WO2015068391A1 - シリコンウェーハ表層中の原子空孔評価方法及び装置 - Google Patents

シリコンウェーハ表層中の原子空孔評価方法及び装置 Download PDF

Info

Publication number
WO2015068391A1
WO2015068391A1 PCT/JP2014/005580 JP2014005580W WO2015068391A1 WO 2015068391 A1 WO2015068391 A1 WO 2015068391A1 JP 2014005580 W JP2014005580 W JP 2014005580W WO 2015068391 A1 WO2015068391 A1 WO 2015068391A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
silicon
surface layer
silicon sample
silicon wafer
Prior art date
Application number
PCT/JP2014/005580
Other languages
English (en)
French (fr)
Inventor
輝孝 後藤
祐一 根本
金田 寛
光洋 赤津
啓輔 三本
Original Assignee
国立大学法人 新潟大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 新潟大学 filed Critical 国立大学法人 新潟大学
Priority to DE112014005091.1T priority Critical patent/DE112014005091T5/de
Priority to US15/031,187 priority patent/US20160258908A1/en
Publication of WO2015068391A1 publication Critical patent/WO2015068391A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/041Analysing solids on the surface of the material, e.g. using Lamb, Rayleigh or shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • G01N29/075Analysing solids by measuring propagation velocity or propagation time of acoustic waves by measuring or comparing phase angle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2697Wafer or (micro)electronic parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Definitions

  • the present invention relates to a method and apparatus for evaluating atomic vacancies in the surface layer of a silicon wafer.
  • semiconductor devices represented by DRAM and flash memory have become more multifunctional and higher in quality with the advancement of communication devices, etc., as well as mobile phones, portable music players, smartphones, etc. Due to the spread of, demand is increasing rapidly. Correspondingly, the demand for silicon wafers, which are materials for semiconductor elements, has been increasing rapidly, and it is possible to efficiently produce high-quality silicon wafers to meet the demand that is expected to increase in the future. Technology that can be done is required.
  • silicon wafers are generally manufactured by the Czochralski method (CZ method) or the float zone (FZ method).
  • CZ method Czochralski method
  • FZ method float zone
  • the silicon wafer formed by these methods contains lattice defects at a certain rate.
  • This lattice defect is a point defect mainly composed of an atomic vacancy from which one silicon atom in the lattice is removed and an interstitial atom having a silicon atom in an irregular position of the lattice.
  • atomic vacancies that are point defects gather to form voids that are secondary defects, the electrical characteristics and yield of devices manufactured using silicon wafers are adversely affected.
  • the substrate wafer is annealed to remove void defects in the surface layer.
  • the epitaxial wafer is an epitaxial layer in which the impurity concentration and thickness are precisely controlled on the wafer.
  • it is necessary to perform secondary processing on silicon wafers cut out from silicon ingots, which increases the number of man-hours required for production of silicon wafers efficiently. Have difficulty.
  • annealed wafers and epitaxial wafers there is a problem that it is difficult to perform the secondary processing described above on large-diameter wafers (currently 300 mm wafers or 450 mm wafers that are being developed).
  • Patent Document 1 One of the inventors of the present invention has proposed an atomic vacancy analyzer using ultrasonic measurement so far (Patent Document 1).
  • an external magnetic field is applied to a silicon sample, ultrasonic waves are passed through the crystal sample while cooling, and a curve showing the relationship between the ultrasonic sound velocity change in the silicon sample and the cooling temperature of the silicon sample
  • the atomic vacancy concentration is obtained on the basis of the steep drop amount.
  • the present invention aims to provide a new method and apparatus for evaluating atomic vacancies in the surface layer of a silicon wafer.
  • the method for evaluating atomic vacancies in the surface layer of a silicon wafer according to the present invention includes an element forming step of forming a pair of surface ultrasonic elements facing each other on the same surface of a silicon sample, and applying an external magnetic field by cooling the silicon sample. While oscillating an ultrasonic pulse from one of the surface ultrasonic elements, the ultrasonic pulse propagated on the surface of the silicon sample was received by the other of the surface ultrasonic elements, and oscillated from one of the surface ultrasonic elements.
  • the detection step is performed at a temperature of 20 mK to 20 K.
  • the detection step is performed with a magnetic field strength of 0 to 9T.
  • the surface ultrasonic element is formed of a piezoelectric thin film formed on the silicon sample and a comb-like electrode formed on the piezoelectric thin film.
  • the piezoelectric thin film is made of zinc oxide, aluminum nitride, or polyvinylidene fluoride, and the comb-like electrode is made of Al or Cu.
  • the silicon sample is affixed on a silver plate or a silver film.
  • the atomic vacancy concentration N is determined.
  • An atomic vacancy evaluation apparatus in a surface layer of a silicon wafer includes a silicon sample in which an ultrasonic oscillation unit and an ultrasonic reception unit are formed, a magnetic force generation unit that applies an external magnetic field to the silicon sample, and the silicon sample Cooling means for cooling the detection means, and detection means for detecting a phase difference between the ultrasonic pulse oscillated from the ultrasonic oscillation section and the ultrasonic pulse propagated through the silicon sample and received by the ultrasonic reception section;
  • the ultrasonic oscillator and the ultrasonic receiver are comb-like electrodes formed on a piezoelectric thin film formed on the surface of the silicon sample, and are formed on the same surface of the silicon sample. It is characterized by.
  • the piezoelectric thin film is made of zinc oxide, aluminum nitride, or polyvinylidene fluoride, and the comb-like electrode is made of Al or Cu.
  • the silicon sample is affixed on a silver plate or a silver film.
  • the silicon wafer of the present invention displays the atomic vacancy concentration in the surface layer evaluated by the atomic vacancy evaluation method described in any of the above, and the atomic vacancy concentration in the surface layer and the atomic vacancies in the bulk It is characterized in that the density is displayed separately.
  • the method for producing a silicon wafer according to the present invention includes an element forming step of forming a pair of surface ultrasonic elements facing each other on the same surface of a silicon sample, and the surface ultrasonic wave while cooling the silicon sample and applying an external magnetic field.
  • An ultrasonic pulse that oscillates from one of the elements and propagates through the surface of the silicon sample is received by the other of the surface ultrasonic elements, and the ultrasonic pulse oscillated from one of the surface ultrasonic elements and the
  • the silicon wafer of the present invention is manufactured by the above-described silicon wafer manufacturing method.
  • the atomic vacancy concentration in the surface layer of the silicon wafer can be measured separately from the atomic vacancy concentration inside the silicon wafer.
  • Displacement vector u x of the surface ultrasonic (SAW) is excited, symmetrical distortion component epsilon B contained in u z, ⁇ u, ⁇ v , a graph illustrating a state of vibration energy of epsilon zx, progress in the x-axis direction Shows the energy of SAW.
  • the SAW energy traveling in the x-axis direction is composed of a portion U total that propagates while oscillating depending on time, and a portion that does not depend on time.
  • Displacement vector u x of the surface ultrasonic (SAW) is excited, symmetrical distortion component epsilon B contained in u z, ⁇ u, ⁇ v , a graph illustrating a state of vibration energy of epsilon zx, depending on the time The state of penetration of U total vibrating into the silicon wafer is shown.
  • the atomic vacancies that form the basis of the theoretical analysis (Figs. 9 and 10) used to determine the vacancy concentration from the temperature change of the surface ultrasound (Fig. 6) and its magnetic field dependence (Figs. 7 and 8). It is explanatory drawing which shows the mode of a quantum state.
  • an apparatus 1 in FIG. 1 showing an apparatus for evaluating atomic vacancies in the surface layer of a silicon wafer of this embodiment, an apparatus 1 includes a sample holder portion 2, a dilution refrigerator 3 as a cooling means, a magnetic force generating means 4, and a detection coaxial line as a detection means. 5 is provided. As a whole, the apparatus 1 has an ultrasonic pulse that has been propagated through the surface layer of the silicon sample 6 by cooling the silicon sample 6 to a predetermined temperature while applying an external magnetic field to the silicon sample 6 installed in the sample holder portion 2. The speed of sound is detected.
  • the magnetic force generating means 4 is disposed so as to surround a position where the silicon sample 6 is set in order to apply an external magnetic field to the silicon sample 6.
  • the magnetic force generation means 4 for example, a superconducting magnet can be used.
  • the magnetic force generating means 4 has at least 0 to 10 Tesla. It is configured to be controllable in a range.
  • the dilution refrigerator 3 cools the silicon sample 6 installed in the sample holder 2 and is configured to be controllable in a range of at least 20 mK to 20K.
  • the dilution refrigerator 3 includes two systems, a 3 He- 4 He mixed gas system 10 and a 4 He system 11, and is configured so that the inside of the dewar 12 can be cooled to a predetermined temperature.
  • the dewar 12 has a double structure of an inner layer 12a and an outer layer 12b, and a vacuum space 12c is formed between the inner layer 12a and the outer layer 12b. In the dewar 12, liquid 4 He is stored.
  • the 3 He- 4 He mixed gas system 10 is configured to obtain a cooling capacity as the dilution refrigerator 3.
  • the 3 He- 4 He mixed gas system 10 includes a storage tank 14, a circulation pump 15, a condenser 16, a mixer 17, and a fractionator 18. Unlike a normal pump, the circulation pump 15 has a structure in which 3 He does not escape to the outside air.
  • the condenser 16 cools the 3 He gas sent out from the circulation pump 15 and separates it into a 3 He rich phase and a 3 He dilute phase.
  • the mixer 17 is a portion having the lowest temperature in the dilution refrigerator 3. In the mixer 17, there is an interface of 3 He— 4 He mixed liquid separated in phase.
  • the upper half of the mixer 17 is a 3 He rich phase and is constantly supplied from the capacitor 16.
  • the lower half of the mixer 17 is a 3 He dilute phase (concentration of about 6%, and the remaining is superfluid 4 He), which is connected to the fractionator 18.
  • 3 He is forced to move from a rich phase with high entropy to a dilute phase with little entropy.
  • the cooling capacity of the dilution refrigerator 3 is generated.
  • the fractionator 18 is configured to selectively evaporate only 3 He in the lean phase.
  • the fractionator 18 is maintained at a predetermined temperature (for example, 0.8 K or less). As a result, the fractionator 18 evaporates only 3 He by utilizing the phenomenon that the vapor pressure of 3 He is kept finite while the vapor pressure of 4 He is 0. .
  • the 4 He system 11 is configured to be capable of liquefying 3 He gas.
  • This 4 He system includes a 1K pot 20 having an exhaust pump.
  • the cooling capacity is obtained by exhausting 4 He in the 1K pot 20 with an exhaust pump.
  • a 4.2K 4 He liquid is directly taken from the dewar 12 through the capacitor 16 so that continuous operation is possible, and the 3 He gas is liquefied in the capacitor 16. Yes.
  • FIG. 1 shows a configuration in which the sample holder 2 to which the silicon sample 6 is set is phase-separated into a 3 He rich phase and a 3 He dilute phase in the mixer 17.
  • the member forming the cooled mixer 17 is made of a material having a high thermal conductivity, and the silicon sample 6 is cooled indirectly using the heat conduction from the member forming the mixer 17. ing.
  • Such a configuration is particularly advantageous in that the temperature range for cooling can be expanded to the high temperature side.
  • the detection coaxial line 5 oscillates an ultrasonic pulse with respect to the surface of the silicon wafer, receives an ultrasonic pulse obtained by propagating the oscillated ultrasonic pulse in the surface layer of the silicon wafer, and transmits the ultrasonic wave propagated in the surface layer of the silicon wafer.
  • the sound speed of the pulse can be detected.
  • the silicon sample 6 is affixed to a silver plate 21 made of pure silver and held by the sample holder portion 2.
  • the silver plate 21 is provided in order to make it less susceptible to temperature fluctuations even when an external magnetic field is applied by contacting the silicon sample 6 to cool the silicon sample 6.
  • silver wires 22 and 23 for cooling the silicon sample are provided.
  • the silicon sample 6 includes a silicon wafer 26, an ultrasonic oscillator 27 as a surface ultrasonic element (SAW element) provided on one surface of the silicon wafer 26, an ultrasonic receiver 28, Consists of.
  • the ultrasonic oscillator 27 and the ultrasonic receiver 28 are formed on the same surface of the silicon wafer 26, and the piezoelectric thin films 29 and 30 formed on the silicon wafer 26, and further formed on the silicon wafer surface layer Comb electrodes 31 and 32 for applying an electric field therein are provided.
  • the piezoelectric thin films 29 and 30 and the comb electrodes 31 and 32 constitute a transducer.
  • the piezoelectric thin films 29 and 30 are made of ZnO having a thickness of 2 ⁇ m and are grounded.
  • the comb-shaped electrodes 31 and 32 are made of Al or Cu, and are formed in a so-called comb shape in which a plurality of fine wires are bent and arranged in parallel.
  • the piezoelectric thin films 29 and 30 can be formed by sputtering or the like, and the comb electrodes 31 and 32 can be formed by photolithography or the like.
  • the thicknesses of the comb electrodes 31 and 32 are 1 ⁇ m or less, the width W of the fine lines is 2.5 ⁇ m, and the distance between the fine lines is 2.5 ⁇ m, which is the same as the width W. Note that the width W of the fine line is a quarter of the wavelength ⁇ of the ultrasonic pulse oscillated from the ultrasonic oscillator 27.
  • the comb-shaped electrodes 31 and 32 are provided so as to face each other in a state where the fine lines are parallel to each other.
  • Fig. 4 shows the silicon sample 6 actually produced.
  • the black portion is the piezoelectric thin film 29 made of ZnO
  • the white portion is the comb-like electrode 31 made of Al formed thereon.
  • the piezoelectric thin film 29 is formed by a sputtering method
  • the comb electrode 31 is formed by a photolithography method.
  • the silicon sample 6 has a strip shape with a vertical dimension of 10 mm, a horizontal dimension of 40 mm, and a thickness of 0.776 mm.
  • the detection coaxial line 5 detects the phase difference between the reference signal obtained by directly measuring the basic signal of the ultrasonic pulse applied to the silicon sample 6 and the measurement signal of the surface ultrasonic pulse propagated in the surface layer of the silicon sample 6. It is configured as follows.
  • the detection coaxial line 5 includes a standard signal generator 35, a frequency counter 36, a personal computer 37, a diode switch 38, a pulse generator 39, a phase shifter 40, and a phase detector 41.
  • Standard signal generator 35 generates a basic signal. This basic signal is branched into a reference signal system 5a and a measurement signal system 5b.
  • the frequency counter 36 measures the basic signal and outputs the result to the personal computer 37.
  • the reference signal system 5a is connected to the phase detector 41 via the phase shifter 40.
  • the diode switch 38 to which the pulse generator 39 is connected and the silicon sample 6 are arranged in this order, and are connected to the phase detector 41.
  • the diode switch 38 divides the basic signal into a predetermined width.
  • the phase detector 41 compares the reference signal based on the basic signal with the measurement signal output from the silicon sample 6, and detects the sound velocity of the ultrasonic pulse in the silicon wafer 26.
  • the detection coaxial line 5 has a means for performing zero detection by changing the oscillation frequency so that the phase difference caused by the change in the sound speed due to the temperature or the magnetic field becomes constant. Further, it is preferable that a plurality of silicon samples 6 and a plurality of points of one silicon sample 6 are configured so that the phase difference can be measured simultaneously.
  • an external magnetic field is applied as necessary to the silicon sample 6 in which the ultrasonic oscillator 27 and the ultrasonic receiver 28 are formed on the surface of the silicon wafer 26 obtained by cutting out a predetermined portion from the silicon ingot. Then, it is cooled to a temperature range of 20K or less.
  • the standard signal generator 35 oscillates the basic signal.
  • This basic signal is branched into a reference signal system 5a and a measurement signal system 5b.
  • the basic signal of the measurement signal system 5b is divided by the diode switch 38 into a width of 0.5 ⁇ s, for example.
  • the ultrasonic pulse propagates from the surface of the silicon wafer 26 in the surface layer at the wavelength ⁇ to 10 ⁇ m or less of the ultrasonic pulse.
  • the ultrasonic pulse propagating in the surface layer of the silicon wafer 26 is received as a measurement wave pulse by the ultrasonic receiver 28, converted into an electric signal again, and output as a measurement signal.
  • the measurement signal and the reference signal are compared in the phase detector 41, and the phase difference ⁇ between the ultrasonic pulse and the measurement wave pulse is measured.
  • l the propagation length of the surface ultrasonic wave
  • f the ultrasonic frequency.
  • the actually measured sound speed is 4.967 km / sec. This is in good agreement with the Rayleigh wave calculation result 4.844 km / sec expected from the theoretical calculation of the surface acoustic wave.
  • ⁇ ⁇ 2.33 g / cm 3 is the density of silicon.
  • the sound velocity v is detected from the phase difference ⁇ of the ultrasonic pulse. Then, the elastic constant C s associated with the decrease in the cooling temperature is calculated from the sound velocity v, and the type and concentration of atomic vacancies existing in the silicon wafer 26 can be quantitatively evaluated from the amount of decrease in the elastic constant C s. .
  • the elastic constant C with decreasing field strength temperature is calculated from the sound velocity v, and the type and concentration of atomic vacancies existing in the silicon wafer 26 can be quantitatively evaluated from the amount of decrease in the elastic constant C s. .
  • it is possible to calculate the elastic constant C with decreasing field strength temperature as constant to quantitatively evaluate the concentration of atomic vacancy existing in a silicon wafer 26 from reduction of elastic constant C s. This is because the amount of decrease in elastic constant is proportional to the atomic vacancy concentration.
  • a graph as shown in FIG. 6 can be obtained, for example.
  • the frequency of the ultrasonic pulse is 523 MHz
  • the propagation direction is parallel to the crystal orientation [001]
  • the distance d between the comb electrodes 31 and 32 is 15 mm
  • the magnetic field strength is 0T.
  • This graph is significantly reduced elastic constant C s in proportion to the inverse of the temperature, i.e., it represents that the low-temperature softening.
  • a change in the observed value of the elastic constant C due to the superconducting transition of Al constituting the comb-shaped electrodes 31 and 32 is confirmed near 1.16K.
  • the atomic vacancy orbit that has greatly expanded to more than 1 nm around the atomic vacancy has a huge electric quadrupole and is extremely strongly coupled to the ultrasonic distortion. Further, the softening of the low temperature becomes remarkable when the ground state approaches absolute zero which is degenerate. Moreover, since three electrons are accommodated in the atomic vacancy orbit, it is magnetized. By utilizing the quantum state of such atomic vacancies, the atomic vacancy concentration can be evaluated.
  • the surface ultrasonic acoustic wave propagating silicon surface (001) [100] direction is described as an example, the longitudinal wave component u x and transverse wave component u z as shown in FIG. 11 Exercise while drawing an elliptical orbit.
  • Cold softening of the surface ultrasonic wave elastic constant C s is caused by the interaction of the electric quadrupole distortions surface ultrasonic waves are induced and vacancy orbitals.
  • the vibrations of the symmetric strains ⁇ B , ⁇ u , ⁇ v , and ⁇ zx included in the displacement vectors u x and u z excited by the surface ultrasonic wave (SAW) shown in FIGS. 12a and 12b are expressed by the following equation (1).
  • SAW surface ultrasonic wave
  • the parameter q representing the attenuation and vibration of surface ultrasonic waves in the z-axis direction can be expressed by the following equation (2).
  • a function representing a state of propagating while vibrating in the x-axis direction and attenuated in the z-axis direction can be expressed by the following equation (5).
  • equation (6) represents a parameter ⁇ proportional to the amplitude U of the input surface ultrasonic wave.
  • k is the wave number of the surface ultrasound.
  • the free energy of the coupled system between the silicon lattice and the vacancy orbit is calculated up to the secondary process of the external perturbation ⁇ . Furthermore, by calculating the second derivative for the external perturbation ⁇ of free energy, the elastic constant C s is softened at a low temperature (FIG. 5), its temperature dependence in the magnetic field (FIG. 6), and the magnetic field dependence at low temperature ( Fig. 7) can be analyzed theoretically.
  • the temperature dependence and magnetic field dependence of the elastic constant C s of the surface ultrasonic wave uses the dependence of the quadrupole susceptibility ⁇ (O u ), ⁇ (O v ) and ⁇ (Ozx) on the temperature magnetic field shown in FIG. .
  • the following quadrupole-strain coupling constants g ⁇ 5 and g ⁇ 3 separately obtained by the inventors of the present application are used.
  • t, s for example the following values are used in the C 0.
  • FIG. 9 and FIG. 10 show the results of theoretical calculation using Equation (7), and reproduce the experimental results of FIG. 7 and FIG.
  • an error included in the coupling constant is taken into consideration. This established a method for determining the atomic vacancy concentration in the surface layer.
  • softening of surface ultrasonic waves at low temperatures disappears due to a magnetic field applied from the outside, but the behavior disappears depending on the direction in which the magnetic field is applied.
  • a magnetic field is applied in parallel to the surface ultrasonic wave traveling direction
  • the magnetic field behaves differently when applied perpendicular to the surface ultrasonic wave traveling direction and parallel to the wafer surface, or when the magnetic field is applied perpendicular to the wafer surface.
  • the surface vacancy concentration can be evaluated by the applied magnetic field dependence of surface ultrasonic softening at low temperature.
  • FIG. 7 shows the magnetic field dependence of the elastic constant in the boron-added CZ wafer surface layer
  • FIG. 8 shows the temperature dependence of the elastic constant in the boron-added CZ wafer surface layer in the magnetic field.
  • the frequency of the ultrasonic pulse is 523 MHz
  • the propagation direction is parallel to the crystal orientation [001]
  • the magnetic field application direction is parallel to the crystal orientation [001]
  • the distance d between the comb electrodes 31 and 32 is 7.5 mm.
  • FIG. 8 shows the case where the temperature is kept constant at 4K, 1.5K, 700 mK, 300 mK and 23 mK, respectively
  • FIG. 7 shows the case where the magnetic field strength is kept constant at 0T, 0.4T, 1T and 2T, respectively. .
  • the method for evaluating atomic vacancies in the surface layer of the silicon wafer has the comb-like electrodes 31 and 32 disposed on the same surface of the silicon sample 6 via the piezoelectric thin films 29 and 30 that are piezoelectric thin films.
  • the ultrasonic pulse propagated on the surface of the silicon sample 6 is received by the other 32 of the surface ultrasonic elements, and is received by the ultrasonic pulse oscillated from one 31 of the surface ultrasonic elements and the other 32 of the comb-like electrodes.
  • the detection step is performed at a temperature of 20 mK to 20 K.
  • the piezoelectric thin films 29 and 30 are made of ZnO, and the comb-shaped electrodes 31 and 32 are made of Al or Cu.
  • the silicon sample 6 is stuck on the silver plate 21.
  • the atomic vacancy evaluation apparatus 1 in the surface layer of the silicon wafer applies the external magnetic field to the silicon sample 6 in which the ultrasonic oscillator 27 and the ultrasonic receiver 28 are formed, and the silicon sample 6.
  • Magnetic force generating means 4 cooling means 3 for cooling the silicon sample 6, ultrasonic pulses oscillated from the ultrasonic oscillator 27, and propagation through the silicon sample 6 and received by the ultrasonic receiver 28.
  • a detection coaxial line 5 for detecting a phase difference from the ultrasonic pulse, and the ultrasonic oscillation unit 27 and the ultrasonic reception unit 28 are formed on piezoelectric thin films 29 and 30 formed on the surface of the silicon sample 6.
  • the comb-shaped comb electrodes 31 and 32 are formed on the same surface of the silicon sample 6.
  • the high-frequency ultrasonic wave propagating in the surface layer of the silicon wafer is measured to distinguish it from the atomic vacancy concentration inside the silicon wafer.
  • the atomic vacancy concentration in the silicon wafer surface layer thinner than 10 ⁇ m can be measured.
  • the silicon sample 6 is affixed on the silver plate 21, but may be affixed on a silver film.
  • the detection step can be performed with an arbitrary magnetic field strength within a range of 0 to 10T.
  • the piezoelectric thin films 29 and 30 may be made of aluminum nitride (AlN) or polyvinylidene fluoride (PVDF) in addition to zinc oxide (ZnO).
  • the concentration of atomic vacancies existing at 3.5 to 0.18 mm of the silicon surface layer may be selectively evaluated by setting the resonance frequency of the surface ultrasonic element in the range of 0.5 to 10 GHz.
  • the ultrasonic oscillating unit and the ultrasonic receiving unit may be configured to use an ultrasonic pulse having a pulse width of 0.1 to 1 ⁇ sec.
  • 1 atomic vacancy evaluation apparatus
  • 3 dilution refrigerator (cooling means); 4: magnetic force generation means; 5: detection coaxial line (detection means); 6: silicon sample; 21: silver plate; 28: Ultrasonic wave receiver; 29, 30: Piezoelectric thin film; 31, 32: Comb electrodes.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

 シリコン試料6の同一面に圧電薄膜29,30を介して一対の櫛状の櫛状電極31,32を形成する素子形成工程と、シリコン試料6を冷却して外部磁場を印加しながら櫛状電極の一方31から超音波パルスを発振するとともにシリコン試料6の表面を伝播した超音波パルスを櫛状電極の他方32により受信し、櫛状電極の一方31から発振された超音波パルスと櫛状電極の他方32により受信された超音波パルスとの位相差を検出する検出工程と、位相差に基づきシリコン試料6の表層の弾性定数を求め、温度に対する弾性定数の変化又は磁場強度に対する弾性定数の変化に基づいてシリコン試料6の表層中の原子空孔を評価する評価工程とを備えた。

Description

シリコンウェーハ表層中の原子空孔評価方法及び装置
 本発明は、シリコンウェーハ表層中の原子空孔評価方法及び装置に関する。
 近年、DRAMやフラッシュメモリに代表される半導体素子(LSI:Large Scale Integration)は、通信機器等の高度化に伴い、多機能化、高品質化が進むとともに、携帯電話、携帯音楽プレイヤー、スマートフォンなどの普及によって、需要が急速に増加している。これに対応して、半導体素子の材料であるシリコンウェーハの需要も急速に増加しており、今後も増加すると予想される需要に対応するべく、高品質のシリコンウェーハを効率的に生産することができる技術が求められている。
 因みに、半導体産業において、シリコンウェーハは、一般的にチョクラルスキー法(CZ法)やフロートゾーン(FZ法)で製造される。これらの方法で形成されたシリコンウェーハには、一定の割合で格子欠陥が含まれる。この格子欠陥は、主に格子中のシリコン原子1個が抜けた原子空孔と格子の不規則な位置にシリコン原子が入った格子間原子からなる点欠陥である。とくに点欠陥である原子空孔が集合し二次欠陥であるボイドを形成すると、シリコンウェーハを用いて製造するデバイスの電気特性や歩留まりに悪影響を及ぼすことになる。従って、上記したような通信機器等に用いられるいわゆるハイエンド・デバイスの製造には、加工を施したアニールウェーハ、エピタキシャルウェーハ、及び、二次欠陥であるボイドの成長を抑制した完全結晶シリコンウェーハが使われている。
 ところが、アニールウェーハは、表面層のボイド欠陥を除去するために、基板ウェーハにアニール処理を施すものである。また、エピタキシャルウェーハは、ウェーハ上に不純物濃度と厚みを精密に制御したエピタキシャル層を形成するものである。すなわち、アニールウェーハ、及び、エピタキシャルウェーハでは、いずれもシリコンインゴットから切り出したシリコンウェーハに対し二次加工をする必要があるので、生産工数が増加することとなり、効率的にシリコンウェーハを生産することは困難である。また、アニールウェーハ、及び、エピタキシャルウェーハでは、大口径のウェーハ上(現在の300mmウェーハや開発が進んでいる450mmウェーハ)へ、上記した二次加工を施すことが困難であるという問題もある。
 このような理由から、近年では、2次欠陥であるボイドの成長を抑制し、点欠陥である原子空孔と格子間原子のみとした完全結晶シリコンウェーハが実用化されている。但し、この完全結晶シリコンウェーハにおいても、デバイスの電気特性や歩留りを向上するためには、結晶インゴット内における原子空孔リッチの部分の領域と、格子間原子リッチの部分の領域を判定する必要がある。さらに、一つの原子空孔リッチの部分の領域の中においても、原子空孔濃度の分布をデバイス製造に先だって事前に評価することが必要である。
 したがって、点欠陥を制御した高品質CZシリコン結晶インゴットの成長技術の開発には超音波計測による原子空孔濃度の定量評価が必要となっている。上記CZシリコン結晶インゴットをスライスして製造される完全結晶シリコンウェーハ中の原子空孔の存在濃度を超音波計測によって予め評価することで、完全結晶シリコンウェーハを用いたデバイスの製造における特性制御が可能であり、歩留り向上に大きな寄与があると期待されている。
 本発明者らのうちの1人は、これまでに超音波計測を用いた原子空孔分析装置を提案している(特許文献1)。この原子空孔分析装置では、シリコン試料に外部磁場を印加し、冷却しながら結晶試料に超音波を通過させて、シリコン試料での超音波音速変化とシリコン試料の冷却温度との関係を示す曲線の急峻な落ち込み量に基づいて、原子空孔濃度を求めるものである。
 ところで、デバイス製造ではシリコンウェーハ表層の1~3μmだけを用いているので、半導体産業では、デバイス動作領域を含むウェーハ表層の原子空孔を計測したいとの強い要請がある。しかし、シリコンウェーハ内部の原子空孔濃度とは区分して、シリコンウェーハ表層中の原子空孔を計測する技術は今まで知られていなかった。
特開平7一174742号公報
 そこで本発明は、上記した問題点に鑑み、シリコンウェーハ表層中の原子空孔を評価するための新たな方法と装置を提供することを目的とする。
 本発明のシリコンウェーハ表層中の原子空孔評価方法は、シリコン試料の同一表面上に対向した一対の表面超音波素子を形成する素子形成工程と、前記シリコン試料を冷却して外部磁場を印加しながら前記表面超音波素子の一方から超音波パルスを発振するとともに前記シリコン試料の表面を伝播した超音波パルスを前記表面超音波素子の他方により受信し、前記表面超音波素子の一方から発振された超音波パルスと前記表面超音波素子の他方により受信された超音波パルスとの位相差を検出する検出工程と、前記位相差に基づき前記シリコン試料の表層の弾性定数Cを求め、温度に対する弾性定数Cの変化又は磁場強度に対する弾性定数Cの変化に基づいて前記シリコン試料の表層中の原子空孔濃度Nを評価する評価工程とを備えたことを特徴とする。
 また、前記検出工程は、20mK~20Kの温度で行われることを特徴とする。
 また、前記検出工程は、0~9Tの磁場強度で行われることを特徴とする。
 また、前記表面超音波素子は、前記シリコン試料上に形成された圧電薄膜と、この圧電薄膜上に形成された櫛状電極とから形成されたことを特徴とする。
 また、前記圧電薄膜は酸化亜鉛、窒化アルミニューム又はポリフッ化ビニリデンからなり、前記櫛状電極はAl又はCuからなることを特徴とする。
 また、前記シリコン試料は銀板上又は銀フィルム上に貼付されたことを特徴とする。
 また、前記評価工程において、前記シリコン試料の表層の弾性定数Cの低温ソフト化量ΔC/Cを求め、低温ソフト化量ΔC/C=1×10-4に対して原子空孔濃度N=(1.6±0.2)×1012cm-3が相当することに基いて原子空孔濃度Nを決定することを特徴とする。
 また、前記評価工程において、前記シリコン試料の表層の弾性定数Cの10~50mKの範囲内における極低温での一定温度で0~10テスラの磁場を印加したときの磁場強度の変化に依存した変化量ΔC/Cを求め、変化量ΔC/C=1×10-4に対して原子空孔濃度N=(1.6±0.2)×1012cm-3が相当することに基いて原子空孔濃度Nを決定することを特徴とする。
 本発明のシリコンウェーハ表層中の原子空孔評価装置は、超音波発振部と超音波受信部とを形成したシリコン試料と、前記シリコン試料に対し外部磁場を印加する磁力発生手段と、前記シリコン試料を冷却する冷却手段と、前記超音波発振部から発振された超音波パルスと、前記シリコン試料を伝播して前記超音波受信部により受信された超音波パルスとの位相差を検出する検出手段とを備え、前記超音波発振部と前記超音波受信部は、前記シリコン試料の表面に形成された圧電薄膜上に形成された櫛状電極であって、前記シリコン試料の同一面に形成されたことを特徴とする。
 また、上記において、前記圧電薄膜は酸化亜鉛、窒化アルミニューム又はポリフッ化ビニリデンからなり、前記櫛状電極はAl又はCuからなることを特徴とする。
 また、上記において、前記シリコン試料は銀板上又は銀フィルム上に貼付されたことを特徴とする。
 本発明のシリコンウェーハは、上記のいずれかに記載の原子空孔評価方法により評価された表層中の原子空孔濃度が表示されるとともに、表層中の原子空孔濃度とバルク中の原子空孔濃度が区別して表示されたことを特徴とする。
 本発明のシリコンウェーハの製造方法は、シリコン試料の同一表面上に対向した一対の表面超音波素子を形成する素子形成工程と、前記シリコン試料を冷却して外部磁場を印加しながら前記表面超音波素子の一方から超音波パルスを発振するとともに前記シリコン試料の表面を伝播した超音波パルスを前記表面超音波素子の他方により受信し、前記表面超音波素子の一方から発振された超音波パルスと前記表面超音波素子の他方により受信された超音波パルスとの位相差を検出する検出工程と、前記位相差に基づき前記シリコン試料の表層の弾性定数Cを求め、温度に対する弾性定数Cの変化又は磁場強度に対する弾性定数Cの変化に基づいて前記シリコン試料の表層中の原子空孔濃度Nを評価する評価工程とを備えたことを特徴とする。
 本発明のシリコンウェーハは、上記のシリコンウェーハの製造方法により製造されたことを特徴とする。
 本発明のシリコンウェーハ表層中の原子空孔評価方法及び装置によれば、シリコンウェーハ内部の原子空孔濃度とは区分して、シリコンウェーハ表層中の原子空孔濃度を計測することができる。
本発明のシリコンウェーハ表層中の原子空孔評価装置の実施形態において、シリコン試料を冷却する部分を示す概略図である。 同上シリコン試料をセッティングした試料ホルダー部の写真である。 同上シリコン試料の構成を模式的に示す斜視図である。 同上シリコン試料を示す写真である。 同上検出手段の構成を示すブロック図である。 ボロン添加CZウェーハ表層を伝播する表面超音波(SAW)の弾性定数Cの温度依存性を示すグラフである。 ボロン添加CZウェーハ表層を伝播する表面超音波(SAW)の弾性定数Cの磁場中温度依存性を示すグラフである。 ボロン添加CZウェーハ表層を伝播する表面超音波(SAW)の低温における弾性定数Cの磁場依存性を示すグラフである。 図7に示したボロン添加CZウェーハ表層を伝播する表面超音波(SAW)の弾性定数Cの磁場中温度依存性の理論解析を示すグラフである。 図8に示したボロン添加CZウェーハ表層を伝播する表面超音波(SAW)の弾性定数Cの磁場依存性の理論解析を示すグラフである。 (001)面を持つシリコン表面上を[100]方向に伝搬する表面弾性波の振動の様子を示すチャートである。 表面超音波(SAW)が励起する変位ベクトルu、uに含まれる対称歪み成分ε、ε、ε、εzxの振動の様子を示すグラフであって、εとεzx及び、εとεは相互に逆位相で振動しながらx方向に伝搬している様子を示す。 表面超音波(SAW)が励起する変位ベクトルu、uに含まれる対称歪み成分ε、ε、ε、εzxの振動の様子を示すグラフであって、εとεzx及び、εとεはz方向、すなわちシリコンウェーハ面内において、相互に逆位相で振動しながら減衰する様子を示す。 表面超音波(SAW)が励起する変位ベクトルu、uに含まれる対称歪み成分ε、ε、ε、εzxの振動エネルギーの様子を示すグラフであって、x軸方向に進行するSAWのエネルギーを示す。x軸方向に進行するSAWのエネルギーは、時間に依存して振動ながら伝搬する部分Utotalと、時間に依存しない部分とから構成されている。 表面超音波(SAW)が励起する変位ベクトルu、uに含まれる対称歪み成分ε、ε、ε、εzxの振動エネルギーの様子を示すグラフであって、時間に依存して振動するUtotalのシリコンウェーハ内部への侵入の様子を示す。 表面超音波の温度変化(図6)とその磁場依存性(図7、図8)から原子空孔濃度を決定するために用いる理論解析(図9、図10)の基礎となる原子空軌道の量子状態の様子を示す説明図である。 理論解析(図9、図10)に用いた、四極子感受率の温度依存性と磁場依存性を示すグラフである。 表面超音波が誘起する対称化された弾性歪みと原子空孔軌道がもつ電気四極子を示す説明図である。
 以下、本発明のシリコンウェーハ表層中の原子空孔評価方法及び装置について、実施例に基づいて詳細に説明する。
[シリコンウェーハ表層中の原子空孔評価装置]
 本実施例のシリコンウェーハ表層中の原子空孔評価装置の構成について説明する。
 本実施例のシリコンウェーハ表層中の原子空孔評価装置を示す図1において、装置1は、試料ホルダー部2、冷却手段としての希釈冷凍機3、磁力発生手段4、及び検出手段たる検出同軸ライン5を備える。この装置1は、全体として、試料ホルダー部2に設置したシリコン試料6に外部磁場を印加した状態で、該シリコン試料6を所定温度に冷却し、シリコン試料6の表層中を伝播した超音波パルスの音速を検出可能に構成されている。
 磁力発生手段4は、シリコン試料6に対し外部磁場を印加するため、シリコン試料6がセッティングされた位置を取り囲んで配置されている。磁力発生手段4としては、例えば、超伝導磁石を用いることができる。また、シリコン試料6に対し外部磁場を必要に応じて印加した状態で、シリコン試料6の表層中を伝播した超音波パルスの音速を検出するため、磁力発生手段4は、少なくとも0~10テスラの範囲で制御可能に構成されている。
 希釈冷凍機3は、試料ホルダー部2に設置したシリコン試料6を冷却し、少なくとも20mK~20Kの範囲で制御可能に構成されている。本実施例において、希釈冷凍機3は、He-He混合ガス系10と、He系11の2系統からなり、デューワ12内を所定温度に冷却可能に構成されている。デューワ12は、内層12aと外層12bの二重構造を有し、この内層12aと外層12bとの間に真空の空間12cが形成されている。このデューワ12内には、液体のHeが貯留されている。
 He-He混合ガス系10は、希釈冷凍機3としての冷却能力を得るように構成されている。このHe-He混合ガス系10は、貯留タンク14、循環ポンプ15、コンデンサ16、混合器17、及び分留器18を備える。循環ポンプ15は、通常のポンプとは異なり、Heが外気へ逃げないような構造がとられている。コンデンサ16は、循環ポンプ15から送り出されたHeガスを冷却してHe濃厚相とHe希薄相とに相分離するようになっている。
 混合器17は、希釈冷凍機3において最も温度が低い部分である。この混合器17内には、相分離したHe-He混合液の界面が存在する。混合器17内の上半分は、He濃厚相であり、上記コンデンサ16から絶えず供給されている。また、混合器17内の下半分はHe希薄相(濃度約6%で、残りが超流動He)であり、分留器18へとつながっている。この混合器17において、Heは、エントロピーが大きい濃厚相から、エントロピーが殆どない希薄相に強制的に移動させられ、このときに生ずるエントロピー差によって、
希釈冷凍機3の冷却能力が生じるようになっている。
 分留器18は、希薄相にあるHeのみを選択的に蒸発させ得るように構成されている。この分留器18は、所定温度(例えば、0.8K以下)に保持されるようになっている。これにより、分留器18は、Heの蒸気圧は0であるのに対し、Heの蒸気圧は有限に保たれる現象を利用して、Heのみを蒸発させるようになっている。
 He系11は、Heガスを液化可能に構成されている。このHe系は、排気ポンプを有する1Kポット20を備えている。このHe系11では、1Kポット20内のHeを排気ポンプで排気することにより、冷却能力を得るようになっている。本実施例では、コンデンサ16を介してデューワ12内から直接4.2KのHe液を取り込むことにより、連続的な運転が可能に構成され、コンデンサ16においてHeガスを液化するようになっている。
 なお、図1では、シリコン試料6をセッティングした試料ホルダー部2が、混合器17内ではHe濃厚相とHe希薄相とに相分離する構成を示している。本実施例では冷却した混合器17を形成する部材を熱伝導率の高い材質で構成し、混合器17を形成する部材からの熱伝導を利用してシリコン試料6を間接的に冷却するようにしている。このような構成とした場合には、特に冷却する温度域を高温側に広げられる点で有利である。
 検出同軸ライン5は、シリコンウェーハの表面に対し超音波パルスを発振し、発振させた超音波パルスをシリコンウェーハ表層中に伝播させた超音波パルスを受信し、シリコンウェーハ表層中を伝播した超音波パルスの音速を検出可能に構成されている。
 図2に示すように、シリコン試料6は、純銀からなる銀板21に貼付されて試料ホルダー部2に保持されている。ここで、銀板21は、シリコン試料6に接触してシリコン試料6を冷却して、外部磁場を印加しても温度変動の影響を受けにくくするために設けられている。また、シリコン試料を冷却するための銀線22,23が設けられている。
 また、図3に示すように、シリコン試料6は、シリコンウェーハ26と、シリコンウェーハ26の一面に設けられた表面超音波素子(SAW素子)としての超音波発振部27、超音波受信部28とからなる。この超音波発振部27と超音波受信部28は、シリコンウェーハ26の同一面に形成されており、シリコンウェーハ26上に形成された圧電薄膜29,30と、さらにその上に形成されシリコンウェーハ表層中に電場を印加するための櫛状電極31,32を備えている。そして、これら圧電薄膜29,30と櫛状電極31,32により、トランスデューサが構成されている。なお、本実施例において、圧電薄膜29,30は厚さ2μmのZnOからなり、それぞれ接地されている。また、櫛状電極31,32は、Al又はCuからなり、細線を複数回折り曲げて平行に配置したいわゆる櫛状に形成されている。なお、圧電薄膜29,30はスパッター法などにより形成され、櫛状電極31,32はフォトリソグラフィー法などにより形成することができる。櫛状電極31,32の厚さは1μm以下、細線の幅Wは2.5μm、細線の間隔は幅Wと同じ2.5μmとなっている。なお、細線の幅Wは、超音波発振部27から発振される超音波パルスの波長λの4分の1となる。そして、櫛状電極31,32は、図示するように、相互にそれぞれの細線を平行にした状態で、かつ、相互に対向して設けられている。
 図4に実際に作成したシリコン試料6を示す。下方の部分拡大図において黒い部分がZnOからなる圧電薄膜29、白い部分がその上に形成されたAlからなる櫛状電極31である。圧電薄膜29はスパッター法により形成され、櫛状電極31はフォトリソグラフィー法により形成されている。シリコン試料6は、縦寸法10mm、横寸法40mm、厚さ0.776mmの短冊状となっている。
 つぎに、図5に基づいて検出同軸ライン5の構成と作用について説明する。検出同軸ライン5は、シリコン試料6に印加される超音波パルスの基本信号を直接測定した参照信号と、シリコン試料6の表層中を伝播した表面超音波パルスの測定信号との位相差を検出するように構成されている。本実施例では、検出同軸ライン5は、標準信号発生器35、周波数カウンタ36、パーソナルコンピュータ37、ダイオードスイッチ38、パルス発生器39、位相移行器40、及び、位相検出器41を備えている。
 標準信号発生器35は、基本信号を発生する。この基本信号は、参照信号系5aと測定信号系5bとに分岐される。尚、周波数カウンタ36は、基本信号を計測し、その結果をパーソナルコンピュータ37に出力する。
 参照信号系5aは、位相移行器40を介して、位相検出器41に接続されている。一方、測定信号系5bは、パルス発生器39が接続されたダイオードスイッチ38、シリコン試料6が順に配置され、位相検出器41に接続されている。ダイオードスイッチ38は、基本信号を所定の幅に分割する。
 位相検出器41は、基本信号に基づく参照信号と、シリコン試料6から出力された測定信号とを比較して、シリコンウェーハ26中の超音波パルスの音速を検出する。
 なお、検出同軸ライン5は、温度や磁場で音速が変化することで生じる位相差が一定になるように発振周波数を変化させ零検出を行う手段を有することがより好適である。また、多数個のシリコン試料6及び一のシリコン試料6の複数点について、同時に位相差を測定できるように構成するのが好ましい。
[シリコンウェーハ表層中の原子空孔評価方法]
 つぎに、本実施例のシリコンウェーハ表層中の原子空孔評価方法について説明する。
 まず、シリコンインゴットから所定の部位を切り出したシリコンウェーハ26の表面に、超音波発振部27と超音波受信部28とをそれぞれ形成したシリコン試料6に対し、外部磁場を必要に応じて印加した状態で、20K以下の温度域まで冷却する。
 つぎに、標準信号発生器35により、基本信号を発振する。この基本信号は、参照信号系5aと測定信号系5bとに分岐される。測定信号系5bの基本信号は、ダイオードスイッチ38によって例えば0.5μsの幅に分割される。
 ダイオードスイッチ38によって分割された基本信号によって、櫛状電極31,32間に電場としての交流電場が印加される。この交流電場によって、圧電薄膜29が分極して弾性歪みが現れ、これにより超音波発振部27は、基本信号に基づいて超音波パルスを発生する。このようにして、基本信号は、超音波発振部27によって、機械信号、すなわち、超音波パルスに変換される。
 超音波パルスは、シリコンウェーハ26の表面から超音波パルスの波長λ~10μm以下における表層中を伝搬する。シリコンウェーハ26の表層中を伝搬する超音波パルスは、超音波受信部28において測定波パルスとして受信され、再び電気信号に変換され測定信号として出力される。
 この測定信号と参照信号とを位相検出器41において比較し、超音波パルスと測定波パルスとの位相差φを計測する。この位相差φを用いて、音速vを式1:φ=2πlf/vより算出する。ここで、lは表面超音波の伝搬長であり、fは超音波周波数である。こうして実測した音速は4.967km/秒である。これは、表面弾性波の理論計算から予想されるレイリー波の計算結果4.844km/秒と良く一致している。
 このようにして算出された音速vから、弾性定数Cを式2:C=ρvより算出する。ここで、ρ-=2.33g/cmはシリコンの密度である。
 上記のようにして、超音波パルスの位相差φより音速vを検出する。そして、音速vから冷却温度の低下に伴う弾性定数Cを算出し、弾性定数Cの減少量からシリコンウェーハ26中に存在する原子空孔の種類と濃度を定量的に評価することができる。或いは、温度を一定として磁場強度の低下に伴う弾性定数Cを算出し、弾性定数Cの減少量からシリコンウェーハ26中に存在する原子空孔の濃度を定量的に評価することができる。弾性定数の減少量と原子空孔濃度とが比例するからである。
 ボロン添加CZウェーハを用いてシリコン試料6を作成し、4Kから低温度域に冷却したときの冷却温度に対する弾性定数の変化を測定すると、例えば図6のようなグラフを得ることができる。ここで、超音波パルスの周波数は523MHz、伝搬方向は結晶方位[001]と平行、櫛状電極31,32間の距離dは15mm、磁場強度は0Tである。このグラフは、温度の逆数に比例して弾性定数Cが著しく低下、すなわち、低温ソフト化していることを表している。なお、この例では、1.16K付近において、櫛状電極31,32を構成するAlの超伝導転移による弾性定数Cの観測値の変化が確認されている。
 なお、原子空孔の周りの1nm以上に大きく拡がった原子空孔軌道は、巨大な電気四極子をもち、超音波歪みと極めて強く結合している。さらに、基底状態は軌道縮退している絶対零度に近づくと低温ソフト化が顕著になる。また、原子空孔軌道には3個の電子が収納されているので、磁性を帯びる。このような原子空孔軌道の量子状態を利用することにより、原子空孔濃度を評価することができる。
 以下、理論数式に基いて、シリコン試料の表層の弾性定数Cの低温ソフト化量ΔC/Cと、原子空孔濃度Nの関係について詳細に説明する。
 本実施例においては、シリコン表面(001)を[100]方向に伝搬する表面超音波弾性波を例にとって説明しているが、図11に示すように縦波成分uと横波成分uが楕円軌道を描きながら運動する。表面超音波の弾性定数Cの低温ソフト化は、表面超音波が誘起する歪みと原子空孔軌道の電気四極子との相互作用によって起きる。
 図12aと図12bに示した表面超音波(SAW)が励起する変位ベクトルu、uに含まれる対称歪みε、ε、ε、εzxの振動は次の式(1)で表現できる。
Figure JPOXMLDOC01-appb-M000001
 表面超音波のz軸方向への減衰と振動をあらわすパラメーターqは次の式(2)で表現できる。
Figure JPOXMLDOC01-appb-M000002
 対称歪みの振幅Aと位相θのパラメーターは次の式(3)で表現できる。
Figure JPOXMLDOC01-appb-M000003
 表面超音波が誘起する対称歪みと電気四極子との相互作用は次の式(4)で表現できる。
Figure JPOXMLDOC01-appb-M000004
 ここに、x軸方向に振動しながら伝搬し、z軸方向に減衰する様子を表す関数を次の式(5)で表現できる。
Figure JPOXMLDOC01-appb-M000005
 さらに、次の式(6)は、入力する表面超音波の振幅Uに比例するパラメーターδを表す。
Figure JPOXMLDOC01-appb-M000006
 ここで、kは表面超音波の波数である。
 摂動ハミルトニアン(式(4))を用いて、シリコン格子と原子空孔軌道との結合系の自由エネルギーを外部摂動δの2次過程まで計算する。さらに、自由エネルギーの外部摂動δについての2回微分を計算することで、弾性定数Cの低温ソフト化(図5)、その磁場中温度依存性(図6)、低温での磁場依存性(図7)を理論的に解析することができる。
 つぎに、次の式(7)を用いて解析を行う。
Figure JPOXMLDOC01-appb-M000007
 表面超音波の弾性定数Cの温度依存性と磁場依存性は、図15に示した四極子感受率χ(O)、χ(O)及びχ(Ozx)の温度磁場依存性を用いる。その際、別途本願発明者らが求めた次の四極子-歪み結合定数gΓ5,gΓ3を用いる。(Strong Quadrupole-Strain Interaction of Vacancy Orbital in Boron-Doped Czochralski Silicon: Kazuki Okabe, Mitsuhiro Akatsu, Shotaro Baba, Keisuke Mitsumoto, Yuichi Nnemoto, Hiroshi Yamada-Kaneta, Terutaka Goto, Hiroyuki Saito, Kazuhiko Kashima, and Yoshihiko Saito, Journal of Physical Society of Japan, Vol. 82, No. 12, Article ID 124604、2013年11月13日)
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 さらに、式(1)に現れるバックグランドC は次式で記述されるようなゆるやかな温度変化を示す。
Figure JPOXMLDOC01-appb-M000010
 ここで、t、s、C0には例えば次の値が用いられる。
Figure JPOXMLDOC01-appb-M000011
 図9と図10は、式(7)を用いた理論計算の結果であり、図7と図8の実験結果を再現している。こうして、実施例で用いたシリコンウェーハの表層(侵入長λ=3μmの程度)に存在する原子空孔濃度Nは、低温ソフト化の大きさΔC/C=1.9×10-4に比例し、N=3.1×1012cm-3と評価できた。これは、表面超音波の弾性定数Cのソフト化がΔC/C=10-4を単位として、原子空孔濃度N=(1.6±0.2)×1012cm-3に相当することを示している。ここでは、結合定数に含まれる誤差を考慮している。これにより、表層の原子空孔濃度を決定する方法が確立された。
 なお、表面超音波の低温ソフト化は外部から印加する磁場によって消失するが、磁場の印加方向によって消失する振る舞いが異なる。磁場を表面超音波の進行方向に平行に印加する場合、磁場を表面超音波の進行方向に垂直でウェーハ表面に平行に印加する場合、磁場をウェーハ表面に垂直に印加する場合について異なる振る舞いをする。表面超音波の低温ソフト化の印加磁場依存性により表層の原子空孔濃度を評価できる。
 図7にボロン添加CZウェーハ表層中の弾性定数の磁場依存性、図8にボロン添加CZウェーハ表層中の弾性定数の磁場中温度依存性を示す。ここで、超音波パルスの周波数は523MHz、伝搬方向は結晶方位[001]と平行、磁場の印加方向は結晶方位[001]と平行、櫛状電極31,32間の距離dは7.5mmであり、図8は温度をそれぞれ4K、1.5K、700mK、300mK、23mKに一定にした場合、図7は磁場強度をそれぞれ0T、0.4T、1T、2Tに一定にした場合を示している。この低温ソフト化の磁場依存性の観測により、磁場による低温ソフト化の回復量と一定磁場中の低温ソフト化量が一致することが確認されている。
 以上のように、本実施例のシリコンウェーハ表層中の原子空孔評価方法は、シリコン試料6の同一面に圧電薄膜である圧電薄膜29,30を介して櫛状の櫛状電極31,32を形成して対向した一対の表面超音波素子を形成する素子形成工程と、前記シリコン試料6を冷却して外部磁場を印加しながら前記表面超音波素子の一方31から超音波パルスを発振するとともに前記シリコン試料6の表面を伝播した超音波パルスを前記表面超音波素子の他方32により受信し、前記表面超音波素子の一方31から発振された超音波パルスと前記櫛状電極の他方32により受信された超音波パルスとの位相差を検出する検出工程と、前記位相差に基づき前記シリコン試料6の表層の弾性定数を求め、温度に対する弾性定数の変化又は磁場強度に対する弾性定数の変化に基づいて前記シリコン試料6の表層中の原子空孔を評価する評価工程とを備えたものである。
 また、上記において、好ましくは、前記検出工程は、20mK~20Kの温度で行われる。
 また、上記において、好ましくは、前記圧電薄膜29,30はZnOからなり、前記櫛状電極31,32はAl又はCuからなる。
 また、上記において、好ましくは、前記シリコン試料6は銀板21上に貼付されている。
 また、本実施例のシリコンウェーハ表層中の原子空孔評価装置1は、超音波発振部27と超音波受信部28とを形成したシリコン試料6と、前記シリコン試料6に対し外部磁場を印加する磁力発生手段4と、前記シリコン試料6を冷却する冷却手段3と、前記超音波発振部27から発振された超音波パルスと、前記シリコン試料6を伝播して前記超音波受信部28により受信された超音波パルスとの位相差を検出する検出同軸ライン5と備え、前記超音波発振部27と前記超音波受信部28は、前記シリコン試料6の表面に形成された圧電薄膜29,30上に形成された櫛状の櫛状電極31,32であって、前記シリコン試料6の同一面に形成されたものである。
 本実施例のシリコンウェーハ表層中の原子空孔評価方法及び装置によれば、シリコンウェーハの表層中を伝播する高周波の超音波を測定することにより、シリコンウェーハ内部の原子空孔濃度とは区分して、10μmより薄いシリコンウェーハ表層中の原子空孔濃度を計測することができる。
 そして、本発明によれば、性能評価のためのテストウエーハを作り測定する半導体開発作業に大きな技術的進化が望める。半導体産業で用いられているニュートラルウェーハ、アニールウェーハ、エピタキシャルウェーハでは、従来からボロン添加濃度を示す抵抗率、酸素濃度、ボイドを意味するCOP濃度などを表示して販売されていたが、さらに、超音波で計測した原子空孔濃度の数量を表示したシリコンウェーハの半導体産業での実用化が可能となる。シリコンウェーハ中の原子空孔は、半導体製造プロセスにおける酸化物の微少欠陥(BMD)析出を支配する要因になっている。このため、ウェーハに原子空孔濃度を表示することが実用化されると、ますます微細化が進行するメモリー、演算素子(CPU)、イメージセンサーなどの最先端デバイスの製造の歩留まりが飛躍的に向上する。クリーンエネルギーの制御で今注目を集めているパワー半導体の高性能化などに大きく寄与できる。
 なお、本実施例では、シリコン試料6は銀板21上に貼付されたが、銀フィルム上に貼付されてもよい。
 このほか、本発明は上記実施例に限らず、種々の変形実施が可能である。例えば、検出工程は、0~10Tの範囲内の任意の磁場強度で行うことができる。また、圧電薄膜29,30は、酸化亜鉛(ZnO)のほか、窒化アルミニューム(AlN)又はポリフッ化ビニリデン(PVDF)から構成してもよい。
 また、表面超音波素子の共鳴周波数を0.5~10GHzの範囲として、シリコン表層の3.5~0.18mmに存在する原子空孔濃度を選択的に評価するようにしてもよい。また、超音波発振部と超音波受信部は、パルス幅が0.1~1μ秒である超音波パルスを用いるように構成されてもよい。
 1:原子空孔評価装置;3:希釈冷凍機(冷却手段);4:磁力発生手段;5:検出同軸ライン(検出手段);6:シリコン試料;21:銀板;27:超音波発振部;28:超音波受信部;29、30:圧電薄膜;31、32:櫛状電極。

Claims (14)

  1.  シリコン試料の同一表面上に対向した一対の表面超音波素子を形成する素子形成工程と、
     前記シリコン試料を冷却して外部磁場を印加しながら前記表面超音波素子の一方から超音波パルスを発振するとともに前記シリコン試料の表面を伝播した超音波パルスを前記表面超音波素子の他方により受信し、前記表面超音波素子の一方から発振された超音波パルスと前記表面超音波素子の他方により受信された超音波パルスとの位相差を検出する検出工程と、
     前記位相差に基づき前記シリコン試料の表層の弾性定数Cを求め、温度に対する弾性定数Cの変化又は磁場強度に対する弾性定数Cの変化に基づいて前記シリコン試料の表層中の原子空孔濃度Nを評価する評価工程と、
    を備えたことを特徴とするシリコンウェーハ表層中の原子空孔評価方法。
  2.  前記検出工程は、10mK~20Kの温度で行われることを特徴とする請求項1記載のシリコンウェーハ表層中の原子空孔評価方法。
  3.  前記検出工程は、0~10Tの磁場強度で行われることを特徴とする請求項1又は2記載のシリコンウェーハ表層中の原子空孔評価方法。
  4.  前記表面超音波素子は、前記シリコン試料上に形成された圧電薄膜と、この圧電薄膜上に形成された櫛状電極とから形成されたことを特徴とする請求項1~3のいずれかに記載のシリコンウェーハ表層中の原子空孔評価方法。
  5.  前記圧電薄膜は酸化亜鉛、窒化アルミニューム又はポリフッ化ビニリデンからなり、前記櫛状電極はAl又はCuからなることを特徴とする請求項4記載のシリコンウェーハ表層中の原子空孔評価方法。
  6.  前記シリコン試料は銀板上又は銀フィルム上に貼付されたことを特徴とする請求項1~5のいずれかに記載のシリコンウェーハ表層中の原子空孔評価方法。
  7.  前記評価工程において、前記シリコン試料の表層の弾性定数Cの低温ソフト化量ΔC/Cを求め、低温ソフト化量ΔC/C=1×10-4に対して原子空孔濃度N=(1.6±0.2)×1012cm-3が相当することに基いて原子空孔濃度Nを決定することを特徴とする請求項1~6のいずれかに記載のシリコンウェーハ表層中の原子空孔評価方法。
  8.  前記評価工程において、前記シリコン試料の表層の弾性定数Cの10~50mKの範囲内における極低温での一定温度で0~10テスラの磁場を印加したときの磁場強度の変化に依存した変化量ΔC/Cを求め、変化量ΔC/C=1×10-4に対して原子空孔濃度N=(1.6±0.2)×1012cm-3が相当することに基いて原子空孔濃度Nを決定することを特徴とする請求項1~6のいずれかに記載のシリコンウェーハ表層中の原子空孔評価方法。
  9.  超音波発振部と超音波受信部とを形成したシリコン試料と、
     前記シリコン試料に対し外部磁場を印加する磁力発生手段と、
     前記シリコン試料を冷却する冷却手段と、
     前記超音波発振部から発振された超音波パルスと、
     前記シリコン試料を伝播して前記超音波受信部により受信された超音波パルスとの位相差を検出する検出手段とを備え、
     前記超音波発振部と前記超音波受信部は、前記シリコン試料の表面に形成された圧電薄膜上に形成された櫛状電極であって、前記シリコン試料の同一面に形成されたことを特徴とするシリコンウェーハ表層中の原子空孔評価装置。
  10.  前記圧電薄膜は酸化亜鉛、窒化アルミニューム又はポリフッ化ビニリデンからなり、前記櫛状電極はAl又はCuからなることを特徴とする請求項9記載のシリコンウェーハ表層中の原子空孔評価装置。
  11.  前記シリコン試料は銀板上又は銀フィルム上に貼付されたことを特徴とする請求項9又は10記載のシリコンウェーハ表層中の原子空孔評価装置。
  12.  請求項1~8のいずれかに記載の原子空孔評価方法により評価された表層中の原子空孔濃度が表示されるとともに、表層中の原子空孔濃度がバルク中の原子空孔濃度とは区別して表示されたことを特徴とするシリコンウェーハ。
  13.  シリコン試料の同一表面上に対向した一対の表面超音波素子を形成する素子形成工程と、
     前記シリコン試料を冷却して外部磁場を印加しながら前記表面超音波素子の一方から超音波パルスを発振するとともに前記シリコン試料の表面を伝播した超音波パルスを前記表面超音波素子の他方により受信し、前記表面超音波素子の一方から発振された超音波パルスと前記表面超音波素子の他方により受信された超音波パルスとの位相差を検出する検出工程と、
     前記位相差に基づき前記シリコン試料の表層の弾性定数Cを求め、温度に対する弾性定数Cの変化又は磁場強度に対する弾性定数Cの変化に基づいて前記シリコン試料の表層中の原子空孔濃度Nを評価する評価工程と、
    を備えたことを特徴とするシリコンウェーハの製造方法。
  14.  請求項13記載のシリコンウェーハの製造方法により製造されたことを特徴とするシリコンウェーハ。
PCT/JP2014/005580 2013-01-31 2014-11-05 シリコンウェーハ表層中の原子空孔評価方法及び装置 WO2015068391A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112014005091.1T DE112014005091T5 (de) 2013-11-08 2014-11-05 Verfahren zur Beurteilung atomarer Leerstellen in einer Oberflächenschicht eines Siliciumwafers und Apparatur zur Beurteilung derselben
US15/031,187 US20160258908A1 (en) 2013-11-08 2014-11-05 Method for evaluating atomic vacancy in surface layer of silicon wafer and apparatus for evaluating the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013017810 2013-01-31
JP2013-232352 2013-11-08
JP2013232352A JP6291797B2 (ja) 2013-01-31 2013-11-08 シリコンウェーハ表層中の原子空孔評価方法及び装置

Publications (1)

Publication Number Publication Date
WO2015068391A1 true WO2015068391A1 (ja) 2015-05-14

Family

ID=51617577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005580 WO2015068391A1 (ja) 2013-01-31 2014-11-05 シリコンウェーハ表層中の原子空孔評価方法及び装置

Country Status (2)

Country Link
JP (1) JP6291797B2 (ja)
WO (1) WO2015068391A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107917957A (zh) * 2017-10-27 2018-04-17 中车青岛四方机车车辆股份有限公司 一种板形结构的损伤检测方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111477560B (zh) * 2020-05-14 2023-03-03 包头美科硅能源有限公司 太阳能电池用镓、硼掺杂单晶硅棒区分的快速检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174742A (ja) * 1993-12-20 1995-07-14 Fujitsu Ltd 結晶欠陥測定方法
JP2005037153A (ja) * 2003-07-15 2005-02-10 Seiko Epson Corp 薄膜の評価方法
JP2007263960A (ja) * 2006-03-03 2007-10-11 Niigata Univ シリコンウェーハ中に存在する原子空孔の定量評価装置および方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174742A (ja) * 1993-12-20 1995-07-14 Fujitsu Ltd 結晶欠陥測定方法
JP2005037153A (ja) * 2003-07-15 2005-02-10 Seiko Epson Corp 薄膜の評価方法
JP2007263960A (ja) * 2006-03-03 2007-10-11 Niigata Univ シリコンウェーハ中に存在する原子空孔の定量評価装置および方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107917957A (zh) * 2017-10-27 2018-04-17 中车青岛四方机车车辆股份有限公司 一种板形结构的损伤检测方法

Also Published As

Publication number Publication date
JP6291797B2 (ja) 2018-03-14
JP2014168042A (ja) 2014-09-11

Similar Documents

Publication Publication Date Title
JP5276347B2 (ja) シリコンウェーハ中に存在する原子空孔の定量評価装置、その方法、シリコンウェーハの製造方法、及び薄膜振動子
Day et al. Intrinsic and dislocation-induced elastic behavior of solid helium
Fefferman et al. Dislocation networks in 4 He crystals
Sorokin et al. Toward 40 GHz excitation of diamond-based HBAR
JP6291797B2 (ja) シリコンウェーハ表層中の原子空孔評価方法及び装置
Suhak et al. High-temperature electromechanical loss in piezoelectric langasite and catangasite crystals
JP5425914B2 (ja) シリコンウェーハ中に存在する原子空孔濃度の定量評価方法及びシリコンウェーハの製造方法
KR101048637B1 (ko) 실리콘 웨이퍼 내에 존재하는 원자 공공의 정량 평가 장치 및 방법
US20160258908A1 (en) Method for evaluating atomic vacancy in surface layer of silicon wafer and apparatus for evaluating the same
Bhalla et al. Mechanical and thermo-physical properties of rare-earth materials
JP5008423B2 (ja) シリコンウェーハ中に存在する原子空孔の定量評価装置および方法
Yanagisawa et al. A study of elastic properties of URu2Si2 in comparison with the non-5f contribution of ThRu2Si2
JP3719653B2 (ja) 音速測定による材料評価方法
JP6244833B2 (ja) シリコンウェーハ中の原子空孔濃度の絶対値の決定方法
Li et al. Determination of full set material constants of [011] c poled 0.72 Pb (Mg1/3Nb2/3) O3-0.28 PbTiO3 single crystal from one sample
Huet et al. The interaction of thermal phonons with conduction electrons in InSb. Application to heat-pulse spectroscopy
Ogi et al. Hopping conduction and piezoelectricity in Fe-doped GaN studied by non-contacting resonant ultrasound spectroscopy
Li et al. Determination of full matrix material constants of [111] c poled Mn doped 0.24 Pb (In1/2Nb1/2) O3-0.46 Pb (Mg1/3Nb2/3) O3-0.30 PbTiO3 single-domain single crystal using one sample
Li et al. Temperature dependence of full matrix material constants of [001] c poled 0.71 Pb (Mg1/3Nb2/3) O3-0.29 PbTiO3 single crystal
Safarik et al. Evidence for highly anharmonic low-frequency vibrational modes in bulk amorphous Pd 40 Cu 40 P 20
Nakanishi et al. Ultrasonic study of the Yb-based heavy fermion compound YbRh2Zn20
Wiesner et al. Low‐temperature elastic and dielectric properties of K3Na (SO4) 2 crystals
Itoh et al. Analysis of size dependence of quality factor of quartz-crystal tuning fork
Kamiya et al. Ultrasonic measurement of β-type pyrochlore oxide KOs2O6
Okamoto et al. OS02-5-2 Recovery of thin film studied by resonant-ultrasound spectroscopy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14859895

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15031187

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120140050911

Country of ref document: DE

Ref document number: 112014005091

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14859895

Country of ref document: EP

Kind code of ref document: A1