WO2015072257A1 - 表示装置及びその制御方法 - Google Patents

表示装置及びその制御方法 Download PDF

Info

Publication number
WO2015072257A1
WO2015072257A1 PCT/JP2014/077153 JP2014077153W WO2015072257A1 WO 2015072257 A1 WO2015072257 A1 WO 2015072257A1 JP 2014077153 W JP2014077153 W JP 2014077153W WO 2015072257 A1 WO2015072257 A1 WO 2015072257A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
inverse filter
luminance
display device
segment
Prior art date
Application number
PCT/JP2014/077153
Other languages
English (en)
French (fr)
Inventor
田丸 雅也
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2015547692A priority Critical patent/JP6023349B2/ja
Priority to CN201480061930.6A priority patent/CN105723445B/zh
Publication of WO2015072257A1 publication Critical patent/WO2015072257A1/ja
Priority to US15/130,586 priority patent/US9818346B2/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • G09G3/3426Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines the different display panel areas being distributed in two dimensions, e.g. matrix
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/431Generation of visual interfaces for content selection or interaction; Content or additional data rendering
    • H04N21/4318Generation of visual interfaces for content selection or interaction; Content or additional data rendering by altering the content in the rendering process, e.g. blanking, blurring or masking an image region
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • H04N5/57Control of contrast or brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • G09G2320/0646Modulation of illumination source brightness and image signal correlated to each other
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0686Adjustment of display parameters with two or more screen areas displaying information with different brightness or colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data

Definitions

  • the present invention relates to a display device that independently controls light emission luminance for each segment region and a control method thereof.
  • the liquid crystal display device includes a liquid crystal panel capable of adjusting the light transmittance for each pixel, and a backlight (light source) that emits light toward the liquid crystal panel.
  • BLD backlight local dimming
  • a backlight capable of independently controlling the emission luminance of each segment area obtained by dividing the display area of the liquid crystal panel into a plurality of segments Is known to do.
  • LEDs light emitting diodes
  • the “display luminance” in this specification is luminance observed from a pixel (liquid crystal element) of the liquid crystal panel, and is determined by a product of the transmittance of the pixel and the light emission luminance of the LED.
  • the liquid crystal display device it is determined whether or not there is a margin for gain increase (increase in light transmittance) in the pixel value of each pixel for each segment area, and if there is such margin, the light emission luminance of the LED is lowered. At the same time, correction for increasing the pixel value is performed. For example, when the peak value of the pixel value in the segment area is 1 ⁇ 2 of the maximum value that can be taken by the pixel value, the pixel value of each pixel in the segment area is increased by a factor of two and the light emission luminance of the LED Is halved. Thereby, the contrast ratio of the display image can be increased while reducing power consumption.
  • a set value of LED emission luminance (hereinafter referred to as LED set value) is calculated for each segment area, and LED emission for each segment area is controlled based on the calculation result.
  • the LED setting value is calculated for each segment area under the assumption that the LED light of a certain segment area does not leak into the surrounding segment area, but this assumption is satisfied. It is extremely difficult to realize a liquid crystal display device. For this reason, in the liquid crystal display device, when an LED in one segment region is caused to emit light, light from this LED leaks to the surrounding segment region. Therefore, an appropriate LED set value can be determined under the above assumption. Have difficulty.
  • the LED light emission luminance contribution ratio between the segment areas is obtained in advance, and the LED set value for each segment area is solved by solving simultaneous equations using the contribution ratio. Is calculated.
  • area coefficients indicating the amount of light leakage between adjacent segment areas are prepared for, for example, three levels (strong, medium, weak), and LED setting of a certain segment area is performed. The value is corrected by one of the three region coefficients. That is, in this liquid crystal display device, the luminance difference between adjacent segment areas is reduced by adding the amount of light leakage from the surrounding segment areas for a certain segment area.
  • the LED setting value for each segment area is calculated by solving simultaneous equations. For example, when displaying a moving image, it is necessary to solve simultaneous equations for each frame image in real time. is there. However, it is practically difficult to solve the simultaneous equations in real time, and Patent Document 1 does not disclose a method for solving the simultaneous equations in real time. For this reason, in the liquid crystal display device of Patent Document 1, there is a possibility that a delay occurs in image display.
  • An object of the present invention is to provide a display device capable of calculating in real time an optimum setting value of light emission luminance of a light source for each segment area, and a control method thereof.
  • a display device for achieving the object of the present invention includes a non-self-luminous display panel, a light source that independently controls light emission luminance for each segment area obtained by dividing the display area of the non-self-luminous display panel, and image data
  • An image data acquisition unit that acquires the target luminance
  • a target luminance calculation unit that calculates a target luminance that is a target value of the emission luminance for each segment region based on the image data acquired by the image data acquisition unit, and light emission of the light source for each segment region
  • the light emission distribution characteristic of the light source that is, the set value of the light emission luminance of the light source for each segment region taking into account light leakage from a certain segment region to the surrounding segment region is calculated in real time. be able to.
  • the inverse filter acquisition unit acquires the inverse filter calculated by the inverse filter calculation unit that calculates the inverse filter of the light emission distribution function using the Wiener filter. Since the Wiener filter is a filter that minimizes an error from the target luminance, it is possible to calculate an inverse filter (filter coefficient) that can effectively suppress loss of gradation information of the display image.
  • a high-frequency limiting processing unit that performs a high-frequency limiting process that limits an increase in amplitude on a higher frequency side than a specific spatial frequency is provided for the inverse filter acquired by the reverse filter acquiring unit. It is preferable to perform a convolution operation using the inverse filter. Thereby, it is possible to suppress the loss of the gradation information of the display image due to the disturbance of the luminance distribution of the backlight luminance, in other words, the occurrence of image quality deterioration due to excessive enhancement.
  • the inverse filter acquisition unit acquires the inverse filter that has been subjected to the high frequency restriction processing by the high frequency restriction processing unit that performs the high frequency restriction processing that restricts the increase in amplitude on the high frequency side relative to the specific spatial frequency, and the set value calculation unit It is preferable to perform a convolution operation using an inverse filter that has been subjected to high-frequency restriction processing. Thereby, it is possible to suppress the loss of the gradation information of the display image due to the disturbance of the luminance distribution of the backlight luminance, in other words, the occurrence of image quality deterioration due to excessive enhancement.
  • a window function multiplication processing unit that multiplies the filter function of the inverse filter acquired by the inverse filter acquisition unit by a window function, and the set value calculation unit performs a convolution operation using the inverse filter after the window function multiplication processing It is preferable. Thereby, the expansion of the circuit scale and the processing delay can be suppressed as much as possible.
  • An inverse filter storage unit that stores inverse filters of a plurality of types of light emission distribution functions that differ according to at least one of the position of the segment region in the display region and the characteristics of the light source for each segment region. It is preferable that a plurality of types of inverse filters are acquired from the filter storage unit, and the set value calculation unit performs a convolution operation by selecting an inverse filter corresponding to each segment region. Thereby, the information loss of the gradation information of the display image can be suppressed with high accuracy.
  • a correspondence relationship storage unit that stores the correspondence relationship between the segment region and the inverse filter corresponding to the segment region is provided for each segment region, and the setting value calculation unit corresponds to each segment region with reference to the correspondence relationship storage unit. It is preferable to select an inverse filter. Thereby, the information loss of the gradation information of the display image can be suppressed with high accuracy.
  • the target luminance calculation unit calculates a representative value of the pixel value of the image data for each segment area, and determines the target luminance for each segment area based on the calculation result of the representative value. An appropriate target luminance can be determined for each segment area.
  • the representative value is preferably the peak value of the pixel value. In the segment area where the peak value is relatively small, the light emission luminance of the light source can be lowered, so that power can be saved.
  • a prediction section that predicts the light emission luminance of the display area, and gradation correction that performs gradation correction of the pixel value of the image data based on the prediction result of the prediction section
  • a panel control unit that controls driving of the pixels of the non-self-luminous display panel based on the pixel value after gradation correction by the gradation correction unit.
  • the display brightness of the non-self light emitting display panel can be appropriately controlled.
  • the display device control method for achieving the object of the present invention independently controls the light emission luminance of the non-self light emitting display panel and the segment areas obtained by dividing the display area of the non self light emitting display panel into a plurality of segments.
  • a control method for a display device comprising a light source, an image data acquisition step for acquiring image data, and a target luminance that is a target value of light emission luminance for each segment area is calculated based on the image data acquired in the image data acquisition step
  • the target luminance calculation step, the inverse filter acquisition step for acquiring the inverse filter of the light emission distribution function indicating the light emission distribution characteristic of the light source for each segment region, and the target luminance for each segment region calculated in the target luminance calculation step.
  • the emission brightness of the light source for each segment area With the a set value calculation step of calculating a set value, based on the setting values of each segment area calculated by the set value calculation step, a light source control step of controlling the emission luminance of the light source for each segment region.
  • the display device and the control method thereof according to the present invention can calculate the optimal setting value of the light emission luminance of the light source for each segment area in real time.
  • FIG. 17 is an explanatory diagram for explaining the reason for the disturbance in the luminance distribution of the backlight luminance illustrated in FIG. 16.
  • a liquid crystal display device (display device) 10 having a BLD control function acquires still image or moving image image data I (x, y) from a digital camera 12 connected by wire or wirelessly.
  • the coordinates (x, y) mean the coordinates of the pixel unit of the liquid crystal panel 15 (see FIG. 2) and the image.
  • the liquid crystal display device 10 may display the image by obtaining the image data I (x, y) via a portable terminal, the Internet, a television broadcast wave, or the like instead of the digital camera 12.
  • the display unit 10 a of the liquid crystal display device 10 is roughly composed of a liquid crystal panel (non-self light emitting display panel) 15, a backlight (light source) 16, and a protective panel 17.
  • a large number of liquid crystal elements are arranged on the liquid crystal panel 15.
  • the liquid crystal panel 15 can adjust the light transmittance for each pixel.
  • a liquid crystal panel 15 capable of stereoscopic viewing such as a lenticular lens, may be used.
  • the display area of the liquid crystal panel 15 is divided into m ⁇ n (m and n are natural numbers of 2 or more) segment areas S (m, n).
  • the coordinates (m, n) mean the coordinates of the segment area S (m, n) to which the pixel q (x, y) belongs.
  • the segment area S (m, n) can also be expressed as a segment area 1, a segment area 2,.
  • one segment area S (m, n) is an area of horizontal K pixels ⁇ vertical L pixels (K and L are arbitrary natural numbers). Therefore, one segment area S (m, n) includes K ⁇ L pixels q (x, y).
  • the display luminance V (x, y) of the pixel q (x, y) of the liquid crystal panel 15 is the panel transmittance P (x, y) of the pixel q (x, y) as shown in the following equation (1).
  • the panel transmittance P (x, y) is determined by the pixel value of the display image (image data I (x, y)) input to the pixel q (x, y), and the backlight luminance B (x, y).
  • the backlight 16 is disposed on the back side of the liquid crystal panel 15.
  • the backlight 16 independently controls the light emission luminance for each segment region S (m, n).
  • n ⁇ m LEDs 19 for individually illuminating each segment region S (m, n) are arranged. Since the light emission amount of each LED 19 can be controlled independently, BLD control for independently controlling the light emission luminance for each segment region S (m, n) is possible.
  • PWM Pulse ⁇ ⁇ WidthLEDModulation
  • the duty ratio of PWM is individually changed according to the LED setting value E (m, n) for each segment region S (m, n).
  • the amount of light emitted from the LED 19 can be controlled.
  • one LED 19 is arranged for one segment region S (m, n), but a plurality of LEDs 19 may be arranged. Moreover, you may use light sources other than LED.
  • the protective panel 17 is a transparent plate disposed on the front side of the liquid crystal panel 15. This protective panel 17 protects the front surface of the liquid crystal panel 15.
  • an operation panel touch panel
  • detects one or a plurality of coordinates operated by a user (viewer) finger or a stylus may be used.
  • the liquid crystal display device 10 includes an image data acquisition unit 21, a luminance linear conversion unit 22, a light emission distribution function storage unit 25, an inverse filter calculation unit 26, and an inverse filter storage unit in addition to the display unit 10a described above. 27, an LED set value calculation unit 30, a backlight control unit (light source control unit) 31, a backlight luminance prediction unit 32, a gradation correction unit 33, a gamma correction unit 34, and a liquid crystal panel control unit (panel control unit) 35. is doing.
  • the image data acquisition unit 21 is a connection interface that connects to the digital camera 12 (the above-described Internet or the like is also possible).
  • the image data acquisition unit 21 acquires the image data I (x, y) from the digital camera 12 and outputs it to the luminance linear conversion unit 22.
  • “(x, y)” of “I (x, y)” indicates a pixel value corresponding to each pixel q (x, y) of the liquid crystal panel 15 and the display image.
  • each pixel value is normalized and represented by 0 to 1. For example, when the pixel value is “1”, the transmittance of the pixel q (x, y) of the liquid crystal panel 15 is maximized. Conversely, when the pixel value is “0”, the transmission of the pixel q (x, y) is achieved. The rate is minimized.
  • the luminance linear conversion unit 22 performs luminance linear conversion processing (reproduction gradation conversion) on the image data I (x, y) input from the image data acquisition unit 21 to thereby obtain the image data I (x, y). ) Is converted into luminance linear image data I L (x, y). For example, the image data I (x, y) obtained by photographing with the digital camera 12 or the like is subjected to a gradation conversion process (usually 0.45) called gamma correction. Therefore, the luminance linear conversion unit 22 performs 2.2 power conversion, which is the inverse of 0.45 power, on the image data I (x, y). The luminance linear conversion unit 22 outputs the image data I L (x, y) to the LED set value calculation unit 30 and the gradation correction unit 33, respectively.
  • luminance linear conversion processing production gradation conversion
  • the light emission distribution function storage unit 25 stores in advance a light emission distribution function f (x, y) indicating a light emission distribution characteristic of one LED 19 arranged for each segment region S (m, n).
  • the light emission distribution function f (x, y) will be described in detail later (see FIG. 10), but is a known value obtained in advance by measurement at the time of designing or manufacturing the liquid crystal panel 15.
  • the light emission distribution function f (x, y) is stored in the light emission distribution function storage unit 25 by, for example, setting at the time of manufacture, setting via a communication network, or setting via user input operation.
  • the inverse filter calculation unit 26 calculates an inverse filter f ⁇ 1 (x, y) of the light emission distribution function f (x, y) read from the light emission distribution function storage unit 25, and this inverse filter f ⁇ 1 (x, y) is stored in the inverse filter storage unit 27. Since the emission distribution function f (x, y) is a fixed value unless the deterioration of the LED 19 over time is taken into consideration, the inverse filter calculation unit 26 basically calculates the inverse filter f ⁇ 1 (x, y) once. Just do it.
  • the storage of a new light emission distribution function f (x, y) in the light emission distribution function storage unit 25 and the calculation of the inverse filter f ⁇ 1 (x, y) by the inverse filter calculation unit 26 are performed every predetermined time.
  • the inverse filter f ⁇ 1 (x, y) in the inverse filter storage unit 27 may be updated repeatedly.
  • the backlight control unit 31 controls the light emission luminance of the LED 19 for each segment area S (m, n) based on the LED setting value E (m, n) input from the LED setting value calculation unit 30. Thereby, the backlight luminance B (x, y) at the position of each pixel q (x, y) of the liquid crystal panel 15 is determined.
  • the backlight luminance prediction unit 32 determines the luminance distribution of the backlight 16, that is, each pixel q (x, y) of the liquid crystal panel 15. ) Is predicted at the position of the backlight. Specifically, the backlight brightness predicting unit 32 emits the LED set value function E (x, y) obtained from the LED set value E (m, n) [see FIG. 9] and the light emission read from the light emission distribution function storage unit 25. A predicted backlight luminance B P (x, y) is calculated by convolution processing with the distribution function f (x, y) (see equation (12) described later).
  • the backlight luminance prediction unit 32 outputs the predicted backlight luminance B P (x, y), which is the prediction result of the backlight luminance B (x, y), to the gradation correction unit 33.
  • the gradation correction unit 33 converts the image data I L (x, y) input from the luminance linear conversion unit 22 and the predicted backlight luminance B P (x, y) input from the backlight luminance prediction unit 32. Based on this, as will be described in detail later, the tone-corrected image signal C L (x, y) is calculated (see equation (8) described later). This image signal C L (x, y) is also standardized, and the pixel value is represented by 0 to 1. Then, the tone correction unit 33 outputs the image signal C L (x, y) to the gamma correction unit 34.
  • the gamma correction unit 34 performs a gamma correction process of, for example, a power of 0.45 ( ⁇ 1 / 2.2) on the luminance linear image signal C L (x, y), thereby again image data I (x, The image signal is converted to an image signal C (x, y) that has been subjected to the same gamma correction as in y).
  • the gamma correction unit 34 outputs the image signal C (x, y) to the liquid crystal panel control unit 35.
  • the liquid crystal panel control unit 35 controls the panel transmittance P (x, y) for each pixel q (x, y) of the liquid crystal panel 15 based on the image signal C (x, y) input from the gamma correction unit 34. To do. Thereby, the panel transmittance P (x, y) is determined according to the characteristics of the liquid crystal panel 15.
  • the panel transmittance P (x, y) is generally expressed by the following formula (2).
  • a P and b P are parameters determined by the characteristics of the liquid crystal panel 15, a P represents the panel transmittance coefficient of the liquid crystal panel 15, and b P is the panel black floating transmittance of the liquid crystal panel 15.
  • the display luminance V (x, y) is determined according to the above-described equation (1).
  • the representative value calculation unit 38 of the LED set value calculation unit 30 obtains each segment area S (m, n) from the image data I L (x, y) input from the luminance linear conversion unit 22.
  • the representative value I LPEAK (m, n) of the image data I L (x, y) is calculated.
  • the representative value I LPEAK (m, n) is a peak value of pixel values of K ⁇ L pixels q (x, y) in the segment area S (m, n).
  • the “peak value” here is not limited to the true peak value (peak value 1 in the figure), and in order to suppress the influence on the impulse system noise, etc.
  • the representative value calculation unit 38 outputs the representative value I LPEAK (m, n) for each segment region S (m, n) to the UM calculation unit 39.
  • UM calculator 39 (see FIG. 4) is the representative value input from the calculation unit 38 representative value I Lpeak (m, n) based on the segment area S (m, n) for each representative value I Lpeak (m, n) is calculated as to how much gain increase is allowed with respect to the maximum value I LMAX (here, 1) that the pixel value can take. Assuming that the margin (Upper Margin) for each segment region S (m, n) is UM (m, n), the UM calculator 39 calculates UM (m, n) using the following equation (3). . UM (m, n) is always a value of 1 or more [UM (m, n) ⁇ 1].
  • the black float amount of is 1. Further, in FIG. 5, it is expressed in one dimension in order to prevent complication of the drawing (the same applies to FIG. 7).
  • the display brightness V (x, y) is expressed by the following equation (5).
  • the display brightness V (x, y) represented by the above formula (5) is half the black floating amount compared to the display brightness V (x, y) without UM correction represented by the above formula (4).
  • the observer can perceive that there is little black float.
  • I L (x, y) is large, since the absolute value of the luminance is high, the observer can hardly perceive this change in black float.
  • Such human perceptual characteristics can be explained by Weber-Fechner's law.
  • the observer can perceive as if the display contrast of the image displayed on the liquid crystal display device 10 is enlarged. Further, since the backlight luminance B (x, y) is halved, the power consumption of the liquid crystal display device 10 can be suppressed. By performing such UM correction for each segment region S (m, n), it is possible to achieve both an increase in display contrast and a reduction in power consumption.
  • the LED set value calculation unit 30 causes the backlight luminance B (x, y) to be 1 / UM (m, n) in each segment region S (m, n). It is ideal to calculate a correct LED set value E (m, n). Therefore, assuming that “the LED emission of a certain segment area S (m, n) does not leak into the surrounding segment area S (m, n)”, the LED set value E for each segment area S (m, n). (M, n) can be expressed by the following formula (6). Thereby, the backlight luminance B (x, y) and the above-described predicted backlight luminance B P (x, y) can be set to ideal conditions as expressed by the following equation (7).
  • E 0 is an LED setting value when UM correction is not performed, and is the same value in each segment area S (m, n).
  • B 0 is a reference backlight luminance.
  • the coordinates (x, y) and (m, n) are mixed, but as described above, the coordinates (x, y) mean the coordinates of the pixel unit of the liquid crystal panel 15 and the image.
  • the coordinates (m, n) mean the coordinates of the segment area S (m, n) to which the pixel q (x, y) belongs.
  • the above-described gradation correction unit 33 uses the predicted backlight luminance B P (x, y) obtained by the above equation (7) and the following equation (8) and the image signal C L (x, y). Is calculated.
  • B P (x, y) 0, exception processing is performed so as not to divide by zero.
  • the image signal C L (x, y) is expressed by the following equation (9).
  • UM (m, n) is a value obtained by the above equation (3)
  • the first term on the right side of equation (9) does not exceed the maximum value I LMAX (here 1) that the pixel value can take. Absent. Therefore, the image signal C L (x, y) is not clipped beyond the maximum value I LMAX, and no information loss of the gradation information in the highlight area due to the gradation correction occurs.
  • the panel transmittance P (x, y) is expressed by the following formula (10). Further, by substituting the panel transmittance P (x, y) into the above equation (1), the display luminance V (x, y) is expressed by the following equation (11).
  • the display brightness V (x, y) represented by the above formula (11) is obtained by inputting the image data I L (x, y) to the liquid crystal panel 15 without floating black and the backlight brightness B (x, y). the same display luminance in the case where the uniform luminance B 0. That is, by performing the UM correction as described above, it is possible to reduce the black float without an information loss of the gradation information of the highlight area due to the maximum clip described above, and to enlarge the display contrast.
  • the backlight luminance B (x, y) is reduced by 1 / UM (m, n) in each segment area S (m, n), so that power consumption can be suppressed.
  • BLD control can be realized by the above UM correction.
  • “LED emission in a certain segment area S (m, n) is assumed in the above-described segment area S (m, n). It is difficult to realize a structure that does not leak. For this reason, as shown by a dotted line in FIG. 8, one segment area 2 of the segment areas S (m, n) represented by the segment area 1, the segment area 2, the segment area 3,. If it does, the light will leak also to the surrounding segment area
  • the backlight brightness B (x, y) and the predicted backlight brightness B P (x, y) at a certain point of the liquid crystal panel 15 are the LED setting values E (m, n) of the segment area 2 including the point.
  • the influence of the LED setting value E (m, n) of the surrounding segment areas 1 and 3 is added. If this is generally expressed, it is expressed by the following formula (12). Note that the solid line in FIG. 8 is the backlight luminance B (x, y) obtained by synthesizing the light emission luminance for each segment region S (m, n). The dotted line in the figure shows the emission distribution of each segment area S (m, n) in the case where the LED set value E a (m, n) is set to E 0.
  • E (x, y) is set for each segment area S (m, n) at the center of each segment area S (m, n) as shown by reference numerals 300 and 301 in FIG. 9 and FIG.
  • the LED setting value E (m, n) is taken and the other positions are all set to 0.
  • f (x, y) is a light emission distribution function indicating a light emission distribution characteristic of one LED 19 as shown by reference numeral 302 in FIG. 10 and FIG. 11, and light emission spreads over a plurality of segment regions. Yes.
  • the one-dimensional representation is used to prevent the drawing from becoming complicated.
  • the backlight luminance B (x, y) represented by the alternate long and short dash line in the figure is the LED set value function E (x, y), the light emission distribution function f (x, y), and Determined by the convolution operation.
  • the LED setting value E (m, n) also differs for each segment area S (m, n). Therefore, in a simple LED setting value E (m, n) calculation method such as the above equation (6), the backlight luminance B (x, y) obtained by synthesizing the emission luminance for each segment region S (m, n). However, the ideal condition as in the above equation (7) cannot be satisfied. Therefore, the LED setting value calculation unit 30 of the present invention calculates the LED setting value E (m, n) that provides the backlight luminance B (x, y) that approximates the ideal condition.
  • the LED set value calculation unit 30 includes a target backlight luminance calculation unit (target luminance calculation unit) 40, and an inverse filter acquisition unit. 41 and a set value calculation unit 42.
  • the target backlight luminance calculation unit 40 uses the following formula (13) based on the UM (m, n) for each segment region S (m, n) calculated by the UM calculation unit 39, and uses the segment region S ( A target backlight brightness B d (x, y) that is a target brightness (target value) of display brightness for each m, n) is calculated.
  • a target backlight brightness B d (x, y) that is a target brightness (target value) of display brightness for each m, n) is calculated.
  • the expression (13) is basically the same as the above (7), detailed description thereof is omitted, but the target backlight luminance B d (x, y) is determined for each segment area S (m, n).
  • the distribution function has a constant luminance.
  • the target backlight luminance calculation unit 40 outputs the calculation result of the target backlight luminance B d (x, y) for each segment region S (m, n) to the set value calculation unit 42.
  • the inverse filter acquisition unit 41 acquires an after-mentioned inverse filter f ⁇ 1 (x, y) from the inverse filter storage unit 27, and outputs the inverse filter f ⁇ 1 (x, y) to the set value calculation unit 42.
  • the set value calculation unit 42 is based on the target backlight luminance B d (x, y) and the inverse filter f ⁇ 1 (x, y) input from the target backlight luminance calculation unit 40 and the inverse filter acquisition unit 41, respectively.
  • the LED setting value E (m, n) for each segment area S (m, n) is calculated.
  • the set value calculation unit 42 calculates the predicted backlight luminance B P (x, y) calculated by the above-described backlight luminance prediction unit 32 based on the LED setting value E (m, n) as the target backlight luminance B d.
  • the LED set value E (m, n) is calculated so as to be as close as possible to (x, y).
  • the set value calculation unit 42 calculates a square error [(B d (x, y) ⁇ B P (x) between the predicted backlight luminance B P (x, y) and the target backlight luminance B d (x, y)). , Y)) LED setting value E (m, n) for each segment region S (m, n) is calculated so as to minimize 2 ].
  • the inverse filter f ⁇ 1 (x, y) is calculated by the inverse filter calculator 26 described above.
  • the inverse filter calculation unit 26 calculates a filter coefficient of the inverse filter f ⁇ 1 (x, y) using a Wiener filter as a solution for minimizing the above-described square error. That is, the inverse filter calculation unit 26 calculates the Wiener filter as the inverse filter f ⁇ 1 (x, y). Specifically, the inverse filter calculation unit 26 calculates an inverse filter f ⁇ 1 (x, y) by performing an inverse Fourier transform on F ⁇ 1 (u, v) calculated by the following equation (15).
  • F ⁇ 1 (u, v) is a Fourier transform of f ⁇ 1 (x, y)
  • F (u, v) is a Fourier transform of f (x, y)
  • F * (U, v) is the complex conjugate of F (u, v) and G is a parameter.
  • the inverse filter f ⁇ 1 (x, y) calculated by the inverse filter calculation unit 26 is stored in the inverse filter storage unit 27. Accordingly, the set value calculation unit 42 can acquire the inverse filter f ⁇ 1 (x, y) via the inverse filter acquisition unit 41.
  • the set value calculation unit 42 performs a convolution operation process on the target backlight luminance B d (x, y) and the inverse filter f ⁇ 1 (x, y) based on the above equation (14), and performs the LED set value function E ( x, y) is calculated for each segment region S (m, n). Thereby, the LED set value function E (x, y) for obtaining the backlight characteristics approximate to the target backlight luminance B d (x, y) can be obtained.
  • the set value calculation unit 42 converts the LED set value function E (x, y) into the LED set value E (m, n) for each segment area S (m, n).
  • the conversion from “E (x, y)” to “E (m, n)” calculates, for example, an average value of the LED set value function E (x, y) for each segment region S (m, n).
  • Such a method is used.
  • the calculation of the LED setting value E (m, n) by the setting value calculation unit 42 is completed.
  • the LED setting value E (m, n) is output to the backlight control unit 31 and the backlight luminance prediction unit 32, respectively.
  • the inverse filter calculation unit 26 calculates the inverse filter f ⁇ 1 (x, y) of the emission distribution function f (x, y) in the emission distribution function storage unit 25 in advance using a Wiener filter (see Expression (15)). Then, the inverse filter f ⁇ 1 (x, y) is stored in the inverse filter storage unit 27 (step S1).
  • the image data acquisition unit 21 acquires the image data I (x, y) from the digital camera 12, and the image data I (x, y) is converted to the luminance linear conversion unit 22.
  • Step S2 image data acquisition step.
  • Luminance linear converter 22 image data I (x, y) is subjected to luminance linear conversion processing to generate image data I L (x, y), the image data I L (x, y) of the LED Each is output to the set value calculation unit 30 and the gradation correction unit 33 (step S3).
  • the LED set value calculation unit 30 receives the input of the image data I L (x, y) from the luminance linear conversion unit 22 and starts calculating the LED set value E (m, n) (step S4).
  • the representative value calculation unit 38 calculates the representative value I LPEAK (m, n) for each segment region S (m, n) from the image data I L (x, y) input from the luminance linear conversion unit 22. Then, the calculation result of each representative value I LPEAK (m, n) is output to the UM calculation unit 39 (step S5).
  • the UM calculation unit 39 uses the above equation (3) based on the representative value I LPEAK (m, n) input from the representative value calculation unit 38 to determine the UM (m for each segment area S (m, n). , N) and outputs the calculation result of UM (m, n) to the target backlight luminance calculation unit 40 (step S6).
  • the target backlight luminance calculation unit 40 uses the above equation (13) based on the UM (m, n) input from the UM calculation unit 39 to calculate the target backlight luminance B for each segment region S (m, n). d (x, y) is calculated (step S7, target luminance calculation step). Then, the target backlight luminance calculation unit 40 outputs the calculation result of the target backlight luminance B d (x, y) to the set value calculation unit 42.
  • the inverse filter acquisition unit 41 acquires the inverse filter f ⁇ 1 (x, y) from the inverse filter storage unit 27 and outputs the inverse filter f ⁇ 1 (x, y) to the set value calculation unit 42. (Step S8, inverse filter acquisition step).
  • the set value calculation unit 42 calculates the target backlight luminance B d (x, y) and the inverse filter f ⁇ 1 (x, y) input from the target backlight luminance calculation unit 40 and the inverse filter acquisition unit 41, respectively, by the above formula. Substituting into (14), convolution operation processing is performed. Thereby, the LED set value function E (x, y) for each segment area S (m, n) is calculated.
  • the set value calculation unit 42 converts the LED set value function E (x, y) into the LED set value E (m, n) for each segment area S (m, n). Thereby, LED setting value E (m, n) for each segment area S (m, n) is calculated (step S9, setting value calculation step). Then, the set value calculation unit 42 outputs the calculation result of the LED set value E (m, n) to the backlight luminance prediction unit 32 and the backlight control unit 31, respectively.
  • the backlight luminance prediction unit 32 uses the above equation (12) to predict the prediction backlight for each segment region S (m, n). Luminance B P (x, y) is calculated (step S10). Then, the backlight luminance prediction unit 32 outputs the calculation result of the predicted backlight luminance B P (x, y) to the gradation correction unit 33.
  • the gradation correction unit 33 is based on the predicted backlight luminance B P (x, y) input from the backlight luminance prediction unit 32 and the image data input from the luminance linear conversion unit 22 using the above equation (8).
  • a gradation correction process is performed on I L (x, y).
  • the image signal C L (x, y) that has been subjected to the gradation correction processing is calculated for each segment region S (m, n) (step S11).
  • the tone correction unit 33 outputs the image signal C L (x, y) to the gamma correction unit 34.
  • the gamma correction unit 34 performs gamma correction on the image signal C L (x, y) for each segment region S (m, n) input from the gradation correction unit 33, thereby performing gamma correction.
  • An image signal C (x, y) is generated (step S12). Then, the gamma correction unit 34 outputs the image signal C (x, y) to the liquid crystal panel control unit 35.
  • the liquid crystal panel control unit 35 controls the transmittance of each pixel q (x, y) of the liquid crystal panel 15 based on the image signal C (x, y), and the backlight control unit 31 controls the LED set value E (m, The light emission of the backlight 16 (each LED 19) is controlled based on n) (step S13, light source control step). As a result, an image based on the image data I (x, y) is displayed on the display unit 10a (step S14).
  • the LED set value E (m, n) is calculated in consideration of light leakage into the surrounding segment region S (m, n) (see FIGS. 8 to 11). Therefore, the backlight luminance B (x, y) shows a characteristic approximate to the target backlight luminance B d (x, y).
  • the curve drawn with a solid line in FIG. 14 is the light emission distribution of each segment region S (m, n) when the LED set value E (m, n) is set (the same applies to FIG. 15).
  • FIG. 15 showing a comparative example
  • the LED set value E (m, n) is calculated under ideal conditions that do not consider the leakage of light into the surrounding segment region S (m, n).
  • the backlight luminance B (x, y) cannot satisfy the ideal condition as shown in the above equation (7). Specifically, since the amount of light leakage is not taken into consideration, the backlight luminance B (x, y) often falls below the ideal condition. In such a situation, the image signal C L (x, y) exceeds 1 when tone correction is performed by the above formula (8) using the predicted backlight luminance B P (x, y).
  • the present invention calculates the LED set value E (m, n) in consideration of light leakage into the surrounding segment area S (m, n), thereby highlighting the highlight area.
  • the loss of gradation information in the can be suppressed as much as possible.
  • step S15 when displaying an image based on the other image data I (x, y), the processing from step S2 to step S14 described above is repeatedly executed (YES in step S15).
  • the inverse filter f ⁇ 1 (x, y) is calculated in advance using the Wiener filter, and the above expression (14) is expressed using the inverse filter f ⁇ 1 (x, y).
  • the LED set value E (m, n) taking into account light leakage is calculated by performing convolution calculation processing.
  • the LED set value E (m, n) can be calculated in real time.
  • the Wiener filter is used as it is as the inverse filter f ⁇ 1 (x, y), but in this case, the backlight luminance distribution may be disturbed.
  • the backlight luminance B (x, y) as indicated by reference numeral 307 is applied to the luminance distribution of the target backlight luminance B d (x, y) whose center is bright.
  • the LED set value E (m, n) is calculated based on the inverse filter f ⁇ 1 (x, y) obtained by directly obtaining the filter coefficient from the Wiener filter, as shown by reference numeral 308, In some cases, a luminance distribution of backlight luminance B (x, y) whose center is dark may be obtained.
  • the Wiener filter [inverse filter f ⁇ 1 (x, y)] is calculated by the above equation (15).
  • the emission distribution function f (x, y) and the frequency amplitude characteristics F and F ⁇ 1 of the Wiener filter are For example, it is indicated by a solid line and a dotted line (thin line) in the figure.
  • the luminance characteristic of the backlight luminance B (x, y) finally obtained (hereinafter referred to as the backlight luminance characteristic) is as shown in the above formula (12).
  • emitting distribution function f (x, y) and the inverse filter f -1 (x, y) so represented by the convolution of the frequency characteristics is the product F ⁇ F -1 next to the F and F -1, in FIG. It is indicated by a dotted line (thick line).
  • the backlight luminance characteristic F ⁇ F ⁇ 1 is the luminance characteristic of the target backlight luminance B d (x, y) indicated by the two-dot chain line in the figure (hereinafter referred to as the target backlight luminance characteristic) F d. It is close to. In particular, bringing the backlight luminance characteristic F ⁇ F ⁇ 1 closer to the target backlight luminance characteristic F d at a low frequency leads to the target backlight luminance B d (x, y) and the backlight luminance B (x, y). It is effective in reducing the error of.
  • the emission distribution function f (x, y) generally has a small amplitude on the high frequency side, the characteristics of the Wiener filter obtained on the high frequency side are unstable and tend to have excessive enhancement characteristics and attenuation characteristics. .
  • the false signal component is added to the backlight luminance characteristic obtained after the inverse filter processing, and the luminance distribution is disturbed as indicated by reference numeral 308 in FIG.
  • the amplitude on the higher frequency side than the specific spatial frequency is limited with respect to the inverse filter f ⁇ 1 (x, y).
  • the “specific spatial frequency” is a lower limit of a high frequency region where an influence due to an error between the target backlight luminance B d (x, y) and the backlight luminance B (x, y) is reduced. For example, as shown in FIG.
  • the amplitude of the inverse filter f ⁇ 1 (x, y) has a frequency amplitude characteristic that gradually increases after the amplitude gradually decreases as the spatial frequency increases
  • the amplitude on the higher frequency side than the spatial frequency is limited.
  • the “specific spatial frequency” is a value determined by experiments or simulations.
  • the liquid crystal display device 60 of the second embodiment includes a high frequency limiting characteristic function storage unit 62 that stores a high frequency limiting characteristic function FL, and the LED set value calculation unit 30 is provided with a high frequency limiting processing unit 63.
  • the configuration is basically the same as that of the liquid crystal display device 10 of the first embodiment. For this reason, the same reference numerals are given to the same functions and configurations as those in the first embodiment, and the description thereof is omitted.
  • the high-frequency limiting characteristic function FL is multiplied by F ⁇ 1 [inverse filter f ⁇ 1 (x, y)] in the frequency space, so that the inverse filter f ⁇ 1 (x, y) is obtained. It has a high frequency limiting characteristic that limits the amplitude on the higher frequency side than the “specific spatial frequency”. Accordingly, the inverse filter f ⁇ 1 (x, y) subjected to the high frequency limiting process is obtained by multiplying F ⁇ 1 by the high frequency limiting characteristic function FL.
  • the symbol “Fr ⁇ 1 ” in the figure indicates the frequency amplitude characteristic of the inverse filter f ⁇ 1 (x, y) subjected to the high frequency limiting process.
  • the high frequency restriction processing unit 63 reads the high frequency restriction characteristic function FL from the high frequency restriction characteristic function storage unit 62, and the high frequency restriction characteristic function FL is input to the inverse filter f ⁇ inputted from the inverse filter acquisition unit 41. 1 (x, y) is multiplied. Specifically, the inverse filter f ⁇ 1 (x, y) is once Fourier transformed into a function on the frequency space, and then multiplied by the high frequency limiting characteristic function FL, and the multiplication result is inverted. Perform Fourier transform. As a result, an inverse filter f ⁇ 1 (x, y) having the frequency amplitude characteristic Fr ⁇ 1 is obtained.
  • the set value calculation unit 42 substitutes the target backlight brightness B d (x, y) and the inverse filter f ⁇ 1 (x, y) subjected to the high-frequency limiting process into the above equation (14), and sets the LED set value function E After calculating (x, y), the LED set value function E (x, y) is converted into the LED set value E (m, n).
  • the backlight luminance characteristic F ⁇ Fr ⁇ 1 obtained by subjecting the inverse filter f ⁇ 1 (x, y) to the high frequency limiting process has no inferior false signal component on the high frequency side.
  • the target backlight luminance characteristic Fd is approached on the low frequency side. Thereby, it is possible to effectively suppress the information loss of the gradation information in the highlight region without causing the disturbance of the backlight luminance characteristic F ⁇ Fr ⁇ 1 .
  • a liquid crystal display device 60a performs high frequency limiting processing on the inverse filter f ⁇ 1 (x, y) acquired by the inverse filter acquisition unit 41.
  • the inverse filter f ⁇ The inverse filter f ⁇ 1 (x, y) that has been subjected to the high-frequency limiting process in advance when calculating 1 (x, y) (during design) is calculated.
  • the liquid crystal display device 60a has basically the same configuration as the liquid crystal display device 10 of the first embodiment except that the liquid crystal display device 60a includes an inverse filter calculation unit 26a different from the inverse filter calculation unit 26 of the first embodiment. For this reason, the same reference numerals are given to the same functions and configurations as those in the first embodiment, and the description thereof is omitted.
  • the inverse filter calculation unit 26 a includes a Fourier transform unit 65, a Wiener filter calculation / high frequency restriction processing unit 66, and an inverse filter conversion unit 67.
  • the Wiener filter calculation / high frequency restriction processing unit 66 functions as a high frequency restriction processing unit of the present invention.
  • the Fourier transform unit 65 performs a Fourier transform process on the light emission distribution function f (x, y) acquired from the light emission distribution function storage unit 25 to calculate F (u, v) which is a function in the frequency space.
  • the calculation result is output to the Wiener filter calculation / high frequency restriction processing unit 66.
  • the Wiener filter calculation / high frequency restriction processing unit 66 first substitutes F (u, v) acquired from the Fourier transform unit 65 into the above-described equation (15), and uses a Wiener filter to obtain F ⁇ 1 (u, v) is calculated. Next, the Wiener filter calculation / high-frequency restriction processing unit 66 multiplies F ⁇ 1 (u, v) by the high-frequency restriction characteristic function FL obtained from the high-frequency restriction characteristic function storage unit 62 and the like, thereby performing high-frequency restriction. The processed Fr ⁇ 1 (u, v) is calculated. Then, the Wiener filter calculation / high frequency restriction processing unit 66 outputs the calculation result of Fr ⁇ 1 (u, v) to the inverse filter conversion unit 67.
  • the inverse filter conversion unit 67 performs an inverse Fourier transform process on Fr ⁇ 1 (u, v) input from the Wiener filter calculation / high frequency restriction processing unit 66 to convert Fr ⁇ 1 (u, v) into the real space. Convert to function. That is, the inverse filter f ⁇ 1 (x, y) subjected to the high frequency limiting process is calculated. Then, the inverse filter conversion unit 67 stores the inverse filter f ⁇ 1 (x, y) subjected to the high frequency restriction process in the inverse filter storage unit 27. Thus, the inverse filter f ⁇ 1 (x, y) subjected to the high frequency limiting process can be calculated in advance and stored in the inverse filter storage unit 27.
  • the set value calculation unit 42 calculates the LED set value E (m, n) based on the inverse filter f ⁇ 1 (x, y) acquired by the inverse filter acquisition unit 41 from the inverse filter storage unit 27.
  • the liquid crystal display device 60a also calculates the LED set value E (m, n) based on the “inverse filter f ⁇ 1 (x, y) subjected to the high-frequency restriction process”. The same effect as described in the above can be obtained.
  • the high frequency limiting characteristic function FL needs to be multiplied.
  • the high-frequency limiting characteristic function FL is applied to the stage before the calculation of the inverse filter f ⁇ 1 (x, y), that is, F (u, v) that is a function in the frequency space. Since the multiplication process is performed, it is possible to save the trouble of converting the inverse filter f ⁇ 1 (x, y) into a function on the frequency space as in the second embodiment.
  • the inverse filter f ⁇ 1 (x, y) is multiplied by the high frequency limiting characteristic function FL in the frequency space, but the high frequency limiting characteristic function FL in the real space.
  • the high frequency limiting process may be realized by performing a digital filter process having characteristics equivalent to the above. Further, the high-frequency limiting process may be performed using various known methods.
  • the inverse filter processing by the inverse filter f ⁇ 1 (x, y) of the first embodiment is a digital filter processing in real space, but the Wiener filter obtained by the above equation (15) is a filter coefficient in frequency space. It is. For this reason, it is necessary to obtain the filter coefficient of the inverse filter f ⁇ 1 (x, y) in the real space by performing inverse Fourier transform on the Wiener filter obtained by Expression (15).
  • the number of filter coefficient samples obtained here is equal to the number of frequency samples when the Wiener filter is calculated.
  • the number of filter coefficient samples is 31.
  • the limit by the window function FW is performed in order to keep the characteristics of the inverse filter f ⁇ 1 (x, y) as much as possible and reduce the filter coefficient as much as possible.
  • the liquid crystal display device 70 of the third embodiment includes a window function storage unit 72 that stores a window function FW, and the LED setting value calculation unit 30 includes a window function multiplication processing unit 73. Except for this point, the configuration is basically the same as that of the liquid crystal display device 10 of the first embodiment. For this reason, the same reference numerals are given to the same functions and configurations as those in the first embodiment, and the description thereof is omitted.
  • the window function FW is a function that becomes 0 outside a certain finite interval as shown in FIG.
  • the range of this finite section is appropriately determined by experiments, simulations, or the like.
  • the upper limit value of the window function FW is 1. Note that various window functions have been proposed as the window function FW, and a Hann window, a Hamming window, a Blackman window, a Kaiser window, and the like are used.
  • the circuit coefficient is increased by multiplying the filter coefficient of the inverse filter f ⁇ 1 (x, y) by the window function FW to limit the number of filter coefficients. In addition, processing delay can be minimized.
  • the filter coefficient of the inverse filter f ⁇ 1 (x, y) is multiplied by the window function FW to limit the number of filter coefficients. May be.
  • the light emission distribution function f (x, y) is a function having a different spreading method.
  • the light emission distribution function f (x, y) having rotationally asymmetric characteristics as indicated by reference numeral 312 due to the reflection characteristics of the screen frame. ) May be obtained.
  • the LED set value E ((), using the optimum inverse filter f ⁇ 1 (x, y) for each segment region S (m, n). m, n) is calculated.
  • the liquid crystal display device 80 is provided with a light emission distribution function storage unit 82, an inverse filter calculation unit 83, an inverse filter storage unit 84, a correspondence storage unit 85, an inverse filter acquisition unit 86, and a set value calculation unit 87, except that
  • the configuration is basically the same as that of the liquid crystal display device 10 of the first embodiment. For this reason, the same reference numerals are given to the same functions and configurations as those in the first embodiment, and the description thereof is omitted.
  • the light emission distribution function storage unit 82 stores in advance a light emission distribution function f (x, y) [light emission distribution function 1, light emission distribution function 2, light emission distribution function 3,...] For each segment region S (m, n). is doing.
  • Each light emission distribution function f (x, y) is a known value obtained in advance by measurement at the time of design or manufacture of the liquid crystal panel 15.
  • the inverse filter calculation unit 83 uses the above equation (15) to calculate the inverse filter f ⁇ 1 (x, y) [inverse of each emission distribution function f (x, y) stored in the emission distribution function storage unit 82. Filter 1, inverse filter 2, inverse filter 3,...], And stores these inverse filters f ⁇ 1 (x, y) in the inverse filter storage unit 84.
  • the inverse filter storage unit 84 is the same as the inverse filter storage unit 27 of the first embodiment except that a plurality of types of inverse filters f ⁇ 1 (x, y) are stored.
  • the correspondence relationship storage unit 85 stores correspondence relationship information 89.
  • the correspondence information 89 includes individual segment regions S (m, n) [segment region 1, segment region 2, segment region 3,...] And light emission corresponding to each segment region S (m, n).
  • the correspondence relationship between the distribution function f (x, y) and the inverse filter f ⁇ 1 (x, y) is shown. Therefore, the inverse filter f ⁇ 1 (x, y) suitable for each segment region S (m, n) can be determined by referring to the correspondence relationship information 89.
  • the inverse filter acquisition unit 86 acquires a plurality of types of inverse filters f ⁇ 1 (x, y) stored in the inverse filter storage unit 84, and sets these inverse filters f ⁇ 1 (x, y) as set values, respectively. It outputs to the calculation part 87.
  • the set value calculation unit 87 refers to the correspondence relationship information 89 in the correspondence relationship storage unit 85 and corresponds to each segment region S (m, n) from among a plurality of types of inverse filters f ⁇ 1 (x, y). The inverse filter f ⁇ 1 (x, y) to be selected is selected. Next, the set value calculation unit 87 performs a convolution operation on the target backlight luminance B d (x, y) and the previously selected inverse filter f ⁇ 1 (x, y) for each segment region S (m, n). By performing the processing (see the above formula (14)), the LED setting value E (m, n) for each segment area S (m, n) is calculated. Accordingly, the LED set value E (m, n) can be calculated using the optimum inverse filter f ⁇ 1 (x, y) for each segment region S (m, n).
  • each segment region S (m, n) is associated with a different inverse filter f ⁇ 1 (x, y), but the segment region S (m, n) in the display screen Depending on the position or the like, the same inverse filter f ⁇ 1 (x, y) may be associated with a plurality of segment regions S (m, n).
  • the optimum inverse filter f ⁇ 1 (for each segment region S (m, n) is used. x, y) may be selected.
  • a television (monitor) type liquid crystal display device has been described as an example of the display device of the present invention.
  • a mobile phone or a smartphone having a photographing function a PDA (Personal Digital Assistants), a tablet
  • the present invention can also be applied to terminals and portable game machines.
  • a smartphone will be described as an example, and will be described in detail with reference to the drawings.
  • FIG. 27 shows the appearance of the smartphone 500.
  • the smartphone 500 has a flat housing 501.
  • One surface of the housing 501 includes a display input unit 502, a speaker 503, a microphone 504, an operation unit 505, and a camera unit 506.
  • the configuration of the housing 501 is not limited thereto, and for example, a configuration in which the display unit and the input unit are independent, or a configuration having a folding structure or a slide mechanism can be employed.
  • the camera unit 506 is also provided on the other surface of the housing 501.
  • the display input unit 502 displays images (still images and moving images), character information, and the like.
  • the display input unit 502 has a so-called touch panel structure that detects a user operation on the displayed information.
  • the display input unit 502 includes a liquid crystal panel 510, a backlight 511 (see FIG. 28), and an operation panel 512.
  • the liquid crystal panel 510 and the backlight 511 are basically the same as the liquid crystal panel 15 and the backlight 16 described above.
  • the operation panel 512 is light transmissive and is placed on the display surface of the liquid crystal panel 510.
  • the operation panel 512 is a device that detects one or more coordinates operated by a user's finger or stylus. When this device is operated with a user's finger or stylus, a detection signal generated due to the operation is output to the CPU of the smartphone 500.
  • the CPU detects an operation position (coordinates) on the liquid crystal panel 510 based on the received detection signal. Examples of the position detection method employed in the operation panel 512 include a matrix switch method, a resistance film method, a surface acoustic wave method, an infrared method, an electromagnetic induction method, and a capacitance method.
  • the smartphone 500 includes a display unit 502, a speaker 503, a microphone 504, an operation unit 505, a camera unit 506, a CPU 507, a display processing unit 508, a wireless communication unit 515, a call unit 516, and the like.
  • GPS Global Positioning System
  • the operation unit 505 is a hardware key using, for example, a push button switch or a cross key, and receives an instruction from the user.
  • the operation unit 505 is mounted on, for example, the lower part of the display unit of the housing 501 or the side surface of the housing 501.
  • the camera unit 506 performs electronic photographing using various imaging elements such as a CMOS (Complementary Metal Oxide Semiconductor) type imaging element and a CCD (Charge-Coupled Device) type imaging element.
  • Image data obtained by this electronic photographing can be converted into various types of compressed image data and recorded in the storage unit 517 or output through the external input / output unit 518 and the wireless communication unit 515.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge-Coupled Device
  • the display processing unit 508 causes the display input unit 502 to display images and character information in accordance with instructions from the CPU 507.
  • the display processing unit 508 includes the image data acquisition unit 21, the luminance linear conversion unit 22, the light emission distribution function storage unit 25, the inverse filter calculation unit 26, the inverse filter storage unit 27, and the LED set value calculation unit illustrated in FIG. 30, functions as a backlight control unit 31, a backlight luminance prediction unit 32, a gradation correction unit 33, a gamma correction unit 34, and a liquid crystal panel control unit 35.
  • the wireless communication unit 515 performs wireless communication with a base station apparatus accommodated in the mobile communication network in accordance with an instruction from the CPU 507. Using this wireless communication, transmission and reception of various file data such as audio data and image data, e-mail data, and reception of Web data and streaming data are performed.
  • the call unit 516 includes a speaker 503 and a microphone 504.
  • the call unit 516 converts the user's voice input through the microphone 504 into voice data and outputs the voice data to the CPU 507, or decodes the voice data received by the wireless communication unit 515 and outputs it from the speaker 503.
  • the storage unit 517 stores the control program and control data of the CPU 507, application software, address data that associates the name and telephone number of the communication partner, transmitted and received e-mail data, and temporarily stores streaming data and the like.
  • the storage unit 517 includes an internal storage unit 517a built in the smartphone and an external storage unit 517b having a removable external memory slot. Note that various known storage media such as a flash memory type and a hard disk type are used as the internal storage unit 517a and the external storage unit 517b.
  • the external input / output unit 518 serves as an interface with all external devices connected to the smartphone 500, and is used to connect directly or indirectly to other external devices by communication or the like.
  • the GPS receiving unit 519 receives GPS signals transmitted from the GPS satellites ST1 to STn, executes a positioning calculation process based on the received plurality of GPS signals, and detects a position including the latitude, longitude, and altitude of the smartphone 500. .
  • the detection result is output to the CPU 507.
  • the motion sensor unit 520 includes, for example, a triaxial acceleration sensor and detects the physical movement of the smartphone 500. Thereby, the moving direction and acceleration of the smartphone 500 are detected. The detection result is output to the CPU 507. Further, the power supply unit 521 supplies power stored in a battery (not shown) to each unit of the smartphone 500.
  • the CPU 507 operates according to the control program and control data read from the storage unit 517, and controls each unit of the smartphone 500 in an integrated manner.
  • the CPU 507 executes display control for the liquid crystal panel 510, operation detection control for detecting a user operation through the operation unit 505 and the operation panel 512, and the like.
  • the CPU 507 By executing the display control, the CPU 507 displays an icon for starting application software, a software key such as a scroll bar, or a window for creating an e-mail on the liquid crystal panel 510.
  • a software key such as a scroll bar, or a window for creating an e-mail on the liquid crystal panel 510.
  • the scroll bar refers to a software key for accepting an instruction to move the display portion of a large image that does not fit in the display area of the liquid crystal panel 510.
  • the CPU 507 detects a user operation through the operation unit 505, receives an operation on the icon or an input of a character string in the input field of the window through the operation panel 512, or The display image scroll request through the scroll bar is accepted.
  • the CPU 507 determines whether the operation position with respect to the operation panel 512 is an overlapping portion (display region) overlapping the liquid crystal panel 510 or an outer edge portion (non-display region) not overlapping the other liquid crystal panel 510.
  • a touch panel control function for determining and controlling the sensitive area of the operation panel 512 and the display position of the software key is provided.
  • the CPU 507 can detect a gesture operation on the operation panel 512 and can execute a preset function in accordance with the detected gesture operation.
  • Gesture operation is not a conventional simple touch operation, but an operation that draws a trajectory with a finger or the like, designates a plurality of positions at the same time, or combines these to draw a trajectory for at least one of a plurality of positions. means.
  • the liquid crystal panel 510, the backlight 511, and the display processing unit 508 of the smartphone 500 having the above configuration have basically the same configuration as the liquid crystal display device of each of the above embodiments, the same effects as those of the above embodiments can be obtained. .
  • the inverse filter f ⁇ 1 (x, y) is calculated by the inverse filter calculation unit 26 in the liquid crystal display device 10, but the calculation of the inverse filter f ⁇ 1 (x, y) is performed externally.
  • the inverse filter f ⁇ 1 (x, y) calculated externally may be stored in the inverse filter storage unit 27.
  • the inverse filter acquisition unit 41 may directly acquire the inverse filter f ⁇ 1 (x, y) calculated outside through a communication network or the like. The same applies to other embodiments. Further, for example, in the case of another example of the second embodiment shown in FIG.
  • the calculation of the inverse filter f ⁇ 1 (x, y) subjected to the high-frequency limiting process is performed externally, and in the case of the third embodiment.
  • multiplication processing of the window function FW for the filter coefficient of the inverse filter f ⁇ 1 (x, y) may be performed externally.
  • the inverse filter f ⁇ 1 (x, y) is calculated using the Wiener filter.
  • the inverse filter f is used using a general inverse filter, a parametric winner filter, a projection filter, a partial projection filter, or the like.
  • -1 (x, y) may be calculated.
  • the transmissive liquid crystal display device including the liquid crystal panel 15 and the backlight 16 disposed on the back side of the liquid crystal panel 15 has been described as an example.
  • the present invention can also be applied to a liquid crystal display device in which is arranged. Further, the present invention can also be applied to a reflective liquid crystal display device including a liquid crystal panel whose reflectance can be controlled for each pixel.
  • the liquid crystal display device including the liquid crystal panel 15 has been described as an example.
  • various non-automatic devices capable of adjusting the transmittance or the reflectance for each pixel by controlling the driving of each pixel.
  • the present invention can be applied to a display device including a light-emitting display panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)

Abstract

 本発明は、セグメント領域ごとの光源の発光輝度の最適な設定値をリアルタイムで算出する表示装置及びその制御方法を提供する。 画像データ取得部により画像データを取得する。画像データ取得部が取得した画像データに基づき、目標輝度算出部(40)によりセグメント領域ごとに発光輝度の目標値である目標輝度を算出する。逆フィルタ取得部(41)により、セグメント領域ごとの光源の発光分布特性を示す発光分布関数の逆フィルタを取得する。設定値算出部(42)により、セグメント領域ごとの目標輝度に対して逆フィルタを畳み込み演算することで、セグメント領域ごとの光源の発光輝度の設定値を算出する。設定値算出部が算出したセグメント領域ごとの設定値に基づき、光源制御部によりセグメント領域ごとの光源の発光輝度を制御する。

Description

表示装置及びその制御方法
 本発明は、セグメント領域ごとに発光輝度を独立して制御する表示装置及びその制御方法に関する。
 タブレット端末やスマートフォンなどの携帯端末、デジタルカメラ、TV、及び各種のモニタには、液晶表示装置(表示装置)を備えるものが多い。液晶表示装置は、画素ごとに光の透過率を調整可能な液晶パネルと、この液晶パネルに向けて光を照射するバックライト(光源)とを備えている。
 近年、液晶表示装置の1つとして、液晶パネルの表示領域を複数に分割したセグメント領域ごとの発光輝度を独立して制御可能なバックライトを用いてバックライトローカルディミング(以下、BLDと略す)制御を行うものが知られている。バックライトには、各セグメント領域をそれぞれ個別に照明する1個又は複数個の発光ダイオード(以下、LEDと略す)が配列されている。なお、本明細書でいう「表示輝度」とは、液晶パネルの画素(液晶素子)から観測される輝度であり、画素の透過率とLEDの発光輝度との積により決定される。
 BLD制御では、画像に局所的に輝度が低い暗部と局所的に輝度が高い明部とが含まれている場合に、この暗部に対応するセグメント領域の発光輝度を下げることで暗部の黒浮きが低減される。これにより、表示領域に表示される表示画像のコントラスト比が高くなるので、BLD制御を行う液晶表示装置(以下、単に液晶表示装置という)では表示画像の画質が向上する。
 また、液晶表示装置では、セグメント領域ごとに画素の画素値にゲインアップ(光透過率の増加)の余裕があるのか否かを判別し、その余裕がある場合にはLEDの発光輝度を低下させるとともに画素値をゲインアップする補正を行う。例えば、セグメント領域内の画素値のピーク値が画素値の取りうる最大値の1/2である場合には、セグメント領域内の各画素の画素値を2倍だけゲインアップするとともにLEDの発光輝度を1/2にする。これにより、消費電力を削減しつつ表示画像のコントラスト比を高めることができる。
 上記補正を行う液晶表示装置では、セグメント領域ごとにLEDの発光輝度の設定値(以下、LED設定値という)を算出し、この算出結果に基づきセグメント領域ごとのLEDの発光を制御する。ここで従来の液晶表示装置では、あるセグメント領域のLED光はその周辺のセグメント領域には漏れ込まないとの仮定の下でセグメント領域ごとにLED設定値を算出しているが、この仮定を満たす液晶表示装置を実現することは極めて困難である。このため液晶表示装置では、1つのセグメント領域のLEDを発光させた場合に、このLEDからの光が周辺のセグメント領域に漏れてしまうので、上記仮定の下では適切なLED設定値を定めることが困難である。
 そこで、特許文献1に記載の液晶表示装置では、セグメント領域間でのLEDの発光輝度の寄与率を予め求めておき、この寄与率を用いた連立方程式を解くことによりセグメント領域ごとのLED設定値を算出する。
 また、特許文献2に記載の液晶表示装置では、隣接するセグメント領域間での光漏れ量を示す領域係数を例えば3段階分(強、中、弱)用意しておき、あるセグメント領域のLED設定値を3段階の領域係数のいずれかで補正している。すなわち、この液晶表示装置では、あるセグメント領域についてその周辺のセグメント領域からの光漏れ量を加算することにより、隣接セグメント領域間の輝度差を緩和している。
特開2007-34251号公報 特開2011-248215号公報
 上記特許文献1の液晶表示装置では、連立方程式を解くことによりセグメント領域ごとのLED設定値を算出しているが、例えば動画表示を行う際にはフレーム画像ごとにリアルタイムで連立方程式を解く必要がある。しかしながら、連立方程式をリアルタイムで解くことは現実的には困難であり、特許文献1には連立方程式をリアルタイムで解く方法は開示されていない。このため、特許文献1の液晶表示装置では、画像表示に遅延が生じるおそれがある。
 また、上記特許文献2の液晶表示装置では、予め定めた3段階の領域係数のいずれかでLED設定値の補正を行うので、画像データによっては3段階の領域係数のいずれもが不適切となる場合がある。このため、特許文献2の液晶表示装置では、理想のLED設定値を求めることができない場合がある。
 本発明の目的は、セグメント領域ごとの光源の発光輝度の最適な設定値をリアルタイムで算出することができる表示装置及びその制御方法を提供することにある。
 本発明の目的を達成するための表示装置は、非自発光表示パネルと、非自発光表示パネルの表示領域を複数に分割したセグメント領域ごとの発光輝度を独立して制御する光源と、画像データを取得する画像データ取得部と、画像データ取得部が取得した画像データに基づき、セグメント領域ごとに発光輝度の目標値である目標輝度を算出する目標輝度算出部と、セグメント領域ごとの光源の発光分布特性を示す発光分布関数の逆フィルタを取得する逆フィルタ取得部と、目標輝度算出部が算出したセグメント領域ごとの目標輝度に対して逆フィルタ取得部が取得した逆フィルタを畳み込み演算することで、セグメント領域ごとの光源の発光輝度の設定値を算出する設定値算出部と、設定値算出部が算出したセグメント領域ごとの設定値に基づき、セグメント領域ごとの光源の発光輝度を制御する光源制御部と、を備える。
 本発明によれば、光源の発光分布特性、すなわち、あるセグメント領域からその周辺のセグメント領域への光の漏れ込みを考慮に入れたセグメント領域ごとの光源の発光輝度の設定値をリアルタイムで算出することができる。
 逆フィルタ取得部は、ウィナーフィルタを用いて発光分布関数の逆フィルタを算出する逆フィルタ算出部により算出された逆フィルタを取得することが好ましい。ウィナーフィルタは目標輝度との誤差を最小にするフィルタであるので、表示画像の階調情報の損失を効果的に抑制することができる逆フィルタ(フィルタ係数)を算出することができる。
 逆フィルタ取得部が取得した逆フィルタに対して、特定の空間周波数よりも高周波側での振幅の増加を制限する高周波制限処理を施す高周波制限処理部を備え、設定値算出部は、高周波制限処理された逆フィルタを用いて畳み込み演算を行うことが好ましい。これにより、バックライト輝度の輝度分布の乱れによる表示画像の階調情報の損失、言い換えると、過度な強調による画質劣化の発生を抑制することができる。
 逆フィルタ取得部は、特定の空間周波数よりも高周波側での振幅の増加を制限する高周波制限処理を施す高周波制限処理部により高周波制限処理が施された逆フィルタを取得し、設定値算出部は、高周波制限処理された逆フィルタを用いて畳み込み演算を行うことが好ましい。これにより、バックライト輝度の輝度分布の乱れによる表示画像の階調情報の損失、言い換えると、過度な強調による画質劣化の発生を抑制することができる。
 逆フィルタ取得部が取得した逆フィルタのフィルタ係数に対して窓関数を乗算する窓関数乗算処理部を備え、設定値算出部は、窓関数の乗算処理後の逆フィルタを用いて畳み込み演算を行うことが好ましい。これにより、回路規模の拡大並びに処理遅延を極力抑えることができる。
 表示領域内のセグメント領域の位置及びセグメント領域ごとの光源の特性の少なくともいずれかに応じて異なる複数種類の発光分布関数の逆フィルタを格納する逆フィルタ格納部を備え、逆フィルタ取得部は、逆フィルタ格納部から複数種類の逆フィルタを取得し、設定値算出部は、セグメント領域ごとに対応する逆フィルタを選択して畳み込み演算を行うことが好ましい。これにより、表示画像の階調情報の情報損失を精度よく抑制することができる。
 セグメント領域と、セグメント領域に対応した逆フィルタとの対応関係をセグメント領域ごとに記憶した対応関係記憶部を備え、設定値算出部は、対応関係記憶部を参照して、セグメント領域ごとに対応する逆フィルタを選択することが好ましい。これにより、表示画像の階調情報の情報損失を精度よく抑制することができる。
 目標輝度算出部は、セグメント領域ごとの画像データの画素値の代表値を算出して、代表値の算出結果に基づきセグメント領域ごとの目標輝度を決定することが好ましい。セグメント領域ごとに適切な目標輝度を決定することができる。
 代表値は、画素値のピーク値であることが好ましい。ピーク値が比較的小さいセグメント領域では光源の発光輝度を下げることができるので省電力化が図れる。
 設定値算出部が算出したセグメント領域ごとの設定値に基づき、表示領域の発光輝度を予測する予測部と、予測部の予測結果に基づき、画像データの画素値の階調補正を行う階調補正部と、階調補正部による階調補正後の画素値に基づき、非自発光表示パネルの画素の駆動を制御するパネル制御部と、を備えることが好ましい。非自発光表示パネルの表示輝度を適切に制御することができる。
 また、本発明の目的を達成するための表示装置の制御方法は、非自発光表示パネルと、非自発光表示パネルの表示領域を複数に分割したセグメント領域ごとの発光輝度を独立して制御する光源と、を備える表示装置の制御方法において、画像データを取得する画像データ取得ステップと、画像データ取得ステップで取得した画像データに基づき、セグメント領域ごとの発光輝度の目標値である目標輝度を算出する目標輝度算出ステップと、セグメント領域ごとの光源の発光分布特性を示す発光分布関数の逆フィルタを取得する逆フィルタ取得ステップと、目標輝度算出ステップで算出したセグメント領域ごとの目標輝度に対して逆フィルタ取得ステップで取得した逆フィルタを畳み込み演算することで、セグメント領域ごとの光源の発光輝度の設定値を算出する設定値算出ステップと、設定値算出ステップで算出したセグメント領域ごとの設定値に基づき、セグメント領域ごとの光源の発光輝度を制御する光源制御ステップと、を有する。
 本発明の表示装置及びその制御方法は、セグメント領域ごとの光源の発光輝度の最適な設定値をリアルタイムで算出することができる。
液晶表示装置の斜視図である。 液晶表示装置の表示部の分解斜視図である。 液晶パネルの拡大図である。 第1実施形態の液晶表示装置の電気的構成を示すブロック図である。 UM補正を行わない場合の表示輝度を説明するための説明図である。 セグメント領域内の全画素値のピーク値を説明するための説明図である。 UM補正を行う場合の表示輝度を説明するための説明図である。 セグメント領域間での光漏れを説明するための説明図である。 LED設定値関数を説明するための説明図である。 発光分布関数を説明するための説明図である。 LED設定値関数と発光分布関数との畳み込み演算処理を説明するための説明図である。 LED設定値算出部の機能ブロック図である。 液晶表示装置の画像表示処理の流れを示すフローチャートである。 周辺のセグメント領域への光の漏れ込みを考慮してLED設定値を算出した場合のバックライト輝度を説明するための説明図である。 周辺のセグメント領域への光の漏れ込みを考慮しないでLED設定値の算出を行う比較例のバックライト輝度を説明するための説明図である。 ウィナーフィルタをそのまま逆フィルタとして用いた場合のバックライト輝度の輝度分布の乱れを説明するための説明図である。 図16に示したバックライト輝度の輝度分布の乱れの理由を説明するための説明図である。 第2実施形態の液晶表示装置の電気的構成を示すブロック図である。 高周波制限特性関数を説明するための説明図である。 高周波制限特性関数を用いた高周波制限処理を説明するための説明図である。 第2実施形態の他実施例の液晶表示装置の電気的構成を示すブロック図である。 逆フィルタのフィルタ係数の個数について説明するための説明図である。 第3実施形態の液晶表示装置の電気的構成を示すブロック図である。 窓関数を用いたフィルタ係数の個数の制限処理を説明するための説明図である。 複数種類の発光分布関数を説明するための説明図である。 第4実施形態の液晶表示装置の電気的構成を示すブロック図である。 スマートフォンの斜視図である。 スマートフォンの電気的構成を示すブロック図である。
 [第1実施形態の液晶表示装置]
 <液晶表示装置の全体構成>
 図1に示すように、BLD制御機能を有する液晶表示装置(表示装置)10は、有線または無線で接続されたデジタルカメラ12から静止画像または動画像の画像データI(x,y)を取得して画像表示を行う。ここで、座標(x,y)は液晶パネル15(図2参照)および画像の画素単位の座標を意味する。なお、液晶表示装置10は、デジタルカメラ12の代わりに、携帯端末、インターネット、及びテレビ放送波などを介して画像データI(x,y)を取得して画像表示を行ってもよい。
 図2に示すように、液晶表示装置10の表示部10aは、大別して、液晶パネル(非自発光表示パネル)15と、バックライト(光源)16と、保護パネル17とにより構成されている。液晶パネル15には、多数の液晶素子が配列されている。これにより、液晶パネル15は、画素ごとに光の透過率を調整することができる。なお、立体画像(3D画像)を鑑賞する場合には、レンチキュラレンズを備えるなどの立体視が可能な液晶パネル15を用いてよい。
 液晶パネル15の表示領域は、m×n個(m,nは共に2以上の自然数)のセグメント領域S(m,n)に分割されている。ここで座標(m,n)は画素q(x,y)が属するセグメント領域S(m,n)の座標を意味する。例えば、液晶パネル15の表示領域が64分割されている場合には、m=1~8、n=1~8である。従って、セグメント領域S(m,n)は、セグメント領域1、セグメント領域2、・・・セグメント領域m・nとも表現することができる。
 図3に示すように、1個のセグメント領域S(m,n)は、水平K画素×垂直L画素(K,Lは任意の自然数)の領域である。従って、1個のセグメント領域S(m,n)には、K×L個の画素q(x,y)が含まれている。
 液晶パネル15の画素q(x,y)の表示輝度V(x,y)は、下記の式(1)に示すように、その画素q(x,y)のパネル透過率P(x,y)と、その画素位置におけるバックライト輝度B(x,y)との積で表される(図4参照)。なお、パネル透過率P(x,y)はその画素q(x,y)に入力される表示画像(画像データI(x,y))の画素値で決まり、バックライト輝度B(x,y)はその画素位置周辺のセグメント領域S(m,n)のLED設定値等によって決まる。
Figure JPOXMLDOC01-appb-M000001
 図2に戻って、バックライト16は、液晶パネル15の背面側に配置されている。このバックライト16は、セグメント領域S(m,n)ごとの発光輝度を独立して制御する。このバックライト16には、各セグメント領域S(m,n)をそれぞれ個別に照明するn×m個のLED19が配列されている。各LED19の発光量は独立して制御可能であるので、セグメント領域S(m,n)ごとの発光輝度を独立して制御するBLD制御が可能となる。例えばLED19の発光量をPWM(Pulse Width Modulation)制御する場合は、セグメント領域S(m,n)ごとのLED設定値E(m,n)に応じてPWMのデューティー比を独立に変えることで個々のLED19の発光量を制御することができる。なお、図中では1個のセグメント領域S(m,n)に対して1個のLED19が配置されているが、複数個のLED19を配置してもよい。また、LED以外の光源を用いてもよい。
 保護パネル17は、液晶パネル15の前面側に配置された透明な板である。この保護パネル17は液晶パネル15の前面を保護する。なお、保護パネル17の代わりに、ユーザ(視聴者)の指や尖筆によって操作される一又は複数の座標を検出する操作パネル(タッチパネル)を用いてもよい。
 図4に示すように液晶表示装置10は、前述の表示部10aに加えて、画像データ取得部21、輝度リニア変換部22、発光分布関数格納部25、逆フィルタ算出部26、逆フィルタ格納部27、LED設定値算出部30、バックライト制御部(光源制御部)31、バックライト輝度予測部32、階調補正部33、ガンマ補正部34、液晶パネル制御部(パネル制御部)35を有している。
 画像データ取得部21は、デジタルカメラ12(前述のインターネット等でも可)と接続する接続インターフェースである。この画像データ取得部21は、デジタルカメラ12から画像データI(x,y)を取得して、輝度リニア変換部22へ出力する。ここで、「I(x,y)」の「(x、y)」は、液晶パネル15及び表示画像の各画素q(x,y)に対応する画素値を示す。なお、本実施形態では各画素値を規格化して0~1で表している。例えば、画素値が「1」の場合には液晶パネル15の画素q(x,y)の透過率が最大となり、逆に画素値「0」の場合には画素q(x,y)の透過率が最小となる。
 輝度リニア変換部22は、画像データ取得部21から入力される画像データI(x,y)に対して輝度リニア変換処理(再生階調変換)を施すことにより、この画像データI(x,y)を輝度リニアな画像データI(x,y)に変換する。例えばデジタルカメラ12などの撮影により得られた画像データI(x,y)にはガンマ補正と呼ばれる階調変換処理(通常、0.45乗)がなされている。このため、輝度リニア変換部22は、0.45乗の逆数である2.2乗変換を画像データI(x,y)に対して施す。輝度リニア変換部22は、画像データI(x,y)をLED設定値算出部30及び階調補正部33にそれぞれ出力する。
 発光分布関数格納部25は、セグメント領域S(m,n)ごとに配置されている1個のLED19の発光分布特性を示す発光分布関数f(x,y)を予め格納している。発光分布関数f(x,y)については詳しくは後述するが(図10参照)、液晶パネル15の設計時または製造時の測定により予め求められる既知の値である。発光分布関数f(x,y)は、例えば、製造時設定、通信ネットワークを介した設定、あるいはユーザの入力操作などを介した設定によって発光分布関数格納部25内に格納される。
 逆フィルタ算出部26は、詳しくは後述するが、発光分布関数格納部25から読み出した発光分布関数f(x,y)の逆フィルタf-1(x,y)を算出し、この逆フィルタf-1(x,y)を逆フィルタ格納部27に格納する。発光分布関数f(x,y)はLED19の経時劣化を考慮しなければ固定値であるので、逆フィルタ算出部26による逆フィルタf-1(x,y)の算出は基本的には1回行えばよい。なお、所定時間経過ごとに発光分布関数格納部25への新たな発光分布関数f(x,y)の格納と、逆フィルタ算出部26による逆フィルタf-1(x,y)の算出とを繰り返し行って、逆フィルタ格納部27内の逆フィルタf-1(x,y)を更新してもよい。
 LED設定値算出部30は、詳しくは後述するが、輝度リニア変換部22から入力された画像データI(x,y)と、逆フィルタ格納部27から読み出した逆フィルタf-1(x,y)とに基づき、セグメント領域S(m,n)ごとのLED19の発光輝度の設定値であるLED設定値E(m,n)を算出する。そして、LED設定値算出部30は、LED設定値E(m,n)の算出結果をバックライト制御部31及びバックライト輝度予測部32にそれぞれ出力する。
 バックライト制御部31は、LED設定値算出部30から入力されたLED設定値E(m,n)に基づき、セグメント領域S(m,n)ごとのLED19の発光輝度を制御する。これにより、液晶パネル15の各画素q(x,y)の位置でのバックライト輝度B(x,y)が決まる。
 バックライト輝度予測部32は、LED設定値算出部30から入力されたLED設定値E(m,n)に基づき、バックライト16の輝度分布、すなわち、液晶パネル15の各画素q(x,y)の位置でのバックライト輝度B(x,y)を予測する。具体的にバックライト輝度予測部32は、LED設定値E(m,n)から求めたLED設定値関数E(x,y)[図9参照]と、発光分布関数格納部25から読み出した発光分布関数f(x,y)とを畳み込み演算処理して、予測バックライト輝度B(x,y)を算出する(後述の式(12)参照)。なお、予測バックライト輝度B(x,y)は、規格化されており、0~1で表される。バックライト輝度予測部32は、バックライト輝度B(x,y)の予測結果である予測バックライト輝度B(x,y)を階調補正部33へ出力する。
 階調補正部33は、輝度リニア変換部22から入力された画像データI(x,y)と、バックライト輝度予測部32から入力された予測バックライト輝度B(x,y)とに基づき、詳しくは後述するように、階調補正された画像信号C(x,y)を算出する(後述の式(8)参照)。この画像信号C(x,y)も規格化されており、画素値が0~1で表される。そして、階調補正部33は、画像信号C(x,y)をガンマ補正部34へ出力する。
 ガンマ補正部34は、輝度リニアな画像信号C(x,y)に対して例えば0.45(≒1/2.2)乗のガンマ補正処理を施すことにより、再び画像データI(x,y)と同様のガンマ補正がかかった画像信号C(x,y)に変換する。ガンマ補正部34は、画像信号C(x,y)を液晶パネル制御部35へ出力する。
 液晶パネル制御部35は、ガンマ補正部34から入力された画像信号C(x,y)に基づき、液晶パネル15の画素q(x,y)ごとのパネル透過率P(x,y)を制御する。これにより、液晶パネル15の特性に従ってパネル透過率P(x,y)が定まる。なお、パネル透過率P(x,y)は、一般に下記の式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
 上記式(2)において、a、bは液晶パネル15の特性によって決まるパラメータであり、aは液晶パネル15のパネル透過率係数を表し、bは液晶パネル15のパネル黒浮き透過率を表す。一般の液晶パネル15のbは0より大きい値であるので、画像信号C(x,y)=0の場合でもバックライト16の光が液晶パネル15を透過する。このため、観察者は表示画像の暗部に黒浮きが発生していると感じてしまう。また、画像信号C(x,y)=1の場合がこの液晶パネル15の持つ最大透過率となり、これ以上の光を透過することはできない。以上のように決定されたパネル透過率P(x,y)とバックライト輝度B(x,y)とに基づき、前述の式(1)に従って表示輝度V(x,y)が決まる。
 <UM(Upper Margin)補正の概略>
 BLD制御を行う液晶表示装置10では、前述の通り、消費電力を削減しつつ表示画像のコントラスト比を高めるため、各画素q(x,y)の画素値にゲインアップ(光透過率の増加)の余裕がある場合には、バックライト輝度B(x、y)を低下させるとともに画素値をゲインアップする。
 LED設定値算出部30の代表値算出部38は、図5に示すように、輝度リニア変換部22から入力される画像データI(x,y)から、セグメント領域S(m,n)ごとの画像データI(x,y)の代表値ILPEAK(m,n)を算出する。ここで代表値ILPEAK(m,n)とは、セグメント領域S(m,n)内のK×L個の画素q(x,y)の画素値のピーク値である。また、図6に示すように、ここでいう「ピーク値」とは真のピーク値(図中のピーク値1)に限定されるものではなく、インパルス系のノイズに対する影響などを抑えるために、例えばセグメント領域S(m,n)内の全画素値の上位からの累積頻度が1%となるレベルに対応する画素値を「ピーク値」(図中のピーク値2)として用いてもよい。代表値算出部38は、セグメント領域S(m,n)ごとの代表値ILPEAK(m,n)をUM算出部39に出力する。
 UM算出部39(図4参照)は、代表値算出部38から入力された代表値ILPEAK(m,n)に基づき、セグメント領域S(m,n)ごとに、代表値ILPEAK(m,n)が画素値のとり得る最大値ILMAX(ここでは1)に対してどれだけのゲインアップの余裕分があるのかを算出する。このセグメント領域S(m,n)ごとの余裕分(Upper Margin)をUM(m,n)とすると、UM算出部39は、下記式(3)を用いてUM(m,n)を算出する。UM(m,n)は必ず1以上の値[UM(m,n)≧1]となる。
Figure JPOXMLDOC01-appb-M000003
 図7に示すようにUM(m,n)>1になる場合は、セグメント領域S(m,n)の各画素q(x,y)の画素値をUM(m,n)分だけゲインアップしても最大値のクリップ(画素値の頭打ち)による表示画像のハイライト領域の階調情報の情報損失を起こさずに液晶パネル15の透過率を上げることができる。そして、さらにそのセグメント領域S(m,n)のバックライト輝度B(x,y)を1/UM(m,n)に低下させられれば、トータルの表示輝度V(x,y)はほぼ変わらず、かつバックライト輝度B(x,y)が低下した分だけ低消費電力にすることができる。以下、このような制御をUM補正という。
 前述の図5に示したようにUM補正を行わない場合に、液晶パネル15のパネル透過率P(x,y)は、画像データI(x,y)に基づき上記式(2)により決定される。ただし、ここではUM補正を行わないので階調補正も行う必要がなくなり、その結果、I(x,y)=C(x,y)となる。このため、表示輝度V(x,y)は下記式(4)で表される。なお、図5では、例としてB(x,y)=1000、a=0.1、b=0.001の場合を示しており、この場合におけるI(x,y)=0時の黒浮き量は1となる。また、図5では図面の煩雑化を防止するため1次元で表現している(図7も同様)。
Figure JPOXMLDOC01-appb-M000004
 一方、前述の図7に示したようにUM補正を行う場合には、セグメント領域S(m,n)の画像データI(x,y)の代表値ILPEAK(m,n)が例えば0.5であれば、UM(m,n)=1/0.5=2となる。このときに画像データI(x,y)の画素値を2倍にするとともに、バックライト輝度B(x,y)を1/UM(m,n)=1/2倍にするUM補正を行うことで、表示輝度V(x,y)は下記の式(5)で表される。
Figure JPOXMLDOC01-appb-M000005
 上記式(5)で表される表示輝度V(x,y)は、上記式(4)で表されるUM補正無しの表示輝度V(x,y)と比べて黒浮き量が半減するので、観察者は黒浮きが少ないと知覚することができる。例えば、前述の図5と同じ条件の場合ではI(x,y)=0における黒浮き量は0.5に抑えられる。その一方でI(x,y)が大きい場合には輝度の絶対値が高いため、この黒浮きの変化を観察者はほとんど知覚することができない。具体的に、図5及び図7の例であれば、観察者はV(x,y)=51と、V(x,y)=50.5との違いはほとんど知覚することができない。このような人間の知覚特性は、ウェーバー・フェヒナーの法則などから説明可能である。
 以上の結果、UM補正を行うことにより、観察者は液晶表示装置10に表示される画像の表示コントラストが拡大したように知覚することができる。また、バックライト輝度B(x,y)が半減するため、液晶表示装置10の消費電力も抑えられる。このようなUM補正をセグメント領域S(m,n)ごとに行うことにより、表示コントラストの拡大と、消費電力の低減とを両立することができる。
 <理想条件下のLED設定値の算出及び階調補正>
 このようなUM補正の概念に基づくと、LED設定値算出部30は、バックライト輝度B(x,y)が各セグメント領域S(m,n)において1/UM(m,n)となるようなLED設定値E(m,n)を算出することが理想である。そこで「あるセグメント領域S(m,n)のLED発光はその周辺のセグメント領域S(m,n)には漏れ込まない」と仮定すると、セグメント領域S(m,n)ごとのLED設定値E(m,n)を下記の式(6)で表すことができる。これにより、バックライト輝度B(x,y)及び前述の予測バックライト輝度B(x,y)を下記の式(7)で表したような理想条件にすることができる。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 ここで、EはUM補正を行わない場合のLED設定値であり、各セグメント領域S(m,n)で同じ値である。また、Bは基準となるバックライト輝度である。例えばLED設定値が全セグメント領域S(m,n)でEとなる場合に、バックライト輝度は一様にBとなる。なお、式(7)では座標(x,y)と(m,n)とが混在しているが、前述の通り、座標(x,y)は液晶パネル15および画像の画素単位の座標を意味し、座標(m,n)は画素q(x,y)が属するセグメント領域S(m,n)の座標を意味する。
 前述の階調補正部33は、上記式(7)により求められた予測バックライト輝度B(x,y)と、下記の式(8)とを用いて画像信号C(x,y)を算出する。なお、B(x,y)=0の場合には、0除算にならないように例外処理を行う。
Figure JPOXMLDOC01-appb-M000008
 上記式(7)を上記式(8)に代入すると、画像信号C(x,y)は下記の式(9)で表される。ここでUM(m,n)は上記式(3)により求められる値であるため、式(9)の右辺第一項は画素値のとり得る最大値ILMAX(ここでは1)を超えることはない。従って、画像信号C(x,y)も最大値ILMAXを超えてクリップされることもなく、階調補正によるハイライト領域の階調情報の情報損失は起こらない。
Figure JPOXMLDOC01-appb-M000009
 上記式(9)を上記式(2)に代入することにより、パネル透過率P(x,y)は下記の式(10)で表される。そして、さらにこのパネル透過率P(x,y)を上記式(1)に代入することにより、表示輝度V(x,y)は下記の式(11)で表される。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 上記式(11)で表される表示輝度V(x,y)は、黒浮きのない液晶パネル15に画像データI(x,y)を入力し、かつバックライト輝度B(x,y)を均一輝度Bにした場合と同じ表示輝度である。つまり、上述のようなUM補正を行うことで、前述の最大値のクリップによるハイライト領域の階調情報の情報損失なく黒浮きを低減させて、表示コントラストを拡大させることができる。また同時にバックライト輝度B(x,y)が、各セグメント領域S(m,n)で1/UM(m,n)分だけ低減するので消費電力も抑えられる。
 上記UM補正によりBLD制御を実現することができるが、ここで、一般には上記で仮定した「あるセグメント領域S(m,n)のLED発光はその周辺のセグメント領域S(m,n)には漏れ込まない」という構造を実現することは難しい。このため、図8中の点線で示すように、セグメント領域1、セグメント領域2、セグメント領域3、・・・で表されるセグメント領域S(m,n)のうちの1つのセグメント領域2を発光させると、その光は周辺のセグメント領域1,3にも漏れてしまう。このため、液晶パネル15のある点でのバックライト輝度B(x,y)及び予測バックライト輝度B(x,y)はその点を含むセグメント領域2のLED設定値E(m,n)のみで決まるのではなく、周辺のセグメント領域1,3のLED設定値E(m,n)などの影響が加わってしまう。これを一般的に表現すれば、下記の式(12)で表される。なお、図8中の実線は、セグメント領域S(m,n)ごとの発光輝度を合成したバックライト輝度B(x,y)である。また、同図中の点線は、LED設定値E(m,n)をEに設定した場合における各セグメント領域S(m,n)の発光分布を示す。
Figure JPOXMLDOC01-appb-M000012
 ここで、式(12)中の「*」は畳み込み演算を意味する。またE(x,y)は、図9、並びに図11の符号300及び符号301に示すように、個々のセグメント領域S(m,n)の中心にセグメント領域S(m,n)ごとに設定されたLED設定値E(m,n)の値をとり、その他の位置は全て0であるようなLED設定値関数である。さらにf(x,y)は、図10、及び図11の符号302に示すように、1つのLED19の発光分布特性を示した発光分布関数であり、複数のセグメント領域にまたがって発光が広がっている。なお、図11では図面の煩雑化を防止するために1次元で表現している。
 図11の符号303に示すように、図中の一点鎖線で表したバックライト輝度B(x,y)は、LED設定値関数E(x,y)と発光分布関数f(x,y)との畳み込み演算により決定される。
 この際に、通常、UM(m,n)はセグメント領域S(m,n)ごとに異なるため、LED設定値E(m,n)もセグメント領域S(m,n)ごとに異なる。従って、上記式(6)のような簡単なLED設定値E(m,n)の演算方法では、セグメント領域S(m,n)ごとの発光輝度を合成したバックライト輝度B(x,y)が図中の一点鎖線のようになるため、上記式(7)のような理想条件を満たすことはできない。そこで、本発明のLED設定値算出部30は、理想条件に近似したバックライト輝度B(x,y)が得られるLED設定値E(m,n)を算出する。
 <LED設定値算出部の構成>
 図12に示すように、LED設定値算出部30は、前述の代表値算出部38及びUM算出部39に加えて、目標バックライト輝度算出部(目標輝度算出部)40と、逆フィルタ取得部41と、設定値算出部42と、を有している。
 目標バックライト輝度算出部40は、UM算出部39により算出されたセグメント領域S(m,n)ごとのUM(m,n)に基づき、下記の式(13)を用いて、セグメント領域S(m,n)ごとの表示輝度の目標輝度(目標値)である目標バックライト輝度B(x,y)を算出する。ここで式(13)は、上記(7)と基本的に同じであるので詳細な説明は省略するが、目標バックライト輝度B(x,y)はセグメント領域S(m,n)ごとに一定の輝度を有する分布関数となる。目標バックライト輝度算出部40は、セグメント領域S(m,n)ごとの目標バックライト輝度B(x,y)の算出結果を設定値算出部42へ出力する。
Figure JPOXMLDOC01-appb-M000013
 逆フィルタ取得部41は、逆フィルタ格納部27から後述の逆フィルタf-1(x,y)を取得し、この逆フィルタf-1(x,y)を設定値算出部42へ出力する。
 設定値算出部42は、目標バックライト輝度算出部40及び逆フィルタ取得部41からそれぞれ入力された目標バックライト輝度B(x,y)及び逆フィルタf-1(x,y)に基づき、セグメント領域S(m,n)ごとのLED設定値E(m,n)を算出する。具体的に設定値算出部42は、前述のバックライト輝度予測部32がLED設定値E(m,n)に基づき算出する予測バックライト輝度B(x,y)が目標バックライト輝度B(x,y)に極力近くなるように、LED設定値E(m,n)を算出する。すなわち、設定値算出部42は、予測バックライト輝度B(x,y)と目標バックライト輝度B(x,y)との二乗誤差[(B(x,y)-B(x,y))]を最小化するようにセグメント領域S(m,n)ごとのLED設定値E(m,n)を算出する。
 ここで、予測バックライト輝度B(x,y)は、前述の式(12)により算出することができる。また、発光分布関数f(x,y)は、前述の通り、液晶表示装置10の設計時の測定等により予め求められて発光分布関数格納部25に格納されている。従って、式(12)のB(x,y)をB(x,y)に置き換えた式[B(x,y)=E(x,y)*f(x,y)]を満たすE(x,y)が、前述の二乗誤差を最小化するE(x,y)となる。このため、発光分布関数f(x,y)の逆フィルタf-1(x,y)を予め算出しておくことで、下記式(14)の演算処理を行うことにより、前述の二乗誤差を最小化するE(x,y)を算出することができる。
Figure JPOXMLDOC01-appb-M000014
 逆フィルタf-1(x,y)の算出は、前述の逆フィルタ算出部26により行われる。逆フィルタ算出部26は、前述の二乗誤差を最小化する解法として、ウィナーフィルタを用いて逆フィルタf-1(x,y)のフィルタ係数を算出する。すなわち、逆フィルタ算出部26は、ウィナーフィルタを逆フィルタf-1(x,y)として算出する。具体的に逆フィルタ算出部26は、下記の式(15)により算出されたF-1(u,v)を逆フーリエ変換することにより、逆フィルタf-1(x,y)を算出する。ここで、F-1(u,v)はf-1(x,y)をフーリエ変換したものであり、F(u,v)はf(x,y)をフーリエ変換したものであり、F(u,v)はF(u,v)の複素共役であり、Gはパラメータである。逆フィルタ算出部26により算出された逆フィルタf-1(x,y)は逆フィルタ格納部27に格納される。これにより、設定値算出部42は、逆フィルタ取得部41を介して逆フィルタf-1(x,y)を取得することができる。
Figure JPOXMLDOC01-appb-M000015
 設定値算出部42は、上記式(14)に基づいて目標バックライト輝度B(x,y)と逆フィルタf-1(x,y)とを畳み込み演算処理してLED設定値関数E(x,y)をセグメント領域S(m,n)ごとに算出する。これにより、目標バックライト輝度B(x,y)に近似したバックライト特性を得るためのLED設定値関数E(x,y)を求めることができる。
 次いで、設定値算出部42は、セグメント領域S(m,n)ごとにLED設定値関数E(x,y)をLED設定値E(m,n)に変換する。なお、「E(x,y)」から「E(m,n)」の変換は、例えばセグメント領域S(m,n)ごとにLED設定値関数E(x,y)の平均値を算出するなどの方法が用いられる。以上で設定値算出部42によるLED設定値E(m,n)の算出が完了する。LED設定値E(m,n)は、バックライト制御部31とバックライト輝度予測部32とにそれぞれ出力される。
 [第1実施形態の液晶表示装置の作用]
 次に、図13を用いて上記構成の液晶表示装置10の作用について説明を行う。予め逆フィルタ算出部26は、発光分布関数格納部25内の発光分布関数f(x,y)の逆フィルタf-1(x,y)をウィナーフィルタ(式(15)参照)を用いて算出し、この逆フィルタf-1(x,y)を逆フィルタ格納部27に格納する(ステップS1)。
 液晶表示装置10とデジタルカメラ12とを接続すると、画像データ取得部21がデジタルカメラ12から画像データI(x,y)を取得し、この画像データI(x,y)を輝度リニア変換部22へ出力する(ステップS2、画像データ取得ステップ)。輝度リニア変換部22は、画像データI(x,y)に対して輝度リニア変換処理を施して画像データI(x,y)を生成し、この画像データI(x,y)をLED設定値算出部30及び階調補正部33にそれぞれ出力する(ステップS3)。
 LED設定値算出部30は、輝度リニア変換部22からの画像データI(x,y)の入力を受けてLED設定値E(m,n)の算出を開始する(ステップS4)。
 最初に代表値算出部38は、輝度リニア変換部22から入力された画像データI(x,y)から、セグメント領域S(m,n)ごとに代表値ILPEAK(m,n)を算出し、各代表値ILPEAK(m,n)の算出結果をUM算出部39へ出力する(ステップS5)。次いで、UM算出部39は、代表値算出部38から入力された代表値ILPEAK(m,n)に基づき、上記式(3)を用いてセグメント領域S(m,n)ごとのUM(m,n)を算出し、UM(m,n)の算出結果を目標バックライト輝度算出部40へ出力する(ステップS6)。
 目標バックライト輝度算出部40は、UM算出部39から入力されたUM(m,n)に基づき、上記式(13)を用いて、セグメント領域S(m,n)ごとに目標バックライト輝度B(x,y)を算出する(ステップS7、目標輝度算出ステップ)。そして、目標バックライト輝度算出部40は、目標バックライト輝度B(x,y)の算出結果を設定値算出部42へ出力する。
 また、逆フィルタ取得部41は、逆フィルタ格納部27から逆フィルタf-1(x,y)を取得して、この逆フィルタf-1(x,y)を設定値算出部42へ出力する(ステップS8、逆フィルタ取得ステップ)。
 設定値算出部42は、目標バックライト輝度算出部40及び逆フィルタ取得部41からそれぞれ入力された目標バックライト輝度B(x,y)及び逆フィルタf-1(x,y)を上記式(14)に代入して畳み込み演算処理を行う。これにより、セグメント領域S(m,n)ごとのLED設定値関数E(x,y)が算出される。
 次いで、設定値算出部42は、セグメント領域S(m,n)ごとにLED設定値関数E(x,y)をLED設定値E(m,n)に変換する。これにより、セグメント領域S(m,n)ごとのLED設定値E(m,n)が算出される(ステップS9、設定値算出ステップ)。そして、設定値算出部42は、LED設定値E(m,n)の算出結果をバックライト輝度予測部32と、バックライト制御部31とにそれぞれ出力する。
 バックライト輝度予測部32は、設定値算出部42から入力されたLED設定値E(m,n)に基づき、上記式(12)を用いてセグメント領域S(m,n)ごとの予測バックライト輝度B(x,y)を算出する(ステップS10)。そして、バックライト輝度予測部32は、予測バックライト輝度B(x,y)の算出結果を階調補正部33へ出力する。
 階調補正部33は、バックライト輝度予測部32から入力された予測バックライト輝度B(x,y)に基づき、上記式(8)を用いて輝度リニア変換部22から入力された画像データI(x,y)に対して階調補正処理を施す。これにより、階調補正処理がなされた画像信号C(x,y)がセグメント領域S(m,n)ごとに算出される(ステップS11)。そして、階調補正部33は、画像信号C(x,y)をガンマ補正部34へ出力する。
 ガンマ補正部34は、階調補正部33から入力されたセグメント領域S(m,n)ごとの画像信号C(x,y)に対してガンマ補正処理を施すことにより、ガンマ補正がかかった画像信号C(x,y)を生成する(ステップS12)。そして、ガンマ補正部34は、画像信号C(x,y)を液晶パネル制御部35へ出力する。
 液晶パネル制御部35は、画像信号C(x,y)に基づき液晶パネル15の各画素q(x,y)の透過率を制御し、かつバックライト制御部31はLED設定値E(m,n)に基づきバックライト16(各LED19)の発光を制御する(ステップS13、光源制御ステップ)。これにより、表示部10aに画像データI(x,y)に基づく画像が表示される(ステップS14)。
 図14に示すように、本発明では周辺のセグメント領域S(m,n)への光の漏れ込みを考慮(図8から図11参照)してLED設定値E(m,n)の算出を行っているので、バックライト輝度B(x,y)が目標バックライト輝度B(x,y)に近似した特性を示す。なお、図14中の実線で描かれた曲線は、LED設定値E(m,n)が設定された場合における各セグメント領域S(m,n)の発光分布である(図15も同様)。
 これに対して比較例を示す図15において、周辺のセグメント領域S(m,n)への光の漏れ込みを考慮しない理想条件の下でLED設定値E(m,n)を算出した場合には、バックライト輝度B(x,y)が前述の式(7)で示したような理想条件を満たすことはできない。具体的には光の漏れ込み分が考慮されていないために、バックライト輝度B(x,y)が理想条件を下回ってしまう場合が多くなる。このような状況で予測バックライト輝度B(x,y)を用いて上記式(8)により階調補正を行った場合に、画像信号C(x,y)は1を超えてしまう。画像信号C(x,y)が1を超えたとしても、上記式(2)により決定されるパネル透過率P(x,y)が液晶パネル15の持つ最大透過率を超えることはできないため、画像信号C(x,y)は最大値1にクリップされてしまう。その結果、このクリップによって表示画像のハイライト領域での階調情報が失われてしまうという画質劣化問題が生じてしまう。
 このような比較例に対して本発明では、周辺のセグメント領域S(m,n)への光の漏れ込みを考慮してLED設定値E(m,n)を算出することにより、ハイライト領域での階調情報の損失を極力抑えることができる。
 図13に戻って、他の画像データI(x,y)に基づく画像表示を行う場合には、前述のステップS2からステップS14までの処理が繰り返し実行される(ステップS15でYES)。
 <第1実施形態の液晶表示装置の作用効果>
 以上のように本発明では、ウィナーフィルタを用いて逆フィルタf-1(x,y)を予め算出して、この逆フィルタf-1(x,y)を用いて上記式(14)に示した畳み込み演算処理を行うことで光の漏れ込みを考慮したLED設定値E(m,n)を算出している。その結果、上記特許文献1のような連立方程式を解く方法とは異なり、リアルタイムでLED設定値E(m,n)を算出することができる。
 [第2実施形態の液晶表示装置]
 次に、本発明の第2実施形態の液晶表示装置について説明を行う。上記第1実施形態の液晶表示装置10では、ウィナーフィルタをそのまま逆フィルタf-1(x,y)として用いているが、この場合にはバックライト輝度分布に乱れが生じるおそれがある。
 例えば、図16の符号306に示すように、中心が明るくなる目標バックライト輝度B(x,y)の輝度分布に対しては、符号307に示すようなバックライト輝度B(x,y)の輝度分布が得られるのが理想である。しかし、ウィナーフィルタから直接フィルタ係数を求めて得られた逆フィルタf-1(x,y)に基づきLED設定値E(m,n)を算出した場合には、符号308に示すように、逆に中心が暗くなるバックライト輝度B(x,y)の輝度分布が得られる場合がある。
 このような現象が発生する理由を図17により説明する。ウィナーフィルタ[逆フィルタf-1(x,y)]は上記式(15)により算出されるが、発光分布関数f(x,y)及びウィナーフィルタのそれぞれの周波数振幅特性F、F-1は、例えば図中の実線及び点線(細線)で示される。また、最終的に得られるバックライト輝度B(x,y)の輝度特性(以下、バックライト輝度特性という)は、バックライト輝度B(x,y)が上記式(12)で示したように発光分布関数f(x,y)と逆フィルタf-1(x,y)の畳み込みで表されるので、周波数特性上はFとF-1との積F・F-1となり、図中の点線(太線)で示される。
 ウィナーフィルタの効果により、バックライト輝度特性F・F-1は図中の二点鎖線で示す目標バックライト輝度B(x,y)の輝度特性(以下、目標バックライト輝度特性という)Fに近づくものになっている。そして、特に低周波でバックライト輝度特性F・F-1を目標バックライト輝度特性Fに近づけることが、目標バックライト輝度B(x,y)とバックライト輝度B(x,y)との誤差を小さくする上で効果的である。
 しかしながら、発光分布関数f(x,y)は一般に高周波側の振幅が小さいため、その高周波側で得られるウィナーフィルタの特性は不安定なものとなり、過度な強調特性や減衰特性を持つ傾向がある。この結果、逆フィルタ処理後に得られるバックライト輝度特性に偽信号成分が乗ってしまうことで、図16の符号308に示したような輝度分布の乱れが生じてしまう。
 そこで、図18に示すように、本発明の第2実施形態の液晶表示装置60では、逆フィルタf-1(x,y)に対して、特定の空間周波数よりも高周波側での振幅を制限する高周波制限処理を施す。ここでいう「特定の空間周波数」とは、目標バックライト輝度B(x,y)とバックライト輝度B(x,y)との誤差による影響が少なくなる高周波領域の下限である。例えば、図17に示したように、逆フィルタf-1(x,y)が空間周波数の増加に伴い振幅が次第に減少した後で次第に増加する周波数振幅特性を有している場合には、振幅が減少から増加に転じる空間周波数を「特定の空間周波数」として、この空間周波数よりも高周波側の振幅を制限している。なお、「特定の空間周波数」は、実験やシミュレーションなどにより定められる値である。
 第2実施形態の液晶表示装置60は、高周波制限特性関数FLを格納する高周波制限特性関数格納部62を備え、かつLED設定値算出部30に高周波制限処理部63が設けられている点を除けば、上記第1実施形態の液晶表示装置10と基本的に同じ構成である。このため、上記第1実施形態と機能・構成上同一のものについては、同一符号を付してその説明は省略する。
 図19に示すように、高周波制限特性関数FLは、周波数空間上でF-1[逆フィルタf-1(x,y)]に乗算されることにより、逆フィルタf-1(x,y)の「特定の空間周波数」よりも高周波側の振幅を制限する高周波制限特性を有する。従って、高周波制限特性関数FLをF-1に乗算することにより、高周波制限処理された逆フィルタf-1(x,y)が得られる。なお、図中の符号「Fr-1」は、高周波制限処理された逆フィルタf-1(x,y)の周波数振幅特性を示す。
 図18に戻って、高周波制限処理部63は、高周波制限特性関数格納部62から高周波制限特性関数FLを読み出して、この高周波制限特性関数FLを逆フィルタ取得部41から入力された逆フィルタf-1(x,y)に対して乗算処理する。具体的には、逆フィルタf-1(x,y)を一旦フーリエ変換して周波数空間上の関数に変換した後、この関数に対して高周波制限特性関数FLを乗算し、この乗算結果を逆フーリエ変換処理する。これにより、周波数振幅特性Fr-1を有する逆フィルタf-1(x,y)が得られる。
 設定値算出部42は、目標バックライト輝度B(x,y)と高周波制限処理された逆フィルタf-1(x,y)とを上記式(14)に代入してLED設定値関数E(x,y)を算出した後に、LED設定値関数E(x,y)をLED設定値E(m,n)に変換する。
 <第2実施形態の液晶表示装置の効果>
 図20に示すように、逆フィルタf-1(x,y)に高周波制限処理を施すことにより得られるバックライト輝度特性F・Fr-1は、高周波側で不都合な偽信号成分を持つことなく、低周波側で目標バックライト輝度特性Fに近づく。これにより、バックライト輝度特性F・Fr-1の乱れを生じることなく、効果的にハイライト領域の階調情報の情報損失を抑制することができる。
 <第2実施形態の他実施例>
 次に、図21を用いて、本発明の第2実施形態の他実施例の液晶表示装置60aについて説明を行う。上記第2実施形態の液晶表示装置60は、逆フィルタ取得部41が取得した逆フィルタf-1(x,y)に対して高周波制限処理を施すが、液晶表示装置60aでは、逆フィルタf-1(x,y)の算出時(設計時)に予め高周波制限処理された逆フィルタf-1(x,y)を算出する。
 液晶表示装置60aは、第1実施形態の逆フィルタ算出部26とは異なる逆フィルタ算出部26aを備える点を除けば、上記第1実施形態の液晶表示装置10と基本的に同じ構成である。このため、上記第1実施形態と機能・構成上同一のものについては、同一符号を付してその説明は省略する。
 逆フィルタ算出部26aは、フーリエ変換部65と、ウィナーフィルタ演算・高周波制限処理部66と、逆フィルタ変換部67とを備える。ここで、ウィナーフィルタ演算・高周波制限処理部66は本発明の高周波制限処理部として機能する。
 フーリエ変換部65は、前述の発光分布関数格納部25から取得した発光分布関数f(x,y)にフーリエ変換処理を施して周波数空間上の関数であるF(u,v)を算出し、この算出結果をウィナーフィルタ演算・高周波制限処理部66へ出力する。
 ウィナーフィルタ演算・高周波制限処理部66は、最初に、フーリエ変換部65から取得したF(u,v)を前述の式(15)に代入して、ウィナーフィルタを用いてF-1(u,v)を算出する。次いで、ウィナーフィルタ演算・高周波制限処理部66は、F-1(u,v)に対して、高周波制限特性関数格納部62などから取得した高周波制限特性関数FLを乗算処理することにより、高周波制限処理が施されたFr-1(u,v)を算出する。そして、ウィナーフィルタ演算・高周波制限処理部66は、Fr-1(u,v)の算出結果を逆フィルタ変換部67へ出力する。
 逆フィルタ変換部67は、ウィナーフィルタ演算・高周波制限処理部66から入力されたFr-1(u,v)に対し逆フーリエ変換処理を施して、Fr-1(u,v)を実空間の関数に変換する。すなわち、高周波制限処理された逆フィルタf-1(x,y)を算出する。そして、逆フィルタ変換部67は、高周波制限処理された逆フィルタf-1(x,y)を逆フィルタ格納部27に格納する。これにより、高周波制限処理された逆フィルタf-1(x,y)を予め算出して逆フィルタ格納部27に格納しておくことができる。
 設定値算出部42は、逆フィルタ取得部41が逆フィルタ格納部27から取得した逆フィルタf-1(x,y)に基づき、LED設定値E(m,n)の算出を行う。
 <第2実施形態の他実施例の効果>
 以上のように、液晶表示装置60aにおいても「高周波制限処理された逆フィルタf-1(x,y)」に基づき、LED設定値E(m,n)の算出を行うので、第2実施形態で説明した効果と同様の効果が得られる。
 また、前述の第2実施形態の液晶表示装置60では、逆フィルタf-1(x,y)の算出後に高周波制限処理を行うため、実空間の関数である逆フィルタf-1(x,y)を周波数空間上の関数に変換してから高周波制限特性関数FLを乗算処理する必要がある。これに対して液晶表示装置60aでは、逆フィルタf-1(x,y)の算出前の段階、すなわち、周波数空間上の関数であるF(u,v)に対して高周波制限特性関数FLを乗算処理するため、第2実施形態のように逆フィルタf-1(x,y)を周波数空間上の関数に変換する手間を省くことができる。
 <第2実施形態のその他>
 上記第2実施形態及びその他実施例では、周波数空間上で逆フィルタf-1(x,y)に対して高周波制限特性関数FLを乗算処理しているが、実空間上で高周波制限特性関数FLと同等の特性を有するデジタルフィルタ処理を行うことで高周波制限処理を実現してもよい。また、公知の各種方法を用いて高周波制限処理を行ってもよい。
 [第3実施形態の液晶表示装置]
 次に、本発明の第3実施形態の液晶表示装置について説明を行う。上記第1実施形態の逆フィルタf-1(x,y)による逆フィルタ処理は実空間上のデジタルフィルタ処理であるが、上記式(15)により得られたウィナーフィルタは周波数空間上のフィルタ係数である。このため、式(15)により得られたウィナーフィルタを逆フーリエ変換して実空間上の逆フィルタf-1(x,y)のフィルタ係数を得る必要がある。ここで得られたフィルタ係数のサンプル数は、ウィナーフィルタを算出した際の周波数サンプル数と等しくなる。
 ウィナーフィルタを逆フーリエ変換した逆フィルタf-1(x,y)のフィルタ係数の1次元での例を示す図22において、この例ではフィルタ係数のサンプル数は31個である。これら31個のフィルタ係数は逆フィルタf-1(x,y)の特性を精度良く表すものであるが、31個のフィルタ係数を全て利用すると、1次元で31個、2次元で31×31=961個のフィルタ係数が必要となるので、回路規模が膨大になってしまう。また、フィルタ係数の数が多くなるとその分だけ処理遅延が発生するため、表示遅延が発生するおそれがある。
 そこで、第3実施形態の液晶表示装置では、逆フィルタf-1(x,y)の特性を極力残しつつ、かつフィルタ係数を極力少なくするために、窓関数FWによる制限を行う。
 図23に示すように、第3実施形態の液晶表示装置70は、窓関数FWを格納する窓関数格納部72を備え、かつLED設定値算出部30に窓関数乗算処理部73が設けられている点を除けば、上記第1実施形態の液晶表示装置10と基本的に同じ構成である。このため、上記第1実施形態と機能・構成上同一のものについては、同一符号を付してその説明は省略する。
 窓関数FWは、図22に示したようにある有限区間以外で0となる関数である。この有限区間の範囲は、実験やシミュレーション等で適宜決定される。また、窓関数FWの上限値は1である。なお、窓関数FWとしては様々な特性のものが提案されており、ハン窓、ハミング窓、ブラックマン窓、カイザー窓などが用いられる。
 図24に示すように、窓関数乗算処理部73は、窓関数格納部72から窓関数FWを読み出して、この窓関数FWを逆フィルタ取得部41から入力された逆フィルタf-1(x,y)のフィルタ係数に対して乗算処理する。これにより、31個のフィルタ係数は図中の両端部で0となるので、フィルタ係数は、実質的に1次元では例えば15個、2次元では例えば15×15=225個となる。その結果、逆フィルタf-1(x,y)のフィルタ係数を少なくすることができる。
 <第3実施形態の液晶表示装置の効果>
 このように第3実施形態の液晶表示装置70では、逆フィルタf-1(x,y)のフィルタ係数に窓関数FWを乗算処理してフィルタ係数の数を制限することにより、回路規模の拡大並びに処理遅延を極力抑えることができる。
 <第3実施形態の他実施例>
 なお、上記第2実施形態の液晶表示装置60においても第3実施形態と同様に、逆フィルタf-1(x,y)のフィルタ係数に窓関数FWを乗算処理してフィルタ係数の数を制限してもよい。
 [第4実施形態の液晶表示装置]
 次に、第4実施形態の液晶表示装置について説明する。上記各実施形態では、各セグメント領域S(m,n)の発光分布関数f(x,y)が同じであると仮定しているが、バックライト16の構造によってはどのセグメント領域S(m,n)でも発光分布関数f(x,y)が同じになるとは限らない。
 例えば図25の符号310及び符号311に示すように、LED19の特性によるばらつきがある場合に、発光分布関数f(x,y)は広がり方の異なる関数となる。また、表示画面の周辺部に位置するセグメント領域S(m,n)では、画面枠の反射特性のために、符号312で示したように回転非対称な特性を有する発光分布関数f(x,y)が得られる場合もある。このため、LED設定値E(m,n)の算出に用いる逆フィルタf-1(x,y)についてもセグメント領域S(m,n)ごとに最適なものを用いることが好ましい。
 そこで、図26に示すように、第4実施形態の液晶表示装置80では、セグメント領域S(m,n)ごとに最適な逆フィルタf-1(x,y)を用いてLED設定値E(m,n)の算出を行う。液晶表示装置80は、発光分布関数格納部82、逆フィルタ算出部83、逆フィルタ格納部84、対応関係記憶部85、逆フィルタ取得部86、及び設定値算出部87を備える点を除けば、上記第1実施形態の液晶表示装置10と基本的に同じ構成である。このため、上記第1実施形態と機能・構成上同一のものについては、同一符号を付してその説明は省略する。
 発光分布関数格納部82は、セグメント領域S(m,n)ごとの発光分布関数f(x,y)[発光分布関数1、発光分布関数2、発光分布関数3、・・・]を予め格納している。各発光分布関数f(x,y)は、液晶パネル15の設計時または製造時の測定により予め求められる既知の値である。
 逆フィルタ算出部83は、上記式(15)を用いて、発光分布関数格納部82に格納されている各発光分布関数f(x,y)の逆フィルタf-1(x,y)[逆フィルタ1、逆フィルタ2、逆フィルタ3、・・・]をそれぞれ算出し、これら逆フィルタf-1(x,y)を逆フィルタ格納部84に格納する。なお、逆フィルタ格納部84は、複数種類の逆フィルタf-1(x,y)を格納する点を除けば、第1実施形態の逆フィルタ格納部27と同じである。
 対応関係記憶部85には対応関係情報89が格納されている。この対応関係情報89は、個々のセグメント領域S(m,n)[セグメント領域1、セグメント領域2、セグメント領域3、・・・]と、個々のセグメント領域S(m,n)に対応する発光分布関数f(x,y)の逆フィルタf-1(x,y)との対応関係を示す。従って、対応関係情報89を参照することで、各セグメント領域S(m,n)にそれぞれ適した逆フィルタf-1(x,y)を判別することができる。
 逆フィルタ取得部86は、逆フィルタ格納部84に格納されている複数種類の逆フィルタf-1(x,y)を取得して、これら逆フィルタf-1(x,y)をそれぞれ設定値算出部87へ出力する。
 設定値算出部87は、対応関係記憶部85内の対応関係情報89を参照して、複数種類の逆フィルタf-1(x,y)の中からセグメント領域S(m,n)ごとに対応する逆フィルタf-1(x,y)を選択する。次いで、設定値算出部87は、セグメント領域S(m,n)ごとに、目標バックライト輝度B(x,y)と先に選択した逆フィルタf-1(x,y)とを畳み込み演算処理(上記式(14)参照)することにより、セグメント領域S(m,n)ごとのLED設定値E(m,n)を算出する。これにより、セグメント領域S(m,n)ごとに最適な逆フィルタf-1(x,y)を用いてLED設定値E(m,n)を算出することができる。
 <第4実施形態の液晶表示装置の効果>
 このように第4実施形態の液晶表示装置80では、実際のバックライト構造の発光分布特性に即して、すなわち、セグメント領域S(m,n)の表示画面内の位置やLED19の特性に応じて、最適な逆フィルタf-1(x,y)を選択してLED設定値E(m,n)を算出することができる。その結果、ハイライト領域の階調情報の情報損失をさらに精度よく抑制することができる。
 <第4実施形態の他実施例>
 上記第4実施形態では、セグメント領域S(m,n)ごとにそれぞれ異なる逆フィルタf-1(x,y)が対応付けられているが、セグメント領域S(m,n)の表示画面内の位置などに応じて、複数のセグメント領域S(m,n)に同一の逆フィルタf-1(x,y)を対応付けてもよい。
 なお、上記第2実施形態の液晶表示装置60及び第3実施形態の液晶表示装置70においても第4実施形態と同様に、セグメント領域S(m,n)ごとに最適な逆フィルタf-1(x,y)を選択してもよい。
 [スマートフォンの適用例]
 上記各実施形態では本発明の表示装置としてテレビ(モニタ)型の液晶表示装置を例に挙げて説明を行ったが、例えば、撮影機能を有する携帯電話機やスマートフォン、PDA(Personal Digital Assistants)、タブレット端末、携帯型ゲーム機にも本発明を適用することができる。以下、スマートフォンを例に挙げ、図面を参照しつつ、詳細に説明する。
 図27は、スマートフォン500の外観を示すものである。スマートフォン500は、平板状の筐体501を有している。筐体501の一方の面には、表示入力部502と、スピーカ503と、マイクロホン504、操作部505と、カメラ部506とを備えている。なお、筐体501の構成はこれに限定されず、例えば、表示部と入力部とが独立した構成、折り畳み構造やスライド機構を有する構成を採用することもできる。また、カメラ部506は、筐体501の他方の面にも設けられている。
 表示入力部502は、画像(静止画像及び動画像)や文字情報などを表示する。また、表示入力部502は、表示した情報に対するユーザ操作を検出する、いわゆるタッチパネル構造を有している。この表示入力部502は、液晶パネル510と、バックライト511(図28参照)と、操作パネル512とで構成されている。
 液晶パネル510及びバックライト511は、前述の液晶パネル15及びバックライト16と基本的に同じものである。操作パネル512は、光透過性を有しており、液晶パネル510の表示面上に載置されている。この操作パネル512は、ユーザの指や尖筆によって操作される一又は複数の座標を検出するデバイスである。このデバイスをユーザの指や尖筆によって操作すると、操作に起因して発生する検出信号をスマートフォン500のCPUに出力する。CPUは、受信した検出信号に基づいて、液晶パネル510上の操作位置(座標)を検出する。このような操作パネル512で採用される位置検出方式としては、マトリクススイッチ方式、抵抗膜方式、表面弾性波方式、赤外線方式、電磁誘導方式、静電容量方式などが挙げられる。
 図28に示すように、スマートフォン500は、表示入力部502、スピーカ503、マイクロホン504、操作部505、カメラ部506、CPU507、表示処理部508の他に、無線通信部515と、通話部516と、記憶部517と、外部入出力部518と、GPS(Global Positioning System)受信部519と、モーションセンサ部520と、電源部521とを備える。
 操作部505は、例えば押しボタン式のスイッチや十字キーなどを用いたハードウェアキーであり、ユーザからの指示を受け付ける。この操作部505は、例えば筐体501の表示部の下部や筐体501の側面に搭載される。
 カメラ部506は、CMOS(Complementary Metal Oxide Semiconductor)型の撮像素子やCCD(Charge-Coupled Device)型の撮像素子などの各種撮像素子を用いて電子撮影を行う。この電子撮影により得られた画像データは、各種の圧縮画像データに変換して記憶部517に記録させたり、外部入出力部518や無線通信部515を通じて出力させたりすることができる。
 表示処理部508は、CPU507の指示に従って、表示入力部502に画像や文字情報を表示させる。この表示処理部508は、上述の図4に示した画像データ取得部21、輝度リニア変換部22、発光分布関数格納部25、逆フィルタ算出部26、逆フィルタ格納部27、LED設定値算出部30、バックライト制御部31、バックライト輝度予測部32、階調補正部33、ガンマ補正部34、液晶パネル制御部35として機能する。
 無線通信部515は、CPU507の指示に従って、移動通信網に収容された基地局装置に対し無線通信を行うものである。この無線通信を使用して、音声データ、画像データ等の各種ファイルデータ、電子メールデータなどの送受信や、Webデータやストリーミングデータなどの受信を行う。
 通話部516は、スピーカ503やマイクロホン504を備えている。通話部516は、マイクロホン504を通じて入力されたユーザの音声を音声データに変換してCPU507に出力したり、無線通信部515等で受信された音声データを復号してスピーカ503から出力したりする。
 記憶部517は、CPU507の制御プログラムや制御データ、アプリケーションソフトウェア、通信相手の名称や電話番号などを対応づけたアドレスデータ、送受信した電子メールのデータなどを記憶し、またストリーミングデータなどを一時的に記憶する。また、記憶部517は、スマートフォン内蔵の内部記憶部517aと着脱自在な外部メモリスロットを有する外部記憶部517bにより構成される。なお、内部記憶部517aと外部記憶部517bとしては、フラッシュメモリタイプ、ハードディスクタイプなどの公知の各種記憶媒体が用いられる。
 外部入出力部518は、スマートフォン500に連結される全ての外部機器とのインターフェースの役割を果たすものであり、他の外部機器に通信等により直接的または間接的に接続するためのものである。
 GPS受信部519は、GPS衛星ST1~STnから送信されるGPS信号を受信し、受信した複数のGPS信号に基づく測位演算処理を実行し、スマートフォン500の緯度、経度、高度からなる位置を検出する。この検出結果はCPU507に出力される。
 モーションセンサ部520は、例えば、3軸の加速度センサなどを備えており、スマートフォン500の物理的な動きを検出する。これにより、スマートフォン500の動く方向や加速度が検出される。この検出結果はCPU507に出力される。また、電源部521は、図示しないバッテリに蓄えられた電力をスマートフォン500の各部に供給する。
 CPU507は、記憶部517から読み出した制御プログラムや制御データに従って動作し、スマートフォン500の各部を統括して制御する。また、CPU507は、液晶パネル510に対する表示制御、操作部505や操作パネル512を通じたユーザ操作を検出する操作検出制御などを実行する。
 表示制御の実行により、CPU507は、アプリケーションソフトウェアを起動するためのアイコン、スクロールバーなどのソフトウェアキーを表示、あるいは電子メールを作成するためのウィンドウなどを液晶パネル510に表示させる。なお、スクロールバーとは、液晶パネル510の表示領域に収まりきれない大きな画像などについて、画像の表示部分を移動する指示を受け付けるためのソフトウェアキーのことをいう。
 また、操作検出制御の実行により、CPU507は、操作部505を通じたユーザ操作を検出したり、操作パネル512を通じて、上記アイコンに対する操作や、上記ウィンドウの入力欄に対する文字列の入力を受け付けたり、あるいは、スクロールバーを通じた表示画像のスクロール要求を受け付ける。
 さらに、操作検出制御の実行によりCPU507は、操作パネル512に対する操作位置が、液晶パネル510に重なる重畳部分(表示領域)か、それ以外の液晶パネル510に重ならない外縁部分(非表示領域)かを判定し、操作パネル512の感応領域や、ソフトウェアキーの表示位置を制御するタッチパネル制御機能を備える。
 また、CPU507は、操作パネル512に対するジェスチャ操作を検出し、検出したジェスチャ操作に応じて、予め設定された機能を実行することができる。ジェスチャ操作とは、従来の単純なタッチ操作ではなく、指などによって軌跡を描いたり、複数の位置を同時に指定したり、あるいはこれらを組み合わせて、複数の位置から少なくとも1つについて軌跡を描く操作を意味する。
 上記構成のスマートフォン500の液晶パネル510、バックライト511、及び表示処理部508は、上記各実施形態の液晶表示装置と基本的に同じ構成であるので、上記各実施形態と同様の効果が得られる。
 [その他]
 上記第1実施形態では、液晶表示装置10内の逆フィルタ算出部26により逆フィルタf-1(x,y)を算出しているが、逆フィルタf-1(x,y)の算出は外部で行い、外部で算出された逆フィルタf-1(x,y)を逆フィルタ格納部27に格納してもよい。また、通信ネットワーク等を介して逆フィルタ取得部41が、外部で算出された逆フィルタf-1(x,y)を直接取得してもよい。なお、他の実施形態についても同様である。さらに、例えば、図21に示した第2実施形態の他実施例の場合には、高周波制限処理された逆フィルタf-1(x,y)の算出を外部で行い、第3実施形態の場合には逆フィルタf-1(x,y)のフィルタ係数に対する窓関数FWの乗算処理も外部で行ってもよい。
 上記各実施形態では、ウィナーフィルタを用いて逆フィルタf-1(x,y)の算出を行っているが、一般逆フィルタ、パラメトリックウィナーフィルタ、射影フィルタ、部分射影フィルタなどを用いて逆フィルタf-1(x,y)の算出を行ってもよい。
 上記各実施形態では、液晶パネル15と、液晶パネル15の背面側に配置されたバックライト16とを備える透過型の液晶表示装置を例に挙げて説明したが、液晶パネル15の側面側に光源を配置している液晶表示装置にも本発明を適用することができる。また、画素ごとに反射率を制御可能な液晶パネルを備える反射型の液晶表示装置にも本発明を適用することができる。
 上記各実施形態では、液晶パネル15を備える液晶表示装置を例に挙げて説明を行ったが、個々の画素の駆動を制御して画素ごとに透過率または反射率を調整可能な各種の非自発光表示パネルを備える表示装置に本発明を適用することができる。
 10,60,60a,70,80…液晶表示装置,15…液晶パネル,16…バックライト,21…画像取得部,26…逆フィルタ算出部,27…逆フィルタ格納部,30…LED設定値算出部,31…バックライト制御部,32…バックライト輝度予測部,33…階調補正部,35…液晶パネル制御部,38…代表値算出部,39…UM算出部,40…目標バックライト輝度算出部,41,86…逆フィルタ取得部,42,87…設定値算出部,63…高周波制限処理部,73…窓関数乗算処理部

Claims (11)

  1.  非自発光表示パネルと、
     前記非自発光表示パネルの表示領域を複数に分割したセグメント領域ごとの発光輝度を独立して制御する光源と、
     画像データを取得する画像データ取得部と、
     前記画像データ取得部が取得した前記画像データに基づき、前記セグメント領域ごとに発光輝度の目標値である目標輝度を算出する目標輝度算出部と、
     前記セグメント領域ごとの前記光源の発光分布特性を示す発光分布関数の逆フィルタを取得する逆フィルタ取得部と、
     前記目標輝度算出部が算出した前記セグメント領域ごとの前記目標輝度に対して前記逆フィルタ取得部が取得した前記逆フィルタを畳み込み演算することで、前記セグメント領域ごとの前記光源の発光輝度の設定値を算出する設定値算出部と、
     前記設定値算出部が算出した前記セグメント領域ごとの前記設定値に基づき、前記セグメント領域ごとの前記光源の発光輝度を制御する光源制御部と、
     を備える表示装置。
  2.  前記逆フィルタ取得部は、ウィナーフィルタを用いて前記発光分布関数の前記逆フィルタを算出する逆フィルタ算出部により算出された前記逆フィルタを取得する請求項1記載の表示装置。
  3.  前記逆フィルタ取得部が取得した前記逆フィルタに対して、特定の空間周波数よりも高周波側での振幅の増加を制限する高周波制限処理を施す高周波制限処理部を備え、
     前記設定値算出部は、前記高周波制限処理された前記逆フィルタを用いて前記畳み込み演算を行う請求項1または2記載の表示装置。
  4.  前記逆フィルタ取得部は、特定の空間周波数よりも高周波側での振幅の増加を制限する高周波制限処理を施す高周波制限処理部により前記高周波制限処理が施された前記逆フィルタを取得し、
     前記設定値算出部は、前記高周波制限処理された前記逆フィルタを用いて前記畳み込み演算を行う請求項1または2記載の表示装置。
  5.  前記逆フィルタ取得部が取得した前記逆フィルタのフィルタ係数に対して窓関数を乗算する窓関数乗算処理部を備え、
     前記設定値算出部は、前記窓関数の乗算処理後の前記逆フィルタを用いて前記畳み込み演算を行う請求項1から4のいずれか1項に記載の表示装置。
  6.  前記表示領域内の前記セグメント領域の位置及び前記セグメント領域ごとの前記光源の特性の少なくともいずれかに応じて異なる複数種類の前記発光分布関数の前記逆フィルタを格納する逆フィルタ格納部を備え、
     前記逆フィルタ取得部は、前記逆フィルタ格納部から複数種類の前記逆フィルタを取得し、
     前記設定値算出部は、前記セグメント領域ごとに対応する前記逆フィルタを選択して前記畳み込み演算を行う請求項1から5のいずれか1項に記載の表示装置。
  7.  前記セグメント領域と、当該セグメント領域に対応した前記逆フィルタとの対応関係を前記セグメント領域ごとに記憶した対応関係記憶部を備え、
     前記設定値算出部は、前記対応関係記憶部を参照して、前記セグメント領域ごとに対応する前記逆フィルタを選択する請求項6記載の表示装置。
  8.  前記目標輝度算出部は、前記セグメント領域ごとの前記画像データの画素値の代表値を算出して、前記代表値の算出結果に基づき前記セグメント領域ごとの前記目標輝度を決定する請求項1から7のいずれか1項に記載の表示装置。
  9.  前記代表値は、前記画素値のピーク値である請求項8記載の表示装置。
  10.  前記設定値算出部が算出した前記セグメント領域ごとの前記設定値に基づき、前記表示領域の発光輝度を予測する予測部と、
     前記予測部の予測結果に基づき、前記画像データの画素値の階調補正を行う階調補正部と、
     前記階調補正部による階調補正後の前記画素値に基づき、前記非自発光表示パネルの画素の駆動を制御するパネル制御部と、
     を備える請求項1から9のいずれか1項に記載の表示装置。
  11.  非自発光表示パネルと、前記非自発光表示パネルの表示領域を複数に分割したセグメント領域ごとの発光輝度を独立して制御する光源と、を備える表示装置の制御方法において、
     画像データを取得する画像データ取得ステップと、
     前記画像データ取得ステップで取得した前記画像データに基づき、前記セグメント領域ごとの発光輝度の目標値である目標輝度を算出する目標輝度算出ステップと、
     前記セグメント領域ごとの前記光源の発光分布特性を示す発光分布関数の逆フィルタを取得する逆フィルタ取得ステップと、
     前記目標輝度算出ステップで算出した前記セグメント領域ごとの前記目標輝度に対して前記逆フィルタ取得ステップで取得した前記逆フィルタを畳み込み演算することで、前記セグメント領域ごとの前記光源の発光輝度の設定値を算出する設定値算出ステップと、
     前記設定値算出ステップで算出した前記セグメント領域ごとの前記設定値に基づき、前記セグメント領域ごとの前記光源の発光輝度を制御する光源制御ステップと、
     を有する表示装置の制御方法。
PCT/JP2014/077153 2013-11-12 2014-10-10 表示装置及びその制御方法 WO2015072257A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015547692A JP6023349B2 (ja) 2013-11-12 2014-10-10 表示装置及びその制御方法
CN201480061930.6A CN105723445B (zh) 2013-11-12 2014-10-10 显示装置及其控制方法
US15/130,586 US9818346B2 (en) 2013-11-12 2016-04-15 Display device and control method for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013234117 2013-11-12
JP2013-234117 2013-11-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/130,586 Continuation US9818346B2 (en) 2013-11-12 2016-04-15 Display device and control method for same

Publications (1)

Publication Number Publication Date
WO2015072257A1 true WO2015072257A1 (ja) 2015-05-21

Family

ID=53057199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077153 WO2015072257A1 (ja) 2013-11-12 2014-10-10 表示装置及びその制御方法

Country Status (4)

Country Link
US (1) US9818346B2 (ja)
JP (1) JP6023349B2 (ja)
CN (1) CN105723445B (ja)
WO (1) WO2015072257A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020013194A1 (ja) * 2018-07-12 2020-01-16 シャープ株式会社 表示装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016038567A (ja) 2014-08-08 2016-03-22 キヤノン株式会社 表示装置及びその制御方法
US11501244B1 (en) 2015-04-06 2022-11-15 Position Imaging, Inc. Package tracking systems and methods
US10853757B1 (en) 2015-04-06 2020-12-01 Position Imaging, Inc. Video for real-time confirmation in package tracking systems
US11416805B1 (en) 2015-04-06 2022-08-16 Position Imaging, Inc. Light-based guidance for package tracking systems
US10148918B1 (en) 2015-04-06 2018-12-04 Position Imaging, Inc. Modular shelving systems for package tracking
US10600213B2 (en) * 2016-02-27 2020-03-24 Focal Sharp, Inc. Method and apparatus for color-preserving spectrum reshape
US11436553B2 (en) 2016-09-08 2022-09-06 Position Imaging, Inc. System and method of object tracking using weight confirmation
US11120392B2 (en) * 2017-01-06 2021-09-14 Position Imaging, Inc. System and method of calibrating a directional light source relative to a camera's field of view
US10770008B2 (en) * 2017-07-31 2020-09-08 Japan Display Inc. Display device with dimming panel
EP3853772A4 (en) 2018-09-21 2022-06-22 Position Imaging, Inc. MACHINE LEARNING ASSISTED SELF-IMPROVING SYSTEM AND METHOD FOR OBJECT IDENTIFICATION
WO2020146861A1 (en) 2019-01-11 2020-07-16 Position Imaging, Inc. Computer-vision-based object tracking and guidance module
CN112587087B (zh) * 2020-12-21 2022-09-09 上海美沃精密仪器股份有限公司 一种定位人眼角膜屈光地形图平陡k轴位的方法
US11763758B2 (en) * 2021-05-27 2023-09-19 Sharp Kabushiki Kaisha Luminance unevenness correction system and luminance unevenness correction method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09269370A (ja) * 1996-04-01 1997-10-14 Furuno Electric Co Ltd 探知画像データ処理方法、物体探知装置、超音波診断装置、およびレーダ
JP2008139871A (ja) * 2006-11-30 2008-06-19 Sharp Corp 領域適応型バックライトを有する液晶ディスプレイ
JP2008304908A (ja) * 2007-05-08 2008-12-18 Victor Co Of Japan Ltd 液晶表示装置及びこれに用いる映像表示方法
JP2009042838A (ja) * 2007-08-06 2009-02-26 Ricoh Co Ltd 画像投影方法および画像投影装置
JP2009109975A (ja) * 2007-10-31 2009-05-21 Samsung Electronics Co Ltd 表示装置及びその駆動方法
WO2012023326A1 (ja) * 2010-08-17 2012-02-23 シャープ株式会社 バックライトコントローラおよび画像表示装置
JP2012141725A (ja) * 2010-12-28 2012-07-26 Sony Corp 信号処理装置、信号処理方法、およびプログラム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4904783B2 (ja) 2005-03-24 2012-03-28 ソニー株式会社 表示装置及び表示方法
CN101042476A (zh) * 2006-03-22 2007-09-26 群康科技(深圳)有限公司 液晶显示器与电源驱动系统
KR100831369B1 (ko) * 2006-06-09 2008-05-21 삼성전자주식회사 표시장치용 백라이트장치 및 그 밝기조절방법
US8139022B2 (en) 2007-05-08 2012-03-20 Victor Company Of Japan, Limited Liquid crystal display device and image display method thereof
KR101539575B1 (ko) * 2009-01-28 2015-07-31 삼성디스플레이 주식회사 광원 구동 방법, 이를 수행하기 위한 광원 장치 및 이 광원장치를 포함하는 표시 장치
JP2012137509A (ja) * 2009-04-24 2012-07-19 Panasonic Corp 表示装置
CN102117600A (zh) * 2010-01-04 2011-07-06 青岛海信电器股份有限公司 一种led背光源的分区光晕改善方法及其控制装置
JP5661336B2 (ja) 2010-05-28 2015-01-28 日立マクセル株式会社 液晶表示装置
US8717278B2 (en) * 2010-08-31 2014-05-06 Dolby Laboratories Licensing Corporation Method and apparatus for adjusting drive values for dual modulation displays
CN102568386B (zh) * 2010-12-29 2015-08-19 上海易维视科技有限公司 动态背光局部控制液晶显示方法及系统
JP6598430B2 (ja) * 2013-10-31 2019-10-30 キヤノン株式会社 表示装置、表示装置の制御方法、及び、プログラム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09269370A (ja) * 1996-04-01 1997-10-14 Furuno Electric Co Ltd 探知画像データ処理方法、物体探知装置、超音波診断装置、およびレーダ
JP2008139871A (ja) * 2006-11-30 2008-06-19 Sharp Corp 領域適応型バックライトを有する液晶ディスプレイ
JP2008304908A (ja) * 2007-05-08 2008-12-18 Victor Co Of Japan Ltd 液晶表示装置及びこれに用いる映像表示方法
JP2009042838A (ja) * 2007-08-06 2009-02-26 Ricoh Co Ltd 画像投影方法および画像投影装置
JP2009109975A (ja) * 2007-10-31 2009-05-21 Samsung Electronics Co Ltd 表示装置及びその駆動方法
WO2012023326A1 (ja) * 2010-08-17 2012-02-23 シャープ株式会社 バックライトコントローラおよび画像表示装置
JP2012141725A (ja) * 2010-12-28 2012-07-26 Sony Corp 信号処理装置、信号処理方法、およびプログラム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020013194A1 (ja) * 2018-07-12 2020-01-16 シャープ株式会社 表示装置
CN112384968A (zh) * 2018-07-12 2021-02-19 夏普株式会社 显示装置
JPWO2020013194A1 (ja) * 2018-07-12 2021-05-13 シャープ株式会社 表示装置

Also Published As

Publication number Publication date
JPWO2015072257A1 (ja) 2017-03-16
CN105723445A (zh) 2016-06-29
CN105723445B (zh) 2018-12-14
JP6023349B2 (ja) 2016-11-09
US9818346B2 (en) 2017-11-14
US20160232857A1 (en) 2016-08-11

Similar Documents

Publication Publication Date Title
JP6023349B2 (ja) 表示装置及びその制御方法
JP5875732B2 (ja) 液晶表示装置
KR102425302B1 (ko) 번-인 통계 및 번-인 보상
CN111830746B (zh) 具有可调节的直接照明式背光单元的显示器
US9672603B2 (en) Image processing apparatus, image processing method, display apparatus, and control method for display apparatus for generating and displaying a combined image of a high-dynamic-range image and a low-dynamic-range image
US8525753B2 (en) System and method for automatically adjusting electronic display settings
WO2019137141A1 (zh) 显示方法、显示优化装置、以及显示装置
US11640782B2 (en) Gamma adjustment method and apparatus for display panel
US20090263037A1 (en) Method and Apparatus for Enhancing the Dynamic Range of an Image
JP2017045030A (ja) 画像表示装置
CN109493831B (zh) 一种图像信号的处理方法及装置
KR20140125984A (ko) 영상 처리 방법 및 이를 지원하는 전자 장치와 시스템
KR20140004497A (ko) 액정 표시 장치에 의한 전류 소모를 개선하기 위한 방법 및 그 전자 장치
JP5785663B2 (ja) 液晶表示装置
CN112435231B (zh) 图像质量标尺生成方法、评测图像质量的方法及装置
CN115775541A (zh) 一种显示屏的背光补偿方法、装置、芯片和终端
JP2013250284A (ja) 表示装置、輝度制御方法、プログラム、およびコンピュータ読み取り可能な記録媒体
JP2019124798A (ja) 表示装置、表示装置の制御方法、プログラム、及び、記憶媒体
CN111292250B (zh) 图像处理方法及装置
US20240038184A1 (en) Image display device
WO2024129131A1 (en) Image noise reduction based on human vision perception
CN118230660A (zh) 显示处理方法、补偿处理方法、装置、终端和介质
JP2010134123A (ja) 画像処理装置、表示装置および画像処理方法
GB2499075A (en) System and Method for Automatically Adjusting Electronic Display Settings
JP2010224355A (ja) 電気光学装置および電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861544

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015547692

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14861544

Country of ref document: EP

Kind code of ref document: A1