WO2015072040A1 - Resin flow behavior calculation method, and resin flow behavior calculation program - Google Patents

Resin flow behavior calculation method, and resin flow behavior calculation program Download PDF

Info

Publication number
WO2015072040A1
WO2015072040A1 PCT/JP2013/081074 JP2013081074W WO2015072040A1 WO 2015072040 A1 WO2015072040 A1 WO 2015072040A1 JP 2013081074 W JP2013081074 W JP 2013081074W WO 2015072040 A1 WO2015072040 A1 WO 2015072040A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
equation
elastic modulus
resin material
flow behavior
Prior art date
Application number
PCT/JP2013/081074
Other languages
French (fr)
Japanese (ja)
Inventor
河野 務
宇亨 池田
孝仁 村木
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/081074 priority Critical patent/WO2015072040A1/en
Publication of WO2015072040A1 publication Critical patent/WO2015072040A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/28Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/22Moulding

Definitions

  • the present invention for example, for determining the molding process conditions for increasing the adhesion of the coating resin to the core wire in the manufacturing process of the wire material in which the core wire and the molten resin are extruded from the cylinder and the core wire is coated with the resin.
  • the present invention relates to a resin flow behavior calculation method and a resin flow behavior calculation program.
  • the resin material that covers the core wire is extruded from the cylinder, cooled in the air, and cured so as to cover the periphery of the core wire without gaps, and formed as a coated wire.
  • a method for calculating the flow behavior of the resin material is necessary in consideration of heat transfer between the resin and the gas when the resin material is molded in contact with the gas.
  • Patent documents relating to the calculation method of the flow behavior of the resin material include, for example, Patent Document 1 “Japanese Patent Laid-Open No. 2006-205740” and Patent Document 2 “Japanese Patent Laid-Open No. 2010-108150”.
  • Patent Document 1 Japanese Patent Laid-Open No. 2006-205740
  • Patent Document 2 Japanese Patent Laid-Open No. 2010-108150.
  • Patent Document 1 the shrinkage strain of the resin accompanying the phase change is calculated as a function of the linear hardening shrinkage coefficient and the reaction rate
  • the shrinkage strain of the resin accompanying the resin temperature change is calculated as a function of the resin temperature and the linear expansion coefficient.
  • Patent Document 2 discloses a technique for calculating a linear expansion coefficient according to a filler filling rate of a resin material and calculating a resin shrinkage strain.
  • Patent Document 3 Japanese Patent Laid-Open No.
  • Patent Document 3 discloses a technique for calculating a behavior in which foaming occurs due to an exothermic reaction of a resin and the density of the entire resin decreases while flowing.
  • Patent Documents 1, 2, and 3 do not calculate the viscosity coefficient and the elastic coefficient by the heat transfer calculation between the resin and the gas during the resin flow process. For this reason, the calculation methods disclosed in Patent Documents 1, 2, and 3 do not consider heat transfer with the gas when the resin is molded in contact with the solid surface as well as the gas. Since the increase in the viscosity coefficient and the elastic coefficient due to the temperature difference in the thickness direction cannot be calculated, the adhesion force between the resin and the solid cannot be predicted.
  • the resin temperature decreases from the portion in contact with the gas due to heat transfer with the gas.
  • the resin temperature and the elastic modulus are distributed due to heat transfer from a portion of the resin in contact with the gas and the solid.
  • the resin flow behavior calculation method in which the resin flow analysis device calculates the elastic coefficient distribution of the resin material molded in contact with the gas, (a) the space filled with the resin material Input a shape model and decompose it into three-dimensional solid elements based on the data.
  • the resin flow behavior calculation method in which the resin flow analysis device calculates the elastic coefficient distribution of the resin material molded in contact with the gas, (a) the resin material is filled.
  • a space shape model is input and decomposed into three-dimensional solid elements based on the data.
  • the resin flow behavior calculation method in which the resin flow analysis device calculates the elastic coefficient distribution of the resin material molded in contact with the gas, (a) the resin material is filled.
  • a space shape model is input and decomposed into three-dimensional solid elements based on the data.
  • the product shape and the resin material 3 can reduce the difference in the elastic modulus of the resin in an arbitrary cross section in the resin cooling process by predicting the elastic modulus distribution of the resin in consideration of heat transfer with the gas in the resin flow.
  • Material properties, cylinder structure, and molding process conditions can be optimized. That is, according to the present invention, cost reduction and development time reduction can be realized.
  • a core wire 4 is disposed at the center of the cylinder 1, and a heated resin material 3 is disposed around the core wire 4. At the same time as the core wire 4 is moved and discharged from the cylinder outlet 2 in the direction of the arrow, the resin material 3 is extruded and integrated with the core wire 4 to flow.
  • the surface temperature of the resin material 3 decreases due to heat transfer from the air in the external space 7 (or any gas including nitrogen, oxygen, and carbon dioxide), and the resin material 3 has an outer peripheral portion 5 and an inner peripheral portion 6. Resin temperature difference occurs.
  • the temperature of the resin material 3 in the inner peripheral portion 6 decreases and contracts.
  • the elastic modulus of the resin in the outer peripheral portion 5 is high, the resin material 3 in the inner peripheral portion 6 is constrained by the resin material 3 in the outer peripheral portion 5 (pulled by the previously cured outer peripheral portion. (Condition). For this reason, there exists a problem that the adhesive force of the resin material 3 and the core wire 4 falls.
  • the core wire 4 and the resin material 3 extruded from the cylinder 1 are cured in the air to form a resin-coated wire.
  • a wire winding (not shown) is taken up. Depending on the process, it will be wound on a roll.
  • the present invention calculates the temperature distribution of the resin by considering the heat transfer between the resin and the gas when the resin material is molded in contact with the gas, and calculates the resin from the obtained temperature distribution of the resin in an arbitrary cross section.
  • the resin temperature decreases from the portion in contact with the gas due to heat transfer with the gas.
  • the resin temperature is distributed due to heat transfer from the resin gas and the portion in contact with the solid. Due to this resin temperature distribution, a difference in elastic modulus occurs, so that a difference also occurs in the adhesion between the resin and the solid. For this reason, it is necessary to predict the resin flow behavior reflecting the increase in the elastic modulus due to the temperature decrease of the resin.
  • the resin material 3 is a thermosetting resin such as epoxy or phenol, PPS (polyphenylene sulfide resin), PP (polypropylene resin), ABS (acrylonitrile butadiene styrene resin), PBT (polybutylene terephthalate resin), PE (polyethylene resin). ), PVC (polyvinyl chloride resin), PC (polycarbonate resin), PET (polyethylene terephthalate resin) and other thermoplastic resins can be used, and fillers such as glass, carbon, talc and mica can be used. It can also be filled in the resin.
  • PPS polyphenylene sulfide resin
  • PP polypropylene resin
  • ABS acrylonitrile butadiene styrene resin
  • PBT polybutylene terephthalate resin
  • PE polyethylene resin
  • PVC polyvinyl chloride resin
  • PC polycarbonate resin
  • PET polyethylene terephthalate resin
  • other thermoplastic resins can be used
  • the resin flow analysis apparatus 100 can be configured on a general-purpose computer, and the hardware configuration thereof includes a calculation unit 110 including a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read From a storage unit 120 composed of only memory (HDD), hard disk drive (HDD), etc., an input unit 130 composed of input devices such as a keyboard and a mouse, a display device such as an LCD (Liquid Crystal Display), and various output devices
  • the output unit 140 includes a communication unit 150 including a NIC (Network Interface Card).
  • the communication unit 150 is connected to an external CAD device 170 and an external computer 180 via a network 160.
  • the calculation unit 110 implements the following functional units by loading and executing the resin flow analysis program 121 stored in the storage unit 120.
  • the resin flow analysis processing unit 111 is a main processing unit that executes a resin flow analysis by executing each processing unit according to an analysis target model and various parameters.
  • the model shape / element creation unit 112 generates an analysis target model that specifies the resin material 3 to be analyzed including the cylinder shape shown in FIG. 2, the shape of the core wire 4, and the region of the external space 7 via the input unit 130. It is created according to the input and stored in the analysis target model shape data storage area 122 of the storage unit 120. If the analysis target model is created in the external CAD device 170 or the external computer 180, the analysis target model is received from the CAD device 170 or the external computer 180 via the network 160, and the analysis target model shape is obtained. Store in the data storage area 122. Furthermore, finite element shape data is created from the analysis target model shape data and stored in the three-dimensional element data storage area 123.
  • the parameter / equation definition unit 113 presents an input guide screen to the output unit 140 in advance or at the time of analysis for the user, and material properties (initial viscosity of resin material, thermal conductivity, specific heat, core wire density, heat conduction)
  • material properties initial viscosity of resin material, thermal conductivity, specific heat, core wire density, heat conduction
  • User inputs such as physical property values such as rate, specific heat, etc.), elastic coefficient formula, viscosity coefficient formula, exothermic formula, etc. are received from the input unit 130 and stored in the material physical property / equation storage area 124.
  • user input of boundary conditions to be analyzed such as resin material in the cylinder and initial temperature of the core wire is received from the input unit 130 and stored in the boundary condition data storage area 125.
  • analysis parameters such as evaluation section coordinates and allowable elastic modulus difference in the evaluation section is received from the input unit 130 and stored in the analysis parameter data storage area 126.
  • a user input such as continuous / Navi-Estokes / energy storage type is received from the input unit 130 and stored in the continuous / Navi-Estokes / energy storage type storage area 127 in advance.
  • the temperature change / velocity / pressure calculation unit 114 of the resin material performs heat transfer from the boundary of the external space 7 such as air and the core wire 4 to the resin material 3 with respect to the shape data of the finite element of the analysis target model, the resin material 3 Calculate the amount of change including temperature, speed, and pressure associated with heat generation.
  • the viscosity coefficient / elastic coefficient / reaction rate calculation unit 115 of the resin material reads out the elastic coefficient equation, the viscosity coefficient equation, and the heat generation equation, and the resin material 3 calculated by the temperature change / velocity / pressure calculation unit 114 of the resin material.
  • the viscosity coefficient, elastic coefficient, and reaction rate are calculated by substituting the temperature, velocity, and pressure of each into the respective equations.
  • the analysis result output processing unit 116 displays or outputs the distribution of the elastic modulus E1 of each finite element in an arbitrary cross section of the analysis target model specified by the user to the output unit 140.
  • the analysis result is also transmitted to the external computer 180.
  • the analysis target model shape data 122 specified by the operator via the input device 130 that is, the cylinder 1 shape, the resin material 3, the core wire 4 shape, and the external space 7 (extruded from the cylinder).
  • the shape data of the analysis target area of the space where the resin material covering the periphery of the core wire is in contact with air is read from the storage unit 120.
  • step S1002 for creating a three-dimensional solid element the shape of the data read in model shape creating step S1001 is decomposed into a plurality of specific spaces (finite elements of a three-dimensional solid), and shape data (three-dimensional elements) Data).
  • the material physical property input step S1003 the initial viscosity, thermal conductivity, specific heat, elastic modulus equations (Equation 1) and (Equation 2) of the resin material 3, and the viscosity equation equations (Equation 12) to (Equation 15).
  • a display prompting the operator to input physical property values including the exothermic formulas (Equation 6) to (Equation 9) is received, and these data are received from the input unit 130 and stored in the storage unit 120.
  • the physical property value including the density, thermal conductivity, and specific heat of the core wire 4 is also input.
  • boundary condition input step S1004 the initial temperature of the resin material 3 in the cylinder, the initial temperature of the core wire 4 in the cylinder, the initial temperature of the external space 7, the moving speed of the core wire 4, the extrusion speed of the resin material 3, and the external A display prompting the operator to input the boundary condition of the analysis target including the heat transfer coefficient between the air in the space 7 and the resin material 3 is performed, and data is received from the input unit 130.
  • step S1005 the coordinates of the evaluation cross section (the operator designates the cross section position, for example, the AA ′ cross section in FIGS. 2 (a) and 2 (b)) and the elastic coefficient difference in the evaluation cross section (the outer peripheral portion of the resin material). Accept the input of the tolerance value of the difference between the elastic modulus of the inner circumference and the inner circumference. Further, an analysis start instruction, an initial time increment, an analysis result output time, and an analysis end time tend are received from the operator. Here, the analysis is performed by increasing a minute time and calculating a change for each time step, and the time increment indicates a time step interval.
  • step S1006 based on the analysis start instruction from the operator, the continuous equation (Equation 3), the Naviestokes equation (Equation 4), and the energy conservation equation (Equation 5) stored in the storage unit 120 are called,
  • the physical property values and core wires of the resin material 3 including the initial time increment, the elastic modulus equations (Equation 1), (Equation 2), and the viscosity coefficient equations (Equation 12) to (Equation 15) that have been accepted so far.
  • the contents including the heat, heat transfer from the boundary of the air and the core wire 4 to the resin material 3, and the temperature, speed, and pressure accompanying the heat generation of the resin material 3 are calculated.
  • This calculation result is stored in the analysis result storage area 128 of the storage unit 120 in association with the position of the finite element.
  • the heat transfer to the core wire 4 can also be calculated.
  • the heat transfer coefficient h between the air in the external space 7 and the resin material 3 input in the boundary condition input step S1004 is, for example, ⁇ (thermal conductivity of air) / h (heat Assuming that there is a hypothetical substance (air) having a thickness of transmission rate), the temperature outside ⁇ / h is linked with the energy conservation equation (Equation 5) as the initial temperature of the external space 7 input in step S1004.
  • Equation 5 energy conservation equation
  • the surface temperature of the resin material 3 is calculated by interlocking the heat flow rate obtained from the product of the difference between the surface temperature of the resin material 3 and the initial temperature of the external space 7 and the heat transfer coefficient with the energy conservation equation (Equation 5). You can also.
  • u flow velocity
  • P pressure
  • density
  • g acceleration of gravity
  • viscosity
  • C specific heat
  • thermal conductivity
  • T temperature
  • Q calorific value
  • shear rate
  • step S1007 the elastic modulus equations (Equation 1) and (Equation 2), the viscosity modulus equations (Equation 12) to (Equation 15), and the heat generation equations (Equation 6) to (Equation 9) are called.
  • the temperature, speed, and pressure of the resin material 3 calculated in 1006 are represented by the elastic modulus equations (Equation 1) to (Equation 2), the viscosity coefficient equations (Equation 12) to (Equation 15), and the exothermic equation (Equation 6) to By substituting into (Equation 9), the viscosity coefficient, elastic coefficient, and reaction rate are obtained.
  • the initial time is t0
  • the time increment ⁇ t1 t1-t0
  • the contents including the pressure, temperature, and speed of the resin material are calculated in step S1006, and calculated in step S1006.
  • the temperature, pressure, and speed of the resin material 3 are determined in accordance with the elastic modulus equations (Equation 1) and (Equation 2), the viscosity coefficient equations (Equation 12) to (Equation 15), and the heat generation equation (Equation 6)
  • the viscosity coefficient ⁇ 1, the elastic coefficient E1, and the reaction rate ⁇ 1 in the first step are obtained.
  • the elastic modulus E1 of each finite element in an arbitrary cross section is calculated and its distribution is obtained.
  • the viscosity coefficient ⁇ 1 obtained in step S1007 is used as a coefficient in step S1006 in the calculation of the second step at the next time increment.
  • step S1008 the convergence of the calculation is determined. Convergence is determined by, for example, determining that the ratio of the speed and the element length (the length of the divided element, usually the representative length of the tetrahedron or hexahedron) is within a predetermined range as convergence. (Determining that there is a sufficient number of meshes necessary for the analysis in the amount of velocity movement in time increment). If it does not converge, the calculation in step S1006 is repeated, and if it does not converge even with a predetermined number of repetitions, it returns to one of steps S1001 to S1004. When returning to any one of steps S1001 to S1004, the operator is prompted for a designation input, and which step to return to is determined according to the operator's decision input.
  • step S1009 in the cross section input in step S1004, the elastic modulus difference of the resin calculated in step S1007 is smaller than the allowable elastic modulus difference input in advance in step 1005. Judgment is made. If the calculated value is larger than the allowable value, the process returns to one of steps S1001 to S1004. When returning to any one of steps S1001 to S1004, the operator is prompted for a designation input, and which step to return to is determined according to the operator's decision input. If the calculated value is smaller than the allowable value, it is determined in step S1010 whether the analysis time is longer than the set analysis end time tend. If the determination is YES, the analysis is terminated and the determination is NO. In that case, the process returns to the calculation in step S1006, and the next time step is calculated.
  • step S1010 the analysis is performed at the time when the analysis end time “tend” is reached. Terminate.
  • step S1011 the contents including the elastic modulus can be output after the analysis is completed or at an arbitrary time when the output is set.
  • the analysis process takes into account the use of foamed resin.
  • the analysis target model shape data 122 specified by the operator via the input unit 130 that is, the shape data of the cylinder 1 shape, the resin material 3, the core wire 4 shape, and the external space 7 is stored.
  • the data is read from the analysis target model shape data storage area 122 of the unit 120.
  • step S2002 for creating a three-dimensional solid element the shape of the model shape data read in model shape creating step S2001 is decomposed into a plurality of specific spaces (three-dimensional solid finite elements), and finite element shape data (3 Dimensional element data) is created and stored in the three-dimensional element data storage area 123.
  • the density formula (Equation 10) indicates the macroscopic density of the foamed resin. When bubbles are formed in the resin along with foaming, the density of the resin is decreased.
  • boundary condition input step S2004 the initial temperature of the resin material 3 in the cylinder, the initial temperature of the core wire 4 in the cylinder, the initial temperature of the external space 7, the moving speed of the core wire 4, the extrusion speed of the resin material 3, and the external A display for prompting the operator of the boundary condition to be analyzed including the heat transfer coefficient between the air in the space 7 and the resin material 3 is performed, and data is received from the input unit 130 and stored in the boundary condition data storage area 125.
  • step S2005 the difference between the evaluation section (the operator specifies the section position. For example, the AA ′ section in FIGS. 2A and 2B) and the modulus of elasticity in the evaluation section (the outer peripheral portion of the resin material). Accept the input of the tolerance value of the difference between the elastic modulus of the inner circumference and the inner circumference. Further, an analysis start instruction from the operator, an initial time increment, a time for outputting the analysis result, and an analysis end time tend are received and stored in the analysis parameter data storage area 126.
  • the analysis is performed by increasing a minute time and calculating a change for each time step, and the time increment indicates a time step interval.
  • step S2006 based on the analysis start instruction from the operator, the continuous equation (Equation 3), the Naviestokes equation (Equation 4), and the energy conservation equation stored in the material property / equation storage area 124 of the storage unit 120.
  • the heat transfer coefficient h between the air in the external space 7 and the resin material 3 input in the boundary condition input step S2004 is, for example, ⁇ (thermal conductivity of air) / h (heat Assuming that there is a hypothetical substance (air) having a thickness of the transmission rate, the temperature outside ⁇ / h is linked with the energy conservation equation (Equation 5) as the initial temperature of the external space 7 input in step 2004
  • the surface temperature of the resin material 3 can be calculated.
  • the surface temperature of the resin material 3 is calculated by interlocking the heat flow rate obtained from the product of the difference between the surface temperature of the resin material 3 and the initial temperature of the external space 7 and the heat transfer coefficient with the energy conservation equation (Equation 5). You can also.
  • u flow velocity
  • P pressure
  • density
  • g acceleration of gravity
  • viscosity
  • C specific heat
  • thermal conductivity
  • T temperature
  • Q calorific value
  • shear rate
  • step S2007 the elastic modulus equations (Equation 1) and (Equation 2), the viscosity modulus equations (Equation 12) to (Equation 15), the exothermic equations (Equation 6) to (Equation 9), the density equation ( (Equation 10), the thermal conductivity equation (Equation 11) is called, and the velocity, temperature, and pressure of the resin material 3 calculated in step S2006 are expressed by the elastic modulus equations (Equation 1), (Equation 2), and the viscosity coefficient equation ( By substituting into Equations (12) to (15), exothermic equations (Equation 6) to (Equation 9), density equation (Equation 10), and thermal conductivity equation (Equation 11), viscosity coefficient, elastic modulus, density, Obtain thermal conductivity and reaction rate.
  • the initial time is t0
  • the time increment ⁇ t1 t1-t0
  • the contents including the pressure, temperature, and speed of the resin material are calculated in step S2006, and calculated in step S2006.
  • the temperature, pressure, and speed of the resin material 3 are determined by the elastic modulus equations (Equation 1) and (Equation 2), the viscosity coefficient equations (Equation 12) to (Equation 15), and the exothermic equation (Equation 6)
  • the viscosity coefficient ⁇ 1, elastic coefficient E1, density ⁇ 1, thermal conductivity ⁇ 1, and reaction rate ⁇ 1 in the first step are obtained.
  • step S2008 calculation convergence is determined. Convergence is determined by, for example, determining that the ratio of the speed and the element length (the length of the divided element, usually the representative length of the tetrahedron or hexahedron) is within a predetermined range as convergence. (Determining that there is a sufficient number of meshes necessary for the analysis in the amount of velocity movement in time increment). If it does not converge, the calculation in step S2006 is repeated, and if it does not converge even at a predetermined number of repetitions, the process returns to any of steps S2001 to S2004. When returning to any one of steps S2001 to S2004, the operator is prompted for a designation input, and which step to return to is determined according to the operator's decision input.
  • step S2009 the difference in the elastic modulus of the resin calculated in step S2007 (the difference in elastic modulus between the outer peripheral portion and the inner peripheral portion of the resin material) in step S2004 is obtained in step S2004. It is determined whether it is smaller than the allowable value of the elastic coefficient difference inputted in advance. If the calculated value is larger than the allowable value, the process returns to one of steps S2001 to S2004. When returning to any one of steps S2001 to S2004, the operator is prompted for a designation input, and which step to return to is determined according to the operator's decision input. If the calculated value is smaller than the allowable value, it is determined in step S2010 whether the analysis time is longer than the set analysis end time tend. If the determination is YES, the analysis is terminated and the determination is NO. In the case, the calculation returns to step S2006 and the next time step is calculated.
  • step S2010 the analysis is performed at the time when the analysis time reaches the set analysis end time tend. Terminate.
  • step S2011 the content including the elastic modulus can be output after the analysis is completed or at an arbitrary time when the output is set.
  • the equation of the elastic coefficient is not limited to (Equation 1) and (Equation 2), and any equation including the temperature of the resin material 3 can be used.
  • the exothermic equation is not limited to (Equation 6) to (Equation 9), and any function including the reaction rate of the resin material 3 can be used.
  • the viscosity equation is not limited to (Equation 12) to (Equation 15), and an arbitrary function including the temperature or reaction rate of the resin material 3 can be used, and calculation with a constant value can also be performed. To do.
  • the density equation is not limited to (Equation 10), and an arbitrary function including the temperature or reaction rate of the resin material 3 or the resin pressure can be used, and calculation with a constant value can also be performed.
  • the thermal conductivity formula is not limited to (Equation 11), and an arbitrary function including the temperature or density of the resin material 3 can be used, and calculation with a constant value can also be performed.
  • the specific heat can also be used as a function including the temperature of the resin material 3.
  • the gas in the external space 7 is not limited to air but can be any gas including nitrogen, oxygen, and carbon dioxide, and the convergence determination can be performed using any determination method. Further, not only three-dimensional analysis but also two-dimensional analysis can be performed. The above calculation can be performed using the finite element method, the finite volume method, or the finite difference method.
  • the resin material 3 and the core wire 4 extruded from the cylinder 1 shown in FIG. 2 were analyzed.
  • the resin material 3 is extruded in the arrow direction, and the core wire 4 is also moved in the arrow direction.
  • the diameter of the resin material 3 is ⁇ 20 mm
  • the diameter of the core wire 4 is ⁇ 10 mm
  • the time immediately after being extruded from the cylinder 1 is 0 s
  • the resin of the AA ′ cross section (cross section orthogonal to the core wire 4) shown in the figure The time change of the temperature of the material 3 and the core wire 4 was calculated.
  • the heat transfer calculation of the resin material 3 and the core wire 4 accompanied by the density change due to the resin heat generation in consideration of the heat transfer to the air in the external space 7 with the coating thickness, the thermal conductivity, and the specific heat of the resin material 3 being constant. Went.
  • the temperature of the air in the external space 7 is 298.15K
  • the core wire moving speed is 1mm / s
  • the heat transfer coefficient between the air in the external space 7 and the resin material 3 is 20W / m 2 ⁇ K
  • the total calorific value Q0 is 51000J / kg.
  • Table 1 shows the physical properties of air and the initial temperature of the resin material 3, the core wire 4, and the external space 7. In addition, since the density of the resin material 3 calculates the change accompanying foaming, the value of Table 1 represents the initial value.
  • E1, E2, E3, and E4 are constants specific to the resin material 3.
  • the equation of viscosity coefficient is (Equation 12) to (Equation 15)
  • the exothermic equation is (Equation 6) to (Equation 9)
  • the density equation is (Equation 10).
  • the elastic modulus equation (Equation 16) is shown in Table 2, the viscosity coefficient equation is (Equation 12) to (Equation 15) in Table 3, and the exothermic equations (Equation 6) to (Equation 9) are given.
  • Table 4 shows the coefficients of the density equation (Equation 10).
  • the allowable value of the elastic coefficient difference (the difference in elastic coefficient between the outer peripheral portion 5 and the inner peripheral portion 6 of the resin material 3) in the evaluation cross section (FIG. 2B) is 5 GPa, and the calculation time is 60 s.
  • the resin temperature decreases with time and approaches a constant value.
  • the elastic coefficient can be calculated to be smaller than 5 GPa set as the allowable value of the elastic coefficient difference in the evaluation section.
  • the difference in elastic modulus in the evaluation cross section is made smaller than an allowable value (for example, the resin coating does not easily peel off the core wire).
  • Product shape core wire thickness 4 and resin material 3 coating thickness
  • resin material 3 and material properties of core wire 4 and molding process conditions heat transfer rate, initial temperature, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Algebra (AREA)
  • Computing Systems (AREA)
  • Fluid Mechanics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

In a resin flow behavior calculation method for predicting the elastic coefficient distribution of a resin material formed by coming into contact with a gaseous body: a shape model of a space filled with the resin material is inputted and is broken down into three-dimensional solid elements on the basis of the space model data; the physical property values of the resin material such as the density, thermal conductivity and specific heat thereof, and boundary conditions at least containing the initial temperature of the resin material, and the heat-transfer coefficient of the resin and the gaseous body are inputted; the elastic coefficient of the resin is inputted as an equation including the changes in the resin temperature; and an equation of continuity, Navier-Stokes equations, and an energy conservation equation are computed on the basis of the three-dimensional solid elements. As a consequence, the distribution of the inputted elastic coefficient of the resin is calculated when calculating the resin temperature, speed and pressure for each time step.

Description

樹脂流動挙動の計算方法、及び樹脂流動挙動の計算プログラムCalculation method of resin flow behavior and calculation program of resin flow behavior
 本発明は、例えばシリンダから芯線と溶融状態の樹脂を押出して、芯線に樹脂の被覆を施す線材の製造工程において、被覆樹脂の芯線への密着力を高めるための成形プロセス条件を決定するための樹脂流動挙動の計算方法、および樹脂流動挙動の計算プログラムに関する。 The present invention, for example, for determining the molding process conditions for increasing the adhesion of the coating resin to the core wire in the manufacturing process of the wire material in which the core wire and the molten resin are extruded from the cylinder and the core wire is coated with the resin. The present invention relates to a resin flow behavior calculation method and a resin flow behavior calculation program.
 樹脂被覆線材の製造プロセスでは、芯線を被覆する樹脂材料がシリンダから押出されて、空気中で冷却されて、芯線の周囲を隙間無く被覆するように硬化して、被覆線材として形成される。この成形プロセス条件を最適に設計するために、樹脂材料を気体と接した状態で成形する際に、樹脂と気体との熱伝達を考慮する樹脂材料の流動挙動の計算方法が必要となる。 In the manufacturing process of the resin-coated wire, the resin material that covers the core wire is extruded from the cylinder, cooled in the air, and cured so as to cover the periphery of the core wire without gaps, and formed as a coated wire. In order to optimally design the molding process conditions, a method for calculating the flow behavior of the resin material is necessary in consideration of heat transfer between the resin and the gas when the resin material is molded in contact with the gas.
 樹脂材料の流動挙動の計算方法に関する特許文献としては、例えば、特許文献1「特開2006-205740号公報」、特許文献2「特開2010-108150号公報」が挙げられる。特許文献1には、相変化に伴う樹脂の収縮歪を、線硬化収縮係数と反応率の関数として計算し、樹脂温度変化に伴う樹脂の収縮歪を樹脂温度と線膨張係数の関数として計算する技術を開示している。
  特許文献2には、樹脂材料のフィラー充填率による線膨張係数を計算し、樹脂収縮歪を計算する技術を開示している。
  また、樹脂材料中に気泡を生じる発泡挙動の計算方法に関する特許文献として、特許文献3「特開2003-91561号公報」が挙げられる。特許文献3では、樹脂の発熱反応によって発泡が生じ、樹脂全体の密度が減少しながら流動する挙動を計算する技術を開示している。
Patent documents relating to the calculation method of the flow behavior of the resin material include, for example, Patent Document 1 “Japanese Patent Laid-Open No. 2006-205740” and Patent Document 2 “Japanese Patent Laid-Open No. 2010-108150”. In Patent Document 1, the shrinkage strain of the resin accompanying the phase change is calculated as a function of the linear hardening shrinkage coefficient and the reaction rate, and the shrinkage strain of the resin accompanying the resin temperature change is calculated as a function of the resin temperature and the linear expansion coefficient. The technology is disclosed.
Patent Document 2 discloses a technique for calculating a linear expansion coefficient according to a filler filling rate of a resin material and calculating a resin shrinkage strain.
Patent Document 3 “Japanese Patent Laid-Open No. 2003-91561” is cited as a patent document relating to a method for calculating foaming behavior in which bubbles are generated in a resin material. Patent Document 3 discloses a technique for calculating a behavior in which foaming occurs due to an exothermic reaction of a resin and the density of the entire resin decreases while flowing.
 しかし、特許文献1、2、3共に、樹脂流動プロセス中において、樹脂と気体との熱伝達計算による粘性係数と弾性係数の算出を行っていない。
  このため、特許文献1、2、3に開示される計算方法では、樹脂が気体のみならず固体表面と接触して成形される際に、気体との熱伝達を考慮していないので、樹脂の肉厚方向の温度差による粘性係数と弾性係数の上昇を算出は出来ないので、樹脂と固体の密着力を予測することができない。
However, Patent Documents 1, 2, and 3 do not calculate the viscosity coefficient and the elastic coefficient by the heat transfer calculation between the resin and the gas during the resin flow process.
For this reason, the calculation methods disclosed in Patent Documents 1, 2, and 3 do not consider heat transfer with the gas when the resin is molded in contact with the solid surface as well as the gas. Since the increase in the viscosity coefficient and the elastic coefficient due to the temperature difference in the thickness direction cannot be calculated, the adhesion force between the resin and the solid cannot be predicted.
特開2006-205740号公報JP 2006-205740 A 特開2010-108150号公報JP 2010-108150 A 特開2003-91561号公報JP 2003-91561 A
 樹脂材料を気体と接した状態で成形する際には、気体との熱伝達によって、気体と接触する部分から樹脂温度が低下する。このとき、樹脂が気体のみならず固体と接触して成形される際には、樹脂の気体および固体と接触する部分からの伝熱によって、樹脂温度および弾性係数に分布が生じる。 When the resin material is molded in contact with the gas, the resin temperature decreases from the portion in contact with the gas due to heat transfer with the gas. At this time, when the resin is molded in contact with a solid as well as a gas, the resin temperature and the elastic modulus are distributed due to heat transfer from a portion of the resin in contact with the gas and the solid.
 即ち、気体と接する樹脂部分は、先に温度が低下し、弾性係数が高くなる。このため、後から収縮・固化する固体と接触する樹脂部分は、先に弾性係数が高くなる樹脂部分での拘束によって、固体側への樹脂収縮が抑制されるので、固体と樹脂との密着力が低下する問題が生じる。 That is, the temperature of the resin portion in contact with the gas first decreases and the elastic modulus increases. For this reason, the resin part that comes into contact with the solid that shrinks and solidifies later is restrained from shrinking the resin toward the solid side due to the restraint at the resin part where the elastic modulus increases first, so the adhesion between the solid and the resin This causes a problem of lowering.
 従って、樹脂流動中の気体との熱伝達を考慮した樹脂の温度変化に伴う弾性係数を予測できる解析技術の開発が課題であり、本解析技術を用いて、樹脂の弾性係数差を低減できる製品形状、金型構造、成形プロセス条件を選定することが必要となる。 Therefore, the development of analysis technology that can predict the elastic coefficient accompanying the temperature change of the resin considering the heat transfer with the gas in the resin flow is an issue, and this analysis technology can be used to reduce the difference in the elastic coefficient of the resin. It is necessary to select the shape, mold structure and molding process conditions.
 上記課題を解決するため本発明では、気体と接して成形される樹脂材料の弾性係数分布を樹脂流動解析装置が算出する樹脂流動挙動の計算方法において、(a)樹脂材料が充填される空間の形状モデルを入力して、当該データに基づいて3次元ソリッド要素に分解し、(b)少なくとも樹脂材料の密度、熱伝導率、比熱を含む物性値、樹脂材料の初期温度、樹脂と気体の熱伝達率を含む境界条件を入力し、(c)樹脂の弾性係数を樹脂温度の変化を含む式として入力し、(d)連続の式、ナビエストークスの式、エネルギ保存式を、前記3次元ソリッド要素に基づいて演算処理することにより、時間ステップごとに樹脂温度、速度、圧力を計算する際に、ステップ(c)で入力した樹脂の弾性係数の分布を計算し、(e)上記の計算を設定時間に到達するまで繰返し、各要素の樹脂の弾性係数を含む内容を出力するようにした。 In order to solve the above problems, in the present invention, in the resin flow behavior calculation method in which the resin flow analysis device calculates the elastic coefficient distribution of the resin material molded in contact with the gas, (a) the space filled with the resin material Input a shape model and decompose it into three-dimensional solid elements based on the data. (B) Physical properties including at least density of resin material, thermal conductivity, specific heat, initial temperature of resin material, heat of resin and gas Enter boundary conditions including transmissibility, (c) input the elastic modulus of the resin as an equation including changes in the resin temperature, and (d) the continuity equation, Naviestokes equation, energy conservation equation, By calculating based on the elements, when calculating the resin temperature, speed, and pressure for each time step, the distribution of the elastic modulus of the resin input in step (c) is calculated, and (e) the above calculation is performed. Reach set time The contents including the elastic modulus of the resin of each element were output repeatedly until
 また、上記課題を解決するため本発明では、気体と接して成形される樹脂材料の弾性係数分布を樹脂流動解析装置が算出する樹脂流動挙動の計算方法において、(a)樹脂材料が充填される空間の形状モデルを入力して、当該データに基づいて3次元ソリッド要素に分解し、(b)少なくとも樹脂材料の密度、熱伝導率、比熱を含む物性値、樹脂材料の初期温度、樹脂と気体の熱伝達率を含む境界条件を入力し、(c) 樹脂材料の弾性係数差の許容値を入力し、(d)樹脂の弾性係数を樹脂温度の変化を含む式として入力し、(e)連続の式、ナビエストークスの式、エネルギ保存式を、前記3次元ソリッド要素に基づいて演算処理することにより、時間ステップごとに樹脂温度、速度、圧力を計算する際に、ステップ(d)で入力した樹脂の弾性係数の分布を計算し、(f)ステップ(e)で計算した樹脂の弾性係数差が、ステップ(c)で入力した許容値よりも小さい場合に、上記の計算を設定時間に到達するまで繰返し、各要素の樹脂の弾性係数を含む内容を出力するようにした。 In order to solve the above problems, in the present invention, in the resin flow behavior calculation method in which the resin flow analysis device calculates the elastic coefficient distribution of the resin material molded in contact with the gas, (a) the resin material is filled. A space shape model is input and decomposed into three-dimensional solid elements based on the data. (B) Physical properties including at least density of resin material, thermal conductivity, specific heat, initial temperature of resin material, resin and gas Enter boundary conditions including the heat transfer coefficient of (c) Enter the allowable value of the elastic coefficient difference of the resin material, (d) Enter the elastic coefficient of the resin as an equation including the change in resin temperature, (e) When calculating the resin temperature, speed, and pressure for each time step by calculating the continuous equation, Navi-Stokes equation, and energy conservation equation based on the 3D solid element, input in step (d) Modulus of resin (F) When the difference in elastic modulus of the resin calculated in step (e) is smaller than the allowable value input in step (c), the above calculation is repeated until the set time is reached. The contents including the elastic modulus of the resin of the element were output.
 また、上記課題を解決するため本発明では、気体と接して成形される樹脂材料の弾性係数分布を樹脂流動解析装置が算出する樹脂流動挙動の計算方法において、(a)樹脂材料が充填される空間の形状モデルを入力して、当該データに基づいて3次元ソリッド要素に分解し、(b)少なくとも樹脂材料の初期密度、初期熱伝導率、比熱を含む物性値、樹脂材料の初期温度、樹脂と気体の熱伝達率を含む境界条件を入力し、(c) 樹脂の密度を樹脂温度または樹脂の反応率を含む関数として入力し、(d)樹脂の弾性係数を樹脂温度の変化を含む式として入力し、(e)連続の式、ナビエストークスの式、エネルギ保存式を、前記3次元ソリッド要素に基づいて演算処理することにより、時間ステップごとに樹脂温度、速度、圧力を計算する際に、ステップ(c)で入力した樹脂の密度、ステップ(d)で入力した樹脂の弾性係数の分布を計算し、(f)上記の計算を設定時間に到達するまで繰返し、各要素の樹脂の弾性係数、密度を含む内容を出力するようにした。 In order to solve the above problems, in the present invention, in the resin flow behavior calculation method in which the resin flow analysis device calculates the elastic coefficient distribution of the resin material molded in contact with the gas, (a) the resin material is filled. A space shape model is input and decomposed into three-dimensional solid elements based on the data. (B) At least the initial density of resin material, initial thermal conductivity, physical property values including specific heat, initial temperature of resin material, resin And the boundary condition including the heat transfer coefficient of gas, (c) 反 応 Input the resin density as a function including the resin temperature or the reaction rate of the resin, and (d) the elastic modulus of the resin is an equation including the change of the resin temperature (E) When calculating the resin temperature, speed, and pressure for each time step by calculating the continuous equation, Navi-Stokes equation, and energy conservation equation based on the three-dimensional solid element, , Su Calculate the density of the resin entered in step (c) and the elastic modulus distribution of the resin entered in step (d), and (f) repeat the above calculation until the set time is reached. The contents including the coefficient and density are output.
 本発明によれば、樹脂流動中の気体との熱伝達を考慮した樹脂の弾性係数分布の予測によって、樹脂冷却プロセスでの任意断面における樹脂の弾性係数の差を低減できる製品形状、樹脂材料3の材料物性、シリンダ構造、成形プロセス条件を適正化できる。即ち、本発明によって、コスト低減、開発期間短縮を実現できる。 According to the present invention, the product shape and the resin material 3 can reduce the difference in the elastic modulus of the resin in an arbitrary cross section in the resin cooling process by predicting the elastic modulus distribution of the resin in consideration of heat transfer with the gas in the resin flow. Material properties, cylinder structure, and molding process conditions can be optimized. That is, according to the present invention, cost reduction and development time reduction can be realized.
本発明の樹脂流動解析装置の概略構成図である。It is a schematic block diagram of the resin flow analysis apparatus of this invention. 解析対象例として実施例で挙げられた樹脂被覆線材の製造プロセスで使用される解析対象モデルの断面図である。It is sectional drawing of the analysis object model used in the manufacturing process of the resin-coated wire mentioned in the Example as an analysis object example. 本発明の第一の実施形態における樹脂流動解析処理部の処理を表わすフローチャートである。It is a flowchart showing the process of the resin flow analysis process part in 1st embodiment of this invention. 本発明の第二の実施形態における樹脂流動解析処理部の処理を表わすフローチャートである。It is a flowchart showing the process of the resin flow analysis process part in 2nd embodiment of this invention. 図2の解析対象モデルの樹脂材料の内周から外周に亘っての温度変化の計算結果を示す図である。It is a figure which shows the calculation result of the temperature change over the outer periphery of the resin material of the analysis object model of FIG. 図2の解析対象モデルの樹脂材料の内周から外周に亘っての弾性係数変化の計算結果を示す図である。It is a figure which shows the calculation result of the elastic coefficient change over the outer periphery of the resin material of the analysis object model of FIG.
 以下、添付の図面を参照しながら、本発明に係る実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 まず、解析対象となる樹脂被覆線材の成形工程を、図2を用いて説明する。シリンダ1内の中心部に芯線4が、芯線4の周囲に加熱された樹脂材料3が配置・供給されている。シリンダ出口2から芯線4を矢印方向に移動・排出させると同時に、樹脂材料3を押出して芯線4と一体化して流動させる。 First, the molding process of the resin-coated wire material to be analyzed will be described with reference to FIG. A core wire 4 is disposed at the center of the cylinder 1, and a heated resin material 3 is disposed around the core wire 4. At the same time as the core wire 4 is moved and discharged from the cylinder outlet 2 in the direction of the arrow, the resin material 3 is extruded and integrated with the core wire 4 to flow.
 樹脂材料3は外部空間7の空気(または、窒素、酸素、2酸化炭素を含む任意の気体)からの熱伝達によって表面温度が低下し、樹脂材料3の外周部5と内周部6との樹脂温度差が生じる。ここで、先に樹脂温度が低下する外周部5の弾性係数が高くなった状態で、内周部6の樹脂材料3の温度が下がって収縮する。このとき、外周部5における樹脂の弾性係数が高くなっているので、内周部6における樹脂材料3は外周部5の樹脂材料3に拘束された状態(先に硬化した外周部に引っ張られた状態)で収縮する。このため、樹脂材料3と芯線4との密着力が低下する問題がある。
  以上の樹脂被覆線材の成形工程では、シリンダ1から押し出された芯線4と樹脂材料3は、空気中で樹脂材料が硬化して樹脂被覆線材が形成されて、例えば図示してはいない線材巻き取り工程により、ロールに巻き取られることになる。
The surface temperature of the resin material 3 decreases due to heat transfer from the air in the external space 7 (or any gas including nitrogen, oxygen, and carbon dioxide), and the resin material 3 has an outer peripheral portion 5 and an inner peripheral portion 6. Resin temperature difference occurs. Here, in the state where the elastic coefficient of the outer peripheral portion 5 where the resin temperature first decreases is increased, the temperature of the resin material 3 in the inner peripheral portion 6 decreases and contracts. At this time, since the elastic modulus of the resin in the outer peripheral portion 5 is high, the resin material 3 in the inner peripheral portion 6 is constrained by the resin material 3 in the outer peripheral portion 5 (pulled by the previously cured outer peripheral portion. (Condition). For this reason, there exists a problem that the adhesive force of the resin material 3 and the core wire 4 falls.
In the resin-coated wire forming step, the core wire 4 and the resin material 3 extruded from the cylinder 1 are cured in the air to form a resin-coated wire. For example, a wire winding (not shown) is taken up. Depending on the process, it will be wound on a roll.
 本発明は、樹脂材料を気体と接した状態で成形する際に、樹脂と気体との熱伝達を考慮することにより、樹脂の温度分布を計算し、求めた任意断面における樹脂の温度分布から樹脂の弾性係数の値を算出し、樹脂の流動挙動を詳細に予測する計算方法を提案する。
  樹脂材料を気体と接した状態で成形する際には、気体との熱伝達によって、気体と接触する部分から樹脂温度が低下する。このとき、樹脂が気体のみならず固体表面と接触して成形される際には、樹脂の気体および固体と接触する部分からの伝熱によって、樹脂温度に分布が生じる。この樹脂温度分布によって、弾性係数の差が生じるので、樹脂と固体の密着力にも差が生じる。このため、樹脂の温度低下によって、弾性係数の上昇を反映した樹脂流動挙動の予測が必要となる。
The present invention calculates the temperature distribution of the resin by considering the heat transfer between the resin and the gas when the resin material is molded in contact with the gas, and calculates the resin from the obtained temperature distribution of the resin in an arbitrary cross section. We propose a calculation method that predicts the flow behavior of resin in detail.
When the resin material is molded in contact with the gas, the resin temperature decreases from the portion in contact with the gas due to heat transfer with the gas. At this time, when the resin is molded in contact with the solid surface as well as the gas, the resin temperature is distributed due to heat transfer from the resin gas and the portion in contact with the solid. Due to this resin temperature distribution, a difference in elastic modulus occurs, so that a difference also occurs in the adhesion between the resin and the solid. For this reason, it is necessary to predict the resin flow behavior reflecting the increase in the elastic modulus due to the temperature decrease of the resin.
 樹脂流動解析によって、芯線4と樹脂材料3の被覆肉厚の適正化、シリンダ内の樹脂温度、樹脂圧力などの成形プロセス条件、芯線4と樹脂材料3の物性値を適正化することが、開発コスト低減、開発期間短縮を実現する上で必要となる。 Development of optimization of coating thickness of core wire 4 and resin material 3, optimization of molding process conditions such as resin temperature in cylinder, resin pressure, and physical properties of core wire 4 and resin material 3 through resin flow analysis Necessary for reducing costs and shortening the development period.
 ここで、樹脂材料3はエポキシ、フェノールなどの熱硬化性樹脂、PPS(ポリフェニレンサルファイド樹脂)、PP(ポリプロピレン樹脂)、ABS(アクリロニトリルブタジエンスチレン樹脂)、PBT(ポリブチレンテレフタレート樹脂)、PE(ポリエチレン樹脂)、PVC(ポリ塩化ビニル樹脂)、PC(ポリカーボネイト樹脂)、PET(ポリエチレンテレフタレート樹脂)などを主成分とする熱可塑性樹脂を用いることができるものとし、ガラス、カーボン、タルク、マイカなどのフィラーを樹脂中に充填することもできる。 Here, the resin material 3 is a thermosetting resin such as epoxy or phenol, PPS (polyphenylene sulfide resin), PP (polypropylene resin), ABS (acrylonitrile butadiene styrene resin), PBT (polybutylene terephthalate resin), PE (polyethylene resin). ), PVC (polyvinyl chloride resin), PC (polycarbonate resin), PET (polyethylene terephthalate resin) and other thermoplastic resins can be used, and fillers such as glass, carbon, talc and mica can be used. It can also be filled in the resin.
 次に、樹脂材料3の流動挙動を予測するために用いる樹脂流動解析装置100について説明する。図1に、本発明の樹脂流動解析装置100の概略構成図の1例を示す。樹脂流動解析装置100は、汎用の計算機上に構成することができて、そのハードウェア構成は、CPU(Central Processing Unit)、RAM(Random Access Memory)などより構成される演算部110、ROM(Read Only Memory)、HDD(Hard Disk Drive)などより構成される記憶部120、キーボードやマウス等の入力デバイスより構成される入力部130、LCD(Liquid Crystal Display)などの表示装置、各種出力装置などより構成される出力部140、NIC(Network Interface Card)などにより構成される通信部150、などを備える。
  通信部150は、ネットワーク160を介して外部のCAD装置170、外部計算機180と接続されている。
Next, the resin flow analysis apparatus 100 used for predicting the flow behavior of the resin material 3 will be described. In FIG. 1, one example of the schematic block diagram of the resin flow analysis apparatus 100 of this invention is shown. The resin flow analysis apparatus 100 can be configured on a general-purpose computer, and the hardware configuration thereof includes a calculation unit 110 including a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read From a storage unit 120 composed of only memory (HDD), hard disk drive (HDD), etc., an input unit 130 composed of input devices such as a keyboard and a mouse, a display device such as an LCD (Liquid Crystal Display), and various output devices The output unit 140 includes a communication unit 150 including a NIC (Network Interface Card).
The communication unit 150 is connected to an external CAD device 170 and an external computer 180 via a network 160.
 演算部110は、記憶部120に記憶されている樹脂流動解析プログラム121をロードして実行することにより以下の各機能部を実現する。
  樹脂流動解析処理部111は、解析対象モデル、各種パラメータに従って、各処理部を実行して樹脂流動解析を実行するメイン処理部である。
The calculation unit 110 implements the following functional units by loading and executing the resin flow analysis program 121 stored in the storage unit 120.
The resin flow analysis processing unit 111 is a main processing unit that executes a resin flow analysis by executing each processing unit according to an analysis target model and various parameters.
 モデル形状・要素作成部112は、図2に示すシリンダ形状を含む解析対象の樹脂材料3、芯線4形状、および外部空間7の領域を特定する解析対象モデルを、入力部130を介してオペレータによる入力に従って作成して、記憶部120の解析対象モデル形状データ記憶領域122に格納する。なお、解析対象モデルの作成を外部のCAD装置170、または外部計算機180において実施した場合は、CAD装置170、または外部計算機180より解析対象モデルをネットワーク160を介して受信して、解析対象モデル形状データ記憶領域122に格納する。さらに、解析対象モデル形状データより有限要素の形状データを作成して、3次元要素データ記憶領域123に記憶する。 The model shape / element creation unit 112 generates an analysis target model that specifies the resin material 3 to be analyzed including the cylinder shape shown in FIG. 2, the shape of the core wire 4, and the region of the external space 7 via the input unit 130. It is created according to the input and stored in the analysis target model shape data storage area 122 of the storage unit 120. If the analysis target model is created in the external CAD device 170 or the external computer 180, the analysis target model is received from the CAD device 170 or the external computer 180 via the network 160, and the analysis target model shape is obtained. Store in the data storage area 122. Furthermore, finite element shape data is created from the analysis target model shape data and stored in the three-dimensional element data storage area 123.
 パラメータ・方程式定義部113は、ユーザに対して予め、または解析時に出力部140に入力ガイド画面を提示して、材料物性(樹脂材料の初期粘性、熱伝導率、比熱、芯線の密度、熱伝導率、比熱、などの物性値)、弾性係数の式、粘性係数の式、発熱式などのユーザ入力を入力部130より受付けて、材料物性・方程式記憶領域124に格納する。また、シリンダ内の樹脂材料、芯線の初期温度、などの解析対象の境界条件のユーザ入力を入力部130より受付けて、境界条件データ記憶領域125に格納する。また、評価断面の座標と評価断面における弾性係数差の許容値などの解析パラメータのユーザ入力を入力部130より受付けて、解析パラメータデータ記憶領域126に格納する。また、予め、連続・ナビエストークス・エネルギ保存式などのユーザ入力を入力部130より受付けて、連続・ナビエストークス・エネルギ保存式記憶領域127に格納する。 The parameter / equation definition unit 113 presents an input guide screen to the output unit 140 in advance or at the time of analysis for the user, and material properties (initial viscosity of resin material, thermal conductivity, specific heat, core wire density, heat conduction) User inputs such as physical property values such as rate, specific heat, etc.), elastic coefficient formula, viscosity coefficient formula, exothermic formula, etc. are received from the input unit 130 and stored in the material physical property / equation storage area 124. Also, user input of boundary conditions to be analyzed such as resin material in the cylinder and initial temperature of the core wire is received from the input unit 130 and stored in the boundary condition data storage area 125. Further, user input of analysis parameters such as evaluation section coordinates and allowable elastic modulus difference in the evaluation section is received from the input unit 130 and stored in the analysis parameter data storage area 126. In addition, a user input such as continuous / Navi-Estokes / energy storage type is received from the input unit 130 and stored in the continuous / Navi-Estokes / energy storage type storage area 127 in advance.
 樹脂材料の温度変化・速度・圧力計算部114は、解析対象モデルの有限要素の形状データに対して、外部空間7の空気および芯線4などの境界から樹脂材料3への伝熱、樹脂材料3の発熱に伴う温度、速度、圧力を含む各変化量を計算する。
  樹脂材料の粘性係数・弾性係数・反応率計算部115は、弾性係数の式、粘性係数の式、発熱式を読み出し、樹脂材料の温度変化・速度・圧力計算部114で計算された樹脂材料3の温度、速度、圧力を各式に代入することにより、粘性係数、弾性係数、反応率を計算する。
  解析結果出力処理部116は、ユーザが指定した解析対象モデルの任意断面における各有限要素の弾性係数E1の分布などを出力部140へ表示、または出力する。また、解析結果を外部計算機180へ送信することも行う。
The temperature change / velocity / pressure calculation unit 114 of the resin material performs heat transfer from the boundary of the external space 7 such as air and the core wire 4 to the resin material 3 with respect to the shape data of the finite element of the analysis target model, the resin material 3 Calculate the amount of change including temperature, speed, and pressure associated with heat generation.
The viscosity coefficient / elastic coefficient / reaction rate calculation unit 115 of the resin material reads out the elastic coefficient equation, the viscosity coefficient equation, and the heat generation equation, and the resin material 3 calculated by the temperature change / velocity / pressure calculation unit 114 of the resin material. The viscosity coefficient, elastic coefficient, and reaction rate are calculated by substituting the temperature, velocity, and pressure of each into the respective equations.
The analysis result output processing unit 116 displays or outputs the distribution of the elastic modulus E1 of each finite element in an arbitrary cross section of the analysis target model specified by the user to the output unit 140. The analysis result is also transmitted to the external computer 180.
 次に、図3のフローチャートに沿って樹脂流動解析プログラム121を実行した樹脂流動解析処理部111の処理を説明する。
  まず、モデル形状作成ステップS1001では、オペレータによって入力装置130を介して特定された解析対象モデル形状データ122、つまり、シリンダ1形状、樹脂材料3、芯線4形状、および外部空間7(シリンダから押出された芯線の周囲を覆う樹脂材料が空気と触れる空間の解析対象領域)の形状データを記憶部120から読み出す。
Next, processing of the resin flow analysis processing unit 111 that has executed the resin flow analysis program 121 will be described with reference to the flowchart of FIG.
First, in the model shape creation step S1001, the analysis target model shape data 122 specified by the operator via the input device 130, that is, the cylinder 1 shape, the resin material 3, the core wire 4 shape, and the external space 7 (extruded from the cylinder). The shape data of the analysis target area of the space where the resin material covering the periphery of the core wire is in contact with air is read from the storage unit 120.
 次に、3次元ソリッド要素作成のステップS1002では、モデル形状作成ステップS1001で読み込んだデータの形状を複数の特定空間(3次元ソリッドの有限要素)に分解し、有限要素の形状データ(3次元要素データ)を作成する。 Next, in step S1002 for creating a three-dimensional solid element, the shape of the data read in model shape creating step S1001 is decomposed into a plurality of specific spaces (finite elements of a three-dimensional solid), and shape data (three-dimensional elements) Data).
 次に、材料物性入カステップS1003では、樹脂材料3の初期粘度、熱伝導率、比熱、弾性係数の式(数1),(数2)、粘性係数の式(数12)~(数15)、発熱式(数6)~(数9)を含む物性値を入力するように、オペレータに催促する表示を行い、入力部130からこれらのデータを受け付けて、記憶部120へ記憶する。なお、芯線4の密度、熱伝導率、比熱を含む物性値も入力するものとする。 Next, in the material physical property input step S1003, the initial viscosity, thermal conductivity, specific heat, elastic modulus equations (Equation 1) and (Equation 2) of the resin material 3, and the viscosity equation equations (Equation 12) to (Equation 15). ), A display prompting the operator to input physical property values including the exothermic formulas (Equation 6) to (Equation 9) is received, and these data are received from the input unit 130 and stored in the storage unit 120. In addition, the physical property value including the density, thermal conductivity, and specific heat of the core wire 4 is also input.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 なお、α:反応率、t:時間、t’:換算時間、t0:ゲル化時間、T:温度、P:圧力、ρ:密度、ρ:初期密度、u:流速、 g:重力加速度、η:粘度、η:初期粘度、C:比熱、γ:せん断速度、λ:熱伝導率、dα/dt:反応速度、E,Ek、Ks1、Ks2、Ts、Nα、Kα、Eα、Kρ1、Kρ2、Kρ3、Eλ、Nλ、a、b、d、e、f、h:材料固有の定数、Q:任意時刻までの発熱量、Q:反応終了時までの総発熱量、dQ/dt:発熱速度を示す。
  記憶部120に未登録の式のみ、オペレータに入力を要求して、入力された式を登録する。
Α: reaction rate, t: time, t ′: conversion time, t 0 : gelation time, T: temperature, P: pressure, ρ: density, ρ 0 : initial density, u: flow velocity, g: gravitational acceleration , Η: viscosity, η 0 : initial viscosity, C: specific heat, γ: shear rate, λ: thermal conductivity, dα / dt: reaction rate, E , E k , τ k , K s1 , K s2 , T s , N α, K α, E α, K ρ1, K ρ2, K ρ3, E λ, N λ, a, b, d, e, f, h: material specific constant, Q: amount of heat generated up to an arbitrary time , Q o : total calorific value until the end of the reaction, dQ / dt: exothermic rate.
Only the formulas not registered in the storage unit 120 are requested to input to the operator, and the entered formulas are registered.
 次に、境界条件入力ステップS1004において、シリンダ内の樹脂材料3の初期温度、シリンダ内の芯線4の初期温度、外部空間7の初期温度、芯線4の移動速度、樹脂材料3の押出し速度、外部空間7の空気と樹脂材料3との熱伝達率を含む解析対象の境界条件を入力することをオペレータに催促する表示を行い、入力部130からデータを受け付ける。 Next, in boundary condition input step S1004, the initial temperature of the resin material 3 in the cylinder, the initial temperature of the core wire 4 in the cylinder, the initial temperature of the external space 7, the moving speed of the core wire 4, the extrusion speed of the resin material 3, and the external A display prompting the operator to input the boundary condition of the analysis target including the heat transfer coefficient between the air in the space 7 and the resin material 3 is performed, and data is received from the input unit 130.
 次に、ステップS1005において、評価断面(オペレータが断面位置を指定する。例えば、図2(a)(b)のA-A'断面)の座標と評価断面における弾性係数差(樹脂材料の外周部と内周部の弾性係数の差)の許容値の入力を受付ける。更に、オペレータからの解析開始の指示と初期時間増分と解析結果を出力する時間および解析終了時間tendを受け付ける。
  ここで、解析は微小な時間を増加させて、それぞれの時間ステップごとの変化を計算するものであり、時間増分とは、時間ステップの間隔を示す。
Next, in step S1005, the coordinates of the evaluation cross section (the operator designates the cross section position, for example, the AA ′ cross section in FIGS. 2 (a) and 2 (b)) and the elastic coefficient difference in the evaluation cross section (the outer peripheral portion of the resin material). Accept the input of the tolerance value of the difference between the elastic modulus of the inner circumference and the inner circumference. Further, an analysis start instruction, an initial time increment, an analysis result output time, and an analysis end time tend are received from the operator.
Here, the analysis is performed by increasing a minute time and calculating a change for each time step, and the time increment indicates a time step interval.
 ステップS1006において、オペレータからの解析開始の指示に基づいて、記憶部120に格納された連続の式(数3)、ナビエストークスの式(数4)、およびエネルギ保存式(数5)を呼び出し、これまで入力を受け付けた、初期時間増分、弾性係数の式(数1)、(数2)、粘性係数の式(数12)~(数15)を含めて、樹脂材料3の物性値、芯線4の物性値などを代入し、外部空間7の空気および芯線4などの境界から樹脂材料3への伝熱、樹脂材料3の発熱に伴う温度、速度、圧力を含む内容を計算する。この計算結果を有限要素の位置と対応付けて記憶部120の解析結果記憶領域128に保存する。なお、芯線4への伝熱も計算することができる。
  ここで、境界条件入力ステップS1004において入力した外部空間7の空気と樹脂材料3との熱伝達率hは、例えば、樹脂材料3の表面から外側にλ(空気の熱伝導率)/h(熱伝達率)の厚さを有する仮想的な物質(空気)があるとして、更にλ/hの外側の温度がステップS1004において入力した外部空間7の初期温度として、エネルギ保存式(数5)と連動させて、樹脂材料3 の表面温度を算出することができる。また、樹脂材料3の表面温度と外部空間7の初期温度の差と熱伝達率の積から求めた熱流速をエネルギ保存式(数5)と連動させて、樹脂材料3の表面温度を算出することもできる。
  なお、u:流速、P:圧力、ρ:密度、g:重力加速度、η:粘度、C:比熱、λ:熱伝導率、T:温度、Q:発熱量、γ:せん断速度を示している。
In step S1006, based on the analysis start instruction from the operator, the continuous equation (Equation 3), the Naviestokes equation (Equation 4), and the energy conservation equation (Equation 5) stored in the storage unit 120 are called, The physical property values and core wires of the resin material 3 including the initial time increment, the elastic modulus equations (Equation 1), (Equation 2), and the viscosity coefficient equations (Equation 12) to (Equation 15) that have been accepted so far. Substituting the physical property value of 4 and the like, the contents including the heat, heat transfer from the boundary of the air and the core wire 4 to the resin material 3, and the temperature, speed, and pressure accompanying the heat generation of the resin material 3 are calculated. This calculation result is stored in the analysis result storage area 128 of the storage unit 120 in association with the position of the finite element. The heat transfer to the core wire 4 can also be calculated.
Here, the heat transfer coefficient h between the air in the external space 7 and the resin material 3 input in the boundary condition input step S1004 is, for example, λ (thermal conductivity of air) / h (heat Assuming that there is a hypothetical substance (air) having a thickness of transmission rate), the temperature outside λ / h is linked with the energy conservation equation (Equation 5) as the initial temperature of the external space 7 input in step S1004. Thus, the surface temperature of the resin material 3 can be calculated. Further, the surface temperature of the resin material 3 is calculated by interlocking the heat flow rate obtained from the product of the difference between the surface temperature of the resin material 3 and the initial temperature of the external space 7 and the heat transfer coefficient with the energy conservation equation (Equation 5). You can also.
In addition, u: flow velocity, P: pressure, ρ: density, g: acceleration of gravity, η: viscosity, C: specific heat, λ: thermal conductivity, T: temperature, Q: calorific value, γ: shear rate .
 次に、ステップS1007として、弾性係数の式(数1),(数2)、粘性係数の式(式12)~(式15)、発熱式(式6)~(式9)を呼び出し、ステップ1006で計算された樹脂材料3の温度、速度、圧力を弾性係数の式(式1)~(式2)、粘性係数の式(数12)~(数15)、発熱式(数6)~(数9)に代入することにより、粘性係数、弾性係数、反応率を求める。
  解析の初期時間増分(第一ステップ)においては、初期時間をt0、時間増分Δt1=t1-t0として、ステップS1006で樹脂材料の圧力、温度、速度を含む内容を計算し、ステップS1006で計算された樹脂材料3の温度、圧力、速度をステップS1007にて弾性係数の式(数1),(数2)、粘性係数の式(数12)~(数15)、発熱式(数6)~(数9)に代入することにより、第一ステップにおける粘性係数η1、弾性係数E1、反応率α1を求める。任意断面における各有限要素の弾性係数E1を算出して、その分布を求める。
  ここで、ステップS1007で求めた粘性係数η1は、次の時間増分での第二ステップの計算におけるステップS1006の係数として用いる。
Next, in step S1007, the elastic modulus equations (Equation 1) and (Equation 2), the viscosity modulus equations (Equation 12) to (Equation 15), and the heat generation equations (Equation 6) to (Equation 9) are called. The temperature, speed, and pressure of the resin material 3 calculated in 1006 are represented by the elastic modulus equations (Equation 1) to (Equation 2), the viscosity coefficient equations (Equation 12) to (Equation 15), and the exothermic equation (Equation 6) to By substituting into (Equation 9), the viscosity coefficient, elastic coefficient, and reaction rate are obtained.
In the initial time increment of analysis (first step), the initial time is t0, the time increment Δt1 = t1-t0, and the contents including the pressure, temperature, and speed of the resin material are calculated in step S1006, and calculated in step S1006. In step S1007, the temperature, pressure, and speed of the resin material 3 are determined in accordance with the elastic modulus equations (Equation 1) and (Equation 2), the viscosity coefficient equations (Equation 12) to (Equation 15), and the heat generation equation (Equation 6) By substituting into (Equation 9), the viscosity coefficient η1, the elastic coefficient E1, and the reaction rate α1 in the first step are obtained. The elastic modulus E1 of each finite element in an arbitrary cross section is calculated and its distribution is obtained.
Here, the viscosity coefficient η1 obtained in step S1007 is used as a coefficient in step S1006 in the calculation of the second step at the next time increment.
 ステップS1008において、計算の収束判定を行う。収束の判定手法は、例えば、速度と要素長(分割した要素の長さ。通常は四面体か六面体の代表長さ)の比が、予め定めておいた範囲内にある場合を収束として判定する(時間増分における速度の移動量の中に解析に必要な十分なメッシュ数が在ることを判定する)。収束しない場合には、ステップS1006における計算を繰り返し、所定の繰返し数でも収束しない場合には、ステップS1001~S1004のいずれかに戻る。ステップS1001~S1004のいずれかに戻る際には、オペレータに指定入力を促し、どのステップに戻るかをオペレータの決定入力に従う。 In step S1008, the convergence of the calculation is determined. Convergence is determined by, for example, determining that the ratio of the speed and the element length (the length of the divided element, usually the representative length of the tetrahedron or hexahedron) is within a predetermined range as convergence. (Determining that there is a sufficient number of meshes necessary for the analysis in the amount of velocity movement in time increment). If it does not converge, the calculation in step S1006 is repeated, and if it does not converge even with a predetermined number of repetitions, it returns to one of steps S1001 to S1004. When returning to any one of steps S1001 to S1004, the operator is prompted for a designation input, and which step to return to is determined according to the operator's decision input.
 計算が収束した場合には、ステップS1009において、ステップS1004で入力した断面において、ステップS1007で計算した樹脂の弾性係数差がステップ1005にて予め入力しておいた弾性係数差の許容値よりも小さいかの判定を行う。計算値が許容値よりも大きい場合には、ステップS1001~S1004のいずれかに戻る。ステップS1001~S1004のいずれかに戻る際には、オペレータに指定入力を促し、どのステップに戻るかをオペレータの決定入力に従う。
  計算値が許容値よりも小さい場合には、ステップS1010において、解析における時間が設定した解析終了時間tendよりも長いかの判定を行い、判定がYESの場合は解析を終了させ、判定がNOの場合には、ステップS1006の計算に戻り、次の時間ステップの計算を行なう。
If the calculation has converged, in step S1009, in the cross section input in step S1004, the elastic modulus difference of the resin calculated in step S1007 is smaller than the allowable elastic modulus difference input in advance in step 1005. Judgment is made. If the calculated value is larger than the allowable value, the process returns to one of steps S1001 to S1004. When returning to any one of steps S1001 to S1004, the operator is prompted for a designation input, and which step to return to is determined according to the operator's decision input.
If the calculated value is smaller than the allowable value, it is determined in step S1010 whether the analysis time is longer than the set analysis end time tend. If the determination is YES, the analysis is terminated and the determination is NO. In that case, the process returns to the calculation in step S1006, and the next time step is calculated.
 以上、第二ステップ以降においては、解析における時間が設定した解析終了時間tendに到達するまで同様の計算を繰り返し、ステップS1010において、解析における時間が設定した解析終了時間tendに到達した時間で解析を終了させる。
  ステップS1011においては、解析終了後、または出力を設定した任意の時間における弾性係数を含む内容を出力することができる。
As described above, in the second and subsequent steps, the same calculation is repeated until the analysis end time “tend” reaches the set analysis end time. In step S1010, the analysis is performed at the time when the analysis end time “tend” is reached. Terminate.
In step S1011, the contents including the elastic modulus can be output after the analysis is completed or at an arbitrary time when the output is set.
 次に、本発明の第二の実施形態を図4のフローチャートに沿って、樹脂流動解析プログラム121を実行した樹脂流動解析処理部111の処理を説明する。本実施例では、発泡樹脂の使用を考慮した解析処理である。
  まず、モデル形状作成ステップS2001では、オペレータによって入力部130を介して特定された解析対象モデル形状データ122、つまり、シリンダ1形状、樹脂材料3、芯線4形状、および外部空間7の形状データを記憶部120の解析対象モデル形状データ記憶領域122から読み出す。
  次に、3次元ソリッド要素作成のステップS2002では、モデル形状作成ステップS2001で読み込んだモデル形状データの形状を複数の特定空間(3次元ソリッドの有限要素)に分解し、有限要素の形状データ(3次元要素データ)を作成して、3次元要素データ記憶領域123に記憶する。
Next, the process of the resin flow analysis processing unit 111 that has executed the resin flow analysis program 121 will be described with reference to the flowchart of FIG. 4 according to the second embodiment of the present invention. In this embodiment, the analysis process takes into account the use of foamed resin.
First, in the model shape creation step S2001, the analysis target model shape data 122 specified by the operator via the input unit 130, that is, the shape data of the cylinder 1 shape, the resin material 3, the core wire 4 shape, and the external space 7 is stored. The data is read from the analysis target model shape data storage area 122 of the unit 120.
Next, in step S2002 for creating a three-dimensional solid element, the shape of the model shape data read in model shape creating step S2001 is decomposed into a plurality of specific spaces (three-dimensional solid finite elements), and finite element shape data (3 Dimensional element data) is created and stored in the three-dimensional element data storage area 123.
 次に、材料物性入カステップS2003では、樹脂材料3の初期粘度、初期熱伝導率、比熱、弾性係数の式(数1),(数2)、粘性係数の式(数12)~(数15)、発熱式(数6)~(数9)、密度式(数10)、熱伝導率式(数11)を含む物性値を入力するように、オペレータに催促する表示を行い、入力部130からこれらのデータを受け付けて、記憶部120の材料物性・方程式記憶領域124へ記憶する。なお、芯線4の密度、熱伝導率、比熱を含む物性値も入力するものとする。
  また、密度式(数10)は発泡樹脂のマクロ的な密度を示し、発泡に伴って、樹脂中に気泡が形成されると、樹脂のマクロ的な密度が低下することを表す式である。
Next, in the material physical property input step S2003, the initial viscosity, initial thermal conductivity, specific heat, elastic modulus formulas (Equation 1) and (Equation 2) of the resin material 3, and the viscosity coefficient equations (Equation 12) to (Equation 2). 15), a display prompting the operator to input physical properties including the exothermic formula (Equation 6) to (Equation 9), the density equation (Equation 10), and the thermal conductivity equation (Equation 11). These data are received from 130 and stored in the material property / equation storage area 124 of the storage unit 120. In addition, the physical property value including the density, thermal conductivity, and specific heat of the core wire 4 is also input.
Further, the density formula (Equation 10) indicates the macroscopic density of the foamed resin. When bubbles are formed in the resin along with foaming, the density of the resin is decreased.
 次に、境界条件入力ステップS2004において、シリンダ内の樹脂材料3の初期温度、シリンダ内の芯線4の初期温度、外部空間7の初期温度、芯線4の移動速度、樹脂材料3の押出し速度、外部空間7の空気と樹脂材料3との熱伝達率を含む解析対象の境界条件をオペレータに催促する表示を行い、入力部130からデータを受け付けて、境界条件データ記憶領域125へ記憶する。 Next, in boundary condition input step S2004, the initial temperature of the resin material 3 in the cylinder, the initial temperature of the core wire 4 in the cylinder, the initial temperature of the external space 7, the moving speed of the core wire 4, the extrusion speed of the resin material 3, and the external A display for prompting the operator of the boundary condition to be analyzed including the heat transfer coefficient between the air in the space 7 and the resin material 3 is performed, and data is received from the input unit 130 and stored in the boundary condition data storage area 125.
 次に、ステップS2005において、評価断面(オペレータが断面位置を指定する。例えば、図2(a)(b)のA-A'断面)の座標と評価断面における弾性係数差(樹脂材料の外周部と内周部の弾性係数の差)の許容値の入力を受付ける。更に、オペレータからの解析開始の指示と初期時間増分と解析結果を出力する時間および解析終了時間tendを受け付けて、解析パラメータデータ記憶領域126へ記憶する。
  ここで、解析は微小な時間を増加させて、それぞれの時間ステップごとの変化を計算するものであり、時間増分とは、時間ステップの間隔を示す。
Next, in step S2005, the difference between the evaluation section (the operator specifies the section position. For example, the AA ′ section in FIGS. 2A and 2B) and the modulus of elasticity in the evaluation section (the outer peripheral portion of the resin material). Accept the input of the tolerance value of the difference between the elastic modulus of the inner circumference and the inner circumference. Further, an analysis start instruction from the operator, an initial time increment, a time for outputting the analysis result, and an analysis end time tend are received and stored in the analysis parameter data storage area 126.
Here, the analysis is performed by increasing a minute time and calculating a change for each time step, and the time increment indicates a time step interval.
 ステップS2006において、オペレータからの解析開始指示に基づいて、記憶部120の材料物性・方程式記憶領域124に格納された連続の式(数3)、ナビエストークスの式(数4)、およびエネルギ保存式(数5)を呼び出し、これまで入力を受け付けた、初期時間増分、弾性係数の式(数1),(数2)、粘性係数の式(数12)~(数15)、発熱式(数6)~(数9)、密度式(数10)、熱伝導率式(数11)を含めて、樹脂材料3の物性値、芯線4の物性値などを代入し、外部空間7の空気および芯線4などの境界から樹脂材料3への伝熱および樹脂材料3の発熱に伴う温度、速度、圧力を含む内容を計算する。この計算結果を有限要素の位置と対応付けて記憶部120の解析結果記憶領域128に保存する。なお、芯線4への伝熱も計算することができる。
  ここで、境界条件入力ステップS2004において入力した外部空間7の空気と樹脂材料3との熱伝達率hは、例えば、樹脂材料3の表面から外側にλ(空気の熱伝導率)/h(熱伝達率)の厚さを有する仮想的な物質(空気)があるとし、更にλ/hの外側の温度がステップ2004において入力した外部空間7の初期温度として、エネルギ保存式(数5)と連動させて、樹脂材料3の表面温度を算出することができる。また、樹脂材料3の表面温度と外部空間7の初期温度の差と熱伝達率の積から求めた熱流速をエネルギ保存式(数5)と連動させて、樹脂材料3の表面温度を算出することもできる。
  なお、u:流速、P:圧力、ρ:密度、g:重力加速度、η:粘度、C:比熱、λ:熱伝導率、T:温度、Q:発熱量、γ:せん断速度を示している。
In step S2006, based on the analysis start instruction from the operator, the continuous equation (Equation 3), the Naviestokes equation (Equation 4), and the energy conservation equation stored in the material property / equation storage area 124 of the storage unit 120. Called (Equation 5) and received input so far, initial time increment, elastic modulus equations (Equation 1), (Equation 2), viscosity coefficient equations (Equation 12) to (Equation 15), exothermic equation (Equation 6) to (Equation 9), the density equation (Equation 10), the thermal conductivity equation (Equation 11), and the physical property value of the resin material 3, the physical property value of the core wire 4, etc. are substituted, and the air in the external space 7 and Contents including temperature, speed, and pressure accompanying heat transfer from the boundary of the core wire 4 to the resin material 3 and heat generation of the resin material 3 are calculated. This calculation result is stored in the analysis result storage area 128 of the storage unit 120 in association with the position of the finite element. The heat transfer to the core wire 4 can also be calculated.
Here, the heat transfer coefficient h between the air in the external space 7 and the resin material 3 input in the boundary condition input step S2004 is, for example, λ (thermal conductivity of air) / h (heat Assuming that there is a hypothetical substance (air) having a thickness of the transmission rate, the temperature outside λ / h is linked with the energy conservation equation (Equation 5) as the initial temperature of the external space 7 input in step 2004 Thus, the surface temperature of the resin material 3 can be calculated. Further, the surface temperature of the resin material 3 is calculated by interlocking the heat flow rate obtained from the product of the difference between the surface temperature of the resin material 3 and the initial temperature of the external space 7 and the heat transfer coefficient with the energy conservation equation (Equation 5). You can also.
In addition, u: flow velocity, P: pressure, ρ: density, g: acceleration of gravity, η: viscosity, C: specific heat, λ: thermal conductivity, T: temperature, Q: calorific value, γ: shear rate .
 次に、ステップS2007として、弾性係数の式(数1),(数2)、粘性係数の式(数12)~(数15)、発熱式(数6)~(数9)、密度式(数10)、熱伝導率式(数11)を呼び出し、ステップS2006で計算された樹脂材料3の速度、温度、圧力を弾性係数の式(数1),(数2)、粘性係数の式(数12)~(数15)、発熱式(数6)~(数9)、密度式(数10)、熱伝導率式(数11)に代入することにより、粘性係数、弾性係数、密度、熱伝導率、反応率を求める。 Next, as step S2007, the elastic modulus equations (Equation 1) and (Equation 2), the viscosity modulus equations (Equation 12) to (Equation 15), the exothermic equations (Equation 6) to (Equation 9), the density equation ( (Equation 10), the thermal conductivity equation (Equation 11) is called, and the velocity, temperature, and pressure of the resin material 3 calculated in step S2006 are expressed by the elastic modulus equations (Equation 1), (Equation 2), and the viscosity coefficient equation ( By substituting into Equations (12) to (15), exothermic equations (Equation 6) to (Equation 9), density equation (Equation 10), and thermal conductivity equation (Equation 11), viscosity coefficient, elastic modulus, density, Obtain thermal conductivity and reaction rate.
 解析の初期時間増分(第一ステップ)においては、初期時間をt0、時間増分Δt1=t1-t0とし、ステップS2006で樹脂材料の圧力、温度、速度を含む内容を計算し、ステップS2006で計算された樹脂材料3の温度、圧力、速度をステップS2007にて弾性係数の式(数1),(数2)、粘性係数の式(数12)~(数15)、発熱式(数6)~(数9)、密度式(数10)、熱伝導率式(数11)に代入することにより、第一ステップにおける粘性係数η1、弾性係数E1、密度ρ1、熱伝導率λ1、反応率α1を求める。任意断面における各有限要素の弾性係数E1を算出して、その分布を求める。
  ここで、粘性係数η1、密度ρ1、熱伝導率λ1は、次の時間増分での第二ステップの計算におけるステップS2006の係数として用いる。
In the initial time increment of analysis (first step), the initial time is t0, the time increment Δt1 = t1-t0, the contents including the pressure, temperature, and speed of the resin material are calculated in step S2006, and calculated in step S2006. In step S2007, the temperature, pressure, and speed of the resin material 3 are determined by the elastic modulus equations (Equation 1) and (Equation 2), the viscosity coefficient equations (Equation 12) to (Equation 15), and the exothermic equation (Equation 6) By substituting (Equation 9), density equation (Equation 10), and thermal conductivity equation (Equation 11), the viscosity coefficient η1, elastic coefficient E1, density ρ1, thermal conductivity λ1, and reaction rate α1 in the first step are obtained. Ask. The elastic modulus E1 of each finite element in an arbitrary cross section is calculated and its distribution is obtained.
Here, the viscosity coefficient η1, the density ρ1, and the thermal conductivity λ1 are used as the coefficients in step S2006 in the calculation of the second step at the next time increment.
 ステップS2008において、計算の収束判定を行う。収束の判定手法は、例えば、速度と要素長(分割した要素の長さ。通常は四面体か六面体の代表長さ)の比が、予め定めておいた範囲内にある場合を収束として判定する(時間増分における速度の移動量の中に解析に必要な十分なメッシュ数が在ることを判定する)。収束しない場合には、ステップS2006における計算を繰り返し、所定の繰返し数でも収束しない場合には、ステップS2001~S2004のいずれかに戻る。ステップS2001~S2004のいずれかに戻る際には、オペレータに指定入力を促し、どのステップに戻るかをオペレータの決定入力に従う。 In step S2008, calculation convergence is determined. Convergence is determined by, for example, determining that the ratio of the speed and the element length (the length of the divided element, usually the representative length of the tetrahedron or hexahedron) is within a predetermined range as convergence. (Determining that there is a sufficient number of meshes necessary for the analysis in the amount of velocity movement in time increment). If it does not converge, the calculation in step S2006 is repeated, and if it does not converge even at a predetermined number of repetitions, the process returns to any of steps S2001 to S2004. When returning to any one of steps S2001 to S2004, the operator is prompted for a designation input, and which step to return to is determined according to the operator's decision input.
 計算が収束した場合には、ステップS2009において、ステップS2004で入力した断面において、ステップS2007で計算した樹脂の弾性係数差(樹脂材料の外周部と内周部の弾性係数の差)がステップS2004にて予め入力しておいた弾性係数差の許容値よりも小さいかの判定を行う。計算値が許容値よりも大きい場合には、ステップS2001~S2004のいずれかに戻る。ステップS2001~S2004のいずれかに戻る際には、オペレータに指定入力を促し、どのステップに戻るかをオペレータの決定入力に従う。
  計算値が許容値よりも小さい場合には、ステップS2010において、解析における時間が設定した解析終了時間tendよりも長いかの判定を行い、判定がYESの場合は解析を終了させ、判定がNOの場合には、ステップS2006の計算に戻り、次の時間ステップの計算を行なう。
When the calculation converges, in step S2009, the difference in the elastic modulus of the resin calculated in step S2007 (the difference in elastic modulus between the outer peripheral portion and the inner peripheral portion of the resin material) in step S2004 is obtained in step S2004. It is determined whether it is smaller than the allowable value of the elastic coefficient difference inputted in advance. If the calculated value is larger than the allowable value, the process returns to one of steps S2001 to S2004. When returning to any one of steps S2001 to S2004, the operator is prompted for a designation input, and which step to return to is determined according to the operator's decision input.
If the calculated value is smaller than the allowable value, it is determined in step S2010 whether the analysis time is longer than the set analysis end time tend. If the determination is YES, the analysis is terminated and the determination is NO. In the case, the calculation returns to step S2006 and the next time step is calculated.
 以上、第二ステップ以降においては、解析における時間が設定した解析終了時間tendに到達するまで同様の計算を繰り返し、ステップS2010において、解析における時間が設定した解析終了時間tendに到達した時間で解析を終了させる。
  ステップS2011においては、解析終了後、または出力を設定した任意の時間における弾性係数を含む内容を出力することができる。
As described above, in the second and subsequent steps, the same calculation is repeated until the analysis time reaches the set analysis end time tend. In step S2010, the analysis is performed at the time when the analysis time reaches the set analysis end time tend. Terminate.
In step S2011, the content including the elastic modulus can be output after the analysis is completed or at an arbitrary time when the output is set.
 なお、弾性係数の式は(数1)(数2)に限定されるものではなく、樹脂材料3の温度を含む任意の式を用いることができるものとする。
  発熱式は(数6)~(数9)に限定されるものではなく、樹脂材料3の反応率を含む任意の関数を用いることができるものとし、発熱しない樹脂材料3を用いる場合には、計算を省略することができる。
  粘度式は(数12)~(数15)に限定されるものではなく、樹脂材料3の温度または反応率を含む任意の関数を用いることができるものとし、一定値での計算もできるものとする。
In addition, the equation of the elastic coefficient is not limited to (Equation 1) and (Equation 2), and any equation including the temperature of the resin material 3 can be used.
The exothermic equation is not limited to (Equation 6) to (Equation 9), and any function including the reaction rate of the resin material 3 can be used. When the resin material 3 that does not generate heat is used, Calculation can be omitted.
The viscosity equation is not limited to (Equation 12) to (Equation 15), and an arbitrary function including the temperature or reaction rate of the resin material 3 can be used, and calculation with a constant value can also be performed. To do.
 密度式は(数10)に限定されるものではなく、樹脂材料3の温度または反応率または樹脂圧力を含む任意の関数を用いることができるものとし、一定値での計算もできるものとする。
  熱伝導率式は(数11)に限定されるものではなく、樹脂材料3の温度または密度を含む任意の関数を用いることができるものとし、一定値での計算もできるものとする。
  比熱は、樹脂材料3の温度を含む関数として用いることもできる。また、外部空間7における気体は空気だけではなく、窒素、酸素、2酸化炭素を含む任意の気体を用いることができ、収束判定は任意の判定方法を用いることができる。
  また、3次元の解析だけではなく、2次元の解析もできるものとする。なお、以上の計算は有限要素法または有限体積法または有限差分法を用いて計算を行えるものとする。
The density equation is not limited to (Equation 10), and an arbitrary function including the temperature or reaction rate of the resin material 3 or the resin pressure can be used, and calculation with a constant value can also be performed.
The thermal conductivity formula is not limited to (Equation 11), and an arbitrary function including the temperature or density of the resin material 3 can be used, and calculation with a constant value can also be performed.
The specific heat can also be used as a function including the temperature of the resin material 3. The gas in the external space 7 is not limited to air but can be any gas including nitrogen, oxygen, and carbon dioxide, and the convergence determination can be performed using any determination method.
Further, not only three-dimensional analysis but also two-dimensional analysis can be performed. The above calculation can be performed using the finite element method, the finite volume method, or the finite difference method.
 以下では、図4に示すフローチャートを用いた解析の事例を示す。
  ここでは、図2に示すシリンダ1から押出された樹脂材料3と芯線4の解析を行った。樹脂材料3は矢印方向に押出され、芯線4も矢印方向に移動するものとする。ここでは、樹脂材料3の直径をΦ20mm、芯線4の直径をΦ10mmとし、シリンダ1から押出された直後の時間を0sとし、図に示すA-A’断面(芯線4と直交する断面)の樹脂材料3と芯線4の温度の時間変化を計算した。
Below, the example of the analysis using the flowchart shown in FIG. 4 is shown.
Here, the resin material 3 and the core wire 4 extruded from the cylinder 1 shown in FIG. 2 were analyzed. The resin material 3 is extruded in the arrow direction, and the core wire 4 is also moved in the arrow direction. Here, the diameter of the resin material 3 is Φ20 mm, the diameter of the core wire 4 is Φ10 mm, the time immediately after being extruded from the cylinder 1 is 0 s, and the resin of the AA ′ cross section (cross section orthogonal to the core wire 4) shown in the figure The time change of the temperature of the material 3 and the core wire 4 was calculated.
 なお、樹脂材料3の被覆肉厚および熱伝導率、比熱は一定として、外部空間7の空気への熱伝達を考慮して、樹脂発熱による密度変化を伴う樹脂材料3および芯線4の伝熱計算を行った。また、外部空間7の空気の温度は298.15K、芯線移動速度は1mm/s、外部空間7の空気と樹脂材料3の熱伝達率は20W/m2・K、総発熱量Q0は51000J/kgとする。 The heat transfer calculation of the resin material 3 and the core wire 4 accompanied by the density change due to the resin heat generation in consideration of the heat transfer to the air in the external space 7 with the coating thickness, the thermal conductivity, and the specific heat of the resin material 3 being constant. Went. The temperature of the air in the external space 7 is 298.15K, the core wire moving speed is 1mm / s, the heat transfer coefficient between the air in the external space 7 and the resin material 3 is 20W / m 2 · K, and the total calorific value Q0 is 51000J / kg. And
 樹脂材料3、芯線4、外部空間7の空気の物性値と初期温度を表1に示す。なお、樹脂材料3の密度は、発泡に伴う変化を計算するので、表1の値は初期値を表している。 Table 1 shows the physical properties of air and the initial temperature of the resin material 3, the core wire 4, and the external space 7. In addition, since the density of the resin material 3 calculates the change accompanying foaming, the value of Table 1 represents the initial value.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 ここで、弾性係数の式は、樹脂温度の関数として(数16)を用いた。 Here, the equation of elastic modulus used (Expression 16) as a function of the resin temperature.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
  なお、(数16)において、E1,E2,E3,E4は樹脂材料3に固有の定数である。
  粘性係数の式は(数12)~(数15)を用いて、発熱式は(数6)~(数9)を用いて、密度式は(数10)を用いた。
  弾性係数の式(数16)の係数を表2に、粘性係数の式は(数12)~(数15)の係数を表3に、発熱式(数6)~(数9)の係数を表4に、密度式(数10)の係数を表5に示す。
In (Equation 16), E1, E2, E3, and E4 are constants specific to the resin material 3.
The equation of viscosity coefficient is (Equation 12) to (Equation 15), the exothermic equation is (Equation 6) to (Equation 9), and the density equation is (Equation 10).
The elastic modulus equation (Equation 16) is shown in Table 2, the viscosity coefficient equation is (Equation 12) to (Equation 15) in Table 3, and the exothermic equations (Equation 6) to (Equation 9) are given. Table 4 shows the coefficients of the density equation (Equation 10).
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 また、評価断面(図2(b))における弾性係数差(樹脂材料3の外周部5と内周部6の弾性係数の差)の許容値は5GPa、計算時間は60sとする。ここでは、芯線4、樹脂材料3の半径方向において、樹脂材料3の内周6(固体と接触する位置)の位置を0mmとし、外周5の位置を5mmとした場合に、20,40,60s後の樹脂温度および弾性係数の分布を計算した。結果を図5、図6に示す。
  図5より樹脂温度は、時間経過とともに低下するとともに一定値に近づく。図6に示すように、弾性係数も樹脂温度変化とともに値が変化するが、評価断面における弾性係数差の許容値として設定された5GPaよりも小さく計算できていることが分かる。
In addition, the allowable value of the elastic coefficient difference (the difference in elastic coefficient between the outer peripheral portion 5 and the inner peripheral portion 6 of the resin material 3) in the evaluation cross section (FIG. 2B) is 5 GPa, and the calculation time is 60 s. Here, in the radial direction of the core wire 4 and the resin material 3, when the position of the inner periphery 6 (position in contact with the solid) of the resin material 3 is 0 mm and the position of the outer periphery 5 is 5 mm, 20, 40, 60 s Later resin temperature and elastic modulus distributions were calculated. The results are shown in FIGS.
As shown in FIG. 5, the resin temperature decreases with time and approaches a constant value. As shown in FIG. 6, although the value of the elastic coefficient changes with the resin temperature change, it can be understood that the elastic coefficient can be calculated to be smaller than 5 GPa set as the allowable value of the elastic coefficient difference in the evaluation section.
 以上の樹脂材料3の弾性係数の計算方法を用いることにより、評価断面における弾性係数の差を許容値よりも小さくする(例えば、芯線に対して樹脂被覆が剥離などを起こし易くしないようにする)ための製品形状(芯線4肉厚、樹脂材料3の被覆肉厚)、樹脂材料3、芯線4の材料物性、成形プロセス条件(熱伝達率、初期温度など)の評価を行なうことができる。 By using the elastic modulus calculation method of the resin material 3 described above, the difference in elastic modulus in the evaluation cross section is made smaller than an allowable value (for example, the resin coating does not easily peel off the core wire). Product shape (core wire thickness 4 and resin material 3 coating thickness), resin material 3 and material properties of core wire 4 and molding process conditions (heat transfer rate, initial temperature, etc.) can be evaluated.
1  シリンダ
2  シリンダ出口
3  樹脂材料
4  芯線
5  樹脂材料の外周
6  樹脂材料の内周
7  外部空間
100 樹脂流動解析装置
110 演算部
111 樹脂流動解析処理部
112 モデル形状・要素作成部
113 パラメータ・方程式定義部
114 樹脂材料の温度変化・速度・圧力計算部
115 樹脂材料の粘性係数・弾性係数・反応率計算部
116 解析結果出力処理部
120 記憶部
121 樹脂流動解析プログラム記憶領域
122 解析対象モデル形状データ記憶領域
123 3次元要素データ記憶領域
124 材料物性・方程式記憶領域
125 境界条件データ記憶領域
126 解析パラメータデータ記憶領域
127 連続・ナビエストークス・エネルギ保存式記憶領域
128 解析結果記憶領域
130 入力部
140 出力部
150 通信部
160 ネットワーク
170 CAD装置
180 外部計算機
DESCRIPTION OF SYMBOLS 1 Cylinder 2 Cylinder exit 3 Resin material 4 Core wire 5 Outer periphery of resin material 6 Inner periphery of resin material 7 External space 100 Resin flow analysis device 110 Calculation unit 111 Resin flow analysis processing unit 112 Model shape / element creation unit 113 Parameter / equation definition Unit 114 temperature change / velocity / pressure calculation unit 115 resin material viscosity coefficient / elastic coefficient / reaction rate calculation unit 116 analysis result output processing unit 120 storage unit 121 resin flow analysis program storage region 122 analysis target model shape data storage Area 123 Three-dimensional element data storage area 124 Material property / equation storage area 125 Boundary condition data storage area 126 Analysis parameter data storage area 127 Continuous / Navi Stokes / energy storage type storage area 128 Analysis result storage area 130 Input unit 140 Output unit 150 Communication unit 160 Net Over click 170 CAD apparatus 180 external computer

Claims (10)

  1.  気体と接して成形される樹脂材料の弾性係数分布を樹脂流動解析装置が算出する樹脂流動挙動の計算方法であって、
    (a)樹脂材料が充填される空間の形状モデルを入力して、当該データに基づいて3次元ソリッド要素に分解し、
    (b)少なくとも樹脂材料の密度、熱伝導率、比熱を含む物性値、樹脂材料の初期温度、樹脂と気体の熱伝達率を含む境界条件を入力し、
    (c)樹脂の弾性係数を樹脂温度の変化を含む式として入力し、
    (d)連続の式、ナビエストークスの式、エネルギ保存式を、前記3次元ソリッド要素に基づいて演算処理することにより、時間ステップごとに樹脂温度、速度、圧力を計算する際に、ステップ(c)で入力した樹脂の弾性係数の分布を計算し、
    (e)上記の計算を設定時間に到達するまで繰返し、各要素の樹脂の弾性係数を含む内容を出力する各ステップを有することを特徴とする樹脂流動挙動の計算方法。
    A resin flow behavior calculation method in which a resin flow analysis device calculates an elastic coefficient distribution of a resin material molded in contact with a gas,
    (A) Input a shape model of the space filled with the resin material, and decompose it into three-dimensional solid elements based on the data,
    (B) Enter the boundary conditions including at least the density of the resin material, the thermal conductivity, the physical property value including the specific heat, the initial temperature of the resin material, and the heat transfer coefficient between the resin and gas,
    (C) Enter the elastic modulus of the resin as an equation that includes changes in the resin temperature,
    (D) When calculating the resin temperature, speed, and pressure for each time step by calculating the continuous equation, Navi-Stokes equation, and energy conservation equation based on the three-dimensional solid element, the step (c ) To calculate the distribution of the elastic modulus of the resin entered in
    (E) A resin flow behavior calculation method comprising the steps of repeating the above calculation until a set time is reached and outputting contents including the elastic modulus of the resin of each element.
  2.  気体と接して成形される樹脂材料の弾性係数分布を樹脂流動解析装置が算出する樹脂流動挙動の計算方法であって、
    (a)樹脂材料が充填される空間の形状モデルを入力して、当該データに基づいて3次元ソリッド要素に分解し、
    (b)少なくとも樹脂材料の密度、熱伝導率、比熱を含む物性値、樹脂材料の初期温度、樹脂と気体の熱伝達率を含む境界条件を入力し、
    (c) 樹脂材料の弾性係数差の許容値を入力し、
    (d)樹脂の弾性係数を樹脂温度の変化を含む式として入力し、
    (e)連続の式、ナビエストークスの式、エネルギ保存式を、前記3次元ソリッド要素に基づいて演算処理することにより、時間ステップごとに樹脂温度、速度、圧力を計算する際に、ステップ(d)で入力した樹脂の弾性係数の分布を計算し、
    (f)ステップ(e)で計算した樹脂の弾性係数差が、ステップ(c)で入力した許容値よりも小さい場合に、上記の計算を設定時間に到達するまで繰返し、各要素の樹脂の弾性係数を含む内容を出力する各ステップを有することを特徴とする樹脂流動挙動の計算方法。
    A resin flow behavior calculation method in which a resin flow analysis device calculates an elastic coefficient distribution of a resin material molded in contact with a gas,
    (A) Input a shape model of the space filled with the resin material, and decompose it into three-dimensional solid elements based on the data,
    (B) Enter the boundary conditions including at least the density of the resin material, the thermal conductivity, the physical property value including the specific heat, the initial temperature of the resin material, and the heat transfer coefficient between the resin and gas,
    (c) Enter the allowable elastic modulus difference of the resin material,
    (D) Enter the elastic modulus of the resin as an equation that includes changes in the resin temperature,
    (E) When calculating the resin temperature, speed, and pressure for each time step by calculating a continuous equation, Navi-Stokes equation, and energy conservation equation based on the three-dimensional solid element, the step (d ) To calculate the distribution of the elastic modulus of the resin entered in
    (F) When the difference in the elastic modulus of the resin calculated in step (e) is smaller than the allowable value input in step (c), repeat the above calculation until the set time is reached, and the elasticity of the resin of each element A method for calculating a resin flow behavior, comprising each step of outputting contents including a coefficient.
  3.  気体と接して成形される樹脂材料の弾性係数分布を樹脂流動解析装置が算出する樹脂流動挙動の計算方法であって、
    (a)樹脂材料が充填される空間の形状モデルを入力して、当該データに基づいて3次元ソリッド要素に分解し、
    (b)少なくとも樹脂材料の初期密度、初期熱伝導率、比熱を含む物性値、樹脂材料の初期温度、樹脂と気体の熱伝達率を含む境界条件を入力し、
    (c) 樹脂の密度を樹脂温度または樹脂の反応率を含む関数として入力し、
    (d)樹脂の弾性係数を樹脂温度の変化を含む式として入力し、
    (e)連続の式、ナビエストークスの式、エネルギ保存式を、前記3次元ソリッド要素に基づいて演算処理することにより、時間ステップごとに樹脂温度、速度、圧力を計算する際に、ステップ(c)で入力した樹脂の密度、ステップ(d)で入力した樹脂の弾性係数の分布を計算し、
    (f)上記の計算を設定時間に到達するまで繰返し、各要素の樹脂の弾性係数、密度を含む内容を出力する各ステップを有することを特徴とする樹脂流動挙動の計算方法。
    A resin flow behavior calculation method in which a resin flow analysis device calculates an elastic coefficient distribution of a resin material molded in contact with a gas,
    (A) Input a shape model of the space filled with the resin material, and decompose it into three-dimensional solid elements based on the data,
    (B) At least the initial density of the resin material, the initial thermal conductivity, the physical property value including the specific heat, the initial temperature of the resin material, the boundary conditions including the heat transfer coefficient of the resin and gas,
    (c) Enter the resin density as a function including the resin temperature or resin reaction rate,
    (D) Enter the elastic modulus of the resin as an equation that includes changes in the resin temperature,
    (E) When calculating the resin temperature, speed, and pressure for each time step by calculating a continuous equation, Navi-Stokes equation, and energy conservation equation based on the three-dimensional solid element, the step (c ) Calculate the density of the resin entered in step) and the elastic modulus distribution of the resin entered in step (d)
    (F) A resin flow behavior calculation method comprising the steps of repeating the above calculation until a set time is reached and outputting contents including the elastic modulus and density of the resin of each element.
  4.  請求項1乃至3のいずれかの請求項に記載の樹脂流動挙動の計算方法において、
     前記ステップ(a)で固体の空間の形状モデルを更に入力して、前記ステップ(b)で固体の移動速度を更に設定し、前記ステップ(a)で入力した固体を樹脂材料が接触して成形する場合の樹脂の弾性係数を含む内容を出力する各ステップを有することを特徴とする樹脂流動挙動の計算方法。
    In the calculation method of the resin flow behavior according to any one of claims 1 to 3,
    In step (a), a solid space shape model is further input, in step (b), the solid moving speed is further set, and the solid material input in step (a) is contacted and molded. A method for calculating a resin flow behavior, comprising: steps for outputting contents including an elastic modulus of the resin in the case of performing.
  5.  請求項3に記載の樹脂流動挙動の計算方法において、
     樹脂弾性係数差の許容値を更に入力し、
     前記ステップ(e)で計算した樹脂の弾性係数差が、入力した前記許容値よりも小さい場合に、前記の計算を設定時間に到達するまで繰返し、各要素の樹脂の弾性係数を含む内容を出力する各ステップを有することを特徴とする樹脂流動挙動の計算方法。
    In the calculation method of the resin flow behavior according to claim 3,
    Enter the allowable value of the difference in resin elastic modulus,
    When the difference in the elastic modulus of the resin calculated in step (e) is smaller than the input allowable value, the calculation is repeated until the set time is reached, and the contents including the elastic modulus of the resin of each element are output. And a resin flow behavior calculation method characterized by comprising:
  6.  請求項1乃至3のいずれかの請求項に記載の樹脂流動挙動の計算方法において、
     前記ステップ(b)で、樹脂の発熱反応式を更に入力することを特徴とする樹脂流動挙動の計算方法。
    In the calculation method of the resin flow behavior according to any one of claims 1 to 3,
    In the step (b), an exothermic reaction formula of the resin is further input, and the resin flow behavior calculation method is characterized.
  7.  請求項1乃至3のいずれかの請求項に記載の樹脂流動挙動の計算方法において、
     前記ステップ(b)で、樹脂の熱伝導率式を更に入力することを特徴とする樹脂流動挙動の計算方法。
    In the calculation method of the resin flow behavior according to any one of claims 1 to 3,
    In the step (b), a resin flow behavior calculation method further comprising inputting a thermal conductivity formula of the resin.
  8.  コンピュータに、気体と接して成形される樹脂材料の弾性係数分布を算出する手順を実行させるための樹脂流動挙動の計算プログラムであって、
    (a)樹脂材料が充填される空間の形状モデルを入力して、当該データに基づいて3次元ソリッド要素に分解する手順と、
    (b)少なくとも樹脂材料の密度、熱伝導率、比熱を含む物性値、樹脂材料の初期温度、樹脂と気体の熱伝達率を含む境界条件を入力する手順と、
    (c)樹脂の弾性係数を樹脂温度の変化を含む式として入力する手順と、
    (d)連続の式、ナビエストークスの式、エネルギ保存式を、前記3次元ソリッド要素に基づいて演算処理することにより、時間ステップごとに樹脂温度、速度、圧力を計算する際に、手順(c)で入力した樹脂の弾性係数の分布を計算する手順と、
    (e)上記の計算を設定時間に到達するまで繰返し、各要素の樹脂の弾性係数を含む内容を出力する各手順を実行することを特徴とする樹脂流動挙動の計算プログラム。
    A calculation program for resin flow behavior for causing a computer to execute a procedure for calculating an elastic coefficient distribution of a resin material molded in contact with a gas,
    (A) A procedure for inputting a shape model of a space filled with a resin material and decomposing it into a three-dimensional solid element based on the data;
    (B) a procedure for inputting boundary conditions including at least the density of the resin material, the thermal conductivity, the physical property value including the specific heat, the initial temperature of the resin material, and the heat transfer coefficient between the resin and gas;
    (C) a procedure for inputting the elastic modulus of the resin as an equation including a change in the resin temperature;
    (D) When calculating the resin temperature, speed, and pressure for each time step by calculating the continuous equation, Navi-Stokes equation, and energy conservation equation based on the three-dimensional solid element, the procedure (c ) To calculate the elastic modulus distribution of the resin entered in
    (E) A resin flow behavior calculation program characterized in that the above calculation is repeated until the set time is reached, and each procedure for outputting contents including the elastic modulus of the resin of each element is executed.
  9.  請求項8に記載の樹脂流動挙動の計算プログラムにおいて、
     前記手順(d)より前に、樹脂の密度を樹脂温度または樹脂の反応率を含む関数として入力する手順(f)を加え、
     前記手順(d)を、連続の式、ナビエストークスの式、エネルギ保存式を、前記3次元ソリッド要素に基づいて演算処理することにより、時間ステップごとに樹脂温度、速度、圧力を計算する際に、手順(f)で入力した樹脂の密度、手順(c)で入力した樹脂の弾性係数の分布を計算する手順と替えて、及び
     前記手順(e)を、上記の計算を設定時間に到達するまで繰返し、各要素の樹脂の弾性係数、密度を含む内容を出力する手順と替えて、各手順を実行することを特徴とする樹脂流動挙動の計算プログラム。
    In the calculation program of the resin flow behavior according to claim 8,
    Prior to the step (d), a step (f) for inputting the resin density as a function including the resin temperature or the reaction rate of the resin is added,
    When calculating the resin temperature, velocity, and pressure for each time step by calculating the continuous equation, Naviestokes equation, energy conservation equation based on the three-dimensional solid element, the procedure (d) In place of the procedure for calculating the resin density entered in step (f), the elastic modulus distribution of the resin entered in step (c), and in step (e), the above calculation reaches the set time. The resin flow behavior calculation program is characterized in that each procedure is executed instead of outputting the contents including the elastic modulus and density of the resin of each element.
  10.  請求項8、または請求項9に記載の樹脂流動挙動の計算プログラムにおいて、
     前記手順(d)より前に、樹脂材料の弾性係数差の許容値を入力する手順(g)を加え、
     前記手順(e)を、前記手順(d)で計算した樹脂の弾性係数差が、手順(g)で入力した許容値よりも小さい場合に、上記の計算を設定時間に到達するまで繰返し、各要素の樹脂の弾性係数、密度を含む内容を出力する手順と替えて、各手順を実行することを特徴とする樹脂流動挙動の計算プログラム。
    In the calculation program of the resin flow behavior according to claim 8 or claim 9,
    Prior to the step (d), a procedure (g) for inputting an allowable value of the elastic modulus difference of the resin material is added,
    The procedure (e) is repeated until the set time is reached when the difference in elastic modulus of the resin calculated in the procedure (d) is smaller than the allowable value input in the procedure (g). A resin flow behavior calculation program characterized in that each procedure is executed instead of a procedure for outputting contents including the elastic modulus and density of the resin of the element.
PCT/JP2013/081074 2013-11-18 2013-11-18 Resin flow behavior calculation method, and resin flow behavior calculation program WO2015072040A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/081074 WO2015072040A1 (en) 2013-11-18 2013-11-18 Resin flow behavior calculation method, and resin flow behavior calculation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/081074 WO2015072040A1 (en) 2013-11-18 2013-11-18 Resin flow behavior calculation method, and resin flow behavior calculation program

Publications (1)

Publication Number Publication Date
WO2015072040A1 true WO2015072040A1 (en) 2015-05-21

Family

ID=53056999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081074 WO2015072040A1 (en) 2013-11-18 2013-11-18 Resin flow behavior calculation method, and resin flow behavior calculation program

Country Status (1)

Country Link
WO (1) WO2015072040A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199211A1 (en) * 2015-06-09 2016-12-15 株式会社日立製作所 Void behavior analysis method and apparatus therefor
CN106250595A (en) * 2016-07-25 2016-12-21 四川大学 Materials hot working whole process heating power stream microstructure multiple physical field numerical computation method
CN106845021A (en) * 2017-02-28 2017-06-13 湘潭大学 Anisotropic material heat structure Topology Optimization Method based on mesh free RKPM
CN112632813A (en) * 2020-12-03 2021-04-09 浙江大学 Optimization method of curing system of large-thickness resin-based composite material
CN113962130A (en) * 2021-10-27 2022-01-21 中国地质大学(武汉) Calculation method for three-dimensional contact heat transfer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11184906A (en) * 1997-12-22 1999-07-09 Matsushita Electric Works Ltd Molding analysis method and molding die design method using the same
JP2004160912A (en) * 2002-11-15 2004-06-10 Canon Inc Optical element and manufacturing apparatus therefor
JP2006205740A (en) * 2006-04-19 2006-08-10 Hitachi Ltd Design support equipment and method for resin mold component
JP2008191830A (en) * 2007-02-02 2008-08-21 Sumitomo Heavy Ind Ltd Resin flow analysis program, resin flow analysis device and resin flow analysis method
JP2010186395A (en) * 2009-02-13 2010-08-26 Hitachi Chem Co Ltd Method and system for analyzing particle deformation for resin material containing particle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11184906A (en) * 1997-12-22 1999-07-09 Matsushita Electric Works Ltd Molding analysis method and molding die design method using the same
JP2004160912A (en) * 2002-11-15 2004-06-10 Canon Inc Optical element and manufacturing apparatus therefor
JP2006205740A (en) * 2006-04-19 2006-08-10 Hitachi Ltd Design support equipment and method for resin mold component
JP2008191830A (en) * 2007-02-02 2008-08-21 Sumitomo Heavy Ind Ltd Resin flow analysis program, resin flow analysis device and resin flow analysis method
JP2010186395A (en) * 2009-02-13 2010-08-26 Hitachi Chem Co Ltd Method and system for analyzing particle deformation for resin material containing particle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199211A1 (en) * 2015-06-09 2016-12-15 株式会社日立製作所 Void behavior analysis method and apparatus therefor
JPWO2016199211A1 (en) * 2015-06-09 2017-06-22 株式会社日立製作所 Void behavior analysis method and apparatus
CN106250595A (en) * 2016-07-25 2016-12-21 四川大学 Materials hot working whole process heating power stream microstructure multiple physical field numerical computation method
CN106250595B (en) * 2016-07-25 2019-06-07 四川大学 Materials hot working whole process heating power stream microstructure multiple physical field numerical computation method
CN106845021A (en) * 2017-02-28 2017-06-13 湘潭大学 Anisotropic material heat structure Topology Optimization Method based on mesh free RKPM
CN106845021B (en) * 2017-02-28 2020-04-07 湘潭大学 Mesh-free RKPM (Kernel theory) -based anisotropic material thermal structure topology optimization method
CN112632813A (en) * 2020-12-03 2021-04-09 浙江大学 Optimization method of curing system of large-thickness resin-based composite material
CN112632813B (en) * 2020-12-03 2022-05-31 浙江大学 Optimization method of curing system of large-thickness resin-based composite material
CN113962130A (en) * 2021-10-27 2022-01-21 中国地质大学(武汉) Calculation method for three-dimensional contact heat transfer

Similar Documents

Publication Publication Date Title
WO2015072040A1 (en) Resin flow behavior calculation method, and resin flow behavior calculation program
Han et al. A novel design method for nonuniform lattice structures based on topology optimization
Iaccarino Predictions of a turbulent separated flow using commercial CFD codes
Vasinonta et al. A process map for consistent build conditions in the solid freeform fabrication of thin-walled structures
Schmandt et al. Internal flow losses: a fresh look at old concepts
JP5355988B2 (en) Electronic component thermal stress analysis method, resin flow analysis method, and thermal stress analysis device
Gorguluarslan et al. A multilevel upscaling method for material characterization of additively manufactured part under uncertainties
Kim et al. Developments of three-dimensional computer-aided engineering simulation for injection moulding
JP4820318B2 (en) Resin molded product design support apparatus, support method, and support program
Zhou et al. Lattice Boltzmann model for predicting effective thermal conductivity of composite with randomly distributed particles: considering effect of interactions between particles and matrix
JP5190045B2 (en) Prediction method of void volume change generated in resin filled in porous material
JPWO2008044571A1 (en) Flow analysis method and flow analysis system for resin material containing particles
Yang et al. Study of Residual Wall Thickness and Multiobjective Optimization for Process Parameters of Water‐Assisted Injection Molding
Schmandt et al. Losses due to conduit components: An optimization strategy and its application
Mercier et al. Heat transfer associated to natural convection flow in a partly porous cavity
JP5492046B2 (en) Method for analyzing void growth of resin in porous body
Groot et al. Development of a numerical optimization method for blowing glass parison shapes
Chiumenti et al. On the numerical modeling of the thermomechanical contact for metal casting analysis
Mamalis et al. On the high‐density polyethylene extrusion: Numerical, analytical and experimental modeling
Pei et al. Three-dimensional paddle shift modeling for IC packaging
Carlone et al. Computational modeling of the pulling force in a conventional pultrusion process
Jaluria Thermal issues in materials processing
Chaouat Simulations of channel flows with effects of spanwise rotation or wall injection using a Reynolds stress model
Kumar Singh et al. Analysis of Turbulent Natural and Mixed Convection Flows Using the v 2–f Model
Shobayo et al. Hybrid RANS–LES Simulation of Turbulent Heat Transfer in a Channel Flow With Imposed Streamwise or Spanwise Mean Temperature Gradient

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13897451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP