WO2015068560A1 - 鉱山用運搬車両 - Google Patents

鉱山用運搬車両 Download PDF

Info

Publication number
WO2015068560A1
WO2015068560A1 PCT/JP2014/077875 JP2014077875W WO2015068560A1 WO 2015068560 A1 WO2015068560 A1 WO 2015068560A1 JP 2014077875 W JP2014077875 W JP 2014077875W WO 2015068560 A1 WO2015068560 A1 WO 2015068560A1
Authority
WO
WIPO (PCT)
Prior art keywords
millimeter wave
vehicle
detection
unit
wave sensor
Prior art date
Application number
PCT/JP2014/077875
Other languages
English (en)
French (fr)
Inventor
渡邊 淳
幸彦 小野
石本 英史
藤田 浩二
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Publication of WO2015068560A1 publication Critical patent/WO2015068560A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0257Control of position or course in two dimensions specially adapted to land vehicles using a radar

Definitions

  • the present invention relates to a mine transport vehicle such as a dump truck used in a mine.
  • unmanned vehicles capable of autonomous driving are being introduced as dump trucks used in mines.
  • a distance to a front vehicle (obstacle) traveling ahead is measured by an external recognition device or the like, and speed control is performed to avoid a collision with the front vehicle.
  • millimeter wave sensors, laser scanners, stereo cameras, and the like are known as means for detecting a vehicle ahead.
  • Patent Literature 1 discloses a conventional technique related to avoiding a collision with a preceding vehicle.
  • the collision accident prevention apparatus disclosed in Patent Document 1 has different detection directions of a plurality of contact-type millimeter wave sensors that can detect only the speed, and a speed threshold for determination in order from the millimeter wave sensor that can detect the farthest distance. Is set small, and when the speed measured by each millimeter wave sensor is equal to or higher than the set speed threshold, it is determined that there is a possibility of collision with the preceding vehicle.
  • a contact-type millimeter wave sensor capable of detecting only the speed is used to determine the possibility of a collision with a preceding vehicle.
  • a preceding vehicle exists at a position moved upward or downward, and the preceding vehicle is outside the millimeter wave irradiation range. Therefore, the speed of the vehicle ahead may not be detected by a plurality of millimeter wave sensors with different detection directions.
  • the present invention has been made from the actual situation in the above-described prior art, and an object of the present invention is to provide a mine transport vehicle that can appropriately detect an obstacle even on a traveling road where the gradient changes.
  • the present invention provides a vehicle main body, an obstacle detection unit that detects an obstacle in the front direction of the vehicle main body, and a detection direction that adjusts the detection direction of the obstacle detection unit in the vertical direction. And an adjustment unit.
  • the present invention configured as described above can be used on a road where the gradient changes by appropriately adjusting the detection direction of the obstacle detection unit in the vertical direction by the detection direction adjustment unit when the gradient of the road changes. Obstacles can be detected properly.
  • the present invention is configured such that the detection direction of the obstacle detection unit that detects an obstacle in the front direction of the vehicle body is adjusted in the vertical direction by the detection direction adjustment unit.
  • the present invention allows the detection direction adjusting unit to appropriately adjust the detection direction of the obstacle detection unit in the vertical direction when the gradient of the road changes, so that the obstacle can be detected even on the road where the gradient changes. Can be detected appropriately.
  • FIG. 1 is a schematic view showing a mine in which a dump truck 1 according to a first embodiment of the present invention is used.
  • FIG. 2 is a schematic view showing the dump truck 1.
  • FIG. 3 is a schematic diagram showing the travel drive device 3 of the dump truck 1.
  • the dump truck 1 is an unmanned traveling type capable of autonomous traveling in a transport area A which is a traveling path provided in advance in a mine.
  • a loading area B for loading the load ⁇ such as earth and sand on the dump truck 1 with an excavator ⁇ a discharging area C for discharging the loading ⁇ loaded in the loading area B
  • maintenance And a parking area D where the dump truck 1 is parked are connected in the transfer area A.
  • a control center 11 that transmits and receives predetermined information to and from the dump truck 1 and performs traffic control such as traveling of the plurality of dump trucks 1 is installed.
  • the dump truck 1 includes a vehicle main body 1a, a driver's seat 1b that is a cabin provided on the upper front side of the vehicle main body 1a, a loading platform 1c that can be raised and lowered on the vehicle main body 1a, A hoist cylinder (not shown) that moves the loading platform 1c up and down, and left and right front wheels 1d and rear wheels 1e that support the vehicle body 1a so as to travel are provided.
  • the dump truck 1 includes a travel drive device 3.
  • the travel drive device 3 includes an engine 3a, a power generator 3b driven by the engine 3a, a power control device 3c to which power generated by the power generator 3b is supplied, and travel for driving the rear wheels 1e.
  • the power supplied to the travel motor 3d is controlled by the power control device 3c.
  • the power control device 3 c is connected to the controller 4 and controlled by the controller 4.
  • the controller 4 includes a steering motor 3e of a steering device for steering the vehicle main body 1a and a brake device 3f that is a braking device for braking the vehicle main body 1a via the power control device 3c. Etc. are also controlled.
  • An external recognition device 2 for recognizing the periphery of the vehicle main body 1a, particularly the front in the traveling direction, is attached to the front side of the vehicle main body 1a.
  • the external environment recognition device 2 detects obstacles on the recognized transport area A, in particular, the forward vehicle ⁇ , and as shown in FIG. 2, a plurality of, for example, attached at different positions in the height direction (vertical direction) Two millimeter wave sensors 2a and 2b are provided.
  • the millimeter wave sensors 2a and 2b are obstacle detection units that detect obstacles such as the forward vehicle ⁇ based on the millimeter wave that is irradiated and reflected by the millimeter wave, and the irradiation direction of the millimeter wave, that is, the detection direction is an angle in the horizontal direction. Fixed and attached.
  • the millimeter wave sensors 2a and 2b irradiate, for example, millimeter waves over an irradiation range of about 3 ° to 5 ° from the horizontal direction to the vertical direction.
  • the millimeter wave sensors 2a and 2b are attached so as to be aligned in the vertical direction which is the vertical direction which is the center position in the width direction of the front surface of the vehicle main body 1a.
  • the millimeter wave sensor 2a is attached at a height of about 1.5 m from the ground, for example, and the millimeter wave sensor 2b is attached at a height of about 4 to 5 m from the ground, for example.
  • These millimeter wave sensors 2a and 2b are configured to detect a distant vehicle, and the upper millimeter wave sensor 2b has a position closer to the vehicle body 1a than the lower millimeter wave sensor 2a. It has become.
  • the vehicle main body 1a detects positions of a stereo camera 2c, a laser radar 2d, and a vehicle main body 1a for detecting a situation outside the vehicle main body 1a in addition to the millimeter wave sensors 2a and 2b.
  • a GPS device 2e as a position detection unit
  • an IMU device 2f as an inclination detection unit for detecting the inclination of the vehicle main body 1a
  • a vehicle speed sensor 2g for detecting the vehicle speed of the vehicle main body 1a, and the like are attached as in-vehicle sensors. Yes.
  • the controller 4 includes an environment recognition unit 5 for recognizing the surroundings (external environment) of the vehicle body 1a, a self-position estimation unit 6 for estimating the self-position of the vehicle body 1a, and a load loaded on the loading platform 1c.
  • a load weight detector 7 for detecting the load weight of ⁇ is connected.
  • the environment recognition unit 5 receives detection information detected by the external environment recognition device 2, and acquires external information such as the forward vehicle ⁇ and the road shoulder position based on the detection information.
  • the environment recognizing unit 5 detects the obstacles such as the front vehicle ⁇ using the millimeter wave sensors 2a and 2b, and also, based on the shooting information with the stereo camera 2c and the detection information with the laser radar 2d, for example, The occurrence of dust on the shoulder of A and the conveyance area A is detected.
  • the environment recognizing unit 5 applies the self-position estimated by the self-position estimating unit 6 based on the traveling position information detected by the GPS device 2e to the map information stored in the storage unit 8, and the like. It is also a detection information correction unit that calculates an inclination angle and corrects detection information of the upper or lower millimeter wave sensors 2a and 2b in accordance with the calculated inclination angle.
  • the self-position estimation unit 6 receives detection information detected by, for example, the GPS device 2e, the IMU device 2f, the vehicle speed sensor 2g, and the like, and based on this detection information, the self-position estimation unit 6 at the time of detection in the transport area A of the vehicle body 1a Estimate the position.
  • the self-position estimation unit 6 is connected to a storage unit 8 in which map information related to the mine where the dump truck 1 travels is stored in advance, and compares the travel position information by the GPS device 2e with the map information stored in the storage unit 8. To estimate the self-position at the time of detection.
  • the map information stored in the storage unit 8 also includes inclination angle information related to the inclination angle of each location on the transport area A where the dump truck 1 on the mine travels.
  • the storage unit 8 also stores information for sharing the roles of detection by the millimeter wave sensors 2a and 2b in accordance with the traveling environment in the transport area A on the map information. As this information, the uphill front position information and downhill end position information detected by the upper millimeter wave sensor 2b, the uphill end position information and the downhill end position information detected by the lower millimeter wave sensor 2a, and the downhill position information. There is location information before the slope.
  • the load weight detection unit 7 is based on a strain amount detected by a load cell (not shown) provided at a predetermined location of the vehicle body 1a, for example, from a load weight table or the like determined in advance corresponding to the strain amount. A load weight of the load ⁇ loaded on 1c is calculated, and load weight information corresponding to the calculated load weight is output to the controller 4.
  • the environment recognizing unit 5 refers to a sinking amount table in which the sinking amount of the dump truck 1 is determined in accordance with the loading weight based on the loading weight information output from the loading weight detecting unit 7, and determines the sinking amount of the dump truck 1.
  • the detection information of the millimeter wave sensors 2a and 2b is corrected according to the calculated sinking amount.
  • the load weight detection unit 7 detects the load weight of the load ⁇ from the displacement of the suspension (not shown) or the change in hydraulic pressure that is converted according to the load weight of the load ⁇ loaded on the loading platform 1c. Also good.
  • the controller 4 is connected to a communication unit 9 for transmitting and receiving predetermined information to and from the control center 11, and is estimated by the external environment information detected by the environment recognition unit 5 and the self-position estimation unit 6 via the communication unit 9.
  • the position information related to the self position is transmitted to the control center 11, and the autonomous traveling information of the dump truck 1 is received from the control center 11.
  • the control center 11 manages the operation of each dump truck 1 based on the storage unit 12 in which map information of a mine such as the transport area A where each dump truck 1 travels is stored in advance, and the map information stored in the storage unit 12.
  • the operation management part 13 to be provided.
  • the operation management unit 13 is also a communication unit that transmits conveyance information such as a destination, a travel route, and a travel permitted area of the dump truck 1 to the communication unit 9 of the predetermined dump truck 1.
  • the operation management unit 13 is connected to a vehicle allocation management unit 14 that manages vehicle allocation of the dump truck 1 and a traffic control unit 15 that controls traffic of all vehicles traveling in the mine, and is stored in the storage unit 12. Based on the information, the vehicle allocation management information output from the vehicle allocation management unit 14, and the traffic control information output from the traffic control unit 15, the operation management of each dump truck 1 or the like is performed in comparison with a predetermined operation pattern or the like. Data is created, and conveyance information of each dump truck 1 based on the operation management data is wirelessly transmitted to each dump truck 1. In each dump truck 1, the power control device 3 c is controlled by the controller 4 based on the conveyance information received from the operation management unit 13 of the control center 11, and each dump truck 1 travels autonomously.
  • FIG. 5 is an explanatory diagram showing detection of the forward vehicle ⁇ on the flat road of the dump truck 1.
  • FIG. 6 is an explanatory diagram showing detection of the forward vehicle ⁇ at a position before the uphill of the dump truck 1.
  • FIG. 7 is an explanatory diagram showing detection of the forward vehicle ⁇ at the position before the end of the uphill of the dump truck 1.
  • FIG. 8 is an explanatory diagram showing detection of the forward vehicle ⁇ at the position before the downhill of the dump truck 1.
  • FIG. 9 is an explanatory diagram showing detection of the forward vehicle ⁇ at the position before the end of the downhill of the dump truck 1.
  • Each of the irradiation ranges b1 includes a forward vehicle ⁇ that travels ahead, and the forward vehicle ⁇ can be detected.
  • the environment recognizing unit 5 calculates the inclination of the vehicle main body 1a from the map information stored in the storage unit 8 based on the self position estimated by the self position estimating unit 6, and is currently running from the calculated inclination.
  • the forward vehicle ⁇ is detected by each of the millimeter wave sensors 2a and 2b.
  • the controller 4 compares the detection information by the lower millimeter wave sensor 2a and the detection information by the upper millimeter wave sensor 2b, and the difference between the detected detection information is equal to or greater than a predetermined threshold value In the case of false detection, if necessary, an error lamp (not shown) provided in the driver's seat 1b or the like is turned on, or the vehicle a ahead is detected based on detection information on the higher risk side, The forward vehicle ⁇ is detected again by the millimeter wave sensors 2a and 2b.
  • the forward vehicle ⁇ traveling uphill is included and can be detected.
  • the environment recognizing unit 5 determines the travel position on the transport area A that is currently traveling from the map information stored in the storage unit 8 and the pre-uphill position information , The forward vehicle ⁇ is detected based on the detection information output from the upper millimeter wave sensor 2b.
  • the environment recognition unit 5 calculates the inclination angle of the uphill by applying the self-position estimated by the self-position estimation unit 6 to the map information stored in the storage unit 8, and the calculated inclination angle. Accordingly, the detection information of the upper millimeter wave sensor 2b is corrected.
  • the distance to the preceding vehicle ⁇ is the sum of the distance from the self-position to the starting point of the uphill and the traveling distance of the uphill according to the inclination angle of the uphill.
  • a forward vehicle ⁇ passing through an uphill and traveling on a flat road is detected.
  • the environment recognizing unit 5 travels on the transport area A that is currently traveling from the map information stored in the storage unit 8 and the position information before the uphill end.
  • the forward vehicle ⁇ is detected based on the detection information output from the lower millimeter wave sensor 2a.
  • the environment recognition unit 5 calculates the inclination angle of the uphill by applying the self-position estimated by the self-position estimation unit 6 to the map information stored in the storage unit 8, and the calculated inclination angle. Accordingly, the detection information of the lower millimeter wave sensor 2a is corrected. Specifically, the distance from the self-position corresponding to the inclination angle of the uphill to the end of the uphill and the distance traveled on the flat road surface is defined as the distance to the forward vehicle ⁇ .
  • the forward vehicle ⁇ traveling downhill is included and can be detected.
  • the environment recognizing unit 5 determines the travel position on the transport area A that is currently traveling from the map information and the downhill-front position information stored in the storage unit 8. , The forward vehicle ⁇ is detected based on the detection information output from the lower millimeter wave sensor 2a.
  • the environment recognizing unit 5 calculates the inclination angle of the downhill by applying the self-position estimated by the self-position estimating unit 6 to the map information stored in the storage unit 8, and the calculated inclination angle. Accordingly, the detection information of the lower millimeter wave sensor 2a is corrected. Specifically, a distance obtained by adding the distance from the own position to the starting point of the downhill and the traveling distance of the downhill according to the inclination angle of the downhill is defined as the distance to the forward vehicle ⁇ .
  • a forward vehicle ⁇ passing through a downhill and traveling on a flat road is detected.
  • the environment recognizing unit 5 travels on the transport area A currently traveling from the map information stored in the storage unit 8 and the position information before the downhill end.
  • the forward vehicle ⁇ is detected based on the detection information output from the upper millimeter wave sensor 2b.
  • the environment recognizing unit 5 calculates the inclination angle of the downhill by applying the self-position estimated by the self-position estimating unit 6 to the map information stored in the storage unit 8, and the calculated inclination angle. Accordingly, the detection information of the upper millimeter wave sensor 2b is corrected. Specifically, a distance obtained by adding the distance from the self-position corresponding to the inclination angle of the downhill to the end of the downhill and the traveling distance of the flat road surface is set as the distance to the forward vehicle ⁇ .
  • the controller 4 manages the operation of the control center 11 through the communication unit 9 as position information, using the preceding vehicle information related to the preceding vehicle ⁇ detected by the environment recognition unit 5 and the self-location information estimated by the self-position estimation unit 6. To the unit 13. At this time, the controller 4 corrects the distance information to the preceding vehicle ⁇ calculated based on the detection information from the millimeter wave sensors 2 a and 2 b according to the sinking amount of the dump truck 1.
  • the control center 11 Based on the position information transmitted from each dump truck 1, the control center 11 is output from the map information stored in the storage unit 12, the dispatch management information output from the dispatch management unit 14, and the traffic control unit 15.
  • the operation management unit 13 creates conveyance information for each dump truck 1 considering the traffic control information, and wirelessly transmits the created conveyance information to the communication unit 9 of each dump truck 1.
  • Each dump truck 1 is controlled by the controller 4 based on the conveyance information received from the operation management unit 13 of the control center 11 and is autonomously traveling in consideration of the position and traveling speed of the preceding vehicle ⁇ .
  • the operation management unit 13 of the control center 11 compares the position information of the obstacle detected by the environment recognition unit 5 with the information of the operation management unit 13, identifies the vehicle of the detected obstacle, and sends it to the dump truck 1. Wireless transmission.
  • the operation management unit 13 activates a vehicle such as a service car to check the obstacle, and activates and removes a maintenance car such as a grader as necessary.
  • conveyance information including traveling / stop / avoidance control according to the analyzed obstacle is wirelessly transmitted to each dump truck 1 to control autonomous traveling of each dump truck 1 and to an obstacle of a predetermined dump truck 1 To avoid collisions.
  • the dump truck 1 has a configuration in which a plurality of, for example, two fixed millimeter wave sensors 2a and 2b are attached to different positions in the height direction of the vehicle body 1a.
  • the millimeter wave irradiation ranges a1 and b1 at the millimeter wave sensors 2a and 2b are shifted in the vertical direction.
  • the front vehicle ⁇ that cannot be detected by the millimeter wave sensors 2a and 2b can be detected by the other millimeter wave sensors 2b and 2a.
  • the forward vehicle ⁇ that cannot be detected without entering the millimeter wave irradiation ranges b3 and b4 of the upper millimeter wave sensor 2b is It can be detected by entering the millimeter wave irradiation range a3, a4 of the side millimeter wave sensor 2a. Therefore, also in the conveyance area A where the gradient changes, the forward vehicle ⁇ can be detected appropriately, and the detection range of the forward vehicle ⁇ on the dump truck 1 can be expanded.
  • the detection information of the millimeter wave sensors 2a and 2b changes according to the sinking amount of the dump truck 1 according to the loading weight of the load ⁇ of the loading platform 1c.
  • the environment recognition unit 5 corrects the detection information of the millimeter wave sensors 2 a and 2 b based on the loading weight information detected by the loading weight detection unit 7.
  • the calculation error such as the distance to the preceding vehicle ⁇ due to the change in the load weight of the load ⁇ of the dump truck 1 can be reduced, and the position information transmitted to the control center 11 can be more accurate.
  • the operation of the dump truck 1 can be managed more accurately.
  • FIG. 10 is a schematic view showing a dump truck 1A according to the second embodiment of the present invention.
  • FIG. 11 is a schematic configuration diagram showing the relationship between the dump truck 1A and the control center 11.
  • the second embodiment is different from the first embodiment described above in that the first embodiment uses two fixed millimeter wave sensors 2a and 2b attached at different positions in the height direction to drive the vehicle ⁇ ahead.
  • the forward vehicle ⁇ is detected by one variable millimeter wave sensor 21 whose detection direction is variable.
  • the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals.
  • the millimeter wave sensor 21 is the center position in the width direction of the front surface of the vehicle main body 1a of the dump truck 1A, similarly to the millimeter wave sensor 2a according to the first embodiment. For example, it is attached at a height of about 1.5 m from the ground.
  • the millimeter wave sensor 21 has a detection direction adjustment unit that allows the angle of the central direction of the millimeter wave irradiation range a in the millimeter wave sensor 21, that is, the detection direction (irradiation direction) b to be adjusted in the vertical direction. It is attached to the drive part 22 as.
  • the drive unit 22 is connected to the controller 4 and is driven and controlled by the controller 4.
  • the millimeter wave irradiation range a is changed by drive control of the drive unit 22 by the controller 4.
  • the millimeter wave sensor 21 determines that the self-position of the dump truck 1A is traveling on a flat road in the conveyance area A by the controller 4, the millimeter wave detection direction b of the millimeter wave sensor 21 is Adjusted horizontally.
  • FIG. 12 is an explanatory diagram showing detection of the forward vehicle ⁇ at a position before the uphill of the dump truck 1A.
  • FIG. 13 is an explanatory diagram showing detection of the forward vehicle ⁇ at the position before the end of the uphill end of the dump truck 1A.
  • the millimeter wave detection direction b of the millimeter wave sensor 21 is driven by the drive unit 22 by a predetermined angle ⁇ upward from the horizontal direction to be the detection direction b ′. (Target gaze distance) c is adjusted upward.
  • the millimeter wave detection direction b in the millimeter wave sensor 21 may be gradually changed.
  • the millimeter wave detection direction b by the millimeter wave sensor 21 is horizontal.
  • the millimeter wave irradiation position (target gaze distance) c of the millimeter wave sensor 21 is adjusted downward.
  • the millimeter wave detection direction b of the millimeter wave sensor 21 may be gradually changed in correspondence with the irradiation range in which the forward vehicle ⁇ traveling in the flat front conveyance area A can be detected. .
  • the front vehicle ⁇ is detected by the single millimeter wave sensor 21 that can adjust the millimeter wave detection direction b in the vertical direction.
  • the controller 4 determines that the self position of 1A is a predetermined position before reaching a predetermined uphill in the conveyance area A or a predetermined position before the end of the downhill, the millimeter wave sensor 21 detects the millimeter position.
  • the wave detection direction b is adjusted upward. If the controller 4 determines that a predetermined position before reaching a predetermined downhill in the transport area A or a predetermined position before the end of the uphill is detected by the controller 4, the millimeter wave sensor 21 detects the millimeter wave.
  • the direction b is adjusted downward.
  • the controller is based on the inclination information calculated by applying the self-position estimated by the self-position estimation unit 6 to the map information stored in the storage unit 8. 4, the millimeter wave detection direction b of the millimeter wave sensor 21 is appropriately adjusted in the vertical direction so that the front vehicle ⁇ can be detected by the single variable millimeter wave sensor 21 even in the conveyance area A where the gradient changes. It can be detected properly.
  • FIG. 14 is a schematic view showing a dump truck 1B according to the third embodiment of the present invention.
  • the third embodiment differs from the first embodiment described above in that the first embodiment detects the forward vehicle ⁇ with the two millimeter wave sensors 2a and 2b whose detection directions are fixed.
  • the forward vehicle ⁇ is detected by one millimeter wave sensor 2a having a fixed detection direction and one millimeter wave sensor 21 having a variable detection direction.
  • the same or corresponding parts as those in the first and second embodiments are denoted by the same reference numerals.
  • the millimeter wave sensor 2a is the center position in the width direction of the front surface of the vehicle body 1a of the dump truck 1B, as in the first embodiment. Is installed at a height of about 1.5m.
  • the millimeter wave sensor 21 is mounted in a state in which the height direction is different from that of the millimeter wave sensor 2a, that is, above the millimeter wave sensor 2a, in a state where the vertical direction is aligned.
  • the millimeter wave sensor 21 is attached to the drive unit 22 as in the second embodiment, and is driven and controlled by the controller 4 via the drive unit 22.
  • ⁇ Detection method> When the self-position of the dump truck 1B is determined by a predetermined flat road in the transport area A and the controller 4, only the fixed millimeter wave sensor 2a is turned on and output from the millimeter wave sensor 2a. Based on the detection information, the environment recognition unit 5 detects the forward vehicle ⁇ .
  • the self-position of the dump truck 1B is a predetermined position before reaching a predetermined uphill in the transport area A or a predetermined position before the end of the downhill, and is measured by the millimeter wave sensor 2a.
  • the controller 4 determines that the vehicle 4 is located at a predetermined position where it is necessary to detect the forward vehicle ⁇ located above the wave irradiation range a
  • the variable millimeter wave sensor 21 is turned on.
  • the detection direction b of the millimeter wave sensor 21 is driven by the drive unit 22 above the horizontal direction by a predetermined angle ⁇ , and the environment certification unit 5 is made to detect based on the detection information output from the variable millimeter wave sensor 21.
  • the forward vehicle ⁇ is a predetermined position before reaching a predetermined uphill in the transport area A or a predetermined position before the end of the downhill, and is measured by the millimeter wave sensor 2a.
  • the self-position of the dump truck 1B is a predetermined position before reaching a predetermined downhill in the transport area A or a predetermined position before the end of the uphill, and is measured by the millimeter wave sensor 2a.
  • the controller 4 determines a predetermined position where the forward vehicle ⁇ located below the wave irradiation range a needs to be detected and the controller 4, as shown in FIG. 15, the fixed millimeter wave sensor 2a
  • the front vehicle ⁇ does not enter the irradiation range “a” and cannot be detected.
  • the variable millimeter wave sensor 21 is turned on, and the detection direction b of the millimeter wave sensor 21 is driven by the drive unit 22 below the horizontal direction by a predetermined angle ⁇ to be the detection direction b ′.
  • the environment recognition unit 5 Based on the detection information output from the wave sensor 21, the environment recognition unit 5 detects the forward vehicle ⁇ .
  • the dump truck 1B includes the fixed millimeter-wave sensor 2a and the variable millimeter-wave sensor 21, and the fixed millimeter-wave sensor according to the change in the gradient of the transport area A.
  • the variable millimeter wave sensor 21 is driven by the drive unit 22 and the millimeter wave sensor 21 detects the millimeter wave. It is set as the structure which adjusts b.
  • variable millimeter wave sensor is based on the inclination information calculated by applying the self-position estimated by the self-position estimation unit 6 to the map information.
  • the forward vehicle ⁇ outside the irradiation range a of the fixed millimeter wave sensor 2a can be detected, and the forward vehicle ⁇ is appropriately detected in the conveyance area A where the gradient changes. it can.
  • FIG. 16 is a schematic view showing a dump truck 1C according to the fourth embodiment of the present invention.
  • the fourth embodiment differs from the third embodiment described above in that the third embodiment has a fixed millimeter-wave sensor 2a and a variable millimeter-wave sensor 21 attached at different positions in the height direction.
  • the fixed millimeter wave sensor 2a and the variable millimeter wave sensor 21 are horizontally aligned and attached.
  • the same or corresponding parts as those in the first to third embodiments are denoted by the same reference numerals.
  • the fixed millimeter wave sensor 2a and the variable millimeter wave sensor 21 are arranged horizontally from the center position in the width direction on the front surface of the vehicle main body 1a of the dump truck 1C. It is a position spaced apart at equal intervals in the direction (left-right direction), for example, at a height of about 1.5 m from the ground.
  • the millimeter wave sensors 2a and 21 are mounted at equal height positions, and the millimeter wave detection direction b of each of the millimeter wave sensors 2a and 21 is inclined to the center position side in the width direction of the vehicle body 1a. Yes.
  • the millimeter wave sensor 21 is driven and controlled by the controller 4 via the drive unit 22.
  • the variable millimeter wave sensor 21 At a predetermined position for detecting the forward vehicle ⁇ at a position that cannot be detected by the fixed millimeter wave sensor 2a, the variable millimeter wave sensor 21 is turned on, and the detection direction b of the millimeter wave sensor 21 is moved upward by a predetermined angle ⁇ . Alternatively, it is driven downward by the drive unit 22. Then, based on the detection information output from the variable millimeter wave sensor 21, the environment recognition unit 5 detects the forward vehicle ⁇ .
  • the fixed millimeter wave sensor 2a and the variable millimeter wave sensor 21 are horizontally arranged. Based on this configuration, the variable millimeter wave sensor 21 is turned on according to the change in the gradient in the transport area A, and the millimeter wave irradiation range ⁇ of the millimeter wave sensor 21 is changed by the drive unit 22. The forward vehicle ⁇ outside the millimeter wave irradiation range a can be detected by the fixed millimeter wave sensor 2a. Therefore, it is possible to appropriately detect the forward vehicle ⁇ in the transfer area A where the gradient changes.
  • the unmanned traveling type dump trucks 1 to 1C have been described as examples.
  • the present invention is not limited thereto, and may be a manned traveling type dump truck that can be operated by an operator. .
  • a preceding vehicle ⁇ such as a patrol car or a grader other than the other dump trucks 1 to 1C, and other obstacles on the transport area A may be detected.
  • the map information is stored in the storage unit 8 of the dump trucks 1 to 1C, and the self-position and the inclination state of the dump trucks 1 to 1C are detected based on the map information stored in the storage unit 8.
  • the map information stored in the storage unit 12 of the control center 11 is received by the dump trucks 1 to 1C, and the self-position and the like of the dump trucks 1 to 1C are detected based on the received map information. Good.
  • the configuration using the millimeter wave sensors 2a, 2b, and 21 as the obstacle detection unit for detecting the forward vehicle ⁇ has been described, but for example, other than a millimeter wave sensor such as a stereo camera or the like. It may be an obstacle detection unit.
  • a millimeter wave sensor such as a stereo camera or the like.
  • the stereo camera is less affected by the dust covering the front field of view, the stereo camera is attached to the upper side where the height direction is different, and the millimeter wave sensor 2a and the like are attached to the lower side, thereby reducing detection of the front vehicle ⁇ due to dust. Can be prevented.
  • the first embodiment two fixed millimeter wave sensors 2a and 2b attached at different positions in the height direction are used.
  • one variable millimeter wave is used.
  • the sensor 21 is used, and one fixed millimeter wave sensor 2a and one variable millimeter wave sensor 21 are used.
  • the dump trucks 1 to 1C are driven.
  • the fixed millimeter wave sensors 2a and 2b and the variable millimeter wave sensor 21 may be used in appropriate combination according to the gradient state of the transport area A to be performed.
  • Dump truck (Mine transport vehicle) DESCRIPTION OF SYMBOLS 1a Vehicle main body 1b Driver's seat 1c Loading platform 1d Front wheel 1e Rear wheel 2a, 2b Millimeter wave sensor (obstacle detection part) 2c Stereo camera 2d Laser radar 2e GPS device (position detector) 2f IMU device 2g vehicle speed sensor 3 travel drive device 3a engine 3b generator 3c power control device 3d travel motor 3e steering motor 3f brake device 4 controller 5 environment recognition unit (detection information correction unit) 6 Self-position estimation unit 7 Load weight detection unit 8 Storage unit 9 Communication unit 11 Control center 12 Storage unit 13 Operation management unit 14 Vehicle dispatch management unit 15 Traffic control unit 21 Millimeter wave sensor (obstacle detection unit) 22 Drive unit (detection direction adjustment unit)

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Traffic Control Systems (AREA)

Abstract

 勾配が変化する搬送エリアでも前方車両を適切に検出できる鉱山用ダンプトラックの提供。本発明は、車両本体(1a)と、車両本体(1a)の前方車両(α)を検出するミリ波センサ(21)と、ミリ波センサ(21)でのミリ波の検出方向(b)を上下方向に調整する駆動部(22)とを備えた構成、または車両本体(1a)と、車両本体(1a)の前方車両(α)を検出する2台のミリ波センサ(2a),(2b)とを備え、ミリ波センサ(2a),(2b)は、車両本体(1a)の高さ方向の異なる位置に取り付けた構成にしてある。

Description

鉱山用運搬車両
 本発明は、例えば鉱山で使用されるダンプトラック等の鉱山用運搬車両に関する。
 近年、鉱山で使用されるダンプトラックとしては、自律走行が可能な無人車両が導入されつつある。この種の無人車両においては、例えば外界認識装置等にて前方を走行する前方車両(障害物)との距離を計測し、前方車両との衝突を未然に回避させる速度制御をしている。一般に、前方車両を検出する手段としては、ミリ波センサ、レーザスキャナ、ステレオカメラ等が知られている。
 前方車両との衝突回避に関する従来技術については、例えば特許文献1に開示されている。特許文献1に開示の衝突事故防止装置は、速度のみが検出可能な被接触式の複数のミリ波センサの検出方向を異ならせ、最も遠方が検出可能なミリ波センサから順に判定用の速度閾値を小さく設定しておき、各ミリ波センサで計測した速度が設定された速度閾値以上の場合に、前方車両と衝突する可能性があると判定する。
特開2012-21893号公報
 上記特許文献1にて開示された従来技術においては、速度のみが検出可能な被接触式のミリ波センサを用いて、前方車両との衝突の可能性を判定するものであり、例えば、坂道に差し掛かる場合や、坂道を通過した場合等の走行路の勾配が変化する状況においては、上方向または下方向に移動した位置に先行車両が存在する状況となり、ミリ波の照射範囲外に先行車両が位置してしまうため、検出方向を異ならせた複数のミリ波センサにて前方車両の速度を検出できないおそれがある。
 本発明は、上述した従来技術における実状からなされたもので、その目的は、勾配が変化する走行路においても障害物を適切に検出できる鉱山用運搬車両を提供することにある。
 この目的を達成するために、本発明は、車両本体と、前記車両本体の前方向の障害物を検出する障害物検出部と、前記障害物検出部の検出方向を上下方向に調整する検出方向調整部と、を備えたことを特徴としている。
 このように構成した本発明は、走行路の勾配が変化する場合に、検出方向調整部にて障害物検出部の検出方向を上下方向に適宜調整することによって、勾配が変化する走行路においても障害物を適切に検出できる。
 本発明は、車両本体の前方向の障害物を検出する障害物検出部の検出方向を検出方向調整部にて上下方向に調整する構成にしてある。この構成により本発明は、走行路の勾配が変化する場合に、検出方向調整部にて障害物検出部の検出方向を上下方向に適宜調整することにより、勾配が変化する走行路においても障害物を適切に検出できる。そして、前述した以外の課題、構成および効果は、以下の実施形態の説明より明らかにされる。
本発明の第1実施形態に係る鉱山用運搬車両が用いられる鉱山を示す概略図である。 上記鉱山用運搬車両を示す概略図である。 上記鉱山用運搬車両の走行駆動装置を示す概略図である。 上記鉱山システムに用いられる管制センタと上記鉱山用運搬車両との関係を示す概略構成図である。 上記鉱山用運搬車両の平坦路での前方車両の検出を示す説明図である。 上記鉱山用運搬車両の上り坂手前位置での前方車両の検出を示す説明図である。 上記鉱山用運搬車両の上り坂終端手前位置での前方車両の検出を示す説明図である。 上記鉱山用運搬車両の下り坂手前位置での前方車両の検出を示す説明図である。 上記鉱山用運搬車両の下り坂終端手前位置での前方車両の検出を示す説明図である。 本発明の第2実施形態に係る鉱山用運搬車両を示す概略図である。 上記鉱山用運搬車両と管制センタとの関係を示す概略構成図である。 上記鉱山用運搬車両の上り坂手前位置での前方車両の検出を示す説明図である。 上記鉱山用運搬車両の上り坂終端手前位置での前方車両の検出を示す説明図である。 本発明の第3実施形態に係る鉱山用運搬車両を示す概略図である。 上記鉱山用運搬車両の上り坂終端手前位置での前方車両の検出を示す説明図である。 本発明の第4実施形態に係る鉱山用運搬車両を示す概略図である。
 以下、本発明に係る鉱山用運搬車両を用いた前方車両検出システムを実施するための形態を図に基づいて説明する。
[第1実施形態]
 本第1実施形態は、鉱山用運搬車両であるダンプトラック1に、検出方向を固定させて取り付けられた複数、例えば2台のミリ波センサ2a,2bにて他のダンプトラック1等の先行して走行する前方車両αを検出する。図1は、本発明の第1実施形態に係るダンプトラック1が用いられる鉱山を示す概略図である。図2は、ダンプトラック1を示す概略図である。図3は、ダンプトラック1の走行駆動装置3を示す概略図である。
 ダンプトラック1は、図1に示すように、鉱山に予め設けられた走行路である搬送エリアAを自律走行可能な無人走行式とされている。鉱山には、例えばショベルβ等でダンプトラック1に土砂等の積荷γを積み込むための積込エリアBと、積込エリアBにて積み込まれた積荷γを放土する放土エリアCと、メンテナンス等の際にダンプトラック1を駐機させる駐機エリアDとが設けられている。これらエリアB~Dは、搬送エリアAにてつながっている。鉱山には、ダンプトラック1との間で所定の情報を送受信し、複数のダンプトラック1の走行等の交通管制を行う管制センタ11が設置されている。
 ダンプトラック1は、図2に示すように、車両本体1aと、車両本体1aの前側上方に設けられたキャビンである運転席1bと、車両本体1a上に起伏可能に設けられた荷台1cと、荷台1cを上下動させるホイストシリンダ(図示せず)と、車両本体1aを走行可能に支持する左右の前輪1dおよび後輪1eとを備えている。
 図3に示すように、ダンプトラック1は、走行駆動装置3を備えている。走行駆動装置3は、エンジン3aと、エンジン3aにて駆動される発電機3bと、発電機3bにて発電された電力が供給される電力制御装置3cと、後輪1eを駆動させるための走行モータ3dとを有している。走行モータ3dへの供給電力は、電力制御装置3cにて制御される。電力制御装置3cは、コントローラ4に接続され、コントローラ4にて制御される。コントローラ4は、図4に示すように、電力制御装置3cを介して、車両本体1aを操舵するための操舵装置のステアリングモータ3eや、車両本体1aを制動させるための制動装置であるブレーキ装置3f等の駆動も制御する。
 車両本体1aの前側には、車両本体1aの周囲、特に走行方向前方を認識するための外界認識装置2が取り付けられている。外界認識装置2は、認識した搬送エリアA上の障害物、特に前方車両αを検出するもので、図2に示すように、高さ方向(上下方向)の異なる位置に取り付けられた複数、例えば2台のミリ波センサ2a,2bを備えている。
 ミリ波センサ2a,2bは、ミリ波を照射し反射するミリ波に基づき前方車両α等の障害物を検出する障害物検出部であり、ミリ波の照射方向、すなわち検出方向が水平方向に角度固定されて取り付けられている。ミリ波センサ2a,2bは、例えば水平方向から上下方向のそれぞれに約3°~5°程度の照射範囲に亘ってミリ波を照射する。ミリ波センサ2a,2bは、車両本体1aの前面の幅方向の中心位置であって、上下方向である鉛直方向に揃えた状態とされて取り付けられている。
 ミリ波センサ2aは、例えば地上から1.5m程度の高さ位置に取り付けられ、ミリ波センサ2bは、例えば地上から4m~5m程度の高さ位置に取り付けられている。これらミリ波センサ2a,2bは、遠方の車両を検出する構成とされており、上側のミリ波センサ2bは、下側のミリ波センサ2aに比べ、車両本体1aに近い位置が検出範囲外となっている。
 車両本体1aには、図4に示すように、ミリ波センサ2a,2bに加え、車両本体1a外部の状況を検出するためのステレオカメラ2c、レーザレーダ2d、車両本体1aの位置を検出するための位置検出部としてのGPS装置2e、車両本体1aの傾きを検出するための傾き検出部としてのIMU装置2f、車両本体1aの車速を検出するための車速センサ2g等が車載センサとして取り付けられている。
 コントローラ4には、車両本体1aの周囲(外環境)を認識するための環境認識部5と、車両本体1aの自己位置を推定するための自己位置推定部6と、荷台1cに積み込まれた積荷γの積載重量を検出するための積載重量検出部7とが接続されている。環境認識部5は、外界認識装置2にて検出された検出情報が入力され、この検出情報に基づいて、例えば前方車両α、路肩位置等の外界情報を取得する。すなわち、環境認識部5は、ミリ波センサ2a,2bを用いた前方車両α等の障害物検出に加え、例えばステレオカメラ2cでの撮影情報や、レーザレーダ2dでの検出情報に基づき、搬送エリアAの路肩や、搬送エリアA上の土埃の発生を検出する。
 環境認識部5は、GPS装置2eにて検出される走行位置情報に基づき自己位置推定部6にて推定した自己位置を、記憶部8に記憶させた地図情報にあてはめる等して、所定箇所の傾斜角を算出し、この算出した傾斜角に応じて、上側または下側のミリ波センサ2a,2bの検出情報を補正する検出情報補正部でもある。
 自己位置推定部6は、例えばGPS装置2e、IMU装置2fおよび車速センサ2g等にて検出された検出情報が入力され、この検出情報に基づいて、車両本体1aの搬送エリアAにおける検出時の自己位置を推定する。自己位置推定部6は、ダンプトラック1が走行する鉱山に関する地図情報が予め記憶された記憶部8に接続され、GPS装置2eによる走行位置情報を、記憶部8に記憶させた地図情報に対比して検出時の自己位置を推定する。記憶部8に記憶されている地図情報には、鉱山上のダンプトラック1が走行する搬送エリアA上の各箇所の傾斜角度に関する傾斜角情報も含まれている。記憶部8には、地図情報上の搬送エリアAにおいて、ミリ波センサ2a,2bによる検出を走行環境に応じて役割分担させるための情報も記憶されている。この情報としては、上側のミリ波センサ2bにて検出を行う上り坂手前位置情報および下り坂終端手前位置情報や、下側のミリ波センサ2aにて検出を行う上り坂終端手前位置情報および下り坂手前位置情報等がある。
 積載重量検出部7は、車体本体1aの所定箇所に設けられたロードセル(図示せず)にて検出されたひずみ量に基づき、例えばひずみ量に対応させて予め定めた積載重量テーブル等から、荷台1cに積まれた積荷γの積載重量を算出し、この算出した積載重量に応じた積載重量情報がコントローラ4へ出力される。環境認識部5は、積載重量検出部7から出力される積載重量情報に基づき、積載重量に対応させてダンプトラック1の沈み量を定めた沈み量テーブルを参照し、ダンプトラック1の沈み量を算出し、この算出した沈み量に応じて、ミリ波センサ2a,2bの検出情報を補正する。なお、積載重量検出部7としては、荷台1cに積まれた積荷γの積載重量に応じて変換するサスペンション(図示せず)の変位や油圧の変化から、積荷γの積載重量を検出する構成としてもよい。
 コントローラ4は、所定の情報を管制センタ11に送受信させるための通信部9に接続され、通信部9を介して、環境認識部5にて検出した外界情報や、自己位置推定部6にて推定した自己位置に関する位置情報を管制センタ11へ送信し、ダンプトラック1の自律走行情報等を管制センタ11から受信する。
 管制センタ11は、各ダンプトラック1が走行する搬送エリアA等の鉱山の地図情報が予め記憶された記憶部12と、記憶部12に記憶させた地図情報に基づき各ダンプトラック1の運行を管理する運行管理部13とを備えている。運行管理部13は、所定のダンプトラック1の通信部9に対し、そのダンプトラック1の目的地、走行経路、走行許可地区等の搬送情報を送信する通信部でもある。
 運行管理部13には、ダンプトラック1の配車管理を行う配車管理部14と、鉱山を走行するすべての車両の交通を管制する交通管制部15とが接続され、記憶部12に記憶させた地図情報と、配車管理部14から出力される配車管理情報と、交通管制部15から出力される交通管制情報とに基づき、予め定めた運行パターン等に対比させて、各ダンプトラック1等の運行管理データを作成し、この運行管理データに基づく各ダンプトラック1の搬送情報を、各ダンプトラック1へ無線送信する。各ダンプトラック1は、管制センタ11の運行管理部13から受信した搬送情報に基づいてコントローラ4にて電力制御装置3cが制御され、各ダンプトラック1が自律走行される。
<検出方法>
 次いで、上記第1実施形態に係るダンプトラック1のミリ波センサ2a,2bを用いた前方車両αの検出について、図5ないし図9を参照して説明する。図5は、ダンプトラック1の平坦路での前方車両αの検出を示す説明図である。図6は、ダンプトラック1の上り坂手前位置での前方車両αの検出を示す説明図である。図7は、ダンプトラック1の上り坂終端手前位置での前方車両αの検出を示す説明図である。図8は、ダンプトラック1の下り坂手前位置での前方車両αの検出を示す説明図である。図9は、ダンプトラック1の下り坂終端手前位置での前方車両αの検出を示す説明図である。
(平坦路)
 搬送エリアA中の平坦路を走行している状態では、図5に示すように、下側のミリ波センサ2aでのミリ波の照射範囲a1中、および上側のミリ波センサ2bでのミリ波の照射範囲b1中のそれぞれに、前方を走行する前方車両αが入っており、この前方車両αを検出できる。環境認識部5は、自己位置推定部6にて推定した自己位置に基づいて、記憶部8に記憶された地図情報から車両本体1aの傾きを算出し、この算出した傾きから、現在走行している搬送エリアAの路面が平坦路と判定した場合に、各ミリ波センサ2a,2bにて前方車両αを検出する。
 このとき、下側のミリ波センサ2aによる検出情報と、上側のミリ波センサ2bによる検出情報とをコントローラ4にて比較し、比較した検出情報の相違が、予め定めた所定の閾値以上の場合には誤検知とし、必要に応じ運転席1b等に設けられたエラーランプ(図示せず)を点灯させたり、より危険度の高い側の検出情報に基づいて前方車両aの検出を行ったり、各ミリ波センサ2a,2bによる前方車両αの検出を再度行ったりする。
(上り坂手前)
 搬送エリアA中の上り坂に差し掛かる手前位置を走行している状態では、図6に示すように、搬送エリアAが前方で上側に傾斜しており、この傾斜した前方の搬送エリアAによって各ミリ波センサ2a,2bでのミリ波の照射範囲a2,b2が縮小化され狭くなる。具体的に、下側のミリ波センサ2aでのミリ波の照射範囲a2中には、上り坂を走行している前方車両αが入らず検出できない。
 一方、上側のミリ波センサ2bでのミリ波の照射範囲b2中には、上り坂を走行している前方車両αが入っており検出できる。環境認識部5は、自己位置推定部6にて推定した自己位置に基づいて、記憶部8に記憶された地図情報および上り坂手前位置情報から、現在走行している搬送エリアA上の走行位置が上り坂手前位置と判定した場合に、上側のミリ波センサ2bから出力される検出情報に基づいて前方車両αを検出する。
 同時に、環境認識部5は、自己位置推定部6にて推定した自己位置を、記憶部8に記憶させた地図情報にあてはめる等して、上り坂の傾斜角を算出し、この算出した傾斜角に応じて、上側のミリ波センサ2bの検出情報を補正する。具体的には、自己位置から上り坂始端までの距離と、上り坂の傾斜角に応じた上り坂の走行距離との足し合せた距離を、前方車両αまでの距離とする。
(上り坂終端)
 搬送エリアA中の上り坂終端の手前位置を走行している状態では、図7に示すように、搬送エリアAが前方で下方に傾斜した状態となり、この傾斜した前方の搬送エリアAを走行する前方車両αが、上側のミリ波センサ2bでのミリ波の照射範囲b3中に入らず検出できない。
 一方、下側のミリ波センサ2aでのミリ波の照射範囲a3中には、上り坂を通過し平坦路を走行する前方車両αが入っており検出できる。環境認識部5は、自己位置推定部6にて推定した自己位置に基づいて、記憶部8に記憶された地図情報および上り坂終端手前位置情報から、現在走行している搬送エリアA上の走行位置が上り坂終端手前位置と判定した場合に、下側のミリ波センサ2aから出力される検出情報に基づいて前方車両αを検出する。
 同時に、環境認識部5は、自己位置推定部6にて推定した自己位置を、記憶部8に記憶させた地図情報にあてはめる等して、上り坂の傾斜角を算出し、この算出した傾斜角に応じて、下側のミリ波センサ2aの検出情報を補正する。具体的には、上り坂の傾斜角に応じた自己位置から上り坂終端までの距離と、平坦な路面の走行距離とを足し合せた距離を、前方車両αまでの距離とする。
(下り坂手前)
 搬送エリアA中の下り坂に差し掛かる手前位置を走行している状態では、図8に示すように、搬送エリアAが前方で下方に傾斜しており、この傾斜した前方の搬送エリアAを走行する前方車両αが、上側のミリ波センサ2bでのミリ波の照射範囲b4中に入らず検出できない。
 一方、下側のミリ波センサ2aでのミリ波の照射範囲a4中には、下り坂を走行している前方車両αが入っており検出できる。環境認識部5は、自己位置推定部6にて推定した自己位置に基づいて、記憶部8に記憶された地図情報および下り坂手前位置情報から、現在走行している搬送エリアA上の走行位置が下り坂手前位置と判定した場合に、下側のミリ波センサ2aから出力される検出情報に基づいて前方車両αを検出する。
 同時に、環境認識部5は、自己位置推定部6にて推定した自己位置を、記憶部8に記憶させた地図情報にあてはめる等して、下り坂の傾斜角を算出し、この算出した傾斜角に応じて、下側のミリ波センサ2aの検出情報を補正する。具体的には、自己位置から下り坂始端までの距離と、下り坂の傾斜角に応じた下り坂の走行距離とを足し合せた距離を、前方車両αまでの距離とする。
(下り坂終端)
 搬送エリアA中の下り坂終端の手前位置を走行している状態では、図9に示すように、搬送エリアAが前方で上側に傾斜した状態となり、この傾斜した前方の搬送エリアAによって各ミリ波センサ2a,2bでのミリ波の照射範囲a5,b5が縮小化され狭くなる。すなわち、下側のミリ波センサ2aでのミリ波の照射範囲a5中には、下り坂を通過し平坦路を走行する前方車両αが入らず検出できない。
 一方、上側のミリ波センサ2bでのミリ波の照射範囲b5中には、下り坂を通過し平坦路を走行する前方車両αが入っており検出できる。環境認識部5は、自己位置推定部6にて推定した自己位置に基づいて、記憶部8に記憶された地図情報および下り坂終端手前位置情報から、現在走行している搬送エリアA上の走行位置が下り坂終端手前位置と判定した場合に、上側のミリ波センサ2bから出力される検出情報に基づいて前方車両αを検出する。
 同時に、環境認識部5は、自己位置推定部6にて推定した自己位置を、記憶部8に記憶させた地図情報にあてはめる等して、下り坂の傾斜角を算出し、この算出した傾斜角に応じて、上側のミリ波センサ2bの検出情報を補正する。具体的には、下り坂の傾斜角に応じた自己位置から下り坂終端までの距離と、平坦な路面の走行距離とを足し合せた距離を、前方車両αまでの距離とする。
(走行制御)
 コントローラ4は、環境認識部5にて検出した前方車両αに関する前方車両情報、および自己位置推定部6にて推定した自己位置情報を、位置情報として通信部9を介して管制センタ11の運行管理部13へ送信する。このとき、コントローラ4は、ミリ波センサ2a,2bでの検出情報に基づいて算出した前方車両αまでの距離情報を、ダンプトラック1の沈み量に応じて補正する。
 管制センタ11は、各ダンプトラック1から送信されてくる位置情報に基づき、記憶部12に記憶させた地図情報、配車管理部14から出力される配車管理情報、および交通管制部15から出力される交通管制情報を考慮した各ダンプトラック1の搬送情報を運行管理部13にて作成し、この作成した搬送情報を各ダンプトラック1の通信部9へ無線送信する。各ダンプトラック1は、管制センタ11の運行管理部13から受信した搬送情報に基づいてコントローラ4にて電力制御装置3cが制御され、前方車両αの位置および走行速度が考慮された自律走行とされる。
 特に、管制センタ11の運行管理部13は、環境認識部5で検出した障害物の位置情報を、運行管理部13の情報と照らし合わせ、検出した障害物の車両を特定してダンプトラック1へ無線送信する。或いは、運行管理部13は、その障害物が識別不能と判断した場合に、サービスカー等の車両を出動させて障害物を確認させ、必要に応じてグレーダ等のメンテナンスカーを出動させて除去させる。同時に、解析した障害物に応じた走行・停止・回避制御を含む搬送情報を各ダンプトラック1へ無線送信し、各ダンプトラック1の自律走行を制御して、所定のダンプトラック1の障害物への衝突を回避させる。
<作用効果>
 以上により、上記第1実施形態に係るダンプトラック1においては、複数、例えば2台の固定式のミリ波センサ2a,2bを車両本体1aの高さ方向の異なる位置に取り付けた構成としている。この構成により、ダンプトラック1が走行する搬送エリアAの勾配が変化している場合においても、ミリ波センサ2a,2bでのミリ波の照射範囲a1,b1が上下方向にずれるため、いずれか一方のミリ波センサ2a,2bにて検出できない前方車両αを、いずれか他方のミリ波センサ2b,2aにて検出することが可能となる。
 特に、図6に示す上り坂手前位置や、図9に示す下り坂終端手前位置において、下側のミリ波センサ2aでのミリ波の照射範囲a2,a5に入らず検出できない前方車両αが、上側のミリ波センサBでのミリ波の照射範囲b2,b5に入り検出できる。また、図7に示す上り坂終端手前位置や、図8に示す下り坂手前位置において、上側のミリ波センサ2bでのミリ波の照射範囲b3,b4に入らず検出できない前方車両αが、下側のミリ波センサ2aでのミリ波の照射範囲a3,a4に入り検出できる。よって、勾配が変化する搬送エリアAにおいても、前方車両αを適切に検出でき、ダンプトラック1での前方車両αの検出範囲を拡大できる。
 さらに、ミリ波センサ2a,2bの検出情報は、荷台1cの積荷γの積載重量に応じたダンプトラック1の沈み量に応じて変化する。このため、積載重量検出部7にて検出した積載重量情報に基づき、環境認識部5にてミリ波センサ2a,2bの検出情報を補正する。この結果、ダンプトラック1の積荷γの積載重量の変化に伴う前方車両αまでの距離等の算出誤差を少なくでき、管制センタ11に送信する位置情報をより正確にできるため、管制センタ11による複数のダンプトラック1の運行管理をより正確にできる。
[第2実施形態]
 図10は、本発明の第2実施形態に係るダンプトラック1Aを示す概略図である。図11は、ダンプトラック1Aと管制センタ11との関係を示す概略構成図である。本第2実施形態が前述した第1実施形態と異なるのは、第1実施形態は、高さ方向が異なる位置に取り付けられた2台の固定式のミリ波センサ2a,2bにて前方車両αを検出したのに対し、第2実施形態は、検出方向が可変とされた1台の可変式のミリ波センサ21にて前方車両αを検出する。なお、本第2実施形態において、第1実施形態と同一又は対応する部分には同一符号を付している。
<構成>
 本第2実施形態において、ミリ波センサ21は、図10に示すように、上記第1実施形態に係るミリ波センサ2aと同様に、ダンプトラック1Aの車両本体1aの前面の幅方向の中心位置であって、例えば地上から1.5m程度の高さ位置に取り付けられている。ミリ波センサ21は、図11に示すように、ミリ波センサ21でのミリ波の照射範囲aの中心方向、すなわち検出方向(照射方向)bを上下方向に角度調整可能とさせる検出方向調整部としての駆動部22に取り付けられている。駆動部22は、コントローラ4に接続され、コントローラ4にて駆動制御される。
 ミリ波センサ21は、コントローラ4による駆動部22の駆動制御によってミリ波の照射範囲aが変更される。ミリ波センサ21は、ダンプトラック1Aの自己位置が、搬送エリアA中の平坦路を走行しているとコントローラ4にて判断された場合に、ミリ波センサ21でのミリ波の検出方向bが水平方向に調整される。
<検出方法>
 次いで、上記第2実施形態に係るダンプトラック1Aのミリ波センサ21を用いた前方車両αの検出について、図12および図13を参照して説明する。図12は、ダンプトラック1Aの上り坂手前位置での前方車両αの検出を示す説明図である。図13は、ダンプトラック1Aの上り坂終端手前位置での前方車両αの検出を示す説明図である。
 ダンプトラック1Aの自己位置が、図12に示すように、搬送エリアA中の予め定めた上り坂に差し掛かる手前の所定位置、または下り坂終端手前の所定位置とコントローラ4にて判断された場合は、ミリ波センサ21でのミリ波の検出方向bが、水平方向から上方に、所定角度θほど駆動部22にて駆動されて検出方向b´とされ、ミリ波センサ21のミリ波照射位置(目標注視点距離)cが上方に調整される。この場合には、記憶部8に記憶させた地図情報にダンプトラック1Aの自己位置をあてはめる等して算出した、前方の搬送エリアAによるミリ波センサ21でのミリ波の照射範囲の縮小化に対応させて、ミリ波センサ21でのミリ波の検出方向bを徐々に変化させても良い。
 また、ダンプトラック1Aの自己位置が、図13に示すように、上り坂終端手前の所定位置とコントローラ4にて判断された場合は、ミリ波センサ21でのミリ波の検出方向bが、水平方向から下方に、所定角度θほど駆動部22にて駆動されて検出方向b´´とされ、ミリ波センサ21のミリ波照射位置(目標注視点距離)cが下方に調整される。この場合には、前方の平坦な搬送エリアAを走行する前方車両αが検出可能となる照射範囲に対応させて、ミリ波センサ21でのミリ波の検出方向bを徐々に変化させても良い。
<作用効果>
 以上により、上記第2実施形態に係るダンプトラック1Aにおいては、ミリ波の検出方向bを上下方向に調整可能とした1台のミリ波センサ21にて前方車両αを検出するようにし、ダンプトラック1Aの自己位置が、搬送エリアA中の予め定めた上り坂に差し掛かる手前の所定位置、または下り坂終端手前の所定位置とコントローラ4にて判断された場合に、ミリ波センサ21でのミリ波の検出方向bを上方へ調整する。また、搬送エリアA中の予め定めた下り坂に差し掛かる手前の所定位置、または上り坂終端手前の所定位置とコントローラ4にて判断された場合には、ミリ波センサ21でのミリ波の検出方向bを下方へ調整する構成にしている。
 この結果、搬送エリアAの勾配が変化する場合であっても、自己位置推定部6にて推定した自己位置を、記憶部8に記憶させた地図情報にあてはめて算出した傾斜情報に基づき、コントローラ4にてミリ波センサ21でのミリ波の検出方向bを上下方向に適宜調整することによって、勾配が変化する搬送エリアAにおいても1台の可変式のミリ波センサ21にて前方車両αを適切に検出できる。
[第3実施形態]
 図14は、本発明の第3実施形態に係るダンプトラック1Bを示す概略図である。本第3実施形態が前述した第1実施形態と異なるのは、第1実施形態は、検出方向が固定された2台のミリ波センサ2a,2bにて前方車両αを検出したのに対し、第3実施形態は、検出方向が固定された1台のミリ波センサ2aと、検出方向が可変とされた1台のミリ波センサ21とにて前方車両αを検出する。なお、本第3実施形態において、第1および第2実施形態と同一又は対応する部分には同一符号を付している。
<構成>
 本第3実施形態において、ミリ波センサ2aは、図14に示すように、上記第1実施形態と同様に、ダンプトラック1Bの車両本体1aの前面の幅方向の中心位置であって、例えば地上から1.5m程度の高さ位置に取り付けられている。ミリ波センサ21は、ミリ波センサ2aに対し高さ方向を異ならせた位置、すなわちミリ波センサ2aの上方に、上下方向を沿わせた状態とされて取り付けられている。ミリ波センサ21は、上記第2実施形態と同様に駆動部22に取り付けられ、駆動部22を介してコントローラ4にて駆動制御される。
<検出方法>
 ダンプトラック1Bの自己位置が、搬送エリアA中の予め定めた平坦路とコントローラ4にて判断されている場合には、固定式のミリ波センサ2aのみオンさせ、ミリ波センサ2aから出力される検出情報に基づいて環境認定部5により前方車両αを検出する。
 一方、ダンプトラック1Bの自己位置が、搬送エリアA中の予め定めた上り坂に差し掛かる手前の所定位置、または下り坂終端手前の所定位置であって、固定式のミリ波センサ2aでのミリ波の照射範囲aより上方に位置する前方車両αを検出する必要のある予め定めた所定位置とコントローラ4にて判断された場合には、可変式のミリ波センサ21をオンさせる。次いで、ミリ波センサ21の検出方向bを、所定角度θほど水平方向より上方に駆動部22にて駆動させ、可変式のミリ波センサ21から出力される検出情報に基づいて環境認定部5にて前方車両αを検出する。
 また、ダンプトラック1Bの自己位置が、搬送エリアA中の予め定めた下り坂に差し掛かる手前の所定位置、または上り坂終端手前の所定位置であって、固定式のミリ波センサ2aでのミリ波による照射範囲aより下方に位置する前方車両αを検出する必要のある予め定めた所定位置とコントローラ4にて判断された場合には、図15に示すように、固定式のミリ波センサ2aの照射範囲aに前方車両αが入らず検出できない。この場合には、可変式のミリ波センサ21をオンさせ、ミリ波センサ21の検出方向bを、所定角度θほど水平方向より下方に駆動部22にて駆動させて検出方向b´とし、ミリ波センサ21から出力される検出情報に基づいて環境認定部5にて前方車両αを検出する。
<作用効果>
 以上により、上記第3実施形態に係るダンプトラック1Bにおいては、固定式のミリ波センサ2aと可変式のミリ波センサ21とを備え、搬送エリアAの勾配の変化により、固定式のミリ波センサ2aでのミリ波の照射範囲a外の前方車両αを検出する必要がある場合に、可変式のミリ波センサ21を駆動部22にて駆動させ、ミリ波センサ21でのミリ波の検出方向bを調整する構成としている。
 この結果、搬送エリアAの勾配が変化する場合であっても、自己位置推定部6にて推定した自己位置を地図情報にあてはめる等して算出した傾斜情報に基づいて、可変式のミリ波センサ21でのミリ波の照射方向bを調整することによって、固定式のミリ波センサ2aの照射範囲a外の前方車両αを検出でき、勾配が変化する搬送エリアAにおいて前方車両αを適切に検出できる。
[第4実施形態]
 図16は、本発明の第4実施形態に係るダンプトラック1Cを示す概略図である。本第4実施形態が前述した第3実施形態と異なるのは、第3実施形態は、高さ方向が異なる位置に固定式のミリ波センサ2aと可変式のミリ波センサ21とを取り付けているのに対し、第4実施形態は、固定式のミリ波センサ2aと可変式のミリ波センサ21とを水平に並べて取り付けている。なお、本第4実施形態において、第1ないし第3実施形態と同一又は対応する部分には同一符号を付している。
<構成>
 本第4実施形態において、固定式のミリ波センサ2aと、可変式のミリ波センサ21とは、図16に示すように、ダンプトラック1Cの車両本体1aの前面の幅方向の中心位置から水平方向(左右方向)に等間隔に離した位置であって、例えば地上から1.5m程度の高さ位置に取り付けられている。ミリ波センサ2a,21は、等しい高さ位置に取り付けられ、ミリ波センサ2a,21それぞれでのミリ波の検出方向bを、車両本体1aの幅方向の中心位置側に傾けた状態とされている。ミリ波センサ21は、駆動部22を介してコントローラ4にて駆動制御される。
<検出方法>
 固定式のミリ波センサ2aにて検出できない位置の前方車両αを検出する所定位置においては、可変式のミリ波センサ21をオンさせ、ミリ波センサ21の検出方向bを、所定角度θほど上方または下方に駆動部22にて駆動させる。そして、可変式のミリ波センサ21から出力される検出情報に基づいて環境認定部5により前方車両αを検出する。
<作用効果>
 以上により、上記第4実施形態に係るダンプトラック1Cにおいては、固定式のミリ波センサ2aと可変式のミリ波センサ21とを水平に並べた構成としている。この構成に基づき、搬送エリアAにおける勾配の変化に応じて、可変式のミリ波センサ21をオンさせ、ミリ波センサ21でのミリ波の照射範囲αを駆動部22にて変更させることにより、固定式のミリ波センサ2aでのミリ波の照射範囲a外の前方車両αを検出できる。よって、勾配が変化する搬送エリアAにおいて前方車両αを適切に検出できる。
[その他]
 なお、本発明は前述した実施形態に限定されるものではなく、様々な変形態様が含まれる。例えば、前述した実施形態は、本発明を分りやすく説明するために説明したものであり、本発明は、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 上記各実施形態においては、無人走行式のダンプトラック1~1Cを例として説明したが、本発明はこれに限定されず、オペレータによる走行操作が可能な有人走行式のダンプトラックであってもよい。また、他のダンプトラック1~1C以外のパトロールカーやグレーダ等の先行車両αや、その他の搬送エリアA上の障害物等を検出するようにしてもよい。また、ダンプトラック1~1Cの記憶部8に地図情報を記憶させ、この記憶部8に記憶させた地図情報に基づいてダンプトラック1~1Cの自己位置や、傾斜状況等を検出する構成としたが、管制センタ11の記憶部12に記憶させた地図情報をダンプトラック1~1Cにて受信し、この受信した地図情報に基づいてダンプトラック1~1Cの自己位置等を検出するようにしてもよい。
 また、上記各実施形態においては、前方車両αを検出するための障害物検出部として、ミリ波センサ2a,2b,21を用いた構成について説明したが、例えばステレオカメラ等のミリ波センサ以外の障害物検出部であってもよい。特に、ステレオカメラは前方視界を覆う土埃による影響が少ないため、高さ方向が異なる上側にステレオカメラを取り付け、下側にミリ波センサ2a等を取り付けることにより、前方車両αの土埃による検出低下を防止することができる。
 また、上記第1実施形態においては、高さ方向の異なる位置に取り付けた2台の固定式のミリ波センサ2a,2bを用い、上記第2実施形態においては、1台の可変式のミリ波センサ21を用い、上記第3および第4実施形態においては、1台の固定式のミリ波センサ2aと1台の可変式のミリ波センサ21とを用いたが、ダンプトラック1~1Cを走行させる搬送エリアAの勾配状況等に応じ、これら固定式のミリ波センサ2a,2bおよび可変式のミリ波センサ21を適宜組み合わせて用いてもよい。
 1、1A,1B,1C ダンプトラック(鉱山用運搬車両)
 1a 車両本体
 1b 運転席
 1c 荷台
 1d 前輪
 1e 後輪
 2a,2b ミリ波センサ(障害物検出部)
 2c ステレオカメラ
 2d レーザレーダ
 2e GPS装置(位置検出部)
 2f IMU装置
 2g 車速センサ
 3  走行駆動装置
 3a エンジン
 3b 発電機
 3c 電力制御装置
 3d 走行モータ
 3e ステアリングモータ
 3f ブレーキ装置
 4  コントローラ
 5  環境認識部(検出情報補正部)
 6  自己位置推定部
 7  積載重量検出部
 8  記憶部
 9  通信部
 11 管制センタ
 12 記憶部
 13 運行管理部
 14 配車管理部
 15 交通管制部
 21 ミリ波センサ(障害物検出部)
 22 駆動部(検出方向調整部)

Claims (3)

  1.  車両本体と、
     前記車両本体の前方向の障害物を検出する障害物検出部と、
     前記障害物検出部の検出方向を上下方向に調整する検出方向調整部と、
     を備えたことを特徴とする鉱山用運搬車両。
  2.  請求項1に記載の鉱山用運搬車両において、
     走行位置を検出する位置検出部と、
     走行路の傾斜角情報を含む地図情報を記憶する記憶部と、
     前記位置検出部にて検出した走行位置と、前記記憶部に記憶した地図情報とに基づいて、前記障害物検出部の検出情報を補正する検出情報補正部と、
     を備えたことを特徴とする鉱山用運搬車両。
  3.  請求項1または2に記載の鉱山用運搬車両において、
     荷台と、
     前記荷台に積まれた積荷の積載重量を検出する積載重量検出部と、を備え、
     前記検出情報補正部は、前記積載重量検出部にて検出された積載重量に基づき前記障害物検出部の検出情報を補正する
     ことを特徴とする鉱山用運搬車両。
PCT/JP2014/077875 2013-11-08 2014-10-20 鉱山用運搬車両 WO2015068560A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013232406A JP6247904B2 (ja) 2013-11-08 2013-11-08 鉱山用運搬車両
JP2013-232406 2013-11-08

Publications (1)

Publication Number Publication Date
WO2015068560A1 true WO2015068560A1 (ja) 2015-05-14

Family

ID=53041343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077875 WO2015068560A1 (ja) 2013-11-08 2014-10-20 鉱山用運搬車両

Country Status (2)

Country Link
JP (1) JP6247904B2 (ja)
WO (1) WO2015068560A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6491893B2 (ja) * 2015-01-29 2019-03-27 シャープ株式会社 自律走行制御システムとこれを用いる自律走行装置及び自律走行制御方法と制御プログラムと記録媒体
CN105223952B (zh) * 2015-09-28 2019-03-29 小米科技有限责任公司 平衡车的控制方法及装置
DE102015224553A1 (de) * 2015-12-08 2017-06-08 Robert Bosch Gmbh Verfahren, Computerprogramm, Speichermedium und Elektronische Steuereinheit zum Betreiben eines Fahrzeugs
CN107765697B (zh) * 2016-08-23 2023-11-03 苏州宝时得电动工具有限公司 自移动设备以及自移动设备控制方法
JPWO2018043540A1 (ja) * 2016-08-31 2019-06-24 パイオニア株式会社 制御装置、制御方法、およびプログラム
KR20200045162A (ko) 2018-10-22 2020-05-04 주식회사 이에스피 주변 환경에 가장 적합한 무선 주파수 통신 장치 및 방법
JP7349277B2 (ja) * 2019-07-10 2023-09-22 ヤンマーパワーテクノロジー株式会社 作業車両用の自動走行システム
JP7149366B1 (ja) 2021-03-26 2022-10-06 日立建機株式会社 運搬車両及び車両制御システム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10142332A (ja) * 1996-11-13 1998-05-29 Komatsu Ltd ミリ波レーダ搭載車両
JPH1166497A (ja) * 1997-08-22 1999-03-09 Komatsu Ltd 自走車両の車速制御装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6173215B1 (en) * 1997-12-19 2001-01-09 Caterpillar Inc. Method for determining a desired response to detection of an obstacle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10142332A (ja) * 1996-11-13 1998-05-29 Komatsu Ltd ミリ波レーダ搭載車両
JPH1166497A (ja) * 1997-08-22 1999-03-09 Komatsu Ltd 自走車両の車速制御装置

Also Published As

Publication number Publication date
JP2015094994A (ja) 2015-05-18
JP6247904B2 (ja) 2017-12-13

Similar Documents

Publication Publication Date Title
JP6247904B2 (ja) 鉱山用運搬車両
US20180081368A1 (en) Vehicle and operation system for transport vehicle for mine
US11860642B2 (en) Autonomous vehicle towing system and method
US10852746B2 (en) Detecting general road weather conditions
JP6580982B2 (ja) オフロードダンプトラック及び障害物判別装置
US10800403B2 (en) Autonomous ride dynamics comfort controller
JP6599835B2 (ja) 鉱山用作業機械、障害物判別装置、及び障害物判別方法
US9731716B2 (en) Transporter vehicle, dump truck, and transporter vehicle control method
US10800406B2 (en) Mining machine, management system of mining machine, and management method of mining machine
US10202116B2 (en) Mining machine control system, mining machine, mining machine management system, and mining machine management method
US10940851B2 (en) Determining wheel slippage on self driving vehicle
US11572084B2 (en) Integrated systems for passenger bus
JP6270518B2 (ja) 作業車両の管制システム
US10272732B2 (en) Sensor linked suspension
JP2017199401A (ja) 鉱山用運搬車両
US11059480B2 (en) Collision avoidance system with elevation compensation
JP7308900B2 (ja) 車両の走行制御処理システム
KR20210124586A (ko) 운전자 보조 장치 및 차량
US20230341858A1 (en) Work site management system and work site management method
CA3132143C (en) Integrated systems for passenger bus
WO2022024524A1 (ja) 無人車両の制御システム、無人車両、及び無人車両の制御方法
JP2024001501A (ja) 車両制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14860897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14860897

Country of ref document: EP

Kind code of ref document: A1