WO2016199211A1 - Void behavior analysis method and apparatus therefor - Google Patents

Void behavior analysis method and apparatus therefor Download PDF

Info

Publication number
WO2016199211A1
WO2016199211A1 PCT/JP2015/066535 JP2015066535W WO2016199211A1 WO 2016199211 A1 WO2016199211 A1 WO 2016199211A1 JP 2015066535 W JP2015066535 W JP 2015066535W WO 2016199211 A1 WO2016199211 A1 WO 2016199211A1
Authority
WO
WIPO (PCT)
Prior art keywords
void
analysis
liquid material
mold
time
Prior art date
Application number
PCT/JP2015/066535
Other languages
French (fr)
Japanese (ja)
Inventor
遼太郎 島田
河野 務
眞行 美野
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/066535 priority Critical patent/WO2016199211A1/en
Priority to JP2016570904A priority patent/JPWO2016199211A1/en
Publication of WO2016199211A1 publication Critical patent/WO2016199211A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]

Definitions

  • the present invention relates to a void behavior analysis method and apparatus among information processing techniques such as flow analysis of a molding process by a computer.
  • Residual voids in molded products such as casting, injection molding, casting, etc., which are formed by injecting liquid materials (including those heated at the melting temperature) in addition to liquid materials at room temperature. It can be a cause of defects such as cracking of the molded product and dielectric breakdown. Therefore, an analysis system that predicts defects at the product and mold design stages and selects product shapes, molding conditions, mold structures, etc. by performing flow analysis including void behavior for the molding process is used. .
  • Patent Document 1 As a technique for analyzing the behavior of voids generated continuously or intermittently, there is a technique described in Patent Document 1.
  • This technology is a method of analyzing the behavior of voids generated by bubbles entrained in a molten material using a computer when filling the mold with the molten material. For each divided minute space, the flow rate of the molten material is calculated using the elapsed time from the start of filling of the molten material as a parameter, assuming the position where voids are likely to occur in any one of the minute spaces. Trace particles are virtually generated at the void generation position, and since it is assumed that the trace particles flow together with the molten material, the flow rate of the molten material is calculated at predetermined time intervals. It is a method of calculating the position where the trace particles exist after the predetermined time interval and analyzing the behavior of the void.
  • Patent Document 1 analyzes voids as trace particles, and assumes that the molten material and the trace particles flow together. For this reason, the influence of the force applied to the void other than the flow rate of the molten material is not considered. Therefore, it gives good results when the material flow rate is fast like injection molding, but when the material flow rate is slow, such as casting, the effect of force on voids such as buoyancy cannot be ignored and the error is large. Become. In particular, when the void comes into contact with the inner wall of the mold or a wall surface of a part, the error is the largest because it is affected by deformation of the void or friction with the wall surface. However, since the moving speed of the void is the slowest in the vicinity of the wall surface, it is important to predict the behavior of the void in the vicinity of the wall surface with high accuracy in order to apply to the design of a wide range of molded products.
  • an object of the present invention is to provide an analysis method and apparatus capable of accurately predicting the behavior of a void contacting a wall surface.
  • the void behavior analysis method of the present invention is used to analyze the behavior of voids generated in the molding process of the liquid material injected into the space in the mold using information processing by a computer.
  • the void particles are the inner wall or part of the mold If so, calculate the drag coefficient of the void particle as a function including the moving speed of the void particle, the void particle diameter, the viscosity of the liquid material, and the inclination angle ⁇ of the wall surface. And calculating the state quantity of each void from the state quantity of the liquid material and the amount of movement of the void particles, and after the satisfaction of the analysis end condition, each recorded analysis time and each void at the analysis end time And a step of displaying the state quantity on the screen.
  • the viscosity of the liquid material is calculated as a function including the temperature and elapsed time of the liquid material.
  • the drag coefficient of the void is calculated as a function including a Reynolds number Re, an Ebeth number Eo, a Morton number Mo, and a wall inclination angle ⁇ .
  • the void behavior analyzing apparatus uses the information processing by a computer to analyze the void behavior generated in the molding process of the liquid material injected into the space in the mold.
  • the analysis device set the analysis target product shape, mold shape, liquid material, mold and part physical property values, initial conditions for void particle generation assuming voids, liquid material initial temperature, pressure, and mold initial temperature.
  • Data input processing unit that inputs boundary conditions to be performed, initial time increment, and analysis conditions for setting analysis end conditions, stores each data in the storage unit, and reads from the storage unit during processing of each unit, and an analysis target
  • a model shape / element creation unit that divides a model space in which a liquid molding material is filled into a mold for molding a product into three-dimensional solid elements
  • a liquid material flow analysis processing unit for performing a flow analysis of the liquid material filled in the mold at each analysis time after increment and calculating a state quantity and a viscosity of the liquid material in each of the three-dimensional solid elements; In each analysis time, in the calculation of the amount of movement caused by buoyancy acting on the void particles riding on the flow of the liquid material, it is determined whether the void particles are in contact with the inner wall of the mold or the wall of the part.
  • a void movement analysis processing unit which is calculated from the amount and the movement amount of the void particles, each analysis time recorded after the completion of the analysis end condition, and each void state at the analysis end time
  • An analysis result output processing unit for displaying the amount on the screen.
  • the analysis method for the rising speed of voids (bubbles) in liquid materials is as follows: (A): Behavior of free-floating voids (bubbles), (B): Void (bubbles) in the direction of rising It is a figure explaining the comparison of the behavior of voids (bubbles) when contacting a wall surface. It is a block diagram which shows the structure of the experimental apparatus for verifying the analysis result of the void behavior analysis apparatus of a present Example. It is a scatter diagram for comparing the analysis value of the void behavior analysis apparatus of a present Example with the experimental value of the experimental apparatus shown in FIG.
  • FIG. 1 shows a schematic configuration diagram of a void behavior analyzing apparatus 100 that analyzes the behavior of the void using an electronic computer.
  • the void behavior analysis apparatus 100 can be configured on a general-purpose computer, and the hardware configuration thereof includes a calculation unit 110 including a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Storage unit 120 composed of only memory (HDD), hard disk drive (HDD), etc., input unit 130 composed of input devices such as keyboard and mouse, display devices such as LCD (Liquid Crystal Display), organic EL display, etc.
  • a display unit 140 configured by an output device or the like, a media reading unit 150 for reading information of a portable storage medium having portability such as a CD-ROM or a USB memory, a communication unit 160 configured by a NIC (Network Interface Card) or the like. , Etc.
  • the communication unit 160 is connected to an external CAD device 180 and an external computer 190 via a network 170.
  • the storage unit 120 is a storage area 121 for storing a void behavior analysis program, and an analysis target of a molded product designed by an external CAD device 180 or a three-dimensional CAD system (not shown) mounted in the same device 100.
  • An analysis target model shape data storage area 122 for storing a model, shape data of a molding die, and the like; a three-dimensional element data storage area 123 for storing a three-dimensional solid element of the analysis target model created by the finite element analysis method; Analyzes that store physical properties such as density, specific heat, thermal conductivity, surface tension, and viscosity of liquid materials such as resin materials, molded parts, and equations such as exothermic formula and viscosity formula
  • Object property / equation storage area 124 and boundary / molding condition data such as initial temperature of mold, initial temperature of liquid material, pressure, etc.
  • a data storage area 125, an analysis condition data storage area 126 including information such as an initial time increment (time width ⁇ t) and an analysis end condition (end time, etc.) at the time of analysis, and an initial void condition for generating a void are generated. It comprises an initial void condition data storage area 127 that stores data such as time, position, number, diameter, and density, and each analysis result storage area 128.
  • the calculation unit 110 implements the following functional units by loading the void behavior analysis program stored in the void behavior analysis program storage area 121 of the storage unit 120 into the RAM and executing it by the CPU.
  • the molded product molding process analysis processing unit 111 performs control for simulating the entire molding process of the analysis target model, and controls the analysis time interval of the liquid material flow analysis processing unit 114 and the void movement analysis processing unit 115 according to the analysis conditions. The entire system is controlled until the analysis end condition is satisfied.
  • the data input processing unit 112 is configured so that the molded product molding process analysis processing unit 111 simulates the entire molding process of the analysis target model, or the user (operator) in advance analyzes the analysis target model, mold shape CAD data, and the analysis target model.
  • Various physical property values, equations, boundary / molding condition data, analysis condition data, initial void condition data, and the like are received via the input unit 130 and the media reading unit 150, and are input to each storage area of the storage unit 120.
  • data created in the external CAD device 180 and the external computer 190 is received via the network 170 and the communication unit 160 and stored in the storage unit 120. Further, when necessary data is already registered in the storage unit 120 during the processing of the molded product molding process analysis processing unit 111, the data input processing unit 112 reads the data from the storage unit 120.
  • the model shape / element creation unit 113 targets the analysis region 207, which is a space in which the liquid material flows, from the shape data of the molded product stored in the analysis target model shape data storage region 122 and the shape data of the molding die.
  • the analysis region 207 is a space in which the liquid material flows, from the shape data of the molded product stored in the analysis target model shape data storage region 122 and the shape data of the molding die.
  • elements three-dimensional solid finite element regions
  • the liquid material flow analysis processing unit 114 is executed at predetermined time intervals under the control of the molded product molding process analysis processing unit 111, and each element of the liquid material injected into the analysis region 207 at the time of the analysis time t.
  • the state quantity such as velocity (flow velocity), pressure, temperature, etc., and physical properties such as viscosity are calculated.
  • the void movement analysis processing unit 115 is executed at predetermined time intervals under the control of the molded product molding process analysis processing unit 111. At the time of the analysis time t, each void element generated according to the initial void condition is the flow of the liquid material. And the position moved by buoyancy is calculated.
  • the analysis result output processing unit 116 records the analysis results for each analysis time t in the liquid material flow analysis processing unit 114 and the void movement analysis processing unit 115 in the analysis result storage area 128. After the analysis processing is completed, the analysis results are recorded. The data is output to the display unit 140 or the external computer 190.
  • FIG. 2 is a flowchart showing an embodiment in which the molded product molding process analysis processing unit 111 performs analysis processing of the behavior of voids when a liquid material is injected into a mold to mold a molded product.
  • the analysis processing is processing such as analysis, design support, and evaluation (molded product void evaluation) related to a molding process (injection / flow / curing process) in which a liquid material is injected into a mold to obtain a molded product. Indicates.
  • FIG. 3 is an example of the molding process and model space to be analyzed in this embodiment.
  • the component 202 is installed inside the mold 201.
  • a space 204 in the mold 201 is formed according to the shape of the mold 201 and the part 202.
  • the liquid material 205 is injected from the gate 203 for injecting the liquid material 205 into the space 204 in the mold 201.
  • the initial void 206 flows in due to air entrainment at the inlet or the like.
  • the void 206 comes into contact with the wall surface of the component 202 and floats along the wall surface while being deformed into an elliptical sphere.
  • the viscosity increases in the process of curing the liquid material 205, so that the void 206 cannot move freely, and molding is performed. It remains as a void 206 in the product.
  • an integrally molded product composed of the part 202 and the cured (liquid) material 205 is taken out from the mold 201.
  • the (liquid) material 205 is integrally formed with the component 202 included therein. If it is not integral molding, molding is performed without the component 202. In the present embodiment, an area including the space 204 surrounded by a dotted line in FIG. If the structures of the mold 201 and the part 202 are symmetric as shown in FIG. 3, an area where the symmetry can be secured can be set as the analysis area 207 to shorten the calculation time.
  • the mold 201 a mold or a sand mold can be used.
  • the component 202 can use various inorganic or organic materials.
  • As the liquid material 205 a material that is solid at room temperature and melts by heating (inorganic material or thermoplastic resin material) or a material that cures by heating at room temperature (thermosetting resin material) is used. Can do.
  • the operation in which the molded product molding process analysis processing unit 111 controls the entire simulation of the molding process of the model to be analyzed based on the flowchart of FIG. 2 is as follows.
  • step S101 the data input processing unit 112 guides the input of the analysis target model, the operator inputs the model shape of the analysis region 207 via the input unit 130 or the media reading unit 150, and the analysis target model shape data Store in the storage area 122.
  • the data input processing unit 112 reads the data.
  • the shape of the mold 201 and the part 202 (model shape of the analysis region 207) is stored in advance in the storage unit 122 from the external CAD device 180 via the network 170 or from the external recording medium via the media reading unit 150 to the storage unit 122. It can also be stored and read out.
  • step S102 the model shape / element creation unit 113 divides the analysis region 207 stored in the analysis target model shape data storage region 122 into a plurality of three-dimensional solid finite element regions (hereinafter referred to as elements).
  • elements three-dimensional solid finite element regions
  • a process of creating shape data and storing it in the three-dimensional element data storage area 123 of the storage unit 120 is performed.
  • the division process into elements is a known technique.
  • step S103 the data input processing unit 112 guides the input of material property values, and the operator inputs the property values of the mold 201, the part 202, and the liquid material 205 via the input unit 130 or the media reading unit 150. And stored in the storage unit 124. Alternatively, when the data has already been stored in the analysis target physical property / equation storage area 124, the data input processing unit 112 reads the data.
  • the physical property values can be stored in the storage unit 124 in advance and read out from data created by the external computer 190 via the network 170 or from an external recording medium via the media reading unit 150.
  • the physical property values of the part 202 to be input include initial temperature, heat capacity, density, thermal conductivity, and specific heat.
  • the physical property values of the input liquid material 205 include thermal conductivity, specific heat, density, surface tension, and viscosity.
  • the physical property value which has temperature dependence it is necessary to input the physical property value in the temperature range of the mold 201 at the time of molding at least. In this case, an experimentally calculated actual value may be input, or a value calculated from a physical model equation may be input.
  • the viscosity of the resin material can be calculated as a function including the temperature and elapsed time of the resin.
  • the exothermic behavior and viscosity accompanying the curing of the resin material can be calculated from the following exothermic equations (Equation 1 to Equation 5) and viscosity equations (Equation 6 to Equation 9).
  • Expressions 1 to 9 are also input as physical property values of the liquid material 205.
  • step S ⁇ b> 104 the data input processing unit 112 guides the input of the boundary / molding condition, and the operator inputs the boundary / molding condition via the input unit 130 or the media reading unit 150 and stores it in the storage unit 125. .
  • the data input processing unit 112 reads the data.
  • data created by the external computer 190 can be stored in the storage unit 125 and read in advance via the network 170 or an external recording medium.
  • the input boundary and molding conditions include the initial temperature and pressure of the liquid material 205 and the initial temperature of the mold 201.
  • step S 105 the data input processing unit 112 guides the input of the initial void condition, and the operator inputs the initial void condition via the input unit 130 or the media reading unit 150, and the initial void condition data storage area 127 is input.
  • the data is read out.
  • Input initial void conditions include time of occurrence, location, number, diameter and density. It can also be input assuming that voids are continuously generated at a certain analysis time t.
  • the void is assumed to be a void particle having the input initial void condition. Therefore, in the fluid analysis described later, a single-phase flow analysis of only the liquid phase is performed.
  • data created by the external computer 190 can be stored and read in advance in the storage unit 127 via the network 170 or an external recording medium.
  • step S ⁇ b> 106 the data input processing unit 112 guides the input of the analysis condition, and the operator inputs the analysis condition via the input unit 130 or the media reading unit 150 and stores it in the analysis condition data storage area 126. Alternatively, when the data is stored in advance in the analysis condition data storage area 126, the data input processing unit 112 reads the data.
  • the input analysis condition includes information such as an initial time increment (time width ⁇ t) and an analysis end condition (such as an end time).
  • the operator inputs an analysis start instruction via the input unit 130 after the necessary data input (input process) has been completed. Alternatively, an analysis start instruction is issued when the molded product molding process analysis processing unit 111 starts.
  • step S107 the liquid material flow analysis processing unit 114 reads the mathematical formula stored in the storage unit 124.
  • the mathematical formulas to be read out are the following continuous formula (Formula 10), Naviestokes formula (Formula 11), and energy conservation formula (Formula 12).
  • ⁇ L density of the liquid material 205
  • v L flow velocity of the liquid material 205
  • P pressure
  • T temperature
  • G gravitational acceleration
  • C constant pressure specific heat
  • k thermal conductivity
  • shear rate
  • vector Differential operator
  • the liquid material flow analysis processing unit 114 receives the values (time width ⁇ t, initial temperature, heat capacity, density, thermal conductivity, specific heat of the mold 201 and the part 202, the liquid that has been input or read from the storage unit 120 until step S106. Substituting the initial temperature, pressure, density, specific heat, thermal conductivity, exothermic formula (Formula 1 to Formula 5), viscosity formula (Formula 6 to Formula 9) of the material 205 into Formula 10 to Formula 12, and analyzing time The physical properties such as the velocity, pressure, temperature, and other physical quantities, and the viscosity of the liquid material 205 positioned in each element of the analysis region 207 at t are calculated.
  • step S108 the analysis result output processing unit 116 stores the calculation result in step S107 in the analysis result storage area 128 in a format associated with the position of each element divided in step S102.
  • the flying speed of the void at the analysis time t
  • the prediction formula of the ascending speed is distinguished and read from the storage unit 120.
  • FIG. 4 illustrates a method for analyzing the rising speed of voids (bubbles) in a liquid material.
  • FIG. 4 (A) as a prediction equation of the behavior of the free floating to voids (air bubbles), the prediction formula for drag coefficient C D in the liquid material in a wide range of physical properties have been reported in the literature as known. Ascent rate v B of the voids can be predicted by the prediction equation of C D at any bubble diameter d.
  • step S109 the void movement analysis processing unit 115 causes the component 202 in the void rising direction at the void position of the analysis time (t ⁇ t) before the analysis time t by the time width ⁇ t.
  • step S109 In the case where voids (bubbles) there are a plurality performs determination processing in step S109 for all the voids, reads a prediction equation of the moving speed V T of the voids by the process of step S111 or step S110,, followed by The process up to the void movement analysis process in step S112 is executed.
  • step S ⁇ b> 110 the void movement analysis processing unit 115 reads out from the storage unit 124 an evaluation formula for the drag coefficient of a free-floating void.
  • an evaluation formula for drag coefficient C D voids freely floating As an example, there is Equation 13 below.
  • the Reynolds number and the Etobeth number are dimensionless numbers defined by the following formulas 14 and 15.
  • step S111 the void movement analysis processing unit 115 reads from the storage unit 124 an evaluation formula for the drag coefficient of the void that rises along the wall surface.
  • an evaluation formula for the drag coefficient of the void floating along the wall surface a function including the moving speed of the void, the void diameter, the viscosity of the liquid material 205, and the inclination angle ⁇ of the wall surface is used.
  • the liquid material 205 is a resin material, as described above, a value obtained by calculating the viscosity using a function including the temperature and elapsed time of the resin can be used.
  • the inclination angle ⁇ of the wall surface is calculated as an angle formed by the vertical vector of the void and the normal vector of the wall surface.
  • Equation 18 which is a function including the Reynolds number Re, the Etobeth number Eo, the Morton number Mo, and the inclination angle ⁇ of the wall surface is used as an evaluation formula of the drag coefficient of the void floating along the wall surface.
  • the Molton number Mo is a dimensionless number defined by the following Equation 19.
  • Equation 18 is more preferably used in the form of Equation 20 below.
  • the Reynolds number Re is small, it is calculated as a function of the Reynolds number Re and the Morton number Mo, which is the first term of Equation 20.
  • the Reynolds number Re is large, the calculation is performed as a function of the Eteves number Eo, the Morton number Mo, and the wall surface inclination angle ⁇ , which are the second terms of the equation (20). This is a fact obtained by the inventors as a result of experimentally observing the behavior of voids floating along the wall surface.
  • Formula 20 is more preferably used in the form of Formula 21 below.
  • the expression 21 is more preferably used in the form of the expression 22.
  • the expression 22 is more preferably used in the form of the expression 23. The effect of using the above Equations 18 to 23 is clarified by comparing the output of the analysis processing described later and the experimental results.
  • step S112 the void movement analysis processing unit 115 calls the mathematical formula stored in the storage unit 124.
  • the formula to be called includes the following equation of motion of the void (Formula 24).
  • Evaluation formula for determining the virtual mass coefficient C VM, the lift coefficient C L and the wall surface force F W can each known ones. As an example, there are the following formulas 25 to 27.
  • the void movement analysis processing unit 115 assumes voids (bubbles) as particles in the void behavior analysis processing, and treats them as mass points that do not deform.
  • voids bubbles
  • the reason for this is that when performing a gas-liquid two-phase analysis, it is necessary to solve the two fluids with the liquid material using the void as a gas.
  • a particle By defining a particle as a kind of marker that has no analytical mass for a single laminar flow of liquid, and how it behaves in a liquid material Processing to analyze.
  • the spherical volume equivalent diameter d of the void is defined and used in the initial condition. (However, when the void (bubble) 206 shown in FIG. 3 or the like is in contact with the wall surface, the shape is changed to a flat shape so as to notify the operator that it is in contact.
  • the void movement analysis processing unit 115 adds the state quantities such as the void position, diameter, density, and velocity at each value (time width ⁇ t, analysis time (t ⁇ t)) input from the step S101 to the step S111. , And state quantities such as flow velocity, viscosity, surface tension and density of the liquid resin 205 at the analysis time t) are substituted, and the void state quantities (position, diameter, density, velocity) at the analysis time t are calculated.
  • the evaluation formula for the drag coefficient the equation read from the storage unit 124 in step S110 or step S111 is used.
  • the inclination angle ⁇ of the wall surface is calculated as an angle formed by the vertical vector of the void and the normal vector of the wall surface.
  • the calculation is performed for all the voids.
  • the void movement analysis processing unit 115 generates a new void whose occurrence is defined between the analysis time t ⁇ t and the analysis time t according to the initial void condition, at the defined position, with the defined diameter and initial velocity of 0. To generate.
  • step S113 the analysis result output processing unit 116 stores the calculation result of each void in step S112 in the analysis result storage area 128 in a form associated with the position of each element divided in step S102. If there are a plurality of voids, the calculation results are stored for all the voids.
  • step S114 the analysis time t is advanced by the initial time increment (time width ⁇ t).
  • step S115 the molded product molding process analysis processing unit 111 determines whether the analysis time t incremented by the initial time increment (time width ⁇ t) has reached the analysis end condition (end time), and the analysis time t If the analysis end condition (end time) is not reached, the process proceeds to step S107, the analysis steps from step S107 to step S115 are repeated, and if the analysis time t reaches the analysis end condition (end time) or more, the analysis is performed. It determines with complete
  • step S116 the analysis result output processing unit 116 reads out from the analysis result storage area 128 the state quantities including the positions and velocities of all the voids in each analysis step. Further, state quantities such as speed, pressure and temperature of the liquid material 205 and physical properties such as viscosity are read out. According to the read data, data in accordance with the operator's request is output to the display unit 140. Further, the analysis result is output to the external computer 190 as necessary.
  • the operator determines whether or not the residual position of the void obtained by the output process in step S116 is within the range of the target location. For example, it is determined whether it is within a range that is removed from the final molded product. If a void remains outside this range, for example, the process returns from step S101 to the input process of step S106, and the operator reattempts or modifies the design so that the void remains within the target location range. I do.
  • the physical properties and state quantities of the liquid material 205 with respect to the void 206 generated inside the liquid material 205 filled in the mold 201 In addition, it is possible to calculate and predict the void behavior that changes in accordance with the state quantity of the void within a realistic time.
  • the presence or absence of contact of the voids (bubbles) with the wall surface is determined, and if they are in contact, the evaluation process of the drag coefficient on the wall surface is used to form the liquid material 205. It is possible to calculate the void behavior when the void 206 generated in step S3 comes into contact with the mold 201 or the part 202 with higher accuracy than in the conventional evaluation formula in a realistic time.
  • the analysis model is simplified by assuming that the void is a void particle. Etc. can be predicted in a realistic calculation time. Therefore, there are effects such as cost reduction and development period shortening with respect to a molding method in which a liquid material is injected into a mold. In addition, since defects due to voids can be reduced, it contributes to improving the reliability of products.
  • the thermosetting resin material that is liquid at room temperature and is cured by heating has been mainly described.
  • the liquid material 205 is heated in solid at room temperature. Even if it is the material (an inorganic material or a thermoplastic resin material) which melt
  • FIG. 5 is a configuration diagram showing a configuration of an experimental apparatus for verifying the analysis result of the present analysis method.
  • FIG. 5A shows a front view of the experimental apparatus 300
  • FIG. 5B shows a right side view thereof.
  • a container made of transparent acrylic having a width of 100 mm and a depth of 20 mm was used, and a predetermined liquid material 205 was filled to a position of 100 mm from the bottom of the container.
  • a flat plate 301 (made of aluminum) having a length of 95 mm, a width of 15 mm, and a thickness of 2 mm was placed at a height of 50 mm from the bottom of the container.
  • the inclination angle ⁇ of the flat plate 301 was 5 °, 15 °, and 30 °.
  • a light source 306 (three 500 W halogen lamps) was irradiated from the front and back of the container, respectively.
  • An air blow nozzle 304 having an inner diameter of 1 mm was installed at the bottom of the container, and a compressed air 302 whose flow rate was adjusted by a flow rate adjusting valve 303 was sent to generate a void. Since the size of the void 206 generated from the nozzle 304 is random, a large amount of the void 206 is accumulated in a hemispherical cup 305 having an inner diameter of 8 mm, and then the cup 305 is inverted and floated. Generated.
  • the behavior when the void 206 rises after colliding with the inclined flat plate 301 is measured using a high-speed camera 307 (high-speed camera: Phototron FASTCAM-1024PCI (R), lens: Nikon 50 mm / F2.8) Images were taken under the conditions of a frame rate of 250 fps, a resolution of 1024 ⁇ 1024 pixels, a lens aperture value F11, and a shutter speed of 1/10000 seconds. Experimental values of the spherical volume equivalent diameter and velocity of the void 206 were calculated by image processing of the captured moving image. In addition, Reynolds number and drag coefficient when the velocity of the void 206 rising along the wall surface became constant were calculated.
  • the temperature was constant at 20 ° C.
  • the region filled with the liquid material 205 in FIG. 5 is modeled as an analysis region, and the analysis processing is performed with the flowchart shown in FIG. 2 to calculate the analysis value of the velocity of the void 206 at various sphere volume equivalent diameters.
  • Reynolds number and drag coefficient when the velocity of the void 206 rising along the wall surface became constant were calculated.
  • the physical property value of the liquid material 205 the physical property value of the silicon oil used in the above experiment was used.
  • the temperature was kept constant at 20 ° C. as in the above experiment, and the resin pressure was 0.
  • the setting was made so that the spherical volume equivalent diameter of 0.2 to 10 mm was continuously and randomly generated with the position in the vicinity of the nozzle as in the above experiment and the density as the value of air.
  • the initial time width ⁇ t was set to 0.01 s.
  • an evaluation formula for the drag coefficient of a void that floats along an inclined flat plate an analysis process similar to that in the above analysis example is performed using Formula 13 that is an evaluation formula for an existing free-floating void. Similar analysis values were calculated.
  • FIG. 6 shows experimental values and analysis values of the Reynolds number and drag coefficient when the void 206 rising along the wall surface rises at a constant speed.
  • the point (plot) is an experimental value
  • the dotted line is an analytical value using the conventional equation 13 as an evaluation formula for the drag coefficient of a void floating along the inclined flat plate
  • the solid line is the drag coefficient of the void 206 floating along the inclined flat plate.
  • the analysis values using Expression 23 of the present embodiment are shown as the evaluation expressions. From the figure, in any case, the analysis value using Equation 23 of the present embodiment is in good agreement with the experimental value, and the behavior of the void 206 that floats along the wall surface with higher accuracy than the conventional Equation 13 is shown. It can be seen that can be calculated. When the correlation coefficient R between the experimental value and the analysis value was compared, in any case, the value of the correlation coefficient R was higher in the analysis value using Expression 23 of this embodiment. From the above, it was shown that the behavior of the void 206 that floats along the wall surface can be calculated with high accuracy in the analysis processing of the present embodiment.
  • the movement speed of the void is the slowest in the vicinity of the wall surface, by making it possible to predict the behavior of the void in the vicinity of the wall surface with high accuracy, the residual position of the void in the mold 201 can be determined with higher accuracy than before. Predictable. Thereby, optimization of the above-described molded product and process and design support thereof can be performed more efficiently.
  • the material flow rate is slow, such as casting, the effect of the force (buoyancy, drag, etc.) applied to the void on the material flow increases, so that the analysis processing effect of this embodiment can be obtained more remarkably. Can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

A void behavior analysis method for analyzing, by means of a computer, the behavior of a void generated in the process of molding a liquid material injected into a space inside a mold comprises: an input step of inputting or generating a shape corresponding to a filling part of a product to be analyzed, a physical property value of a filling material, and an initial condition of a void particle, assuming the existence of a void; and a calculation step of calculating an amount of movement of the void particle at prescribed time intervalf, using data from the input step. In the calculation step, a determination is made as to whether the void particle is in contact with a wall surface, for each time step. If it is determined that the void particle is in contact with a wall surface, a resistance coefficient of the void is calculated as a function including the movement speed of the void, the diameter of the void, the viscosity of a resin material, and the angle of inclination of the wall surface.

Description

ボイド挙動の解析方法、およびその装置Void behavior analysis method and apparatus
 本発明は、コンピュータによる成形プロセスの流動解析などの情報処理の技術のうち、ボイド挙動の解析方法、およびその装置に関する。 The present invention relates to a void behavior analysis method and apparatus among information processing techniques such as flow analysis of a molding process by a computer.
 注型、射出成形、および鋳造など、液状材料(常温にて液体の材料の他に、材料を溶融温度以上に加熱した場合も含む)を型に注入して成形した成形品中の残留ボイドは、成形品の割れや絶縁破壊といった不良の要因となり得る。そのため、成形工程を対象にボイドの挙動を含む流動解析を行うことにより、製品、型の設計段階で不良を予測し、製品形状、成形条件、型構造などを選定する解析システムが用いられている。 Residual voids in molded products such as casting, injection molding, casting, etc., which are formed by injecting liquid materials (including those heated at the melting temperature) in addition to liquid materials at room temperature. It can be a cause of defects such as cracking of the molded product and dielectric breakdown. Therefore, an analysis system that predicts defects at the product and mold design stages and selects product shapes, molding conditions, mold structures, etc. by performing flow analysis including void behavior for the molding process is used. .
 継続的あるいは断続的に発生するボイドの挙動を解析する技術として、特許文献1に記載の技術がある。この技術は、「溶融材料を型に充填して成形する際に、溶融材料中に気泡が巻き込まれて生じるボイドの挙動を電子計算機を用いて解析する方法である。型内空間を多数に区割した微小空間毎に溶融材料の充填開始時からの経過時間をパラメータとして溶融材料の流動速度を算出する。前記微小空間のいずれかにボイドの発生し易い位置を仮定して、前記仮定されたボイド発生位置においてトレース粒子を仮想的に発生させる。このトレース粒子は、溶融材料と一体となって流動すると仮定しているため、所定時間間隔で溶融材料の流動速度を算出するのに合わせて、前記所定時間間隔後の該トレース粒子の存在する位置を算出して、ボイドの挙動を解析する方法である。」 As a technique for analyzing the behavior of voids generated continuously or intermittently, there is a technique described in Patent Document 1. This technology is a method of analyzing the behavior of voids generated by bubbles entrained in a molten material using a computer when filling the mold with the molten material. For each divided minute space, the flow rate of the molten material is calculated using the elapsed time from the start of filling of the molten material as a parameter, assuming the position where voids are likely to occur in any one of the minute spaces. Trace particles are virtually generated at the void generation position, and since it is assumed that the trace particles flow together with the molten material, the flow rate of the molten material is calculated at predetermined time intervals. It is a method of calculating the position where the trace particles exist after the predetermined time interval and analyzing the behavior of the void.
特開平5-337999号公報JP-A-5-337999
 特許文献1の技術は、ボイドをトレース粒子として解析を行っており、溶融材料とトレース粒子が一体となって流動すると仮定をしている。このため、溶融材料の流動速度以外にボイドにかかる力の影響を考慮していない。従って、射出成形のように材料の流動速度が速いときには良好な結果を与えるが、注型など材料の流動速度が遅い場合においては、浮力などのボイドにかかる力の影響を無視できず誤差が大きくなる。特に、ボイドが金型の内壁や部品などの壁面に接触した場合、ボイドの変形や壁面との摩擦などの影響を受けるため、最も誤差が大きくなる。しかし、ボイドの移動速度は壁面近傍において最も遅くなるため、広範囲の成形品の設計に適用するためには、壁面近傍におけるボイドの挙動を高精度に予測することが重要である。 The technology of Patent Document 1 analyzes voids as trace particles, and assumes that the molten material and the trace particles flow together. For this reason, the influence of the force applied to the void other than the flow rate of the molten material is not considered. Therefore, it gives good results when the material flow rate is fast like injection molding, but when the material flow rate is slow, such as casting, the effect of force on voids such as buoyancy cannot be ignored and the error is large. Become. In particular, when the void comes into contact with the inner wall of the mold or a wall surface of a part, the error is the largest because it is affected by deformation of the void or friction with the wall surface. However, since the moving speed of the void is the slowest in the vicinity of the wall surface, it is important to predict the behavior of the void in the vicinity of the wall surface with high accuracy in order to apply to the design of a wide range of molded products.
 そこで、本発明では、壁面に接触したボイドの挙動を正確に予測可能な解析方法、およびその装置を提供することを目的とする。 Therefore, an object of the present invention is to provide an analysis method and apparatus capable of accurately predicting the behavior of a void contacting a wall surface.
 上記課題を解決するために本発明のボイド挙動解析方法を、コンピュータによる情報処理を用いて、型内の空間に注入される液状材料の成形プロセスにおいて発生するボイドの挙動を解析するボイド挙動の解析方法において、解析対象製品を成形する型に液状材料が充填されるモデル空間を3次元ソリッド要素に分割する工程と、液状材料、型、および部品の物性値、ボイドを仮定したボイド粒子の発生の初期条件、液状材料の初期温度、圧力、および型の初期温度を設定する境界条件、並びに初期時間増分、および解析終了条件を設定する解析条件を入力、または読出しをする工程と、前記時間増分間隔で、前記時間増分後の各解析時間における前記型へ充填される前記液状材料の流動解析を行い、前記各3次元ソリッド要素内の前記液状材料の状態量、粘度を算出する工程と、前記各解析時間における、前記液状材料の流動に乗った前記ボイド粒子に浮力が働いて生ずる移動量の演算において、前記ボイド粒子が前記型内壁または部品の壁面に接触しているかを判定し、接触している場合は、前記ボイド粒子の抗力係数をボイド粒子の移動速度、ボイド粒子径、液状材料の粘度および壁面の傾斜角度θを含む関数として計算し、各ボイドの状態量を前記液状材料の状態量と前記ボイド粒子の移動量より算出する工程と、前記解析終了条件の成立後、記録された各解析時間、および解析終了時間における各ボイドの状態量を画面表示する工程とを有して構成する。 In order to solve the above problems, the void behavior analysis method of the present invention is used to analyze the behavior of voids generated in the molding process of the liquid material injected into the space in the mold using information processing by a computer. In the method, the process of dividing the model space in which the liquid material is filled in the mold for molding the product to be analyzed into three-dimensional solid elements, and the generation of void particles assuming the physical properties of the liquid material, mold, and parts, and voids. Inputting or reading initial conditions, boundary conditions for setting the initial temperature of liquid material, pressure, and initial temperature of the mold, as well as initial time increments and analysis conditions for setting analysis end conditions, and the time increment interval The flow analysis of the liquid material filled in the mold at each analysis time after the time increment is performed, and the liquid in each three-dimensional solid element is analyzed. In the step of calculating the state quantity and viscosity of the material, and in the calculation of the amount of movement caused by buoyancy acting on the void particles riding on the flow of the liquid material in each analysis time, the void particles are the inner wall or part of the mold If so, calculate the drag coefficient of the void particle as a function including the moving speed of the void particle, the void particle diameter, the viscosity of the liquid material, and the inclination angle θ of the wall surface. And calculating the state quantity of each void from the state quantity of the liquid material and the amount of movement of the void particles, and after the satisfaction of the analysis end condition, each recorded analysis time and each void at the analysis end time And a step of displaying the state quantity on the screen.
 また、本発明の他の特徴として、前記ボイド挙動の解析方法において、前記液状材料の粘度を、液状材料の温度と経過時間を含む関数として計算する。 As another feature of the present invention, in the void behavior analysis method, the viscosity of the liquid material is calculated as a function including the temperature and elapsed time of the liquid material.
 また、本発明の更に他の特徴として、前記ボイド挙動の解析方法において、前記ボイドの抗力係数をレイノルズ数Re、エトベス数Eo、モルトン数Mo、および壁面の傾斜角度θを含む関数として計算する。 Further, as still another feature of the present invention, in the void behavior analysis method, the drag coefficient of the void is calculated as a function including a Reynolds number Re, an Ebeth number Eo, a Morton number Mo, and a wall inclination angle θ.
 また、上記課題を解決するために本発明のボイド挙動解析装置を、コンピュータによる情報処理を用いて、型内の空間に注入される液状材料の成形プロセスにおいて発生するボイドの挙動を解析するボイド挙動解析装置において、解析対象製品形状、型形状、液状材料、型、および部品の物性値、ボイドを仮定したボイド粒子の発生の初期条件、液状材料の初期温度、圧力、および型の初期温度を設定する境界条件、並びに初期時間増分、および解析終了条件を設定する解析条件を入力して、記憶部へ各データを格納して、各部の処理時に前記記憶部より読み出すデータ入力処理部と、解析対象製品を成形する型に液状材料が充填されるモデル空間を3次元ソリッド要素に分割するモデル形状・要素作成部と、前記時間増分間隔で、前記時間増分後の各解析時間における前記型へ充填される前記液状材料の流動解析を行い、前記各3次元ソリッド要素内の前記液状材料の状態量、粘度を算出する液状材料流動解析処理部と、前記各解析時間における、前記液状材料の流動に乗った前記ボイド粒子に浮力が働いて生ずる移動量の演算において、前記ボイド粒子が前記型内壁または部品の壁面に接触しているかを判定し、接触している場合は、前記ボイド粒子の抗力係数をボイド粒子の移動速度、ボイド粒子径、液状材料の粘度および壁面の傾斜角度θを含む関数として計算し、各ボイドの状態量を前記液状材料の状態量と前記ボイド粒子の移動量より算出するボイド移動解析処理部と、前記解析終了条件の成立後、記録された各解析時間、および解析終了時間における各ボイドの状態量を画面表示する解析結果出力処理部とを有するように構成する。 In order to solve the above-mentioned problems, the void behavior analyzing apparatus according to the present invention uses the information processing by a computer to analyze the void behavior generated in the molding process of the liquid material injected into the space in the mold. In the analysis device, set the analysis target product shape, mold shape, liquid material, mold and part physical property values, initial conditions for void particle generation assuming voids, liquid material initial temperature, pressure, and mold initial temperature. Data input processing unit that inputs boundary conditions to be performed, initial time increment, and analysis conditions for setting analysis end conditions, stores each data in the storage unit, and reads from the storage unit during processing of each unit, and an analysis target A model shape / element creation unit that divides a model space in which a liquid molding material is filled into a mold for molding a product into three-dimensional solid elements; A liquid material flow analysis processing unit for performing a flow analysis of the liquid material filled in the mold at each analysis time after increment and calculating a state quantity and a viscosity of the liquid material in each of the three-dimensional solid elements; In each analysis time, in the calculation of the amount of movement caused by buoyancy acting on the void particles riding on the flow of the liquid material, it is determined whether the void particles are in contact with the inner wall of the mold or the wall of the part. And calculating the drag coefficient of the void particle as a function including the moving speed of the void particle, the void particle diameter, the viscosity of the liquid material, and the inclination angle θ of the wall surface, and the state quantity of each void is calculated as the state of the liquid material. A void movement analysis processing unit which is calculated from the amount and the movement amount of the void particles, each analysis time recorded after the completion of the analysis end condition, and each void state at the analysis end time An analysis result output processing unit for displaying the amount on the screen.
 本発明によれば、壁面に沿って浮上するボイドの挙動を高精度に予測可能となる。 According to the present invention, it is possible to predict the behavior of a void that floats along a wall surface with high accuracy.
液状材料を型に充填して成形するプロセス中に発生するボイドの挙動を電子計算機を用いて解析するボイド挙動解析装置の概略構成図である。It is a schematic block diagram of the void behavior analysis apparatus which analyzes the behavior of the void which generate | occur | produces in the process of filling a liquid material into a type | mold and using a computer. 液状材料を型に注入して成形する際のボイドの挙動の解析処理を表すフローチャートである。It is a flowchart showing the analysis process of the behavior of the void at the time of inject | pouring a liquid material into a type | mold and shape | molding. 本実施例のボイド挙動解析装置が解析対象とする成形工程およびモデル空間の一例を示す工程図である。It is process drawing which shows an example of the shaping | molding process and model space which the void behavior analysis apparatus of a present Example makes into analysis object. 液状材料中のボイド(気泡)の浮上速度解析方法を、(A):自由浮上するボイド(気泡)の挙動、(B):ボイド(気泡)が浮上方向に金型の内壁や、部品などの壁面に接触した場合のボイド(気泡)の挙動を対比して説明する図である。The analysis method for the rising speed of voids (bubbles) in liquid materials is as follows: (A): Behavior of free-floating voids (bubbles), (B): Void (bubbles) in the direction of rising It is a figure explaining the comparison of the behavior of voids (bubbles) when contacting a wall surface. 本実施例のボイド挙動解析装置の解析結果を検証するための実験装置の構成を示す構成図である。It is a block diagram which shows the structure of the experimental apparatus for verifying the analysis result of the void behavior analysis apparatus of a present Example. 本実施例のボイド挙動解析装置の解析値と図5に示す実験装置の実験値を比較するための散布図である。It is a scatter diagram for comparing the analysis value of the void behavior analysis apparatus of a present Example with the experimental value of the experimental apparatus shown in FIG.
 以下、実施例を図面を用いて説明する。 Hereinafter, examples will be described with reference to the drawings.
 先ず、本実施例の解析対象の一例として、半導体パッケージの射出成形工程を挙げる。上型と下型の間に設置された部品(リードフレーム上の素子)を樹脂材料により封じ込むために、液状樹脂材料を型に充填して、成形する工程である。この場合に、液状樹脂材料の充填中に樹脂材料中に気泡が巻き込まれてボイドが発生し、このボイドが充填の進行とともに型内を流動して、成形品中にボイドが残ることがある。このボイドの挙動を電子計算機を用いて解析するボイド挙動解析装置100の概略構成図を図1に示す。 First, as an example of the analysis target of this embodiment, a semiconductor package injection molding process is given. This is a process in which a liquid resin material is filled in a mold and molded in order to seal a component (an element on a lead frame) installed between the upper mold and the lower mold with a resin material. In this case, air bubbles are entrained in the resin material during the filling of the liquid resin material, and voids are generated. The voids flow in the mold as the filling proceeds, and the voids may remain in the molded product. FIG. 1 shows a schematic configuration diagram of a void behavior analyzing apparatus 100 that analyzes the behavior of the void using an electronic computer.
 ボイド挙動解析装置100は、汎用の計算機上に構成することができて、そのハードウェア構成は、CPU(Central Processing Unit)、RAM(Random Access Memory)などにより構成される演算部110、ROM(Read Only Memory)、HDD(Hard Disk Drive)などにより構成される記憶部120、キーボードやマウス等の入力デバイスより構成される入力部130、LCD(Liquid Crystal Display)、有機ELディスプレイなどの表示装置、各種出力装置などにより構成される表示部140、CD-ROM、USBメモリなどの可搬性を有する可搬型記憶媒体の情報を読み出すメディア読取部150、NIC(Network Interface Card)などにより構成される通信部160、などを備える。
  通信部160は、ネットワーク170を介して外部のCAD装置180、および外部計算機190と接続されている。
The void behavior analysis apparatus 100 can be configured on a general-purpose computer, and the hardware configuration thereof includes a calculation unit 110 including a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Storage unit 120 composed of only memory (HDD), hard disk drive (HDD), etc., input unit 130 composed of input devices such as keyboard and mouse, display devices such as LCD (Liquid Crystal Display), organic EL display, etc. A display unit 140 configured by an output device or the like, a media reading unit 150 for reading information of a portable storage medium having portability such as a CD-ROM or a USB memory, a communication unit 160 configured by a NIC (Network Interface Card) or the like. , Etc.
The communication unit 160 is connected to an external CAD device 180 and an external computer 190 via a network 170.
 記憶部120は、ボイド挙動解析プログラムを格納する記憶領域121と、外部のCAD装置180または同じ装置100内に実装された3次元CADシステム(図示せず)などにより設計された成形品の解析対象モデル、及び成形用金型の形状データなどを格納する解析対象モデル形状データ記憶領域122と、有限要素解析法により作成した解析対象モデルの3次元ソリッド要素を記憶する3次元要素データ記憶領域123と、樹脂材料などの液状材料、成形品の中に封じる部品などの密度、比熱、熱伝導率、表面張力、および粘度などの解析対象物性と、発熱式、粘度式などの各方程式を記憶する解析対象物性・方程式記憶領域124と、金型の初期温度、液状材料の初期温度、圧力などの境界・成形条件データを記憶する境界・成形条件データ記憶領域125と、解析時の初期時間増分(時間幅Δt)および解析終了条件(終了時間など)などの情報を含む解析条件データ記憶領域126と、ボイドが発生する初期ボイド条件を、発生時間、位置、数、直径、および密度などのデータにより記憶する初期ボイド条件データ記憶領域127と、各解析結果記憶領域128より構成される。 The storage unit 120 is a storage area 121 for storing a void behavior analysis program, and an analysis target of a molded product designed by an external CAD device 180 or a three-dimensional CAD system (not shown) mounted in the same device 100. An analysis target model shape data storage area 122 for storing a model, shape data of a molding die, and the like; a three-dimensional element data storage area 123 for storing a three-dimensional solid element of the analysis target model created by the finite element analysis method; Analyzes that store physical properties such as density, specific heat, thermal conductivity, surface tension, and viscosity of liquid materials such as resin materials, molded parts, and equations such as exothermic formula and viscosity formula Object property / equation storage area 124 and boundary / molding condition data such as initial temperature of mold, initial temperature of liquid material, pressure, etc. A data storage area 125, an analysis condition data storage area 126 including information such as an initial time increment (time width Δt) and an analysis end condition (end time, etc.) at the time of analysis, and an initial void condition for generating a void are generated. It comprises an initial void condition data storage area 127 that stores data such as time, position, number, diameter, and density, and each analysis result storage area 128.
 演算部110は、記憶部120のボイド挙動解析プログラム記憶領域121に記憶されているボイド挙動解析プログラムをRAMへロードしてCPUで実行することにより以下の各機能部を実現する。
  成形品成形工程解析処理部111は、解析対象モデルの成形工程全体をシミュレーションする制御を行い、解析条件に従って、液状材料流動解析処理部114、およびボイド移動解析処理部115の解析時間間隔の制御、並びに解析終了条件成立まで全体を制御する。
The calculation unit 110 implements the following functional units by loading the void behavior analysis program stored in the void behavior analysis program storage area 121 of the storage unit 120 into the RAM and executing it by the CPU.
The molded product molding process analysis processing unit 111 performs control for simulating the entire molding process of the analysis target model, and controls the analysis time interval of the liquid material flow analysis processing unit 114 and the void movement analysis processing unit 115 according to the analysis conditions. The entire system is controlled until the analysis end condition is satisfied.
 データ入力処理部112は、成形品成形工程解析処理部111が解析対象モデルの成形工程全体をシミュレーションする中で、または事前にユーザ(オペレータ)が解析対象モデル、型形状のCADデータ、解析対象の各種物性値、各方程式、境界・成形条件データ、解析条件データ、初期ボイド条件データなどを、入力部130、メディア読取部150を介して入力するのを受付けて、記憶部120の各記憶領域へ記憶する。また、外部のCAD装置180、外部計算機190において作成したデータをネットワーク170、通信部160を介して受付けて、記憶部120へ記憶する。更に、成形品成形工程解析処理部111の処理中に、必要とするデータが既に記憶部120に登録されている場合には、データ入力処理部112は記憶部120からデータを読み出す。 The data input processing unit 112 is configured so that the molded product molding process analysis processing unit 111 simulates the entire molding process of the analysis target model, or the user (operator) in advance analyzes the analysis target model, mold shape CAD data, and the analysis target model. Various physical property values, equations, boundary / molding condition data, analysis condition data, initial void condition data, and the like are received via the input unit 130 and the media reading unit 150, and are input to each storage area of the storage unit 120. Remember. In addition, data created in the external CAD device 180 and the external computer 190 is received via the network 170 and the communication unit 160 and stored in the storage unit 120. Further, when necessary data is already registered in the storage unit 120 during the processing of the molded product molding process analysis processing unit 111, the data input processing unit 112 reads the data from the storage unit 120.
 モデル形状・要素作成部113は、解析対象モデル形状データ記憶領域122に格納された成形品の形状データ、及び成形用金型の形状データより、液状材料が流動する空間である解析領域207を対象として、複数の3次元ソリッド有限要素領域(以下、要素と称する)に分割し、各要素の形状データを作成して3次元要素データ記憶領域123に格納する。 The model shape / element creation unit 113 targets the analysis region 207, which is a space in which the liquid material flows, from the shape data of the molded product stored in the analysis target model shape data storage region 122 and the shape data of the molding die. Are divided into a plurality of three-dimensional solid finite element regions (hereinafter referred to as elements), and the shape data of each element is created and stored in the three-dimensional element data storage region 123.
 液状材料流動解析処理部114は、成形品成形工程解析処理部111の制御の下で、所定時間間隔で実行され、解析時間tの時点で、解析領域207内に注入された液状材料の各要素の位置における速度(流速)、圧力、温度などの状態量、および粘度などの物性を計算する。 The liquid material flow analysis processing unit 114 is executed at predetermined time intervals under the control of the molded product molding process analysis processing unit 111, and each element of the liquid material injected into the analysis region 207 at the time of the analysis time t. The state quantity such as velocity (flow velocity), pressure, temperature, etc., and physical properties such as viscosity are calculated.
 ボイド移動解析処理部115は、成形品成形工程解析処理部111の制御の下で、所定時間間隔で実行され、解析時間tの時点で、初期ボイド条件に従って発生した各ボイド素子が液状材料の流動と、浮力によって移動した位置を計算する。 The void movement analysis processing unit 115 is executed at predetermined time intervals under the control of the molded product molding process analysis processing unit 111. At the time of the analysis time t, each void element generated according to the initial void condition is the flow of the liquid material. And the position moved by buoyancy is calculated.
 解析結果出力処理部116は、液状材料流動解析処理部114、およびボイド移動解析処理部115における解析時間t毎の解析結果を解析結果記憶領域128へ記録し、解析処理の終了後、解析結果を表示部140、または外部計算機190へ出力する。 The analysis result output processing unit 116 records the analysis results for each analysis time t in the liquid material flow analysis processing unit 114 and the void movement analysis processing unit 115 in the analysis result storage area 128. After the analysis processing is completed, the analysis results are recorded. The data is output to the display unit 140 or the external computer 190.
 図2は、液状材料を型に注入して成形品を成形する際のボイドの挙動の解析処理を成形品成形工程解析処理部111が実施する形態を示すフローチャートである。なお、本実施形態において、解析処理とは、液状材料を型に注入して成形品を得る成形工程(注入・流動・硬化工程)に関する解析・設計支援・評価(成形品ボイド評価)等の処理を示す。 FIG. 2 is a flowchart showing an embodiment in which the molded product molding process analysis processing unit 111 performs analysis processing of the behavior of voids when a liquid material is injected into a mold to mold a molded product. In the present embodiment, the analysis processing is processing such as analysis, design support, and evaluation (molded product void evaluation) related to a molding process (injection / flow / curing process) in which a liquid material is injected into a mold to obtain a molded product. Indicates.
 図3は、本実施形態において解析対象とする成形工程およびモデル空間の一例である。図3(A)に示す液状材料205の注入前の状態において、型201の内部に部品202が設置されている。型201及び部品202の形状に応じて、型201内の空間204が形成される。
  図3(B)に示す液状材料205の注入工程の初期では、型201内の空間204に液状材料205を注入するためのゲート203から、液状材料205を注入する。このとき、注入口での空気巻き込みなどにより、初期のボイド206が流入する。
FIG. 3 is an example of the molding process and model space to be analyzed in this embodiment. In a state before injection of the liquid material 205 shown in FIG. 3A, the component 202 is installed inside the mold 201. A space 204 in the mold 201 is formed according to the shape of the mold 201 and the part 202.
At the initial stage of the liquid material 205 injection step shown in FIG. 3B, the liquid material 205 is injected from the gate 203 for injecting the liquid material 205 into the space 204 in the mold 201. At this time, the initial void 206 flows in due to air entrainment at the inlet or the like.
 図3(C)に示す液状材料205の注入工程の充填前の状態では、ボイド206は部品202の壁面と接触し、楕円球などに変形しながら壁面に沿って浮上する。
  図3(D)に示す型201内の空間204に液状材料205が充填された状態では、液状材料205を硬化する工程で粘度が上昇するため、ボイド206は自由に動くことが出来なくなり、成形品中のボイド206として残留する。液状材料205が硬化した後、部品202と硬化した(液状)材料205からなる一体成形品が型201から取り出される。なお、上記の工程においては部品202を内部に含んだ状態で(液状)材料205を一体成形する。一体成形でない場合、部品202は無い状態で成形する。本実施形態において、図3の点線で囲われた空間204を含む領域を解析領域207とした。なお、図3のように型201および部品202の構造に対称性がある場合、対称性が確保できる領域を解析領域207として設定して計算時間を短縮することもできる。
In the state before the filling process of the liquid material 205 shown in FIG. 3C, the void 206 comes into contact with the wall surface of the component 202 and floats along the wall surface while being deformed into an elliptical sphere.
In a state in which the liquid material 205 is filled in the space 204 in the mold 201 shown in FIG. 3D, the viscosity increases in the process of curing the liquid material 205, so that the void 206 cannot move freely, and molding is performed. It remains as a void 206 in the product. After the liquid material 205 is cured, an integrally molded product composed of the part 202 and the cured (liquid) material 205 is taken out from the mold 201. In the above process, the (liquid) material 205 is integrally formed with the component 202 included therein. If it is not integral molding, molding is performed without the component 202. In the present embodiment, an area including the space 204 surrounded by a dotted line in FIG. If the structures of the mold 201 and the part 202 are symmetric as shown in FIG. 3, an area where the symmetry can be secured can be set as the analysis area 207 to shorten the calculation time.
 型201としては、金型あるいは砂型を用いることができる。部品202は各種の無機あるいは有機材料を用いることができる。液状材料205としては、常温において固体で加熱により溶融して液体となる材料(無機材料や熱可塑性樹脂材料)、あるいは常温において液体で加熱により硬化する材料(熱硬化性樹脂材料)などを用いることができる。 As the mold 201, a mold or a sand mold can be used. The component 202 can use various inorganic or organic materials. As the liquid material 205, a material that is solid at room temperature and melts by heating (inorganic material or thermoplastic resin material) or a material that cures by heating at room temperature (thermosetting resin material) is used. Can do.
 成形品成形工程解析処理部111が図2のフローチャートに基づいて、解析対象モデルの成形工程のシミュレーション全体を制御する動作は以下のとおりである。 The operation in which the molded product molding process analysis processing unit 111 controls the entire simulation of the molding process of the model to be analyzed based on the flowchart of FIG. 2 is as follows.
 ステップS101において、データ入力処理部112が、解析対象モデルの入力をガイドして、オペレータが入力部130、またはメディア読取部150を介して解析領域207のモデル形状を入力し、解析対象モデル形状データ記憶領域122に格納する。あるいは、事前に記憶部120の解析対象モデル形状データ記憶領域122に当該データが格納済みの場合はデータ入力処理部112が当該データを読み出す。型201および部品202の形状(解析領域207のモデル形状)は、ネットワーク170を介して外部のCAD装置180から、あるいはメディア読取部150を介して外部記録媒体からCADデータなどを記憶部122に事前に格納して読み出すこともできる。 In step S101, the data input processing unit 112 guides the input of the analysis target model, the operator inputs the model shape of the analysis region 207 via the input unit 130 or the media reading unit 150, and the analysis target model shape data Store in the storage area 122. Alternatively, when the data is already stored in the analysis target model shape data storage area 122 of the storage unit 120, the data input processing unit 112 reads the data. The shape of the mold 201 and the part 202 (model shape of the analysis region 207) is stored in advance in the storage unit 122 from the external CAD device 180 via the network 170 or from the external recording medium via the media reading unit 150 to the storage unit 122. It can also be stored and read out.
 ステップS102において、モデル形状・要素作成部113が解析対象モデル形状データ記憶領域122に格納された解析領域207を複数の3次元ソリッド有限要素領域(以下、要素と称する)に分割し、各要素の形状データを作成して記憶部120の3次元要素データ記憶領域123に格納する処理を行う。なお要素への分割処理は公知技術である。 In step S102, the model shape / element creation unit 113 divides the analysis region 207 stored in the analysis target model shape data storage region 122 into a plurality of three-dimensional solid finite element regions (hereinafter referred to as elements). A process of creating shape data and storing it in the three-dimensional element data storage area 123 of the storage unit 120 is performed. The division process into elements is a known technique.
 ステップS103において、データ入力処理部112が、材料物性値の入力をガイドして、オペレータが入力部130、またはメディア読取部150を介して型201、部品202、および液状材料205の物性値を入力して記憶部124に格納する。あるいは、予め解析対象物性・方程式記憶領域124に当該データが格納済みの場合はデータ入力処理部112が当該データを読み出す。上記物性値は、ネットワーク170を介して外部計算機190にて作成したデータを、あるいはメディア読取部150を介して外部記録媒体から事前に記憶部124に格納して読み出すこともできる。 In step S103, the data input processing unit 112 guides the input of material property values, and the operator inputs the property values of the mold 201, the part 202, and the liquid material 205 via the input unit 130 or the media reading unit 150. And stored in the storage unit 124. Alternatively, when the data has already been stored in the analysis target physical property / equation storage area 124, the data input processing unit 112 reads the data. The physical property values can be stored in the storage unit 124 in advance and read out from data created by the external computer 190 via the network 170 or from an external recording medium via the media reading unit 150.
 入力する部品202の物性値は、初期温度、熱容量、密度、熱伝導率、および比熱を含む。また、入力する液状材料205の物性値は、熱伝導率、比熱、密度、表面張力、および粘度を含む。なお、温度依存性を有する物性値については、少なくとも成形時の型201の温度範囲における物性値を入力する必要がある。この場合、実験的に求めた実測値を入力しても良いし、物理モデル式から計算した値を入力しても良い。また、液状材料205が樹脂材料の場合、樹脂材料の粘度を樹脂の温度と経過時間を含む関数として計算することができる。一例として、樹脂材料の硬化に伴う発熱挙動および粘度を以下の発熱式(数式1~数式5)、および粘度式(数式6~数式9)から計算することができる。この場合、液状材料205の物性値として、数式1~数式9も入力する。 The physical property values of the part 202 to be input include initial temperature, heat capacity, density, thermal conductivity, and specific heat. The physical property values of the input liquid material 205 include thermal conductivity, specific heat, density, surface tension, and viscosity. In addition, about the physical property value which has temperature dependence, it is necessary to input the physical property value in the temperature range of the mold 201 at the time of molding at least. In this case, an experimentally calculated actual value may be input, or a value calculated from a physical model equation may be input. When the liquid material 205 is a resin material, the viscosity of the resin material can be calculated as a function including the temperature and elapsed time of the resin. As an example, the exothermic behavior and viscosity accompanying the curing of the resin material can be calculated from the following exothermic equations (Equation 1 to Equation 5) and viscosity equations (Equation 6 to Equation 9). In this case, Expressions 1 to 9 are also input as physical property values of the liquid material 205.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 上記数式で用いている記号の意味については以下である(以下、同様)。
α:反応率、dα/dt:反応速度、t:時間、T:温度、K,K:温度の関数となる係数、M,N:反応の次数、Ka,Kb:反応速度定数、Ea,Eb:活性化エネルギ、Q:任意時刻までの発熱量、Qo:反応終了時までの総発熱量、dQ/dt:発熱速度、μ:液状材料205の粘度、μL0:液状材料205の初期粘度、t:液状材料205のゲル化時間、C(T):液状材料205の比熱、a,b,d,e,f,g:液状材料固有の定数
The meanings of the symbols used in the above formula are as follows (the same applies hereinafter).
α: reaction rate, dα / dt: reaction rate, t: time, T: temperature, K 1 , K 2 : coefficient as a function of temperature, M, N: order of reaction, Ka, Kb: reaction rate constant, Ea , Eb: activation energy, Q: amount of heat generated up to an arbitrary time, Qo: total amount of heat generated until the end of the reaction, dQ / dt: heat release rate, mu L: viscosity of the liquid material 205, mu L0: the liquid material 205 Initial viscosity, t 0 : Gelation time of liquid material 205, C (T): Specific heat of liquid material 205, a, b, d, e, f, g: Constants specific to liquid material
 ステップS104において、データ入力処理部112が、境界・成形条件の入力をガイドして、オペレータが入力部130、またはメディア読取部150を介して境界・成形条件を入力し、記憶部125に格納する。あるいは、事前に境界・成形条件データ記憶領域125に当該データが格納済みの場合はデータ入力処理部112が当該データを読み出す。上記境界・成形条件は、ネットワーク170あるいは外部記録媒体を介して、外部計算機190にて作成したデータを事前に記憶部125に格納して読み込むこともできる。入力する境界・成形条件は、液状材料205の初期温度および圧力、型201の初期温度を含む。 In step S <b> 104, the data input processing unit 112 guides the input of the boundary / molding condition, and the operator inputs the boundary / molding condition via the input unit 130 or the media reading unit 150 and stores it in the storage unit 125. . Alternatively, when the data has already been stored in the boundary / molding condition data storage area 125, the data input processing unit 112 reads the data. As the boundary / forming conditions, data created by the external computer 190 can be stored in the storage unit 125 and read in advance via the network 170 or an external recording medium. The input boundary and molding conditions include the initial temperature and pressure of the liquid material 205 and the initial temperature of the mold 201.
 ステップS105において、データ入力処理部112が、初期ボイド条件の入力をガイドして、オペレータが入力部130、またはメディア読取部150を介して初期ボイド条件を入力し、初期ボイド条件データ記憶領域127に格納する。あるいは、初期ボイド条件データ記憶領域127に当該データが事前に格納済みの場合は当該データを読み出す。入力する初期ボイド条件は、発生時間、位置、数、直径および密度を含む。また、ある解析時間tにおいて連続的にボイドが発生することを仮定して入力することもできる。なお、本実施形態において、ボイドは入力した初期ボイド条件を有するボイド粒子として仮定する。従って、後述する流体解析においては、液相のみの単相流解析を実施する。上記初期ボイド条件は、ネットワーク170あるいは外部記録媒体を介して、外部計算機190にて作成したデータを事前に記憶部127に格納して読み込むこともできる。 In step S 105, the data input processing unit 112 guides the input of the initial void condition, and the operator inputs the initial void condition via the input unit 130 or the media reading unit 150, and the initial void condition data storage area 127 is input. Store. Alternatively, when the data has already been stored in the initial void condition data storage area 127, the data is read out. Input initial void conditions include time of occurrence, location, number, diameter and density. It can also be input assuming that voids are continuously generated at a certain analysis time t. In the present embodiment, the void is assumed to be a void particle having the input initial void condition. Therefore, in the fluid analysis described later, a single-phase flow analysis of only the liquid phase is performed. As the initial void condition, data created by the external computer 190 can be stored and read in advance in the storage unit 127 via the network 170 or an external recording medium.
 ステップS106において、データ入力処理部112が、解析条件の入力をガイドして、オペレータが入力部130、またはメディア読取部150を介して解析条件を入力し、解析条件データ記憶領域126に格納する。あるいは、解析条件データ記憶領域126に当該データが事前に格納済みの場合はデータ入力処理部112が当該データを読み出す。入力する解析条件は、初期時間増分(時間幅Δt)および解析終了条件(終了時間など)などの情報を含む。
  ここまでの必要なデータ入力(入力工程)を終えた状態で、オペレータが入力部130を介して解析開始指示を入力する。または、成形品成形工程解析処理部111の開始時に解析開始指示が発行されている。
In step S <b> 106, the data input processing unit 112 guides the input of the analysis condition, and the operator inputs the analysis condition via the input unit 130 or the media reading unit 150 and stores it in the analysis condition data storage area 126. Alternatively, when the data is stored in advance in the analysis condition data storage area 126, the data input processing unit 112 reads the data. The input analysis condition includes information such as an initial time increment (time width Δt) and an analysis end condition (such as an end time).
The operator inputs an analysis start instruction via the input unit 130 after the necessary data input (input process) has been completed. Alternatively, an analysis start instruction is issued when the molded product molding process analysis processing unit 111 starts.
 成形品成形工程解析処理部111は、解析時間tの初期値をΔtとして(解析時間t=0において、成形品成形工程が開始されて、初期時間増分(時間幅Δt)後の状態を解析するため)、以降に続くステップS107からステップS115までのループを解析終了条件が成立するまで繰り返す。(ステップS107からステップS115までの1ループを以下、1解析ステップと称する。) The molded product molding process analysis processing unit 111 sets the initial value of the analysis time t as Δt (at the analysis time t = 0, the molded product molding process is started, and analyzes the state after the initial time increment (time width Δt). Therefore, the subsequent loop from step S107 to step S115 is repeated until the analysis end condition is satisfied. (One loop from step S107 to step S115 is hereinafter referred to as one analysis step.)
 ステップS107において、液状材料流動解析処理部114が、記憶部124に格納されている数式を読み出す。読み出す数式は、以下の連続の式(数式10)、ナビエストークスの式(数式11)、およびエネルギ保存式(数式12)である。 In step S107, the liquid material flow analysis processing unit 114 reads the mathematical formula stored in the storage unit 124. The mathematical formulas to be read out are the following continuous formula (Formula 10), Naviestokes formula (Formula 11), and energy conservation formula (Formula 12).
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
  上記数式で用いている記号の意味については以下である(以下、同様)。
ρ:液状材料205の密度、v:液状材料205の流速、P:圧力、T:温度、G:重力加速度、C:定圧比熱、k:熱伝導率、γ:せん断速度、∇:ベクトル微分演算子
The meanings of the symbols used in the above formula are as follows (the same applies hereinafter).
ρ L : density of the liquid material 205, v L : flow velocity of the liquid material 205, P: pressure, T: temperature, G: gravitational acceleration, C: constant pressure specific heat, k: thermal conductivity, γ: shear rate, ∇: vector Differential operator
 液状材料流動解析処理部114は、ステップS106までに入力、または記憶部120から読み出された値(時間幅Δt、型201および部品202の初期温度・熱容量・密度・熱伝導率・比熱、液状材料205の初期温度・圧力・密度・比熱・熱伝導率・発熱式(数式1~数式5)・粘度式(数式6~数式9)など)を上記数式10~数式12に代入し、解析時間tにおける前記解析領域207の各要素内に位置付けられる液状材料205の速度、圧力、温度などの状態量、および粘度などの物性値を計算する。 The liquid material flow analysis processing unit 114 receives the values (time width Δt, initial temperature, heat capacity, density, thermal conductivity, specific heat of the mold 201 and the part 202, the liquid that has been input or read from the storage unit 120 until step S106. Substituting the initial temperature, pressure, density, specific heat, thermal conductivity, exothermic formula (Formula 1 to Formula 5), viscosity formula (Formula 6 to Formula 9) of the material 205 into Formula 10 to Formula 12, and analyzing time The physical properties such as the velocity, pressure, temperature, and other physical quantities, and the viscosity of the liquid material 205 positioned in each element of the analysis region 207 at t are calculated.
 ステップS108において、解析結果出力処理部116が、ステップS107の計算結果をステップS102で分割した各要素の位置と対応付けた形式で解析結果記憶領域128に格納する。 In step S108, the analysis result output processing unit 116 stores the calculation result in step S107 in the analysis result storage area 128 in a format associated with the position of each element divided in step S102.
 ステップS109において、ボイド移動解析処理部115が、解析時間tより時間幅Δt前の解析時間(t-Δt)のボイド位置(t-Δt=0の場合は、初期ボイド条件においてt=0の時間に発生するボイドが定義されているなら、そのボイドの発生位置を指す。)を、記憶部120の初期ボイド条件データ127、または解析結果128より呼び出す。呼び出したボイドの位置が、ボイドの浮上方向に部品202、または型201の壁面とボイドの表面が接触する位置関係にある場合と、接触していない場合で、ボイドの浮上速度(解析時間tにおける浮上速度)の予測式を区別して、記憶部120より読み出す。 In step S109, the void movement analysis processing unit 115 causes the void position at the analysis time (t−Δt) before the time width Δt from the analysis time t (when t−Δt = 0, the time of t = 0 in the initial void condition) Is defined from the initial void condition data 127 of the storage unit 120 or the analysis result 128. Depending on whether the position of the called void is in a positional relationship where the wall surface of the part 202 or the mold 201 and the surface of the void are in contact with the surface of the void, or not, the flying speed of the void (at the analysis time t) The prediction formula of the ascending speed is distinguished and read from the storage unit 120.
 図4に液状材料中のボイド(気泡)の浮上速度解析方法を説明する。 
  図4(A)には、自由浮上するボイド(気泡)の挙動の予測式として、広範囲の物性の液状材料中における抵抗係数Cの予測式が公知の文献に報告されている。任意の気泡径dにおけるCの予測式によりボイドの浮上速度vが予測可能である。
FIG. 4 illustrates a method for analyzing the rising speed of voids (bubbles) in a liquid material.
FIG. 4 (A), as a prediction equation of the behavior of the free floating to voids (air bubbles), the prediction formula for drag coefficient C D in the liquid material in a wide range of physical properties have been reported in the literature as known. Ascent rate v B of the voids can be predicted by the prediction equation of C D at any bubble diameter d.
 図4(B)には、ボイド(気泡)が浮上方向に金型201の内壁や、部品202などの壁面に接触した場合に、ボイド(気泡)の変形や壁面との摩擦などの影響を受けるために、自由浮上するボイド(気泡)の抵抗係数Cの予測式ではボイドの移動速度vの予測精度が低くなることを改善する予測式を示す。ボイド(気泡)を粒子と仮定して、ボイド(気泡)粒子が部品202、または型201の壁面に接触しているかを判定して、接触している場合において、図4(B)の(式1)、(式2)、および(式3)により導き出した抵抗係数Cを用いてボイド(気泡)の移動速度vを算出する。 In FIG. 4B, when the void (bubble) comes into contact with the inner wall of the mold 201 or the wall surface of the component 202 in the flying direction, it is affected by deformation of the void (bubble) or friction with the wall surface. for the shows prediction expression the prediction accuracy of the moving speed v B of the voids improves to become low in the prediction equation of drag coefficient C D of the free floating to voids (air bubbles). Assuming that voids (bubbles) are particles, it is determined whether the void (bubbles) particles are in contact with the part 202 or the wall surface of the mold 201. 1), calculates the moving velocity v B of (equation 2), and (void by the resistance coefficient C D, derived by the equation 3) (bubbles).
 図2のフローチャートの説明に戻り、ステップS109において、ボイド移動解析処理部115が、解析時間tより時間幅Δt前の解析時間(t-Δt)のボイド位置で、ボイドの浮上方向に部品202、または型201の壁面とボイドの表面が接触するか否かを判定して、接触している場合は、ステップS111へ移行し、接触していない場合には、ステップS110へ移行する。 
  なお、ボイド(気泡)が複数存在する場合は、全てのボイドに対してステップS109の判定処理を行って、ステップS111、またはステップS110の処理によりボイドの移動速度Vの予測式を読み出し、続くステップS112のボイド移動解析処理までを実行する。
Returning to the description of the flowchart of FIG. 2, in step S109, the void movement analysis processing unit 115 causes the component 202 in the void rising direction at the void position of the analysis time (t−Δt) before the analysis time t by the time width Δt. Alternatively, it is determined whether or not the wall surface of the mold 201 is in contact with the surface of the void. If they are in contact, the process proceeds to step S111. If not, the process proceeds to step S110.
In the case where voids (bubbles) there are a plurality performs determination processing in step S109 for all the voids, reads a prediction equation of the moving speed V T of the voids by the process of step S111 or step S110,, followed by The process up to the void movement analysis process in step S112 is executed.
 ステップS110において、ボイド移動解析処理部115が、自由浮上するボイドの抗力係数の評価式を記憶部124から読み出す。なお、自由浮上するボイドの抗力係数Cの評価式としては公知のものを用いることができる。一例として下記の数式13がある。 In step S <b> 110, the void movement analysis processing unit 115 reads out from the storage unit 124 an evaluation formula for the drag coefficient of a free-floating void. Incidentally, it is possible to use those known as an evaluation formula for drag coefficient C D voids freely floating. As an example, there is Equation 13 below.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
  上記数式で用いている記号の意味については以下である(以下、同様)。
:抗力係数、Re:レイノルズ数、Eo:エトベス数
The meanings of the symbols used in the above formula are as follows (the same applies hereinafter).
C D : drag coefficient, Re: Reynolds number, Eo: Etobes number
 なお、レイノルズ数およびエトベス数は、以下の数式14および数式15で定義される無次元数である。 The Reynolds number and the Etobeth number are dimensionless numbers defined by the following formulas 14 and 15.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
  上記数式で用いている記号の意味については以下である(以下、同様)。
σ:液状材料205の表面張力、v:ボイド-液相間相対速度、d:ボイドの球体積等価直径、G:重力加速度、Δρ:液状材料205とボイドの密度差
The meanings of the symbols used in the above formula are as follows (the same applies hereinafter).
σ: Surface tension of liquid material 205, v R : Void-liquid phase relative velocity, d: Void equivalent volume diameter, G: Gravitational acceleration, Δρ: Density difference between liquid material 205 and void
 なお、ボイド-液相関相対速度vと液状材料205とボイドの密度差Δρは、以下の数式16および数式17で表される。 Note that the void-liquid correlation relative velocity v R and the density difference Δρ between the liquid material 205 and the void are expressed by the following equations 16 and 17.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
  上記数式で用いている記号の意味については以下である(以下、同様)。
:ボイドの浮上速度、ρ:ボイドの密度
The meanings of the symbols used in the above formula are as follows (the same applies hereinafter).
v B : Void ascent rate, ρ G : Void density
 ステップS111において、ボイド移動解析処理部115が、壁面に沿って浮上するボイドの抗力係数の評価式を記憶部124から読み出す。なお、壁面に沿って浮上するボイドの抗力係数の評価式としては、ボイドの移動速度、ボイド径、液状材料205の粘度および壁面の傾斜角度θを含む関数を用いる。液状材料205が樹脂材料の場合、前述の通り、粘度を樹脂の温度と経過時間を含む関数により計算した値を用いることができる。壁面の傾斜角度θは、ボイドの鉛直方向ベクトルと、壁面の法線ベクトルとの成す角度として計算する。 In step S111, the void movement analysis processing unit 115 reads from the storage unit 124 an evaluation formula for the drag coefficient of the void that rises along the wall surface. As an evaluation formula for the drag coefficient of the void floating along the wall surface, a function including the moving speed of the void, the void diameter, the viscosity of the liquid material 205, and the inclination angle θ of the wall surface is used. When the liquid material 205 is a resin material, as described above, a value obtained by calculating the viscosity using a function including the temperature and elapsed time of the resin can be used. The inclination angle θ of the wall surface is calculated as an angle formed by the vertical vector of the void and the normal vector of the wall surface.
 壁面に沿って浮上するボイドの抗力係数の評価式として、より好適にはレイノルズ数Re、エトベス数Eo、モルトン数Mo、および壁面の傾斜角度θを含む関数である数式18を用いる。なお、モルトン数Moは、以下の数式19で定義される無次元数である。 More preferably, Equation 18 which is a function including the Reynolds number Re, the Etobeth number Eo, the Morton number Mo, and the inclination angle θ of the wall surface is used as an evaluation formula of the drag coefficient of the void floating along the wall surface. The Molton number Mo is a dimensionless number defined by the following Equation 19.
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 数式18は、より好適には以下の数式20の形で用いられる。レイノルズ数Reが小さいとき、数式20の第1項であるレイノルズ数Reとモルトン数Moの関数として計算する。また、レイノルズ数Reが大きいとき、数式20の第2項であるエトベス数Eo、モルトン数Mo、および壁面の傾斜角度θの関数として計算する。これは、発明者らが壁面に沿って浮上するボイドの挙動を実験的に観察した結果の知見として得られた事実である。 Equation 18 is more preferably used in the form of Equation 20 below. When the Reynolds number Re is small, it is calculated as a function of the Reynolds number Re and the Morton number Mo, which is the first term of Equation 20. Further, when the Reynolds number Re is large, the calculation is performed as a function of the Eteves number Eo, the Morton number Mo, and the wall surface inclination angle θ, which are the second terms of the equation (20). This is a fact obtained by the inventors as a result of experimentally observing the behavior of voids floating along the wall surface.
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 数式20は、より好適には以下の数式21の形で用いられる。また、数式21は、より好適には数式22の形で用いられる。さらに、数式22は、より好適には数式23の形で用いられる。上記の数式18~数式23を用いたときの効果は後述する解析処理の出力と実験結果との比較により明らかにされる。 Formula 20 is more preferably used in the form of Formula 21 below. The expression 21 is more preferably used in the form of the expression 22. Furthermore, the expression 22 is more preferably used in the form of the expression 23. The effect of using the above Equations 18 to 23 is clarified by comparing the output of the analysis processing described later and the experimental results.
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
  上記数式で用いている記号の意味については以下である(以下、同様)。
h,i,j,l,m,o,p,q,r,s,u,w:定数
The meanings of the symbols used in the above formula are as follows (the same applies hereinafter).
h, i, j, l, m, o, p, q, r, s, u, w: constants
 ステップS112において、ボイド移動解析処理部115が、記憶部124に格納されている数式を呼び出す。呼び出す数式は、以下のボイドの運動方程式(数式24)を含む。 In step S112, the void movement analysis processing unit 115 calls the mathematical formula stored in the storage unit 124. The formula to be called includes the following equation of motion of the void (Formula 24).
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
  上記数式で用いている記号の意味については以下である(以下、同様)。
VM:仮想質量係数、C:揚力係数、F:壁面力
The meanings of the symbols used in the above formula are as follows (the same applies hereinafter).
C VM : virtual mass coefficient, C L : lift coefficient, F W : wall force
 仮想質量係数CVM,揚力係数Cおよび壁面力Fを求める評価式は、それぞれ公知のものを用いることができる。一例として以下の数式25~数式27がある。 Evaluation formula for determining the virtual mass coefficient C VM, the lift coefficient C L and the wall surface force F W can each known ones. As an example, there are the following formulas 25 to 27.
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000029
  上記数式で用いている記号の意味については以下である(以下、同様)。
x:ボイド重心位置と壁面との距離、k:鉛直上向きの単位ベクトル、n:壁面から流路に向かう単位法線ベクトル、CW1,CW2:係数
The meanings of the symbols used in the above formula are as follows (the same applies hereinafter).
x: distance between void center of gravity position and wall surface, k: vertically upward unit vector, n: unit normal vector from wall surface to flow path, C W1 , C W2 : coefficient
 係数CW1とCW2を求める評価式は、それぞれ公知のものを用いることができる。一例として以下の数式28および数式29がある。 As the evaluation formulas for obtaining the coefficients C W1 and C W2 , known formulas can be used. As an example, there are the following Expression 28 and Expression 29.
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000031
 ボイド移動解析処理部115は、ボイドの挙動の解析処理において、ボイド(気泡)を粒子と仮定して、変形はしない質点として扱う。この理由は、気液2相解析をする場合には、ボイドを気体として、液状材料との2つの流体を解かなければいけなくなり非常に計算が煩雑となることを避けて、ボイドを質点(ボイド粒子)とすることで、液体の単層流に対して、解析上質量を持たない一種のマーカとしての意味を持つ質点を定義して、それが液状材料中でどの様な挙動をするかを解析する処理を行っている。液状材料の流動に乗って移動するボイドに働く浮力を考慮するため、ボイドの球体積等価直径dを初期条件で定義して使用している。(ただし、図3などに示すボイド(気泡)206は、壁面と接触した場合には、形状を扁平に変えて、接触していることをオペレータに知らせるように表示するようにしている。) The void movement analysis processing unit 115 assumes voids (bubbles) as particles in the void behavior analysis processing, and treats them as mass points that do not deform. The reason for this is that when performing a gas-liquid two-phase analysis, it is necessary to solve the two fluids with the liquid material using the void as a gas. By defining a particle as a kind of marker that has no analytical mass for a single laminar flow of liquid, and how it behaves in a liquid material Processing to analyze. In order to consider the buoyancy acting on the void moving on the flow of the liquid material, the spherical volume equivalent diameter d of the void is defined and used in the initial condition. (However, when the void (bubble) 206 shown in FIG. 3 or the like is in contact with the wall surface, the shape is changed to a flat shape so as to notify the operator that it is in contact.
 ボイド移動解析処理部115は、呼び出した数式に、ステップS101からステップS111までに入力した各値(時間幅Δt、解析時間(t-Δt)におけるボイドの位置・直径・密度・速度などの状態量、および解析時間tにおける液状樹脂205の流速・粘度・表面張力・密度などの状態量)を代入し、解析時間tにおけるボイドの状態量(位置・直径・密度・速度)を計算する。このとき、抗力係数の評価式としては、ステップS110あるいはステップS111において記憶部124から読み込んだものを用いる。 The void movement analysis processing unit 115 adds the state quantities such as the void position, diameter, density, and velocity at each value (time width Δt, analysis time (t−Δt)) input from the step S101 to the step S111. , And state quantities such as flow velocity, viscosity, surface tension and density of the liquid resin 205 at the analysis time t) are substituted, and the void state quantities (position, diameter, density, velocity) at the analysis time t are calculated. At this time, as the evaluation formula for the drag coefficient, the equation read from the storage unit 124 in step S110 or step S111 is used.
 また、壁面の傾斜角度θは、ボイドの鉛直方向ベクトルと、壁面の法線ベクトルとの成す角度として計算する。なお、ボイドが複数存在する場合は、全てのボイドに対して計算を行う。
  また、ボイド移動解析処理部115は、初期ボイド条件に従い、解析時間t-Δtから解析時間tの間に発生が定義された新たなボイドを、定義された位置で、定義された直径、初速0で発生させる。
Further, the inclination angle θ of the wall surface is calculated as an angle formed by the vertical vector of the void and the normal vector of the wall surface. When there are a plurality of voids, the calculation is performed for all the voids.
In addition, the void movement analysis processing unit 115 generates a new void whose occurrence is defined between the analysis time t−Δt and the analysis time t according to the initial void condition, at the defined position, with the defined diameter and initial velocity of 0. To generate.
 ステップS113において、解析結果出力処理部116が、ステップS112の各ボイドの計算結果をステップS102で分割した各要素の位置と対応付けた形で解析結果記憶領域128に格納する。なお、ボイドが複数存在する場合は、全てのボイドに対して計算結果を格納する。 In step S113, the analysis result output processing unit 116 stores the calculation result of each void in step S112 in the analysis result storage area 128 in a form associated with the position of each element divided in step S102. If there are a plurality of voids, the calculation results are stored for all the voids.
 ステップS114において、解析時間tを初期時間増分(時間幅Δt)だけ進める。 In step S114, the analysis time t is advanced by the initial time increment (time width Δt).
 ステップS115において、成形品成形工程解析処理部111が、初期時間増分(時間幅Δt)だけインクリメントされた解析時間tが解析終了条件(終了時間)に達していないかを判定して、解析時間tが解析終了条件(終了時間)に達していなければステップS107へ進んで、ステップS107からステップS115までの解析ステップを繰り返し、解析時間tが解析終了条件(終了時間)以上に達していれば、解析終了と判定してステップS116へ進む。 In step S115, the molded product molding process analysis processing unit 111 determines whether the analysis time t incremented by the initial time increment (time width Δt) has reached the analysis end condition (end time), and the analysis time t If the analysis end condition (end time) is not reached, the process proceeds to step S107, the analysis steps from step S107 to step S115 are repeated, and if the analysis time t reaches the analysis end condition (end time) or more, the analysis is performed. It determines with complete | finishing and progresses to step S116.
 ステップS116において、解析結果出力処理部116が、各解析ステップにおける全てのボイドの位置・速度を含む状態量を解析結果記憶領域128から読み出す。また、液状材料205の速度、圧力、温度などの状態量、および粘度などの物性も読み出す。読み出したデータに従って、表示部140にオペレータの要求に沿ったデータを出力する。また、必要に応じて、外部計算機190へ解析結果を出力する。 In step S116, the analysis result output processing unit 116 reads out from the analysis result storage area 128 the state quantities including the positions and velocities of all the voids in each analysis step. Further, state quantities such as speed, pressure and temperature of the liquid material 205 and physical properties such as viscosity are read out. According to the read data, data in accordance with the operator's request is output to the display unit 140. Further, the analysis result is output to the external computer 190 as necessary.
 オペレータは、ステップS116の出力工程により得られたボイドの残留位置が目標場所の範囲内にあるかどうかを判断する。例えば、最終的な成形品から除去される範囲内にあるかどうかを判断する。この範囲外にボイドが残留している場合、適宜、例えばステップS101からステップS106の入力工程に戻り、オペレータは、目標場所の範囲内にボイドが移動して残留するように再試行や設計修正などを行う。 The operator determines whether or not the residual position of the void obtained by the output process in step S116 is within the range of the target location. For example, it is determined whether it is within a range that is removed from the final molded product. If a void remains outside this range, for example, the process returns from step S101 to the input process of step S106, and the operator reattempts or modifies the design so that the void remains within the target location range. I do.
 以上のフローチャートにより、液状材料205を型201に注入して成形する際の解析において、型201内に充填した液状材料205の内部に発生するボイド206に対し、液状材料205の物性と状態量、およびボイドの状態量に応じて変化するボイド挙動を、現実的な時間内で計算・予測することができる。本実施の形態の解析処理では、ボイド(気泡)の壁面への接触の有無を判定し、接触している場合は、壁面上の抗力係数の評価式を用いることで、液状材料205の成形過程で発生するボイド206が型201あるいは部品202に接触する場合のボイド挙動を、現実的な時間内で、従来の評価式を用いるよりも精度良く計算することができる。 According to the above flow chart, in the analysis when the liquid material 205 is injected into the mold 201 and molded, the physical properties and state quantities of the liquid material 205 with respect to the void 206 generated inside the liquid material 205 filled in the mold 201, In addition, it is possible to calculate and predict the void behavior that changes in accordance with the state quantity of the void within a realistic time. In the analysis processing of the present embodiment, the presence or absence of contact of the voids (bubbles) with the wall surface is determined, and if they are in contact, the evaluation process of the drag coefficient on the wall surface is used to form the liquid material 205. It is possible to calculate the void behavior when the void 206 generated in step S3 comes into contact with the mold 201 or the part 202 with higher accuracy than in the conventional evaluation formula in a realistic time.
 また、例えば成形品に残留するボイドを、最終的な成形品から除去される位置へ集積させるために、本解析方法を用いることで、成形品の形状、型201の初期温度などの成形条件、および液状材料205の充填位置(ゲート位置)などの型構造の適正化およびその設計支援ができる。加えてボイドを気相として計算を行う気液二相流の解析モデルと比較して、ボイドをボイド粒子と仮定して簡略化した解析モデルであるため、大型の成形品内の微小ボイドの移動等を、現実的な計算時間で予測することが可能となる。従って、液状材料を型に注入して成形する成形方法に対して、コスト低減および開発期間短縮などの効果を奏する。また、ボイドに起因する不良を低減することができるため、製品の信頼性向上にも貢献する。 Further, for example, in order to accumulate the voids remaining in the molded product at a position where the void is removed from the final molded product, by using this analysis method, molding conditions such as the shape of the molded product, the initial temperature of the mold 201, In addition, it is possible to optimize the mold structure such as the filling position (gate position) of the liquid material 205 and to support its design. In addition, compared with the gas-liquid two-phase flow analysis model that calculates the void as the gas phase, the analysis model is simplified by assuming that the void is a void particle. Etc. can be predicted in a realistic calculation time. Therefore, there are effects such as cost reduction and development period shortening with respect to a molding method in which a liquid material is injected into a mold. In addition, since defects due to voids can be reduced, it contributes to improving the reliability of products.
 以上の実施形態の説明では、液状材料205の一例として、常温において液体で、加熱により硬化する熱硬化性樹脂材料を主に意図して説明をしてきたが、液状材料205が常温において固体で加熱により溶融して液体となる材料(無機材料や熱可塑性樹脂材料)であっても、本実施例のボイド挙動解析装置100は同様に解析が可能である。 In the above description of the embodiment, as an example of the liquid material 205, the thermosetting resin material that is liquid at room temperature and is cured by heating has been mainly described. However, the liquid material 205 is heated in solid at room temperature. Even if it is the material (an inorganic material or a thermoplastic resin material) which melt | dissolves by this and becomes a liquid, the void behavior analysis apparatus 100 of a present Example can analyze similarly.
 《本実施形態の解析方法の解析結果の検証》
 以下、本実施形態の解析装置を用いた解析例により、本ボイド挙動解析装置100の効果をさらに詳細に説明する。図5は、本解析方法の解析結果を検証するための実験装置の構成を示す構成図である。図5(A)に実験装置300の正面図、図5(B)に右側面図をそれぞれ示す。幅100mm, 奥行き20mmの容器(透明アクリル製)を用い、所定の液状材料205を容器底部から100mmの位置まで満たした。長さ95mm、幅15mm、および厚さ2mmの平板301(アルミニウム製)を容器底部から高さ50mmの位置に設置した。平板301の傾斜角度θは、5°,15°, および30°とした。
<< Verification of analysis result of analysis method of this embodiment >>
Hereinafter, the effect of the void behavior analysis apparatus 100 will be described in more detail with an analysis example using the analysis apparatus of the present embodiment. FIG. 5 is a configuration diagram showing a configuration of an experimental apparatus for verifying the analysis result of the present analysis method. FIG. 5A shows a front view of the experimental apparatus 300, and FIG. 5B shows a right side view thereof. A container (made of transparent acrylic) having a width of 100 mm and a depth of 20 mm was used, and a predetermined liquid material 205 was filled to a position of 100 mm from the bottom of the container. A flat plate 301 (made of aluminum) having a length of 95 mm, a width of 15 mm, and a thickness of 2 mm was placed at a height of 50 mm from the bottom of the container. The inclination angle θ of the flat plate 301 was 5 °, 15 °, and 30 °.
 また、光源306(500Wハロゲンランプを3つ)をそれぞれ容器前面および背面から照射した。容器底部に内径1mmのエアブローノズル304を設置し,流量調節弁303により流量を調節した圧縮空気302を送り込んでボイドを生成した。ノズル304から生成されるボイド206の大きさはランダムであるため、大径のボイド206は、内径8mmの半球状のカップ305に一定の量を溜めてからカップ305を反転させて浮上させることで生成した。ボイド206が傾斜平板301に衝突してから上昇する際の挙動は、高速度カメラ307(高速度カメラ:Photron製 FASTCAM-1024PCI(R)、レンズ:ニコン製50mm/F2.8) を用いて、フレームレート250fps,解像度1024×1024ピクセル, レンズ絞り値F11,およびシャッター速度1/10000秒の条件で撮影した。撮影した動画の画像処理により、ボイド206の球体積等価直径および速度の実験値を算出した。また、壁面に沿って浮上するボイド206の速度が一定になったときのレイノルズ数および抗力係数をそれぞれ算出した。液状材料205としては、信越シリコーン製のシリコンオイルKF-96L-2cs(R)(モルトン数Mo=1.7E-08)、およびKF96-1000cs(R)(モルトン数Mo=9.4E+02)を用い、温度は20℃で一定とした。 Also, a light source 306 (three 500 W halogen lamps) was irradiated from the front and back of the container, respectively. An air blow nozzle 304 having an inner diameter of 1 mm was installed at the bottom of the container, and a compressed air 302 whose flow rate was adjusted by a flow rate adjusting valve 303 was sent to generate a void. Since the size of the void 206 generated from the nozzle 304 is random, a large amount of the void 206 is accumulated in a hemispherical cup 305 having an inner diameter of 8 mm, and then the cup 305 is inverted and floated. Generated. The behavior when the void 206 rises after colliding with the inclined flat plate 301 is measured using a high-speed camera 307 (high-speed camera: Phototron FASTCAM-1024PCI (R), lens: Nikon 50 mm / F2.8) Images were taken under the conditions of a frame rate of 250 fps, a resolution of 1024 × 1024 pixels, a lens aperture value F11, and a shutter speed of 1/10000 seconds. Experimental values of the spherical volume equivalent diameter and velocity of the void 206 were calculated by image processing of the captured moving image. In addition, Reynolds number and drag coefficient when the velocity of the void 206 rising along the wall surface became constant were calculated. As the liquid material 205, silicon oil KF-96L-2cs (R) (Molton number Mo = 1.7E-08) and KF96-1000cs (R) (Molton number Mo = 9.4E + 02) manufactured by Shin-Etsu Silicone are used. The temperature was constant at 20 ° C.
 また、図5における液状材料205を満たした領域を解析領域としてモデル化を行い、図2に示すフローチャートで解析処理を実施して、種々の球体積等価直径におけるボイド206の速度の解析値を算出した。壁面に沿って浮上するボイド206の速度が一定になったときのレイノルズ数および抗力係数をそれぞれ算出した。なお、傾斜平板に沿って浮上するボイドの抗力係数の評価式として数式23を用い、数式の各係数、定数の値をそれぞれo=8.5,q=11,w=18,r=-0.17,およびu=2.9として計算した。液状材料205の物性値としては、上記実験において用いたシリコンオイルの物性値を使用した。温度は上記実験と同様に20℃一定として変化しないものとして、かつ樹脂圧力は0とした。初期ボイド条件として、位置を上記実験と同様にノズル近傍、および密度を空気の値として、球体積等価直径0.2~10mmを連続的にランダムで発生させる設定を入力した。初期時間幅Δtを0.01sとした。また、比較例として、傾斜平板に沿って浮上するボイドの抗力係数の評価式として、既存の自由浮上するボイドの評価式である数式13を用いて上記の解析例と同様の解析処理を行い、同様の解析値を算出した。 In addition, the region filled with the liquid material 205 in FIG. 5 is modeled as an analysis region, and the analysis processing is performed with the flowchart shown in FIG. 2 to calculate the analysis value of the velocity of the void 206 at various sphere volume equivalent diameters. did. Reynolds number and drag coefficient when the velocity of the void 206 rising along the wall surface became constant were calculated. It should be noted that Formula 23 is used as an evaluation formula for the drag coefficient of the void floating along the inclined flat plate, and the values of the coefficients and constants of the formula are respectively o = 8.5, q = 11, w = 18, r = -0. .17, and u = 2.9. As the physical property value of the liquid material 205, the physical property value of the silicon oil used in the above experiment was used. The temperature was kept constant at 20 ° C. as in the above experiment, and the resin pressure was 0. As the initial void condition, the setting was made so that the spherical volume equivalent diameter of 0.2 to 10 mm was continuously and randomly generated with the position in the vicinity of the nozzle as in the above experiment and the density as the value of air. The initial time width Δt was set to 0.01 s. In addition, as a comparative example, as an evaluation formula for the drag coefficient of a void that floats along an inclined flat plate, an analysis process similar to that in the above analysis example is performed using Formula 13 that is an evaluation formula for an existing free-floating void. Similar analysis values were calculated.
 壁面に沿って浮上するボイド206が一定の速度で浮上するときのレイノルズ数及び抗力係数の実験値および解析値を図6に示す。図6(A)~図6(C)はモルトン数Mo=9.4E+02のシリコンオイルを用いており、それぞれ平板301の傾斜角度θが30°、15°、5°のときの結果である。図6(D)~図6(E)はモルトン数Mo=1.1E-09のシリコンオイルを用いており、それぞれ平板301の傾斜角度θが30°、15°、5°のときの結果である。点(プロット)に実験値、点線に傾斜平板に沿って浮上するボイドの抗力係数の評価式として従来の数式13を用いた解析値、および実線に傾斜平板に沿って浮上するボイド206の抗力係数の評価式として本実施形態の数式23を用いた解析値をそれぞれ示す。図より、いずれの場合においても本実施形態の数式23を用いた解析値が実験値と良く一致しており、従来の数式13と比較して高精度に壁面に沿って浮上するボイド206の挙動を計算できていることがわかる。実験値と解析値の相関係数Rを比較すると、いずれの場合においても相関係数Rの値は本実施形態の数式23を用いた解析値のほうが高くなった。以上より、本実施形態の解析処理において、壁面に沿って浮上するボイド206の挙動を高精度に計算可能であることが示された。 FIG. 6 shows experimental values and analysis values of the Reynolds number and drag coefficient when the void 206 rising along the wall surface rises at a constant speed. FIGS. 6A to 6C show the results when silicon oil having a Morton number Mo = 9.4E + 02 is used and the inclination angle θ of the flat plate 301 is 30 °, 15 °, and 5 °, respectively. 6 (D) to 6 (E) show the results when silicon oil having a Morton number Mo = 1.1E-09 is used and the inclination angle θ of the flat plate 301 is 30 °, 15 °, and 5 °, respectively. is there. The point (plot) is an experimental value, the dotted line is an analytical value using the conventional equation 13 as an evaluation formula for the drag coefficient of a void floating along the inclined flat plate, and the solid line is the drag coefficient of the void 206 floating along the inclined flat plate. The analysis values using Expression 23 of the present embodiment are shown as the evaluation expressions. From the figure, in any case, the analysis value using Equation 23 of the present embodiment is in good agreement with the experimental value, and the behavior of the void 206 that floats along the wall surface with higher accuracy than the conventional Equation 13 is shown. It can be seen that can be calculated. When the correlation coefficient R between the experimental value and the analysis value was compared, in any case, the value of the correlation coefficient R was higher in the analysis value using Expression 23 of this embodiment. From the above, it was shown that the behavior of the void 206 that floats along the wall surface can be calculated with high accuracy in the analysis processing of the present embodiment.
 前述の通り、ボイドの移動速度は壁面近傍において最も遅くなるため、壁面近傍におけるボイドの挙動を高精度に予測可能とすることで、従来よりも高精度に型201内におけるボイドの残留位置などを予測できる。これにより前述した成形品とプロセスの適正化およびその設計支援をより効率的に行うことができる。特に、注型など材料の流動速度が遅い場合において、材料の流動に対してボイドにかかる力(浮力および抗力など)の影響が大きくなるため、より本形態の解析処理の効果を顕著に得ることができる。 As described above, since the movement speed of the void is the slowest in the vicinity of the wall surface, by making it possible to predict the behavior of the void in the vicinity of the wall surface with high accuracy, the residual position of the void in the mold 201 can be determined with higher accuracy than before. Predictable. Thereby, optimization of the above-described molded product and process and design support thereof can be performed more efficiently. In particular, when the material flow rate is slow, such as casting, the effect of the force (buoyancy, drag, etc.) applied to the void on the material flow increases, so that the analysis processing effect of this embodiment can be obtained more remarkably. Can do.
100 ボイド挙動解析装置
110 演算部
111 成形品成形工程解析処理部
112 データ入力処理部
113 モデル形状・要素作成部
114 液状材料流動解析処理部
115 ボイド移動解析処理部
116 解析結果出力処理部
120 記憶部
121 ボイド挙動解析プログラム記憶領域
122 解析対象モデル形状データ記憶領域
123 3次元要素データ記憶領域
124 解析対象物性・方程式記憶領域
125 境界・成形条件データ記憶領域
126 解析条件データ記憶領域
127 初期ボイド条件データ記憶領域
128 解析結果記憶領域
130 入力部
140 表示部
150 メディア読取部
160 通信部
170 ネットワーク
180 CAD装置
190 外部計算機
201 型
202 部品
203 ゲート
204 空間
205 液状材料
206 ボイド
207 解析領域
300 実験装置
301 平板(アルミニウム製)
302 圧縮空気
303 流量調節弁
304 ノズル
305 カップ
306 光源
307 高速度カメラ
DESCRIPTION OF SYMBOLS 100 Void behavior analysis apparatus 110 Operation part 111 Molding part formation process analysis process part 112 Data input process part 113 Model shape and element preparation part 114 Liquid material flow analysis process part 115 Void movement analysis process part 116 Analysis result output process part 120 Storage part 121 Void behavior analysis program storage area 122 Analysis target model shape data storage area 123 Three-dimensional element data storage area 124 Analysis target physical property / equation storage area 125 Boundary / forming condition data storage area 126 Analysis condition data storage area 127 Initial void condition data storage Area 128 Analysis result storage area 130 Input unit 140 Display unit 150 Media reading unit 160 Communication unit 170 Network 180 CAD device 190 External computer 201 Type 202 Part 203 Gate 204 Space 205 Liquid material 206 Void 207 Analysis Area 300 Experimental apparatus 301 Flat plate (aluminum)
302 Compressed air 303 Flow control valve 304 Nozzle 305 Cup 306 Light source 307 High-speed camera

Claims (7)

  1.  コンピュータによる情報処理を用いて、型内の空間に注入される液状材料の成形プロセスにおいて発生するボイドの挙動を解析するボイド挙動の解析方法であって、
     解析対象製品を成形する型に液状材料が充填されるモデル空間を3次元ソリッド要素に分割する工程と、
     液状材料、型、および部品の物性値、ボイドを仮定したボイド粒子の発生の初期条件、液状材料の初期温度、圧力、および型の初期温度を設定する境界条件、並びに初期時間増分、および解析終了条件を設定する解析条件を入力、または読出しをする工程と、
     前記時間増分間隔で、前記時間増分後の各解析時間における前記型へ充填される前記液状材料の流動解析を行い、前記各3次元ソリッド要素内の前記液状材料の状態量、粘度を算出する工程と、
     前記各解析時間における、前記液状材料の流動に乗った前記ボイド粒子に浮力が働いて生ずる移動量の演算において、前記ボイド粒子が前記型内壁または部品の壁面に接触しているかを判定し、接触している場合は、前記ボイド粒子の抗力係数をボイド粒子の移動速度、ボイド粒子径、液状材料の粘度および壁面の傾斜角度θを含む関数として計算し、各ボイドの状態量を前記液状材料の状態量と前記ボイド粒子の移動量より算出する工程と、
     前記解析終了条件の成立後、記録された各解析時間、および解析終了時間における各ボイドの状態量を画面表示する工程とを有することを特徴とするボイド挙動の解析方法。
    A void behavior analysis method for analyzing the behavior of voids generated in the molding process of a liquid material injected into a space in a mold using information processing by a computer,
    Dividing a model space in which a liquid material is filled into a mold for molding an analysis target product into three-dimensional solid elements;
    Properties of liquid materials, molds and parts, initial conditions of void particle generation assuming voids, boundary conditions for setting initial temperature, pressure and mold temperature of liquid materials, initial time increment, and analysis end Entering or reading analysis conditions for setting conditions; and
    Performing flow analysis of the liquid material filled in the mold at each analysis time after the time increment at the time increment interval and calculating a state quantity and a viscosity of the liquid material in each three-dimensional solid element When,
    In the calculation of the amount of movement caused by buoyancy acting on the void particles riding on the flow of the liquid material in each analysis time, it is determined whether the void particles are in contact with the inner wall of the mold or the wall surface of the part. The drag coefficient of the void particle is calculated as a function including the moving speed of the void particle, the void particle diameter, the viscosity of the liquid material, and the inclination angle θ of the wall surface, and the state quantity of each void is calculated. Calculating from the amount of state and the amount of movement of the void particles;
    And a step of displaying on the screen each recorded analysis time and a state quantity of each void at the analysis end time after the analysis end condition is satisfied.
  2.  前記液状材料の粘度を、液状材料の温度と経過時間を含む関数として計算することを特徴とする請求項1に記載のボイド挙動の解析方法。 2. The void behavior analysis method according to claim 1, wherein the viscosity of the liquid material is calculated as a function including a temperature and an elapsed time of the liquid material.
  3.  前記ボイドの抗力係数をレイノルズ数Re、エトベス数Eo、モルトン数Mo、および壁面の傾斜角度θを含む関数として計算することを特徴とする請求項1に記載のボイド挙動の解析方法。 2. The void behavior analysis method according to claim 1, wherein the drag coefficient of the void is calculated as a function including a Reynolds number Re, an Etobes number Eo, a Morton number Mo, and a wall inclination angle θ.
  4.  前記ボイドの抗力係数を数式22により計算する
    Figure JPOXMLDOC01-appb-I000001
      ここで、C:抗力係数、Re:レイノルズ数、Eo:エトベス数、Mo:モルトン数、θ:壁面の傾斜角度、h,i,j,l,m,o,p,q,r,s,u:定数、
      ことを特徴とする請求項1に記載のボイド挙動の解析方法。
    The drag coefficient of the void is calculated by Equation 22.
    Figure JPOXMLDOC01-appb-I000001
    Here, C D : drag coefficient, Re: Reynolds number, Eo: Etobes number, Mo: Morton number, θ: wall inclination angle, h, i, j, l, m, o, p, q, r, s , U: constant,
    The void behavior analysis method according to claim 1, wherein:
  5.  前記ボイドの抗力係数を数式23により計算する
    Figure JPOXMLDOC01-appb-I000002
      ここで、C:抗力係数、Re:レイノルズ数、Eo:エトベス数、Mo:モルトン数、θ:壁面の傾斜角度、o,q,r,u,w:定数、
      ことを特徴とする請求項1に記載のボイド挙動の解析方法。
    The drag coefficient of the void is calculated by Equation 23.
    Figure JPOXMLDOC01-appb-I000002
    Here, C D : drag coefficient, Re: Reynolds number, Eo: Etobes number, Mo: Molton number, θ: wall inclination angle, o, q, r, u, w: constant,
    The void behavior analysis method according to claim 1, wherein:
  6.  前記液状材料は、常温において固体で加熱により溶融して液体となる材料(無機材料、熱可塑性樹脂材料)、あるいは常温において液体で加熱により硬化する材料(熱硬化性樹脂材料)であることを特徴とする請求項1または請求項2に記載のボイド挙動の解析方法。 The liquid material is a material that is solid at room temperature and melts by heating (inorganic material, thermoplastic resin material), or a material that cures by heating at liquid temperature (thermosetting resin material). The void behavior analysis method according to claim 1 or 2.
  7.  コンピュータによる情報処理を用いて、型内の空間に注入される液状材料の成形プロセスにおいて発生するボイドの挙動を解析するボイド挙動解析装置であって、
     解析対象製品形状、型形状、液状材料、型、および部品の物性値、ボイドを仮定したボイド粒子の発生の初期条件、液状材料の初期温度、圧力、および型の初期温度を設定する境界条件、並びに初期時間増分、および解析終了条件を設定する解析条件を入力して、記憶部へ各データを格納して、各部の処理時に前記記憶部より読み出すデータ入力処理部と、
     解析対象製品を成形する型に液状材料が充填されるモデル空間を3次元ソリッド要素に分割するモデル形状・要素作成部と、
     前記時間増分間隔で、前記時間増分後の各解析時間における前記型へ充填される前記液状材料の流動解析を行い、前記各3次元ソリッド要素内の前記液状材料の状態量、粘度を算出する液状材料流動解析処理部と、
     前記各解析時間における、前記液状材料の流動に乗った前記ボイド粒子に浮力が働いて生ずる移動量の演算において、前記ボイド粒子が前記型内壁または部品の壁面に接触しているかを判定し、接触している場合は、前記ボイド粒子の抗力係数をボイド粒子の移動速度、ボイド粒子径、液状材料の粘度および壁面の傾斜角度θを含む関数として計算し、各ボイドの状態量を前記液状材料の状態量と前記ボイド粒子の移動量より算出するボイド移動解析処理部と、
     前記解析終了条件の成立後、記録された各解析時間、および解析終了時間における各ボイドの状態量を画面表示する解析結果出力処理部とを有することを特徴とするボイド挙動解析装置。
    A void behavior analysis device for analyzing the behavior of voids generated in the molding process of a liquid material injected into the space in a mold using information processing by a computer,
    Analysis target product shape, mold shape, liquid material, mold and part physical property value, initial condition of void particle generation assuming void, boundary condition to set initial temperature, pressure of liquid material, and initial temperature of mold, And an initial time increment, and an analysis condition for setting an analysis end condition, storing each data in the storage unit, and reading out from the storage unit during processing of each unit;
    A model shape / element creation unit that divides a model space in which a liquid material is filled into a mold for molding an analysis target product into three-dimensional solid elements;
    The flow rate of the liquid material in each three-dimensional solid element is calculated by performing a flow analysis of the liquid material filled in the mold at each analysis time after the time increment at the time increment interval. A material flow analysis processing unit;
    In the calculation of the amount of movement caused by buoyancy acting on the void particles riding on the flow of the liquid material in each analysis time, it is determined whether the void particles are in contact with the inner wall of the mold or the wall surface of the part. The drag coefficient of the void particle is calculated as a function including the moving speed of the void particle, the void particle diameter, the viscosity of the liquid material, and the inclination angle θ of the wall surface, and the state quantity of each void is calculated. A void movement analysis processing unit that calculates the state quantity and the movement amount of the void particles;
    A void behavior analysis device comprising: an analysis result output processing unit that displays each analysis time recorded and a state quantity of each void at the analysis end time after the analysis end condition is satisfied.
PCT/JP2015/066535 2015-06-09 2015-06-09 Void behavior analysis method and apparatus therefor WO2016199211A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/066535 WO2016199211A1 (en) 2015-06-09 2015-06-09 Void behavior analysis method and apparatus therefor
JP2016570904A JPWO2016199211A1 (en) 2015-06-09 2015-06-09 Void behavior analysis method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/066535 WO2016199211A1 (en) 2015-06-09 2015-06-09 Void behavior analysis method and apparatus therefor

Publications (1)

Publication Number Publication Date
WO2016199211A1 true WO2016199211A1 (en) 2016-12-15

Family

ID=57503621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066535 WO2016199211A1 (en) 2015-06-09 2015-06-09 Void behavior analysis method and apparatus therefor

Country Status (2)

Country Link
JP (1) JPWO2016199211A1 (en)
WO (1) WO2016199211A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113405966A (en) * 2021-06-08 2021-09-17 浙江广天构件集团股份有限公司 Method for calculating pore size distribution of cement-based material particle accumulation system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05337999A (en) * 1992-06-05 1993-12-21 Toyota Motor Corp Method for analyzing behavior of void generated in filling of mold with molten material
JP2010108150A (en) * 2008-10-29 2010-05-13 Hitachi Ltd Thermal stress analysis method of electronic component and resin flow analysis method
JP2011103089A (en) * 2009-11-11 2011-05-26 Hitachi Ltd Estimation method of void volume change produced in resin filled in porous body, and flow analysis method of resin material in porous body
JP2012081703A (en) * 2010-10-14 2012-04-26 Hitachi Ltd Method for analyzing growth of void of resin in porous body
JP2013248770A (en) * 2012-05-31 2013-12-12 Hitachi Ltd Resin pressurization casting device and pressurization casting method
JP2014211363A (en) * 2013-04-18 2014-11-13 ナミックス株式会社 Viscosity behavior prediction method of thermosetting resin, simulation software, manufacturing method of thermosetting resin, and underfill manufactured by this manufacturing method
WO2015072040A1 (en) * 2013-11-18 2015-05-21 株式会社日立製作所 Resin flow behavior calculation method, and resin flow behavior calculation program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05337999A (en) * 1992-06-05 1993-12-21 Toyota Motor Corp Method for analyzing behavior of void generated in filling of mold with molten material
JP2010108150A (en) * 2008-10-29 2010-05-13 Hitachi Ltd Thermal stress analysis method of electronic component and resin flow analysis method
JP2011103089A (en) * 2009-11-11 2011-05-26 Hitachi Ltd Estimation method of void volume change produced in resin filled in porous body, and flow analysis method of resin material in porous body
JP2012081703A (en) * 2010-10-14 2012-04-26 Hitachi Ltd Method for analyzing growth of void of resin in porous body
JP2013248770A (en) * 2012-05-31 2013-12-12 Hitachi Ltd Resin pressurization casting device and pressurization casting method
JP2014211363A (en) * 2013-04-18 2014-11-13 ナミックス株式会社 Viscosity behavior prediction method of thermosetting resin, simulation software, manufacturing method of thermosetting resin, and underfill manufactured by this manufacturing method
WO2015072040A1 (en) * 2013-11-18 2015-05-21 株式会社日立製作所 Resin flow behavior calculation method, and resin flow behavior calculation program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAYUKI MINO ET AL.: "Study on Prediction about Residual Position of Void Generated by Resin Flow", ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC), 2014 IEEE 64TH, 30 May 2014 (2014-05-30), pages 2042 - 2047, XP032641920 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113405966A (en) * 2021-06-08 2021-09-17 浙江广天构件集团股份有限公司 Method for calculating pore size distribution of cement-based material particle accumulation system
CN113405966B (en) * 2021-06-08 2022-08-23 浙江广天构件集团股份有限公司 Method for calculating pore size distribution of cement-based material particle accumulation system

Also Published As

Publication number Publication date
JPWO2016199211A1 (en) 2017-06-22

Similar Documents

Publication Publication Date Title
Kozak et al. Novel enthalpy method for modeling of PCM melting accompanied by sinking of the solid phase
Fink et al. Drop bouncing by micro-grooves
Takada et al. Numerical simulation of two-and three-dimensional two-phase fluid motion by lattice Boltzmann method
Hoffmann et al. Detailed investigation of multiphase (gas–liquid and gas–liquid–liquid) flow behaviour on inclined plates
Li et al. Investigation of bubble-slag layer behaviors with hybrid Eulerian–Lagrangian modeling and large eddy simulation
Pang et al. Numerical simulation two phase flows of casting filling process using SOLA particle level set method
Cleary et al. High pressure die casting simulation using smoothed particle hydrodynamics
Abas et al. Effect of ILU dispensing types for different solder bump arrangements on CUF encapsulation process
US8768662B2 (en) Predicting shrinkage of injection molded products with viscoelastic characteristic
JP2015170327A (en) Simulation device, simulation method, and simulation program
Abas et al. Lattice Boltzmann method of different BGA orientations on I-type dispensing method
Tazaki et al. Vertical sorting process in oscillating water tank using DEM-MPS coupling model
CN103970928A (en) Simulation Program, Simulation Method, And Simulation Device
CN111950173A (en) Laser 3D printing random distribution powder molten pool thermal behavior finite element analysis method
Liovic et al. A volume of fluid (VOF) method for the simulation of metallurgical flows
EP3276512A1 (en) Computer-readable recording medium, particle simulation method, and information processing apparatus
WO2016199211A1 (en) Void behavior analysis method and apparatus therefor
Wang et al. Numerical Investigation for Effects of Polydisperse Argon Bubbles on Molten Steel Flow and Liquid Slag Entrapment in a Slab Continuous Casting Mold
Qin et al. Axisymmetric simulation of the interaction of a rising bubble with a rigid surface in viscous flow
Seydani et al. 3D numerical simulation and experimental validation of resin-bonded sand gravity casting: Filling, cooling, and solidification with SPH and ProCAST approaches
Singh et al. Thermo-fluid mathematical modeling of steel slab caster: Progress in 21st century
Zhao et al. Mathematical modelling of slag entrainment and entrained droplets in a continuous casting mould
Hernandez-Ortega et al. An experimental and numerical study of flow patterns and air entrapment phenomena during the filling of a vertical die cavity
Viroulet et al. Tsunami waves generated by cliff collapse: comparison between experiments and triphasic simulations
JP2008191830A (en) Resin flow analysis program, resin flow analysis device and resin flow analysis method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016570904

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15894896

Country of ref document: EP

Kind code of ref document: A1