral wall of the heat exchange chamber 17 and when it is not provided. The heat exchange fluid 7 is water, the temperature of the heater as the heat source 13 is set to 150 ° C., and the water temperature at the chamber outlet is measured. When the unevenness is provided, the temperature increase rate is 54.3 to 58.5%. On the other hand, it was confirmed that the temperature increase rate was 45.0 to 48.5% when the unevenness was not provided. The test results in FIG. 5 are for the case where the inner wall member 11 is of a metal type (SUS316), but generally the difference in temperature rise rate when the inner wall member is of a metal free type (PTFE) is about 10%. However, the temperature rise rate when the inner wall member is a metal-free type is estimated to be about 45 to 50%.
[オリフィス絞り径と流量の関係]
 本発明では、オリフィス16でチャンバー17の出口を絞ることで、チャンバー17内の内圧を高めている。ここで、オリフィス16でチャンバー17の出口を絞ることは内圧を高めることにつながり、液体を霧化ないし気化させるためには不利であるが、他方で対流が生じることにより加熱効率は高まる。本発明は、加熱効率を高めるためにオリフィス16で適度にチャンバー17の出口を絞り、霧化ないし気化性能低下と加熱効率向上との調和の中に高効率な熱交換を実現するものである。
 図6は、オリフィス絞り径とスプレーノズル流量の関係を示すグラフである。内径77mmのチャンバー17において、水を気化させる際に好ましいと考えられるチャンバー内圧と大気圧との差圧約0.2atm(=20000Pa)を実現するスプレーノズル流量とオリフィス絞り径の関係を測定したものである。図6から、差圧約0.2atmを実現するのにふさわしい流量は、絞り径の2乗と実質的に正比例することが確認された。このスプレーノズル流量とオリフィス絞り径の関係は、チャンバー内径や差圧が変化しても変わらないものと推察される。
[Relationship between orifice diameter and flow rate]
In the present invention, the internal pressure in the chamber 17 is increased by restricting the outlet of the chamber 17 with the orifice 16. Here, constricting the outlet of the chamber 17 with the orifice 16 leads to an increase in internal pressure, which is disadvantageous for atomizing or vaporizing the liquid, but on the other hand, convection is generated, thereby increasing the heating efficiency. In the present invention, in order to increase the heating efficiency, the outlet of the chamber 17 is appropriately narrowed by the orifice 16 to realize high-efficiency heat exchange in harmony with atomization or vaporization performance reduction and heating efficiency improvement.
FIG. 6 is a graph showing the relationship between orifice orifice diameter and spray nozzle flow rate. In the chamber 17 having an inner diameter of 77 mm, the relationship between the flow rate of the spray nozzle and the orifice throttle diameter, which achieves a differential pressure of about 0.2 atm (= 20000 Pa) between the chamber internal pressure and the atmospheric pressure, which is considered preferable when water is vaporized, is measured. is there. From FIG. 6, it was confirmed that the flow rate suitable for realizing the differential pressure of about 0.2 atm is substantially directly proportional to the square of the throttle diameter. The relationship between the spray nozzle flow rate and the orifice throttle diameter is presumed not to change even when the chamber inner diameter or the differential pressure changes.
[被熱交換流体]
 本発明での被熱交換流体7としては特に限定されるものではないが、例えば、塩酸、硫酸、硝酸、クロム酸、リン酸、弗酸、酢酸、過塩素酸、臭化水素酸、弗化珪酸、ホウ酸などの腐食性を有する酸類、アンモニア、水酸化カリウム、水酸化ナトリウムなどのアルカリ類、および塩素化珪素などの金属塩類などの溶液または気体、さらには高純度水を挙げることが出来る。これらの被熱交換流体は、他の物質との反応原料として、またはエッチング液などの反応工程に使用される薬液として使用されるものであり熱交換器によって適度な温度に制御されて目的に使用される。本発明の熱交換器は、これらの被熱交換流体を高効率で、微量不純物の汚染がない状態で加熱、冷却または温度制御することが出来る。
 例えば、TCO(透明電極膜)のSiOの成膜工程において使用する四塩化スズ(SnCl)は、従来のバブリング法で気化制御した場合、ON・OFF制御が困難で濃度も経時変化してしまうという課題やSnClの純度が不安定であるためインジェクター内部に生成物が堆積するという課題があるが、本発明の熱交換器10によればかかる課題を解決し、歩留まりを向上させることが可能となる。
[Heat exchange fluid]
The heat exchange fluid 7 in the present invention is not particularly limited, and examples thereof include hydrochloric acid, sulfuric acid, nitric acid, chromic acid, phosphoric acid, hydrofluoric acid, acetic acid, perchloric acid, hydrobromic acid, and fluorination. Examples include solutions or gases such as corrosive acids such as silicic acid and boric acid, alkalis such as ammonia, potassium hydroxide and sodium hydroxide, and metal salts such as chlorinated silicon, and high-purity water. . These heat exchange fluids are used as raw materials for reaction with other substances or as chemicals used in reaction processes such as etching liquids, and are used for purposes that are controlled to an appropriate temperature by a heat exchanger. Is done. The heat exchanger of the present invention can heat, cool, or control the temperature of these heat exchange fluids with high efficiency and without contamination by trace impurities.
For example, tin tetrachloride (SnCl 4 ) used in the TCO (transparent electrode film) SiO 2 film forming process is difficult to control ON / OFF because the vaporization is controlled by the conventional bubbling method, and the concentration also changes over time. However, according to the heat exchanger 10 of the present invention, the problem can be solved and the yield can be improved, although the purity of SnCl 4 is unstable and the product is deposited inside the injector. It becomes possible.
《第2実施形態例》
 図7は、本発明の第2実施形態例に係る熱交換器20の構成を説明する側方概略断面図である。この熱交換器20は、アトマイザー型熱交換器であって、円筒状のチャンバー部24と、スプレーノズル25と、チャンバー部24の下端に設けられたオリフィス26とを主要な構成要素とする。
 スプレーノズル25は二流体ノズルであって、ガス供給装置60と連通するガス供給管61からは窒素ガス等の加圧ガスが、液体貯留部(図示せず)と連通する液体供給管62からは加圧された液体が供給される。この液体はスプレーノズルを通過する際に気化ないし霧化されて噴射され、オリフィス26の効果により熱交換チャンバー27で対流する。熱交換チャンバー27の内壁は、ジグザグ構造の伝熱内壁21により構成されている。このジグザグ構造は、熱交換チャンバー27の内側面の全面積の半分以上を占める部分に設けることが好ましく、より好ましくは内側面の全面積の2/3以上を占める部分に設ける。伝熱内壁21は、単一の材料で作製される場合もあれば、第1実施形態例の如く、チャンバー側が腐食性に優れた第一の材質からなり、熱源22と接触する側が第一の材質よりも熱伝導率の良い第二の材質により構成される場合もある。熱交換チャンバー27の上下方向の長さは、50cm以下であることが好ましい。
<< Second Embodiment >>
FIG. 7 is a side schematic cross-sectional view illustrating the configuration of the heat exchanger 20 according to the second embodiment of the present invention. The heat exchanger 20 is an atomizer type heat exchanger, and includes a cylindrical chamber portion 24, a spray nozzle 25, and an orifice 26 provided at the lower end of the chamber portion 24 as main components.
The spray nozzle 25 is a two-fluid nozzle. A pressurized gas such as nitrogen gas is supplied from a gas supply pipe 61 communicating with the gas supply apparatus 60, and a liquid supply pipe 62 communicating with a liquid reservoir (not shown). Pressurized liquid is supplied. This liquid is vaporized or atomized and sprayed when passing through the spray nozzle, and is convected in the heat exchange chamber 27 by the effect of the orifice 26. The inner wall of the heat exchange chamber 27 is constituted by a heat transfer inner wall 21 having a zigzag structure. This zigzag structure is preferably provided in a portion that occupies half or more of the total area of the inner surface of the heat exchange chamber 27, and more preferably in a portion that occupies 2/3 or more of the total area of the inner surface. The heat transfer inner wall 21 may be made of a single material, or, as in the first embodiment, the chamber side is made of a first material that is highly corrosive, and the side in contact with the heat source 22 is the first material. In some cases, the second material may have a higher thermal conductivity than the material. The length of the heat exchange chamber 27 in the vertical direction is preferably 50 cm or less.
 伝熱内壁21は熱源22により覆われており、熱交換チャンバー内で気化ないし霧化された液体は対流しながら伝熱内壁21と熱交換を行う。熱源22は、伝熱内壁21を覆うヒーターまたはクーラーであり、例えば、電熱線、ペルチェにより構成した板状熱源を湾曲させて使用すること、対流用空間を有する筒状部材にらせん状の流路を形成し、熱交換用の気体または液体を流す構造とすること、熱交換用の気体または液体を流す管を前記筒状部材にらせん状に巻く構造とすることが開示される。熱源22の鉛直方向の長さは、熱交換チャンバー27の全体またはほぼ全体を覆う長さとすることが好ましい。熱源22の外側面は、断熱材23により覆われており、外気温の影響を受けないようになっている。
 スプレーノズル25およびオリフィス26は、チャンバー部24の鉛直方向の中心で対向するように設けられている。スプレーノズル25は、例えば金属またはテフロン(登録商標)からなる流量が数十g/分のものを使用する。オリフィス26は、例えばφ10mm前後のものを使用する。
The heat transfer inner wall 21 is covered with a heat source 22, and the liquid vaporized or atomized in the heat exchange chamber exchanges heat with the heat transfer inner wall 21 while convection. The heat source 22 is a heater or a cooler that covers the heat transfer inner wall 21, for example, a curved plate-like heat source configured by a heating wire or Peltier, and a spiral flow path in a cylindrical member having a convection space. And a structure in which a gas or liquid for heat exchange flows and a tube in which a gas or liquid for heat exchange flows are spirally wound around the cylindrical member. The length of the heat source 22 in the vertical direction is preferably set to a length that covers the entire heat exchange chamber 27 or substantially the whole. The outer surface of the heat source 22 is covered with a heat insulating material 23 so as not to be affected by the outside air temperature.
The spray nozzle 25 and the orifice 26 are provided so as to face each other at the center of the chamber portion 24 in the vertical direction. As the spray nozzle 25, for example, a spray nozzle made of metal or Teflon (registered trademark) with a flow rate of several tens g / min is used. As the orifice 26, for example, one having a diameter of about 10 mm is used.
 本実施形態例の熱交換器20を使用して、液体の気化性能を検証した。検証に使用した熱交換器20は、図7に示す構成のものであり、伝熱内壁21はステンレス鋼により構成されている。対比例1は、伝熱内壁21が内壁面にジグザグ構造を有しない点を除き、第2実施形態例と同じ構成である。
 図8は、第2実施形態例に係る熱交換器20の気化性能試験方法を説明する図である。気化性能試験は、第2実施形態例および対比例1のスプレーノズル25に加圧された窒素ガスおよび水を供給し、熱交換チャンバー27内に噴霧し、オリフィス26と連通する出口管16からガラス板へ流体を噴射し、ガラス面を目視判定した。判定基準は次のとおりである。
Using the heat exchanger 20 of this embodiment, the liquid vaporization performance was verified. The heat exchanger 20 used for verification has the configuration shown in FIG. 7, and the heat transfer inner wall 21 is made of stainless steel. Comparative Example 1 has the same configuration as that of the second embodiment except that the heat transfer inner wall 21 does not have a zigzag structure on the inner wall surface.
FIG. 8 is a diagram illustrating a vaporization performance test method for the heat exchanger 20 according to the second embodiment. In the vaporization performance test, pressurized nitrogen gas and water are supplied to the spray nozzle 25 of the second embodiment and the comparative example 1, sprayed into the heat exchange chamber 27, and glass is discharged from the outlet pipe 16 communicating with the orifice 26. The fluid was jetted onto the plate, and the glass surface was visually determined. Judgment criteria are as follows.
[判定基準]
 ○=吐出口には蒸気が見えない。ガラス面は曇る。
 △=吐出口に蒸気が確認される。ガラス面が結露する。
 ×=吐出口に液滴が確認される。
[Criteria]
○ = Steam is not visible at the discharge port. The glass surface is cloudy.
Δ = Steam is confirmed at the discharge port. Condensation on the glass surface.
X = Liquid droplets are observed at the discharge port.
 気化性能試験を、下記表1に示す検証条件A~Cにより行ったところ、下記表2に示す結果が得られた。 The vaporization performance test was performed under the verification conditions A to C shown in Table 1 below, and the results shown in Table 2 below were obtained.
[表1]
Figure JPOXMLDOC01-appb-I000001
[Table 1]
Figure JPOXMLDOC01-appb-I000001
[表2]
Figure JPOXMLDOC01-appb-I000002
[Table 2]
Figure JPOXMLDOC01-appb-I000002
 以上の検証結果から、チャンバー内壁面にジグザグ構造を有する本実施形態例の熱交換器20が、高い気化性能を有することが確認された。 From the above verification results, it was confirmed that the heat exchanger 20 of the present embodiment example having a zigzag structure on the inner wall surface of the chamber has high vaporization performance.
《第3実施形態例》
 図9は、第3実施形態例に係る熱交換器30の構成を示す側方概略断面図である。以下では、主として第2実施形態例との相違点を説明する。
 第3実施形態例の熱交換器30では、熱源33からの熱をチャンバー37内へ伝熱する熱伝部材32が、熱交換チャンバー37の上部(スプレーノズル35の吐出口近く)に配置されている。本実施形態例では、第1および第2実施形態例と異なり、熱伝部材32の鉛直方向の長さは、熱源33の長さよりも短く構成されている。熱源33の長さは図示の態様に限定されず、例えば、熱伝部材32の鉛直方向の長さを、熱交換チャンバー37の鉛直方向長さの1/5~1/2を覆うように設けることが開示される。
 また、熱伝部材32は、内壁部材31と比べ熱伝導率の良い材料により構成されている。例えば、内壁部材31をステンレスにより構成し、熱伝部材32を銅により構成することが開示される。
 本実施形態例でも、内壁部材31の内壁面はジグザグ構造にして表面積を増やすことで、熱交換能力を高めている。図9では、内壁部材31と熱伝部材32との接触面は平面としているが、第1実施形態例と同様に、内壁部材31と熱伝部材32の接触面をジグザグ構造とすることが熱交換の観点からは好ましい。
<< Third Embodiment >>
FIG. 9 is a schematic side cross-sectional view showing the configuration of the heat exchanger 30 according to the third embodiment. In the following, differences from the second embodiment will be mainly described.
In the heat exchanger 30 of the third embodiment, the heat transfer member 32 that transfers the heat from the heat source 33 into the chamber 37 is disposed above the heat exchange chamber 37 (near the discharge port of the spray nozzle 35). Yes. In the present embodiment, unlike the first and second embodiments, the vertical length of the heat transfer member 32 is configured to be shorter than the length of the heat source 33. The length of the heat source 33 is not limited to the illustrated mode. For example, the vertical length of the heat transfer member 32 is provided so as to cover 1/5 to 1/2 of the vertical length of the heat exchange chamber 37. Is disclosed.
Further, the heat transfer member 32 is made of a material having a higher thermal conductivity than the inner wall member 31. For example, it is disclosed that the inner wall member 31 is made of stainless steel and the heat transfer member 32 is made of copper.
Also in the present embodiment, the inner wall surface of the inner wall member 31 has a zigzag structure to increase the surface area, thereby increasing the heat exchange capability. In FIG. 9, the contact surface between the inner wall member 31 and the heat transfer member 32 is a flat surface. However, as in the first embodiment, the contact surface between the inner wall member 31 and the heat transfer member 32 has a zigzag structure. This is preferable from the viewpoint of replacement.
 このような構成とすることで、スプレーノズル35から噴出されたミストが衝突する部分の内壁面の熱交換能力が高まるので、効率よく熱交換を行うことが可能である。すなわち、熱交換チャンバー37の底部と比べ、上部では所望の温度との温度差が大きい(熱交換が必要な)流体が多く分布しているところ、熱交換チャンバー37の上部の熱交換能力を高めることにより、必要な箇所に多くの熱を分配することを可能としている。また、冷却時においては、流体がミスト状になるときの気化熱による自然冷却との相乗効果が期待できる。すなわち、熱交換器の動作エネルギーの低減に寄与する。
 熱交換チャンバー37の出口にはオリフィス36が設けられており、噴霧された被加熱流体に対流を生じさせる。熱交換チャンバー37で熱交換を行った被加熱流体は、出口管38から外部へ送出される。
By setting it as such a structure, since the heat exchange capability of the inner wall surface of the part which the mist ejected from the spray nozzle 35 collides increases, it is possible to perform heat exchange efficiently. That is, compared with the bottom part of the heat exchange chamber 37, the upper part of the heat exchange chamber 37 has a large temperature difference from the desired temperature (a heat exchange is necessary), and thus the heat exchange capacity of the upper part of the heat exchange chamber 37 is increased. This makes it possible to distribute a large amount of heat to the necessary places. Moreover, at the time of cooling, the synergistic effect with the natural cooling by the heat of vaporization when a fluid turns into a mist form can be expected. That is, it contributes to a reduction in operating energy of the heat exchanger.
An orifice 36 is provided at the outlet of the heat exchange chamber 37 to cause convection in the sprayed fluid to be heated. The heated fluid that has undergone heat exchange in the heat exchange chamber 37 is sent out from the outlet pipe 38.
《第4実施形態例》
 図10は、第4実施形態例に係る熱交換器100の側面図である。
 第4実施形態例の熱交換器100は、熱交換チャンバー47の長さを調節することのできる連結式の熱交換器である。第1ブロック110、第2ブロック120および第3ブロック130は、各ブロックのフランジ部を貫通する連結棒53により固定されている。第1ブロック110の上方は板フランジ111により閉塞されており、第3ブロック130の下方は板フランジ131により閉塞されている。図10では3つのブロックを連結して熱交換チャンバーを構成しているがこれに限定されず、ブロック数は単数であってもよいし、複数であってもよい。
<< Fourth Embodiment >>
FIG. 10 is a side view of the heat exchanger 100 according to the fourth embodiment.
The heat exchanger 100 of the fourth embodiment is a connected heat exchanger that can adjust the length of the heat exchange chamber 47. The 1st block 110, the 2nd block 120, and the 3rd block 130 are being fixed by the connecting rod 53 which penetrates the flange part of each block. The upper part of the first block 110 is closed by a plate flange 111, and the lower part of the third block 130 is closed by a plate flange 131. In FIG. 10, the heat exchange chamber is configured by connecting three blocks. However, the present invention is not limited to this, and the number of blocks may be one or more.
 図11は一つのブロック(110、120、130)の構成を示す図であって、(a)は平面図、(b)は側方断面図である。上方フランジ48は、12個のボルト穴112が設けられたJIS、JPI、ANSI、ISOを含む工業規格品である。一つのブロックの上下方向の長さは、例えば20~40cmである。上方フランジ48は、熱交換チャンバーの側壁41の上端部分で溶接により固接されている。側壁41を構成する波付樹脂管はJIS、ANSI、ISOを含む工業規格の寸法を有する配管であり、熱交換チャンバー47の内周壁をジグザグ構造としながら、製造コストを著しく抑えることが可能である。同様に、側壁41の下端部分には、JIS5K型の下方フランジ49が溶接により固接されている。本実施形態例の側壁41およびフランジ48,49はいずれもPVC(ポリ塩化ビニル)からなり、側壁41により規定される熱交換チャンバー47の内径はφ253mmである。このように、第4実施形態例では、側壁41およびフランジ48,49を工業規格寸法品により構成することができるので、用途に応じて長さおよび内径を簡単に調節することが可能である。 FIG. 11 is a diagram showing the configuration of one block (110, 120, 130), where (a) is a plan view and (b) is a side sectional view. The upper flange 48 is an industrial standard product including JIS, JPI, ANSI, and ISO provided with twelve bolt holes 112. The length in the vertical direction of one block is, for example, 20 to 40 cm. The upper flange 48 is fixed to the upper end portion of the side wall 41 of the heat exchange chamber by welding. The corrugated resin pipe constituting the side wall 41 is a pipe having dimensions of industrial standards including JIS, ANSI, and ISO, and the manufacturing cost can be remarkably suppressed while the inner peripheral wall of the heat exchange chamber 47 has a zigzag structure. . Similarly, a lower flange 49 of a JIS 5K type is fixed to the lower end portion of the side wall 41 by welding. In this embodiment, the side wall 41 and the flanges 48 and 49 are both made of PVC (polyvinyl chloride), and the inner diameter of the heat exchange chamber 47 defined by the side wall 41 is φ253 mm. As described above, in the fourth embodiment, the side wall 41 and the flanges 48 and 49 can be made of industrial standard size products, so that the length and the inner diameter can be easily adjusted according to the application.
 側壁41の外周には、長さ方向に多数の環状溝が形成されており、これら環状溝は熱伝部材42により埋められている。熱伝部材42としては、例えば、熱伝セメントや熱伝導性接着材を用いることが開示される。側壁41および熱伝部材42の外周面は、筒状の熱伝導ジャケット43により面接触するように覆われている。熱伝導ジャケット43は、熱伝導率の良い金属、例えば炭素鋼、アルミニウム、純銅により構成される。この熱伝導ジャケット43にはスパイラル溝が形成されており、このスパイラル溝に沿って熱媒体管44が高密度に巻かれている。熱媒体管44は、筒状の押さえ部材45により熱伝導ジャケット43に押圧されており、熱による膨張が生じても、熱伝導ジャケット43と熱媒体管44との接触が保たれるようになっている。本実施形態例では、熱媒体管44を銅、押さえ部材45をSUSにより構成した。熱媒体管44は、冷媒または熱媒を供給する供給管51および冷媒または熱媒を次の場所へ送出する送出管52と接続されている。本実施形態例では、各ブロックで熱交換を行う熱媒体管44をブロック間で連結された一本の管により構成したがこれに限定されず、それぞれ独立した熱交換媒体供給源と接続するように構成してもよいし、複数個単位で独立した熱交換媒体供給源と接続するように構成してもよい。 A large number of annular grooves are formed in the length direction on the outer periphery of the side wall 41, and these annular grooves are filled with a heat transfer member 42. As the heat transfer member 42, for example, use of a heat transfer cement or a heat conductive adhesive is disclosed. The outer peripheral surfaces of the side wall 41 and the heat transfer member 42 are covered with a cylindrical heat conduction jacket 43 so as to be in surface contact. The heat conduction jacket 43 is made of a metal having good heat conductivity, such as carbon steel, aluminum, or pure copper. A spiral groove is formed in the heat conduction jacket 43, and the heat medium pipe 44 is wound at a high density along the spiral groove. The heat medium pipe 44 is pressed against the heat conduction jacket 43 by the cylindrical pressing member 45, and even if expansion due to heat occurs, the contact between the heat conduction jacket 43 and the heat medium pipe 44 is maintained. ing. In this embodiment, the heat medium pipe 44 is made of copper, and the pressing member 45 is made of SUS. The heat medium pipe 44 is connected to a supply pipe 51 that supplies the refrigerant or the heat medium and a delivery pipe 52 that sends the refrigerant or the heat medium to the next place. In the present embodiment example, the heat medium pipe 44 that performs heat exchange in each block is configured by a single pipe connected between the blocks, but is not limited thereto, and is connected to an independent heat exchange medium supply source. You may comprise, and you may comprise so that it may connect with the independent heat exchange medium supply source in multiple units.
 最上段に位置する第1ブロック110には、鉛直方向に延びるドリル形のスプレーノズルが設けられている。スプレーノズルは先細り形状であり、中心に流体供給路と連通する先細り形状の空間である吐出流路を有し、螺旋状に開口する吐出口を備えている。 The first block 110 located at the uppermost stage is provided with a drill-type spray nozzle extending in the vertical direction. The spray nozzle has a tapered shape, and has a discharge channel that is a tapered space communicating with the fluid supply channel at the center, and includes a discharge port that opens spirally.
 本実施形態例の装置を用いて、設定温度-5℃、流量15~30L/分の範囲で試験して出口温度を測定した結果を表3に示す。冷媒はエチレングリコールを用いたが、他の冷媒(ガルデン等)を用いてもよい。冷却能力最大で3000Wのチラーを使用した際、被冷却流体から奪った熱量は、全流量域で1500W以上であり熱変換率が50%以上であることが判明した。 Table 3 shows the results of measuring the outlet temperature by using the apparatus of this embodiment and testing at a set temperature of −5 ° C. and a flow rate of 15 to 30 L / min. Although ethylene glycol is used as the refrigerant, other refrigerants (Galden or the like) may be used. When a chiller with a maximum cooling capacity of 3000 W was used, the amount of heat taken from the fluid to be cooled was found to be 1500 W or more in the entire flow rate range, and the heat conversion rate was 50% or more.
[表3]
Figure JPOXMLDOC01-appb-I000003
[Table 3]
Figure JPOXMLDOC01-appb-I000003
 本発明の熱交換器を効果的に用いることができる用途を以下に例示する。
(1)主に薬液、純水などの液体の熱交換を行う熱交換器。
(2)食品分野等で殺菌、調理、乾燥に用いられる、沸点以上の水蒸気を発生させる加熱水蒸気発生装置。
(3)半導体・太陽電池材料等において、プリカーサを効率よく気化させる気化器。
(4)混合したい材料の最も活性する条件(温度)を作りだし、2種類の流体を効率よく混合するオゾン水、水素水等の製造装置。
(5)温度を上昇させ水蒸気にすることで重金属と水が分離しやすい状態を作り出し、水蒸気を分離器に通すことで重金属を効率よく回収する、排水処理等の重金属濃縮装置。
The use which can use the heat exchanger of this invention effectively is illustrated below.
(1) A heat exchanger that mainly performs heat exchange of liquids such as chemicals and pure water.
(2) A heated steam generator for generating steam having a boiling point or higher, which is used for sterilization, cooking, and drying in the food field and the like.
(3) A vaporizer that efficiently vaporizes a precursor in a semiconductor / solar cell material or the like.
(4) A device for producing ozone water, hydrogen water or the like that creates the most active condition (temperature) of the material to be mixed and efficiently mixes two kinds of fluids.
(5) A heavy metal concentrator for wastewater treatment or the like that creates a state in which heavy metal and water are easily separated by raising the temperature to water vapor and efficiently recovers heavy metal by passing water vapor through the separator.
 1:樹脂製の管、2:加熱対象物入口、3:加熱対象物出口、4:熱媒体、5:熱源、7:被熱交換流体、8:空隙、10:熱交換器、11:内壁部材、12:熱伝部材、13:熱源、14:流体供給管、15:スプレーノズル、16:出口管(オリフィス)、17:熱交換チャンバー、18:上方フランジ部、19:下方フランジ部、20:熱交換器、21:伝熱内壁、22:熱源、23:断熱材、24:チャンバー部、25:スプレーノズル、26:オリフィス、27:熱交換チャンバー、30:熱交換器、31:内壁部材、32:熱伝部材、33:熱源、35:スプレーノズル、36:オリフィス、37:熱交換チャンバー、38:出口管、41:側壁、42:熱伝部材、43:熱伝導ジャケット、44:熱媒体管、45:押さえ部材、47:熱交換チャンバー、48:上方フランジ、49:下方フランジ、51:供給管、52:送出管、53:連結棒、60:ガス供給装置、61:ガス供給管、62:液体供給管、100:熱交換器、110:第1ブロック、111:板フランジ、112:ボルト穴、120:第2ブロック、130:第3ブロック、131:板フランジ 1: resin pipe, 2: heated object inlet, 3: heated object outlet, 4: heat medium, 5: heat source, 7: heat exchange fluid, 8: air gap, 10: heat exchanger, 11: inner wall Member: 12: heat transfer member, 13: heat source, 14: fluid supply pipe, 15: spray nozzle, 16: outlet pipe (orifice), 17: heat exchange chamber, 18: upper flange part, 19: lower flange part, 20 : Heat exchanger, 21: heat transfer inner wall, 22: heat source, 23: heat insulating material, 24: chamber part, 25: spray nozzle, 26: orifice, 27: heat exchange chamber, 30: heat exchanger, 31: inner wall member 32: heat transfer member, 33: heat source, 35: spray nozzle, 36: orifice, 37: heat exchange chamber, 38: outlet pipe, 41: side wall, 42: heat transfer member, 43: heat transfer jacket, 44: heat Medium tube, 45: holding part 47: heat exchange chamber, 48: upper flange, 49: lower flange, 51: supply pipe, 52: delivery pipe, 53: connecting rod, 60: gas supply device, 61: gas supply pipe, 62: liquid supply pipe, 100: heat exchanger, 110: first block, 111: plate flange, 112: bolt hole, 120: second block, 130: third block, 131: plate flange

Claims (14)

  1.  チャンバーと、
     流体供給路から供給された加圧流体をチャンバー内に噴霧するノズルと、
     チャンバーに噴霧された流体に熱または冷熱を与える熱源と、
     チャンバー内の流体を排出する出口と連通し、チャンバー内を大気圧と比べ高圧に維持するオリフィスとを備える熱交換器。
    A chamber;
    A nozzle that sprays pressurized fluid supplied from a fluid supply path into the chamber;
    A heat source that applies heat or cold to the fluid sprayed into the chamber;
    A heat exchanger that includes an orifice that communicates with an outlet that discharges fluid in the chamber and maintains a high pressure in the chamber as compared to atmospheric pressure.
  2.  チャンバー内で対流を生じさせることにより熱交換を行う請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein heat exchange is performed by causing convection in the chamber.
  3.  前記ノズルの流量が、前記オリフィスの絞り径の2乗と実質的に正比例する請求項2に記載の熱交換器。 The heat exchanger according to claim 2, wherein the flow rate of the nozzle is substantially directly proportional to the square of the diameter of the orifice.
  4.  前記流体供給路から供給される加圧流体が、加圧液体であり、
     前記ノズルが、前記加圧液体を直径が20~60μmのミストにして噴霧するノズルである請求項3に記載の熱交換器。
    The pressurized fluid supplied from the fluid supply path is a pressurized liquid,
    The heat exchanger according to claim 3, wherein the nozzle is a nozzle for spraying the pressurized liquid in a mist having a diameter of 20 to 60 µm.
  5.  チャンバーの内壁面が、ジグザグ構造である請求項1から4のいずれかに記載の熱交換器。 The heat exchanger according to any one of claims 1 to 4, wherein the inner wall surface of the chamber has a zigzag structure.
  6.  前記チャンバーの内壁面を構成する内壁部材と、内壁部材に熱源からの熱を伝熱する熱伝導体とを備え、
     熱伝導体が、内壁部材より熱伝導率の良い材料からなる請求項1から4のいずれかに記載の熱交換器。
    An inner wall member constituting the inner wall surface of the chamber, and a heat conductor that transfers heat from a heat source to the inner wall member,
    The heat exchanger according to any one of claims 1 to 4, wherein the heat conductor is made of a material having better heat conductivity than the inner wall member.
  7.  内壁部材と接触する熱伝導体の面が、ジグザグ構造の面であり、
     熱伝導体と接触する内壁部材の面が、ジグザグ構造の面である請求項6に記載の熱交換器。
    The surface of the heat conductor that contacts the inner wall member is the surface of the zigzag structure,
    The heat exchanger according to claim 6, wherein the surface of the inner wall member in contact with the heat conductor is a surface of a zigzag structure.
  8.  前記ノズルが、流体供給路から供給された流体の一部がチャンバー内壁面に衝突するように噴霧する拡散ノズルである請求項1ないし4のいずれかに記載の熱交換器。 The heat exchanger according to any one of claims 1 to 4, wherein the nozzle is a diffusion nozzle that sprays so that a part of the fluid supplied from the fluid supply path collides with the inner wall surface of the chamber.
  9.  ノズルから噴霧された流体が衝突する部分に、鉛直方向の長さが熱源よりも短い熱伝導体が配置される請求項8に記載の熱交換器。 The heat exchanger according to claim 8, wherein a heat conductor whose vertical length is shorter than that of the heat source is disposed at a portion where the fluid sprayed from the nozzle collides.
  10.  前記チャンバーが、中空のブロックを複数連結して構成される請求項1から4のいずれかに記載の熱交換器。 The heat exchanger according to any one of claims 1 to 4, wherein the chamber is configured by connecting a plurality of hollow blocks.
  11.  前記ブロックが工業規格により規定された寸法を有する管である請求項10に記載の熱交換器。 The heat exchanger according to claim 10, wherein the block is a pipe having a dimension defined by an industrial standard.
  12.  前記ブロックが、端部に設けられた一対のフランジを備え、当該フランジが工業規格により規定された寸法を有する請求項11に記載の熱交換器。 The heat exchanger according to claim 11, wherein the block includes a pair of flanges provided at end portions, and the flanges have dimensions defined by industry standards.
  13.  請求項1から4のいずれかに記載の熱交換器を用いて、ノズルからチャンバー内に噴射した流体と伝熱型熱交換を行う熱交換方法。 A heat exchange method for performing heat transfer type heat exchange with the fluid sprayed from the nozzle into the chamber using the heat exchanger according to any one of claims 1 to 4.
  14.  請求項4に記載の熱交換器を用いて、ノズルからチャンバー内に噴射した流体を気化すると共に熱交換を行う熱交換方法。 A heat exchange method for vaporizing a fluid sprayed from a nozzle into a chamber using the heat exchanger according to claim 4 and performing heat exchange.
PCT/JP2014/080055 2013-11-15 2014-11-13 High-efficiency heat exchanger and high-efficiency heat exchange method WO2015072509A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-236525 2013-11-15
JP2013236525 2013-11-15

Publications (1)

Publication Number Publication Date
WO2015072509A1 true WO2015072509A1 (en) 2015-05-21

Family

ID=53057443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080055 WO2015072509A1 (en) 2013-11-15 2014-11-13 High-efficiency heat exchanger and high-efficiency heat exchange method

Country Status (2)

Country Link
TW (1) TW201533418A (en)
WO (1) WO2015072509A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114060785A (en) * 2020-07-31 2022-02-18 广东美的环境电器制造有限公司 Steam generator and household appliance

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2505170A (en) * 1947-10-28 1950-04-25 Frank Pitterman Steam generating apparatus
US2790428A (en) * 1952-12-23 1957-04-30 Buttler John Allen Instantaneous steam generators
US4724824A (en) * 1986-08-22 1988-02-16 The Lucks Company Instantaneous steam generator
JPH02258017A (en) * 1989-03-31 1990-10-18 Babcock Hitachi Kk Denitrifying apparatus for waste gas using solid reducing agent
GB2309071A (en) * 1996-01-10 1997-07-16 Ngai Shing Dev Limited Steam generator
JP2000513428A (en) * 1996-06-18 2000-10-10 テーエスペー メディカル アーベー Steam generator
JP2000317213A (en) * 1999-05-14 2000-11-21 Samson Co Ltd Device for generating high purity steam
JP2004340466A (en) * 2003-05-15 2004-12-02 Miura Co Ltd Exhaust heat boiler
US20050058571A1 (en) * 2003-09-16 2005-03-17 George Yin Method and apparatus for steam sterilization of articles
JP2009030963A (en) * 2007-07-26 2009-02-12 Kook Hyun Cho Steam generator and steam generating method
US20130279890A1 (en) * 2010-10-15 2013-10-24 Strix Limited Electric steam generation

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2505170A (en) * 1947-10-28 1950-04-25 Frank Pitterman Steam generating apparatus
US2790428A (en) * 1952-12-23 1957-04-30 Buttler John Allen Instantaneous steam generators
US4724824A (en) * 1986-08-22 1988-02-16 The Lucks Company Instantaneous steam generator
JPH02258017A (en) * 1989-03-31 1990-10-18 Babcock Hitachi Kk Denitrifying apparatus for waste gas using solid reducing agent
GB2309071A (en) * 1996-01-10 1997-07-16 Ngai Shing Dev Limited Steam generator
JP2000513428A (en) * 1996-06-18 2000-10-10 テーエスペー メディカル アーベー Steam generator
JP2000317213A (en) * 1999-05-14 2000-11-21 Samson Co Ltd Device for generating high purity steam
JP2004340466A (en) * 2003-05-15 2004-12-02 Miura Co Ltd Exhaust heat boiler
US20050058571A1 (en) * 2003-09-16 2005-03-17 George Yin Method and apparatus for steam sterilization of articles
JP2009030963A (en) * 2007-07-26 2009-02-12 Kook Hyun Cho Steam generator and steam generating method
US20130279890A1 (en) * 2010-10-15 2013-10-24 Strix Limited Electric steam generation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114060785A (en) * 2020-07-31 2022-02-18 广东美的环境电器制造有限公司 Steam generator and household appliance

Also Published As

Publication number Publication date
TW201533418A (en) 2015-09-01

Similar Documents

Publication Publication Date Title
US20150159958A1 (en) High-efficiency heat exchanger and high-efficiency heat exchange method
US8554064B1 (en) Method and apparatus for generating vapor at high rates
Zhu et al. Superlyophilic interfaces and their applications
KR101502415B1 (en) Method and apparatus for liquid precursor atomization
Li et al. Experimental investigation of pool boiling heat transfer on pillar-structured surfaces with different wettability patterns
US20090263649A1 (en) Method for manufacturing ultra-hydrophilic thin film coated metal product, and ultra-hydrophilic thin film coated metal product
US20130195432A1 (en) Trichlorosilane vaporization system
US20200232708A1 (en) Heat exchanger
US5195578A (en) Method of and an apparatus for trickling film heat exchange
US12018894B2 (en) On-demand sweating-boosted air cooled heat-pipe condensers
WO2015072509A1 (en) High-efficiency heat exchanger and high-efficiency heat exchange method
Pialago et al. Experimental investigation of the heat transfer performance of capillary-assisted horizontal evaporator tubes with sintered porous hydrophilic copper-carbon nanotube-titanium dioxide (Cu-CNT-TiO2) composite coatings for adsorption chiller
TWI649414B (en) Thermal conversion medium
CN101248324A (en) Cryogenic air separation
JP7495334B2 (en) Carburetor
CN101448559A (en) Apparatus for cooling gases (quenchers) to form corrosive condensates
US20080063895A1 (en) Ultra Hydrophilic Ti-O-C Based Nano Film and Fabrication Method Thereof
RU107960U1 (en) EVAPORATOR
CN102226665A (en) Method for improving heat and moisture transfer efficiency of tubular indirect evaporative cooler
CN105351745A (en) Liquid chlorine vaporization device
KR101694751B1 (en) Apparatus for supplying precursors for forming thin film and film forming apparatus having the same
CN212198572U (en) Evaporation device
KR102497303B1 (en) Atmospheric vaporizer for liquefied petroleum gas
KR102497304B1 (en) Atmospheric vaporizer for liquefied ammonia
CN214065770U (en) Tower type evaporative condenser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862115

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14862115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP