WO2015068515A1 - 内視鏡リプロセス装置 - Google Patents

内視鏡リプロセス装置 Download PDF

Info

Publication number
WO2015068515A1
WO2015068515A1 PCT/JP2014/076806 JP2014076806W WO2015068515A1 WO 2015068515 A1 WO2015068515 A1 WO 2015068515A1 JP 2014076806 W JP2014076806 W JP 2014076806W WO 2015068515 A1 WO2015068515 A1 WO 2015068515A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
unit
scale
temporal change
endoscope
Prior art date
Application number
PCT/JP2014/076806
Other languages
English (en)
French (fr)
Inventor
貴彦 川瀬
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to JP2015510538A priority Critical patent/JP5747368B1/ja
Publication of WO2015068515A1 publication Critical patent/WO2015068515A1/ja
Priority to US14/802,444 priority patent/US9420943B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/12Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements
    • A61B1/121Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements provided with means for cleaning post-use
    • A61B1/125Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements provided with means for cleaning post-use using fluid circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00057Operational features of endoscopes provided with means for testing or calibration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/12Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements
    • A61B1/121Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements provided with means for cleaning post-use
    • A61B1/123Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements provided with means for cleaning post-use using washing machines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/24Apparatus using programmed or automatic operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00006Operational features of endoscopes characterised by electronic signal processing of control signals

Definitions

  • the present invention relates to an endoscope reprocessing apparatus that identifies the cause of clogging of a pipe line in the apparatus.
  • an endoscope line is connected to an endoscope connection part of an endoscope reprocessing apparatus, and a liquid supply line, a circulation line, and an endoscope connection part are connected from a liquid supply source in the endoscope reprocessing apparatus.
  • a configuration of an endoscope reprocessing apparatus that cleans and disinfects an endoscope pipeline by supplying a liquid into the endoscope pipeline via a tube is well known.
  • a pump that circulates liquid is provided in a circulation line, and a pressure sensor and a flow rate sensor that measure the pressure and flow rate of the liquid that passes through the circulation line are provided.
  • the endoscope reprocessing device detects clogging in the endoscope line and clogging in the circulation line by monitoring the pressure and flow rate measured by the pressure sensor and the flow rate sensor.
  • a pressure sensor is provided in each of a plurality of apparatus internal pipes, and an excessive pressure in each apparatus internal pipe is detected by these pressure sensors, thereby causing clogging in the apparatus internal pipe.
  • An endoscope reprocessing apparatus for detecting a path is disclosed.
  • Such clogging of the pipe in the apparatus includes a sudden clogging due to entry of filth and the like into the pipe in the apparatus and clogging due to a scale accumulated in the pipe in the apparatus for a long period.
  • the scale is obtained by depositing calcium carbonate or the like in the apparatus internal pipe when water having high hardness is dried in the apparatus internal pipe.
  • the cause of clogging is the scale, it is necessary to remove the scale by executing the scale removal program.
  • the cause of the clogging is other than the scale, for example, clogging of the pipe in the apparatus due to dirt, etc., it is necessary to check the filter provided in the pipe in the apparatus and remove the dirt.
  • the cause of the blockage in the apparatus cannot be determined. Therefore, the user cannot determine whether to execute the scale removal program or check the filter. That is, the conventional endoscope reprocessing apparatus cannot identify the cause of the clogging, and therefore cannot take a wasteful removal means adapted to the cause of the clogging.
  • an object of the present invention is to provide an endoscope reprocessing apparatus that can identify the cause of clogging of the pipe in the apparatus and can take removal means suitable for the cause of the clogging.
  • An endoscope reprocessing apparatus includes a fluid supply pipe that supplies fluid to at least one of an endoscope channel and an outer skin, and a flow rate that measures a flow rate of the fluid that flows through the fluid supply pipe.
  • a flow rate information storage unit stores the flow rate measured by the flow rate measurement unit as flow rate information linked to the measurement time, and when the flow rate information storage unit stores a predetermined number or more of the flow rate information.
  • a prediction unit that calculates a flow rate change prediction axis from the accumulated flow rate information, a threshold determination unit that determines whether the flow rate information measured by the flow rate measurement unit deviates from a predetermined threshold value, and the threshold value Correlation for determining whether or not the latest flow rate information measured by the flow rate measurement unit has a correlation with the predicted change axis when the determination unit determines that the threshold value is deviated. Judgment part When the correlation determination unit determines that there is a correlation, the first measure for removing the scale is performed, and when the correlation determination unit determines that there is no correlation, the scale is And a control unit that performs a second measure different from the removal of.
  • FIG. 10 is a flowchart for explaining a scale detection process of the endoscope reprocessing apparatus 1 according to Modification 1.
  • FIG. 12 is a flowchart for explaining a scale detection process of the endoscope reprocessing apparatus 1 according to Modification 2. It is a block diagram for demonstrating the internal structure of the endoscope reprocessing apparatus which concerns on 2nd Embodiment. It is a figure for demonstrating the detection of the scale by the system control part 41a. It is a figure for demonstrating the detection of the scale by the system control part 41a. It is a flowchart for demonstrating the scale detection process of the endoscope reprocessing apparatus 1a which concerns on 2nd Embodiment.
  • FIG. 1 is a perspective view showing an example of an endoscope reprocessing apparatus according to the first embodiment.
  • the endoscope reprocessing apparatus 1 is an apparatus that simultaneously cleans and disinfects two endoscopes 51 and 52, and the apparatus main body 2 and an upper portion of the apparatus main body 2 are For example, it is comprised by the top cover 3 which is a cover part connected so that opening and closing is possible via the hinge which is not shown in figure.
  • the endoscope reprocessing apparatus 1 is configured to clean and disinfect the two endoscopes 51 and 52.
  • the number of endoscopes that can be cleaned and disinfected by the endoscope reprocessing apparatus 1 is 2. It is not limited to a book, One or three or more may be sufficient.
  • the apparatus main body 2 and the top cover 3 are closed by, for example, a latch 4 disposed at a position where the apparatus main body 2 and the top cover 3 face each other. After that, it is locked.
  • a pedal switch 5 for opening the top cover 3 closed on the upper portion of the apparatus main body 2 to the upper side of the apparatus main body 2 by an operator's stepping operation is disposed at the lower part of the front surface of the apparatus main body 2 in the drawing. ing.
  • a sub operation panel 6 is provided on the front surface of the apparatus main body 2, for example, on the upper right half, and is provided with an indication switch for displaying a cleaning / disinfecting time and various operation instructions.
  • the apparatus main body 2 is cleaned, the sterilization operation start switch, and the scale removal program executed when removing the scale are executed.
  • a main operation panel 7 on which a scale removal program execution switch and the like are provided.
  • a water supply hose connected to a water tap for supplying tap water to the device main body 2 is connected to the upper surface of the device main body 2 on the back side facing the front surface close to the operator.
  • a connection port 8 is provided.
  • the water supply hose connection port 8 may be provided with a mesh filter for filtering tap water.
  • a cleaning / disinfecting tank 9 that can accommodate the endoscopes 51 and 52 that can open and close the endoscope housing that opens upward by the top cover 3 is provided at a substantially central portion of the upper surface of the apparatus main body 2.
  • the cleaning / disinfecting tank 9 includes, for example, a tank main body 10 and a terrace portion 11 that is continuously provided around the outer peripheral edge of the endoscope receiving port of the tank main body 10.
  • the tank body 10 can be accommodated when the used endoscopes 51 and 52 are cleaned and disinfected.
  • the tank body 10 has a tank body 10 on the bottom surface 10t which is a surface inside the tank.
  • a drain port 12 is provided for draining a cleaning liquid, water, a disinfecting liquid, an aqueous citric acid solution, and the like, which are fluids supplied to the tank 10, from the tank body 10.
  • the cleaning liquid, water, disinfecting solution, citric acid aqueous solution and the like supplied to the tank main body 10 are supplied from the circulation nozzle 18 to the tank main body 10 at an arbitrary position on the circumferential side surface 10 s which is a surface inside the tank main body 10.
  • a circulation port 13 is provided for supplying the fluid again.
  • the circulation port 13 supplies the cleaning liquid, water, and disinfecting liquid supplied to the tank body 10 from the tank body 10 to each pipe line disposed in the endoscopes 51 and 52.
  • the circulation port 13 may be provided on the bottom surface 10 t of the tank body 10.
  • buttons such as scope switches of the endoscopes 51 and 52, forceps plugs, and the like are accommodated in the approximate center of the bottom surface 10t of the tank body 10, and these buttons and forceps plugs are accommodated in the endoscope.
  • a cleaning case 14 for cleaning and disinfecting together with 51 and 52 is provided.
  • the liquid level of the cleaning liquid, water, disinfecting liquid, citric acid aqueous solution or the like supplied to the tank main body 10 is detected at an arbitrary position on the side surface 10 s of the tank main body 10, and the liquid is set to the set water level in the cleaning / disinfecting tank 9.
  • a water level sensor 15 with a cover is provided for reliable supply.
  • the terrace portion 11 of the cleaning / disinfecting tank 9 has an inclined surface directed obliquely upward, specifically, a circumferential terrace surface 11t inclined at a predetermined angle with respect to the bottom surface 10t of the tank body 10, for example. Is formed.
  • a detergent nozzle 16 for supplying cleaning liquid from a detergent tank (not shown) to the tank body 10 is disposed on a surface other than the terrace surface 11t of the terrace portion 11, that is, a surface 11f parallel to the bottom surface 10t of the tank body 10. ing.
  • the detergent nozzle 16 may be disposed on the terrace surface 11t.
  • a disinfecting liquid nozzle 17 for supplying the disinfecting liquid from the disinfecting liquid tank 33 to the tank body 10 is disposed on the terrace surface 11t of the terrace portion 11.
  • a cleaning liquid, water, a disinfecting liquid, a citric acid aqueous solution, or the like that supplies water used for cleaning or rinsing to the tank body 10 to the terrace surface 11t or sucked from the circulation port 13 of the tank body 10
  • a circulation nozzle 18 is provided for supplying the tank body 10 again.
  • a pump valve nozzle 19 to be described later is disposed on the terrace surface 11t.
  • the disinfecting liquid nozzle 17, the circulation nozzle 18 and the pump valve nozzle 19 may be disposed on the parallel surface 11f.
  • endoscope connection portions 20a and 20b connected to the endoscope 51 via a tube and a tube are provided at predetermined positions facing the cleaning / disinfecting tank 9 of the apparatus main body 2.
  • the number of endoscope connection portions connected to the conduit of the endoscope 51 is not limited to two.
  • endoscope connection portions 20c and 20d that are connected via a tube and a tube of the endoscope 52 are provided at predetermined positions facing the cleaning / disinfecting tank 9 of the apparatus main body 2. Note that the number of endoscope connection portions connected to the conduit of the endoscope 52 is not limited to two.
  • FIG. 2 is a block diagram for explaining an internal configuration of the endoscope reprocessing apparatus according to the first embodiment. 2 shows an example in which the endoscope 51 is connected via the endoscope connecting portions 20a and 20b. However, the endoscope 51 is not shown through the endoscope connecting portions 20c and 20d, which are not shown. A mirror 52 may be connected.
  • the circulation port 13 of the tank body 10 is connected to one end of the circulation line 21.
  • a filter 22 is provided at a predetermined position of the circulation pipe 21 to remove dirt and the like that cause clogging. Further, the other end of the circulation line 21 is branched into two so as to communicate with one end of the circulation line 23 and one end of the circulation line 24.
  • the other end of the circulation line 23 communicates with the cleaning / disinfecting tank 9, the pump valve nozzle 19, and the endoscope connecting portions 20a and 20b.
  • the circulation pipe 23 is provided with a pump 25, a flow sensor 26, a pump valve 27, an electromagnetic valve 28, and a relief valve 29 in order from one end side in the middle of the pipe.
  • the circulation pipe 24 communicates with the circulation nozzle 18.
  • the circulation line 24 is provided with a pump 30 and a flow rate sensor 31 sequentially from one end side in the middle of the line.
  • the circulation pipes 21 and 23 constitute a fluid supply pipe that supplies fluid to the channels of the endoscopes 51 and 52, and the circulation pipes 21 and 24 are formed on the outer skin of the endoscopes 51 and 52.
  • a fluid supply line for supplying fluid is configured.
  • the flow rate sensors 26 and 31 as flow rate measuring units measure the flow rate of the fluid that passes through the circulation lines 23 and 24, respectively, and are composed of, for example, an electromagnetic induction flow meter. Measurement values (flow rate values) measured by the flow sensors 26 and 31 are output to the system control unit 41.
  • the pump valve 27 and the electromagnetic valve 28 are controlled to be opened and closed by the system control unit 41.
  • the pump valve 27 is closed by the system control unit 41 and the electromagnetic valve 28 is opened, the fluid in the cleaning / disinfecting tank 9 is driven by the pump 25 so that the circulation port 13, the circulation line 21, the circulation line 23, It is supplied to each pipe line of the endoscope 51 through the endoscope connecting portions 20a and 20b.
  • the pump valve 27 is opened by the system control unit 41 and the electromagnetic valve 28 is closed, the fluid in the cleaning / disinfecting tank 9 is driven by the pump 25 so that the circulation port 13, the circulation line 21, and the circulation line 23 are driven. Then, it is supplied again to the cleaning / disinfecting tank 9 through the pump valve nozzle 19. Thereby, the flow rate of the pump 25 alone can be measured by the flow rate sensor 26.
  • the fluid in the cleaning / disinfecting tank 9 is supplied again to the cleaning / disinfecting tank 9 through the circulation port 13, the circulation line 21, the circulation line 24, and the circulation nozzle 18 by driving the pump 30.
  • the disinfecting liquid nozzle 17 is connected to one end of the disinfecting liquid pipe 32, and the other end of the disinfecting liquid pipe 32 communicates with the disinfecting liquid tank 33.
  • a pump 34 is provided in the middle of the disinfecting liquid conduit 32, and the disinfecting liquid stored in the disinfecting liquid tank 33 is washed through the disinfecting liquid conduit 32 and the disinfecting liquid nozzle 17 by driving the pump 34. It is supplied into the disinfection tank 9.
  • the disinfecting liquid stored in the disinfecting liquid tank 33 is discharged, the inside of the disinfecting liquid tank 33 is rinsed with water, and then the citric acid aqueous solution is introduced into the disinfecting liquid tank 33.
  • a citric acid storage tank 35 or 37 as a removed medicine storage section in which an aqueous citric acid solution is stored may be provided separately from the disinfecting liquid tank 33.
  • a three-way solenoid valve 36 is provided in the middle of the disinfecting liquid conduit 32.
  • the three-way solenoid valve 36 is a valve that switches communication between the disinfecting liquid nozzle 17 and the disinfecting liquid tank 33 or communication between the disinfecting liquid nozzle 17 and the citric acid storage tank 35 using an internal valve. That is, the disinfecting liquid nozzle 17 communicates with either the disinfecting liquid tank 33 or the citric acid storage tank 35 in accordance with the switching operation of the three-way solenoid valve 36.
  • a pipe 39 having one end communicating with the citric acid storage tank 37 and the other end communicating with the nozzle 38 is provided, and a pump 40 is provided in the middle of the pipe 39.
  • the system control unit 41 includes a storage unit 42, a calculation unit 43, and a control unit 44.
  • the system control unit 41 controls the entire system and detects scales deposited on the circulation pipes 21, 23, 24 and the like based on the measurement values from the flow sensors 26 and 31.
  • the flow rate sensors 26 and 31 are provided as the flow rate sensor for detecting the scale, but only one of the flow rate sensors may be provided.
  • the structure which provides the flow sensor 31 only in the circulation line 24 which is an atmosphere open line may be sufficient.
  • the circulation pipe 23 in FIG. 2 can be opened to the atmosphere by connecting a connector or the like to the endoscope connecting portions 20a and 20b and releasing the connector. Even in the state where the endoscope 51 is connected to the endoscope connecting portions 20a and 20b, the circulation valve 23 can be made an atmosphere open pipe by opening the pump valve 27 and closing the electromagnetic valve 28. it can. Therefore, the flow sensor 26 of the circulation line 23 can also be used as a flow sensor for scale detection.
  • FIG. 3 is a diagram for explaining the detection of the scale by the system control unit 41.
  • the detection of the scale based on the measurement value from the flow sensor 31 will be described.
  • the flow sensor 26 can similarly detect the scale.
  • the flow sensor 31 measures the flow rate of the fluid passing through the circulation pipe 24 and outputs the measured value to the system control unit 41 when the endoscopes 51 and 52 are being cleaned and disinfected.
  • the calculation unit 43 of the system control unit 41 determines whether or not the measurement value from the flow sensor 31 deviates from the threshold value.
  • the calculation unit 43 constitutes a threshold value determination unit that determines whether or not the flow rate information measured by the flow rate sensor 31 deviates from a predetermined threshold value. More specifically, the calculation unit 43 determines whether or not the measured value from the flow sensor 31 is below a threshold value (lower limit).
  • the threshold value (lower limit) is also referred to as a first threshold value
  • the threshold value (upper limit) is also referred to as a second threshold value.
  • the measurement time T may be any information that allows the relationship between the measurement values A of the plurality of measurement values A on the time axis to be understood.
  • the measurement time T may be a date, may be an elapsed time from the first flow measurement, may be an elapsed time from a predetermined date, or simply measured.
  • the order (first time, second time,%) May be used.
  • the storage unit 42 stores the measurement value A1 and the time T1 at that time, the measurement value A2 and the time T2 at that time,..., The measurement value An and the time Tn at that time.
  • the measured value A may be an average value obtained by averaging measured values measured a plurality of times in a short time.
  • the storage unit 42 constitutes a flow rate information storage unit that stores the flow rate measured by the flow rate sensor 31 as flow rate information associated with the measurement time T.
  • the calculation unit 43 calculates a temporal change prediction axis 45 from the relationship between the measurement value A and the time T stored in the storage unit 42. As described above, when the flow rate information of a predetermined number or more is accumulated in the storage unit 42, the calculation unit 43 constitutes a prediction unit that calculates the flow rate change axis 45 from the accumulated flow rate information. In the example of FIG. 3, the temporal change prediction axis 45 is a straight line (the measurement value A and the time T are in a proportional relationship), but is not limited to this. In addition, the calculation unit 43 may calculate a temporal change prediction band 46 in which the temporal change prediction axis 45 has a width.
  • the calculation unit 43 obtains a straight line that passes through the intersection of the measurement value A1 and the time T1 and the intersection of the measurement value A2 and the time T2, thereby calculating the temporal change prediction axis 45 or the measurement value A1 and the time T1.
  • a regression line from the measured value An-1 to the time Tn-1 to calculate a time-varying prediction axis 45.
  • the calculation unit 43 determines that the circulation lines 21 and 24 are clogged. Then, the calculation unit 43 determines whether or not there is a correlation between the measurement value A and the temporal change prediction axis 45, more specifically, whether or not the measurement value A is on the temporal change prediction axis 45. Determine. Note that the calculation unit 43 may determine whether or not the measurement value A is included in the temporal change prediction band 46. As described above, when the calculation unit 43 determines that the flow rate information from the flow rate sensor 31 deviates from the threshold value, the latest measured flow rate information has a correlation with the temporal change prediction axis 45. A correlation determination unit for determining whether or not there is is configured.
  • the control unit 44 determines that the clogging is caused by, for example, dirt other than the scale, and is different from the removal of the scale. In this case, the user is instructed to confirm the filter 22. For example, since the measurement value Ax in FIG. 3 is not on the temporal change prediction axis 45 (or because the measurement value Ax is not included in the temporal change prediction band 46), the calculation unit 43 calculates the measurement value Ax and the temporal change. It is determined that there is no correlation with the expected change axis 45 (or the expected temporal change band 46).
  • the control unit 44 determines that the blockage is caused by something other than the scale. Then, a message for instructing the user to confirm the filter 22 is displayed on the sub operation panel 6 or the main operation panel 7.
  • the control unit 44 determines that the clogging is caused by the scale, and the first measure relating to the removal of the scale, here Then, the descaling program is executed. For example, since the measurement value Ay in FIG. 3 is on the temporal change prediction axis 45 (or because the measurement value Ay is in the temporal change prediction band 46), the calculation unit 43 calculates the measurement value Ay and the temporal change. It is determined that there is a correlation with the expected change axis 45 (or the expected temporal change band 46).
  • the control unit 44 determines that the block is clogged with the scale, and executes the scale removal program. Execute.
  • the calculation unit 43 When the scale removal program is executed, the calculation unit 43 resets the time-varying prediction axis 45 (or the time-varying predicted band 46), and measures the scale deposition state from the beginning. That is, the calculation unit 43 measures again from the measurement value A1 of FIG. 3 and calculates a new temporal change prediction axis 45.
  • the calculation unit 43 recognizes information on maintenance such as replacement of the pump 30 and the flow rate sensor 31, the calculation unit 43 resets the time-varying prediction axis 45 and measures the deposition state of the scale from the beginning. If the old pump 30 is replaced with a new pump, the flow rate in the pipe increases, so the calculation unit 43 does not reset the temporal change prediction axis 45 and sets the temporal change prediction axis 45 upward. You may make it correct by making it slide, or inclining the inclination of the time-dependent change estimation axis
  • the disinfecting liquid stored in the disinfecting liquid tank 33 is discharged, the inside of the disinfecting liquid tank 33 is rinsed with water, and a predetermined citric acid is discharged.
  • An aqueous citric acid solution dissolved in water is put into the disinfectant tank 33.
  • the citric acid aqueous solution is transferred from the disinfectant tank 33 to the cleaning / disinfecting tank 9 by using the pump 34, and the citric acid is transferred to the circulation pipes 21, 23, 24 and the space surrounded by the top cover 3 and the cleaning / disinfecting tank 9.
  • the pumps 25 and 30 are circulated for a predetermined time so that the acid aqueous solution comes into contact with the solution.
  • the aqueous solution used in the descaling program is not limited to a citric acid aqueous solution, and may be an acidic aqueous solution such as a hydrochloric acid aqueous solution.
  • FIG. 4 is a diagram for explaining the relationship between the concentration of the citric acid aqueous solution and the scale removal result.
  • the scale component is tricalcium phosphate
  • the concentration of the citric acid aqueous solution is 0.99% and 4.76%
  • the scale does not dissolve
  • the concentration of the citric acid aqueous solution is 33.3%
  • the scale does not dissolve. Partially remains.
  • the concentration of the citric acid aqueous solution is 9.09% to 28.6%
  • the scale is completely dissolved.
  • the scale when the concentration of the citric acid aqueous solution is in the range of 9.09% to 28.6%, the scale can be completely dissolved without being influenced by the scale components. In other words, the concentration removal effect can be maximized by setting the concentration of the citric acid aqueous solution used in the scale removal program to a range of 9.09% to 28.6%.
  • the dissolution action of the scale is improved by raising the temperature of the aqueous citric acid solution. Therefore, a heater or the like for heating the citric acid aqueous solution is provided at a predetermined position of the endoscope reprocessing apparatus 1 (for example, the back surface of the bottom surface 10t of the tank body 10). Then, using the heater or the like, the citric acid aqueous solution is heated in a range in which the constituent members of the endoscope reprocessing apparatus 1 are not deteriorated, for example, in the range of 20 ° C. to 40 ° C., and the endoscope reprocessing apparatus 1 It may be circulated inside. By setting it as such a structure, the melt
  • FIG. 5 is a flowchart for explaining the scale detection process of the endoscope reprocessing apparatus 1 according to the first embodiment.
  • the flow rate is measured by the flow rate sensor 31 (step S1), and it is determined whether or not the measured value (flow rate value) is below the first threshold (step S2). If it is determined that the measured value (flow rate value) is not lower than the first threshold value, the result is NO, and the obtained flow rate information is added as variable data, so that the time-change expected axis 45 (or time-change expected zone 46). Is updated (step S3). Thereafter, the cleaning and disinfection is advanced (step S4), the process returns to step S1, and the same processing is repeated.
  • step S2 determines whether the measured value (flow rate value) is lower than the first threshold value. If it is determined in step S2 that the measured value (flow rate value) is lower than the first threshold value, the determination is YES, and the measured value (flow rate value) is the time change expected axis 45 (or the time change expected band 46). ) Is correlated (step S5). If it is determined that the measured value (flow rate value) is correlated with the temporal change prediction axis 45 (or the temporal change prediction band 46), YES is determined, and the cause of the clogging is determined (step S6). A removal program is executed (step S7). Finally, the temporal change expected axis (band) is reset (step S8), and the process is terminated.
  • step S9 when it is determined that the measured value (flow rate value) is not correlated with the temporal change expected axis (band), NO is determined, and it is determined that the cause of clogging is other than the scale (step S9), and the filter 22 is sent to the user. Is issued (step S10), and the process is terminated.
  • the endoscope reprocessing device 1 determines whether the cause of the clogging of the circulation pipes 21 and 24 is in the scale or other than the scale, and removal means suitable for the cause of the clogging, that is, The execution of the scale removal program and the confirmation of the filter 22 can be instructed.
  • the endoscope reprocessing apparatus of the present embodiment it is possible to identify the cause of the clogging of the pipe in the apparatus and take a removing means suitable for the cause of the clogging.
  • the endoscope reprocessing apparatus 1 executes a scale removal program when it is determined that clogging due to scale has occurred.
  • the endoscope reprocessing device 1 of the first modification notifies the user that the clogging due to the scale has occurred, and immediately executes the scale removal program to the user. Whether to select or not.
  • the control unit 44 determines that clogging due to the scale has occurred. Then, a message indicating that the scale is clogged is displayed on the sub operation panel 6 or the main operation panel 7 to notify the user.
  • the notification to the user is not limited to the display of the message on the main operation panel 7 or the like. For example, a sound is generated from a speaker (not shown), or an LED (not shown) is turned on to notify the user. It may be.
  • These sub operation panel 6, main operation panel 7, speaker, and LED constitute a notification unit.
  • the user executes the scale removal program using the scale removal program execution switch displayed on the main operation panel 7.
  • the scale removal program is executed using the scale removal program execution switch displayed on the main operation panel 7.
  • FIG. 6 is a flowchart for explaining the scale detection process of the endoscope reprocessing apparatus 1 according to the first modification. Note that. In FIG. 6, the same processes as those in FIG.
  • step S6 If it is determined in step S6 that the clogging is caused by the scale, the user is notified that clogging due to the scale has occurred (step S11). Thereafter, when the scale removal program is executed by the user in the process of step S7, the temporal change expected axis 45 (the temporal change expected band 46) is reset in the process of step S8, and the process ends.
  • Other processes are the same as those in FIG.
  • the user can execute the scale removal program at an arbitrary timing.
  • the temporal change prediction axis 45 (or the temporal change prediction band 46). ) Is not calculated.
  • Such clogging due to the scale may occur immediately after the endoscope reprocessing apparatus 1 is started to be used, or immediately after the time change expected axis 45 (or the time change expected band 46) is reset. The nature is low. Therefore, in the endoscope reprocessing apparatus 1 of Modification 2, when it is determined that the measured value A is below the first threshold value, the temporal change prediction axis 45 (or the temporal change prediction band 46) is calculated. If not, it is determined that the blockage is caused by something other than the scale.
  • the control unit 44 determines whether or not the temporal change expected axis 45 (or the temporal change expected band 46) has been calculated. Determine. When the control unit 44 determines that the temporal change prediction axis 45 (or the temporal change prediction band 46) has been calculated, the measured value A becomes the temporal change prediction axis 45 (or the temporal change prediction band 46). It is determined whether or not there is a correlation, and it is determined whether the blockage is caused by a scale or a blockage other than the scale. On the other hand, if the control unit 44 determines that the time change expected axis 45 (or the time change expected band 46) has not been calculated, it determines that the clogging is caused by something other than the scale.
  • FIG. 7 is a flowchart for explaining the scale detection process of the endoscope reprocessing apparatus 1 according to the second modification. Note that. In FIG. 7, the same processes as those in FIG.
  • step S2 if it is determined that the measured value (flow rate value) is below the first threshold, it is determined whether the temporal change prediction axis 45 (or the temporal change expected band 46) has been calculated. (Step S12). If it is determined that the time change expected axis 45 (or time change expected band 46) has been calculated, the determination is YES, and the measured value (flow rate value) is changed to the time change expected axis 45 (or time elapsed) in the process of step S5. It is determined whether there is a correlation with the expected change zone 46). The processing after step S5 is the same as that in FIG.
  • step S9 is the same as that in FIG.
  • a state in which the temporal change prediction axis 45 (or the temporal change prediction band 46) is not calculated for example, the scale removal program is executed, and the temporal change prediction axis 45 (or the temporal change prediction band 46) is When clogging occurs in the reset state), it can be determined that the cause of clogging is other than the scale.
  • FIG. 8 is a block diagram for explaining an internal configuration of the endoscope reprocessing apparatus according to the second embodiment.
  • the same components as those in FIG. 2 are denoted by the same reference numerals and description thereof is omitted.
  • the endoscope reprocessing apparatus 1a shown in FIG. 8 replaces the flow sensors 26 and 31 and the system control unit 41 of the endoscope reprocessing apparatus 1 of FIG. 2 with pressure sensors 60 and 61 and a system control unit 41a, respectively. It is comprised using.
  • the system control unit 41a includes a storage unit 42a, a calculation unit 43a, and a control unit 44a.
  • the pressure sensors 60 and 61 measure the pressures in the circulation lines 23 and 24, respectively, and output the measured values (pressure values) to the system control unit 41a.
  • the pressure sensors 60 and 61 are sensors for detecting the scale, and any one of them may be provided as in the first embodiment. In the present embodiment, the scale is detected by the pressure sensor 61.
  • FIGS. 9A and 9B are diagrams for explaining the detection of the scale by the system control unit 41a.
  • the pressure sensor 61 measures the pressure in the circulation conduit 24 when the endoscopes 51 and 52 are being cleaned and disinfected, and outputs the measured value to the system control unit 41a.
  • the calculation unit 43a of the system control unit 41a determines whether or not the measurement value from the pressure sensor 61 deviates from the threshold value. More specifically, the calculation unit 43a determines whether the measured value from the pressure sensor 61 is lower than the first threshold value (threshold value (lower limit)) or higher than the second threshold value (threshold value (upper limit)). Determine whether or not.
  • the calculation unit 43a determines whether or not the measured value from the pressure sensor 61 is lower than the first threshold value (threshold value (lower limit)) or higher than the second threshold value (threshold value (upper limit)). To do.
  • scale detection will be described with reference to FIG. 9A.
  • the calculation unit 43a determines that the circulation lines 21 and 24 are not clogged, and the measurement is performed.
  • the value B is stored in the storage unit 42a together with the time T at that time.
  • the storage unit 42a stores the measurement value B1 and the time T1, the measurement value B2 and the time T2,..., The measurement value Bn and the time Tn at that time. .
  • the calculation unit 43a calculates the time-change expected axis 62 from the relationship between the measurement value B and the time T stored in the storage unit 42a. In addition, the calculation unit 43a may calculate a temporal change prediction band 63 in which the temporal change prediction axis 62 has a width.
  • the calculation unit 43a determines that the circulation lines 21 and 24 are clogged. . Then, the calculation unit 43a determines whether or not there is a correlation between the measurement value B and the temporal change prediction axis 62 (or the temporal change prediction band 63).
  • the control unit 44a determines that the clogging is other than a scale and instructs the user to check the filter 22.
  • the control unit 44a determines that the block is clogged with the scale and executes the scale removal program.
  • Other configurations are the same as those of the first embodiment.
  • FIG. 10 is a flowchart for explaining the scale detection process of the endoscope reprocessing apparatus 1a according to the second embodiment.
  • processes similar to those in FIG. 5 are denoted by the same reference numerals and description thereof is omitted.
  • the pressure is measured by the pressure sensor 61 (step S21), and it is determined whether or not the measurement value (pressure value) is below the first threshold value or above the second threshold value (step S22). ). If it is determined that the measured value (pressure value) is not lower than the first threshold value and not higher than the second threshold value, NO is determined, and the obtained pressure information is added as variable data to predict change over time.
  • the axis 62 (or the temporal change expected band 63) is updated (step S23). And in the process of step S4, washing
  • step S22 determines whether or not there is a correlation with the predicted axis 62 (or the expected change with time 63) (step S24). If it is determined that the measured value (pressure value) has a correlation with the time-varying prediction axis 62 (or the time-varying predicted band 63), YES is determined in step S6, and the cause of the clogging is determined to be in the scale. In step S7, the scale removal program is executed. In step S8, the temporal change prediction axis 62 (or the temporal change prediction band 63) is reset, and the process ends.
  • step S9 the cause of clogging is other than the scale. To be judged.
  • step S10 the user is instructed to confirm the filter 22, and the process ends.
  • the endoscope reprocessing apparatus 1a determines whether the clogging of the circulation pipes 21 and 24 is in the scale or other than the scale, and takes removal means suitable for the cause of the clogging. Can do.
  • the cause of the blockage in the apparatus is identified, and removal means suitable for the cause of the blockage is taken. Can do.
  • the endoscope reprocessing apparatus 1a determines that clogging due to scale has occurred, the endoscope reprocessing apparatus 1a notifies the user that clogging due to scale has occurred, and allows the user to select whether or not to immediately execute the scale removal program. Like that.
  • the endoscope reprocessing apparatus 1a determines that the time change expected axis 62 (or the time change expected band is determined) when the measured value B is determined to be lower than the first threshold or higher than the second threshold. If 63) is not calculated, it may be determined that the blockage is caused by something other than the scale.
  • each step in the flowchart in the present specification may be executed in a different order for each execution by changing the execution order and performing a plurality of steps at the same time as long as it does not contradict its nature.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Epidemiology (AREA)
  • Endoscopes (AREA)
  • Signal Processing (AREA)

Abstract

 内視鏡リプロセス装置1は、流体を供給する循環管路21、24と、循環管路21、24を流通する流体の流量を測定する流量センサ31と、流量を測定時期と紐付けた流量情報として蓄積する記憶部42と、演算部43と、制御部44とを有する。演算部43は、蓄積された流量情報から流量の経時変化予想軸45を算出し、流量情報が所定の閾値を逸脱しているか判定し、閾値を逸脱していると判定した場合に、最新の流量情報が経時変化予想軸45との相関関係を有しているかを判定する。制御部44は、流量情報が経時変化予想軸45との相関関係を有していると判定された場合、スケールの除去に関わる第1の措置を行い、相関関係を有していないと判定された場合、スケールの除去とは異なる第2の措置を行う。

Description

内視鏡リプロセス装置
 本発明は、装置内管路の詰まりの原因を特定する内視鏡リプロセス装置に関する。
 従来、内視鏡リプロセス装置の内視鏡接続部に内視鏡管路を接続し、内視鏡リプロセス装置内において液体供給源から液体供給管路、循環管路、内視鏡接続部を介して液体を内視鏡管路内に供給することにより、内視鏡管路内を洗浄消毒する内視鏡リプロセス装置の構成が周知である。
 この内視鏡リプロセス装置は、循環管路に、液体を循環するポンプが設けられるとともに、循環管路を通過する液体の圧力や流量を測定する圧力センサや流量センサが設けられている。内視鏡リプロセス装置は、圧力センサや流量センサで測定された圧力や流量を監視することで、内視鏡管路内の詰まりや循環管路内の詰まりを検出している。
 例えば、特開2007-125385号公報には、複数の装置内管路のそれぞれに圧力センサを設け、これらの圧力センサにより各装置内管路の過剰圧力を検知し、詰まりが生じた装置内管路を検出する内視鏡リプロセス装置が開示されている。
 このような、装置内管路の詰まりは、装置内管路に汚物等が侵入したことによる突発的な詰まりや、装置内管路に長期的に蓄積したスケールによる詰まり等が存在する。スケールは、硬度の高い水が装置内管路で乾燥した際に、装置内管路に炭酸カルシウムなどが析出したものである。
 しかしながら、従来の内視鏡リプロセス装置は、流量センサや圧力センサで装置内管路の流量や圧力の異常を検出することで、装置内管路に詰まりがあることを検出できても、詰まりの原因がスケールにあるのか、スケール以外にあるのかを判定することができなかった。
 詰まりの原因がスケールにある場合、スケール除去プログラムを実行してスケールを除去する必要がある。一方、詰まりの原因がスケール以外、例えば、汚物等による装置内管路の詰まりにある場合、装置内管路に設けられているフィルタを確認して汚物等を除去する必要がある。
 しかし、従来の内視鏡リプロセス装置では、装置内管路の詰まりの原因を判定できないため、ユーザは、スケール除去プログラムを実行してよいのか、フィルタを確認してよいのか判別できなかった。すなわち、従来の内視鏡リプロセス装置は、詰まりの原因を特定することができないため、詰まりの原因に適合した無駄のない除去手段を取ることができなかった。
 そこで、本発明は、装置内管路の詰まりの原因を特定し、詰まりの原因に適した除去手段を取ることができる内視鏡リプロセス装置を提供することを目的とする。
 本発明の一態様の内視鏡リプロセス装置は、内視鏡のチャンネルまたは外皮の少なくとも一方に流体を供給する流体供給管路と、前記流体供給管路を流通する流体の流量を測定する流量測定部と、前記流量測定部により測定された前記流量を測定時期と紐付けた流量情報として蓄積する流量情報蓄積部と、前記流量情報蓄積部に所定数以上の前記流量情報が蓄積された場合に、蓄積された前記流量情報から流量の経時変化予想軸を算出する予想部と、前記流量測定部により測定された流量情報が所定の閾値を逸脱しているか判定する閾値判定部と、前記閾値判定部が前記閾値を逸脱していると判定した場合に、前記流量測定部により測定された最新の流量情報が、前記経時変化予想軸との相関関係を有しているか否かを判定する相関判定部と、前記相関判定部が相関関係を有していると判定した場合に、スケールの除去に関わる第1の措置を行い、前記相関判定部が相関関係を有していないと判定した場合に、スケールの除去とは異なる第2の措置を行う制御部と、を有する。
第1の実施の形態に係る内視鏡リプロセス装置の一例を示す斜視図である。 第1の実施の形態に係る内視鏡リプロセス装置の内部構成を説明するためのブロック図である。 システム制御部41によるスケールの検出について説明するための図である。 クエン酸水溶液の濃度とスケール除去結果の関係を説明するための図である。 第1の実施の形態に係る内視鏡リプロセス装置1のスケール検出処理を説明するためのフローチャートである。 変形例1に係る内視鏡リプロセス装置1のスケール検出処理を説明するためのフローチャートである。 変形例2に係る内視鏡リプロセス装置1のスケール検出処理を説明するためのフローチャートである。 第2の実施の形態に係る内視鏡リプロセス装置の内部構成を説明するためのブロック図である。 システム制御部41aによるスケールの検出について説明するための図である。 システム制御部41aによるスケールの検出について説明するための図である。 第2の実施の形態に係る内視鏡リプロセス装置1aのスケール検出処理を説明するためのフローチャートである。
 以下、図面を参照して本発明の実施の形態を説明する。
(第1の実施の形態)
 まず、図1を用いて、第1の実施の形態の内視鏡リプロセス装置の構成について説明する。図1は、第1の実施の形態に係る内視鏡リプロセス装置の一例を示す斜視図である。
 図1に示すように、内視鏡リプロセス装置1は、2本の内視鏡51、52を、2本同時に洗浄、消毒する装置であり、装置本体2と、装置本体2の上部に、例えば図示しない蝶番を介して開閉自在に接続された蓋部であるトップカバー3とにより構成されている。なお、内視鏡リプロセス装置1は、2本の内視鏡51、52を洗浄消毒する構成となっているが、内視鏡リプロセス装置1にて洗浄消毒できる内視鏡の本数は2本に限定されるものではなく、1本、あるいは、3本以上であってもよい。
 トップカバー3が装置本体2に閉じられている状態では、装置本体2とトップカバー3とは、装置本体2及びトップカバー3の互いに対向する位置に配設された、例えばラッチ4により、閉じられた後施錠される構成となっている。
 また、装置本体2の図中前面の下部に、装置本体2の上部に閉じられたトップカバー3を、操作者の踏み込み操作により、装置本体2の上方に開くためのペダルスイッチ5が配設されている。
 さらに、装置本体2の前面であって、例えば右半分の上部に、洗浄消毒時間の表示や、各種操作指示を行うための指示スイッチが配設されたサブ操作パネル6が設けられている。
 また、装置本体2の上面の、例えば操作者が近接する前面側の図中右端寄りに、装置本体2の洗浄、消毒動作スタートスイッチ、及び、スケールを除去する際に実行するスケール除去プログラムを実行するためのスケール除去プログラム実行スイッチ等が配設されたメイン操作パネル7が設けられている。
 また、装置本体2の上面であって、操作者が近接する前面に対向する背面側に、装置本体2に水道水を供給するための、水道蛇口に接続された給水ホースが接続される給水ホース接続口8が配設されている。尚、給水ホース接続口8には、水道水を濾過するメッシュフィルタが配設されていてもよい。
 また、装置本体2の上面の略中央部に、上方に開口する内視鏡収容をトップカバー3によって開閉される、内視鏡51、52が収容自在な洗浄消毒槽9が設けられている。洗浄消毒槽9は、例えば、槽本体10と、槽本体10の内視鏡収容口の外周縁に連続して周設されたテラス部11とにより構成されている。
 槽本体10は、使用後の内視鏡51、52が洗浄消毒される際、内視鏡51、52が収容自在であり、槽本体10の槽内の面である底面10tには、槽本体10に供給された流体である、洗浄液、水、消毒液、クエン酸水溶液等を、槽本体10から排水するための排水口12が設けられている。
 また、槽本体10の槽内の面である周状の側面10sの任意の位置に、槽本体10に供給された洗浄液、水、消毒液、クエン酸水溶液等を、循環ノズル18から槽本体10に再度流体を供給するための循環口13が設けられている。また、循環口13は、槽本体10に供給された洗浄液、水、消毒液を、槽本体10から内視鏡51、52の内部に配設された各管路に供給する。なお、この循環口13は、槽本体10の底面10tに設けられていてもよい。
 また、槽本体10の底面10tの略中央には、内視鏡51、52の各スコープスイッチ等のボタン類、鉗子栓等を収容して、これらのボタン類及び鉗子栓等を、内視鏡51、52とともに洗浄消毒するための洗浄ケース14が配設されている。
 また、槽本体10の側面10sの任意の位置に、槽本体10に供給された洗浄液、水、消毒液、クエン酸水溶液等の液体の水位を検出し、液体を洗浄消毒槽9において設定水位まで確実に供給するためのカバー付き水位センサ15が設けられている。
 洗浄消毒槽9のテラス部11は、斜め上方に指向する傾斜面、具体的には、槽本体10の、例えば底面10tに対して、規定の角度傾斜した周状のテラス面11tを有して形成されている。
 テラス部11のテラス面11t以外の面、即ち槽本体10の底面10tと平行な面11fに、槽本体10に対し、図示しない洗剤タンクから、洗浄液を供給するための洗剤ノズル16が配設されている。尚、洗剤ノズル16は、テラス面11tに配設されていてもよい。
 また、テラス部11のテラス面11tに、消毒液タンク33から、槽本体10に消毒液を供給するための消毒液ノズル17が配設されている。
 また、テラス面11tに、槽本体10に対し、洗浄、あるいはすすぎに使用する水を供給する、または槽本体10の循環口13から吸引した洗浄液、水、消毒液、またはクエン酸水溶液等を、再度槽本体10に供給するための循環ノズル18が配設されている。
 さらに、テラス面11tに、後述するポンプ弁ノズル19が配設されている。なお、消毒液ノズル17、循環ノズル18及びポンプ弁ノズル19は、平行な面11fに配設されていてもよい。
 また、装置本体2の洗浄消毒槽9に臨む所定の位置には、内視鏡51の管路とチューブを介して接続される内視鏡接続部20a及び20bが設けられている。なお、内視鏡51の管路と接続される内視鏡接続部の個数は2つに限定されるものではない。
 同様に、装置本体2の洗浄消毒槽9に臨む所定の位置には、内視鏡52の管路とチューブを介して接続される内視鏡接続部20c及び20dが設けられている。なお、内視鏡52の管路と接続される内視鏡接続部の個数も2つに限定されるものではない。
 次に、内視鏡リプロセス装置1の内部構成について説明する。図2は、第1の実施の形態に係る内視鏡リプロセス装置の内部構成を説明するためのブロック図である。なお、図2では、内視鏡接続部20a及び20bを介して内視鏡51が接続されている例であるが、図示を省略している内視鏡接続部20c及び20dを介して内視鏡52が接続されていてもよい。
 槽本体10の循環口13は、循環管路21の一端に接続されている。循環管路21の所定の位置には、詰まりの原因となる汚物等を除去するフィルタ22が設けられている。また、循環管路21の他端は、循環管路23の一端、及び、循環管路24の一端に連通するように、2つに分岐している。
 循環管路23の他端は、洗浄消毒槽9、ポンプ弁ノズル19、内視鏡接続部20a及び20bに連通している。この循環管路23には、管路の中途において、一端側から順に、ポンプ25、流量センサ26、ポンプ弁27、電磁弁28および、リリーフ弁29が設けられている。
 また、循環管路24の他端は、循環ノズル18に連通している。この循環管路24には、管路の中途において、一端側から順に、ポンプ30、流量センサ31が設けられている。本実施の形態では、循環管路21及び23が内視鏡51、52のチャンネルに流体を供給する流体供給管路を構成し、循環管路21及び24が内視鏡51、52の外皮に流体を供給する流体供給管路を構成する。
 流量測定部としての流量センサ26及び31は、それぞれ循環管路23及び24を通過する流体の流量を測定するものであり、例えば電磁誘導式流量計から構成されている。流量センサ26及び31により測定された測定値(流量値)は、システム制御部41に出力される。
 ポンプ弁27及び電磁弁28は、システム制御部41により開閉制御される。システム制御部41によってポンプ弁27が閉じられ、電磁弁28が開けられると、洗浄消毒槽9内の流体が、ポンプ25の駆動により、循環口13、循環管路21、循環管路23、内視鏡接続部20a及び20bを介して、内視鏡51の各管路に供給される。
 また、システム制御部41によってポンプ弁27が開けられ、電磁弁28が閉じられると、洗浄消毒槽9内の流体が、ポンプ25の駆動により、循環口13、循環管路21、循環管路23、ポンプ弁ノズル19を介して、再度洗浄消毒槽9に供給される。これにより、ポンプ25単体の流量を流量センサ26で測定することができる。
 また、洗浄消毒槽9内の流体は、ポンプ30の駆動により、循環口13、循環管路21、循環管路24、循環ノズル18を介して、再度洗浄消毒槽9に供給される。
 消毒液ノズル17は、消毒液管路32の一端に接続されており、消毒液管路32の他端は、消毒液タンク33に連通している。消毒液管路32の中途には、ポンプ34が設けられており、ポンプ34の駆動により、消毒液タンク33内に貯留された消毒液が消毒液管路32及び消毒液ノズル17を介して洗浄消毒槽9内に供給される。
 なお、詳細は後述するが、消毒液タンク33内に貯留されている消毒液を排出し、消毒液タンク33内を水で濯いでから、クエン酸水溶液を消毒液タンク33に投入するようになっているが、クエン酸水溶液が貯留されている除去薬貯留部としてのクエン酸貯留タンク35または37を消毒液タンク33とは別に設けるようにしてもよい。
 クエン酸貯留タンク35を装置本体2に設ける場合、消毒液管路32の中途に、3方電磁弁36を設ける。3方電磁弁36は、消毒液ノズル17と消毒液タンク33との連通、又は、消毒液ノズル17とクエン酸貯留タンク35との連通を内部の弁によって切替える弁である。すなわち、消毒液ノズル17は、3方電磁弁36の切替え動作に応じて、消毒液タンク33、又は、クエン酸貯留タンク35のいずれか一方と連通する。
 一方、クエン酸貯留タンク37を装置本体2に設ける場合、一端がクエン酸貯留タンク37に連通し、他端がノズル38に連通する管路39を設け、管路39の中途にポンプ40を設けるようにする。
 システム制御部41は、記憶部42と、演算部43と、制御部44とにより構成されている。システム制御部41は、システム全体の制御を行うとともに、流量センサ26及び31からの測定値に基づき、循環管路21、23、24等に析出するスケールの検出を行う。
 なお、本実施の形態では、スケールの検出用の流量センサとして、流量センサ26、31を設ける構成としているが、いずれか一方だけを設ける構成でもよい。
 スケールは、硬度成分を含んだ水が管路内で乾燥することも析出の一要因であるため、管路内の水が乾燥し易い大気開放管路に析出する可能性が高くなる。本実施の形態では、洗浄消毒槽9から弁等で塞がれていない循環管路24にスケールは析出する可能性が高くなる。そのため、大気開放管路である循環管路24のみに流量センサ31を設ける構成でもよい。
 ただし、図2の循環管路23でも内視鏡接続部20a及び20bにコネクタ等を接続して解放することで、大気開放管路とすることができる。また、内視鏡接続部20a及び20bに内視鏡51が接続されている状態でも、ポンプ弁27を開け、電磁弁28を閉じることで、循環管路23を大気開放管路とすることができる。そのため、循環管路23の流量センサ26をスケール検出用の流量センサとして利用することもできる。
 ここで、システム制御部41によるスケールの検出について図3を用いて説明する。図3は、システム制御部41によるスケールの検出について説明するための図である。なお、以下の説明では、流量センサ31からの測定値によるスケールの検出について説明するが、流量センサ26でも同様にスケールの検出をすることができる。
 流量センサ31は、内視鏡51、52の洗浄消毒を実施しているときに、循環管路24内を通過する流体の流量を測定し、その測定値をシステム制御部41に出力する。システム制御部41の演算部43は、流量センサ31からの測定値が閾値を逸脱しているか否かを判定する。このように、演算部43は、流量センサ31により測定された流量情報が所定の閾値を逸脱しているか否かを判定する閾値判定部を構成する。より具体的には、演算部43は、流量センサ31からの測定値が閾値(下限)を下回っているか否かを判定する。なお、以下の説明では、閾値(下限)を第1の閾値、閾値(上限)を第2の閾値ともいう。
 演算部43は、流量センサ31からの測定値が第1の閾値を下回っている場合、循環管路21、24に詰まりがないと判定し、その測定値Aをその時の測定時期Tとともに、記憶部42に記憶する。前記測定時期Tとしては、複数の測定値Aのうちの各測定値Aの時間軸での前後関係がわかる情報であればよい。例えば測定時期Tは年月日であってもよいし、第1回目の流量測定からの経過時間であってもよいし、所定の年月日からの経過時間であってもよいし、単に測定された順序(1回目、2回目・・・)であってもよい。例えば、記憶部42には、測定値A1とその時の時間T1、測定値A2とその時の時間T2、・・・、測定値Anとその時の時間Tnが記憶される。なお、測定値Aは、短時間に複数回測定した測定値を平均した平均値を用いてもよい。このように、記憶部42は、流量センサ31により測定された流量を測定時期Tと紐付けた流量情報として蓄積する流量情報蓄積部を構成する。
 演算部43は、記憶部42に記憶された測定値Aと時間Tの関係から、経時変化予想軸45を算出する。このように、演算部43は、記憶部42に所定数以上の流量情報が蓄積された場合に、蓄積された流量情報から流量の経時変化予想軸45を算出する予想部を構成する。なお、図3の例では、経時変化予想軸45は直線(測定値Aと時間Tが比例関係)となっているが、これに限定されるものではない。また、演算部43は、経時変化予想軸45に幅を持たせた経時変化予想帯46を算出するようにしてもよい。
 演算部43は、例えば、測定値A1及び時間T1の交点と、測定値A2及び時間T2の交点とを通る直線を求めることで、経時変化予想軸45を算出したり、測定値A1及び時間T1から測定値An-1及び時間Tn-1かまでの回帰直線を求めることで、経時変化予想軸45を算出する。
 一方、演算部43は、流量センサ31からの測定値Aが第1の閾値を下回っている場合、循環管路21、24に詰まりがあると判定する。そして、演算部43は、測定値Aと経時変化予想軸45とに相関関係があるか否かを判定、より具体的には、測定値Aが経時変化予想軸45上に乗っているか否かを判定する。なお、演算部43は、経時変化予想帯46に測定値Aが入っているか否かを判定するようにしてもよい。このように、演算部43は、流量センサ31からの流量情報が閾値を逸脱していると判定した場合に、測定された最新の流量情報が経時変化予想軸45との相関関係を有しているか否かを判定する相関判定部を構成する。
 制御部44は、演算部43により測定値Aと経時変化予想軸45とに相関関係がないと判定された場合、スケール以外、例えば汚物等による詰まりと判定し、スケールの除去とは異なる第2の措置、ここでは、ユーザにフィルタ22の確認を指示する。例えば、図3の測定値Axは、経時変化予想軸45上に乗っていないため(あるいは、経時変化予想帯46に測定値Axが入っていないため)、演算部43は、測定値Axと経時変化予想軸45(あるいは、経時変化予想帯46)とに相関関係がないと判定する。
 このように、制御部44は、演算部43により測定値Axと経時変化予想軸45(あるいは、経時変化予想帯46)とに相関関係がないと判定されると、スケール以外による詰まりと判定し、ユーザにフィルタ22の確認を指示するためのメッセージをサブ操作パネル6やメイン操作パネル7に表示する。
 一方、制御部44は、演算部43により測定値Aと経時変化予想軸45とに相関関係があると判定された場合、スケールによる詰まりと判定し、スケールの除去に関わる第1の措置、ここでは、スケール除去プログラムを実行する。例えば、図3の測定値Ayは、経時変化予想軸45上に乗っているため(あるいは、経時変化予想帯46に測定値Ayが入っているため)、演算部43は、測定値Ayと経時変化予想軸45(あるいは、経時変化予想帯46)とに相関関係があると判定する。制御部44は、演算部43により測定値Ayと経時変化予想軸45(あるいは、経時変化予想帯46)とに相関関係があると判定されると、スケールによる詰まりと判定し、スケール除去プログラムを実行する。
 演算部43は、スケール除去プログラムが実行されると、経時変化予想軸45(あるいは、経時変化予想帯46)をリセットし、スケールの析出状態を初めから測定し直す。すなわち、演算部43は、図3の測定値A1から測定し直し、新たな経時変化予想軸45を算出する。
 また、メンテナンス等でポンプ30や流量センサ31を交換した場合、新品のポンプや圧力センサでは、これまで測定して記憶部42に記憶してきた測定値から数値が大きく逸脱する可能性がある。すなわち、測定値Aが経時変化予想軸45と相関関係がなくなってしまう可能性がある。そのため、演算部43は、ポンプ30や流量センサ31の交換等のメンテナンスを行った情報を認識した場合も、経時変化予想軸45をリセットし、スケールの析出状態を初めから測定し直す。なお、古いポンプ30から新品のポンプへの交換であれば、管路内の流量が高くなるため、演算部43は、経時変化予想軸45をリセットせずに、経時変化予想軸45を上側にスライドさせたり、経時変化予想軸45の傾きを上側に傾ける修正を行うようにしてもよい。
 スケールによる詰まりが検知された際に実行されるスケール除去プログラムでは、消毒液タンク33内に貯留されている消毒液を排出し、消毒液タンク33内を水で濯いでから、所定のクエン酸を水に溶解したクエン酸水溶液を消毒液タンク33に投入する。その後、消毒液タンク33からポンプ34を用いて、クエン酸水溶液を洗浄消毒槽9に移送し、循環管路21、23、24や、トップカバー3と洗浄消毒槽9に囲まれた空間にクエン酸水溶液が接液するように、ポンプ25、30にて、一定時間循環する。
 クエン酸水溶液が循環管路21、23、24やトップカバー3と洗浄消毒槽9に囲まれた空間に一度接液した後は、ポンプ25、30の駆動を停止、一定時間放置しておいてもよい。一定時間経過後、クエン酸酢溶液を消毒液タンク33内に回収、あるいは、装置本体2外に排出する。その後、水で装置本体2内を濯ぎ、スケール除去プログラムが終了する。なお、スケール除去プログラムで使用する水溶液は、クエン酸水溶液に限定されるものではなく、例えば塩酸水溶液等の酸性の水溶液であればよい。
 ここで、スケール除去プログラムで用いられるクエン酸水溶液の濃度について説明する。図4は、クエン酸水溶液の濃度とスケール除去結果の関係を説明するための図である。
 図4に示すように、スケール成分が炭酸カルシウムの場合、クエン酸水溶液の質量パーセント濃度(以下、単に濃度という)が0.99%では、スケールが溶解せず、クエン酸水溶液の濃度が4.76%では、スケールが一部残留する。一方、クエン酸水溶液の濃度が9.09%~33.3%では、スケールが完全に溶解する。
 また、スケール成分がリン酸三カルシウムの場合、クエン酸水溶液の濃度が0.99%、及び、4.76%では、スケールが溶解せず、クエン酸水溶液の濃度が33.3%では、スケールが一部残留する。一方、クエン酸水溶液の濃度が9.09%~28.6%では、スケールが完全に溶解する。
 このように、クエン酸水溶液の濃度が9.09%~28.6%の範囲の場合、スケール成分に左右されることなく、スケールを完全に溶解することができる。すなわち、スケール除去プログラムで用いるクエン酸水溶液の濃度は、9.09%~28.6%の範囲とすることで、スケール除去の効果を最も高くすることができる。
 また、クエン酸水溶液の温度を上げることで、スケールの溶解作用が向上することが知られている。そこで、内視鏡リプロセス装置1の所定の位置(例えば、槽本体10の底面10tの背面)に、クエン酸水溶液を加温するヒータ等を設けるようにする。そして、そのヒータ等を用いて、内視鏡リプロセス装置1の構成部材を劣化させない範囲、例えば、20℃~40℃の範囲でクエン酸水溶液を加温して、内視鏡リプロセス装置1内に循環させてもよい。このような構成とすることで、スケールの溶解作用を向上させることができる。
 次に、このように構成された内視鏡リプロセス装置1の動作について説明する。
 図5は、第1の実施の形態に係る内視鏡リプロセス装置1のスケール検出処理を説明するためのフローチャートである。
 まず、流量センサ31で流量が測定され(ステップS1)、測定値(流量値)が第1の閾値を下回っているか否かが判定される(ステップS2)。測定値(流量値)が第1の閾値を下回っていないと判定された場合、NOとなり、得られた流量情報を変数データとして加えて、経時変化予想軸45(あるいは、経時変化予想帯46)が更新される(ステップS3)。その後、洗浄消毒が進められ(ステップS4)、ステップS1に戻り、同様の処理を繰り返す。
 一方、ステップS2において、測定値(流量値)が第1の閾値を下回っていると判定された場合、YESとなり、測定値(流量値)が経時変化予想軸45(あるいは、経時変化予想帯46)と相関関係があるか否かが判定される(ステップS5)。測定値(流量値)が経時変化予想軸45(あるいは、経時変化予想帯46)と相関関係があると判定された場合、YESとなり、詰まりの原因がスケールあると判断され(ステップS6)、スケール除去プログラムが実行される(ステップS7)。最後に、経時変化予想軸(帯)がリセットされ(ステップS8)、処理を終了する。
 一方、測定値(流量値)が経時変化予想軸(帯)と相関関係がないと判定された場合、NOとなり、詰まりの原因がスケール以外にあると判断され(ステップS9)、ユーザにフィルタ22の確認の指示を出し(ステップS10)、処理を終了する。
 以上の処理により、内視鏡リプロセス装置1は、循環管路21、24の詰まりの原因がスケールにあるか、スケール以外にあるかを判定し、詰まりの原因に適した除去手段、すなわち、スケール除去プログラムの実行やフィルタ22の確認の指示を行うことができる。
 よって、本実施の形態の内視鏡リプロセス装置によれば、装置内管路の詰まりの原因を特定し、詰まりの原因に適した除去手段を取ることができる。
(変形例1)
 次に、第1の実施の形態の変形例1について説明する。
 第1の実施の形態の内視鏡リプロセス装置1は、スケールによる詰まりが発生したと判定した場合、スケール除去プログラムを実行していた。これに対し、変形例1の内視鏡リプロセス装置1は、スケールによる詰まりが発生したと判定した場合、スケールによる詰まりが発生したことをユーザに報知し、ユーザにスケール除去プログラムを直ちに実行するか否かを選択させるようにする。
 すなわち、制御部44は、演算部43により測定値Aと経時変化予想軸45(あるいは、経時変化予想帯46)とに相関関係があると判定されると、スケールによる詰まりが発生したと判定し、サブ操作パネル6、あるいは、メイン操作パネル7にスケールのよる詰まりが発生したことを示すメッセージを表示し、ユーザに報知する。なお、ユーザへの報知は、メイン操作パネル7等によるメッセージの表示に限定されることなく、例えば、図示しないスピーカ等から音を発生させる、あるいは、図示しないLED等を点灯してユーザに知らせるようにしてもよい。これらのサブ操作パネル6、メイン操作パネル7、スピーカ、LEDが報知部を構成する。
 そして、ユーザは、直ちにスケール除去プログラムを実行する場合、メイン操作パネル7に表示されるスケール除去プログラム実行スイッチを用いて、スケール除去プログラムを実行する。一方、ユーザは、例えば、内視鏡51、52の洗浄消毒が終了した後にスケール除去プログラムを実行する場合、すなわち、直ちにスケール除去プログラムを実行しない場合、内視鏡51、52の洗浄消毒が終了した後に、メイン操作パネル7に表示されるスケール除去プログラム実行スイッチを用いて、スケール除去プログラムを実行する。
 次に、変形例1に係る内視鏡リプロセス装置1の動作について説明する。
 図6は、変形例1に係る内視鏡リプロセス装置1のスケール検出処理を説明するためのフローチャートである。なお。図6において、図5と同様の処理については、同一の符号を付して説明を省略する。
 ステップS6の処理において、詰まりの原因がスケールにあると判定されると、スケールによる詰まりが発生したことをユーザに報知する(ステップS11)。その後、ステップS7の処理において、ユーザによるスケール除去プログラムが実行されると、ステップS8の処理において、経時変化予想軸45(経時変化予想帯46)がリセットされ、処理を終了する。その他の処理は、図5と同様である。
 以上の処理により、ユーザは、任意のタイミングでスケール除去プログラムを実行することができる。
(変形例2)
 次に、第1の実施の形態の変形例2について説明する。
 例えば、内視鏡リプロセス装置1が使用開始された直後や、スケール除去プログラムが実行され、経時変化予想軸45がリセットされた直後等は、経時変化予想軸45(あるいは、経時変化予想帯46)が算出されていない状態となる。このような、内視鏡リプロセス装置1が使用開始された、あるいは、経時変化予想軸45(あるいは、経時変化予想帯46)がリセットされた直後等では、スケールが原因の詰まりが発生する可能性は低い。そこで、変形例2の内視鏡リプロセス装置1は、測定値Aが第1の閾値を下回ったと判定されたときに、経時変化予想軸45(あるいは、経時変化予想帯46)が算出されていない場合、スケール以外による詰まりと判定する。
 すなわち、制御部44は、演算部43により測定値Aが第1の閾値を下回っていると判定されると、経時変化予想軸45(あるいは、経時変化予想帯46)が算出されているか否かを判定する。そして、制御部44は、経時変化予想軸45(あるいは、経時変化予想帯46)が算出されていると判定した場合、測定値Aが経時変化予想軸45(あるいは、経時変化予想帯46)と相関関係があるか否かが判定され、スケールによる詰まりか、スケール以外による詰まりかを判定する。一方、制御部44は、経時変化予想軸45(あるいは、経時変化予想帯46)が算出されていないと判定した場合、スケール以外による詰まりと判定する。
 次に、変形例2に係る内視鏡リプロセス装置1の動作について説明する。
 図7は、変形例2に係る内視鏡リプロセス装置1のスケール検出処理を説明するためのフローチャートである。なお。図7において、図5と同様の処理については、同一の符号を付して説明を省略する。
 ステップS2の処理において、測定値(流量値)が第1の閾値を下回っていると判定された場合、経時変化予想軸45(あるいは、経時変化予想帯46)が算出されているか否かが判定される(ステップS12)。経時変化予想軸45(あるいは、経時変化予想帯46)が算出されていると判定された場合、YESとなり、ステップS5の処理において、測定値(流量値)が経時変化予想軸45(あるいは、経時変化予想帯46)と相関関係があるか否かが判定される。ステップS5以降の処理は、図5と同様である。
 一方、経時変化予想軸45(あるいは、経時変化予想帯46)が算出されていないと判定された場合、NOとなり、ステップS9の処理おいて、詰まりの原因がスケール以外にあると判断される。ステップS9以降の処理は、図5と同様である。
 以上の処理により、経時変化予想軸45(あるいは、経時変化予想帯46)が算出されていない状態(例えば、スケール除去プログラムが実行され、経時変化予想軸45(あるいは、経時変化予想帯46)がリセットされた状態)で詰まりが発生した場合、詰まりの原因がスケール以外にあると判定することができる。
(第2の実施の形態)
 次に、第2の実施の形態について説明する。
 図8は、第2の実施の形態に係る内視鏡リプロセス装置の内部構成を説明するためのブロック図である。なお、図8において、図2と同様の構成については、同一の符号を付して説明を省略する。
 図8に示す内視鏡リプロセス装置1aは、図2の内視鏡リプロセス装置1の流量センサ26、31、及びシステム制御部41に代わり、それぞれ圧力センサ60、61、及びシステム制御部41aを用いて構成されている。システム制御部41aは、記憶部42aと、演算部43aと、制御部44aとを有して構成されている。
 圧力センサ60及び61は、それぞれ循環管路23及び24内の圧力を測定し、測定した測定値(圧力値)をシステム制御部41aに出力する。圧力センサ60、61は、スケールの検出用のセンサであり、第1の実施の形態と同様に、いずれか一方が設けられていればよい。なお、本実施の形態では、圧力センサ61によりスケールの検出を行うものとする。
 ここで、システム制御部41aによるスケールの検出について図9A及び図9Bを用いて説明する。図9A及び図9Bは、システム制御部41aによるスケールの検出について説明するための図である。
 圧力センサ61は、内視鏡51、52の洗浄消毒を実施しているときに、循環管路24内の圧力を測定し、その測定値をシステム制御部41aに出力する。システム制御部41aの演算部43aは、圧力センサ61からの測定値が閾値を逸脱しているか否かを判定する。より具体的には、演算部43aは、圧力センサ61からの測定値が第1の閾値(閾値(下限))を下回っているか、あるいは、第2の閾値(閾値(上限))を上回っているか否かを判定する。
 例えば、圧力センサ61と循環ノズル18との間にスケールが析出した場合、析出が進むにつれて、図9Aに示すように、圧力センサ61で測定される測定値は高くなる。一方、圧力センサ61と循環口13との間にスケールが析出した場合、析出が進むにつれて、図9Bに示すように、圧力センサ61で測定される測定値は低くなる。そのため、演算部43aは、圧力センサ61からの測定値が第1の閾値(閾値(下限))を下回っているか、あるいは、第2の閾値(閾値(上限))を上回っているか否かを判定する。なお、以下の説明では、図9Aを用いてスケールの検出ついて説明する。
 演算部43aは、圧力センサ61からの測定値が第1の閾値を下回っていない、かつ、第2の閾値を上回っていない場合、循環管路21、24に詰まりがないと判定し、その測定値Bをその時の時間Tとともに、記憶部42aに記憶する。第1の実施の形態と同様に、記憶部42aには、測定値B1とその時の時間T1、測定値B2とその時の時間T2、・・・、測定値Bnとその時の時間Tnが記憶される。
 演算部43aは、記憶部42aに記憶された測定値Bと時間Tの関係から、経時変化予想軸62を算出する。また、演算部43aは、経時変化予想軸62に幅を持たせた経時変化予想帯63を算出するようにしてもよい。
 一方、演算部43aは、圧力センサ61からの測定値Bが第1の閾値を下回っている、あるいは、第2の閾値を上回っている場合、循環管路21、24に詰まりがあると判定する。そして、演算部43aは、測定値Bと経時変化予想軸62(あるいは、経時変化予想帯63)とに相関関係があるか否かを判定する。
 制御部44aは、演算部43により測定値Bと経時変化予想軸62とに相関関係がないと判定された場合、スケール以外による詰まりと判定し、ユーザにフィルタ22の確認を指示する。一方、制御部44aは、演算部43により測定値Bと経時変化予想軸62とに相関関係があると判定された場合、スケールによる詰まりと判定し、スケール除去プログラムを実行する。その他の構成は、第1の実施の形態と同様である。
 次に、このように構成された内視鏡リプロセス装置1aの動作について説明する。
 図10は、第2の実施の形態に係る内視鏡リプロセス装置1aのスケール検出処理を説明するためのフローチャートである。なお、図10において、図5と同様の処理については、同一の符号を付して説明を省略する。
 まず、圧力センサ61で圧力が測定され(ステップS21)、測定値(圧力値)が第1の閾値を下回っているか、あるいは、第2の閾値を上回っているか否かが判定される(ステップS22)。測定値(圧力値)が第1の閾値を下回っていない、かつ、第2の閾値を上回っていないと判定された場合、NOとなり、得られた圧力情報を変数データとして加えて、経時変化予想軸62(あるいは、経時変化予想帯63)が更新される(ステップS23)。そして、ステップS4の処理において、洗浄消毒が進められ、ステップS21に戻り、同様の処理を繰り返す。
 一方、ステップS22において、測定値(圧力値)が第1の閾値を下回っている、あるいは、第2の閾値を上回っていると判定された場合、YESとなり、測定値(圧力値)が経時変化予想軸62(あるいは、経時変化予想帯63)と相関関係があるか否かが判定される(ステップS24)。測定値(圧力値)が経時変化予想軸62(あるいは、経時変化予想帯63)と相関関係があると判定された場合、YESとなり、ステップS6において、詰まりの原因がスケールにあると判断され、ステップS7において、スケール除去プログラムが実行される。そして、ステップS8において、経時変化予想軸62(あるいは、経時変化予想帯63)がリセットされ、処理を終了する。
 一方、測定値(圧力値)が経時変化予想軸62(あるいは、経時変化予想帯63)と相関関係がないと判定された場合、NOとなり、ステップS9において、詰まりの原因がスケール以外にあると判断される。そして、ステップS10において、ユーザにフィルタ22の確認の指示を出し、処理を終了する。
 以上の処理により、内視鏡リプロセス装置1aは、循環管路21、24の詰まりの原因がスケールにあるか、スケール以外にあるかを判定し、詰まりの原因に適した除去手段をとることができる。
 よって、本実施の形態の内視鏡リプロセス装置によれば、第1の実施の形態と同様に、装置内管路の詰まりの原因を特定し、詰まりの原因に適した除去手段を取ることができる。
 なお、本実施の形態の内視鏡リプロセス装置1aに第1の実施の形態の変形例1及び変形例2を適用してもよい。
 すなわち、内視鏡リプロセス装置1aは、スケールによる詰まりが発生したと判定した場合、スケールによる詰まりが発生したことをユーザに報知し、ユーザにスケール除去プログラムを直ちに実行するか否かを選択させるようにする。
 また、内視鏡リプロセス装置1aは、測定値Bが第1の閾値を下回った、あるいは、第2の閾値を上回ったと判定されたときに、経時変化予想軸62(あるいは、経時変化予想帯63)が算出されていない場合、スケール以外による詰まりと判定してもよい。
 なお、本明細書におけるフローチャート中の各ステップは、その性質に反しない限り、実行順序を変更し、複数同時に実行し、あるいは実行毎に異なった順序で実行してもよい。
 本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等が可能である。
 本出願は、2013年11月8日に日本国に出願された特願2013-232064号公報を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲、図面に引用されたものとする。

Claims (6)

  1.  内視鏡のチャンネルまたは外皮の少なくとも一方に流体を供給する流体供給管路と、
     前記流体供給管路を流通する流体の流量を測定する流量測定部と、
     前記流量測定部により測定された前記流量を測定時期と紐付けた流量情報として蓄積する流量情報蓄積部と、
     前記流量情報蓄積部に所定数以上の前記流量情報が蓄積された場合に、蓄積された前記流量情報から流量の経時変化予想軸を算出する予想部と、
     前記流量測定部により測定された流量情報が所定の閾値を逸脱しているか判定する閾値判定部と、
     前記閾値判定部が前記閾値を逸脱していると判定した場合に、前記流量測定部により測定された最新の流量情報が、前記経時変化予想軸との相関関係を有しているか否かを判定する相関判定部と、
     前記相関判定部が相関関係を有していると判定した場合に、スケールの除去に関わる第1の措置を行い、前記相関判定部が相関関係を有していないと判定した場合に、スケールの除去とは異なる第2の措置を行う制御部と、
    を有することを特徴とする内視鏡リプロセス装置。
  2.  報知部を更に有し、
     前記制御部は、前記第1の措置として、前記報知部にてユーザにスケールを除去する薬液を前記流体供給管路に導入することを要請し、前記第2の措置として、前記報知部にてユーザにフィルタの確認を要請することを特徴とする請求項1に記載の内視鏡リプロセス装置。
  3.  スケールを除去する除去薬を貯留する除去薬貯留部を更に有し、
     前記制御部は、前記第1の措置として、前記除去薬貯留部から前記除去薬を前記流体供給管路に導入することを特徴とする請求項1に記載の内視鏡リプロセス装置。
  4.  前記予想部は、前記制御部により前記第1の措置が実行されると、前記流量情報蓄積部に蓄積された前記流量情報の数をゼロにして前記経時変化予想軸をリセットすることを特徴とする請求項1に記載の内視鏡リプロセス装置。
  5.  前記流体供給管路に流体を導入するポンプを着脱可能に備え、
     前記予想部は、前記ポンプの交換に伴い前記流量情報蓄積部に蓄積された前記流量情報の数をゼロにして前記経時変化予想軸をゼロにリセットするか、または、前記経時変化予想軸の傾きの修正を行うことを特徴とする請求項1に記載の内視鏡リプロセス装置。
  6.  前記流量情報が前記所定数未満であって、
     前記閾値判定部が、閾値を逸脱していると判定した場合、
     前記制御部は、前記第2の措置を行うことを特徴とする請求項1に記載の内視鏡リプロセス装置。
PCT/JP2014/076806 2013-11-08 2014-10-07 内視鏡リプロセス装置 WO2015068515A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015510538A JP5747368B1 (ja) 2013-11-08 2014-10-07 内視鏡リプロセス装置
US14/802,444 US9420943B2 (en) 2013-11-08 2015-07-17 Endoscope reprocessing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013232064 2013-11-08
JP2013-232064 2013-11-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/802,444 Continuation US9420943B2 (en) 2013-11-08 2015-07-17 Endoscope reprocessing apparatus

Publications (1)

Publication Number Publication Date
WO2015068515A1 true WO2015068515A1 (ja) 2015-05-14

Family

ID=53041298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076806 WO2015068515A1 (ja) 2013-11-08 2014-10-07 内視鏡リプロセス装置

Country Status (3)

Country Link
US (1) US9420943B2 (ja)
JP (1) JP5747368B1 (ja)
WO (1) WO2015068515A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6465331B1 (ja) * 2017-08-30 2019-02-06 オリンパス株式会社 内視鏡リプロセッサの制御方法および内視鏡リプロセッサ
WO2019044041A1 (ja) * 2017-08-30 2019-03-07 オリンパス株式会社 内視鏡リプロセッサの制御方法および内視鏡リプロセッサ
WO2023181983A1 (ja) * 2022-03-22 2023-09-28 富士フイルム株式会社 内視鏡管路の状態判定方法、内視鏡管路の状態判定装置、及び内視鏡洗浄消毒装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP1567505S (ja) * 2016-03-28 2017-01-23
DE102017122434A1 (de) * 2017-09-27 2019-03-28 Olympus Winter & Ibe Gmbh Verfahren zum Aufbereiten eines wenigstens einen Kanal aufweisenden Endoskops in einem Aufbereitungsgerät
BR112020016159A2 (pt) 2018-02-09 2021-01-19 GYRUS ACMI, INC (também comercializando como OLYMPUS SURGICAL TECHNOLOGIES AMERICA) Aparelho de laser médico, controlador de endoscópio e sistema médico

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07324365A (ja) * 1994-06-01 1995-12-12 Matsushita Electric Ind Co Ltd 衛生洗浄装置
JP2002034915A (ja) * 2000-07-28 2002-02-05 Olympus Optical Co Ltd 器具洗滌消毒装置
JP2003010115A (ja) * 2001-06-29 2003-01-14 Koken Ltd 内視鏡洗滌装置
JP2006230709A (ja) * 2005-02-24 2006-09-07 Olympus Medical Systems Corp 内視鏡洗滌消毒装置及び内視鏡洗滌消毒方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7479257B2 (en) * 2005-08-26 2009-01-20 Ethicon, Inc. Automated endoscope reprocessor solution testing
US7918788B2 (en) 2005-10-31 2011-04-05 Ethicon, Inc. Apparatus and method for providing flow to endoscope channels

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07324365A (ja) * 1994-06-01 1995-12-12 Matsushita Electric Ind Co Ltd 衛生洗浄装置
JP2002034915A (ja) * 2000-07-28 2002-02-05 Olympus Optical Co Ltd 器具洗滌消毒装置
JP2003010115A (ja) * 2001-06-29 2003-01-14 Koken Ltd 内視鏡洗滌装置
JP2006230709A (ja) * 2005-02-24 2006-09-07 Olympus Medical Systems Corp 内視鏡洗滌消毒装置及び内視鏡洗滌消毒方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6465331B1 (ja) * 2017-08-30 2019-02-06 オリンパス株式会社 内視鏡リプロセッサの制御方法および内視鏡リプロセッサ
WO2019044041A1 (ja) * 2017-08-30 2019-03-07 オリンパス株式会社 内視鏡リプロセッサの制御方法および内視鏡リプロセッサ
CN111050630A (zh) * 2017-08-30 2020-04-21 奥林巴斯株式会社 内窥镜再生处理器的控制方法及内窥镜再生处理器
US11622678B2 (en) 2017-08-30 2023-04-11 Olympus Corporation Control method for endoscope reprocessor, and endoscope reprocessor
WO2023181983A1 (ja) * 2022-03-22 2023-09-28 富士フイルム株式会社 内視鏡管路の状態判定方法、内視鏡管路の状態判定装置、及び内視鏡洗浄消毒装置

Also Published As

Publication number Publication date
US20150320303A1 (en) 2015-11-12
JPWO2015068515A1 (ja) 2017-03-09
JP5747368B1 (ja) 2015-07-15
US9420943B2 (en) 2016-08-23

Similar Documents

Publication Publication Date Title
JP5747368B1 (ja) 内視鏡リプロセス装置
EP3245938B1 (en) Apparatus and method to identify endoscope type and provide tailored reprocessing
JP5296079B2 (ja) 自動内視鏡再処理装置および該装置内の給水フィルタを自己消毒する方法
JP4633274B2 (ja) 内視鏡洗滌消毒装置
CA2561609C (en) Method of detecting connection of test port on an endoscope
US20090220377A1 (en) Endoscope washing and disinfecting apparatus and endoscope washing and disinfecting method
JP2010075267A (ja) 洗浄装置、およびその保守管理装置
JP4975529B2 (ja) 内視鏡洗浄機
JP2008272113A (ja) 内視鏡洗浄消毒装置
AU2017239616B2 (en) Dynamic disinfectant dosage with concentrate degradation compensation
JP2006230709A (ja) 内視鏡洗滌消毒装置及び内視鏡洗滌消毒方法
JP3205321U (ja) 内視鏡リプロセッサ
JP2010035936A (ja) 内視鏡洗浄消毒装置
WO2017065152A1 (ja) 血液浄化装置
JP2009022513A (ja) 内視鏡のすすぎ方法
JP5966097B1 (ja) 内視鏡リプロセッサ
JP7229099B2 (ja) 血液浄化装置
JP3823171B2 (ja) 内視鏡洗滌装置
JP7262310B2 (ja) 血液浄化装置
JP5753332B1 (ja) 内視鏡洗浄消毒装置を用いた洗浄消毒方法
JP2023080181A (ja) 血液浄化装置
JP2009189414A (ja) 内視鏡洗浄消毒装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015510538

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14859838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14859838

Country of ref document: EP

Kind code of ref document: A1