WO2015068912A1 - Light emitting diode having uniform current diffusion structure - Google Patents

Light emitting diode having uniform current diffusion structure Download PDF

Info

Publication number
WO2015068912A1
WO2015068912A1 PCT/KR2014/003132 KR2014003132W WO2015068912A1 WO 2015068912 A1 WO2015068912 A1 WO 2015068912A1 KR 2014003132 W KR2014003132 W KR 2014003132W WO 2015068912 A1 WO2015068912 A1 WO 2015068912A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
light emitting
layer
semiconductor layer
emitting diode
Prior art date
Application number
PCT/KR2014/003132
Other languages
French (fr)
Korean (ko)
Inventor
홍정우
Original Assignee
일진엘이디(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 일진엘이디(주) filed Critical 일진엘이디(주)
Publication of WO2015068912A1 publication Critical patent/WO2015068912A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape

Definitions

  • the present invention relates to a light emitting diode having a p electrode and an n electrode, and more particularly, to a light emitting diode that can improve light efficiency through uniform current diffusion in the active layer by preventing the concentration of current around the electrode. .
  • LEDs Light emitting diodes
  • LEDs are devices that convert electrical energy into light and generally produce light in at least one active layer between layers doped with impurities of opposite polarity. That is, when bias is applied to both sides of the active layer, holes and electrons are injected into the active layer, and light is generated by recombination. Since light emitting diodes have a higher refractive index than air, much of the light generated by recombination of electrons and holes remains in the device. Such light is absorbed by various paths such as a thin film, a substrate, and an electrode before escaping to the outside, thereby reducing external quantum efficiency.
  • An electrode for applying a bias to the active layer consists of an electrode pad for the package and a branch electrode extending from the electrode pad to substantially provide a bias to the active layer.
  • the current concentration phenomenon generated between the p-electrode and the n-electrode is not uniformly distributed over the entire active layer, and the current is concentrated around the electrode, thereby forming a darker dark portion in a region far from the electrode. do.
  • This current concentration phenomenon is particularly severe in the region between the electrode pad and the branch electrode.
  • the current concentration phenomenon lowers the external quantum efficiency and causes problems such as local degradation and aging.
  • the current concentration phenomenon is often caused by the non-uniform spacing between the p-electrode and the n-electrode. In other words, if the spacing between the electrodes is not constant, a non-uniform electric field is formed between the electrodes, whereby the current concentration phenomenon becomes conspicuous.
  • An object of the present invention is to provide a light emitting diode having a uniform current spreading structure that blocks current concentration, increases external quantum efficiency, and prevents local degradation and aging.
  • a light emitting diode having a uniform current spreading structure for solving the problems of the present invention includes a light emitting structure including a first semiconductor layer, an active layer and a second semiconductor layer and a transparent electrode layer positioned on the light emitting structure.
  • the display device may further include a first electrode including a first branch electrode, a connection part, and a first electrode pad, and a first blocking layer formed on the light emitting structure.
  • the first electrode pad is disposed on the second semiconductor layer, and may be electrically connected to the first branch electrode and the connection part extending in the longitudinal direction of the first semiconductor layer.
  • the first blocking layer may be formed between the second semiconductor layer and the first electrode pad.
  • the first blocking layer preferably contacts the first branch electrode.
  • the first blocking layer may have a shape that is the same as or extended to the first electrode pad and the connection part.
  • the first blocking layer may be any one selected from an oxide film and a nitride film, or may be a multilayer film in which the oxide film and the nitride film are stacked.
  • the second semiconductor layer comprises a second electrode pad, a second electrode consisting of a second branch electrode parallel to the first branch electrode, wherein the second electrode pad and the second branch
  • the display device may further include a second blocking layer electrically insulating the electrode from the second semiconductor layer.
  • the second blocking layer may be formed between the second semiconductor layer and the second electrode pad.
  • the interval L1 between the first and second branch electrodes is constant, and the area where the interval L1 is constant is preferably 60% or more of the total area.
  • the second blocking layer may have the same shape as or extend from the second electrode pad and the second branch electrode.
  • the second blocking layer of the present invention may be any one selected from an oxide film and a nitride film or a multilayer film in which the oxide film and the nitride film are stacked.
  • the second blocking layer and the transparent electrode layer formed on the second electrode pad may be spatially separated by a blocking groove exposing the second semiconductor layer.
  • the light emitting diode having the uniform current spreading structure of the present invention by adding a structure for preventing current spreading to the first electrode pad and the second electrode pad, the current concentration phenomenon is blocked to increase the external quantum efficiency and local degradation. And aging can be prevented.
  • the structure which prevents current spreading can prevent current from concentrating between the electrode pad and the branch electrode so that a uniform current can flow through the light emitting diode.
  • FIG. 1 is a perspective view showing a light emitting diode having a uniform current spreading structure according to the present invention.
  • FIG. 2 is a cross-sectional view taken along the line II-II of FIG. 1.
  • FIG. 3 is a cross-sectional view taken along line III-III of FIG. 1.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG. 1.
  • FIG. 5 is a photograph showing a light emitting image of a conventional light emitting diode without a blocking layer
  • FIG. 6 is a photograph showing a light emitting image of a light emitting diode according to an embodiment of the present invention having a blocking layer.
  • FIG. 7 is a plan view showing one modification of the light emitting diode having the uniform current spreading structure according to the present invention.
  • FIG 8 is a plan view showing another modification of the light emitting diode having a uniform current spreading structure according to the present invention.
  • An embodiment of the present invention provides a light emitting diode having a uniform current spreading structure to add a structure to prevent current diffusion to the electrode pad to block the current concentration phenomenon to increase the external quantum efficiency, and to prevent local degradation and aging.
  • a light emitting diode having a structure for preventing current diffusion in an electrode pad will be described in detail, and a process of blocking current concentration will be described in detail.
  • a process in which the distance between the electrodes through which the current flows is substantially constant by the current diffusion prevention structure according to the embodiment of the present invention will be described.
  • the current concentration phenomenon means that current is concentrated between the electrode pad and the branch electrode due to the diffusion of current in the electrode pad so that a uniform current does not flow through the entire light emitting diode.
  • FIG. 1 is a perspective view illustrating a light emitting diode having a uniform current spreading structure according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line II-II of FIG. 1
  • FIG. 3 is a cross-sectional view taken along line III-III of FIG. 1
  • FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. 1. .
  • a light emitting diode includes a substrate 10 and a light emitting structure 14, a transparent electrode layer 20, a first electrode 30, and a second electrode 40 positioned on one side of the substrate 10. ), A first blocking layer 34, and a second blocking layer 44.
  • the first blocking layer 34 is to block current diffusion from the first electrode pad 31 of the first electrode 30, and the second blocking layer 44 is formed of the second electrode 40. This is to block current diffusion in the two-electrode pad 41.
  • the first and second blocking layers 34 and 44 are both disposed on the light emitting structure 14 and are positioned between the transparent electrode layers 20.
  • the substrate 10 includes sapphire (Al 2 O 3), silicon carbide (SiC), gallium nitride (GaN), gallium arsenide (GaAs), silicon (Si), germanium (Ge), zinc oxide (ZnO), magnesium oxide (MgO), Aluminum nitride (AlN), borate nitride (BN), gallium phosphide (GaP), indium phosphide (InP), lithium-aluminum oxide (LiAl2O3) may be any one.
  • An uneven pattern (not shown) capable of reflecting light may be formed on an upper surface, a lower surface, or both of the substrate 10.
  • a buffer layer 12 may be disposed between the substrate 10 and the light emitting structure 14 to mitigate lattice mismatch.
  • the buffer layer 12 may be formed as a single layer or multiple layers, for example, at least one of GaN, InN, AlN, InGaN, AlGaN, AlGaInN, and AlInN.
  • the light emitting structure 14 may be located on the substrate 10 or on the buffer layer 12.
  • the light emitting structure 14 may have a plurality of conductive semiconductor layers having any one of an np junction structure, a pn junction structure, an npn junction structure, and a pnp junction structure based on the substrate 10.
  • the light emitting structure 14 includes a first semiconductor layer 15, an active layer 16, and a second semiconductor layer 17 sequentially stacked.
  • the first semiconductor layer 15 is an n-type semiconductor layer
  • the second semiconductor layer 17 refers to a p-type semiconductor layer.
  • Electrons or holes in the active layer 16 are provided by the first semiconductor layer 15 and the second semiconductor layer 17 in accordance with the applied bias.
  • the first and second semiconductor layers 15 and 17 may include different impurities to have different conductivity types.
  • the first semiconductor layer 15 may include n-type impurities and the second semiconductor layer 17 may include p-type impurities.
  • the first semiconductor layer 15 provides electrons, and the second semiconductor layer 17 provides holes.
  • the case where the first semiconductor layer 15 is p-type and the second semiconductor layer 17 is n-type is also possible within the scope of the present invention.
  • the first and second semiconductor layers 15 and 17 may each include a III-V compound material such as gallium nitride.
  • the n-type impurity may be at least one selected from silicon (Si), germanium (Ge), tin (Sn), selenium (Se), and tellurium (Te).
  • the p-type impurity may be at least one selected from magnesium (Mg), zinc (Zn), calcium (Ca), strontium (Sr), beryllium (Be), and barium (Ba).
  • the active layer 16 has a lower energy band gap than the first and second semiconductor layers 15 and 17, light emission may be activated.
  • the active layer 16 may emit light of various wavelengths and may emit infrared light, visible light, or ultraviolet light, for example.
  • the active layer 16 may be a single quantum well (SQW) or a multi quantum well (MQW).
  • the active layer 16 may have a stacked structure of a quantum well layer and a quantum barrier layer, and the number of the quantum well layer and the quantum barrier layer may be variously changed as necessary.
  • the active layer 16 may have, for example, a GaN / InGaN / GaN MQW structure or a GaN / AlGaN / GaN MQW structure.
  • this is exemplary and the active layer 16 varies in wavelength of light emitted depending on the constituent material.
  • the light emitting structure 14 may have a sidewall in which a portion of the active layer 16 and the second semiconductor layer 17 are removed, and a portion of the first semiconductor layer 15 is removed and exposed accordingly.
  • the first branch electrode 33 of the first electrode 30 according to the embodiment of the present invention extends in the longitudinal direction in a region where a portion of the first semiconductor layer 15 is exposed. Accordingly, the active layer 16 may be limited to the sidewall structure to emit light.
  • the sidewall structure may be formed using inductively coupled plasma reactive ion etching (ICP-RIE), wet etching, or dry etching.
  • the transparent electrode layer 20 is made of a transparent and conductive material and is positioned on the second semiconductor layer 17.
  • the transparent electrode layer 20 uniformly distributes the current injected from the second electrode 40 to the second semiconductor layer 17.
  • the transparent electrode layer 20 may include a metal and may be, for example, a composite layer of nickel (Ni) and gold (Au).
  • the transparent electrode layer 20 may include an oxide, for example, indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), aluminum zinc oxide (AZO), or indium (AZO) Aluminum Zinc Oxide (GZO), Gallium Zinc Oxide (GZO), Indium Gallium Oxide (IGO), Indium Gallium Zinc Oxide (IGZO), Indium Gallium Tin Oxide (IGTO), Aluminum Tin Oxide (ATO), Indium Tungsten Oxide (IGWO), CIO (Cupper Indium Oxide), MIO (Magnesium Indium Oxide), MgO, ZnO, In2O3, TiTaO2, TiNbO2, TiOx, RuOx and IrOx may be made of at least one.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • IZTO indium zinc tin oxide
  • AZO aluminum zinc oxide
  • AZO aluminum zinc oxide
  • AZO aluminum Zinc Oxide
  • the first electrode 30 is a structure for supplying current to the first semiconductor layer 15.
  • the first electrode 30 includes a first electrode pad 31, a connecting portion 32, and a first branch electrode 33.
  • the first electrode pad 31 is positioned on the second semiconductor layer 17, and the first branch electrode 33 extends in the length direction in the exposed region of the first semiconductor layer 15.
  • the first electrode pad 31 is spaced apart from the transparent electrode layer 20.
  • the connection part 32 connects the first electrode pad 31 and the first branch electrode 33 through the sidewall structure. Accordingly, the first electrode pad 31 and the first branch electrode 33 have a step corresponding to at least the sidewall.
  • the first electrode pad 31 is for package bonding, and the shape of the first electrode pad 31 is not limited, but a disc shape is preferable.
  • the connection part 32 may have a rod shape attached to a portion of the first electrode pad 31, and the first branch electrode 33 may also have a rod shape.
  • the first electrode 30 may be manufactured by wet etching or dry etching. Meanwhile, as shown in the drawing, the connection part 32 may form the connection part 32 in the groove formed in the side wall.
  • the first blocking layer 34 is for preventing current diffusion in the first electrode pad 31.
  • the first blocking layer 34 may include a region between the first electrode pad 31 and the second semiconductor layer 17 and a region between the connector 32 and the sidewalls. It is inserted into the same or slightly expanded shape as (32).
  • the reason for forming the first blocking layer 34 in the connecting portion 32 is to prevent unnecessary current from flowing through the light emitting structure 14. Accordingly, the first blocking layer 34 of the connecting portion 32 is inevitably performed to block the current in the first electrode pad 31.
  • the first blocking layer 34 blocks current flowing from the first electrode pad 31 from flowing through the transparent electrode layer 20 to cause current concentration.
  • the first blocking layer 34 By the first blocking layer 34, the current of the drawn first electrode pad 31 is injected into the first semiconductor layer 15 only through the first branch electrode 33. Accordingly, it is possible to prevent the current concentration between the first electrode pad 31 and the second branch electrode 42 of the second electrode 40. In this case, the first blocking layer 34 may be in contact with the first branch electrode 33.
  • the first blocking layer 34 may be opaque or transparent, and may be an insulator such as an oxide.
  • the first blocking layer 34 may be an oxide or nitride such as silicon oxide, silicon nitride, silicon oxynitride, or the like.
  • the first blocking layer 34 may be a multilayer film in which the oxide or nitride is stacked.
  • the material constituting the first blocking layer 34 presented herein is exemplary, but is not necessarily limited thereto.
  • the first blocking layer 34 may be formed by wet etching or dry etching. The thickness of the first blocking layer 34 may be set in advance in consideration of the type of the insulator and the degree of blocking the current.
  • the second electrode 40 is a structure for supplying current to the second semiconductor layer 17.
  • the second electrode 40 includes a second electrode pad 41 and a second branch electrode 42.
  • the second electrode pad 41 is positioned on the second semiconductor layer 17, and the second branch electrode 42 extends in parallel with the first branch electrode 33 on the second semiconductor layer 17.
  • the second electrode pad 41 is for package bonding, and the shape of the second electrode pad 41 is not limited, but a disc shape is preferable.
  • the second branch electrode 42 preferably has a rod shape extending in parallel with the first branch electrode 33.
  • the second electrode 40 may be formed by wet etching or dry etching.
  • the parallel first and second branch electrodes (33, 42) is an optimal form for preventing the current concentration phenomenon caused by the diffusion of the current. Since the first and second branch electrodes 33 and 42 may be modified in various forms according to the shape and use of the light emitting diode, the first and second branch electrodes 33 and 42 may not necessarily be parallel to each other. However, when the first and second branch electrodes 33 and 42 are not parallel to each other, the distance between the electrodes 33 and 42 may vary depending on the position, thereby causing a current concentration phenomenon. As shown in the embodiment of the present invention, And the second branch electrodes 33 and 42 are parallel to each other.
  • the first and second electrodes 30 and 40 may both be made of the same material, and may be implemented in one process.
  • the first and second electrodes 30 and 40 are, for example, gold (Au), silver (Ag), aluminum (Al), palladium (Pd), titanium (Ti), chromium (Cr), and nickel (Ni). , Tin (Sn), chromium (Cr), platinum (Pt), tungsten (W), cobalt (Co), iridium (Ir), rhodium (Rh), ruthenium (Ru), zinc (Zn), magnesium (Mg) Or alloys thereof, and may include, for example, carbon nanotubes.
  • the second electrode 40 may be composed of a single layer or multiple layers, for example, may be composed of multiple layers such as Ti / Al, Cr / Au, Ti / Au, Au / Sn.
  • the second blocking layer 44 includes the second electrode pad blocking layer 45 and the second branch electrode blocking layer 46.
  • the second electrode pad blocking layer 45 is positioned between the second electrode pad 41 and the second semiconductor layer 17, and is preferably slightly expanded compared to the second electrode pad 41.
  • the second electrode pad blocking layer 45 prevents the second semiconductor layer 17 from being energized.
  • a blocking groove 48 may be further provided between the second electrode pad blocking layer 45 and the transparent electrode layer 20 to form a space exposing the second semiconductor layer 17. By the blocking groove 48, the current drawn from the second electrode pad 41 can be more reliably blocked from flowing to the transparent electrode layer 20.
  • the second branch electrode blocking layer 46 is disposed above the second semiconductor layer 17 and below the second branch electrode 42 with the transparent electrode layer 20 interposed therebetween.
  • the second branch electrode blocking layer 46 is preferably slightly expanded compared to the second branch electrode 42.
  • the second branch electrode blocking layer 46 allows current not to flow to the second semiconductor layer 17 but only to the transparent electrode layer 20.
  • the second blocking layer 44 the electric current of the drawn second electrode pad 41 is dispersed through the second branch electrode 42 to the transparent electrode layer 20 so that the second semiconductor layer 17. ) Is injected.
  • the second blocking layer 44 may be opaque or transparent and may be an insulator such as an oxide.
  • the second blocking layer 44 may be an oxide or nitride such as silicon oxide, silicon nitride, silicon oxynitride, or the like.
  • the second blocking layer 44 may be a multilayer film in which the oxide or nitride is stacked.
  • the material constituting the second blocking layer 44 presented herein is an example, and is not necessarily limited thereto.
  • the second blocking layer 44 may be formed by wet etching or dry etching. The thickness of the second blocking layer 44 may be set in advance in consideration of the type of the insulator and the degree of blocking the current.
  • the second branch electrode 42 has the same distance between the first and second branch electrodes 33 and 42 by the first and second blocking layers 34 and 44. You can get the effect of setting.
  • the first blocking layer 34 since the flow of current with the second branch electrode 42 is blocked, the distance from the first branch electrode 33 through which the current flows to the second branch electrode 42 ( L1) can be made uniform. In other words, without the first blocking layer 34, the distance (not shown) between the first electrode pad 31 and the second branch electrode 42 is smaller than the distance L1, so that the current concentration phenomenon is reduced. Can happen.
  • the first electrode pad 31 when the first electrode pad 31 is electrically insulated by providing the first blocking layer 34, the first electrode pad 31 and the second branch electrode 42 may be separated from each other. It can block the current concentration phenomenon of.
  • interval L1 is constant is 60% or more of the total area. If the area is less than 60%, the current applied to the entire chip is concentrated to a portion having a predetermined interval, thereby reducing the current spreading effect.
  • the distance L2 between the second electrode pad 41 and the first branch electrode 33 is smaller than the distance L1 of the first branch electrode 33 and the second branch electrode 42, so that the second Without the blocking layer 44, current concentration may occur as described above.
  • the second electrode pad 41 when the second electrode pad 41 is electrically insulated by providing the second blocking layer 44, the second electrode pad 41 and the first branch electrode 33 may be separated from each other. It can block the current concentration phenomenon of.
  • the first and second blocking layers 34 and 44 of the present invention may include the first and second branch electrodes (arranged in parallel with all currents introduced into the first and second electrode pads 31 and 41, respectively). 33, 42) only. By doing so, it is possible to prevent the current concentration phenomenon occurring between the first electrode pad 31 and the second branch electrode 42 and the second electrode pad 41 and the first branch electrode 33.
  • FIG. 5 is a photograph showing a light emitting image of a conventional light emitting diode without a blocking layer
  • FIG. 6 is a photograph showing a light emitting image of a light emitting diode according to an embodiment of the present invention having a blocking layer.
  • the conventional light emitting diode has a light output PO of 100%, but the diode of the present invention has a light output PO of 101.5% and an optical output PO of 1.5%.
  • the forward voltage VF of the conventional diode was 2.90V
  • the forward voltage VF of the diode of the present invention was 2.84V
  • the forward voltage VF decreased by 0.06V.
  • Conventional light emitting diodes show that a current concentration phenomenon occurs between the electrode pads and the branch electrodes to form a relatively dark dark portion in a region far from the electrode. On the contrary, the diode of the present invention was confirmed that relatively dark dark portions were hardly formed, and uniform dispersion of current occurred.
  • the first and second blocking layers 34 and 44 are disposed on the first and second electrode pads 31 and 41, respectively, to prevent current concentration. It is possible to increase the output PO and lower the forward voltage V F.
  • FIG. 7 is a plan view showing one modification of the light emitting diode having the uniform current spreading structure according to the embodiment of the present invention.
  • one modification of the present invention is provided between a pair of second branch electrodes 42a branched from the second electrode pad 41a on the second blocking layer 44a to both sides of the transparent electrode layer 20a.
  • the first blocking electrode 34a and the first branch electrode 33a extending to the first electrode pad 31a are disposed at regular intervals.
  • the second blocking layer 44a and the second electrode pad 41a are connected to the second branch electrode 42a.
  • the transparent electrode layer 20a is positioned on the second semiconductor layer 17a. Accordingly, the second blocking layer 44a, the second electrode pad 41a, and the pair of second branch electrodes 42a form a “c” shape.
  • the first blocking layer 34a and the second blocking layer 44a of the modification have the same functions and roles as the first blocking layer 34 and the second blocking layer 44 described with reference to FIGS. 1 to 7. Do. That is, the first and second blocking layers 34a and 44a respectively have the first and second branch electrodes 33a and 42a arranged in parallel with the currents introduced into the first and second electrode pads 31a and 41a, respectively. Only flow to By doing so, it is possible to prevent the current concentration phenomenon occurring between the first electrode pad 31a and the second branch electrode 42a and between the second electrode pad 41a and the first branch electrode 33a.
  • FIG 8 is a plan view illustrating another modified example of the light emitting diode having the uniform current spreading structure according to the embodiment of the present invention.
  • another modification of the present invention includes a second blocking layer 44b, a second electrode pad 41b, a pair of second branch electrodes 42b, and a first branch electrode 33b.
  • the first blocking layer 34b and the second blocking layer 44b may include the first blocking layer 34 and the second blocking layer 44 and their functions as described with reference to FIGS. The role is the same. That is, the first and second blocking layers 34b and 44b respectively have the first and second branch electrodes 33b and 42b arranged in parallel to each other to draw currents introduced into the first and second electrode pads 31b and 41b, respectively. Only flow to By doing so, it is possible to prevent the current concentration phenomenon occurring between the first electrode pad 31b and the second branch electrode 42b and between the second electrode pad 41b and the first branch electrode 33b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

Provided is a light emitting diode having a uniform current diffusion structure, for increasing external quantum efficiency by preventing current concentration and for preventing localized deterioration or aging and the like. The diode comprises: a first electrode pad arranged on a second semiconductor layer by being spatially separated from a transparent electrode layer positioned on a light emitting structure comprising a first semiconductor layer, an active layer and the second semiconductor layer, and electrically connected, by a connection part, with a first branched electrode extended in a longitudinal direction of the first semiconductor layer; a first blocking layer formed on the light emitting structure so as to electrically insulate the first electrode pad and the connection part from the light emitting structure; on the second semiconductor layer, a second electrode pad for supplying current to the transparent electrode layer and a second branched electrode parallel with the first branched electrode; and a second blocking layer formed on the second semiconductor layer so as to electrically insulate the second electrode pad and the second branched electrode from the second semiconductor layer.

Description

균일한 전류 확산 구조를 가진 발광 다이오드Light Emitting Diode with Uniform Current Diffusion Structure
본 발명은 p전극과 n전극을 구비한 발광 다이오드에 관한 것으로, 보다 상세하게는 전극 주변의 전류의 집중 현상을 방지하여 활성층에 균일한 전류 확산을 통해 광효율을 향상 시킬 수 있는 발광 다이오드에 관한 것이다. The present invention relates to a light emitting diode having a p electrode and an n electrode, and more particularly, to a light emitting diode that can improve light efficiency through uniform current diffusion in the active layer by preventing the concentration of current around the electrode. .
발광 다이오드(LED)는 전기 에너지를 광으로 변환시키는 소자이며, 일반적으로 반대 극성을 가진 불순물로 도핑된 층들 사이에 있는 적어도 하나의 활성층에서 광이 생성된다. 즉, 활성층의 양측에 바이어스가 인가되면, 활성층 내로 정공 및 전자가 주입되어 재결합함으로써 광이 생성된다. 발광 다이오드는 공기에 비하여 높은 굴절률을 가지므로, 전자와 정공의 재결합으로 발생하는 광의 많은 부분이 소자 내부에 잔존하게 된다. 이러한 광은 외부로 탈출하기 전에 박막, 기판, 전극 등 여러 경로에 의해 흡수되어 외부 양자효율이 감소된다. 활성층에 바이어스를 인가하는 전극은 패키지를 위한 전극 패드 및 전극 패드로부터 연장되어 실질적으로 활성층에 바이어스를 제공하는 가지 전극으로 이루어진다.Light emitting diodes (LEDs) are devices that convert electrical energy into light and generally produce light in at least one active layer between layers doped with impurities of opposite polarity. That is, when bias is applied to both sides of the active layer, holes and electrons are injected into the active layer, and light is generated by recombination. Since light emitting diodes have a higher refractive index than air, much of the light generated by recombination of electrons and holes remains in the device. Such light is absorbed by various paths such as a thin film, a substrate, and an electrode before escaping to the outside, thereby reducing external quantum efficiency. An electrode for applying a bias to the active layer consists of an electrode pad for the package and a branch electrode extending from the electrode pad to substantially provide a bias to the active layer.
그런데, p-전극과 n-전극 사이에서 발생되는 전류 집중 현상에 의하여, 활성층 전체에 대하여 전류를 균일하게 분산하지 못하고, 전극 주변에 전류가 집중됨으로써 전극으로부터 멀리 떨어진 영역에 상대적으로 어두운 암부를 형성한다. 이러한 전류 집중 현상은 특히 전극 패드와 가지 전극 사이의 영역에서 심하게 일어난다. 전류 집중 현상은 외부 양자효율을 저하시키고, 국부적인 열화나 노화 현상이 발생되는 등의 문제점을 야기한다. 한편, 이러한 전류 집중 현상은 p-전극과 n-전극 사이의 간격이 일정하지 못하여 일어나는 경우가 많다. 즉, 전극 사이의 간격이 일정하지 않으면, 전극 사이에서 불균일한 전계를 형성하여 전류 집중 현상이 두드러지게 된다. However, due to the current concentration phenomenon generated between the p-electrode and the n-electrode, the current is not uniformly distributed over the entire active layer, and the current is concentrated around the electrode, thereby forming a darker dark portion in a region far from the electrode. do. This current concentration phenomenon is particularly severe in the region between the electrode pad and the branch electrode. The current concentration phenomenon lowers the external quantum efficiency and causes problems such as local degradation and aging. On the other hand, the current concentration phenomenon is often caused by the non-uniform spacing between the p-electrode and the n-electrode. In other words, if the spacing between the electrodes is not constant, a non-uniform electric field is formed between the electrodes, whereby the current concentration phenomenon becomes conspicuous.
본 발명이 해결하고자 하는 과제는 전류 집중 현상을 차단하고 외부 양자효율을 높이고, 국부적인 열화나 노화 등을 방지하는 균일한 전류 확산 구조를 가진 발광 다이오드를 제공하는 데 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a light emitting diode having a uniform current spreading structure that blocks current concentration, increases external quantum efficiency, and prevents local degradation and aging.
본 발명의 과제를 해결하기 위한 균일한 전류 확산 구조를 가진 발광 다이오드는 제1 반도체층, 활성층 및 제2 반도체층을 포함하는 발광 구조체 및 상기 발광 구조체 상에 위치하는 투명 전극층을 포함한다. 또한, 상기 투명 전극층과 공간적으로 이격 배치되고 제1 가지 전극, 연결부 및 제1 전극 패드를 포함하는 제1 전극 및 상기 발광 구조체 상에 형성된 제1 블락킹층을 포함한다.A light emitting diode having a uniform current spreading structure for solving the problems of the present invention includes a light emitting structure including a first semiconductor layer, an active layer and a second semiconductor layer and a transparent electrode layer positioned on the light emitting structure. The display device may further include a first electrode including a first branch electrode, a connection part, and a first electrode pad, and a first blocking layer formed on the light emitting structure.
본 발명의 다이오드에 있어서, 상기 제1 전극 패드는 상기 제2 반도체층 상에 배치되고, 상기 제1 반도체층의 길이 방향으로 연장되는 제1 가지 전극과 연결부에 의해 전기적으로 접속될 수 있다. 상기 제1 블락킹층은 상기 제2 반도체층과 상기 제1 전극 패드 사이에 형성될 수 있다. 상기 제1 블락킹층은 상기 제1 가지 전극과 서로 접촉하는 것이 바람직하다. 상기 제1 블락킹층은 상기 제1 전극 패드 및 상기 연결부와 동일하거나 확장된 형상을 가질 수 있다. 상기 제1 블락킹층은 산화물막 또는 질화물막 중에서 선택된 어느 하나의 막이거나 상기 산화물막과 질화물막이 적층된 다층막일 수 있다.In the diode of the present invention, the first electrode pad is disposed on the second semiconductor layer, and may be electrically connected to the first branch electrode and the connection part extending in the longitudinal direction of the first semiconductor layer. The first blocking layer may be formed between the second semiconductor layer and the first electrode pad. The first blocking layer preferably contacts the first branch electrode. The first blocking layer may have a shape that is the same as or extended to the first electrode pad and the connection part. The first blocking layer may be any one selected from an oxide film and a nitride film, or may be a multilayer film in which the oxide film and the nitride film are stacked.
본 발명의 바람직한 다이오드에 있어서, 상기 제2 반도체층 상에는 제2 전극 패드, 상기 제1 가지 전극과 평행한 제2 가지 전극으로 이루어진 제2 전극을 포함하고, 상기 제2 전극 패드 및 상기 제2 가지 전극을 상기 제2 반도체층과 전기적으로 절연시키는 제2 블락킹층을 더 포함할 수 있다. 상기 제2 블락킹층은 제2 반도체층과 제2 전극 패드 사이에 형성될 수 있다. In the preferred diode of the present invention, the second semiconductor layer comprises a second electrode pad, a second electrode consisting of a second branch electrode parallel to the first branch electrode, wherein the second electrode pad and the second branch The display device may further include a second blocking layer electrically insulating the electrode from the second semiconductor layer. The second blocking layer may be formed between the second semiconductor layer and the second electrode pad.
본 발명의 바람직한 실시예에 있어서, 상기 제1 가지 전극과 제2 가지 전극 간 간격(L1)이 일정한 것이 바람직하며, 상기 간격(L1)이 일정한 면적이 전체 면적의 60% 이상이 바람직하다. 상기 제2 블락킹층은 상기 제2 전극 패드 및 상기 제2 가지 전극과 동일하거나 확장된 형상을 가질 수 있다. 본 발명의 상기 제2 블락킹층은 산화물막 또는 질화물막 중에서 선택된 어느 하나의 막이거나 상기 산화물막과 질화물막이 적층된 다층막일 수 있다. 또한, 상기 제2 전극 패드에 형성된 상기 제2 블락킹층과 상기 투명 전극층은 상기 제2 반도체층을 노출시키는 차단 홈에 의해 공간적으로 분리될 수 있다.In a preferred embodiment of the present invention, it is preferable that the interval L1 between the first and second branch electrodes is constant, and the area where the interval L1 is constant is preferably 60% or more of the total area. The second blocking layer may have the same shape as or extend from the second electrode pad and the second branch electrode. The second blocking layer of the present invention may be any one selected from an oxide film and a nitride film or a multilayer film in which the oxide film and the nitride film are stacked. In addition, the second blocking layer and the transparent electrode layer formed on the second electrode pad may be spatially separated by a blocking groove exposing the second semiconductor layer.
본 발명의 균일한 전류 확산 구조를 가진 발광 다이오드에 의하면, 제1 전극 패드 및 제2 전극패드에 전류 확산을 방지하는 구조를 부가함으로써, 전류 집중 현상을 차단하여 외부 양자효율을 높이고, 국부적인 열화나 노화 등을 방지할 수 있다. 전류 확산을 방지하는 구조에 의해, 전극 패드와 가지 전극 사이에 전류가 집중되는 것을 막아 발광 다이오드에 균일한 전류가 흐르게 할 수 있다. 또한, 전류가 흐르는 전극 사이의 간격을 균일하게 하여 전극 사이에서 원하지 않은 전류 집중 현상이 일어나는 것을 방지할 수 있다. According to the light emitting diode having the uniform current spreading structure of the present invention, by adding a structure for preventing current spreading to the first electrode pad and the second electrode pad, the current concentration phenomenon is blocked to increase the external quantum efficiency and local degradation. And aging can be prevented. The structure which prevents current spreading can prevent current from concentrating between the electrode pad and the branch electrode so that a uniform current can flow through the light emitting diode. In addition, it is possible to make the intervals between the electrodes through which the current flows uniform to prevent unwanted current concentration from occurring between the electrodes.
도 1은 본 발명에 의한 균일한 전류 확산 구조를 가진 발광 다이오드를 나타내는 사시도이다. 1 is a perspective view showing a light emitting diode having a uniform current spreading structure according to the present invention.
도 2는 도 1의 Ⅱ-Ⅱ선을 따라 절단한 단면도이다.FIG. 2 is a cross-sectional view taken along the line II-II of FIG. 1.
도 3은 도 1의 Ⅲ-Ⅲ선을 따라 절단한 단면도이다.3 is a cross-sectional view taken along line III-III of FIG. 1.
도 4는 도 1의 IV-Ⅳ선을 따라 절단한 단면도이다.4 is a cross-sectional view taken along the line IV-IV of FIG. 1.
도 5는 블락킹층이 없는 종래의 발광 다이오드의 발광 이미지를 나타내는 사진이며, 도 6은 블락킹층을 갖춘 본 발명의 실시예에 의한 발광 다이오드의 발광 이미지를 보여주는 사진이다.FIG. 5 is a photograph showing a light emitting image of a conventional light emitting diode without a blocking layer, and FIG. 6 is a photograph showing a light emitting image of a light emitting diode according to an embodiment of the present invention having a blocking layer.
도 7은 본 발명에 의한 균일한 전류 확산 구조를 가진 발광 다이오드의 하나의 변형예를 나타내는 평면도이다. 7 is a plan view showing one modification of the light emitting diode having the uniform current spreading structure according to the present invention.
도 8은 본 발명에 의한 균일한 전류 확산 구조를 가진 발광 다이오드의 다른 변형예를 나타내는 평면도이다. 8 is a plan view showing another modification of the light emitting diode having a uniform current spreading structure according to the present invention.
이하 첨부된 도면을 참조하면서 본 발명의 바람직한 실시예를 상세히 설명한다. 다음에서 설명되는 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술되는 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당 분야에서 통상의 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공되는 것이다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiments described below may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
본 발명의 실시예는 전극 패드에 전류 확산을 방지하는 구조를 부가함으로써, 전류 집중 현상을 차단하여 외부 양자효율을 높이고, 국부적인 열화나 노화 등을 방지하는 균일한 전류 확산 구조를 가진 발광 다이오드를 제시한다. 이를 위해, 전극 패드에서의 전류 확산을 방지하는 구조를 가진 발광 다이오드에 상세하게 살펴보고, 이를 통하여 전류 집중 현상이 차단되는 과정을 구체적으로 설명하기로 한다. 또한, 본 발명의 실시예에 의한 전류 확산 방지 구조에 의해 전류가 흐르는 전극 사이의 간격이 실질적으로 일정하게 되는 과정을 알아보기로 한다. 여기서, 전류 집중 현상이란 전극 패드에서의 전류 확산에 의해 전극 패드와 가지 전극 사이에 전류가 집중되어, 발광 다이오드 전체에 걸쳐 균일한 전류가 흐르지 않게 되는 것을 말한다. An embodiment of the present invention provides a light emitting diode having a uniform current spreading structure to add a structure to prevent current diffusion to the electrode pad to block the current concentration phenomenon to increase the external quantum efficiency, and to prevent local degradation and aging. present. To this end, a light emitting diode having a structure for preventing current diffusion in an electrode pad will be described in detail, and a process of blocking current concentration will be described in detail. In addition, a process in which the distance between the electrodes through which the current flows is substantially constant by the current diffusion prevention structure according to the embodiment of the present invention will be described. Here, the current concentration phenomenon means that current is concentrated between the electrode pad and the branch electrode due to the diffusion of current in the electrode pad so that a uniform current does not flow through the entire light emitting diode.
도 1은 본 발명의 실시예에 의한 균일한 전류 확산 구조를 가진 발광 다이오드를 나타내는 사시도이다. 도 2는 도 1의 Ⅱ-Ⅱ선을 따라 절단한 단면도이고, 도 3은 도 1의 Ⅲ-Ⅲ선을 따라 절단한 단면도이며, 도 4는 도 1의 Ⅳ-Ⅳ선을 따라 절단한 단면도이다.1 is a perspective view illustrating a light emitting diode having a uniform current spreading structure according to an embodiment of the present invention. FIG. 2 is a cross-sectional view taken along line II-II of FIG. 1, FIG. 3 is a cross-sectional view taken along line III-III of FIG. 1, and FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. 1. .
도 1 내지 도 4를 참조하면, 발광 다이오드는 기판(10) 및 기판(10)의 일측에 위치하는 발광 구조체(14), 투명 전극층(20), 제1 전극(30), 제2 전극(40), 제1 블락킹층(34, current blocking layer) 및 제2 블락킹층(44)을 포함한다. 이때, 제1 블락킹층(34)은 제1 전극(30)의 제1 전극 패드(31)로부터의 전류 확산을 차단하기 위한 것이며, 제2 블락킹층(44)은 제2 전극(40)의 제2 전극 패드(41)에서의 전류 확산을 차단하기 위한 것이다. 제1 및 제2 블락킹층(34, 44)은 모두 발광 구조체(14) 상에 배치되며, 투명 전극층(20) 사이에 위치한다.1 to 4, a light emitting diode includes a substrate 10 and a light emitting structure 14, a transparent electrode layer 20, a first electrode 30, and a second electrode 40 positioned on one side of the substrate 10. ), A first blocking layer 34, and a second blocking layer 44. In this case, the first blocking layer 34 is to block current diffusion from the first electrode pad 31 of the first electrode 30, and the second blocking layer 44 is formed of the second electrode 40. This is to block current diffusion in the two-electrode pad 41. The first and second blocking layers 34 and 44 are both disposed on the light emitting structure 14 and are positioned between the transparent electrode layers 20.
기판(10)은 사파이어(Al2O3), 실리콘 탄화물(SiC), 갈륨 질화물(GaN), 갈륨 비소(GaAs), 실리콘(Si), 게르마늄(Ge), 아연 산화물(ZnO), 마그네슘 산화물(MgO), 알루미늄 질화물(AlN), 붕산 질화물(BN), 갈륨 인화물(GaP), 인듐 인화물(InP), 리튬-알루미늄 산화물(LiAl2O3) 중 어느 하나일 수 있다. 기판(10)의 상면, 하면, 또는 이들 모두에는 광을 반사시킬 수 있는 요철 패턴(도시하지 않음)이 형성될 수 수 있다. 기판(10)과 발광 구조체(14) 사이에는 격자 부정합을 완화하기 위한 버퍼층(12)이 위치할 수 있다. 버퍼층(12)은 단일층 또는 다중층으로 형성될 수 있고, 예를 들어, GaN, InN, AlN, InGaN, AlGaN, AlGaInN, AlInN 중 적어도 어느 하나로 이루어질 수 있다. The substrate 10 includes sapphire (Al 2 O 3), silicon carbide (SiC), gallium nitride (GaN), gallium arsenide (GaAs), silicon (Si), germanium (Ge), zinc oxide (ZnO), magnesium oxide (MgO), Aluminum nitride (AlN), borate nitride (BN), gallium phosphide (GaP), indium phosphide (InP), lithium-aluminum oxide (LiAl2O3) may be any one. An uneven pattern (not shown) capable of reflecting light may be formed on an upper surface, a lower surface, or both of the substrate 10. A buffer layer 12 may be disposed between the substrate 10 and the light emitting structure 14 to mitigate lattice mismatch. The buffer layer 12 may be formed as a single layer or multiple layers, for example, at least one of GaN, InN, AlN, InGaN, AlGaN, AlGaInN, and AlInN.
발광 구조체(14)는 기판(10) 상에 위치하거나 버퍼층(12) 상에 위치할 수 있다. 발광 구조체(14)은 복수의 도전형 반도체층이 기판(10)을 기준으로 np 접합 구조, pn 접합 구조, npn 접합 구조, pnp 접합 구조 중 어느 하나를 가질 수 있다. 발광 구조체(14)는 순차적으로 적층된 제1 반도체층(15), 활성층(16) 및 제2 반도체층(17)을 포함한다. 예를 들어, np 접합 구조인 경우, 제1 반도체층(15)은 n형 반도체층이고, 제2 반도체층(17)는 p형 반도체층을 지칭한다. 순방향의 바이어스를 발광 구조체(14)에 인가하면, 활성층(16)의 전도대에 있는 전자와 가전자대에 있는 정공이 천이되어 재결합하고, 이에 따라 에너지 갭에 해당하는 에너지가 광으로 방출된다. 이때, 활성층(16)을 구성하는 물질의 종류에 따라서 방출되는 광의 파장이 결정된다. 활성층(16)의 전자 또는 정공은 상기 인가되는 바이어스에 따라 제1 반도체층(15) 및 제2 반도체층(17)에 의해 제공된다. The light emitting structure 14 may be located on the substrate 10 or on the buffer layer 12. The light emitting structure 14 may have a plurality of conductive semiconductor layers having any one of an np junction structure, a pn junction structure, an npn junction structure, and a pnp junction structure based on the substrate 10. The light emitting structure 14 includes a first semiconductor layer 15, an active layer 16, and a second semiconductor layer 17 sequentially stacked. For example, in the case of an np junction structure, the first semiconductor layer 15 is an n-type semiconductor layer, and the second semiconductor layer 17 refers to a p-type semiconductor layer. When a forward bias is applied to the light emitting structure 14, electrons in the conduction band of the active layer 16 and holes in the valence band transition and recombine, thereby emitting energy corresponding to the energy gap as light. At this time, the wavelength of the emitted light is determined according to the kind of material constituting the active layer 16. Electrons or holes in the active layer 16 are provided by the first semiconductor layer 15 and the second semiconductor layer 17 in accordance with the applied bias.
제1 및 제2 반도체층(15, 17)은 서로 다른 도전형을 가지도록 서로 다른 불순물들을 포함할 수 있다. 예컨대, 제1 반도체층(15)은 n형 불순물들을 포함할 수 있고, 제2 반도체층(17)은 p형 불순물들을 포함할 수 있다. 이 경우, 제1 반도체층(15)는 전자를 제공하고, 제2 반도체층(17)은 정공을 부여한다. 물론, 제1 반도체층(15)이 p형이고, 제2 반도체층(17)이 n형인 경우도 본 발명의 범주 내에서 가능하다. 제1 및 제2 반도체층(15, 17)은 각각 갈륨 질화물계와 같은 Ⅲ-V족 화합물 물질을 포함할 수 있다.The first and second semiconductor layers 15 and 17 may include different impurities to have different conductivity types. For example, the first semiconductor layer 15 may include n-type impurities and the second semiconductor layer 17 may include p-type impurities. In this case, the first semiconductor layer 15 provides electrons, and the second semiconductor layer 17 provides holes. Of course, the case where the first semiconductor layer 15 is p-type and the second semiconductor layer 17 is n-type is also possible within the scope of the present invention. The first and second semiconductor layers 15 and 17 may each include a III-V compound material such as gallium nitride.
발광 구조체(14)가 np 접합 구조인 경우, 제1 반도체층(15)은 n형 불순물이 도핑된 n형 AlxInyGazN(0≤x, y, z ≤1, x+y+z=1), n형 GaN 등을 포함할 수 있다. 이때, 상기 n형 불순물은 실리콘(Si), 게르마늄(Ge), 주석(Sn), 셀레늄(Se) 및 텔루륨(Te) 중에서 선택된 적어도 어느 하나일 수 있다. 제2 반도체층(17)은 p형 불순물이 도핑된 p형 AlxInyGazN(0≤x, y, z ≤1, x+y+z=1), p형 GaN 등을 사용할 수 있다. 상기 p형 불순물은 마그네슘(Mg), 아연(Zn), 칼슘(Ca), 스트론튬(Sr), 베릴륨(Be), 및 바륨(Ba) 중에서 선택된 적어도 어느 하나일 수 있다. When the light emitting structure 14 is an np junction structure, the first semiconductor layer 15 may be formed of n-type Al x In y Ga z N doped with n-type impurities (0 ≦ x, y, z ≦ 1, x + y +). z = 1), n-type GaN, and the like. In this case, the n-type impurity may be at least one selected from silicon (Si), germanium (Ge), tin (Sn), selenium (Se), and tellurium (Te). The second semiconductor layer 17 may use p-type Al x In y Ga z N (0 ≦ x, y, z ≤ 1, x + y + z = 1), p-type GaN, etc. doped with p-type impurities. have. The p-type impurity may be at least one selected from magnesium (Mg), zinc (Zn), calcium (Ca), strontium (Sr), beryllium (Be), and barium (Ba).
활성층(16)은 제1 및 제2 반도체층(15, 17)에 비하여 낮은 에너지 밴드갭을 가지므로 발광을 활성화할 수 있다. 활성층(16)은 다양한 파장의 광을 방출할 수 있으며, 예를 들어 적외선, 가시광선, 또는 자외선을 방출할 수 있다. 활성층(16)은 Ⅲ족-V족 화합물 물질을 포함할 수 있고, AlxInyGazN (0≤x, y, z ≤1, x+y+z=1), InGaN 또는 AlGaN을 포함할 수 있다. 또한, 활성층(16)은 단일양자우물(Single Quantum Well, SQW) 또는 다중양자우물(Multi Quantum Well, MQW)일 수 있다. 나아가, 활성층(16)은 양자 우물층과 양자 장벽층의 적층 구조를 가질 수 있고, 상기 양자 우물층과 상기 양자 장벽층의 개수는 필요에 따라 다양하게 변경될 수 있다. 또한, 활성층(16)은, 예컨대 GaN/InGaN/GaN MQW 구조 또는 GaN/AlGaN/GaN MQW 구조를 이룰 수 있다. 그러나 이는 예시적이며, 활성층(16)은 구성 물질에 따라 방출되는 광의 파장이 달라진다. Since the active layer 16 has a lower energy band gap than the first and second semiconductor layers 15 and 17, light emission may be activated. The active layer 16 may emit light of various wavelengths and may emit infrared light, visible light, or ultraviolet light, for example. The active layer 16 may comprise a Group III-V compound material and include Al x In y Ga z N (0 ≦ x, y, z ≦ 1, x + y + z = 1), InGaN or AlGaN. can do. In addition, the active layer 16 may be a single quantum well (SQW) or a multi quantum well (MQW). Furthermore, the active layer 16 may have a stacked structure of a quantum well layer and a quantum barrier layer, and the number of the quantum well layer and the quantum barrier layer may be variously changed as necessary. In addition, the active layer 16 may have, for example, a GaN / InGaN / GaN MQW structure or a GaN / AlGaN / GaN MQW structure. However, this is exemplary and the active layer 16 varies in wavelength of light emitted depending on the constituent material.
발광 구조체(14)는 활성층(16) 및 제2 반도체층(17)의 일부 영역이 제거된 측벽을 가진 형태일 수 있고, 거기에 부합하여 제1 반도체층(15)의 일부가 제거되어 노출된다. 상기 측벽 구조에 의해, 제1 반도체층(15)의 일부가 노출된 영역에는 본 발명의 실시예에 의한 제1 전극(30)의 제1 가지 전극(33)이 길이 방향으로 연장된다. 이에 따라, 활성층(16)은 상기 측벽 구조에 한정되어 광을 방출할 수 있다. 상기 측벽 구조는 유도결합 플라즈마 반응성 이온 식각(inductively coupled plasma reactive ion etching, ICP-RIE), 습식 식각 또는 건식 식각을 이용하여 형성할 수 있다.The light emitting structure 14 may have a sidewall in which a portion of the active layer 16 and the second semiconductor layer 17 are removed, and a portion of the first semiconductor layer 15 is removed and exposed accordingly. . Due to the sidewall structure, the first branch electrode 33 of the first electrode 30 according to the embodiment of the present invention extends in the longitudinal direction in a region where a portion of the first semiconductor layer 15 is exposed. Accordingly, the active layer 16 may be limited to the sidewall structure to emit light. The sidewall structure may be formed using inductively coupled plasma reactive ion etching (ICP-RIE), wet etching, or dry etching.
투명 전극층(20)은 투명하고 전도성이 있는 물질로 이루어지며, 제2 반도체층(17) 상에 위치한다. 투명 전극층(20)은 제2 전극(40)으로부터 주입되는 전류를 제2 반도체층(17)에 균일하게 분산하는 역할을 한다. 투명 전극층(20)은 금속을 포함할 수 있고, 예를 들어 니켈(Ni)과 금(Au)의 복합층일 수 있다. 또한, 투명 전극층(20)은 산화물을 포함할 수 있고, 예를 들어 ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide), IZTO(Indium Zinc Tin Oxide), AZO(Aluminum Zinc Oxide), IAZO(Indium Aluminum Zinc Oxide), GZO(Gallium Zinc Oxide), IGO(Indium Gallium Oxide), IGZO(Indium Gallium Zinc Oxide), IGTO(Indium Gallium Tin Oxide), ATO(Aluminum Tin Oxide), IWO(Indium Tungsten Oxide), CIO(Cupper Indium Oxide), MIO(Magnesium Indium Oxide), MgO, ZnO, In2O3, TiTaO2, TiNbO2, TiOx, RuOx 및 IrOx 중 적어도 어느 하나로 제조될 수 있다. The transparent electrode layer 20 is made of a transparent and conductive material and is positioned on the second semiconductor layer 17. The transparent electrode layer 20 uniformly distributes the current injected from the second electrode 40 to the second semiconductor layer 17. The transparent electrode layer 20 may include a metal and may be, for example, a composite layer of nickel (Ni) and gold (Au). In addition, the transparent electrode layer 20 may include an oxide, for example, indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), aluminum zinc oxide (AZO), or indium (AZO) Aluminum Zinc Oxide (GZO), Gallium Zinc Oxide (GZO), Indium Gallium Oxide (IGO), Indium Gallium Zinc Oxide (IGZO), Indium Gallium Tin Oxide (IGTO), Aluminum Tin Oxide (ATO), Indium Tungsten Oxide (IGWO), CIO (Cupper Indium Oxide), MIO (Magnesium Indium Oxide), MgO, ZnO, In2O3, TiTaO2, TiNbO2, TiOx, RuOx and IrOx may be made of at least one.
본 발명의 실시예에 의한 제1 전극(30)은 제1 반도체층(15)에 전류를 공급하기 위한 구조체이다. 제1 전극(30)은 제1 전극 패드(31), 연결부(32) 및 제1 가지 전극(33)을 포함하여 이루어진다. 제1 전극 패드(31)는 제2 반도체층(17) 상에 위치하고, 제1 가지 전극(33)은 제1 반도체층(15)의 노출된 영역에서 길이 방향으로 연장된다. 제1 전극 패드(31)는 투명 전극층(20)과 공간적으로 이격되어 배치된다. 연결부(32)는 상기 측벽 구조를 통하여 제1 전극 패드(31) 및 제1 가지 전극(33)을 연결시킨다. 이에 따라, 제1 전극 패드(31)와 제1 가지 전극(33)은 적어도 상기 측벽에 해당하는 단차를 가진다. The first electrode 30 according to the embodiment of the present invention is a structure for supplying current to the first semiconductor layer 15. The first electrode 30 includes a first electrode pad 31, a connecting portion 32, and a first branch electrode 33. The first electrode pad 31 is positioned on the second semiconductor layer 17, and the first branch electrode 33 extends in the length direction in the exposed region of the first semiconductor layer 15. The first electrode pad 31 is spaced apart from the transparent electrode layer 20. The connection part 32 connects the first electrode pad 31 and the first branch electrode 33 through the sidewall structure. Accordingly, the first electrode pad 31 and the first branch electrode 33 have a step corresponding to at least the sidewall.
제1 전극 패드(31)는 패키지 본딩을 위한 것으로, 그 형태를 한정하는 것이 아니나, 원판 형태가 바람직하다. 연결부(32)는 제1 전극 패드(31)의 일부 영역에 부착되는 막대 형태일 수 있으며, 제1 가지 전극(33) 역시 막대 모양을 가지는 것이 바람직하다. 제1 전극(30)은 습식 식각 또는 건식 식각에 의해 제작될 수 있다. 한편, 연결부(32)는 도시된 것과 같이, 상기 측벽에 형성된 홈에 연결부(32)를 형성할 수도 있다. The first electrode pad 31 is for package bonding, and the shape of the first electrode pad 31 is not limited, but a disc shape is preferable. The connection part 32 may have a rod shape attached to a portion of the first electrode pad 31, and the first branch electrode 33 may also have a rod shape. The first electrode 30 may be manufactured by wet etching or dry etching. Meanwhile, as shown in the drawing, the connection part 32 may form the connection part 32 in the groove formed in the side wall.
본 발명의 실시예에 의한 제1 블락킹층(34)은 제1 전극 패드(31)에서의 전류 확산을 방지하기 위한 것이다. 이를 위해, 제1 블락킹층(34)은 제1 전극 패드(31)와 제2 반도체층(17) 사이의 영역 및 연결부(32)와 상기 측벽 사이의 영역에 제1 전극 패드(31) 및 연결부(32)와 동일하거나 약간 확장된 형상으로 삽입된다. 여기서, 연결부(32)에 제1 블락킹층(34)을 형성하는 이유는 발광 구조체(14)에 불필요한 전류가 흐르는 것을 방지하기 위한 것이다. 이에 따라, 연결부(32)의 제1 블락킹층(34)은 제1 전극 패드(31)에서의 전류 차단을 위하여, 불가피하게 행해지는 것이다. 제1 블락킹층(34)는 제1 전극 패드(31)로부터 인입되는 전류가 투명 전극층(20)으로 흘려서 전류 집중 현상을 일으키는 것을 차단한다. 제1 블락킹층(34)에 의해, 인입된 제1 전극 패드(31)의 전류는 오직 제1 가지 전극(33)을 통하여, 제1 반도체층(15)로 주입된다. 이에 따라, 제1 전극 패드(31)과 제2 전극(40)의 제2 가지 전극(42) 사이의 전류 집중 현상을 방지할 수 있다. 이때, 제1 블락킹층(34)은 제1 가지 전극(33)과 접하는 것이 바람직하다.The first blocking layer 34 according to the embodiment of the present invention is for preventing current diffusion in the first electrode pad 31. To this end, the first blocking layer 34 may include a region between the first electrode pad 31 and the second semiconductor layer 17 and a region between the connector 32 and the sidewalls. It is inserted into the same or slightly expanded shape as (32). The reason for forming the first blocking layer 34 in the connecting portion 32 is to prevent unnecessary current from flowing through the light emitting structure 14. Accordingly, the first blocking layer 34 of the connecting portion 32 is inevitably performed to block the current in the first electrode pad 31. The first blocking layer 34 blocks current flowing from the first electrode pad 31 from flowing through the transparent electrode layer 20 to cause current concentration. By the first blocking layer 34, the current of the drawn first electrode pad 31 is injected into the first semiconductor layer 15 only through the first branch electrode 33. Accordingly, it is possible to prevent the current concentration between the first electrode pad 31 and the second branch electrode 42 of the second electrode 40. In this case, the first blocking layer 34 may be in contact with the first branch electrode 33.
제1 블락킹층(34)는 불투명하거나 투명할 수 있으며, 산화물과 같은 절연체일 수 있다. 제1 블락킹층(34)은, 실리콘 산화물, 실리콘 질화물, 실리콘 산질화물 등과 같은 산화물 또는 질화물일 수 있다. 또한, 제1 블락킹층(34)은 상기 산화물 또는 질화물이 적층된 다층막일 수 있다. 여기서 제시된 제1 블락킹층(34)을 구성하는 물질은 예시적이며, 반드시 이에 한정되는 것은 아니다. 제1 블락킹층(34)은 습식 식각 또는 건식 식각에 의해 형성될 수 있다. 제1 블락킹층(34)의 두께는 절연체의 종류, 전류를 차단하는 정도를 고려하여 사전에 설정될 수 있다. The first blocking layer 34 may be opaque or transparent, and may be an insulator such as an oxide. The first blocking layer 34 may be an oxide or nitride such as silicon oxide, silicon nitride, silicon oxynitride, or the like. In addition, the first blocking layer 34 may be a multilayer film in which the oxide or nitride is stacked. The material constituting the first blocking layer 34 presented herein is exemplary, but is not necessarily limited thereto. The first blocking layer 34 may be formed by wet etching or dry etching. The thickness of the first blocking layer 34 may be set in advance in consideration of the type of the insulator and the degree of blocking the current.
본 발명의 실시예에 의한 제2 전극(40)은 제2 반도체층(17)에 전류를 공급하기 위한 구조체이다. 제2 전극(40)은 제2 전극 패드(41) 및 제2 가지 전극(42)을 포함하여 이루어진다. 제2 전극 패드(41)는 제2 반도체층(17) 상에 위치하고, 제2 가지 전극(42)은 제2 반도체층(17) 상에서 제1 가지 전극(33)과 평행을 이루면서 연장된다. 제2 전극 패드(41)는 패키지 본딩을 위한 것으로, 그 형태를 한정하는 것이 아니나, 원판 형태가 바람직하다. 제2 가지 전극(42)은 제1 가지 전극(33)과 평행을 이루면서 연장되는 막대 모양을 가지는 것이 바람직하다. 제2 전극(40)은 습식 식각 또는 건식 식각에 의해 형성될 수 있다. The second electrode 40 according to the embodiment of the present invention is a structure for supplying current to the second semiconductor layer 17. The second electrode 40 includes a second electrode pad 41 and a second branch electrode 42. The second electrode pad 41 is positioned on the second semiconductor layer 17, and the second branch electrode 42 extends in parallel with the first branch electrode 33 on the second semiconductor layer 17. The second electrode pad 41 is for package bonding, and the shape of the second electrode pad 41 is not limited, but a disc shape is preferable. The second branch electrode 42 preferably has a rod shape extending in parallel with the first branch electrode 33. The second electrode 40 may be formed by wet etching or dry etching.
한편, 평행을 이루는 제1 및 제2 가지 전극(33, 42)은 전류의 확산에 의한 전류 집중 현상을 방지하기 위한 최적의 형태이다. 발광 다이오드의 형태 및 용도에 따라 제1 및 제2 가지 전극(33, 42)을 여러 가지 형태로 변형할 수 있으므로, 제1 및 제2 가지 전극(33, 42)이 반드시 평행하지 않을 수 있다. 하지만, 제1 및 제2 가지 전극(33, 42)이 평행하지 않으면, 전극(33, 42) 사이의 간격이 위치에 따라 달라져서 전류 집중 현상을 일으키게 되므로, 본 발명의 실시예에서와 같이 제1 및 제2 가지 전극(33, 42)이 평행을 이루는 것이 바람직하다. On the other hand, the parallel first and second branch electrodes (33, 42) is an optimal form for preventing the current concentration phenomenon caused by the diffusion of the current. Since the first and second branch electrodes 33 and 42 may be modified in various forms according to the shape and use of the light emitting diode, the first and second branch electrodes 33 and 42 may not necessarily be parallel to each other. However, when the first and second branch electrodes 33 and 42 are not parallel to each other, the distance between the electrodes 33 and 42 may vary depending on the position, thereby causing a current concentration phenomenon. As shown in the embodiment of the present invention, And the second branch electrodes 33 and 42 are parallel to each other.
제1 및 제2 전극(30, 40)은 모두 동일한 물질로 이루어질 수 있으며, 하나의 공정으로 구현할 수 있다. 제1 및 제2 전극(30, 40)은, 예를 들어 금(Au), 은(Ag), 알루미늄(Al), 팔라듐(Pd), 티타늄(Ti), 크롬(Cr), 니켈(Ni), 주석(Sn), 크롬(Cr), 백금(Pt), 텅스텐(W), 코발트(Co), 이리듐(Ir), 로듐(Rh), 루테늄(Ru), 아연(Zn), 마그네슘(Mg) 또는 이들의 합금을 포함할 수 있고, 예를 들어 탄소 나노튜브(carbon nano tube)를 포함할 수 있다. 제2 전극(40)은 단일층으로 구성되거나 또는 다중층으로 구성될 수 있고, 예를 들어 Ti/Al, Cr/Au, Ti/Au, Au/Sn과 같은 다중층으로 구성될 수 있다.The first and second electrodes 30 and 40 may both be made of the same material, and may be implemented in one process. The first and second electrodes 30 and 40 are, for example, gold (Au), silver (Ag), aluminum (Al), palladium (Pd), titanium (Ti), chromium (Cr), and nickel (Ni). , Tin (Sn), chromium (Cr), platinum (Pt), tungsten (W), cobalt (Co), iridium (Ir), rhodium (Rh), ruthenium (Ru), zinc (Zn), magnesium (Mg) Or alloys thereof, and may include, for example, carbon nanotubes. The second electrode 40 may be composed of a single layer or multiple layers, for example, may be composed of multiple layers such as Ti / Al, Cr / Au, Ti / Au, Au / Sn.
본 발명의 실시예에 의한 제2 블락킹층(44)은 제2 전극 패드 블락킹층(45) 및 제2 가지 전극 블락킹층(46)을 포함하여 이루어진다. 제2 전극 패드 블락킹층(45)은 제2 전극 패드(41) 및 제2 반도체층(17) 사이에 위치하며, 제2 전극 패드(41)에 비해 약간 확장된 형태가 바람직하다. 제2 전극 패드 블락킹층(45)은 제2 반도체층(17)으로 통전되는 것을 방지한다. 또한, 제2 전극 패드 블락킹층(45)및 투명 전극층(20) 사이에는 제2 반도체층(17)을 노출시키는 공간을 형성하는 차단 홈(groove; 48)를 더 구비할 수 있다. 차단 홈(48)에 의해, 제2 전극 패드(41)로부터 인입된 전류가 투명 전극층(20)으로 흐르는 것을 보다 확실하게 차단할 수 있다. The second blocking layer 44 according to the exemplary embodiment of the present invention includes the second electrode pad blocking layer 45 and the second branch electrode blocking layer 46. The second electrode pad blocking layer 45 is positioned between the second electrode pad 41 and the second semiconductor layer 17, and is preferably slightly expanded compared to the second electrode pad 41. The second electrode pad blocking layer 45 prevents the second semiconductor layer 17 from being energized. In addition, a blocking groove 48 may be further provided between the second electrode pad blocking layer 45 and the transparent electrode layer 20 to form a space exposing the second semiconductor layer 17. By the blocking groove 48, the current drawn from the second electrode pad 41 can be more reliably blocked from flowing to the transparent electrode layer 20.
제2 가지 전극 블락킹층(46)은 투명 전극층(20)을 사이에 두고, 제2 반도체층(17)의 상부 및 제2 가지 전극(42)의 하부에 배치된다. 제2 가지 전극 블락킹층(46)은 제2 가지 전극(42)에 비해 약간 확장된 형태가 바람직하다. 또한, 제2 가지 전극 블락킹층(46)은 전류가 제2 반도체층(17)으로 흐르지 않고 투명 전극층(20)으로만 흐르도록 한다. 다시 말해, 제2 블락킹층(44)에 의해, 인입된 제2 전극 패드(41)의 전류는 오직 제2 가지 전극(42)을 통하여, 투명 전극층(20)으로 분산되어 제2 반도체층(17)로 주입된다. The second branch electrode blocking layer 46 is disposed above the second semiconductor layer 17 and below the second branch electrode 42 with the transparent electrode layer 20 interposed therebetween. The second branch electrode blocking layer 46 is preferably slightly expanded compared to the second branch electrode 42. In addition, the second branch electrode blocking layer 46 allows current not to flow to the second semiconductor layer 17 but only to the transparent electrode layer 20. In other words, by the second blocking layer 44, the electric current of the drawn second electrode pad 41 is dispersed through the second branch electrode 42 to the transparent electrode layer 20 so that the second semiconductor layer 17. ) Is injected.
제2 블락킹층(44)는 불투명하거나 투명할 수 있으며, 산화물과 같은 절연체일 수 있다. 제2 블락킹층(44)은 실리콘 산화물, 실리콘 질화물, 실리콘 산질화물 등과 같은 산화물 또는 질화물일 수 있다. 또한, 제2 블락킹층(44)은 상기 산화물 또는 질화물이 적층된 다층막일 수 있다. 여기서 제시된 제2 블락킹층(44)을 구성하는 물질은 예시한 것이며, 반드시 이에 한정되는 것은 아니다. 제2 블락킹층(44)는 습식 식각 또는 건식 식각에 의해 형성될 수 있다. 제2 블락킹층(44)의 두께는 절연체의 종류, 전류를 차단하는 정도를 고려하여 사전에 설정될 수 있다.The second blocking layer 44 may be opaque or transparent and may be an insulator such as an oxide. The second blocking layer 44 may be an oxide or nitride such as silicon oxide, silicon nitride, silicon oxynitride, or the like. In addition, the second blocking layer 44 may be a multilayer film in which the oxide or nitride is stacked. The material constituting the second blocking layer 44 presented herein is an example, and is not necessarily limited thereto. The second blocking layer 44 may be formed by wet etching or dry etching. The thickness of the second blocking layer 44 may be set in advance in consideration of the type of the insulator and the degree of blocking the current.
본 발명의 실시예에 의한 발광 다이오드는 제2 가지 전극(42)은 제1 및 제2 블락킹층(34, 44)에 의해 제1 및 제2 가지 전극(33, 42) 사이의 간격이 일정하게 설정하는 효과를 가져올 수 있다. 제1 블락킹층(34)의 경우, 제2 가지 전극(42)과의 전류의 흐름이 차단되므로, 실질적으로 전류가 흐르는 제1 가지 전극(33)로부터 제2 가지 전극(42)까지의 거리(L1)을 균일하게 할 수 있다. 다시 말해, 제1 블락킹층(34)이 없으면, 제1 전극 패드(31)과 제2 가지 전극(42) 사이의 간격(도시하지 않음)은 상기 거리(L1)에 비해 작아서, 전류 집중 현상이 일어날 수 있다. 그런데, 본 발명의 실시예와 같이, 제1 블락킹층(34)를 둠으로써, 제1 전극 패드(31)를 전기적으로 절연하면, 제1 전극 패드(31)과 제2 가지 전극(42) 사이의 전류 집중 현상을 차단할 수 있다. 한편, 상기 간격(L1)이 일정한 면적이 전체 면적의 60% 이상인 것이 바람직하다. 만일, 상기 면적이 60% 이하가 되면 칩 전체에 인가된 전류가 일정한 간격을 가지는 부위로 집중되므로 전류 분산 효과가 감소한다.In the light emitting diode according to the embodiment of the present invention, the second branch electrode 42 has the same distance between the first and second branch electrodes 33 and 42 by the first and second blocking layers 34 and 44. You can get the effect of setting. In the case of the first blocking layer 34, since the flow of current with the second branch electrode 42 is blocked, the distance from the first branch electrode 33 through which the current flows to the second branch electrode 42 ( L1) can be made uniform. In other words, without the first blocking layer 34, the distance (not shown) between the first electrode pad 31 and the second branch electrode 42 is smaller than the distance L1, so that the current concentration phenomenon is reduced. Can happen. However, as in the embodiment of the present invention, when the first electrode pad 31 is electrically insulated by providing the first blocking layer 34, the first electrode pad 31 and the second branch electrode 42 may be separated from each other. It can block the current concentration phenomenon of. On the other hand, it is preferable that the area where the said space | interval L1 is constant is 60% or more of the total area. If the area is less than 60%, the current applied to the entire chip is concentrated to a portion having a predetermined interval, thereby reducing the current spreading effect.
마찬가지로, 제2 전극 패드(41)과 제1 가지 전극(33) 사이의 거리(L2)는 제1 가지 전극(33) 및 제2 가지 전극(42)의 거리(L1)에 비해 작아서, 제2 블락킹층(44)이 없으면, 앞에서 설명한 바와 같이 전류 집중 현상을 일으킬 수 있다. 그런데, 본 발명의 실시예와 같이, 제2 블락킹층(44)를 둠으로써, 제2 전극 패드(41)를 전기적으로 절연하면, 제2 전극 패드(41)과 제1 가지 전극(33) 사이의 전류 집중 현상을 차단할 수 있다. 이와 같이, 본 발명의 제1 및 제2 블락킹층(34, 44)은 각각 제1 및 제2 전극 패드(31, 41)에 인입되는 전류를 모두 평행하게 배열된 제1 및 제2 가지 전극(33, 42)으로만 흐르게 한다. 이렇게 함으로써, 제1 전극 패드(31)과 제2 가지 전극(42) 및 제2 전극 패드(41)과 제1 가지 전극(33) 사이에 발생하는 전류 집중 현상을 방지할 수 있다.Similarly, the distance L2 between the second electrode pad 41 and the first branch electrode 33 is smaller than the distance L1 of the first branch electrode 33 and the second branch electrode 42, so that the second Without the blocking layer 44, current concentration may occur as described above. However, as in the embodiment of the present invention, when the second electrode pad 41 is electrically insulated by providing the second blocking layer 44, the second electrode pad 41 and the first branch electrode 33 may be separated from each other. It can block the current concentration phenomenon of. As described above, the first and second blocking layers 34 and 44 of the present invention may include the first and second branch electrodes (arranged in parallel with all currents introduced into the first and second electrode pads 31 and 41, respectively). 33, 42) only. By doing so, it is possible to prevent the current concentration phenomenon occurring between the first electrode pad 31 and the second branch electrode 42 and the second electrode pad 41 and the first branch electrode 33.
도 5는 블락킹층이 없는 종래의 발광 다이오드의 발광 이미지를 나타내는 사진이며, 도 6은 블락킹층을 갖춘 본 발명의 실시예에 의한 발광 다이오드의 발광 이미지를 보여주는 사진이다.FIG. 5 is a photograph showing a light emitting image of a conventional light emitting diode without a blocking layer, and FIG. 6 is a photograph showing a light emitting image of a light emitting diode according to an embodiment of the present invention having a blocking layer.
도 5 및 도 6을 참조하면, 종래의 발광 다이오드는 광출력(PO)가 100%이었으나, 본 발명의 다이오드는 광출력(PO)가 101.5%로, 광출력(PO)가 1.5%만큼 향상되었다. 또한, 종래의 다이오드의 순방향전압(VF)은 2.90V이었으나, 본 발명의 다이오드의 순방향전압(VF)는 2.84V로, 순방향전압(VF)이 0.06V만큼 감소하였다. 종래의 발광 다이오드는 전극 패드들과 가지 전극들 사이에 전류 집중 현상이 일어나서, 전극으로부터 멀리 떨어진 영역에 상대적으로 어두운 암부를 형성한 것을 보여주고 있다. 이에 반해, 본 발명의 다이오드는 상대적으로 어두운 암부가 거의 형성되지 않고, 전류의 균일한 분산이 일어났음을 확인할 수 있었다.5 and 6, the conventional light emitting diode has a light output PO of 100%, but the diode of the present invention has a light output PO of 101.5% and an optical output PO of 1.5%. . In addition, although the forward voltage VF of the conventional diode was 2.90V, the forward voltage VF of the diode of the present invention was 2.84V, and the forward voltage VF decreased by 0.06V. Conventional light emitting diodes show that a current concentration phenomenon occurs between the electrode pads and the branch electrodes to form a relatively dark dark portion in a region far from the electrode. On the contrary, the diode of the present invention was confirmed that relatively dark dark portions were hardly formed, and uniform dispersion of current occurred.
전류 집중 현상이 일어나서 균일한 전류 분산이 없으면, 그렇지 않은 경우에 비해, 광출력(PO)이 떨어지고, 순방향전압(VF)이 올라간다. 이러한 이유로, 전류 집중 현상을 차단하지 못하는 종래의 발광 다이오드는 본 발명의 다이오드에 비해, 광출력(PO)이 작고 순방향전압(VF)이 높다. 이와 같이, 본 발명의 실시예는 제1 및 제2 블락킹층(34, 44)을 각각 제1 및 제2 전극 패드(31, 41)에 배치하여, 전류 집중 현상을 방지함으로써, 발광 다이오드의 광출력(PO)을 높이고 순방향전압(VF)을 낮출 수 있다. If a current concentration phenomenon occurs and there is no uniform current distribution, the light output PO falls and the forward voltage V F rises as compared with the case where it does not. For this reason, conventional light emitting diodes that do not block the current concentration phenomenon have a smaller light output PO and a higher forward voltage V F than the diode of the present invention. As described above, in the embodiment of the present invention, the first and second blocking layers 34 and 44 are disposed on the first and second electrode pads 31 and 41, respectively, to prevent current concentration. It is possible to increase the output PO and lower the forward voltage V F.
도 7은 본 발명의 실시예에 의한 균일한 전류 확산 구조를 가진 발광 다이오드의 하나의 변형예를 나타내는 평면도이다. 7 is a plan view showing one modification of the light emitting diode having the uniform current spreading structure according to the embodiment of the present invention.
도 7에 의하면, 본 발명의 하나의 변형예는 제2 블락킹층(44a) 상의 제2 전극 패드(41a)로부터 투명 전극층(20a)의 양측으로 분기되는 한 쌍의 제2 가지 전극(42a) 사이에 제1 블락킹층(34a) 및 제1 전극 패드(31a)로 연장되는 제1 가지 전극(33a)가 일정한 간격을 이루면서 배치된 것이다. 제2 블락킹층(44a) 및 제2 전극 패드(41a)는 제2 가지 전극(42a)과 연결된다. 투명 전극층(20a)은 제2 반도체층(17a) 상에 위치한다. 이에 따라, 제2 블락킹층(44a), 제2 전극 패드(41a) 및 한 쌍의 제2 가지 전극(42a)는 "ㄷ"자 형태를 이룬다. According to FIG. 7, one modification of the present invention is provided between a pair of second branch electrodes 42a branched from the second electrode pad 41a on the second blocking layer 44a to both sides of the transparent electrode layer 20a. The first blocking electrode 34a and the first branch electrode 33a extending to the first electrode pad 31a are disposed at regular intervals. The second blocking layer 44a and the second electrode pad 41a are connected to the second branch electrode 42a. The transparent electrode layer 20a is positioned on the second semiconductor layer 17a. Accordingly, the second blocking layer 44a, the second electrode pad 41a, and the pair of second branch electrodes 42a form a “c” shape.
상기 변형예의 제1 블락킹층(34a) 및 제2 블락킹층(44a)은 도 1 내지 도 7을 참조하여 설명한 제1 블락킹층(34) 및 제2 블락킹층(44)와 그 기능 및 역할을 동일하다. 즉, 제1 및 제2 블락킹층(34a, 44a)은 각각 제1 및 제2 전극 패드(31a, 41a)에 인입되는 전류를 모두 평행하게 배열된 제1 및 제2 가지 전극(33a, 42a)으로만 흐르게 한다. 이렇게 함으로써, 제1 전극 패드(31a)과 제2 가지 전극(42a) 및 제2 전극 패드(41a)과 제1 가지 전극(33a) 사이에 발생하는 전류 집중 현상을 방지할 수 있다.The first blocking layer 34a and the second blocking layer 44a of the modification have the same functions and roles as the first blocking layer 34 and the second blocking layer 44 described with reference to FIGS. 1 to 7. Do. That is, the first and second blocking layers 34a and 44a respectively have the first and second branch electrodes 33a and 42a arranged in parallel with the currents introduced into the first and second electrode pads 31a and 41a, respectively. Only flow to By doing so, it is possible to prevent the current concentration phenomenon occurring between the first electrode pad 31a and the second branch electrode 42a and between the second electrode pad 41a and the first branch electrode 33a.
도 8은 본 발명의 실시예에 의한 균일한 전류 확산 구조를 가진 발광 다이오드의 다른 변형예를 나타내는 평면도이다.8 is a plan view illustrating another modified example of the light emitting diode having the uniform current spreading structure according to the embodiment of the present invention.
도 8에 의하면, 본 발명의 다른 변형예는 제2 블락킹층(44b), 제2 전극 패드(41b), 한 쌍의 제2 가지 전극(42b) 및 제1 가지 전극(33b)은 도 7과 동일하지만, 제1 블락킹층(34b) 및 제1 전극 패드(31b)가 다이오드 외곽으로 확장된 것이다. 본 발명의 다른 변형예의 제1 블락킹층(34b) 및 제2 블락킹층(44b)은 도 1 내지 도 6을 참조하여 설명한 제1 블락킹층(34) 및 제2 블락킹층(44)와 그 기능 및 역할을 동일하다. 즉, 제1 및 제2 블락킹층(34b, 44b)은 각각 제1 및 제2 전극 패드(31b, 41b)에 인입되는 전류를 모두 평행하게 배열된 제1 및 제2 가지 전극(33b, 42b)으로만 흐르게 한다. 이렇게 함으로써, 제1 전극 패드(31b)과 제2 가지 전극(42b) 및 제2 전극 패드(41b)과 제1 가지 전극(33b) 사이에 발생하는 전류 집중 현상을 방지할 수 있다.According to FIG. 8, another modification of the present invention includes a second blocking layer 44b, a second electrode pad 41b, a pair of second branch electrodes 42b, and a first branch electrode 33b. Although the same, the first blocking layer 34b and the first electrode pad 31b extend outside the diode. The first blocking layer 34b and the second blocking layer 44b according to another modification of the present invention may include the first blocking layer 34 and the second blocking layer 44 and their functions as described with reference to FIGS. The role is the same. That is, the first and second blocking layers 34b and 44b respectively have the first and second branch electrodes 33b and 42b arranged in parallel to each other to draw currents introduced into the first and second electrode pads 31b and 41b, respectively. Only flow to By doing so, it is possible to prevent the current concentration phenomenon occurring between the first electrode pad 31b and the second branch electrode 42b and between the second electrode pad 41b and the first branch electrode 33b.
이상, 본 발명은 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않으며, 본 발명의 기술적 사상의 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형이 가능하다. As mentioned above, although the present invention has been described in detail with reference to preferred embodiments, the present invention is not limited to the above embodiments, and various modifications may be made by those skilled in the art within the scope of the technical idea of the present invention. It is possible.
(부호의 설명)(Explanation of the sign)
10; 기판 12; 버퍼층10; Substrate 12; Buffer layer
14; 발광 구조체 15; 제1 반도체층14; Light emitting structure 15; First semiconductor layer
16; 활성층 17; 제2 반도체층16; Active layer 17; Second semiconductor layer
20; 투명 전극층 30; 제1 전극20; Transparent electrode layer 30; First electrode
31, 31a, 31b; 제1 전극 패드 31, 31a, 31b; First electrode pad
32; 연결부32; Connection
33, 33a, 33b; 제1 가지 전극 33, 33a, 33b; First branch electrode
34, 34a, 34b; 제1 블락킹층34, 34a, 34b; First blocking layer
40; 제2 전극 40; Second electrode
41, 41a, 41b; 제2 전극 패드41, 41a, 41b; Second electrode pad
42, 42a, 42b; 제2 가지 전극 42, 42a, 42b; Second branch electrode
44, 44a, 44b; 제2 블락킹층44, 44a, 44b; 2nd blocking layer
45; 제2 전극 패드 블락킹층45; Second electrode pad blocking layer
46; 제2 가지 전극 블락킹층46; Second Branch Electrode Blocking Layer
48; 차단 홈48; Blocking home

Claims (14)

  1. 제1 반도체층, 활성층 및 제2 반도체층을 포함하는 발광 구조체;A light emitting structure including a first semiconductor layer, an active layer, and a second semiconductor layer;
    상기 발광 구조체 상에 위치하는 투명 전극층;A transparent electrode layer on the light emitting structure;
    상기 투명 전극층과 공간적으로 이격 배치되고 제1 가지 전극, 연결부 및 제1 전극 패드를 포함하는 제1 전극; 및A first electrode spaced apart from the transparent electrode layer and including a first branch electrode, a connection part, and a first electrode pad; And
    상기 발광 구조체 상에 형성된 제1 블락킹층을 포함하는 균일한 전류 확산 구조를 가진 발광 다이오드.A light emitting diode having a uniform current spreading structure comprising a first blocking layer formed on the light emitting structure.
  2. 제1항에 있어서, 상기 제1 전극 패드는 상기 제2 반도체층 상에 배치되고, 상기 제1 반도체층의 길이 방향으로 연장되는 제1 가지 전극과 연결부에 의해 전기적으로 접속되는 것을 특징으로 하는 균일한 전류 확산 구조를 가진 발광 다이오드.2. The uniformity of claim 1, wherein the first electrode pad is disposed on the second semiconductor layer, and is electrically connected to the first branch electrode and a connection part extending in a length direction of the first semiconductor layer. Light emitting diode with one current spreading structure.
  3. 제1항에 있어서, 상기 제1 블락킹층은 상기 제2 반도체층과 상기 제1 전극 패드 사이에 형성되는 것을 특징으로 하는 균일한 전류 확산 구조를 가진 발광 다이오드.The light emitting diode of claim 1, wherein the first blocking layer is formed between the second semiconductor layer and the first electrode pad.
  4. 제1항에 있어서, 상기 제1 블락킹층은 상기 제2 반도체층과 상기 제1 전극 패드 사이에 형성되는 것을 특징으로 하는 균일한 전류 확산 구조를 가진 발광 다이오드.The light emitting diode of claim 1, wherein the first blocking layer is formed between the second semiconductor layer and the first electrode pad.
  5. 제1항에 있어서, 상기 제1 블락킹층은 상기 제1 전극 패드 및 상기 연결부와 동일하거나 확장된 형상을 가지는 것을 특징으로 하는 균일한 전류 확산 구조를 가진 발광 다이오드.The light emitting diode of claim 1, wherein the first blocking layer has the same shape as or extends from the first electrode pad and the connection portion.
  6. 제1항에 있어서, 상기 제1 블락킹층은 산화물막 또는 질화물막 중에서 선택된 어느 하나의 막이거나 상기 산화물막과 질화물막이 적층된 다층막인 것을 특징으로 하는 균일한 전류 확산 구조를 가진 발광 다이오드.The light emitting diode of claim 1, wherein the first blocking layer is any one selected from an oxide film and a nitride film, or a multilayer film in which the oxide film and the nitride film are stacked.
  7. 제1항에 있어서, 상기 제2 반도체층 상에는 제2 전극 패드, 상기 제1 가지 전극과 평행한 제2 가지 전극으로 이루어진 제2 전극을 포함하고, 상기 제2 전극 패드 및 상기 제2 가지 전극을 상기 제2 반도체층과 전기적으로 절연시키는 제2 블락킹층을 더 포함하는 것을 특징으로 하는 균일한 전류 확산 구조를 가진 발광 다이오드.The semiconductor device of claim 1, further comprising a second electrode on the second semiconductor layer, the second electrode comprising a second branch electrode parallel to the first branch electrode, wherein the second electrode pad and the second branch electrode are disposed on the second semiconductor layer. And a second blocking layer electrically insulated from the second semiconductor layer.
  8. 제7항에 있어서, 상기 제2 블락킹층은 제2 반도체층과 제2 전극 패드 사이에 형성되는 것을 특징으로 하는 균일한 전류 확산 구조를 가진 발광 다이오드.The light emitting diode of claim 7, wherein the second blocking layer is formed between the second semiconductor layer and the second electrode pad.
  9. 제7항에 있어서, 상기 제1 가지 전극과 제2 가지 전극 간 간격(L1)이 일정한 것을 특징으로 하는 균일한 전류 확산 구조를 가진 발광 다이오드.The light emitting diode having a uniform current spreading structure according to claim 7, wherein a distance L1 between the first branch electrode and the second branch electrode is constant.
  10. 제9항에 있어서, 상기 간격(L1)이 일정한 면적이 전체 면적의 60% 이상인 것을 특징으로 하는 균일한 전류 확산 구조를 가진 발광 다이오드.10. The light emitting diode having a uniform current spreading structure according to claim 9, wherein a predetermined area of the gap L1 is 60% or more of the total area.
  11. 제7항에 있어서, 상기 제2 블락킹층은 상기 제2 전극 패드 및 상기 제2 가지 전극과 동일하거나 확장된 형상을 가지는 것을 특징으로 하는 균일한 전류 확산 구조를 가진 발광 다이오드.The light emitting diode of claim 7, wherein the second blocking layer has the same shape as or extends from the second electrode pad and the second branch electrode.
  12. 제7항에 있어서, 상기 제2 블락킹층은 상기 제2 가지 전극과 동일하거나 확장된 형상을 가지는 것을 특징으로 하는 균일한 전류 확산 구조를 가진 발광 다이오드.The light emitting diode of claim 7, wherein the second blocking layer has a shape that is the same as that of the second branch electrode or is extended.
  13. 제7항에 있어서, 상기 제2 블락킹층은 산화물막 또는 질화물막 중에서 선택된 어느 하나의 막이거나 상기 산화물막과 질화물막이 적층된 다층막인 것을 특징으로 하는 균일한 전류 확산 구조를 가진 발광 다이오드.8. The light emitting diode of claim 7, wherein the second blocking layer is any one selected from an oxide film and a nitride film or a multilayer film in which the oxide film and the nitride film are stacked.
  14. 제7항에 있어서, 상기 제2 전극 패드에 형성된 상기 제2 블락킹층과 상기 투명 전극층은 상기 제2 반도체층을 노출시키는 차단 홈에 의해 공간적으로 분리된 것을 특징으로 하는 균일한 전류 확산 구조를 가진 발광 다이오드.The method of claim 7, wherein the second blocking layer and the transparent electrode layer formed on the second electrode pad are spatially separated by a blocking groove exposing the second semiconductor layer. Light emitting diode.
PCT/KR2014/003132 2013-11-08 2014-04-11 Light emitting diode having uniform current diffusion structure WO2015068912A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0135200 2013-11-08
KR1020130135200A KR101541363B1 (en) 2013-11-08 2013-11-08 Light emitting diode having structure for uniform current spreading

Publications (1)

Publication Number Publication Date
WO2015068912A1 true WO2015068912A1 (en) 2015-05-14

Family

ID=53041662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/003132 WO2015068912A1 (en) 2013-11-08 2014-04-11 Light emitting diode having uniform current diffusion structure

Country Status (3)

Country Link
KR (1) KR101541363B1 (en)
TW (1) TW201519472A (en)
WO (1) WO2015068912A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070096115A1 (en) * 2005-10-17 2007-05-03 Lee Hyuk M Nitride-based semiconductor light emitting diode
KR100747641B1 (en) * 2006-07-21 2007-08-08 서울옵토디바이스주식회사 Light emitting diode
US20110147784A1 (en) * 2009-12-18 2011-06-23 Sharp Kabushiki Kaisha Light emitting device with more uniform current spreading
JP2012089695A (en) * 2010-10-20 2012-05-10 Sharp Corp Nitride semiconductor light-emitting element
KR20120078386A (en) * 2010-12-31 2012-07-10 갤럭시아포토닉스 주식회사 Light emitting diode having current blocking layer and light emitting diode package

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070096115A1 (en) * 2005-10-17 2007-05-03 Lee Hyuk M Nitride-based semiconductor light emitting diode
KR100747641B1 (en) * 2006-07-21 2007-08-08 서울옵토디바이스주식회사 Light emitting diode
US20110147784A1 (en) * 2009-12-18 2011-06-23 Sharp Kabushiki Kaisha Light emitting device with more uniform current spreading
JP2012089695A (en) * 2010-10-20 2012-05-10 Sharp Corp Nitride semiconductor light-emitting element
KR20120078386A (en) * 2010-12-31 2012-07-10 갤럭시아포토닉스 주식회사 Light emitting diode having current blocking layer and light emitting diode package

Also Published As

Publication number Publication date
KR101541363B1 (en) 2015-08-03
TW201519472A (en) 2015-05-16
KR20150053838A (en) 2015-05-19

Similar Documents

Publication Publication Date Title
WO2010095781A1 (en) Light-emitting device and fabrication method thereof
US9281448B2 (en) Light emitting apparatus
WO2014081251A1 (en) Light-emitting device having excellent current spreading effect and method for manufacturing same
WO2011074768A1 (en) Light emitting diode having electrode pads
WO2010011057A2 (en) Semiconductor light-emitting device and manufacturing method thereof
WO2014061971A1 (en) High-brightness semiconductor light-emitting element having light-emitting region separation trench and excellent current dispersion effect
WO2009145501A2 (en) Light emitting device and a fabrication method thereof
WO2014129709A1 (en) Vertical light-emitting device provided with transparent electrode and method for manufacturing same
CN102194952A (en) Light emitting device and light emitting device package having the same
CN101877380A (en) Light emitting device, light emitting device package, and lighting system including the same
WO2016104958A1 (en) Red light emitting diode and lighting device
JP2011243614A (en) Light emitting device
WO2013137554A1 (en) Light-emitting device and method for manufacturing same
KR20160001259A (en) Light emitting device
WO2016018010A1 (en) Light-emitting device and lighting system
WO2013141421A1 (en) Horizontal power led device and method for manufacturing same
KR20130097363A (en) Light emitting device and manufacturing method thereof
WO2016052929A1 (en) Light emitting diode comprising porous transparent electrode
WO2019045435A1 (en) Light emitting diode apparatus and method of manufacturing the same
WO2009136769A2 (en) Light-emitting element
WO2010047459A1 (en) Light emitting device, and manufacturing method thereof
WO2017116094A1 (en) Light-emitting element
TW201248957A (en) Semiconductor light-emitting structure
WO2014193109A1 (en) Light emitting diode having plurality of light emitting elements and method of fabricating the same
WO2014088256A1 (en) High-brightness semiconductor light-emitting device having excellent current dispersion effect by including separation region

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14859631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14859631

Country of ref document: EP

Kind code of ref document: A1