WO2015068964A1 - 원추형 슬라이딩마찰 면진장치 - Google Patents

원추형 슬라이딩마찰 면진장치 Download PDF

Info

Publication number
WO2015068964A1
WO2015068964A1 PCT/KR2014/009884 KR2014009884W WO2015068964A1 WO 2015068964 A1 WO2015068964 A1 WO 2015068964A1 KR 2014009884 W KR2014009884 W KR 2014009884W WO 2015068964 A1 WO2015068964 A1 WO 2015068964A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction
sliding friction
conical sliding
block
spherical
Prior art date
Application number
PCT/KR2014/009884
Other languages
English (en)
French (fr)
Inventor
방인석
김성규
지용수
백준호
이유인
Original Assignee
주식회사 아이솔테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이솔테크 filed Critical 주식회사 아이솔테크
Publication of WO2015068964A1 publication Critical patent/WO2015068964A1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/04Bearings; Hinges
    • E01D19/042Mechanical bearings
    • E01D19/046Spherical bearings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/04Bearings; Hinges
    • E01D19/041Elastomeric bearings
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/04Bearings; Hinges
    • E01D19/042Mechanical bearings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/98Protection against other undesired influences or dangers against vibrations or shocks; against mechanical destruction, e.g. by air-raids

Definitions

  • the present invention relates to the improvement of a base isolation device, and more particularly, to the improvement of a base isolation device having a conical sliding friction surface.
  • 1 is a side view showing an example of the prior art.
  • the bearing block 20 is fixed on the lower structure 10 such as the bridge, and the conical sliding friction surface 32 is formed on the bottom of the upper structure 12 such as the bridge top plate.
  • the dish 30 is fixed.
  • the upper surface of the bearing block 20 is formed in a spherical surface.
  • the conventional technique as described above maintains a large support area in the initial support state, but when the upper structure moves in the horizontal direction with respect to the lower structure as shown in Figs. Since only a part of one side of the block supports the upper structure in contact with the conical friction surface, the support area is reduced to a much smaller size than the initial support state.
  • the seismic isolator is to be constructed to the strength that the upper structure can withstand in the situation due to the earthquake, taking into account the contact area when the upper structure vibrates against the lower structure.
  • the support area of the bearing block supporting the load of the upper structure by contacting the conical sliding friction surface when the upper structure moves sideways by an earthquake is shown in Fig. 1 (b).
  • the design of the seismic isolator in consideration of the size of the dynamic load to act during the earthquake and the contact area in the moving state has a serious problem that the size of the seismic isolator is very large and the parts must be made of very high strength.
  • the bearing block 20 or the dish 30 may be broken.
  • the prior art has to make the surface of the bearing block coincide in as much area as possible with the corresponding surface in the initial supporting state in order to increase the initial support area, which makes it difficult to make the bearing block and causes the product defect. It can also be.
  • An object of the present invention is to provide a conical sliding friction isolation device that can increase the contact area of the bearing block to the conical sliding friction surface compared to the conventional seismic isolation device.
  • Another object of the present invention is to provide a conical sliding friction isolation device that can significantly increase the contact area of the bearing block to the conical sliding friction surface in a state in which the upper structure is moved laterally with respect to the lower structure. There is.
  • Still another object of the present invention is to provide a conical sliding friction seismic isolator that can significantly reduce the size of the conventional conical sliding friction seismic isolator.
  • Still another object of the present invention is to provide a conical sliding friction isolation device that can be made using a material having a relatively small strength by increasing the acupressure area as compared with the conventional conical sliding friction isolation device.
  • Still another object of the present invention is to provide a conical sliding friction seismic isolator having various friction characteristics.
  • Conical sliding friction seismic isolator is disposed between the lower member is installed on the upper surface of the lower structure, the upper member is installed on the bottom of the upper structure and the lower member and the upper member to support the load of the upper structure to the lower structure And at least one of the lower member and the upper member, the seismic isolation device having a bearing block assembly installed to be slidable to isolate the upper structure from an earthquake, wherein at least one of an upper surface of the lower member and a bottom surface of the upper member.
  • One has a first friction surface disposed in the center and composed of one of a horizontal surface, a concave sphere and a conical cone surface, and a second friction surface disposed around the first friction surface and composed of a concave surface concave, or at the center of the first friction surface or Of the surface at the boundary between the first friction surface and the second friction surface
  • a conical sliding friction surface having a portion in which the inclination is changed is formed, and the bearing block assembly is a rotating block and the conical shape installed to be rotated with respect to the upper member or the lower member according to the position of contact with the conical sliding friction surface.
  • the conical shape is coupled to the surface of the rotating block facing the sliding friction surface and moved forward, backward or left and right while being in contact with the conical sliding friction surface to cover the shape of the surface when the slope is not deformed.
  • Characterized in that the variable friction portion that the surface shape is modified according to the shape of the conical sliding friction surface facing by the load of the upper structure to increase the contact area with the sliding friction surface.
  • the conical sliding friction surface is formed in only one of the upper member and the lower member, the other one of the upper member and the lower member is formed with a spherical groove facing the conical sliding friction surface, the rotating block is It is preferable that the spherical block having a convex spherical surface coupled to the spherical groove so as to rotate in place on the opposite side of the variable friction portion.
  • the conical sliding friction surface is formed on only one of the upper member and the lower member, the other one of the upper member and the lower member is formed with a guide in one horizontal direction, the bearing block assembly is the other one
  • the horizontal moving block is installed so as to move horizontally along the guide portion having a spherical groove
  • the rotating block made of a spherical block having a convex spherical surface coupled to the spherical groove to the spherical groove on the opposite side of the variable shape friction
  • the other one is provided with projections on both sides of the horizontal moving block in a direction perpendicular to the guide portion, and between the projections on both sides and the horizontal moving block to support the horizontal moving block elastically to the horizontal Horizontal elastic mechanism that provides the resilience of the direction Each can be installed.
  • the conical sliding friction surface is formed on only one of the upper member and the lower member, a concave spherical surface is formed on the other of the upper member and the lower member, the bearing block assembly, the pivot A spherical friction block supported by the block to be mutually rotatable; And a spherical friction material which is installed on the surface of the spherical friction block and slidable in surface contact with the concave spherical surface.
  • the rotation block and the spherical friction block are supported in a mutually rotatable manner, one of the rotation block and the spherical friction block is formed with a spherical groove and the other convex spherical surface is rotatably coupled to the spherical groove is formed. And a spherical groove formed on the upper and lower surfaces of the intermediate member, respectively, and a convex spherical surface rotatably coupled to the spherical groove of the intermediate member on the pivot block and the spherical friction block.
  • In the state between the block and the spherical friction block through the elastic pad may be one of the supporting method of connecting the pivoting block and the spherical friction block to each other through a pin.
  • the conical sliding friction surface is formed on both the upper member and the lower member
  • the bearing block assembly may include: a first pivot block which may be rotated according to a position of contact with the conical sliding friction surface formed on the lower member; A first variable friction part installed on a surface of the first pivot block to be in contact with the conical sliding friction surface formed on the lower member; A second pivot block which is rotatably supported by the first pivot block; And a second variable friction part installed on the surface of the second pivot block to contact the conical sliding friction surface formed on the upper member.
  • first pivot block and the second pivot block are rotatably supported by each other, wherein one of the first pivot block and the second pivot block is formed with a spherical groove and the other Supporting method in which the convex spherical surface is rotatably coupled to the spherical groove, spherical grooves are formed on the upper and lower surfaces of the intermediate member, respectively, and the first and second rotating blocks are rotatable in the spherical groove of the intermediate member.
  • the first and second pivoting blocks are mutually rotatable through pins in a state in which a convex spherical surface is formed, and an elastic pad is interposed between the first and second pivoting blocks. It may be one of the supporting methods connected.
  • the friction material provided on the surface of the variable shape friction portion is preferably made of PTFE, UHMWPE, engineering plastic or composite woven PTFE which causes compression deformation under the design load of the base isolation device.
  • Mounting groove is formed in the rotation block, the variable friction portion, a rubber sheet inserted into the mounting groove; And part is inserted into the mounting groove is supported by the rubber sheet and part is preferably provided with a friction material of a thickness that can cause bending deformation under the design load of the seismic isolator in a state protruding out of the mounting groove.
  • the rotating block is provided with a mounting groove, the variable friction portion, a part is inserted into the mounting groove and a part of the compressible block protruding out of the mounting groove; And a friction material having a thickness that is adhered to the surface of the compressible block and may cause bending deformation under the design load of the base isolation device.
  • a mounting groove is formed in the pivot block, and the variable frictional portion includes a friction material that is partially inserted into the mounting groove and partially protrudes out of the mounting groove. It may be made of PTFE, UHMWPE, engineering plastics or composite woven PTFE, which causes compressive deformation in the design load of the seismic isolator.
  • the conical sliding friction surface may further include a third friction surface disposed around the second friction surface and consisting of a concave conical surface.
  • One of the lower member and the upper member is fixed to the lower structure or the upper structure and the concave sliding friction surface is formed on one surface and the concave spherical surface is formed on the surface, the other side of the fixing member It may be configured with a moving member formed with a convex spherical surface so as to be in surface contact with the concave spherical surface.
  • one of the lower member and the upper member is fixed to the lower structure or the upper structure, and the fixing member having an auxiliary sliding friction surface, such as the conical sliding friction surface, is formed on one surface of the conical sliding friction surface. It is formed, and the other surface may be provided with a movable member is provided with a variable friction portion that is deformed according to the shape of the surface of the auxiliary sliding friction surface and in contact with the auxiliary sliding friction surface.
  • the lower member has a first guide portion formed in a first horizontal direction
  • the upper member has a second guide portion formed in a second horizontal direction orthogonal to the first horizontal direction
  • the bearing block assembly includes the lower member. Receiving the first guide portion with respect to the sliding in the first horizontal direction, it may be to guide the movement of the upper member in the second horizontal direction through the second guide.
  • variable friction portion is directed toward the conical sliding friction surface such that there is no space between the conical sliding friction surface at a portion where the inclination is changed by being pressed toward the conical sliding friction surface by the load of the upper structure.
  • the entire surface is deformed to contact the conical sliding friction surface.
  • the first friction surface may be smaller than the pressure surface facing the conical sliding friction surface so that the pressure surface may initially extend from the center of the sliding friction surface to the first friction surface and the second friction surface.
  • the first friction surface may be larger than the pressure surface facing the conical sliding friction surface so that the pressure surface may initially contact only the first friction surface at the center of the sliding friction surface.
  • the bearing block assembly can be rotated according to the shape of the contact surface
  • the shape of the variable frictional part is also adaptively changed according to the shape of the contact surface, so that the upper structure is conical sliding in the state of displacement in the axial direction or the perpendicular direction of the axial direction. It is possible to increase the contact area of the bearing block to the friction surface much larger than the conventional seismic isolator, for example 5 times or more and 10 times or more.
  • the shape of the variable shape friction part is also adaptively changed according to the shape of the contact surface.
  • the bearing surface of the bearing block assembly facing the friction surface can contact the entire sliding surface of the conical sliding friction surface or close to the entire surface it is possible to stably maintain the support state of the upper structure even when the upper structure is moved laterally.
  • variable friction portion can be deformed while the rotating block is rotated according to the surface shape of the conical sliding friction surface that the bearing block assembly contacts, the scratching of the conical sliding friction surface can be reduced.
  • variable shape friction portion can provide some elasticity as the rotating block rotates according to the surface shape of the conical sliding friction surface that the bearing block assembly contacts, the impact force acting between the bearing block and the conical sliding friction surface can be improved. You can also enjoy the effect of buffering.
  • the present invention by increasing the acupressure area over the entire conical sliding friction seismic isolator over the entire area of the conical sliding friction surface, it can be made using a material of relatively small strength, and the size of the bearing block can be reduced.
  • a conical sliding friction isolation device having various friction characteristics by changing the shape and size of the first friction surface, the angle of the second friction surface, and the structure of the variable shape friction portion.
  • FIG. 1 is a side view showing an example of the prior art
  • FIG. 2 is a cross-sectional view showing an installation state in the center of the sliding friction friction seismic isolation device according to the present invention
  • FIG. 3 is a cross-sectional view showing a state in which the upper structure is moved horizontally to one side so that the variable friction portion is spread over one portion of the inclination of the sliding friction surface;
  • variable friction portion is in contact with only the second friction region outside the portion where the inclination of the sliding friction surface is changed;
  • FIG. 5 and 6 are cross-sectional views showing a modification of FIG.
  • FIG. 7 is a view showing examples of the cross-sectional shape of the rubber sheet described with reference to FIGS.
  • FIG. 8 is a cross-sectional view showing another example of a bearing block assembly having a variable shape friction
  • Figure 9 is a cross-sectional view showing another example of a bearing block assembly having a variable frictional portion
  • FIG. 10 is a cross-sectional view showing another example of a bearing block assembly having a variable frictional portion
  • FIG. 11 is a sectional view showing modified examples of the bearing block assembly shown in FIG. 10;
  • FIG. 13 is a cross-sectional view showing examples of a seismic isolator having a conical sliding friction surface formed on both the lower member and the upper member;
  • FIG. 14 is a cross-sectional view showing a seismic isolation device that forms a conical sliding friction surface on one of the lower member and the upper member and a concave spherical surface on the other;
  • FIG. 16 is a cross-sectional view showing another embodiment of the conical sliding friction seismic isolator according to the present invention.
  • FIG. 17 is a cross-sectional view showing another embodiment of the conical sliding friction seismic isolator according to the present invention.
  • FIG. 18 is a cross-sectional view showing a scissor shape conical sliding friction isolation device according to the present invention.
  • FIG. 19 is a cross-sectional view showing a modification of FIG. 18;
  • 20 is a view showing an example of the inclination angle of the concave conical surface forming the sliding friction surface.
  • FIG. 2 is a cross-sectional view showing an installation state of the conical sliding friction seismic isolation device in the center of the sliding friction surface according to the present invention
  • Figure 3 is a variable friction portion on one side of the variable friction portion is changed to the horizontal structure to one side of the sliding friction surface
  • 4 is a cross-sectional view illustrating a state where the variable shape friction part contacts only the second friction region outside the portion where the inclination of the sliding friction surface changes.
  • the conical sliding friction seismic isolator 100 shown in FIGS. 2 to 4 has a lower member 110 installed on the upper surface of the lower structure 10 through the base nut N and the bolt B. As shown in FIG. On the upper surface of the lower member 110, a conical sliding friction surface 112 is formed. The conical sliding friction surface 112 is formed over a larger area than the bearing block assembly 130 so that the bearing block assembly 130 described later can slide back and forth or left and right. This conical sliding friction surface 112 is formed in the center and the concave surface disposed in the region marked with R2 around the first friction surface 114 and the first friction surface 114 formed of the concave spherical surface formed in the region indicated by R1. Has a second friction surface 116 made of.
  • the slope of the conical sliding friction surface 112 is changed at the center of the first friction surface 114 and the boundary 115 between the first friction surface 114 and the second friction surface 116.
  • the inclination or inclination of the second friction surface 116 is determined by the cone angle ⁇ shown in FIG. 2.
  • the upper member 150 is installed on the bottom of the upper structure 20 such as a bridge top plate by welding.
  • the bottom surface of the upper member 150 is formed with a spherical groove 152 toward the conical sliding friction surface 112.
  • the conical sliding friction seismic isolator 100 includes a bearing block assembly 130 rotatably supported by the spherical groove 152.
  • the bearing block assembly 130 has a convex spherical surface 131a on one surface so as to be pivotally coupled to the spherical groove 152 and a rotation block 131 having a mounting groove 131b formed on the opposite side of the convex spherical surface 131a.
  • a variable shape friction part 135 installed in the mounting groove 131b.
  • Rotating block 131 serves to transfer the load of the upper structure 20 to the lower structure 10 and the variable friction portion 135 according to the position in contact with the conical sliding friction surface 112 is shown in FIG. As shown in 4 and 4 serves to be rotated with respect to the upper member (150).
  • the variable friction portion 135 forms a mounting groove 131b on the opposite side of the convex spherical surface 131a of the rotation block 131, and is preferably provided in the mounting groove 131b, but may be installed in other forms. This is described in more detail later.
  • the variable friction portion 135 shown in FIGS. 2 to 4 has a rubber sheet 136 inserted into the mounting groove 131b and a portion thereof inserted into the mounting groove 131b to be supported by the rubber sheet 136 and partially mounted.
  • the friction material 138 protrudes out of the groove 131b.
  • the shape of the base isolation apparatus 100 may be deformed by a load to be applied, and one made of polyurethane may be suitably used.
  • the friction material 138 PTFE, UHMWPE, engineering plastics may be suitably used.
  • SORBTEX from Vos engineering, Illinois, USA or EverEst OptiPad from TTS Marine in North America.
  • variable friction portion 135 When the variable friction portion 135 is pressed toward the conical sliding friction surface 112 facing by the load of the upper structure 20, the shape of the surface according to the surface shape of the facing conical sliding friction surface 112 This is the part that is deformed.
  • the variable friction portion 135 is coupled to the surface of the rotating block 131 facing the conical sliding friction surface 112, and inclined while moving back and forth or left and right in contact with the conical sliding friction surface 112.
  • the shape of the surface is deformed like the conical sliding friction surface 112 that faces when is spanned over the changed portion. Accordingly, the contact area with the conical sliding friction surface 112 increases rather than when the shape of the surface is not deformed according to the shape of the facing conical sliding friction surface 112.
  • the pressure surface of the variable friction portion 135 is preferably formed in a plane, it is also possible to form a convex spherical surface or a conical surface close to the plane, it is formed larger than the first friction surface 114 and always the first friction surface It is desirable to span 114 and the second friction surface 116.
  • the area of the first friction surface 114 may be formed larger than the pressure surface of the variable shape friction unit 135 so that the pressure surface is initially supported only on the first friction surface 114.
  • the conical sliding friction seismic isolator 100 is preferably horizontally horizontally as well as when the bearing block assembly 130 is located at the center of the conical sliding friction surface 112. Even in the moved state, the entire acupressure surface is in contact with the conical sliding friction surface 112.
  • variable friction portion 135 of the bearing block assembly 130 is convex downward when the bearing block assembly 130 is located at the center of the conical sliding friction surface 112 as shown in FIG. 2.
  • the rotation block 134 is rotated. Deformed in the same shape as the conical sliding friction surface 112 facing in the entire surface is in contact with the conical sliding friction surface 112 facing. In this case, compression deformation mainly occurs in the rubber sheet 136, and bending deformation mainly occurs in the friction material 138.
  • sliding occurs in a state where the entire acupressure surface of the bearing block assembly 130 is in surface contact with the sliding friction surface 112.
  • the surface contact with the conical sliding friction surface 112 at a much higher ratio than the conventional one.
  • variable friction portion 135 since the surface of the variable friction portion 135 does not have to be made to match the shape of the sliding friction surface 112, it is also very easy to make compared with the conventional one.
  • FIG. 5 and 6 are cross-sectional views showing a modification of FIG.
  • the first friction surface 114 of the conical sliding friction surface 112 may be formed flat as shown in FIG. 5, and may be formed wider than the bottom surface of the friction material 138. In this case, a portion where the inclination changes only occurs at the boundary between the first friction surface 114 and the second friction surface 116.
  • the first friction surface 114 of the conical sliding friction surface 112 may be formed into a conical surface as shown in FIG. 6.
  • the inclination of the first friction surface 114 may be equal to the inclination of the second friction surface 116.
  • the inclination of the first friction surface 114 may be larger or smaller than the inclination of the second friction surface 116.
  • FIG. 7 is a diagram illustrating examples of a cross-sectional shape of the rubber sheet described with reference to FIGS. 2 to 4.
  • Fig. 7 (a) As the rubber sheet 136 inserted into the mounting groove of the rotation block described above, as shown in Fig. 7 (a) is formed a concave groove in the side inward, as shown in Fig. 7 (b) and (c) Various forms, such as forming an inclined surface at the edge portion of the edge, or forming a corner portion of the edge at right angles as shown in FIG. 7 (d) can be used.
  • FIG. 8 is a cross-sectional view showing another example of a bearing block assembly having a variable shape friction portion.
  • variable shape friction unit 135 may be configured by mounting a friction material 138a that may be compressed and deformed without a rubber sheet in the mounting groove 131b of the rotation block 131.
  • the friction material 138a one that can cause compression deformation under a load should be used.
  • compressible PTFE, UHMWPE, and engineering plastics are suitable.
  • the composite woven PTFE PAD composite woven PTFE PAD (composite woven PTFE PAD) is suitable.
  • FIG. 9 is a cross-sectional view showing another example of a bearing block assembly having a variable frictional portion.
  • the rotation block 131 is provided with a mounting groove 131b, the variable friction portion 135 is partially inserted into the mounting groove 131b and a part protruding out of the mounting groove 131b,
  • the compressive block 137 and the friction material 138b adhered to the surface of the compressible block 137 in which compressive deformation occurs under a design load may be provided.
  • the compressible block 138b may be made of a rubber material such as polyurethane, and other materials capable of compressive deformation, such as a cotton duck pad, may be used.
  • friction material 138b As the friction material 138b, PTFE, UHMWPE, engineering plastic, woven PTFE, and the like as mentioned above are suitable.
  • FIG. 10 is a cross-sectional view illustrating still another example of a bearing block assembly having a variable shape friction part
  • FIG. 11 is a cross-sectional view illustrating modified examples of the bearing block assembly illustrated in FIG. 10.
  • a portion of the lower surface, the side surface, and the upper surface of the rubber block 137a made of polyurethane or the like is surrounded by a friction material 138b made of woven PTFE and bonded to form a variable shape friction portion 135, and the variable shape friction portion ( The upper end of the 135 may be inserted into the mounting groove 131b and fixed to the rotation block 131. At this time, by forming a concave side groove in the side of the rubber block (137a) it can increase the compression deformation of the variable shape friction portion 135.
  • the rubber block 137a does not form a concave side groove in the side surface of the rubber block 137a as shown in FIG. 11 (a) or is outside the mounting groove 131b as shown in FIG. 11 (b). It can be made by forming a protrusion projecting downward in the center of the protruding portion and inclined from the edge of the protrusion to the edge of the mounting groove (131b). In some cases, the rubber block 137a may be formed by rounding an edge exposed to the outside of the mounting groove 131b. In addition, the frictional material 138b made of woven PTFE may be attached to the surface of the rubber block 137a over the entire surface or over two or more surfaces to form the variable shape friction part 135.
  • FIG. 12 shows a force-displacement loop showing the relationship between the horizontal force acting on the superstructure and the horizontal displacement of the superstructure according to the change of the friction coefficient of the friction material at the same cone angle.
  • FIG. 12 (a) shows the force-displacement when the friction coefficient ⁇ of the friction material is smaller than 0.03 ( ⁇ ).
  • 12 (b) shows the force-displacement relationship when the friction coefficient is 0.03, and
  • FIG. 12 (c) shows the force-displacement relationship when the friction coefficient is larger than 0.03.
  • 12 (d) shows the force-displacement relationship when the radian value of the cone angle is much larger than the coefficient of friction (about 10 times).
  • the inclined portions of the left and right central portions are related to the influence of the portion of the acupressure surface on the first friction surface and the second friction surface.
  • the smaller the coefficient of friction the larger the slope.
  • the inclined portion has a certain area in the first friction surface 114 of the central portion, so that the energy dissipation due to friction with the portion and the portion of the energy dissipation due to the friction with the portion where the direction of the inclination changes in the center portion are changed. It is affected.
  • the horizontal portion of the graph is due only to the second friction region, and the smaller the friction coefficient, the smaller the difference in the magnitude of the force due to the change in the vibration direction.
  • the force-displacement loop is changed in various shapes according to the size of the friction coefficient, the size of the inclination angle, the shape and size of the first friction surface.
  • FIG. 13 is a cross-sectional view illustrating examples of a seismic isolator in which a conical sliding friction surface is formed on both the lower member and the upper member.
  • the isolation device 100 shown in FIGS. 13A to 13C has conical sliding friction surfaces 112 and 154 on both the upper surface of the lower member 110 and the bottom surface of the upper member 150.
  • the bearing block assembly 130 installed between the lower member 110 and the upper member 150 may rotate the first rotating block 131c and the second rotating block 131d as shown in FIG. 13B, a spherical groove and a convex spherical surface are formed directly in the first pivot block 131c and the second pivot block 131d to enable the mutual rotation.
  • Various methods such as a supporting method and a method of inserting the elastic pad 142 between the first rotating block 131c and the second rotating block 131d as shown in FIG. 13C may be used.
  • spherical grooves are formed on the upper and lower surfaces of the intermediate member 140, respectively, and the first and second pivot blocks 131c and 131d having convex spheres are disposed up and down, respectively.
  • the first pivot block ( 131c and the second rotating block 131d may be rotated with respect to each other to configure the base isolation device 100 according to the present invention.
  • the conical sliding friction surface 154 formed on the upper member 150 is different from the sliding friction surface 112 described above with reference to FIGS.
  • one of two first rotating blocks 131c and a second rotating block 131d forms a spherical groove and the other forms a convex spherical surface to form a lower member 110 or
  • the seismic isolator according to the present invention by allowing the first rotating block 131c and the second rotating block 131d to be rotated according to the position of contact with the conical sliding friction surfaces 112 and 154 formed on the upper member 150 ( 100) can be configured.
  • an elastic pad 142 is inserted between the first rotating block 131c and the second rotating block 131d, and the elastic pad 142 is provided through the pin 143.
  • the first pivot block 131c and the second pivot block 131d are connected to each other, and one end of the pin 143 is fixed to one of the first pivot block 131c and the second pivot block 131d.
  • the other end is inserted into the pin groove 144 formed on the other to limit the horizontal movement between each other and to allow the rotation of the base isolation apparatus 100 according to the present invention.
  • FIG. 14 is a cross-sectional view of a seismic isolation device in which a conical sliding friction surface is formed on one of the lower members and the upper member, and a concave sphere is formed on the other.
  • the lower member 110 of the seismic isolation apparatus 100 shown in FIG. 14 has a concave spherical surface 113 on the upper surface, and the upper member 150 has a conical sliding friction surface 154 on the bottom surface.
  • the bearing block assembly 130 installed between the lower member 110 and the upper member 150 has a pivot block 131 equipped with a variable shape friction part 135 and a pivotable support with the pivot block 131. Equipped with a spherical friction block 131e.
  • the spherical friction block 131e is provided with a spherical friction material 139 which is slidable in surface contact with the concave spherical surface 113.
  • the bearing block assembly 130 shown in FIG. 14 is a bearing block shown in FIGS. 13 (a) and 13 (c) in which the rotational support method of the rotation block 131 and the spherical friction block 131e is mutually supported. It can be changed to the same shape as in the assembly.
  • bearing block assembly 130 shown in FIG. 14 may be replaced with the bearing block assembly shown in FIGS. 13A to 13C.
  • 15 is a cross-sectional view showing another embodiment of the conical sliding friction seismic isolator according to the present invention.
  • the lower member 110 shown in FIG. 15 is composed of two components, the fixing member 110a and the moving member 110b.
  • the fixing member 110a is fixed to the lower structure and has a concave spherical surface 113 on the surface.
  • the moving member 110b has a conical sliding friction surface 112 on one surface thereof, and a convex spherical surface that is slidable while being in surface contact with the concave surface 113 of the fixing member 110a on the other surface thereof.
  • the upper member 150 also has a configuration of the fixing member 150a and the moving member 150b like the lower member 110 only as the lower member 110 is different from the upper and lower directions.
  • Bearing block assembly 130 is in the form shown in Figure 13 (b) upside down.
  • bearing block assembly 130 shown in Figure 15 may be replaced with those shown in Figure 13 (a) and (c).
  • 16 is a cross-sectional view showing another embodiment of the conical sliding friction seismic isolator according to the present invention.
  • the lower member 110 shown in FIG. 16 also consists of two components, the fixing member 110a and the moving member 110b.
  • the fixing member 110a of this embodiment is fixed to the lower structure and has an auxiliary sliding friction surface 113a, such as a conical sliding friction surface.
  • the moving member 110b has a conical sliding friction surface 112 on one surface, and the surface thereof is deformed according to the shape of the auxiliary sliding friction surface 113a facing and contacting the auxiliary sliding friction surface 113a on the other surface. It has a variable shape friction portion 110c.
  • the upper member 150 also has a configuration of the fixing member 150a and the moving member 150b, as in the lower member 110, as well as the lower member 110 and the vertical direction only different.
  • Bearing block assembly 130 of this embodiment is the same as shown in Figure 15, and may be replaced with those shown in Figure 13 (a) and (c), of course.
  • 17 is a cross-sectional view showing another embodiment of the conical sliding friction seismic isolator according to the present invention.
  • the conical sliding friction surface 154 formed on the bottom surface of the upper member 150 is disposed around the second friction surface 154b and has a concave conical surface having a different slope than the second friction surface 154b. It may be further provided with a third friction surface (154c) consisting of.
  • the first friction surface 154a is formed in the center of the second friction surface 154b.
  • a spherical groove 111 is formed on the upper surface of the lower member 110, and the spherical groove 111 is installed on the rotating member 131 and the upper surface of the rotating member 131 having the convex spherical surface 131a formed on the lower surface thereof.
  • a bearing block assembly 130 composed of a variable friction portion 135 slidably contacting the conical sliding friction surface 154.
  • the inclination angle ⁇ 1 rad of the second friction surface 154b and the inclination angle ⁇ 2 rad of the third friction surface 154c are smaller than the friction coefficient ⁇ of the friction material 138.
  • the relationship between the force and the displacement acting in the horizontal direction when the upper member 150 is moved left and right is shown in the graph below.
  • FIG. 18 is a cross-sectional view showing a scissor shape conical sliding friction isolation device according to the present invention.
  • the lower member 110 is formed long in the first horizontal direction (front and rear direction in this embodiment), but forms the first guide portion 122 protruding upward along both sides of the conical sliding friction surface 112.
  • the upper member 150 is formed in a second horizontal direction (left and right direction in this embodiment) orthogonal to the first horizontal direction, but second guides protrude downward along both sides of the conical sliding friction surface 154.
  • the seismic isolation device 100 may be configured by forming the portion 162 and interposing the bearing block assembly 130 therebetween. As the bearing block assembly 130, various types of the above-described types may be used.
  • the bearing block assembly 130 may slide in the first horizontal direction while being guided by the first guide part 122 with respect to the lower member 110, and the upper member (through the second guide part 162). Guide 150 to move in the second horizontal direction.
  • FIG. 19 is a cross-sectional view illustrating a modified example of FIG. 18.
  • the upper surface of the lower member 110 may be formed in a horizontal plane in the front-rear direction.
  • the bearing block assembly 130 is installed to be movable horizontally along the first guide part 122, has a spherical groove on the top surface, and has a spherical groove on the bottom thereof, and a spherical surface opposite to the friction material 138.
  • the rotating block 131 is formed of a spherical block having a convex spherical surface coupled to the groove so as to rotate in place.
  • Projections 124 protruding upward on both sides of the horizontal movement block 131f in the direction perpendicular to the first guide portion 122 are respectively provided, and horizontal movements are provided between the projections 124 and the horizontal movement block 131f on both sides.
  • Horizontally elastic mechanisms 170 are provided to elastically support the blocks 131f to the protrusions 124 to provide the restoring force in the horizontal direction, so that the isolation device 100 according to the present invention may be configured.
  • the slope of the conical surface may increase or decrease depending on the use of the base isolation device.
  • the present invention has a conical sliding friction surface on at least one surface of the lower member and the upper member can be used in the manufacture of a seismic isolation device for supporting the bridge structure or the upper structure of the building.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

만들기 쉽고 슬라이딩마찰 시의 지지면적을 획기적으로 증가시킬 수 있고 다양한 마찰 힘-변위 루프를 가지는 원추형 슬라이딩마찰 면진장치가 제공된다. 상기 원추형 슬라이딩마찰 면진장치는 제1마찰면과 상기 제1마찰면 둘레에 배치되고 오목한 원추표면으로 이루어진 제2마찰면을 갖추어 상기 제1마찰면의 중심에서 또는 상기 제1마찰면과 상기 제2마찰면의 경계에서 표면의 기울기가 바뀌는 부분을 가지는 원추형 슬라이딩마찰면이 형성되어 있고, 베어링블록 조립체는 상기 원추형 슬라이딩마찰면과 접촉되는 위치에 따라 상기 상부부재 또는 상기 하부부재에 대해 회동될 수 있게 설치된 회동블록 및 상기 회동블록의 표면에 결합하고 상기 기울기가 바뀌는 부분에 걸쳐질 때 상부구조물의 하중에 의해 마주 보는 원추형 슬라이딩마찰면의 형상에 따라 표면의 형상이 변형되는 가변형상마찰부를 갖추어 구성된 것을 특징으로 한다.

Description

원추형 슬라이딩마찰 면진장치
본 발명은 면진장치의 개선에 관련된 것으로, 특히 원추형의 슬라이딩마찰면을 가지는 면진장치의 개선에 대한 것이다.
상부구조물의 저면에 고정되는 디쉬(dish)의 저면에 원추면의 꼭짓점 부근 일부 영역을 구면으로 형성한 오목한 원추형 마찰면을 형성하고, 하부구조물의 상면에 고정되는 베어링블록 상면을 구면으로 만들어 베어링블록의 초기 지지면적을 크게 한 것이 US 5,867,951호(발명자: Daisuke Yaguchi, Ichikawa, 이하, “종래기술”이라 함)에 개시되어 있다.
도 1은 종래기술의 일례를 나타낸 측면도이다.
도 1(a)에 나타낸 바와 같이 교각 등의 하부구조물(10) 상에는 베어링블록(20)이 고정되어 있고, 교량 상판 등의 상부구조물(12)의 저면에는 원추형 슬라이딩마찰면(32)이 형성되어 있는 디쉬(dish, 30)가 고정되어 있다. 베어링블록(20)의 상면은 구면으로 형성되어 있다. 지진 등에 의해 상부구조물(12)이 하부구조물(10)에 대해 화살표 방향으로 수평이동 한 경우, 도 1(b)에 나타낸 접촉영역(CA)과 같이 베어링블록(20) 상면의 왼쪽 부분 중 극히 일부 면적만 원추형 슬라이딩마찰면(32)에 접촉된 상태로 상부구조물(12)의 하중을 지지하게 된다.
즉, 상기와 같은 종래기술은 초기 지지상태에서는 큰 지지면적을 유지하지만, 지진 등에 의해 상부구조물이 도 1(a)와 (b)에 나타낸 바와 같이 하부구조물에 대해 수평 방향으로 이동하는 경우, 베어링블록의 한쪽 면의 극히 일부만 원추형 마찰면에 접촉된 상태로 상부구조물을 지지하기 때문에 지지면적이 초기 지지상태의 지지면적에 비해 훨씬 작게 줄어든다는 문제점을 가지고 있다.
면진장치는 지진에 의해 상부구조물이 하부구조물에 대해 진동 시의 접촉면적을 고려하여 그 상황에서 견딜 수 있는 강도로 만들어야 한다. 그런데 원추형마찰면을 가지는 종래기술의 면진장치는 상부구조물이 지진에 의해 옆으로 이동 시 원추형 슬라이딩마찰면에 접촉되어 상부구조물의 하중을 지지하는 베어링블록의 지지면적이 도 1(b)에 나타낸 바와 같이 매우 작아서, 지진 시 작용할 동하중의 크기와 이동 상태에서의 접촉면적을 고려하여 면진장치를 설계하면 면진장치의 크기가 매우 커지고 강도가 매우 큰 재료로 부품을 만들어야 한다는 심각한 문제점을 안고 있다.
또한, 종래기술의 면진장치는 동하중이 좁은 면적의 접촉영역(CA)에 집중되기 때문에 베어링블록(20)이나 디쉬(30)가 깨질 우려가 크다.
또한, 종래기술은 초기의 지지면적을 크게 하기 위해서도 베어링블록의 표면을 초기 지지상태에서의 대응면과 될 수 있는 대로 많은 면적에서 일치되게 만들어야 하는 데, 이는 베어링블록을 만들기 어렵게 하며 제품불량의 원인이 되기도 한다.
본 발명의 목적은 원추형 슬라이딩마찰면에 대한 베어링블록의 접촉면적을 종래의 면진장치에 비해 증가시킬 수 있는 원추형 슬라이딩마찰 면진장치를 제공하는 데 있다.
본 발명의 다른 목적은 상부구조물이 하부구조물에 대해 측방으로 이동한 상태에서 원추형 슬라이딩마찰면에 대한 베어링블록의 접촉면적을 종래의 면진장치에 비해 획기적으로 증가시킬 수 있는 원추형 슬라이딩마찰 면진장치를 제공하는 데 있다.
본 발명의 또 다른 목적은 원추형 슬라이딩마찰면을 마주보는 베어링블록의 표면(이하, “지압면”이라 칭함) 전체가 빈 공간 없이 원추형 슬라이딩마찰면에 접촉할 수 있는 원추형 슬라이딩마찰 면진장치를 제공하는 데 있다.
본 발명의 또 다른 목적은 종래의 원추형 슬라이딩마찰 면진장치에 비해 크기를 획기적으로 줄일 수 있는 원추형 슬라이딩마찰 면진장치를 제공하는 데 있다.
본 발명의 또 다른 목적은 종래의 원추형 슬라이딩마찰 면진장치에 비해 지압면적을 증가시킴으로써 상대적으로 작은 강도의 재료를 사용하여 만들 수 있는 원추형 슬라이딩마찰 면진장치를 제공하는 데 있다.
본 발명의 또 다른 목적은 다양한 마찰특성을 가지는 원추형 슬라이딩마찰 면진장치를 제공하는 데 있다.
본 발명에 따른 원추형 슬라이딩마찰 면진장치는 하부구조물 상면에 설치되는 하부부재, 상부구조물 저면에 설치되는 상부부재 및 상기 하부부재와 상기 상부부재 사이에 배치되어 상기 상부구조물의 하중을 상기 하부구조물에 지지하고 상기 하부부재와 상기 상부부재 중 적어도 하나에 대해서는 슬라이딩 가능케 설치되어 상기 상부구조물을 지진으로부터 격리할 수 있도록 하는 베어링블록 조립체를 갖추는 면진장치에서, 상기 하부부재의 상면과 상기 상부부재의 저면 중 적어도 하나에는 중심부에 배치되고 수평면, 오목구면 및 오목원추면 중 하나로 이루어진 제1마찰면과 상기 제1마찰면 둘레에 배치되고 오목한 원추표면으로 이루어진 제2마찰면을 갖추어 상기 제1마찰면의 중심에서 또는 상기 제1마찰면과 상기 제2마찰면의 경계에서 표면의 기울기가 바뀌는 부분을 가지는 원추형 슬라이딩마찰면이 형성되어 있고, 상기 베어링블록 조립체는 상기 원추형 슬라이딩마찰면과 접촉되는 위치에 따라 상기 상부부재 또는 상기 하부부재에 대해 회동될 수 있게 설치된 회동블록 및 상기 원추형 슬라이딩마찰면과 마주 보는 상기 회동블록의 표면에 결합하고 상기 원추형 슬라이딩마찰면과 접촉된 상태에서 전후 또는 좌우로 이동되면서 상기 기울기가 바뀌는 부분에 걸쳐질 때 표면의 형상이 변형되지 않을 때보다는 상기 원추형 슬라이딩마찰면과의 접촉면적이 증가할 수 있게 상기 상부구조물의 하중에 의해 마주 보는 상기 원추형 슬라이딩마찰면의 형상에 따라 표면의 형상이 변형되는 가변형상마찰부를 갖추어 구성된 것을 특징으로 한다.
상기 원추형 슬라이딩마찰면은 상기 상부부재와 상기 하부부재 중 어느 하나에만 형성되어 있고, 상기 상부부재와 상기 하부부재 중 나머지 하나에는 상기 원추형 슬라이딩마찰면을 향하는 구면홈이 형성되어 있고, 상기 회동블록은 상기 가변형상마찰부 반대편에 상기 구면홈에 제자리 회동 가능케 결합하는 볼록구면을 가지는 구면블록인 것이 바람직하다.
상기 원추형 슬라이딩마찰면은 상기 상부부재와 상기 하부부재 중 어느 하나에만 형성되어 있고, 상기 상부부재와 상기 하부부재 중 나머지 하나에는 일 수평 방향으로 안내부가 형성되어 있고, 상기 베어링블록 조립체는 상기 나머지 하나에서 상기 안내부를 따라 수평이동 가능케 설치되고 구면홈을 가지는 수평이동블록, 상기 가변형상마찰부 반대편에 상기 구면홈에 제자리 회동 가능케 결합하는 볼록구면을 가지는 구면블록으로 이루어진 상기 회동블록을 갖추어 구성되고, 상기 나머지 하나에는 상기 안내부에 수직인 방향으로 상기 수평이동블록 양측에 돌출부가 각각 설치되어 있고, 양측의 상기 돌출부와 상기 수평이동블록 사이에는 상기 수평이동블록을 상기 돌출부에 탄성적으로 지지하여 수평 방향의 복원력을 제공하는 수평탄성기구가 각각 설치된 것일 수 있다.
때에 따라, 상기 원추형 슬라이딩마찰면은 상기 상부부재와 상기 하부부재 중 어느 하나에만 형성되어 있고, 상기 상부부재와 상기 하부부재 중 나머지 하나에는 오목구면이 형성되어 있고, 상기 베어링블록 조립체는, 상기 회동블록과 상호 회동 가능케 지지가 된 구면마찰블록; 및 상기 구면마찰블록의 표면에 설치되고 상기 오목구면에 면접촉된 상태로 슬라이딩 가능한 구면마찰재를 더 포함하는 것일 수 있다.
상기 회동블록과 상기 구면마찰블록이 상호 회동 가능케 지지가 된 방식은, 상기 회동블록과 상기 구면마찰블록 중 하나에는 구면홈이 형성되어 있고 다른 하나에는 상기 구면홈에 회동 가능케 결합한 볼록구면이 형성되어 있는 지지방식, 중간부재의 상면과 하면에 구면홈을 각각 형성되어 있고 상기 회동블록과 상기 구면마찰블록에 상기 중간부재의 구면홈에 회동 가능케 결합한 볼록구면이 각각 형성되어 있는 지지방식, 및 상기 회동블록과 상기 구면마찰블록 사이에 탄성패드를 개재한 상태에서 핀을 통해 상기 회동블록과 상기 구면마찰블록을 상호 회동 가능케 연결한 지지방식 중 하나로 되어 있는 것일 수 있다.
때에 따라, 상기 원추형 슬라이딩마찰면은 상기 상부부재와 상기 하부부재 둘 모두에 형성되어 있고,
상기 베어링블록 조립체는, 상기 하부부재에 형성된 상기 원추형 슬라이딩마찰면과 접촉되는 위치에 따라 회동될 수 있는 제1회동블록; 상기 제1회동블록의 표면에 설치되어 상기 하부부재에 형성된 상기 원추형 슬라이딩마찰면과 접촉되는 제1가변형상마찰부; 상기 제1회동블록과 상호 회동 가능케 지지가 된 제2회동블록; 및 상기 제2회동블록의 표면에 설치되어 상기 상부부재에 형성된 상기 원추형 슬라이딩마찰면과 접촉되는 제2가변형상마찰부를 갖추어 구성될 수 있다.
또, 때에 따라, 상기 제1회동블록과 상기 제2회동블록이 상호 회동 가능케 지지가 된 방식은, 상기 제1회동블록과 상기 제2회동블록 중 하나에는 구면홈이 형성되어 있고 다른 하나에는 상기 구면홈에 회동 가능케 결합한 볼록구면이 형성되어 있는 지지방식, 중간부재의 상면과 하면에 구면홈을 각각 형성되어 있고 상기 제1회동블록과 상기 제2회동블록에 상기 중간부재의 구면홈에 회동 가능케 결합한 볼록구면이 각각 형성되어 있는 지지방식, 및 상기 제1회동블록과 상기 제2회동블록 사이에 탄성패드를 개재한 상태에서 핀을 통해 상기 제1회동블록과 상기 제2회동블록을 상호 회동 가능케 연결한 지지방식 중 하나로 되어 있는 것일 수 있다.
상기 가변형상마찰부의 표면에 설치되는 마찰재는 상기 면진장치의 설계하중에서 압축변형을 일으키는 PTFE, UHMWPE, 엔지니어링 플라스틱 또는 복합 우븐 PTFE로 만들어진 것이 바람직하다.
상기 회동블록에는 장착홈이 형성되어 있고, 상기 가변형상마찰부는, 상기 장착홈에 삽입된 고무시트; 및 일부는 상기 장착홈에 삽입되어 상기 고무시트의 지지를 받고 일부는 상기 장착홈 바깥으로 돌출된 상태에서 상기 면진장치의 설계하중에서 벤딩변형을 일으킬 수 있는 두께의 마찰재를 갖추어 구성된 것이 바람직하다.
때에 따라, 상기 회동블록에는 장착홈이 형성되어 있고, 상기 가변형상마찰부는, 일부는 상기 장착홈에 삽입되고 일부는 상기 장착홈의 바깥으로 돌출된 압축 성블록; 및 상기 압축성 블록의 표면에 접착되고 상기 면진장치의 설계하중에서 벤딩변형을 일으킬 수 있는 두께의 마찰재를 갖추어 구성된 것일 수 있다.
또, 때에 따라, 상기 회동블록에는 장착홈이 형성되어 있고, 상기 가변형상마찰부는, 일부는 상기 장착홈에 삽입되고 일부는 상기 장착홈의 바깥으로 돌출된 마찰재를 갖추어 구성되고, 상기 마찰재는 상기 면진장치의 설계하중에서 압축변형을 일으키는 PTFE, UHMWPE, 엔지니어링 플라스틱 또는 복합 우븐 PTFE로 만들어진 것일 수 있다.
상기 원추형 슬라이딩마찰면은 상기 제2마찰면 둘레에 배치되고 오목한 원추표면으로 이루어진 제3마찰표면을 더 갖추고 있을 수 있다.
상기 하부부재와 상기 상부부재 중 하나는 상기 하부구조물 또는 상기 상부구조물에 고정되며 표면에 오목구면이 형성되어 있는 고정부재와 일면에는 상기 원추형 슬라이딩마찰면이 형성되어 있고, 타면에는 상기 고정부재의 상기 오목구면에 면접촉되면서 슬라이딩 가능토록 볼록구면이 형성된 이동부재를 갖추어 구성될 수 있다.
때에 따라, 상기 하부부재와 상기 상부부재 중 하나는 상기 하부구조물 또는 상기 상부구조물에 고정되며 표면에 상기 원추형 슬라이딩마찰면과 같은 보조슬라이딩마찰표면이 형성되어 있는 고정부재와 일면에는 상기 원추형 슬라이딩마찰면이 형성되어 있고, 타면에는 상기 보조슬라이딩마찰표면에 면접촉되고 마주 보는 상기 보조슬라이딩마찰표면의 형상에 따라 표면의 형상이 변형되는 가변형상마찰부가 설치되어 있는 이동부재를 갖추어 구성될 수 있다.
상기 하부부재에는 제1수평방향으로 제1안내부가 형성되어 있고, 상기 상부부재에는 상기 제1수평방향과 직교하는 제2수평방향으로 제2안내부가 형성되어 있고, 상기 베어링블록 조립체는 상기 하부부재에 대해 상기 제1안내부의 안내를 받으며 제1수평방향으로 슬라이딩할 수 있고, 상기 제2안내부를 통해 상기 상부부재를 상기 제2수평방향으로 이동하는 것을 안내하는 것일 수 있다.
상기 가변형상마찰부는 상기 상부구조물의 하중에 의해 상기 원추형 슬라이딩마찰면을 향해 가압 되는 것에 의해 상기 기울기가 바뀌는 부분에서 상기 원추형 슬라이딩마찰면과의 사이에 공간이 생기지 않도록 상기 원추형 슬라이딩마찰면을 향하는 지압면 전체가 상기 원추형 슬라이딩마찰면에 접촉되게 변형되는 것이 바람직하다.
상기 제1마찰면은 상기 원추형 슬라이딩마찰면을 향하는 지압면보다 작게 형성되어 상기 지압면은 초기에 상기 슬라이딩마찰면의 중심에서 상기 제1마찰면과 상기 제2마찰면에 걸쳐져 있을 수 있다.
때에 따라, 상기 제1마찰면은 상기 원추형 슬라이딩마찰면을 향하는 지압면보다 크게 형성되어 상기 지압면은 초기에 상기 슬라이딩마찰면의 중심에서 상기 제1마찰면에만 접촉되어 있을 수 있다.
본 발명에 따르면 베어링블록 조립체가 접촉면의 형상에 따라 회동될 수 있으면서도 가변형상마찰부의 형상도 접촉면의 형상에 따라 적응적으로 변하기 때문에 상부구조물이 교축방향 또는 교축직각방향으로 변위를 일으킨 상태에서는 원추형 슬라이딩마찰면에 대한 베어링블록의 접촉면적을 종래의 면진장치에 비해 훨씬 크게, 예를 들어 5배 이상 많게는 10배 이상 증가시킬 수 있다.
본 발명에 따르면 베어링블록 조립체가 접촉면의 형상에 따라 회동될 수 있으면서도 가변형상마찰부의 형상도 접촉면의 형상에 따라 적응적으로 변하기 때문에 상부구조물이 교축방향 또는 교축직각방향으로 변위를 일으킨 상태에서도 원추형 슬라이딩마찰면을 마주보는 베어링블록 조립체의 표면인 지압면 전체가 또는 전체에 가깝게 원추형 슬라이딩마찰면에 접촉할 수 있어 상부구조물이 측방으로 이동한 상태에서도 상부구조물의 지지상태를 안정적으로 유지할 수 있다.
본 발명에 따르면 베어링블록 조립체가 접촉하는 원추형 슬라이딩마찰면의 표면형상에 따라 회동블록이 회동하면서 가변형상마찰부가 변형될 수 있기 때문에 원추형 슬라이딩마찰면을 긁어서 상처를 내는 것을 줄일 수 있다.
본 발명에 따르면 베어링블록 조립체가 접촉하는 원추형 슬라이딩마찰면의 표면형상에 따라 회동블록이 회동하면서 가변형상마찰부가 어느 정도 탄성을 제공할 수 있기 때문에 베어링블록과 원추형 슬라이딩마찰면 상호간에 작용하는 충격력을 완충하여주는 효과도 누릴 수 있다.
그리고 본 발명에 따르면 원추형 슬라이딩마찰면 전 영역에 걸쳐서 종래의 원추형 슬라이딩마찰 면진장치에 비해 지압면적을 증가시킴으로써 상대적으로 작은 강도의 재료를 사용하여 만들 수 있고, 베어링블록의 크기도 줄일 수 있다.
본 발명에 따르면 제1마찰면의 형상과 크기, 제2마찰면의 각도, 가변형상마찰부의 구조를 변경함으로써 다양한 마찰특성을 가지는 원추형 슬라이딩마찰 면진장치를 제공할 수 있다.
도 1은 종래기술의 일례를 나타낸 측면도,
도 2는 본 발명에 따른 원추형 슬라이딩마찰 면진장치가 슬라이딩마찰면의 중심에 설치상태를 나타낸 단면도,
도 3은 상부구조물이 한쪽으로 수평 이동하여 가변형상마찰부가 슬라이딩마찰면의 기울기가 변하는 한쪽 부분에 걸쳐진 상태를 나타낸 단면도,
도 4는 가변형상마찰부가 슬라이딩마찰면의 기울기가 변하는 부분을 벗어나서 제2마찰영역에만 접촉된 상태를 나타낸 단면도,
도 5와 6은 도 2의 변형 예를 나타낸 단면도,
도 7은 도 2 내지 4를 통해 설명한 고무시트의 단면형상의 예들을 나타낸 도면,
도 8은 가변형상마찰부를 갖는 베어링블록 조립체의 다른 예를 나타낸 단면도,
도 9는 가변형상마찰부를 갖는 베어링블록 조립체의 또 다른 예를 나타낸 단면도,
도 10은 가변형상마찰부를 갖는 베어링블록 조립체의 또 다른 예를 나타낸 단면도,
도 11은 도 10에 나타낸 베어링블록 조립체의 변형 예들을 나타낸 단면도,
도 12는 특정의 동일 콘 앵글(cone angle)에서의 마찰재의 마찰계수의 변화에 따른 상부구조물에 작용하는 수평력과 상부구조물의 수평변위의 관계를 나타낸 힘-변위루프를 나타낸 도면,
도 13은 하부부재와 상부부재 양측 모두에 원추형 슬라이딩마찰면을 형성한 면진장치의 예들을 나타낸 단면도,
도 14는 하부부재와 상부부재 중 하나에는 원추형 슬라이딩마찰면을 형성하고 나머지 하나에는 오목구면을 형성한 면진장치를 나타낸 단면도,
도 15는 본 발명에 따른 원추형 슬라이딩마찰 면진장치의 또 다른 실시 예를 나타낸 단면도,
도 16은 본 발명에 따른 원추형 슬라이딩마찰 면진장치의 또 다른 실시 예를 나타낸 단면도,
도 17은 본 발명에 따른 원추형 슬라이딩마찰 면진장치의 또 다른 실시 예를 나타낸 단면도,
도 18은 본 발명에 따른 시저 형(scissor shape) 원추형 슬라이딩마찰 면진장치를 나타낸 단면도,
도 19는 도 18의 변형 예를 나타낸 단면도,
도 20은 슬라이딩마찰면을 이루는 오목한 원추표면의 경사각도의 예를 나타낸 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 상세하게 설명한다.
도 2는 본 발명에 따른 원추형 슬라이딩마찰 면진장치가 슬라이딩마찰면의 중심에 설치상태를 나타낸 단면도, 도 3은 상부구조물이 한쪽으로 수평 이동하여 가변형상마찰부가 슬라이딩마찰면의 기울기가 변하는 한쪽 부분에 걸쳐진 상태를 나타낸 단면도, 도 4는 가변형상마찰부가 슬라이딩마찰면의 기울기가 변하는 부분을 벗어나서 제2마찰영역에만 접촉된 상태를 나타낸 단면도이다.
도 2 내지 4에 나타낸 원추형 슬라이딩마찰 면진장치(100)는 기초너트(N)와 볼트(B)를 통해 하부구조물(10)의 상면에 설치되는 하부부재(110)를 갖춘다. 이 하부부재(110)의 상면에는 원추형의 슬라이딩마찰면(112)이 형성되어 있다. 이 원추형 슬라이딩마찰면(112)은 뒤에서 설명되는 베어링블록 조립체(130)가 전후 또는 좌우로 슬라이딩 이동할 수 있도록 베어링블록 조립체(130)보다 넓은 면적에 걸쳐 형성되어 있다. 이러한 원추형 슬라이딩마찰면(112)은 중심부에 형성되고 R1으로 표시된 영역에 형성된 오목구면으로 이루어진 제1마찰면(114)과 제1마찰면(114) 둘레에 R2로 표시된 영역에 배치되고 오목한 원추표면으로 이루어진 제2마찰면(116)을 갖추고 있다. 이에 따라 원추형 슬라이딩마찰면(112)은 제1마찰면(114)의 중심 및 제1마찰면(114)과 제2마찰면(116)의 경계(115)에서 표면의 기울기가 바뀐다. 제2마찰면(116)의 기울기 또는 경사도는 도 2에 나타낸 콘 앵글(cone angle)(θ)에 의해 정해진다.
교량상판 등의 상부구조물(20) 저면에는 용접을 통해 상부부재(150)가 설치되어 있다. 이 상부부재(150)의 저면에는 원추형 슬라이딩마찰면(112)을 향하는 구면홈(152)이 형성되어 있다.
본 발명에 따른 원추형 슬라이딩마찰 면진장치(100)는 구면홈(152)에 회동 가능케 지지되는 베어링블록 조립체(130)를 구비한다. 베어링블록 조립체(130)는 구면홈(152)에 제자리 회동 가능케 결합할 수 있도록 일면에 볼록구면(131a)을 가지며 볼록구면(131a) 반대편에 장착홈(131b)이 형성되어 있는 회동블록(131)과 장착홈(131b)에 설치된 가변형상마찰부(135)로 이루어져 있다. 회동블록(131)은 상부구조물(20)의 하중을 하부구조물(10)로 전달하는 역할을 함과 아울러 원추형 슬라이딩마찰면(112)과 접촉되는 위치에 따라 가변형상마찰부(135)가 도 3과 4에 나타낸 바와 같이 상부부재(150)에 대해 회동될 수 있게 하는 역할을 한다.
가변형상마찰부(135)는 회동블록(131)의 볼록구면(131a) 반대편에 장착홈(131b)을 형성하고, 이 장착홈(131b)에 설치하는 것이 바람직하지만, 다른 형태로 설치하는 것도 가능한 데, 이에 대해서는 뒤에서 더 자세히 설명한다. 도 2 내지 4에 나타낸 가변형상마찰부(135)는 장착홈(131b)에 삽입된 고무시트(136)와 일부는 장착홈(131b)에 삽입되어 고무시트(136)의 지지를 받고 일부는 장착홈(131b) 바깥으로 돌출된 마찰재(138)를 갖추고 있다. 고무시트(136)로는 면진장치(100)가 부담할 하중에 의해 형상이 변형될 수 있는 것이어야 하며, 폴리우레탄으로 된 것이 적합하게 사용될 수 있다. 그리고 마찰재(138)로는 PTFE, UHMWPE, 엔지니어링 플라스틱이 적합하게 사용될 수 있다. 시중에 판매되고 있는 제품 중에는 미국 일리노이주 소재 보스 엔지니어링(Voss engineering)사의 솔브텍스(SORBTEX)나 북미에 있는 TTS Marine사의 에버이에스티 옵티패드(EverEst OptiPad)가 적당하게 사용될 수 있다.
이 가변형상마찰부(135)는 상부구조물(20)의 하중에 의해 마주 보는 원추형 슬라이딩마찰면(112)을 향해 가압 되는 경우, 마주 보는 원추형 슬라이딩마찰면(112)의 표면형상에 따라 표면의 형상이 변형되는 부분이다. 이 가변형상마찰부(135)는 원추형 슬라이딩마찰면(112)과 마주 보는 회동블록(131)의 표면에 결합되어 있으며, 원추형 슬라이딩마찰면(112)과 접촉된 상태에서 전후 또는 좌우로 이동되면서 기울기가 바뀌는 부분에 걸쳐질 때 표면의 형상이 마주 보는 원추형 슬라이딩마찰면(112)과 같이 변형된다. 이에 따라 마주 보는 원추형 슬라이딩마찰면(112)의 형상에 따라 표면의 형상이 변형되지 않을 때보다는 원추형 슬라이딩마찰면(112)과의 접촉면적이 증가한다. 이러한 가변형상마찰부(135)의 지압면은 평면으로 형성하는 것이 바람직하지만, 평면에 가까운 볼록한 구면 또는 원추면으로 형성하는 것도 가능하고, 제1마찰면(114)보다 크게 형성하여 항상 제1마찰면(114)과 제2마찰면(116)에 걸쳐 있도록 하는 것이 바람직하다. 물론, 제1마찰면(114)의 면적을 가변형상마찰부(135)의 지압면보다 크게 형성하여 초기에 지압면이 제1마찰면(114)에만 지지가 된 상태를 가지도록 할 수 있다.
도 2 내지 4를 참조하면, 본 발명에 따른 원추형 슬라이딩마찰 면진장치(100)는, 바람직하게, 베어링블록 조립체(130)가 원추형 슬라이딩마찰면(112)의 중심에 위치할 때뿐만 아니라 옆으로 수평 이동한 상태에서도 지압면 전체가 원추형 슬라이딩마찰면(112)에 접촉되어 있다.
즉, 베어링블록 조립체(130)의 가변형상마찰부(135)는 도 2에 나타낸 바와 같이, 베어링블록 조립체(130)가 원추형 슬라이딩마찰면(112)의 중심에 위치할 때에는 중앙부가 아래로 볼록하게 변형되어 마주 보는 원추형 슬라이딩마찰면(112)에 전체 면이 접촉되어 있고, 베어링블록 조립체(130)가 옆으로 이동한 상태에서는 도 3과 4에 나타낸 바와 같이, 회동블록(134)이 회동한 상태에서 마주 보는 원추형 슬라이딩마찰면(112)과 같은 형상으로 변형되어 마주 보는 원추형 슬라이딩마찰면(112)에 전체 면이 접촉되어 있다. 이 경우 압축변형은 주로 고무시트(136)에서 일어나고 마찰재(138)에서는 휨변형이 주로 발생한다.
즉, 본 발명에 따른 원추형 슬라이딩마찰 면진장치(100)에서는 바람직하게 베어링블록 조립체(130)의 지압면 전체가 슬라이딩마찰면(112)에 면접촉된 상태로 슬라이딩이 일어난다.
본 발명에 따른 경우, 지압면이 원추형 슬라이딩마찰면(112)에 100%의 비율로 접촉되지 않는 경우라 하더라도 종래의 것에 비해서는 월등히 높은 비율로 원추형 슬라이딩마찰면(112)에 면접촉된다.
또한, 본 발명에서는 가변형상마찰부(135)의 표면을 슬라이딩마찰면(112)의 형상에 일치시켜 만들 필요가 없으므로 종래의 것에 비해 만들기도 매우 쉽다.
결론적으로, 본 발명에 의하면 앞에서 언급한 종래의 원추형 슬라이딩마찰 면진장치의 문제점을 모두 해결할 수 있다.
도 5와 6은 도 2의 변형 예를 나타낸 단면도이다.
때에 따라, 원추형 슬라이딩마찰면(112)의 제1마찰면(114)은 도 5에 나타낸 바와 같이 평면으로 형성할 수 있고, 마찰재(138)의 저면보다 넓게 형성할 수 있다. 이 경우, 제1마찰면(114)과 제2마찰면(116)의 경계에서만 기울기가 변하는 부분이 생긴다.
또, 때에 따라, 원추형 슬라이딩마찰면(112)의 제1마찰면(114)은 도 6에 나타낸 바와 같이 원추면으로 형성할 수 있다. 이 경우, 제1마찰면(114)의 기울기는 제2마찰면(116)의 기울기와 같게 할 수 있다. 초기의 수평대항력을 증가 또는 감소시키고자 하는 경우에는 제1마찰면(114)의 경사를 제2마찰면(116)의 경사보다 크게 또는 작게 할 수 있다.
나머지는 도 2 내지 4를 통해 설명한 것과 같다.
도 7은 도 2 내지 4를 통해 설명한 고무시트의 단면형상의 예들을 나타낸 도면이다.
앞에서 설명한 회동블록의 장착홈에 삽입되는 고무시트(136)로는 도 7(a)에 나타낸 바와 같이 측면에 내측으로 오목한 오목홈을 형성한 것, 도 7(b)와 (c)에 나타낸 바와 같이 가장자리의 모서리 부위에 경사면을 형성한 것, 도 7(d)에 나타낸 바와 같이 가장자리의 모서리 부위를 직각으로 형성한 것 등 다양한 형태의 것이 사용될 수 있다.
도 8은 가변형상마찰부를 갖는 베어링블록 조립체의 다른 예를 나타낸 단면도이다.
때에 따라, 회동블록(131)의 장착홈(131b)에 고무시트 없이 압축 변형될 수 있는 마찰재(138a)를 장착하여 가변형상마찰부(135)를 구성할 수 있다. 이 경우, 마찰재(138a)로는 부담하중에서 압축변형을 일으킬 수 있는 것을 사용하여야 한다. 앞 실시 예에서 설명한 제2마찰면(116)의 경사각이 작은 경우의 마찰재(138a)로는 압축성이 있는 PTFE, UHMWPE, 엔지니어링 플라스틱이 적당하고, 상대적으로 큰 경우의 마찰재(138a)로는 복합 우븐 PTFE PAD(composite woven PTFE PAD)가 적당하다.
나머지는 도 2 내지 4를 통해 설명한 것과 같다.
도 9는 가변형상마찰부를 갖는 베어링블록 조립체의 또 다른 예를 나타낸 단면도이다.
때에 따라, 회동블록(131)에는 장착홈(131b)이 형성되어 있고, 가변형상마찰부(135)는 일부는 장착홈(131b)에 삽입되고 일부는 장착홈(131b)의 바깥으로 돌출된, 설계부담하중에서 압축변형이 발생하는 압축성 블록(137)과 압축성 블록(137)의 표면에 접착된 마찰재(138b)를 갖추어 구성될 수 있다. 압축성 블록(138b)으로는 폴리우레탄 등의 고무재질을 이용하여 만든 것이 좋고, 코튼 덕 패드(cotton duck pad) 등 압축변형할 수 있는 다른 재질의 것도 이용될 수 있다.
이 경우에도, 마찰재(138b)로는 앞에서 언급한 바와 같은 PTFE, UHMWPE, 엔지니어링 플라스틱, 우븐 PTFE 등이 적당하다.
도 10은 가변형상마찰부를 갖는 베어링블록 조립체의 또 다른 예를 나타낸 단면도이고, 도 11은 도 10에 나타낸 베어링블록 조립체의 변형 예들을 나타낸 단면도이다.
때에 따라, 폴리우레탄 등으로 된 고무블록(137a)의 하면과 측면 및 상면 일부를 우븐PTFE로 된 마찰재(138b)로 둘러싸서 접착하여 가변형상마찰부(135)를 만들고, 이 가변형상마찰부(135)의 상단부를 장착홈(131b)에 삽입하여 회동블록(131)에 고정할 수 있다. 이때, 고무블록(137a)의 측면에는 오목한 측면홈을 형성하여 가변형상마찰부(135)의 압축변형성을 증가시킬 수 있다.
때에 따라, 고무블록(137a)은 도 11(a)에 나타낸 바와 같이 고무블록(137a)의 측면에 오목한 측면홈을 형성하지 않거나, 도 11(b)에 나타낸 바와 같이 장착홈(131b) 외부로 돌출된 부분의 중앙부에 하방으로 돌출된 돌출부를 형성하고 이 돌출부의 가장자리에서 장착홈(131b)의 가장자리까지 경사지게 경사면을 형성하여 만들 수 있다. 또, 경우에 따라 고무블록(137a)은 장착홈(131b) 외부로 노출된 가장자리를 라운드지게 형성하여 만들 수 있다. 그리고 고무블록(137a)의 표면에는 우븐PTFE로 된 마찰재(138b)를 전체 표면에 걸쳐서 또는 2 이상의 표면에 걸쳐서 부착하여 가변형상마찰부(135)를 구성할 수 있다.
나머지는 도 2 내지 4를 통해 설명한 것과 같다.
도 12는 특정의 동일 콘 앵글(cone angle)에서의 마찰재의 마찰계수의 변화에 따른 상부구조물에 작용하는 수평력과 상부구조물의 수평변위의 관계를 나타낸 힘-변위루프를 나타낸 도면이다.
도 2에 나타낸 바와 같은 콘 앵글(θ)이 특정 각도(예를 들면 0.03rad)일 때, 도 12(a)는 마찰재의 마찰계수(μ)가 0.03(θ)보다 작은 경우의 힘-변위의 관계를 보여주고 있고, 도 12(b)는 마찰계수가 0.03인 경우의 힘-변위의 관계를 보여주고 있고, 도 12(c)는 마찰계수가 0.03보다 큰 경우의 힘-변위의 관계를 보여주고 있다. 그리고 도 12(d)는 콘 앵글의 라디안 값이 마찰계수보다 월등히 큰 경우(약 10배)의 힘-변위의 관계를 보여주고 있다.
그리고 같은 마찰계수에 대해 콘 앵글이 큰 경우에는 마찰계수가 콘 앵글에 비해 작은 경우(도 12(a))와 유사하고, 콘 앵글이 작은 경우에는 마찰계수가 콘 앵글에 비해 큰 경우(도 12(c))와 유사하다.
그리고 이 그래프들에서 좌우 중앙부위의 경사진 부분은 지압면이 제1마찰면과 제2마찰면에 걸쳐지는 부분의 영향에 대한 것으로 마찰계수가 작을수록 상대적으로 큰 기울기를 가진다. 이 경사진 부분은 중앙 부분의 제1마찰면(114)에서도 일정 부분의 면적이 형성되어 있어 이 부분과의 마찰에 의한 에너지 소산과 중심부에서 경사의 방향이 바뀌는 부분과의 마찰에 의한 에너지 소산의 영향을 받는 부분이다. 그리고 그래프의 수평부분은 제2마찰영역에만 의한 것으로, 마찰계수가 작을수록 진동방향의 변화에 따른 힘의 크기의 차이도 작아진다. 이러한 힘-변위 루프는 마찰계수의 크기, 경사각의 크기, 제1마찰면의 형태와 크기 등에 따라 다양한 모양으로 바뀐다.
도 13은 하부부재와 상부부재 양측 모두에 원추형 슬라이딩마찰면을 형성한 면진장치의 예들을 나타낸 단면도이다.
도 13(a)~(c)에 나타낸 면진장치(100)는 하부부재(110)의 상면과 상부부재(150)의 저면 모두에 원추형 슬라이딩마찰면(112, 154)을 갖추고 있다. 이러한 하부부재(110)와 상부부재(150) 사이에 설치되는 베어링블록 조립체(130)는 도 13(a)에 나타낸 바와 같이 제1회동블록(131c)과 제2회동블록(131d)을 회전 가능케 지지하기 위해 중간부재(140)를 이용하는 방식, 도 13(b)에 나타낸 바와 같이 제1회동블록(131c)과 제2회동블록(131d)에 구면홈과 볼록구면을 직접 형성하여 상호간에 회동 가능케 지지하는 방식 및 도 13(c)에 나타낸 바와 같이 제1회동블록(131c)과 제2회동블록(131d) 사이에 탄성패드(142)를 삽입하는 방식과 같은 다양한 방식이 이용될 수 있다.
즉, 도 13(a)에 나타낸 바와 같이 중간부재(140)의 상면과 하면에 구면홈을 각각 형성하고, 여기에 볼록구면을 가지는 제1, 제2회동블록(131c, 131d)을 상하로 각각 결합하고 제1, 제2가변형상마찰부(135a, 135b)가 하부부재(110) 및 상부부재(150)에 형성된 원추형 슬라이딩마찰면(112, 154)에 각각 접촉된 상태에서 제1회동블록(131c)과 제2회동블록(131d)이 서로에 대해 회동될 수 있도록 하여 본 발명에 따른 면진장치(100)를 구성할 수 있다. 여기에서 상부부재(150)에 형성된 원추형 슬라이딩마찰면(154)은 앞의 도 2 내지 4를 통해 설명한 슬라이딩마찰면(112)과 상하 방향만 다르고 나머지는 같다.
때에 따라, 도 13(b)에 나타낸 바와 같이 두 제1회동블록(131c)과 제2회동블록(131d) 중 하나에는 구면홈을 형성하고 다른 하나에는 볼록구면을 형성하여 하부부재(110) 또는 상부부재(150)에 형성된 원추형 슬라이딩마찰면(112, 154)과 접촉되는 위치에 따라 제1회동블록(131c)과 제2회동블록(131d)이 회동될 수 있도록 하여 본 발명에 따른 면진장치(100)를 구성할 수 있다.
또, 때에 따라, 도 13(c)에 나타낸 바와 같이 제1회동블록(131c)과 제2회동블록(131d) 사이에 탄성패드(142)를 삽입하고, 핀(143)을 통해 탄성패드(142)를 관통하여 제1회동블록(131c)과 제2회동블록(131d)을 연결하되, 핀(143)의 일단은 제1회동블록(131c)과 제2회동블록(131d) 중 하나에 고정하고 타단은 다른 하나에 형성된 핀홈(144)에 삽입하여 상호 간의 수평이동은 제한하고 회동은 허용하도록 하여 본 발명에 따른 면진장치(100)를 구성할 수 있다.
나머지는 도 2 내지 11을 통해 설명한 것과 같다.
도 14는 하부부재와 상부부재 중 하나에는 원추형 슬라이딩마찰면을 형성하고 나머지 하나에는 오목구면을 형성한 면진장치를 나타낸 단면도이다.
도 14에 나타낸 면진장치(100)의 하부부재(110)는 상면에 오목구면(113)을 갖추고, 상부부재(150)는 저면에 원추형 슬라이딩마찰면(154)을 갖추고 있다. 이러한 하부부재(110)와 상부부재(150) 사이에 설치되는 베어링블록 조립체(130)는 가변형상마찰부(135)가 갖춰진 회동블록(131) 및 이 회동블록(131)과 상호 회동 가능케 지지가 된 구면마찰블록(131e)을 갖춘다. 구면마찰블록(131e)에는 오목구면(113)에 면접촉된 상태로 슬라이딩 가능한 구면마찰재(139)가 설치되어 있다.
때에 따라, 상기와 같은 도 14에 나타낸 베어링블록 조립체(130)는 회동블록(131)과 구면마찰블록(131e)의 상호 간의 회동 지지방식이 도 13(a)와 13(c)에 나타낸 베어링블록 조립체에서와 같은 형태로 변경될 수 있다.
또, 경우에 따라, 상기와 같은 도 14에 나타낸 베어링블록 조립체(130)는 도 13(a) 내지 13(c)에 나타낸 베어링블록 조립체로 대체될 수도 있다.
나머지는 도 2 내지 11을 통해 설명한 것과 같다.
도 15는 본 발명에 따른 원추형 슬라이딩마찰 면진장치의 또 다른 실시 예를 나타낸 단면도이다.
도 15에 나타낸 하부부재(110)는 고정부재(110a)와 이동부재(110b)의 2개의 구성요소로 이루어져 있다. 고정부재(110a)는 하부구조물 고정되며 표면에 오목구면(113)을 가진다. 이동부재(110b)는 그 일면에 원추형 슬라이딩마찰면(112)을 가지며, 타면에 고정부재(110a)의 오목구면(113)에 면접촉되면서 슬라이딩 가능한 볼록구면을 가진다.
바람직하게, 상부부재(150) 역시 하부부재(110)와 상하의 방향만 다를 뿐 하부부재(110)와 같이 고정부재(150a)와 이동부재(150b)의 구성으로 이루어져 있다.
베어링블록 조립체(130)는 도 13(b)에 나타낸 것을 상하로 뒤집은 형태로 되어 있다.
도 15에 나타낸 베어링블록 조립체(130)는 도 13(a)와 (c)에 나타낸 것으로 대체될 수 있음은 물론이다.
나머지는 도 2 내지 11을 통해 설명한 것과 같다.
도 16은 본 발명에 따른 원추형 슬라이딩마찰 면진장치의 또 다른 실시 예를 나타낸 단면도이다.
도 16에 나타낸 하부부재(110) 역시 고정부재(110a)와 이동부재(110b)의 2개의 구성요소로 이루어져 있다. 이 실시 예의 고정부재(110a)는 하부구조물 고정되며 표면에 원추형 슬라이딩마찰면과 같은 보조슬라이딩마찰표면(113a)을 갖추고 있다. 이동부재(110b)는 일면에 원추형 슬라이딩마찰면(112)을 가지고 있고, 타면에는 보조슬라이딩마찰표면(113a)에 면접촉되며 마주 보는 보조슬라이딩마찰표면(113a)의 형상에 따라 표면의 형상이 변형되는 가변형상마찰부(110c)를 가진다.
바람직하게, 상부부재(150) 역시 하부부재(110)와 상하 방향만 다를 뿐 하부부재(110)에서와 같이 고정부재(150a)와 이동부재(150b)의 구성으로 이루어져 있다.
이 실시 예의 베어링블록 조립체(130)는 도 15에 나타낸 것과 같고, 도 13(a)와 (c)에 나타낸 것으로 대체될 수도 있음은 물론이다.
나머지는 도 2 내지 11을 통해 설명한 것과 같다.
도 17은 본 발명에 따른 원추형 슬라이딩마찰 면진장치의 또 다른 실시 예를 나타낸 단면도이다.
도 17을 참조하면, 상부부재(150)의 저면에 형성되는 원추형 슬라이딩마찰면(154)은 제2마찰면(154b) 둘레에 배치되고 제2마찰면(154b)과 다른 경사도를 가지는 오목한 원추표면으로 이루어진 제3마찰표면(154c)을 더 갖추고 있을 수 있다. 제2마찰면(154b) 안쪽으로 중심부에 제1마찰면(154a)이 형성되어 있다.
하부부재(110)의 상면에는 구면홈(111)이 형성되어 있고, 이 구면홈(111)은 하면에 볼록구면(131a)이 형성되어 있는 회동부재(131)와 회동부재(131) 상면에 설치되고 원추형 슬라이딩마찰면(154)에 슬라이딩 가능케 접촉되는 가변형상마찰부(135)로 이루어진 베어링블록 조립체(130)가 결합하여 있다.
상기와 같은 면진장치(110)에서, 제2마찰면(154b)의 경사각(θ1 rad)과 제3마찰표면(154c)의 경사각(θ2 rad)이 마찰재(138)의 마찰계수(μ)보다 작은 경우에 상부부재(150)를 좌우로 이동시킬 때의 수평 방향으로 작용하는 힘과 변위의 관계는 아래쪽에 그래프로 나타내었다.
도 18은 본 발명에 따른 시저 형(scissor shape) 원추형 슬라이딩마찰 면진장치를 나타낸 단면도이다.
때에 따라, 하부부재(110)는 제1수평방향(이 실시 예에서는 전후 방향)으로 길게 형성하되 원추형 슬라이딩마찰면(112)의 양 측면을 따라 상방으로 돌출된 제1안내부(122)를 형성하고, 상부부재(150)는 제1수평방향에 직교하는 제2수평방향(이 실시 예에서는 좌우방향)으로 길게 형성하되 원추형 슬라이딩마찰면(154)의 양 측면을 따라 하방으로 돌출된 제2안내부(162)를 형성하고 둘 사이에 베어링블록 조립체(130)를 개재시켜 본 발명에 따른 면진장치(100)를 구성할 수 있다. 베어링블록 조립체(130)로는 앞에서 설명한 다양한 형태의 것이 이용될 수 있다.
이 경우, 베어링블록 조립체(130)는 하부부재(110)에 대해서는 제1안내부(122)의 안내를 받으며 제1수평방향으로 슬라이딩할 수 있고, 제2안내부(162)를 통해 상부부재(150)를 제2수평방향으로 이동하는 것을 안내한다.
도 19는 도 18의 변형 예를 나타낸 단면도이다.
때에 따라, 하부부재(110)의 상면은 전후 방향으로 수평면으로 형성될 수 있다. 베어링블록 조립체(130)는 제1안내부(122)를 따라 수평 이동 가능케 설치되고 상면에 구면홈을 가지며 저면에 마찰재(138)가 설치된 수평이동블록(131f)과, 마찰재(138) 반대편에 구면홈에 제자리 회동 가능케 결합하는 볼록구면을 가지는 구면블록으로 이루어진 회동블록(131)을 갖추고 있다.
제1안내부(122)에 수직인 방향으로 수평이동블록(131f) 양측에 상방으로 돌출된 돌출부(124)가 각각 설치되며, 양측의 돌출부(124)와 수평이동블록(131f) 사이에는 수평이동블록(131f)을 돌출부(124)에 탄성적으로 지지하여 수평 방향의 복원력을 제공하는 수평탄성기구(170)가 각각 설치되어 본 발명에 따른 면진장치(100)가 구성될 수 있다.
나머지는 도 2 내지 11을 통해 설명한 것과 같다.
도 20은 슬라이딩마찰면을 이루는 오목한 원추표면의 바람직한 경사각도의 예를 나타낸 도면이다.
오목한 원추표면의 기울기는 도 2에 나타낸 콘 앵글의 라디안 값과 같고, 6/200=0.03, 10/200=0.05, 20/200=0.1, 30/200=0.15 등이 바람직하게 사용될 수 있다. 면진장치의 사용처에 따라 원추표면의 기울기가 증감될 수 있음은 물론이다.
본 발명은 하부부재와 상부부재 중 적어도 한 면에 원추형 슬라이딩마찰면을 가지며 교량구조물이나 빌딩의 상부구조물을 지지하는 면진장치의 제작에 이용될 수 있다.

Claims (18)

  1. 하부구조물 상면에 설치되는 하부부재, 상부구조물 저면에 설치되는 상부부재 및 상기 하부부재와 상기 상부부재 사이에 배치되어 상기 상부구조물의 하중을 상기 하부구조물에 지지하고 상기 하부부재와 상기 상부부재 중 적어도 하나에 대해서는 슬라이딩 가능케 설치되어 상기 상부구조물을 지진으로부터 격리할 수 있도록 하는 베어링블록 조립체를 갖추는 면진장치에서,
    상기 하부부재의 상면과 상기 상부부재의 저면 중 적어도 하나에는 중심부에 배치되고 수평면, 오목구면 및 오목원추면 중 하나로 이루어진 제1마찰면과 상기 제1마찰면 둘레에 배치되고 오목한 원추표면으로 이루어진 제2마찰면을 갖추어 상기 제1마찰면의 중심에서 또는 상기 제1마찰면과 상기 제2마찰면의 경계에서 표면의 기울기가 바뀌는 부분을 가지는 원추형 슬라이딩마찰면이 형성되어 있고,
    상기 베어링블록 조립체는 상기 원추형 슬라이딩마찰면과 접촉되는 위치에 따라 상기 상부부재 또는 상기 하부부재에 대해 회동될 수 있게 설치된 회동블록 및 상기 원추형 슬라이딩마찰면과 마주 보는 상기 회동블록의 표면에 결합하고 상기 원추형 슬라이딩마찰면과 접촉된 상태에서 전후 또는 좌우로 이동되면서 상기 기울기가 바뀌는 부분에 걸쳐질 때 표면의 형상이 변형되지 않을 때보다는 상기 원추형 슬라이딩마찰면과의 접촉면적이 증가할 수 있게 상기 상부구조물의 하중에 의해 마주 보는 상기 원추형 슬라이딩마찰면의 형상에 따라 표면의 형상이 변형되는 가변형상마찰부를 갖추어 구성된 것을 특징으로 하는 원추형 슬라이딩마찰 면진장치.
  2. 제1항에서, 상기 원추형 슬라이딩마찰면은 상기 상부부재와 상기 하부부재 중 어느 하나에만 형성되어 있고,
    상기 상부부재와 상기 하부부재 중 나머지 하나에는 상기 원추형 슬라이딩마찰면을 향하는 구면홈이 형성되어 있고,
    상기 회동블록은 상기 가변형상마찰부 반대편에 상기 구면홈에 제자리 회동 가능케 결합하는 볼록구면을 가지는 구면블록인 것을 특징으로 하는 원추형 슬라이딩마찰 면진장치.
  3. 제1항에서, 상기 원추형 슬라이딩마찰면은 상기 상부부재와 상기 하부부재 중 어느 하나에만 형성되어 있고,
    상기 상부부재와 상기 하부부재 중 나머지 하나에는 일 수평 방향으로 안내부가 형성되어 있고,
    상기 베어링블록 조립체는 상기 나머지 하나에서 상기 안내부를 따라 수평이동 가능케 설치되고 구면홈을 가지는 수평이동블록, 상기 가변형상마찰부 반대편에 상기 구면홈에 제자리 회동 가능케 결합하는 볼록구면을 가지는 구면블록으로 이루어진 상기 회동블록을 갖추어 구성되고,
    상기 나머지 하나에는 상기 안내부에 수직인 방향으로 상기 수평이동블록 양측에 돌출부가 각각 설치되어 있고,
    양측의 상기 돌출부와 상기 수평이동블록 사이에는 상기 수평이동블록을 상기 돌출부에 탄성적으로 지지하여 수평 방향의 복원력을 제공하는 수평탄성기구가 각각 설치된 것을 특징으로 하는 원추형 슬라이딩마찰 면진장치.
  4. 제1항에서, 상기 원추형 슬라이딩마찰면은 상기 상부부재와 상기 하부부재 중 어느 하나에만 형성되어 있고,
    상기 상부부재와 상기 하부부재 중 나머지 하나에는 오목구면이 형성되어 있고,
    상기 베어링블록 조립체는,
    상기 회동블록과 상호 회동 가능케 지지가 된 구면마찰블록; 및
    상기 구면마찰블록의 표면에 설치되고 상기 오목구면에 면접촉된 상태로 슬라이딩 가능한 구면마찰재를 더 포함하는 것을 특징으로 하는 원추형 슬라이딩마찰 면진장치.
  5. 제4항에서, 상기 회동블록과 상기 구면마찰블록이 상호 회동 가능케 지지가 된 방식은,
    상기 회동블록과 상기 구면마찰블록 중 하나에는 구면홈이 형성되어 있고 다른 하나에는 상기 구면홈에 회동 가능케 결합된 볼록구면이 형성되어 있는 지지방식,
    중간부재의 상면과 하면에 구면홈을 각각 형성되어 있고 상기 회동블록과 상기 구면마찰블록에 상기 중간부재의 구면홈에 회동 가능케 결합한 볼록구면이 각각 형성되어 있는 지지방식, 및
    상기 회동블록과 상기 구면마찰블록 사이에 탄성패드를 개재한 상태에서 핀을 통해 상기 회동블록과 상기 구면마찰블록을 상호 회동 가능케 연결한 지지방식 중 하나로 되어 있는 것을 특징으로 하는 원추형 슬라이딩마찰 면진장치.
  6. 제1항에서, 상기 원추형 슬라이딩마찰면은 상기 상부부재와 상기 하부부재 둘 모두에 형성되어 있고,
    상기 베어링블록 조립체는,
    상기 하부부재에 형성된 상기 원추형 슬라이딩마찰면과 접촉되는 위치에 따라 회동될 수 있는 제1회동블록;
    상기 제1회동블록의 표면에 설치되어 상기 하부부재에 형성된 상기 원추형 슬라이딩마찰면과 접촉되는 제1가변형상마찰부;
    상기 제1회동블록과 상호 회동 가능케 지지가 된 제2회동블록; 및
    상기 제2회동블록의 표면에 설치되어 상기 상부부재에 형성된 상기 원추형 슬라이딩마찰면과 접촉되는 제2가변형상마찰부를 갖추어 구성된 것을 특징으로 하는 원추형 슬라이딩마찰 면진장치.
  7. 제6항에서, 상기 제1회동블록과 상기 제2회동블록이 상호 회동 가능케 지지가 된 방식은,
    상기 제1회동블록과 상기 제2회동블록 중 하나에는 구면홈이 형성되어 있고 다른 하나에는 상기 구면홈에 회동 가능케 결합한 볼록구면이 형성되어 있는 지지방식,
    중간부재의 상면과 하면에 구면홈을 각각 형성되어 있고 상기 제1회동블록과 상기 제2회동블록에 상기 중간부재의 구면홈에 회동 가능케 결합한 볼록구면이 각각 형성되어 있는 지지방식, 및
    상기 제1회동블록과 상기 제2회동블록 사이에 탄성패드를 개재한 상태에서 핀을 통해 상기 제1회동블록과 상기 제2회동블록을 상호 회동 가능케 연결한 지지방식 중 하나로 되어 있는 것을 특징으로 하는 원추형 슬라이딩마찰 면진장치.
  8. 제1항 내지 제7항 중 어느 한 항에서, 상기 가변형상마찰부의 표면에 설치되는 마찰재는 상기 면진장치의 설계하중에서 압축변형을 일으키는 PTFE, UHMWPE, 엔지니어링 플라스틱 또는 복합 우븐 PTFE로 만들어진 것을 특징으로 하는 원추형 슬라이딩마찰 면진장치.
  9. 제1항 내지 제7항 중 어느 한 항에서, 상기 회동블록에는 장착홈이 형성되어 있고,
    상기 가변형상마찰부는,
    상기 장착홈에 삽입된 고무시트; 및
    일부는 상기 장착홈에 삽입되어 상기 고무시트의 지지를 받고 일부는 상기 장착홈 바깥으로 돌출된 상태에서 상기 면진장치의 설계하중에서 벤딩변형을 일으킬 수 있는 두께의 마찰재를 갖추어 구성된 것을 특징으로 하는 원추형 슬라이딩마찰 면진장치.
  10. 제1항 내지 제7항 중 어느 한 항에서, 상기 회동블록에는 장착홈이 형성되어 있고,
    상기 가변형상마찰부는,
    일부는 상기 장착홈에 삽입되고 일부는 상기 장착홈의 바깥으로 돌출된 압축성 블록; 및
    상기 압축성 블록의 표면에 접착되고 상기 면진장치의 설계하중에서 벤딩변형을 일으킬 수 있는 두께의 마찰재를 갖추어 구성된 것을 특징으로 하는 원추형 슬라이딩마찰 면진장치.
  11. 제1항 내지 제7항 중 어느 한 항에서, 상기 회동블록에는 장착홈이 형성되어 있고,
    상기 가변형상마찰부는,
    일부는 상기 장착홈에 삽입되고 일부는 상기 장착홈의 바깥으로 돌출된 마찰재를 갖추어 구성되고,
    상기 마찰재는 상기 면진장치의 설계하중에서 압축변형을 일으키는 PTFE, UHMWPE, 엔지니어링 플라스틱 또는 복합 우븐 PTFE로 만들어진 것을 특징으로 하는 원추형 슬라이딩마찰 면진장치.
  12. 제1항 내지 제7항 중 어느 한 항에서,
    상기 원추형 슬라이딩마찰면은 상기 제2마찰면 둘레에 배치되고 오목한 원추표면으로 이루어진 제3마찰표면을 더 갖추고 있는 것을 특징으로 하는 원추형 슬라이딩마찰 면진장치.
  13. 제1항 내지 제7항 중 어느 한 항에서,
    상기 하부부재와 상기 상부부재 중 하나는 상기 하부구조물 또는 상기 상부구조물에 고정되며 표면에 오목구면이 형성되어 있는 고정부재와 일면에는 상기 원추형 슬라이딩마찰면이 형성되어 있고, 타면에는 상기 고정부재의 상기 오목구면에 면접촉되면서 슬라이딩 가능토록 볼록구면이 형성되어 있는 이동부재를 갖추어 구성된 것을 특징으로 하는 원추형 슬라이딩마찰 면진장치.
  14. 제1항 내지 제7항 중 어느 한 항에서,
    상기 하부부재와 상기 상부부재 중 하나는 상기 하부구조물 또는 상기 상부구조물에 고정되며 표면에 상기 원추형 슬라이딩마찰면과 같은 보조슬라이딩마찰표면이 형성되어 있는 고정부재와 일면에는 상기 원추형 슬라이딩마찰면이 형성되어 있고, 타면에는 상기 보조슬라이딩마찰표면에 면접촉되고 마주 보는 상기 보조슬라이딩마찰표면의 형상에 따라 표면의 형상이 변형되는 가변형상마찰부가 설치되어 있는 이동부재를 갖추어 구성된 것을 특징으로 하는 원추형 슬라이딩마찰 면진장치.
  15. 제6항 또는 제7항에서,
    상기 하부부재에는 제1수평방향으로 제1안내부가 형성되어 있고,
    상기 상부부재에는 상기 제1수평방향과 직교하는 제2수평방향으로 제2안내부가 형성되어 있고,
    상기 베어링블록 조립체는 상기 하부부재에 대해 상기 제1안내부의 안내를 받으며 제1수평방향으로 슬라이딩할 수 있고, 상기 제2안내부를 통해 상기 상부부재를 상기 제2수평방향으로 이동하는 것을 안내하는 것을 특징으로 하는 원추형 슬라이딩마찰 면진장치.
  16. 제1항 내지 제7항 중 어느 한 항에서,
    상기 가변형상마찰부는 상기 상부구조물의 하중에 의해 상기 원추형 슬라이딩마찰면을 향해 가압 되는 것에 의해 상기 기울기가 바뀌는 부분에서 상기 원추형 슬라이딩마찰면과의 사이에 공간이 생기지 않도록 상기 원추형 슬라이딩마찰면을 향하는 지압면 전체가 상기 원추형 슬라이딩마찰면에 접촉되게 변형되는 것을 특징으로 하는 원추형 슬라이딩마찰 면진장치.
  17. 제1항 내지 제7항 중 어느 한 항에서, 상기 제1마찰면은 상기 원추형 슬라이딩마찰면을 향하는 지압면보다 작게 형성되어 상기 지압면은 초기에 상기 슬라이딩마찰면의 중심에서 상기 제1마찰면과 상기 제2마찰면에 걸쳐져 있는 것을 특징으로 하는 원추형 슬라이딩마찰 면진장치.
  18. 제1항 내지 제7항 중 어느 한 항에서, 상기 제1마찰면은 상기 원추형 슬라이딩마찰면을 향하는 지압면보다 크게 형성되어 상기 지압면은 초기에 상기 슬라이딩마찰면의 중심에서 상기 제1마찰면에만 접촉된 것을 특징으로 하는 원추형 슬라이딩마찰 면진장치.
PCT/KR2014/009884 2013-11-08 2014-10-21 원추형 슬라이딩마찰 면진장치 WO2015068964A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0135124 2013-11-08
KR1020130135124A KR101438704B1 (ko) 2013-11-08 2013-11-08 원추형 슬라이딩마찰 면진장치

Publications (1)

Publication Number Publication Date
WO2015068964A1 true WO2015068964A1 (ko) 2015-05-14

Family

ID=51759659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009884 WO2015068964A1 (ko) 2013-11-08 2014-10-21 원추형 슬라이딩마찰 면진장치

Country Status (2)

Country Link
KR (1) KR101438704B1 (ko)
WO (1) WO2015068964A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108699853A (zh) * 2016-02-19 2018-10-23 莫杜拉股份公司 结构体的地震隔离装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101844041B1 (ko) 2017-09-12 2018-03-30 주식회사 케이이테크 가변 저항력 마찰기구와 이를 이용한 면진장치 및 마찰 댐퍼
KR102056935B1 (ko) * 2017-12-21 2020-01-22 현대이엔티 주식회사 수배전반의 면진 유닛
WO2020121029A1 (es) * 2018-12-12 2020-06-18 Universidad Católica De La Santísima Concepción Dispositivo cinemático de aislamiento sísmico
KR102184095B1 (ko) * 2020-09-03 2020-11-27 (주)베네테크 Pdf 면진물탱크
CN113235407B (zh) * 2021-04-28 2022-05-24 株洲时代新材料科技股份有限公司 一种摩擦摆支座的限位与释放方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3963567B2 (ja) * 1998-04-22 2007-08-22 旭化成ホームズ株式会社 摩擦振子型免震装置
JP2010189999A (ja) * 2009-02-20 2010-09-02 Tokyo Institute Of Technology 免震構造、及び免震構造を有する建物
KR101162687B1 (ko) * 2011-11-29 2012-07-05 (주)알티에스 면진장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3963567B2 (ja) * 1998-04-22 2007-08-22 旭化成ホームズ株式会社 摩擦振子型免震装置
JP2010189999A (ja) * 2009-02-20 2010-09-02 Tokyo Institute Of Technology 免震構造、及び免震構造を有する建物
KR101162687B1 (ko) * 2011-11-29 2012-07-05 (주)알티에스 면진장치

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108699853A (zh) * 2016-02-19 2018-10-23 莫杜拉股份公司 结构体的地震隔离装置
US20190077596A1 (en) * 2016-02-19 2019-03-14 Modula S.P.A. Device for seismic isolation of structures
US11155407B2 (en) * 2016-02-19 2021-10-26 Modula S.P.A. Device for seismic isolation of structures

Also Published As

Publication number Publication date
KR101438704B1 (ko) 2014-09-05

Similar Documents

Publication Publication Date Title
WO2015068964A1 (ko) 원추형 슬라이딩마찰 면진장치
WO2021080227A1 (en) Electronic device including dustproof structure
WO2019177427A2 (ko) 디스플레이 폴딩형 휴대단말기
KR101633921B1 (ko) 삼축 트위스트 내진장치를 구비한 수배전반
KR101508148B1 (ko) 전기제어 판넬에 설치되는 방진성능을 갖춘 3차원 지진격리시스템
WO2018139841A1 (en) Finger joint with a bridging cover plate
WO2013165035A1 (ko) 안전문
KR101069079B1 (ko) 가이드레일을 이용한 면진장치
WO2021133070A1 (ko) 구름구 관절
WO2022055119A1 (ko) 링크 힌지 구조 및 이를 포함하는 전자 장치
WO2013094875A1 (en) Micro electro mechanical systems device and apparatus for compensating tremble
WO2020153544A1 (ko) 면진 장치 및 이를 포함하는 면진 테이블
WO2012169669A1 (en) Elastic device and mechanism to control horizontal displacement utilizing a horizontal component of elastic force and bridge bearing using the same
WO2015105338A1 (ko) 진공 흡착장치
WO2017018592A1 (ko) 하이브리드 얼라인먼트
JP4357085B2 (ja) 免震装置
WO2021015508A1 (ko) 임프린트용 레벨링 유닛 및 이를 포함하는 임프린트 장치
KR20010097528A (ko) 다경간 연속교량의 기계적 지진력 분산전달 장치
WO2020036262A1 (ko) 캐스터 유닛 및 이를 포함하는 의료 장치
KR101356952B1 (ko) 기판 이송장치용 미끄러짐 방지패드
KR101327566B1 (ko) 높이를 감소시킨 면진장치 및 상기 면진장치에 사용될 수 있는 탄성기구
WO2011112029A2 (ko) 휴대단말기용 슬라이드 탄성모듈 및 이를 이용한 슬라이드 휴대단말기
JP4292127B2 (ja) 橋梁用支承装置
JPH11148248A (ja) 免震装置
JP2000018324A (ja) 展示品用免震装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14860291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14860291

Country of ref document: EP

Kind code of ref document: A1