WO2015070926A1 - Destination control system - Google Patents

Destination control system Download PDF

Info

Publication number
WO2015070926A1
WO2015070926A1 PCT/EP2013/074032 EP2013074032W WO2015070926A1 WO 2015070926 A1 WO2015070926 A1 WO 2015070926A1 EP 2013074032 W EP2013074032 W EP 2013074032W WO 2015070926 A1 WO2015070926 A1 WO 2015070926A1
Authority
WO
WIPO (PCT)
Prior art keywords
destination
booked
call
elevator
control system
Prior art date
Application number
PCT/EP2013/074032
Other languages
French (fr)
Inventor
Jukka Salmikuukka
Original Assignee
Kone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kone Corporation filed Critical Kone Corporation
Priority to PCT/EP2013/074032 priority Critical patent/WO2015070926A1/en
Priority to JP2016553709A priority patent/JP6347845B2/en
Priority to CN201380080955.6A priority patent/CN105722780B/en
Priority to EP13795449.1A priority patent/EP3044151B1/en
Publication of WO2015070926A1 publication Critical patent/WO2015070926A1/en
Priority to US15/143,779 priority patent/US10766737B2/en
Priority to HK16110815.4A priority patent/HK1222632A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/2408Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration where the allocation of a call to an elevator car is of importance, i.e. by means of a supervisory or group controller
    • B66B1/2458For elevator systems with multiple shafts and a single car per shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/46Adaptations of switches or switchgear
    • B66B1/468Call registering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B2201/00Aspects of control systems of elevators
    • B66B2201/10Details with respect to the type of call input
    • B66B2201/103Destination call input before entering the elevator car
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B2201/00Aspects of control systems of elevators
    • B66B2201/40Details of the change of control mode
    • B66B2201/404Details of the change of control mode by cost function evaluation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B2201/00Aspects of control systems of elevators
    • B66B2201/40Details of the change of control mode
    • B66B2201/405Details of the change of control mode by input of special passenger or passenger group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B2201/00Aspects of control systems of elevators
    • B66B2201/40Details of the change of control mode
    • B66B2201/46Switches or switchgear
    • B66B2201/4607Call registering systems
    • B66B2201/463Wherein the call is registered through physical contact with the elevator system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B2201/00Aspects of control systems of elevators
    • B66B2201/40Details of the change of control mode
    • B66B2201/46Switches or switchgear
    • B66B2201/4607Call registering systems
    • B66B2201/4653Call registering systems wherein the call is registered using portable devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B2201/00Aspects of control systems of elevators
    • B66B2201/40Details of the change of control mode
    • B66B2201/46Switches or switchgear
    • B66B2201/4607Call registering systems
    • B66B2201/4676Call registering systems for checking authorization of the passengers

Definitions

  • the present invention relates to a destination control system of an elevator group wherein a destination call is input via at least one destination call input device to the destination control system to be allocated to at least one of the elevators of at least one elevator group of an elevator system to service the destination call.
  • the advantage of destination control systems in the allocation of landing calls to the elevators of an elevator group is that the elevator control knows the departure floor as well as the destination floor and is accordingly aware of the complete traffic routes in the elevator system which facilitates the allocation of elevators to landing calls.
  • destination control systems also offer the option of pre-booked destination calls which do not only include the departure floor and the destination floor but also a correlated operation time for the destination call.
  • the destination control system knows already at a very early stage about the presence of landing calls and is accordingly able to coordinate the traffic in an elevator system as to better meet the criteria of a cost function which is generally used in for an optimal allocation of landing calls to the elevators.
  • This cost function usually comprises parameters as passenger waiting time, passenger ride time, total journey time, energy consumption, etc.
  • the allocation of landing calls with an allocation algorithm using cost functions is per se known and shall not be explained in greater detail.
  • the cost function ensures a call allocation which selects the elevator which is best adapted to serve a call under the considerations of the optimization criteria of the cost function.
  • a problem with destination control systems comprising pre-booking function arise in that on one hand a pre-booking function is only adopted by few users and on the other hand the pre-booked calls are sometimes by used by persons which have not booked the call and are thus not entitled to use the pre-booked ride in the elevator car.
  • inventive embodiments are also discussed in the descriptive section of the present application.
  • inventive content may also consist of separate inventions, especially if the invention is considered in the light of expressions or implicit subtasks or from the point of view of advantages or categories of advantages achieved.
  • inventive attributes contained in the claims below may be superfluous from the point of view of separate inventive concepts.
  • each pre-booked destination call does not only comprise the departure floor and the destination floor as well as a correlated time for the pre-booked destination call but also a correlated identifier of the user which has booked the pre- booked destination call.
  • This identifier is input by the user e.g. manually via the keyboard of a destination input panel.
  • the identifier may further be input by using an identifier card or identifier tag or by using individual destination call input devices as e.g. mobile devices, e.g. mobile phones, in which case the identification of the mobile device allows the transmission or detection of the identifier of the user via the identity of the individual destination call input device.
  • a pre-booked call is always linked to an individual person. Because by linking the pre-booked call to a defined identifier it can be checked later on whether the pre-booked call is indeed used by the person who has issued the pre-booked call.
  • the priority handling can in the simplest embodiment only differentiate between pre- booked calls and non pre-booked (instantaneous) calls.
  • a higher priority in call allocation of a pre-booked call can be obtained by different measures.
  • the priority of a pre-booked call may be increased by reserving at least one particular elevator in the elevator system or a certain space in a least one elevator of the elevator system exclusively to pre-booked calls.
  • the destination control system can adjust the weighting coefficients of the parameters of a cost function used in the call allocation for a pre- booked call differently than for an instantaneous call, which leads to the change of parameters as passenger waiting time, riding time etc.. In this case the passenger waiting time or riding time or total journey time of a pre-booked call can be reduced. This correlates to a kind of VIP- status for pre-booked calls.
  • At least one identification reader is provided at least in the vicinity of the elevators of the at least one elevator group of the elevator system.
  • the identification reader can for example be located in the elevator lobby or in front of the single elevators or inside the elevators.
  • the identification reader can be provided in connection with an access gate (e.g. rotating access hub) to the reserved elevator so that only persons having issued a pre-booked call within a certain period, e.g. within the next 5 minutes, are admitted to the reserved particular elevator or to a certain reserved space in an elevator.
  • the provision of the identification reader also has the advantage that pre-booked calls can be confirmed when being used by the correct user, i.e. the user who has issued the call. This can be important in connection with a reward system of the inventive destination call control system, particularly if the reward system is made user- individual, which is explained hereinafter.
  • the destination control system comprises a memory for the travel/call history of individual users to allow an evaluation of the behaviour of the user in connection with the elevator system. This allows a correlated grouping of the user into priority categories of the destination call control or even the assigning of an individual priority to each user.
  • the travel history may comprise in a simple embodiment only the number of rides in the elevator system based on pre-booked calls. But the travel history can also comprise additional data, e.g. the total number of rides in the elevator system, the relation of pre-booked calls to non pre-booked calls in the number of rides, the number or portion of confirmed and unused pre-booked calls, the riding time of the pre- booked calls etc.
  • the priority of the allocation of a pre-booked destination call can be made dependent on the number of confirmed and/or unused pre-booked calls issued by the individual users.
  • the individual priority may for example be the admittance to particular reserved elevators (also here several reserved elevators for different priorities can be provided) or the allocation of individual weighting coefficients for the parameters of a cost function which is used in the call allocation algorithm. With the individual weighting coefficients the individual users can be assigned a shorter waiting time, riding time and/or total journey time.
  • Each confirmation of a pre-booked destination call by the user may lead to the increase of his priority of whereas each non-use of a pre-booked call may lead to a decrease of his priority.
  • the allocation handling of the individual persons using the elevator group can be monitored so that repeated booking of pre-booked destination calls can be rewarded with a higher priority in the call allocation.
  • the user of an elevator system gets an immediate response of the elevator system in service quality to his pre -booking behaviour.
  • This is important particularly in high-rise elevators having a lot of landing floors, e.g. more than 50, and may be different zones to obtain their destination.
  • the elevator systems of such buildings usually have several elevator groups which serve different zones in the building.
  • elevators in the other elevator groups are also reserved for the pre-booked call, whereby the allocation time considers the travel of the previous elevator to a transfer floor of the elevator system, which is served by two adjacent elevator groups.
  • the elevator group control may comprise a multi- group control which coordinates the travel via several elevator groups.
  • the arrangement of a control for the elevator system e.g. the separation of an elevator group control in a coordinating multi-group control and/or several combined or separated elevator group controls is performed by the skilled person in course of his routine skills.
  • each user of the elevator system may be allocated an individual priority and the destination call input device may include a display for indicating an allocated elevator as well as for indicating the allocated priority to the user in which case he gets immediate information about his priority status in the elevator system.
  • the assigning of a certain priority to a user may not only have an effect on the individual weighting coefficients for the parameters of the cost function or the reservation of complete elevators but also to the reservation of certain elevator space in at least one of the elevators of the elevator system so that always sufficient place in the elevators is reserved for pre-booking users.
  • the invention is preferably advantageous in nowadays elevators wherein the size of the building and the number of landings increases as well as the number of pre-booked calls. As also the time frame of the pre-bookings gets longer, it becomes increasingly important and useful to use the advanced allocation system of the invention.
  • Pre-booked calls can be grouped and scheduled also according to several other factors for example for security or energy-saving purposes:
  • the inventive pre-booking system is able to handle access rights of the persons in a desired way so that for example pre- booked calls made by persons whose access rights are in conflict with each other are not scheduled and allocated to the same elevator.
  • the invention also allows a high consideration of energy optimization in the pre- ordered or pre-booked calls which are allocated in such a manner that the overall energy consumption of the elevator system is minimized.
  • the allocation of destination calls is carried out under use of a cost function wherein different allocation parameters are provided with different weighting coefficients which are to be considered in the allocation decision, whereby the weighting coefficient of the passenger waiting time and/or riding time of a pre-booked call is increased with respect to the corresponding weight coefficient of a non pre- booked destination call.
  • a cost function wherein different allocation parameters are provided with different weighting coefficients which are to be considered in the allocation decision, whereby the weighting coefficient of the passenger waiting time and/or riding time of a pre-booked call is increased with respect to the corresponding weight coefficient of a non pre- booked destination call.
  • At least one particular elevator of the elevator group is reserved for pre-booked calls and preferably also a part of the capacity of the elevators in the elevator group(s) of the elevator system is reserved for pre- booked calls.
  • the number of reserved elevators can be set dynamically in accordance with the dynamics of the portion of pre-booked calls to non- pre-booked calls.
  • the at least one particular reserved elevator is located in an access-controlled area where only users get access having an identifier related to a pre-booked destination call in the near future.
  • the identification reader is in this case preferably located in connection with an access control, i.e. in connection with a fence or hub of the access controlled area.
  • the destination call input devices may comprise mobile devices as for example smartphones, terminals or computers which are individually used by the users of the elevator system or by destination input panels located in connection with the elevator group. As far as the destination call input devices are individual, they may be adapted to automatically issue the identifier in connection with a pre-booked call to the destination control system. As far as the destination call input device is publically available as e.g. destination input panels, an identifier has to be input with the issue of a pre-booked call.
  • the destination control system includes a wired or wireless input node for the different destination call input devices. This arrangement ensures a reliable and safe input of pre-booked calls as well as of non-pre-booked calls into the destination control system.
  • the destination control system is usually implemented as an algorithm on a
  • the destination control system is usually part of an elevator group control or multi- group control for controlling at least one elevator group or an elevator system comprising several elevator groups, e.g. in high-rise buildings having different elevator groups in different zones of the building.
  • the destination control system comprises a cancellation option of a pre- booked call up to a preset time period before the operating time of the pre-booked call.
  • a preset time period before the operating time of the pre- booked call is at least the waiting time for the pre-booked call or a time window of the allocation algorithm within which pre-booked calls are entered into the allocation system before the indicated operation time of the allocation (desired allocation time).
  • the invention further relates to a method for allocating elevator calls to elevators in an elevator system having at least one elevator group with several elevators, wherein a destination call is input via at least one destination call input device into a destination control system to be allocated to at least one of the elevators of the elevator group to service the destination call.
  • a desired operating time of a so- called pre-booked destination call can be issued so that destination call data comprises the departure floor, the destination floor, a correlated operating time for the pre-booked destination call as well as a correlated identifier of the user issuing the pre-booked destination call.
  • the pre-booked destination calls are allocated with a higher priority to the elevators of the elevator group than the non-pre- booked destination calls, and with the serving of a pre-booked destination call, the identifier of the elevator user having issued the pre-booked destination call is prompted to confirm the correct use of the pre-booked destination call.
  • the method provides the same advantages as already mentioned with the inventive destination control system, i.e. to ensure the serving of pre-booked destination calls with a high priority compared to destination calls which are not pre-booked (instantaneous destination calls).
  • the use of the pre-booked call is confirmed by reading an identifier of the elevator user. Via this measure, it can be ensured that the pre-booked call is indeed used by the correct person and it can be ensured that the use of pre-booked calls leads to a better service in the elevator system than instantaneous destination calls.
  • an access control can be carried out which allows only the users of active pre-booked calls to enter the reserved elevator or area. Via this method, the misuse of pre-booked calls by unauthorized persons can be efficiently eliminated.
  • each user is assigned an individual priority which in the use of the elevator system whereby the priority is dependent on the number of confirmed pre-booked calls stored in a memory of the user's service history of the elevator system.
  • the individual priority may directly affect individual weighting coefficients of the parameters of a cost function of an allocation algorithm as e.g. passenger waiting time and/or passenger riding time so that for users with a high priority, the allocation function leads to a better result with respect to these parameters.
  • the destination control system issues upon the registration of a pre-booked call given by an individual destination call input device a confirmation message to said individual destination call input device, which allows the user to get a confirmation of his call mad by an individual destination call input device, e.g. a mobile device, mobile phone, tablet or a computer. This enhances the user comfort of the system for the users of individual destination call input devices.
  • an individual destination call input device e.g. a mobile device, mobile phone, tablet or a computer.
  • the destination control system issues - after having made the allocation for the pre-booked call - a message to said individual destination call input device comprising the allocated elevator. Also this measure enhances the service quality of the elevator system for passengers using individual destination call input devices. Of course, this message may advantageously be issued close to the pre-booked service time.
  • Fig. 1 shows a schematic diagram of an elevator system having an elevator group with one elevator being reserved for pre-booked calls
  • Fig. 2 a flow diagram for the allocation of pre-booked and non-pre-booked destination calls.
  • Fig. 1 shows an elevator system 10 having a first elevator group 12 consisting of four elevators 14, 16, 18, 20 which are connected to an elevator group control 22 comprising a destination control system 24.
  • a further elevator group 26 may be connected to the elevator group control 22 which other elevator group 26 may be arranged in a different zone of the building.
  • the connection of a further elevator group 26 to the elevator group control 22 is optional.
  • the elevator group control 22 comprises an input node 28 to which destination input panels 30 in the different elevator lobbies and several individual computers or terminals 32 are connected via bus/LAN.
  • a wireless access point 34 is connected to the input node 28 which wireless access point 34 is able to communicate via individual mobile devices 36, e.g. smartphones.
  • the fourth elevator 20 of the first elevator group 12 is a particular elevator reserved for pre-booked calls.
  • This particular reserved elevator 20 is located in an access controlled area which is separated via a fence structure 38 whereby an access hub of said fence structure is provided in the vicinity of an identification reader 40 to allow access to the particular reserved elevator 20 only for the users of active pre-booked calls.
  • Active pre- booked calls are pre-booked calls which are to be served within a certain time frame of e.g. 5 minutes.
  • the elevator system of Fig. 1 works as follows:
  • a destination call is input to the destination control system 24 of the elevator group control 22.
  • an identifier of the user of the elevator system may automatically be issued with the issuing of the destination call.
  • the computer or terminal 32 and the mobile device 36 also enables the user to input a desired time for the destination call which is the time when the destination call is really operated in the allocation system.
  • a user of the elevator system may issue at twelve o'clock a pre-booked call from the 85th floor to the ground floor at 16:30.
  • the identifier can be given automatically.
  • the destination control system 24 in the elevator group control 22 reserves a ride in the particular reserved elevator 20 from the departure floor to the destination floor of the pre-booked call at 16:30. The user is able to gain access into the fenced access area of the particular elevator 20 via a rotation hub which is released after presenting his identifier tag to an identification reader 40 provided in the vicinity of the rotation hub.
  • the access into the access area is possible only within a certain time frame before the operating time of the pre-booked call, i.e. at 16:20 or 16:25 at the earliest.
  • the destination control system 24 knows the departure floor and destination floor of the pre-booked call long before, it can arrange an energy-saving allocation of the particular elevator 20 to serve the pre-booked call in time in a most economical manner.
  • Fig. 2 shows an optional flow diagram for pre-booked calls and non-pre-booked calls.
  • Box 50 is the start box for a pre-booked call wherein the elevator system, i.e. the elevator group control 22 of the elevator system, obtains the departure floor, the destination floor, the operating time of the call allocation as well as an identifier of the user having issued the pre-booked call.
  • Box 52 is the start box for a non-pre-booked call, i.e. an instantaneous destination call which only comprises the departure floor, the destination floor and optionally identification data of the user.
  • decision field 54 it is prompted whether the pre-booked destination call has meanwhile been cancelled. If yes, the procedure stops at end marker 56.
  • the flow diagram proceeds to decision field 58 wherein the operating time of the pre-booked call is compared with the actual time and it is decided whether the pre-booked call is to be allocated. If no, the process goes back to field 54. If yes, the flow diagram proceeds to decision field 60. Non-pre-booked calls process directly from Box 52 to decision field 60. In decision field 60, it is prompted whether the active call is a pre-booked call. If yes, the flow diagram proceeds to decision field 62 wherein it is checked whether a particular reserved elevator 20 comprises enough space to serve the call. If yes, an allocation procedure for this particular reserved elevator 20 is performed in field 64.
  • the flow diagram proceeds from decision field 62 to operation field 66 where the identifier of the elevator user is retrieved and the corresponding user-individual priority is obtained to retrieve the priority of the destination call.
  • the individual priority assigned to the destination call in operation field 66 leads in operation field 68 to a call allocation of all other elevators except the particular elevator 20 with a set of individual weighting coefficients leading to a better performance of the call allocation for this pre-booked destination call of the individual user.
  • a negative result leads to the operation field 70 in which a normal call allocation within all elevators of the elevator system except the particular elevator 20 is performed with normal weighting coefficients of the parameters of the cost function corresponding to a low priority of the instantaneous destination call.
  • the operation fields 70 and 68 connect ahead of operation field 72 in which the allocated elevator is indicated in a display of the destination input panel 30 or in a display of a mobile device 36.
  • decision field 74 it is again prompted, if the pending destination call is a pre-booked call. If not, the allocation ends at end field 76. yes, the allocation process advances to decision field 78 in which it is prompted if the pre- booked call has been confirmed. If yes, the priority of the individual user is increased in operation field 80. If not, the priority of the individual user is decreased in operation field 82. Afterwards, the allocation procedure ends in the end field 76.
  • the decision field 62 and the operation field 64 can be omitted.
  • the invention is not limited by the above embodiments but may be varied within the scope of the appended patent claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Elevator Control (AREA)

Abstract

The invention relates to a destination control system (24) of an elevator system (10) having at least one elevator group (12, 26), wherein a destination call is input via at least one destination call input device (30, 32, 36) to the destination control system to be allocated to at least one of the elevators (14, 16, 18, 20) of the elevator group to service the destination call. The destination call input device further includes an optional input for a desired operating time of a so called "pre-booked" destination call and the destination control system comprises a memory for pre-booked destination call data comprising the departure floor, the destination floor, a correlated operating time for the pre-booked destination call as well as a correlated identifier of the user having issued the pre-booked destination call, in which destination control system the pre-booked destination calls are allocated to the elevators of the elevator group with a higher priority than not pre-booked destination calls. Further, the destination control system has at least one identification reader (40) arranged at least in the vicinity of the elevators (14, 16, 18, 20) to obtain an identifier input by the elevator user, and a pre-booked destination call is confirmed by the destination control system only after it has been checked that the identifier obtained by the identification reader corresponds to the identifier correlated to the pre-booked destination call. The invention rewards pre- booking of destination calls and leads thus to a better efficiency of the elevator system.

Description

Destination control system
The present invention relates to a destination control system of an elevator group wherein a destination call is input via at least one destination call input device to the destination control system to be allocated to at least one of the elevators of at least one elevator group of an elevator system to service the destination call. The advantage of destination control systems in the allocation of landing calls to the elevators of an elevator group is that the elevator control knows the departure floor as well as the destination floor and is accordingly aware of the complete traffic routes in the elevator system which facilitates the allocation of elevators to landing calls. Recently, destination control systems also offer the option of pre-booked destination calls which do not only include the departure floor and the destination floor but also a correlated operation time for the destination call. Via this means, the destination control system knows already at a very early stage about the presence of landing calls and is accordingly able to coordinate the traffic in an elevator system as to better meet the criteria of a cost function which is generally used in for an optimal allocation of landing calls to the elevators. This cost function usually comprises parameters as passenger waiting time, passenger ride time, total journey time, energy consumption, etc. The allocation of landing calls with an allocation algorithm using cost functions is per se known and shall not be explained in greater detail. The cost function ensures a call allocation which selects the elevator which is best adapted to serve a call under the considerations of the optimization criteria of the cost function.
A problem with destination control systems comprising pre-booking function arise in that on one hand a pre-booking function is only adopted by few users and on the other hand the pre-booked calls are sometimes by used by persons which have not booked the call and are thus not entitled to use the pre-booked ride in the elevator car.
It is therefore object of the present invention to provide an improved destination control system which leads to a better acceptance of the use of a pre-booking function than in currently known destination control systems.
This object is solved with a destination control system according to claim 1 as well as with elevator group control according to claim 14, an elevator system according to claim 15 as well as a method according to claim 17. Preferred embodiments of the invention are subject-matter of the corresponding dependent claims.
Some inventive embodiments are also discussed in the descriptive section of the present application. The inventive content may also consist of separate inventions, especially if the invention is considered in the light of expressions or implicit subtasks or from the point of view of advantages or categories of advantages achieved. In this case, some of the attributes contained in the claims below may be superfluous from the point of view of separate inventive concepts.
According to the invention, each pre-booked destination call does not only comprise the departure floor and the destination floor as well as a correlated time for the pre-booked destination call but also a correlated identifier of the user which has booked the pre- booked destination call. This identifier is input by the user e.g. manually via the keyboard of a destination input panel. The identifier may further be input by using an identifier card or identifier tag or by using individual destination call input devices as e.g. mobile devices, e.g. mobile phones, in which case the identification of the mobile device allows the transmission or detection of the identifier of the user via the identity of the individual destination call input device. According to the invention, a pre-booked call is always linked to an individual person. Because by linking the pre-booked call to a defined identifier it can be checked later on whether the pre-booked call is indeed used by the person who has issued the pre-booked call.
The priority handling can in the simplest embodiment only differentiate between pre- booked calls and non pre-booked (instantaneous) calls. A higher priority in call allocation of a pre-booked call can be obtained by different measures. On one hand the priority of a pre-booked call may be increased by reserving at least one particular elevator in the elevator system or a certain space in a least one elevator of the elevator system exclusively to pre-booked calls. On the other hand, i.e. additionally or alternatively to this measure the destination control system can adjust the weighting coefficients of the parameters of a cost function used in the call allocation for a pre- booked call differently than for an instantaneous call, which leads to the change of parameters as passenger waiting time, riding time etc.. In this case the passenger waiting time or riding time or total journey time of a pre-booked call can be reduced. This correlates to a kind of VIP- status for pre-booked calls.
To enable the destination control system to verify the use of a pre-booked call by the correct user, at least one identification reader is provided at least in the vicinity of the elevators of the at least one elevator group of the elevator system. The identification reader can for example be located in the elevator lobby or in front of the single elevators or inside the elevators. Preferably, if particular elevators are used for pre-booked calls, the identification reader can be provided in connection with an access gate (e.g. rotating access hub) to the reserved elevator so that only persons having issued a pre-booked call within a certain period, e.g. within the next 5 minutes, are admitted to the reserved particular elevator or to a certain reserved space in an elevator.
The provision of the identification reader also has the advantage that pre-booked calls can be confirmed when being used by the correct user, i.e. the user who has issued the call. This can be important in connection with a reward system of the inventive destination call control system, particularly if the reward system is made user- individual, which is explained hereinafter.
A further optional differentiation of the priority is possible if the priority is user- individually: In this case it can be differentiated between users with non pre-booked calls, unreliable users (= users which sometimes do not use their pre-booked call) and users using reliably pre-booked calls. The borders between these groups may be fluent. Thus the priority can be made dependent on the number of confirmed pre-booked call in the past and or on the number of the unused pre-booked call in the past. The priority of each user can be adjusted individually to the above mentioned call history of a user.
In this case the destination control system comprises a memory for the travel/call history of individual users to allow an evaluation of the behaviour of the user in connection with the elevator system. This allows a correlated grouping of the user into priority categories of the destination call control or even the assigning of an individual priority to each user. The travel history may comprise in a simple embodiment only the number of rides in the elevator system based on pre-booked calls. But the travel history can also comprise additional data, e.g. the total number of rides in the elevator system, the relation of pre-booked calls to non pre-booked calls in the number of rides, the number or portion of confirmed and unused pre-booked calls, the riding time of the pre- booked calls etc. In this case, the priority of the allocation of a pre-booked destination call can be made dependent on the number of confirmed and/or unused pre-booked calls issued by the individual users. The individual priority may for example be the admittance to particular reserved elevators (also here several reserved elevators for different priorities can be provided) or the allocation of individual weighting coefficients for the parameters of a cost function which is used in the call allocation algorithm. With the individual weighting coefficients the individual users can be assigned a shorter waiting time, riding time and/or total journey time.
Each confirmation of a pre-booked destination call by the user may lead to the increase of his priority of whereas each non-use of a pre-booked call may lead to a decrease of his priority. Thus, the allocation handling of the individual persons using the elevator group can be monitored so that repeated booking of pre-booked destination calls can be rewarded with a higher priority in the call allocation.
By the above measures the user of an elevator system gets an immediate response of the elevator system in service quality to his pre -booking behaviour. This is important particularly in high-rise elevators having a lot of landing floors, e.g. more than 50, and may be different zones to obtain their destination. The elevator systems of such buildings usually have several elevator groups which serve different zones in the building. Of course, when for a travel in the elevator system a change of the elevator group is necessary for a pre-booked call, elevators in the other elevator groups are also reserved for the pre-booked call, whereby the allocation time considers the travel of the previous elevator to a transfer floor of the elevator system, which is served by two adjacent elevator groups. Accordingly, the elevator group control may comprise a multi- group control which coordinates the travel via several elevator groups. The arrangement of a control for the elevator system, e.g. the separation of an elevator group control in a coordinating multi-group control and/or several combined or separated elevator group controls is performed by the skilled person in course of his routine skills.
Preferably, each user of the elevator system may be allocated an individual priority and the destination call input device may include a display for indicating an allocated elevator as well as for indicating the allocated priority to the user in which case he gets immediate information about his priority status in the elevator system.
The assigning of a certain priority to a user may not only have an effect on the individual weighting coefficients for the parameters of the cost function or the reservation of complete elevators but also to the reservation of certain elevator space in at least one of the elevators of the elevator system so that always sufficient place in the elevators is reserved for pre-booking users. The invention is preferably advantageous in nowadays elevators wherein the size of the building and the number of landings increases as well as the number of pre-booked calls. As also the time frame of the pre-bookings gets longer, it becomes increasingly important and useful to use the advanced allocation system of the invention.
Pre-booked calls can be grouped and scheduled also according to several other factors for example for security or energy-saving purposes: The inventive pre-booking system is able to handle access rights of the persons in a desired way so that for example pre- booked calls made by persons whose access rights are in conflict with each other are not scheduled and allocated to the same elevator.
The invention also allows a high consideration of energy optimization in the pre- ordered or pre-booked calls which are allocated in such a manner that the overall energy consumption of the elevator system is minimized.
The priority may also be handled by first allocating the pre-booked calls because of their known time frame in the most energy-efficient way and afterwards the in-coming instantaneous calls (= not pre-booked calls) are allocated separately to the most optimal available gaps left over from the pre-bookings. Further the priority can be handled by first allocating the places in the elevators to the users of pre-booked calls and only the remaining space is allocated to the remaining instantaneous calls. This ensures the serving of pre-booked calls with a higher priority than non pre-booked calls.
Preferably, the allocation of destination calls is carried out under use of a cost function wherein different allocation parameters are provided with different weighting coefficients which are to be considered in the allocation decision, whereby the weighting coefficient of the passenger waiting time and/or riding time of a pre-booked call is increased with respect to the corresponding weight coefficient of a non pre- booked destination call. Via this measure it is obtained that the general allocation efficiency for pre-booked calls is with respect to passenger waiting and/or riding better than for non-pre-booked destination calls. This is a clear reward system for users which are reliably using the pre-booking function of the elevator system.
As it has been mentioned above, preferably at least one particular elevator of the elevator group is reserved for pre-booked calls and preferably also a part of the capacity of the elevators in the elevator group(s) of the elevator system is reserved for pre- booked calls. In this case preferably the number of reserved elevators can be set dynamically in accordance with the dynamics of the portion of pre-booked calls to non- pre-booked calls.
Preferably, the at least one particular reserved elevator is located in an access-controlled area where only users get access having an identifier related to a pre-booked destination call in the near future. Via this means, the un-allowed use of pre-booked calls by not authorized users can be efficiently prevented which improves the advantage of pre- booked calls with respect to instantaneous calls. The identification reader is in this case preferably located in connection with an access control, i.e. in connection with a fence or hub of the access controlled area.
The destination call input devices may comprise mobile devices as for example smartphones, terminals or computers which are individually used by the users of the elevator system or by destination input panels located in connection with the elevator group. As far as the destination call input devices are individual, they may be adapted to automatically issue the identifier in connection with a pre-booked call to the destination control system. As far as the destination call input device is publically available as e.g. destination input panels, an identifier has to be input with the issue of a pre-booked call. In any way, the destination control system includes a wired or wireless input node for the different destination call input devices. This arrangement ensures a reliable and safe input of pre-booked calls as well as of non-pre-booked calls into the destination control system. The destination control system is usually implemented as an algorithm on a
microprocessor system.
The destination control system is usually part of an elevator group control or multi- group control for controlling at least one elevator group or an elevator system comprising several elevator groups, e.g. in high-rise buildings having different elevator groups in different zones of the building.
Preferably, the destination control system comprises a cancellation option of a pre- booked call up to a preset time period before the operating time of the pre-booked call. Via this measure, it is possible for the elevator user to cancel a pre-booked call without deteriorating his priority in the pre-booking call system. With the cancellation, the pre- booked call is eliminated from the call allocation system before the call is operated in the allocation system. Thus, the preset time period before the operating time of the pre- booked call is at least the waiting time for the pre-booked call or a time window of the allocation algorithm within which pre-booked calls are entered into the allocation system before the indicated operation time of the allocation (desired allocation time).
The invention further relates to a method for allocating elevator calls to elevators in an elevator system having at least one elevator group with several elevators, wherein a destination call is input via at least one destination call input device into a destination control system to be allocated to at least one of the elevators of the elevator group to service the destination call. In the inventive method, a desired operating time of a so- called pre-booked destination call can be issued so that destination call data comprises the departure floor, the destination floor, a correlated operating time for the pre-booked destination call as well as a correlated identifier of the user issuing the pre-booked destination call. According to the invention, the pre-booked destination calls are allocated with a higher priority to the elevators of the elevator group than the non-pre- booked destination calls, and with the serving of a pre-booked destination call, the identifier of the elevator user having issued the pre-booked destination call is prompted to confirm the correct use of the pre-booked destination call.
The method provides the same advantages as already mentioned with the inventive destination control system, i.e. to ensure the serving of pre-booked destination calls with a high priority compared to destination calls which are not pre-booked (instantaneous destination calls). In the inventive method, the use of the pre-booked call is confirmed by reading an identifier of the elevator user. Via this measure, it can be ensured that the pre-booked call is indeed used by the correct person and it can be ensured that the use of pre-booked calls leads to a better service in the elevator system than instantaneous destination calls.
Particularly, in connection with particular elevators reserved for pre-booked calls or certain areas in at least one particular elevator reserved for pre-booked calls, an access control can be carried out which allows only the users of active pre-booked calls to enter the reserved elevator or area. Via this method, the misuse of pre-booked calls by unauthorized persons can be efficiently eliminated.
Preferably, each user is assigned an individual priority which in the use of the elevator system whereby the priority is dependent on the number of confirmed pre-booked calls stored in a memory of the user's service history of the elevator system. With this system, an efficient use of the pre-booking function is awarded with a higher efficiency of the elevator system for the individual person. For example, the individual priority may directly affect individual weighting coefficients of the parameters of a cost function of an allocation algorithm as e.g. passenger waiting time and/or passenger riding time so that for users with a high priority, the allocation function leads to a better result with respect to these parameters.
According to a preferred embodiment of the invention the destination control system issues upon the registration of a pre-booked call given by an individual destination call input device a confirmation message to said individual destination call input device, which allows the user to get a confirmation of his call mad by an individual destination call input device, e.g. a mobile device, mobile phone, tablet or a computer. This enhances the user comfort of the system for the users of individual destination call input devices.
Furthermore, according to a further preferred embodiment of the invention the destination control system issues - after having made the allocation for the pre-booked call - a message to said individual destination call input device comprising the allocated elevator. Also this measure enhances the service quality of the elevator system for passengers using individual destination call input devices. Of course, this message may advantageously be issued close to the pre-booked service time.
The invention is hereinafter described via an example in connection with the
accompanied drawings. In these drawings
Fig. 1 shows a schematic diagram of an elevator system having an elevator group with one elevator being reserved for pre-booked calls,
Fig. 2 a flow diagram for the allocation of pre-booked and non-pre-booked destination calls.
Fig. 1 shows an elevator system 10 having a first elevator group 12 consisting of four elevators 14, 16, 18, 20 which are connected to an elevator group control 22 comprising a destination control system 24. A further elevator group 26 may be connected to the elevator group control 22 which other elevator group 26 may be arranged in a different zone of the building. The connection of a further elevator group 26 to the elevator group control 22 is optional. The elevator group control 22 comprises an input node 28 to which destination input panels 30 in the different elevator lobbies and several individual computers or terminals 32 are connected via bus/LAN. Furthermore, a wireless access point 34 is connected to the input node 28 which wireless access point 34 is able to communicate via individual mobile devices 36, e.g. smartphones.
The fourth elevator 20 of the first elevator group 12 is a particular elevator reserved for pre-booked calls. This particular reserved elevator 20 is located in an access controlled area which is separated via a fence structure 38 whereby an access hub of said fence structure is provided in the vicinity of an identification reader 40 to allow access to the particular reserved elevator 20 only for the users of active pre-booked calls. Active pre- booked calls are pre-booked calls which are to be served within a certain time frame of e.g. 5 minutes.
The elevator system of Fig. 1 works as follows:
Via the destination call input devices, i.e. the terminal or computer 32, the destination input panel 30 or the mobile device 36, a destination call is input to the destination control system 24 of the elevator group control 22. In case of the computers or terminals 32 and the mobile devices 36, an identifier of the user of the elevator system may automatically be issued with the issuing of the destination call. The computer or terminal 32 and the mobile device 36 also enables the user to input a desired time for the destination call which is the time when the destination call is really operated in the allocation system. On this behalf, a user of the elevator system may issue at twelve o'clock a pre-booked call from the 85th floor to the ground floor at 16:30. This is a pre- booked call which comprises the departure floor, the destination floor as well as the time when the allocation has to be operated. In case of the terminals 32 or mobile devices 36, the identifier can be given automatically. In case of a common destination input panel 30 comprising a display and a decade keyboard, the identifier has to be input manually. In this case, the destination control system 24 in the elevator group control 22 reserves a ride in the particular reserved elevator 20 from the departure floor to the destination floor of the pre-booked call at 16:30. The user is able to gain access into the fenced access area of the particular elevator 20 via a rotation hub which is released after presenting his identifier tag to an identification reader 40 provided in the vicinity of the rotation hub. The access into the access area is possible only within a certain time frame before the operating time of the pre-booked call, i.e. at 16:20 or 16:25 at the earliest. As the destination control system 24 knows the departure floor and destination floor of the pre-booked call long before, it can arrange an energy-saving allocation of the particular elevator 20 to serve the pre-booked call in time in a most economical manner.
Fig. 2 shows an optional flow diagram for pre-booked calls and non-pre-booked calls. Box 50 is the start box for a pre-booked call wherein the elevator system, i.e. the elevator group control 22 of the elevator system, obtains the departure floor, the destination floor, the operating time of the call allocation as well as an identifier of the user having issued the pre-booked call. Box 52 is the start box for a non-pre-booked call, i.e. an instantaneous destination call which only comprises the departure floor, the destination floor and optionally identification data of the user. In decision field 54, it is prompted whether the pre-booked destination call has meanwhile been cancelled. If yes, the procedure stops at end marker 56. If the pre-booked call is not cancelled, the flow diagram proceeds to decision field 58 wherein the operating time of the pre-booked call is compared with the actual time and it is decided whether the pre-booked call is to be allocated. If no, the process goes back to field 54. If yes, the flow diagram proceeds to decision field 60. Non-pre-booked calls process directly from Box 52 to decision field 60. In decision field 60, it is prompted whether the active call is a pre-booked call. If yes, the flow diagram proceeds to decision field 62 wherein it is checked whether a particular reserved elevator 20 comprises enough space to serve the call. If yes, an allocation procedure for this particular reserved elevator 20 is performed in field 64. If no room in the particular elevator 20 is available, the flow diagram proceeds from decision field 62 to operation field 66 where the identifier of the elevator user is retrieved and the corresponding user-individual priority is obtained to retrieve the priority of the destination call. The individual priority assigned to the destination call in operation field 66 leads in operation field 68 to a call allocation of all other elevators except the particular elevator 20 with a set of individual weighting coefficients leading to a better performance of the call allocation for this pre-booked destination call of the individual user.
Coming back to the third decision field 60 where it is prompted, if the present destination call is a pre-booked call, a negative result leads to the operation field 70 in which a normal call allocation within all elevators of the elevator system except the particular elevator 20 is performed with normal weighting coefficients of the parameters of the cost function corresponding to a low priority of the instantaneous destination call.
The operation fields 70 and 68 connect ahead of operation field 72 in which the allocated elevator is indicated in a display of the destination input panel 30 or in a display of a mobile device 36. In decision field 74, it is again prompted, if the pending destination call is a pre-booked call. If not, the allocation ends at end field 76. yes, the allocation process advances to decision field 78 in which it is prompted if the pre- booked call has been confirmed. If yes, the priority of the individual user is increased in operation field 80. If not, the priority of the individual user is decreased in operation field 82. Afterwards, the allocation procedure ends in the end field 76.
With the above-mentioned allocation method, it is on one hand ensured that the pre- booking user gets a place in the particular reserved elevator 20, if available. However, if no room is available, the allocation procedure still leads to an individual allocation with better weighting coefficients for the passenger sensitive parameters of the cost function of the allocation algorithm as passenger waiting time and passenger riding time which will lead to a better service than any instantaneous destination call.
If no particular elevator(s) 20 is(are) reserved for pre-booked calls, the decision field 62 and the operation field 64 can be omitted. The invention is not limited by the above embodiments but may be varied within the scope of the appended patent claims.

Claims

Claims:
1. Destination control system (24) of an elevator system (10) having at least one elevator group (12, 26), wherein a destination call is input via at least one destination call input device (30, 32, 36) to the destination control system to be allocated to at least one of the elevators (14, 16, 18, 20) of the elevator group to service the destination call, which destination call input device further includes an optional input for a desired operating time of a so called "pre-booked" destination call and the destination control system is configured to handle destination calls based on destination call data comprising the departure floor, the destination floor, a correlated operating time for the pre-booked destination call as well as a correlated identifier of the user having issued the pre-booked destination call, in which destination control system the pre-booked destination calls are allocated to the elevators of the elevator group with a higher priority than not pre-booked destination calls, and
in which destination control system at least one identification reader (40) is arranged at least in the vicinity of the elevators (14, 16, 18, 20) to obtain an identifier input by the elevator user, and a pre-booked destination call is confirmed by the destination control system only after it has been checked that the identifier obtained by the identification reader corresponds to the identifier correlated to the pre-booked destination call.
2. Destination control system (24) according to claim 1, which destination control system has a memory for the travel history of individual users in the elevator system.
3. Destination control system (24) according to claim 2, wherein the priority of the allocation of a pre-booked destination call user- individual and dependent on the number of unused and/or confirmed pre-booked destination calls issued by the user.
4. Destination control system (24) according to claim 2 or 3, wherein each user is allocated an individual priority and that the destination call input device (30, 32, 36) includes a display for indicating the allocated priority to the user.
5. Destination control system (24) according to one of the preceding claims, wherein for the allocation of the destination calls a cost function is used having different parameters as passenger waiting time, passenger riding time, energy consumption etc., which different parameters are weighted by weighting coefficients in the cost function, which destination control system is configured to assign different weighting coefficients to different users.
6. Destination control system (24) according claim 5, wherein to increase the priority of a pre-booked destination call the weight coefficient of the passenger waiting time and/or riding time of a pre-booked destination call of a user is increased (80) with respect to the corresponding weight coefficient of a non pre-booked destination call.
7. Destination control system (24) according to one of the preceding claims, wherein at least one particular elevator (20) of the elevator group (12) is reserved for pre-booked destination calls.
8. Destination control system according to claim 7, wherein an access control (38, 40) is arranged for the particular elevator (20) which comprises an identification reader (40).
9. Destination control system (24) according to one of the preceding claims, wherein a part of the capacity of the elevator (14, 16, 18, 20) is reserved for pre-booked destination calls.
10. Destination control system (24) according to one of the preceding claims, wherein the destination call input device is a mobile device (36), terminal (32) or a destination input panel (30) and the destination control system (24) is connected with a wired and/or wireless input node (28) for the connection of the destination call input devices.
11. Destination control system (24) according to one of the preceding claims, wherein the access area to a particular reserved elevator (20) is restricted (38, 40) and access to said area is only possible for users having an identifier correlated to a pre-booked destination call within a limited time frame.
12. Destination control system (24) according to one of the preceding claims, which is implemented as an algorithm on a microprocessor system.
13. Destination control system (24) according to one of the preceding claims, wherein the destination call input device (30, 32, 36) offers to the user the possibility to cancel (54) a pre-booked destination call up to a present time period before the operating time of the pre-booked destination call.
14. Elevator group control (22) comprising a destination control system (24) according to one of the preceding claims.
15. Elevator system (10) having at least one elevator group (12, 26) comprising an elevator group control (22) with a destination control system (24) according to one of the preceding claims.
16. Elevator system according to claim 15, wherein the destination control system (24) is a part of the elevator group control (22), particularly arranged on a module thereof.
17. Method for allocating destination calls to elevators (14, 16, 18, 20) in an elevator system (10) having at least one elevator group (12, 26) with several elevators, wherein a destination call is input via at least one destination call input device (30, 32, 36) into a destination control system (24) to be allocated to at least one of the elevators of the elevator group to service the destination call, in which method a desired operating time of a so called "pre-booked" destination call can be issued so that destination call data comprises the departure floor, the destination floor, a correlated operating time for the pre-booked destination call as well as a correlated identifier of the user issuing the pre- booked destination call, whereby the pre-booked destination calls are allocated with a higher priority (66, 68) to the elevators of the elevator group than non pre-booked destination calls, and
wherein with the serving of the pre-booked destination call the identifier of the elevator user having issued the pre-booked destination call is prompted from the user to confirm the correct use of the pre-booked destination call.
18. Method according to claim 17, wherein at least one particular elevator (20) or at least a certain area in at least one elevator is reserved for pre-booked destination calls and the access to said particular elevator or to the certain area is only permitted after retrieving the correct identifier for a pre-booked destination call to be served within a certain time frame.
19. Method according to claim 17 or 18, wherein each user is assigned an individual priority (80, 82) which is dependent on the number of confirmed pre-booked destination calls.
20. Method according to claim 19, wherein the priority affects (80, 82, 66, 68) user- specific individual weighting coefficients of the parameters of a cost function of an allocation algorithm.
21. Method according to one of claims 17 to 20, wherein upon the registration of a pre- booked call given by an individual destination call input device (32, 36) a confirmation message is issued by the destination control system to said individual destination call input device.
22. Method according to one of claims 17 to 21, wherein the destination control system issues after having made the allocation for the pre-booked call a message with the allocated elevator to said individual destination call input device (32, 36).
PCT/EP2013/074032 2013-11-18 2013-11-18 Destination control system WO2015070926A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/EP2013/074032 WO2015070926A1 (en) 2013-11-18 2013-11-18 Destination control system
JP2016553709A JP6347845B2 (en) 2013-11-18 2013-11-18 Destination control system
CN201380080955.6A CN105722780B (en) 2013-11-18 2013-11-18 destination control system
EP13795449.1A EP3044151B1 (en) 2013-11-18 2013-11-18 Destination control system
US15/143,779 US10766737B2 (en) 2013-11-18 2016-05-02 Destination control system
HK16110815.4A HK1222632A1 (en) 2013-11-18 2016-09-13 Destination control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2013/074032 WO2015070926A1 (en) 2013-11-18 2013-11-18 Destination control system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/143,779 Continuation US10766737B2 (en) 2013-11-18 2016-05-02 Destination control system

Publications (1)

Publication Number Publication Date
WO2015070926A1 true WO2015070926A1 (en) 2015-05-21

Family

ID=49641731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/074032 WO2015070926A1 (en) 2013-11-18 2013-11-18 Destination control system

Country Status (6)

Country Link
US (1) US10766737B2 (en)
EP (1) EP3044151B1 (en)
JP (1) JP6347845B2 (en)
CN (1) CN105722780B (en)
HK (1) HK1222632A1 (en)
WO (1) WO2015070926A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3106414A1 (en) * 2015-06-19 2016-12-21 Otis Elevator Company User-controlled elevator allocation
WO2018059677A1 (en) * 2016-09-28 2018-04-05 Kone Corporation Method for allocating elevator calls and elevator system
EP3412614A3 (en) * 2017-06-05 2018-12-19 Otis Elevator Company Elevator notifications on mobile device associated with user identification device
DE102017219744A1 (en) * 2017-11-07 2019-05-09 Thyssenkrupp Ag Passenger conveying device with monitoring device
US20190322483A1 (en) * 2018-04-19 2019-10-24 Otis Elevator Company E-call registration for elevator
EP3307666B1 (en) 2015-06-10 2021-01-27 Inventio AG Elevator system with predictive call generation
EP3875417A1 (en) * 2020-03-05 2021-09-08 Otis Elevator Company Receiver-less device positioning

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110228733B (en) * 2018-03-06 2022-08-09 奥的斯电梯公司 Authorization management of elevator service requests and authorization requests
KR102114745B1 (en) * 2018-03-21 2020-05-25 현대엘리베이터주식회사 Apparatus and method of automatically calling elevator based on user schedule
US11919742B2 (en) * 2018-06-19 2024-03-05 Otis Elevator Company Mobile car operating panel
CN110626891B (en) 2018-06-25 2023-09-05 奥的斯电梯公司 System and method for improved elevator dispatch
US12098057B2 (en) 2018-09-14 2024-09-24 Otis Elevator Company Validation of elevator call passenger boarding
US20200122958A1 (en) * 2018-10-22 2020-04-23 Otis Elevator Company System and method for prioritizing service to remote elevator calls based on proximity to elevator lobby
US12030741B2 (en) * 2019-03-25 2024-07-09 Otis Elevator Company Processing multiple elevator service requests
EP3999462A1 (en) * 2019-07-19 2022-05-25 KONE Corporation Elevator call allocation
US20220297975A1 (en) * 2021-03-18 2022-09-22 International Business Machines Corporation Occupant-based intelligent elevator actions
WO2022219220A1 (en) * 2021-04-14 2022-10-20 Kone Corporation Elevator control
CN113173468B (en) * 2021-05-18 2023-05-26 日立楼宇技术(广州)有限公司 Elevator calling method and device and elevator control system
EP4416098A1 (en) * 2021-10-15 2024-08-21 KONE Corporation Elevator control
CN115477209B (en) * 2022-09-23 2023-10-17 日立楼宇技术(广州)有限公司 Ladder calling method, device, equipment and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060065490A1 (en) * 2004-09-27 2006-03-30 Vlad Zaharia Automatic destination entry system with override capability
WO2006070051A2 (en) * 2004-12-30 2006-07-06 Kone Corporation Elevator system
US20120018257A1 (en) * 2009-07-15 2012-01-26 Mitsubishi Electric Corporation Elevator system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5307903A (en) * 1988-01-29 1994-05-03 Hitachi, Ltd. Method and system of controlling elevators and method and apparatus of inputting requests to the control system
JPH09315708A (en) * 1996-05-29 1997-12-09 Otis Elevator Co Group supervisory elevator
ZA200101798B (en) * 2000-03-20 2001-09-11 Inventio Ag Method for operating an elevator.
JP4027622B2 (en) * 2001-07-25 2007-12-26 株式会社日立製作所 Elevator operation control device
JP2003312947A (en) * 2002-04-18 2003-11-06 Hitachi Software Eng Co Ltd Elevator service system
FI115521B (en) * 2004-06-28 2005-05-31 Kone Corp Method for wireless input of call in lift, involves transmitting destination floor detail selected among received floor details, by calling person mobile phone, to control system of lift
FI20050130A0 (en) * 2005-02-04 2005-02-04 Kone Corp Elevator system
JP4874713B2 (en) * 2006-05-26 2012-02-15 三菱電機株式会社 Elevator remote control device
KR100898916B1 (en) * 2007-04-02 2009-05-26 최성식 System for intelligent elevator and control method thereof
US8151943B2 (en) * 2007-08-21 2012-04-10 De Groot Pieter J Method of controlling intelligent destination elevators with selected operation modes
EP2325125B1 (en) * 2008-09-18 2016-05-25 Mitsubishi Electric Corporation Elevator system
JP5273253B2 (en) * 2009-09-02 2013-08-28 三菱電機株式会社 Elevator system
EP2615052A4 (en) * 2010-09-10 2017-11-15 Mitsubishi Electric Corporation Operation device of elevator
CN103874648B (en) * 2011-10-14 2015-08-26 因温特奥股份公司 There is the elevator device of multiple car
EP2597063A1 (en) * 2011-11-22 2013-05-29 Inventio AG Elevator reservations using destination arrival time

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060065490A1 (en) * 2004-09-27 2006-03-30 Vlad Zaharia Automatic destination entry system with override capability
WO2006070051A2 (en) * 2004-12-30 2006-07-06 Kone Corporation Elevator system
US20120018257A1 (en) * 2009-07-15 2012-01-26 Mitsubishi Electric Corporation Elevator system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3307666B1 (en) 2015-06-10 2021-01-27 Inventio AG Elevator system with predictive call generation
EP3106414A1 (en) * 2015-06-19 2016-12-21 Otis Elevator Company User-controlled elevator allocation
US10427909B2 (en) 2015-06-19 2019-10-01 Otis Elevator Company User-controlled elevator allocation for independent service
WO2018059677A1 (en) * 2016-09-28 2018-04-05 Kone Corporation Method for allocating elevator calls and elevator system
US11884508B2 (en) 2016-09-28 2024-01-30 Kone Corporation Method for allocating elevator calls and elevator system
EP3412614A3 (en) * 2017-06-05 2018-12-19 Otis Elevator Company Elevator notifications on mobile device associated with user identification device
US10647544B2 (en) 2017-06-05 2020-05-12 Otis Elevator Company Elevator notifications on mobile device associated with user identification device
DE102017219744A1 (en) * 2017-11-07 2019-05-09 Thyssenkrupp Ag Passenger conveying device with monitoring device
US20190322483A1 (en) * 2018-04-19 2019-10-24 Otis Elevator Company E-call registration for elevator
US11993483B2 (en) * 2018-04-19 2024-05-28 Otis Elevator Company E-call registration for elevator
EP3875417A1 (en) * 2020-03-05 2021-09-08 Otis Elevator Company Receiver-less device positioning

Also Published As

Publication number Publication date
CN105722780B (en) 2017-11-14
EP3044151B1 (en) 2017-08-30
CN105722780A (en) 2016-06-29
JP2016537284A (en) 2016-12-01
US10766737B2 (en) 2020-09-08
US20160244295A1 (en) 2016-08-25
JP6347845B2 (en) 2018-06-27
EP3044151A1 (en) 2016-07-20
HK1222632A1 (en) 2017-07-07

Similar Documents

Publication Publication Date Title
US10766737B2 (en) Destination control system
US7766129B2 (en) Elevator control system
US10035679B2 (en) Elevator control system using meeting information to control car destinations
JP5264886B2 (en) Elevator group management device
CN104379478B (en) The storage medium of lift facility, system operation methods and its embodied on computer readable
US9896303B2 (en) Method for controlling elevator cars
AU2017204892B2 (en) Energy settings for transportation systems
US9592994B2 (en) Energy management for elevator system with multiple cars
CN112047208B (en) Elevator operation control system, elevator system, and elevator operation control method
WO2016146357A1 (en) System and method for allocating space inside elevator cars
US8584813B2 (en) Elevator system having car panel with adjustable views based on floor data, and methods of operating the same
KR950007372B1 (en) Elevator group control device
JP7106423B2 (en) elevator system
JP7165518B2 (en) Systems, methods, and programs for managing vehicle dispatch
JP7169448B2 (en) Elevator group management system
CN114229632B (en) Ladder taking control method, system, server and storage medium
JP2023164122A (en) Elevator management system and method
JP7461277B2 (en) Elevator group management control device and platform congestion avoidance control method.
JP6799161B2 (en) Elevator device
JP7268715B1 (en) Elevator group control device, control method for elevator group control device, terminal device and terminal control program
JP2004123242A (en) Elevator group control system and its method
JP2023164121A (en) Elevator management system and method
JP2023164127A (en) Elevator management system and method
JP2023164131A (en) Elevator management system and method
JP2023164130A (en) Content providing system and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13795449

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013795449

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013795449

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016553709

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE