WO2015068269A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2015068269A1
WO2015068269A1 PCT/JP2013/080275 JP2013080275W WO2015068269A1 WO 2015068269 A1 WO2015068269 A1 WO 2015068269A1 JP 2013080275 W JP2013080275 W JP 2013080275W WO 2015068269 A1 WO2015068269 A1 WO 2015068269A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
scale
range
speed range
display device
Prior art date
Application number
PCT/JP2013/080275
Other languages
French (fr)
Japanese (ja)
Inventor
松原 勉
卓矢 河野
武史 三井
水口 武尚
星原 靖憲
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2013/080275 priority Critical patent/WO2015068269A1/en
Publication of WO2015068269A1 publication Critical patent/WO2015068269A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/07Indicating devices, e.g. for remote indication
    • G01P1/08Arrangements of scales, pointers, lamps or acoustic indicators, e.g. in automobile speedometers
    • G01P1/10Arrangements of scales, pointers, lamps or acoustic indicators, e.g. in automobile speedometers for indicating predetermined speeds
    • B60K35/213
    • B60K35/214
    • B60K35/60
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D7/00Indicating measured values
    • G01D7/002Indicating measured values giving both analog and numerical indication

Definitions

  • the present invention relates to a display device that displays an analog instrument image indicating a state of a moving body such as a vehicle on a display unit.
  • Patent Document 1 discloses a vehicle display device called a head-up display (hereinafter referred to as HUD) that includes a combiner on a windshield of an automobile and displays a display virtual image toward the driver.
  • HUD head-up display
  • the optical information emitted from the liquid crystal display device is projected on a combiner consisting of a hologram or a half mirror incorporated in the windshield, so that the driver can read the information from the driving state with little movement of the line of sight. Can do.
  • the liquid crystal display device When driving the vehicle, the driver focuses the eyes farther as the vehicle speed increases and closer to the eyes as the vehicle speed decreases. Therefore, in the HUD described in Patent Document 1, the liquid crystal display device is moved away from the combiner as the vehicle speed becomes faster, and closer to the combiner as the vehicle speed becomes slower. The image forming position of the display virtual image is made far, and the image forming position of the display virtual image from the driver is made closer as the vehicle speed decreases. Thereby, the difference between the imaging position of the display virtual image corresponding to the vehicle speed and the focus position of the driver's eyes is reduced, and the visibility of the situation outside the vehicle and the display contents is improved.
  • Patent Document 2 discloses a vehicle meter unit that displays an image of instruments indicating the vehicle speed and engine speed of the vehicle.
  • This vehicle meter unit displays an analog instrument that indicates an analog speed in the same manner as a conventional turntable, and changes the display form of the digital instrument that indicates the indicated value in conjunction with the analog instrument.
  • the vehicle meter unit of Patent Document 2 changes at least one of the size and shape of a numeric image indicating the speed instruction value of the digital instrument in accordance with the increase or decrease of the speed of the vehicle. For example, the dimension is changed so that the numerical image indicated by the digital instrument becomes larger as the speed instruction value becomes larger. This makes it easier for the driver to notice an increase in vehicle speed.
  • the display image of the display device arranged on the dashboard is reflected by the reflection surface above the dashboard, so that the display image is superimposed on the outside scenery through the windshield and displayed.
  • HUD is disclosed.
  • the image forming position of the display device can be changed by moving the display device in parallel with the upper surface of the dashboard according to the speed of the vehicle, and the display image can be displayed at an optimum position for the driver.
  • Patent Documents 1 to 3 have a problem that the visibility of analog instruments is not improved and the indicated value cannot be recognized quickly.
  • Patent Document 1 makes it easier for the driver to see the instrument image by reducing the difference between the image formation position of the display virtual image corresponding to the vehicle speed and the focus position of the driver's eyes.
  • Patent Document 1 since an analog instrument is not considered, there is a possibility that the indicated value cannot be recognized quickly depending on the display mode of the analog instrument.
  • Patent Document 2 only the portion for digitally displaying the indicated value of the instrument according to the speed of the vehicle is emphasized, and the display mode of the analog instrument is not changed. For this reason, when the vehicle is traveling at a low speed, the digitally displayed numerical image of the indicated value is easily confused with the numerical image of the analog instrument other than the pointer position, which may confuse the driver.
  • the present invention has been made to solve the above-described problems, and an object thereof is to obtain a display device capable of improving the visibility of an analog instrument image.
  • a display device is a display device that displays an analog instrument image instructing the state of a moving body on a display unit, and displays the state of the moving body, the surrounding situation of the moving body, and the movement mode set for the moving body.
  • a data acquisition unit to acquire and an analog instrument image that indicates the state of the moving body are generated, and at least of the state of the moving body acquired by the data acquisition unit, the surrounding situation of the moving body, and the state of the moving body recommended in the moving mode
  • a control unit that dynamically changes the scale interval of the analog instrument image according to one and a drawing processing unit that draws the analog instrument image and displays it on the display unit are provided.
  • FIG. 4 is a flowchart illustrating an operation example of the display device according to the first embodiment. It is a figure which shows an example of drawing data.
  • 6 is a diagram showing a display example of a speedometer in the first embodiment.
  • FIG. 10 is a diagram showing a display example of a speedometer in the second embodiment. It is a flowchart which shows operation
  • FIG. 10 is a diagram showing a display example of a speedometer in the third embodiment.
  • FIG. 10 is a diagram showing a display example of a speedometer in the fourth embodiment. It is a flowchart which shows operation
  • FIG. 18 shows a display example of a speedometer in the sixth embodiment. It is a flowchart which shows operation
  • FIG. 10 is a diagram showing a display example of a speedometer in the fourth embodiment. It is a flowchart which shows operation
  • FIG. 38 shows a display example of a speedometer in the seventh embodiment. It is a flowchart which shows operation
  • FIG. 20 shows a display example of a speedometer in the eighth embodiment. It is a flowchart which shows operation
  • FIG. 25 is a flowchart showing an operation (acceleration / deceleration change) of the display device according to the ninth embodiment. It is a figure which shows the example of a display (acceleration / deceleration change) of the speedometer in Embodiment 9.
  • FIG. 1 is a block diagram showing a configuration of a display device according to Embodiment 1 of the present invention.
  • the display device 1 is a display device that displays an analog instrument image that indicates the state of a moving object (for example, a vehicle) on the display unit 5, and includes a data acquisition unit 2, a control unit 3, and a drawing process.
  • the unit 4 is provided.
  • the display unit 5 may be provided integrally with the housing of the display device 1 or may be provided separately.
  • the data acquisition unit 2 is a data acquisition unit that acquires vehicle state data, vehicle environment data, and travel mode data. For example, the vehicle speed, the remaining fuel amount, the engine speed, etc., which are instructed by various instruments from the ECU (electronic control unit; not shown) of the host vehicle, are acquired as vehicle state data.
  • the speed limit (maximum speed limit or minimum speed limit) of the road on which the vehicle is traveling, obtained by analyzing the image of the surroundings of the vehicle (speed limit signboard, etc.) captured by the in-vehicle camera is used as environmental data. get.
  • the driving mode data set for the host vehicle by the user is acquired from the ECU.
  • the travel mode data is data that specifies a travel state recommended for the host vehicle. For example, in the eco mode, a speed range that saves fuel on the road on which the vehicle is traveling is recommended. Further, in the case of the sport mode, since a high speed traveling of the vehicle is assumed, a high speed range is recommended.
  • the control part 3 produces
  • the control unit 3 controls the display mode of the analog instrument image according to at least one of the vehicle state recommended by the vehicle state data acquired by the data acquisition unit 2, the vehicle environment data, and the travel mode data. Change.
  • the drawing processing unit 4 draws an analog instrument image instructed to be drawn from the control unit 3 and displays it on the screen 5 a of the display unit 5.
  • the display unit 5 is a display monitor that is built in, for example, an instrument panel of a vehicle and displays an instrument image indicating a vehicle state (speed information, fuel information, engine speed, etc.) on the screen 5a.
  • the display unit 5 can be realized by a liquid crystal display panel, a plasma display panel, an organic EL panel, or the like.
  • the data acquisition unit 2, the control unit 3, and the drawing processing unit 4 are realized as specific means in which hardware and software cooperate by causing the microcomputer to execute a program relating to processing unique to the present invention.
  • FIG. 2 is a flowchart illustrating an operation example of the display device according to the first embodiment.
  • the control unit 3 reads and obtains drawing data from a memory (not shown) (step ST1).
  • the control unit 3 generates a base image of the analog instrument based on the drawing data, and instructs the drawing processing unit 4 to perform drawing (step ST2).
  • the drawing processing unit 4 draws a base image of an analog speedometer without a scale as shown in FIG. 3 in accordance with an instruction from the control unit 3 and displays it on the screen 5 a of the display unit 5.
  • control unit 3 generates a normal scale image of the analog speedometer image using the scale image data read from the memory, and instructs the drawing processing unit 4 to perform drawing (step ST3).
  • drawing processing unit 4 draws an analog speedometer image with a normal scale and displays it on the screen 5 a of the display unit 5.
  • the control unit 3 sequentially inputs the current vehicle speed Vc (km / h) acquired by the data acquisition unit 2 (step ST4).
  • the control unit 3 determines the position of the pointer based on the vehicle speed Vc input from the data acquisition unit 2 (step ST5), generates a pointer image using the pointer image data read from the memory, and performs a drawing processing unit. 4 is instructed to draw a pointer (step ST6).
  • the drawing processing unit 4 draws an analog speedometer image indicating the current vehicle speed Vc at a normal interval and displays it on the screen 5 a of the display unit 5.
  • the control unit 3 dynamically changes the scale interval in the analog speedometer image according to the current vehicle speed Vc.
  • the speed range including the current vehicle speed Vc is calculated as a fine scale interval drawing range (step ST7).
  • the control unit 3 calculates the upper limit speed V high of the speed range as Vc + Vx and the lower limit speed V low as Vc ⁇ Vx (step ST7-1).
  • the control unit 3 determines a speed range of ⁇ Vx with the current vehicle speed Vc as a center value as a range to be drawn at fine scale intervals, and a speed from 0 (km / h) to less than V low (km / h).
  • a speed range exceeding the range and V high is determined as a range for drawing at a normal scale interval (step ST7-2).
  • Vx is set to a value that is easy for the driver to visually recognize the speed change around the vehicle speed Vc, which is the speed near the current vehicle speed Vc.
  • the control unit 3 generates a scale image with a fine speed range calculated as described above and a scale image with a normal speed range, and instructs the drawing processing unit 4 to draw the scale (step ST8). ).
  • the drawing processing unit 4 draws a speed range centered on the current vehicle speed Vc in the speed range of the current analog speedometer image at fine scale intervals, and displays the screen of the display unit 5. 5a is displayed.
  • an analog speedometer image as shown in FIG. 4 is displayed on the screen 5a of the display unit 5 in accordance with a speed change caused by driving the vehicle.
  • the speed range A centered on the current vehicle speed Vc becomes a fine scale interval, and the visibility is improved. For this reason, the driver can easily identify the location where the pointer indicates the current vehicle speed Vc, and can easily recognize the speed near the vehicle speed Vc intuitively, and can recognize the detailed speed change at the speed near the vehicle speed Vc. It becomes easy.
  • an analog speedometer image is displayed.
  • analog instrument images indicating other vehicle states.
  • a range centered on the current remaining fuel amount or engine speed may be displayed at fine scale intervals.
  • the data acquisition unit 2 that acquires the vehicle state data, the environment data of the vehicle, and the travel mode data set in the vehicle, and the analog instrument image that indicates the state of the vehicle
  • a control unit 3 that dynamically changes the scale interval of the analog instrument image according to at least one of the vehicle states recommended by the vehicle state data, the vehicle environment data, and the travel mode data that are generated and acquired by the data acquisition unit 2
  • a drawing processing unit 4 for drawing an analog instrument image and displaying it on the display unit 5.
  • the control unit 3 changes the scale interval within the range including the instruction value of the current state of the vehicle more finely than outside the range. By comprising in this way, the scale interval can change dynamically and the visibility of an analog instrument image can be improved.
  • the range including the indication value of the current state of the vehicle is a range having the indication value of the current speed of the host vehicle as the central value.
  • FIG. 1 is referred to for the configuration of the second embodiment.
  • FIG. 5 is a flowchart showing an operation example of the display device according to the second embodiment, in which step ST7 of FIG. 2 shown in the first embodiment is changed to step ST7a. Therefore, the process of step ST7a will be mainly described, and hereinafter, a case where an analog speedometer image is displayed on the display unit 5 will be described.
  • the control unit 3 dynamically changes the scale interval in the analog speedometer image according to the current vehicle speed Vc.
  • the speed range including the current vehicle speed Vc is calculated as a fine scale interval drawing range (step ST7a).
  • the control unit 3 sequentially calculates Vc1 obtained by rounding off the 1's place of the vehicle speed Vc (step ST7a-1).
  • the control unit 3 calculates the upper limit speed V high of the speed range as Vc1 + Vx and the lower limit speed V low as Vc1-Vx (step ST7a-2). After that, the control unit 3 determines a speed range of ⁇ Vx with Vc1 as the center value as a range to be drawn with fine scale intervals, and a speed range from 0 (km / h) to less than V low (km / h) A speed range exceeding V high is determined as a range for drawing at a normal scale interval (step ST7a-3). Note that Vx is set to a value that is close to the current vehicle speed Vc and allows the driver to easily see the change in the vehicle speed Vc.
  • the control unit 3 generates a scale image with a fine speed range calculated as described above and a scale image with a normal speed range, and instructs the drawing processing unit 4 to draw the scale (step ST8). ).
  • the drawing processing unit 4 draws a speed range including the current vehicle speed Vc in the speed range of the current analog speedometer image at fine scale intervals and displays it on the screen 5 a of the display unit 5. To do.
  • an analog speedometer image as shown in FIG. 6 is displayed on the screen 5a of the display unit 5 in accordance with the speed change caused by driving the vehicle.
  • the speed range B including the current vehicle speed Vc becomes a fine scale interval, and the visibility is improved. Therefore, as in the first embodiment, it is easy for the driver to quickly identify the location where the pointer indicates the current vehicle speed Vc, and to easily intuitively recognize the speed near the vehicle speed Vc, and the speed near the vehicle speed Vc. It becomes easy to recognize the detailed speed change in.
  • Vc1 obtained by rounding off the first place of the vehicle speed Vc is 40c, and the speed range B displayed at a fine scale interval is from 30 (km / h) to 50.
  • the speed range is up to (km / h).
  • the speed range displayed at fine scale intervals continuously (frequently) fluctuates, and the driver may feel annoyed.
  • the speed range displayed at fine scale intervals is fixed.
  • the scale interval can be dynamically changed to improve the visibility of the analog instrument image, and the speed around the current vehicle speed Vc can fluctuate excessively. Can be prevented.
  • a speed range to be displayed with fine scale intervals such as 0 to 20 (km / h), 20 to 40 (km / h), and 40 to 60 (km / h) is set in advance, and these speed ranges are set.
  • the normal scale interval may be changed to a fine scale interval. In this way, the same effect as described above can be obtained.
  • an analog speedometer image is displayed.
  • analog instrument images indicating other vehicle states.
  • a range including the current remaining fuel amount and engine speed may be displayed at fine scale intervals, and this range may be discretely varied according to the current instruction value.
  • the control unit 3 discretely varies the range including the instruction value according to the instruction value of the current vehicle state.
  • the range displayed at fine scale intervals changes continuously (frequently), so the driver may feel annoyance.
  • the range displayed at fine scale intervals is fixed. Accordingly, as in the first embodiment, the scale interval can be dynamically changed to improve the visibility of the analog instrument image, and the range including the indication value of the current state of the vehicle is excessively fluctuated. Can be prevented.
  • Embodiment 3 FIG.
  • the display device according to the third embodiment is different from the first embodiment in the range in which the scale interval in the analog instrument image is changed, but the basic configuration is the same as the first embodiment. Therefore, in the following description, FIG. 1 is referred to for the configuration of the third embodiment.
  • FIG. 7 is a flowchart showing an operation example of the display device according to the third embodiment, in which step ST7 of FIG. 2 shown in the first embodiment is changed to step ST7b. Therefore, the process of step ST7b will be mainly described, and hereinafter, a case where an analog speedometer image is displayed on the display unit 5 will be described.
  • the control unit 3 dynamically changes the scale interval in the analog speedometer image according to the environmental data acquired by the data acquisition unit 2 (step ST7b).
  • the control unit 3 inputs from the data acquisition unit 2 the maximum speed limit and the minimum speed limit of the speed limit of the road on which the host vehicle is currently traveling as environment data.
  • the control unit 3 determines the upper limit speed V high of the speed range as the maximum speed limit and determines the lower limit speed V low as the minimum speed limit (step ST7b-1). Thereafter, the control unit 3 determines a speed range from V low (km / h) to V high (km / h) as a range to be drawn at fine scale intervals, and from 0 (km / h) to V low (km / H) and a speed range exceeding V high are determined as a range for drawing at a normal scale interval (step ST7b-2).
  • control unit 3 generates a scale image with a fine speed range calculated as described above and a scale image with a normal speed range, and instructs the drawing processing unit 4 to draw the scale (step ST8). ).
  • the drawing processing unit 4 selects a speed range from V low (km / h) to V high (km / h) from the current analog speedometer image at fine scale intervals. Draw and display on the screen 5 a of the display unit 5.
  • an analog speedometer image as shown in FIG. 8 is displayed on the screen 5a of the display unit 5.
  • the speed limit range (legal speed range) C of the road on which the vehicle is currently traveling becomes a fine scale interval, and the visibility is improved.
  • the speed range C displayed at fine scale intervals is dynamically changed. For this reason, the driver can easily recognize that the speed limit range of the road on which the vehicle is traveling has changed.
  • the drawing processing unit 4 may display the difference between the current vehicle speed Vc calculated by the control unit 3 and the speed limit range on the screen 5a. By doing so, the driver can quickly recognize the difference between the current vehicle speed Vc and the speed limit range, and can support driving in accordance with the speed limit.
  • the control unit 3 sets the scale interval in the speed range C from the lowest speed limit to the highest speed limit of the road on which the vehicle is traveling. Change more finely than out of range.
  • the speed range C displayed at fine scale intervals changes every time the speed limit range of the road on which the vehicle travels changes, so the driver can limit the speed limit of the road on which the vehicle travels. It can be easily recognized that the range has changed.
  • Embodiment 4 FIG.
  • the display device according to the fourth embodiment is different from the first embodiment in the range in which the scale interval in the analog instrument image is changed, but the basic configuration is the same as the first embodiment. Therefore, in the following description, FIG. 1 is referred to for the configuration of the fourth embodiment.
  • FIG. 9 is a flowchart showing an operation example of the display device according to the fourth embodiment, in which step ST7 of FIG. 2 shown in the first embodiment is changed to step ST7c. Therefore, the process of step ST7c will be mainly described, and the case where an analog speedometer image is displayed on the display unit 5 will be described below.
  • the control unit 3 dynamically changes the scale interval in the analog speedometer image according to the vehicle state data and the environment data acquired by the data acquisition unit 2 (step ST7c).
  • the control unit 3 uses the relative speed VRf between the vehicle preceding the same lane as the host vehicle (hereinafter referred to as the preceding vehicle) and the host vehicle as environmental data, and the subsequent lane on the same lane as the host vehicle.
  • the relative speed VRb between the vehicle to be operated (hereinafter referred to as the following vehicle) and the host vehicle is input from the data acquisition unit 2 (step ST7c-1).
  • the relative speed is a speed difference between the own vehicle, the preceding vehicle, and the succeeding vehicle in which the traveling direction of the own vehicle is a plus direction.
  • the control unit 3 determines whether or not the relative speed VRf between the host vehicle and the preceding vehicle is less than a predetermined speed threshold value Vx (step ST7c-2).
  • the control unit 3 determines the upper limit speed V high of the speed range to be drawn at fine scale intervals as V max (step ST7c-3).
  • V max is the maximum speed limit of the analog speedometer or the maximum speed limit of the road on which the vehicle is currently traveling.
  • step ST7c-2 When the relative speed VRf is less than the speed threshold value Vx (step ST7c-2; YES), the control unit 3 adds the upper limit speed V high of the speed range to be drawn at fine scale intervals and the relative speed VRf to the current vehicle speed Vc. The determined value is determined (step ST7c-4). Next, the control unit 3 determines whether or not the relative speed VRb between the host vehicle and the following vehicle exceeds a predetermined speed threshold value Vy (step ST7c-5). When the relative speed VRb is equal to or less than the speed threshold value Vy (step ST7c-5; NO), the control unit 3 determines the lower limit speed V low of the speed range to be drawn at fine scale intervals to 0 (step ST7c-6).
  • step ST7c-5 When the relative speed VRb exceeds the speed threshold value Vy (step ST7c-5; YES), the control unit 3 sets the lower limit speed V low of the speed range to be displayed at fine scale intervals, and sets the relative speed VRb to the current vehicle speed Vc. The added value is determined (step ST7c-7). Next, the control unit 3 confirms whether or not the lower limit speed V low is less than the upper limit speed V high (step ST7c-8). When the lower limit speed V low becomes equal to or higher than the upper limit speed V high (step ST7c-8; NO), the control unit 3 determines that there is no speed range for drawing with fine scale intervals (step ST7c-9).
  • the control unit 3 sets a speed range between V low (km / h) and V high (km / h) to a fine scale interval.
  • the speed range between 0 (km / h) and less than V low (km / h) and the speed range exceeding V high are determined as the ranges to be drawn at normal scale intervals (step ST7c-10). ).
  • the control unit 3 generates a scale image having a fine speed range determined as described above and a scale image having a normal speed range, and instructs the drawing processing unit 4 to draw the scale (step ST8). ).
  • the drawing processing unit 4 selects a speed range from V low (km / h) to V high (km / h) from the current analog speedometer image at fine scale intervals.
  • An analog speedometer image is displayed on the screen 5 a of the display unit 5.
  • the control unit 3 is within a speed range in which there is no possibility of a collision with another vehicle from the relative speeds VRf and VRb with the other vehicle preceding or following the vehicle.
  • the scale interval is changed more finely than outside this speed range.
  • Embodiment 5 FIG.
  • the display device according to the fifth embodiment is different from the first embodiment in the range of changing the scale interval in the analog instrument image, but the basic configuration is the same as the first embodiment. Therefore, in the following description, FIG. 1 is referred to for the configuration of the fifth embodiment.
  • FIG. 11 is a flowchart showing an operation example of the display device according to the fifth embodiment, in which step ST7 of FIG. 2 shown in the first embodiment is changed to step ST7d. Therefore, the process of step ST7d will be mainly described, and the case where an analog speedometer image is displayed on the display unit 5 will be described below.
  • the control unit 3 dynamically changes the scale interval in the analog speedometer image according to the travel mode data acquired by the data acquisition unit 2 (step ST7d).
  • the control unit 3 inputs a recommended speed Va with good fuel efficiency recommended for the host vehicle in the eco mode from the data acquisition unit 2 as travel mode data.
  • the control unit 3 determines the upper limit speed V high of the speed range to be drawn at fine scale intervals as Va + Vx and the lower limit speed V low as Va ⁇ Vx (step ST7d-1). Thereafter, the control unit 3 determines a speed range from V low (km / h) to V high (km / h) as a range to be drawn at fine scale intervals, and from 0 (km / h) to V low (km / H) and a speed range exceeding V high are determined to be drawn ranges at normal scale intervals (step ST7d-2). Note that Vx is set to a value that allows the driver to easily recognize a speed near the recommended speed.
  • the control unit 3 generates a scale image with a fine speed range calculated as described above and a scale image with a normal speed range, and instructs the drawing processing unit 4 to draw the scale (step ST8). ).
  • the drawing processing unit 4 draws a speed range of V low (km / h) or more and V high (km / h) or less at a fine scale interval in the speed range of the current analog speedometer image according to an instruction from the control unit 3. And displayed on the screen 5a of the display unit 5.
  • the control unit 3 determines the upper limit speed V high of the speed range to be drawn at fine scale intervals as V max and the lower limit speed V low as Vmax ⁇ Vx (step ST7e ⁇ 1).
  • control unit 3 determines a speed range from V low (km / h) to V high (km / h) as a range to be drawn at fine scale intervals, and from 0 (km / h) to V low (km / H) and a speed range exceeding V high are determined as a range for drawing at a normal scale interval (step ST7e-2).
  • the control unit 3 changes the scale interval within the speed range recommended for the vehicle in the travel mode more finely than outside the speed range.
  • working mode is drawn by a fine scale interval, and visibility improves.
  • the driver can quickly recognize the speed range recommended in the travel mode.
  • Embodiment 6 FIG.
  • the display device according to the sixth embodiment is different from the first embodiment in the content of changing the scale interval in the analog instrument image, but the basic configuration is the same as the first embodiment. Therefore, in the following description, FIG. 1 is referred to for the configuration of the sixth embodiment.
  • FIG. 13 is a flowchart showing an operation example of the display device according to the sixth embodiment, in which step ST7 of FIG. 2 shown in the first embodiment is changed to step ST7f. Therefore, the process of step ST7f will be mainly described, and the case where an analog speedometer image is displayed on the display unit 5 will be described below.
  • the control unit 3 dynamically changes the scale interval in the analog speedometer image according to the current vehicle speed Vc.
  • a speed range other than the speed range including the current vehicle speed Vc is calculated as a drawing range in which a rough scale interval is drawn or a scale is not drawn (step ST7f).
  • the control unit 3 calculates the upper limit speed V high of the speed range as Vc + Vx and the lower limit speed V low as Vc ⁇ Vx.
  • the control unit 3 determines a speed range of ⁇ Vx centered on the current vehicle speed Vc as a range to be drawn at a normal scale interval, and is from 0 (km / h) to less than V low (km / h)
  • a speed range that exceeds the speed range and V high is determined to be a range in which a scale is drawn at a coarse scale interval or a scale is not drawn.
  • Vx is set to a value that is easy for the driver to visually recognize the speed change around the vehicle speed Vc, which is the speed near the current vehicle speed Vc.
  • the control unit 3 generates a scale image having a normal speed range and a coarse speed range image calculated as described above, and instructs the drawing processing unit 4 to draw the scale (step ST8). ).
  • the drawing processing unit 4 draws a speed range centered on the current vehicle speed Vc in the speed range of the current analog speedometer image at a normal scale interval, and speeds other than this The range is drawn at coarse scale intervals and displayed on the screen 5a of the display unit 5, or scales other than this range are not displayed on the analog speedometer image.
  • an analog speedometer image as shown in FIG. 12 (a) or FIG. 12 (b) is displayed on the screen 5a of the display unit 5 in accordance with the speed change caused by driving the vehicle.
  • the speed range E centered on the current vehicle speed Vc is a normal scale interval, but the scale intervals of speed ranges other than the speed range E are coarser than usual. It has become.
  • the analog speedometer image shown in FIG. 12B only the scale of the speed range E is displayed, and the scales of the other speed ranges are not displayed.
  • the speed range E is set to a normal scale interval.
  • the scale range other than the speed range E is roughened or the scale is not drawn, and the speed range E is set to the normal range as in the first embodiment. If the scale interval is finer, the visibility of the speed range E is further improved.
  • the scale interval of the speed range desired to be shown to the driver is felt to be relatively finer than that of the other speed ranges, and as a result, to the driver.
  • the speed range you want to show is highlighted.
  • the visibility of the speed range E desired to be shown to the driver is improved.
  • scales other than the speed range determined as the speed range to be drawn at fine scale intervals in the first embodiment are shown or not drawn at coarse intervals.
  • the range determined as the speed range for drawing at fine scale intervals up to 5 may be drawn at normal scale intervals, and scales outside this range may be drawn at coarse intervals or scales may not be drawn. In this way, the same effect as described above can be obtained.
  • Embodiment 7 FIG.
  • the display device according to the seventh embodiment is different from the first embodiment in that the scale display brightness in the analog instrument image is changed, but the basic configuration is the same as that in the first embodiment. Therefore, in the following description, FIG. 1 is referred to for the configuration of the seventh embodiment.
  • FIG. 15 is a flowchart showing an operation example of the display device according to the seventh embodiment, in which step ST7 of FIG. 2 shown in the first embodiment is changed to step ST7g. Therefore, the process of step ST7g will be mainly described, and hereinafter, a case where an analog speedometer image is displayed on the display unit 5 will be described.
  • the control unit 3 dynamically changes the scale interval in the analog speedometer image according to the current vehicle speed Vc.
  • the speed range including the current vehicle speed Vc among all speed ranges of the analog speedometer is calculated as a drawing range for drawing with high scale display brightness (step ST7g).
  • the control unit 3 calculates the upper limit speed V high of the speed range as Vc + Vx and the lower limit speed V low as Vc ⁇ Vx.
  • the control unit 3 determines a speed range of ⁇ Vx centered on the current vehicle speed Vc as a range to be drawn with high scale display brightness, and is from 0 (km / h) to less than V low (km / h). A speed range exceeding the speed range and V high is determined as a range for drawing with low scale display brightness.
  • Vx is set to a value that is easy for the driver to visually recognize the speed change around the vehicle speed Vc, which is the speed near the current vehicle speed Vc.
  • the control unit 3 generates a scale image in the speed range of the high display brightness calculated as described above and a scale image in the speed range of the normal display brightness, and instructs the drawing processing unit 4 to draw the scale ( Step ST8).
  • the drawing processing unit 4 draws a speed range centered on the current vehicle speed Vc in the speed range of the current analog speedometer image with high scale display brightness, and other speed ranges Is drawn with the normal scale display brightness and displayed on the screen 5a of the display unit 5.
  • the scale display brightness is increased for the speed range drawn at fine scale intervals in the first embodiment
  • the range in which the scale display brightness is increased according to the indication value of the current state of the vehicle. May be discretely varied.
  • the scale in the range determined as the speed range for drawing at fine scale intervals in the second to fifth embodiments may be drawn with high display brightness. In this way, the same effect as described above can be obtained.
  • the scale display brightness of the speed range to be shown to the driver is increased is shown, the scale outside this speed range may be drawn with a low display brightness or the scale may not be drawn.
  • the maximum display brightness of the scale is 100%
  • the minimum display brightness is 40%
  • the current vehicle speed Vc indicated by the pointer is 40 (km / h)
  • Vx is 20 ( km / h)
  • the scale display brightness of the speed range of ⁇ Vx including this vehicle speed Vc is drawn at 100%, the speed range exceeding 0 (km / h) and less than 20 (km / h) and 40
  • the scale display brightness is drawn at 80% in a speed range exceeding (km / h) and less than 60 (km / h).
  • the scale display brightness of the speed range exceeding 0 (km / h) and 60 (km / h) and less than 80 (km / h) is drawn at 60%, and the speed range exceeding 80 (km / h) is drawn.
  • the scale display brightness is drawn at 40%.
  • an analog speedometer image is displayed.
  • the scale of the current remaining fuel amount or engine speed range may be displayed with high display brightness.
  • a scale other than the range desired to be shown to the driver may be displayed with low display brightness or may not be displayed.
  • the data acquisition unit 2 that acquires the state of the vehicle, the situation around the vehicle, and the travel mode set for the vehicle, and the analog instrument image that indicates the state of the vehicle are generated.
  • a controller that dynamically changes the scale display brightness of the analog instrument image according to at least one of the vehicle state acquired by the data acquisition unit 2, the vehicle surroundings, and the vehicle state recommended in the driving mode. 3 and a drawing processing unit 4 for drawing an analog instrument image and displaying it on the display unit 5.
  • the control unit 3 changes the scale display brightness within the range including the instruction value of the current state of the vehicle to be higher than outside this range. With this configuration, the scale display brightness can be dynamically changed to improve the visibility of the analog instrument image.
  • Embodiment 8 FIG.
  • the display device according to the eighth embodiment is different from the first embodiment in that the pointer of the analog instrument image is changed, but the basic configuration is the same as that of the first embodiment. Therefore, in the following description, FIG. 1 is referred to for the configuration of the eighth embodiment.
  • FIG. 17 is a flowchart showing an operation example of the display device according to the eighth embodiment.
  • Step ST7 and step 8 in FIG. 2 shown in the first embodiment are changed to step ST7h and step ST8a. Therefore, the process of step ST7h and step ST8a will be mainly described, and the case where an analog speedometer image is displayed on the display unit 5 will be described below.
  • the controller 3 dynamically changes at least one of the thickness, shape, color, color pattern, and behavior of the pointer in the analog speedometer image according to the current vehicle speed Vc (step ST7h). For example, as shown in FIG. 18A, when the vehicle speed Vc is 0 to 20 (km / h), the control unit 3 corresponds to this speed range in the pointer image data stored in the memory. Thickness pointer image data is selected, and a thick line pointer image is determined as a drawing target (step ST7h). Next, the control unit 3 generates a thick pointer image and instructs the drawing processing unit 4 to draw the pointer (step ST8a). The drawing processing unit 4 follows the instruction from the control unit 3 as shown by (1) in FIG. 18 (a), and the thick line corresponding to 0 to 20 (km / h) that is the speed range including the current vehicle speed Vc. Are drawn and displayed on the screen 5 a of the display unit 5.
  • the control unit 3 selects the pointer image data having a thickness corresponding to this speed range from the pointer image data stored in the memory.
  • the middle thick line pointer image is determined as a drawing target (step ST7h).
  • the control unit 3 generates a middle thick line pointer image and instructs the drawing processing unit 4 to draw the pointer (step ST8a).
  • the drawing processing unit 4 corresponds to a speed range including the current vehicle speed Vc of 20 to 60 (km / h) as shown in (2) in FIG.
  • a thick pointer is drawn and displayed on the screen 5a of the display unit 5.
  • the control unit 3 selects the pointer image data having a thickness corresponding to this speed range from the pointer image data stored in the memory.
  • a thin line pointer image is determined as a drawing target (step ST7h).
  • the control unit 3 generates a thin line pointer image and instructs the drawing processing unit 4 to draw the pointer (step ST8a).
  • the drawing processing unit 4 follows the instruction from the control unit 3 and, as shown in (3) in FIG. 18A, a thin line corresponding to 60 to 100 (km / h) that is the speed range including the current vehicle speed Vc. Are drawn and displayed on the screen 5 a of the display unit 5.
  • the control unit 3 when the vehicle speed Vc is 0 to 20 (km / h), the control unit 3 corresponds to this speed range in the pointer image data stored in the memory.
  • the pointer image data having the shape and the thickness is selected, and the pointer image having the bold line shape is determined as a drawing target (step ST7h).
  • the control unit 3 generates a thick, straight-line pointer image and instructs the drawing processing unit 4 to draw a pointer (step ST8a).
  • the drawing processing unit 4 follows the instruction from the control unit 3 as shown in (1) in FIG. 18 (b) with a thick line corresponding to 0 to 20 (km / h) that is the speed range including the current vehicle speed Vc. Then, a linear pointer is drawn and displayed on the screen 5a of the display unit 5.
  • the control unit 3 selects the pointer image data having a shape and thickness corresponding to this speed range from the pointer image data stored in the memory. Then, an arrow-shaped pointer image with a thick line is determined as a drawing target (step ST7h). Next, the control unit 3 generates an arrow-shaped pointer image with a bold line, and instructs the drawing processing unit 4 to draw a pointer (step ST8a).
  • the drawing processing unit 4 follows the instruction from the control unit 3 as shown in (2) in FIG. 18 (b) with a thick line corresponding to a speed range of 20 to 60 (km / h) including the current vehicle speed Vc. Then, an arrow-shaped pointer is drawn and displayed on the screen 5a of the display unit 5.
  • the control unit 3 selects the pointer image data having a shape and thickness corresponding to this speed range from the pointer image data stored in the memory.
  • the arrow-shaped pointer image with a thin line is determined as a drawing target (step ST7h).
  • the control unit 3 generates an arrow-shaped pointer image with a thin line, and instructs the drawing processing unit 4 to draw the pointer (step ST8a).
  • the drawing processing unit 4 follows the instruction from the control unit 3 and, as shown in (3) in FIG. 18B, a thin line corresponding to 60 to 100 (km / h) that is the speed range including the current vehicle speed Vc. Then, an arrow-shaped pointer is drawn and displayed on the screen 5a of the display unit 5.
  • the color of the pointer may be changed dynamically. For example, 0 to 20 (km / h), 20 to 40 (km / h), 40 to 60 (km / h), 60 to 80 (km / h), 80 to 100 (km / h), 100 (km Colors corresponding to the respective speed ranges are set, and the control unit 3 determines the color of the pointer according to the current vehicle speed Vc and instructs the drawing processing unit 4 to draw.
  • the correspondence between the speed range and the pointer color is, for example, 0 to 20 (km / h) in the low speed range and 20 to 40 (km / h) in blue, and 40 to 60 (km / h) in the medium speed range.
  • the high speed range is 80 to 100 (km / h)
  • the pointer is yellow
  • the color of the pointer gradually changes from blue to red, and the driver can intuitively recognize the current vehicle speed.
  • the coloring pattern of the pointer may be dynamically changed.
  • a color pattern color blinking pattern
  • the pointer is displayed in red and blinking at high speed with high brightness. This also allows the driver to intuitively recognize the current vehicle speed.
  • the behavior of the pointer may be changed dynamically.
  • display is performed so that the pointer vibrates in the analog speedometer image.
  • the vehicle speed is not fixed to a constant value, and the speed fluctuates slightly due to the driver's accelerator depression / depression. By reproducing this situation, a real speed display can be provided to the driver.
  • an image indicating the current vehicle speed may be added to the pointer.
  • the driver can easily recognize the vehicle speed indicated by the pointer.
  • an analog speedometer image is displayed.
  • analog instrument images indicating other vehicle states For example, in a fuel meter or tachometer, at least one of the thickness, shape, color, coloring pattern, and behavior of the pointer that indicates the remaining fuel amount and the engine speed may be dynamically changed. Even with this configuration, the value indicated by the pointer can be easily recognized as described above.
  • the data acquisition unit 2 that acquires the state of the vehicle, the surrounding situation of the vehicle, and the travel mode set for the vehicle, and the analog instrument image that indicates the state of the vehicle are generated.
  • the thickness, shape, color, and coloring pattern of the pointer of the analog instrument image And a control unit 3 that dynamically changes at least one of the behaviors, and a drawing processing unit 4 that draws an analog instrument image and displays it on the display unit 5.
  • the thickness, shape, color, coloring pattern and behavior of the pointer are dynamically changed to improve the visibility of the analog instrument image.
  • control unit 3 generates an analog instrument image in which the current speed of the vehicle is added to the pointer. In this way, the vehicle speed is displayed by combining the analog display and the digital display, and the driver can easily recognize the vehicle speed indicated by the pointer.
  • Embodiment 9 FIG.
  • the display device according to the ninth embodiment is different from the first embodiment in that all scale ranges in the analog instrument image are dynamically changed, but the basic configuration is the same as the first embodiment. Therefore, in the following description, FIG. 1 is referred to for the configuration of the ninth embodiment.
  • FIG. 19 is a flowchart showing an operation example of the display device according to the ninth embodiment, in which step ST7 of FIG. 2 shown in the first embodiment is changed to step ST7i. Therefore, the process of step ST7i will be mainly described, and hereinafter, a case where an analog speedometer image is displayed on the display unit 5 will be described.
  • the control unit 3 dynamically changes the scale intervals of all the speed ranges in the analog speedometer image according to the current vehicle speed Vc acquired as the vehicle state data by the data acquisition unit 2 (step ST7i). First, the control unit 3 determines whether or not the current vehicle speed Vc is less than a predetermined speed threshold value Vx (step ST7i-1). When the vehicle speed Vc is less than the speed threshold value Vx (step ST7i-1; YES), the control unit 3 determines that the host vehicle is traveling in a low speed range, and coarsely calibrates all speed ranges in the analog speedometer image. It is determined to draw at intervals (step ST7i-2). Vx is a speed threshold value for confirming whether or not the vehicle is traveling in the low speed range, and is a value corresponding to the lower limit value of the medium speed range.
  • Vy is a speed threshold value for confirming whether or not the vehicle is traveling in the high speed range, and is a value corresponding to the lower limit value of the high speed range. Further, Vy> Vx.
  • step ST7i-3 When the vehicle speed Vc is less than the speed threshold value Vy (step ST7i-3; YES), the control unit 3 determines that the host vehicle is traveling in the medium speed range and draws all speed ranges at normal scale intervals. It decides to do (step ST7i-4). When the vehicle speed Vc is equal to or higher than the speed threshold Vy (step ST7i-3; NO), the control unit 3 determines that the host vehicle is traveling in a high speed range and draws all speed ranges at fine scale intervals. (Step ST7i-5).
  • the control unit 3 generates a scale image with the scale interval determined as described above, and instructs the drawing processing unit 4 to draw the scale (step ST8).
  • the drawing processing unit 4 draws the scales of all speed ranges of the analog speedometer image in accordance with instructions from the control unit 3 and displays them on the screen 5 a of the display unit 5. Accordingly, as shown in FIG. 20, when the vehicle is stopped or traveling in a low speed range, the scale intervals of all the speed ranges of the analog speedometer image become coarse. When the vehicle speed is in the middle speed range from this state, the entire speed range of the analog speedometer image becomes the normal scale interval. When the vehicle speed further increases to a high speed range, the entire speed range of the analog speedometer image becomes a fine scale interval.
  • operator can grasp
  • the speed can be instructed with higher accuracy than other speed ranges when traveling at high speed.
  • the scale interval of all speed ranges in the analog speedometer image is dynamically changed according to the current speed of the host vehicle.
  • the scale display brightness of all speed ranges is dynamically changed. You may change to For example, when the host vehicle is running or stopped in a low speed range, the scale display brightness of all speed ranges of the analog speedometer image is determined to be the minimum brightness (for example, 40%), and the host vehicle is in the middle speed range. When the vehicle is traveling at a normal speed display brightness (for example, 80%), the entire speed range of the analog speedometer image is determined. Further, when the host vehicle is traveling in a high speed range, all speed ranges of the analog speedometer image are determined to have a high scale display brightness (for example, 100%). Even in this way, the driver can intuitively roughly grasp the own vehicle speed by changing the scale display brightness of all speed ranges in the analog speedometer image.
  • FIG. 21 is a flowchart showing another operation example of the display device according to the ninth embodiment, in which step ST7 of FIG. 2 shown in the first embodiment is changed to step ST7j. Therefore, the process of step ST7j will be mainly described, and hereinafter, a case where an analog speedometer image is displayed on the display unit 5 will be described.
  • the control unit 3 dynamically changes the scale intervals of all speed ranges in the analog speedometer image according to the current acceleration Ac of the host vehicle acquired as the vehicle state data by the data acquisition unit 2 (step ST7j). .
  • the control unit 3 determines whether or not the acceleration Ac is less than a predetermined acceleration threshold value Ax (step ST7j-1).
  • the control unit 3 determines that the host vehicle is decelerating and draws all the speed ranges in the analog speedometer image with coarse scale intervals. It decides to do (step ST7j-2).
  • Ax is a deceleration threshold for confirming deceleration of the vehicle, and Ax ⁇ 0.
  • step ST7j-3 is an acceleration threshold for confirming the acceleration of the vehicle, and Ay ⁇ 0.
  • step ST7j-4 the control unit 3 determines that the host vehicle is traveling at a constant speed, and sets all speed ranges to normal scale intervals.
  • Step ST7j-5 the control unit 3 determines that the host vehicle is accelerating and determines to draw all speed ranges at fine scale intervals.
  • the control unit 3 generates a scale image with the scale interval determined as described above, and instructs the drawing processing unit 4 to draw the scale (step ST8).
  • the drawing processing unit 4 draws the scales of all speed ranges of the analog speedometer image in accordance with instructions from the control unit 3 and displays them on the screen 5 a of the display unit 5.
  • the scale intervals of all speed ranges of the analog speedometer image become coarse.
  • the entire speed range of the analog speedometer image becomes a normal scale interval.
  • the entire speed range of the analog speedometer image becomes a fine scale interval.
  • the scale intervals of all speed ranges in the analog speedometer image are dynamically changed in accordance with the current acceleration / deceleration of the host vehicle. It may be changed dynamically.
  • the scale display brightness of all speed ranges in the analog speedometer image is determined as the minimum brightness (for example, 40%), and the host vehicle is traveling at a constant speed.
  • the entire speed range of the analog speedometer image is determined as normal scale display brightness (for example, 80%).
  • the entire speed range of the analog speedometer image is determined to have a high scale display brightness (for example, 100%). Even in this way, the driver can intuitively roughly grasp the own vehicle speed by changing the scale display brightness of all speed ranges in the analog speedometer image.
  • control unit 3 dynamically changes the scale intervals of all speed ranges of the analog speedometer image according to the traveling speed or acceleration / deceleration of the vehicle.
  • the controller 3 dynamically changes the scale display brightness of all speed ranges of the analog speedometer image according to the traveling speed or acceleration / deceleration of the vehicle.
  • the analog speedometer is designated by dynamically changing the scale interval, scale display brightness, and indicator display mode of the analog speedometer image. Is emphasized. By doing so, it is possible to quickly and accurately recognize the indicated part of the analog speedometer, which is important information during traveling, and to reduce the risk of an accident.
  • the moving body is a vehicle (automobile, motorcycle, bicycle, etc.)
  • the present invention is applied to a display device for a moving body including a railway vehicle, a ship, an aircraft, and the like. can do.
  • any combination of each embodiment, any component of each embodiment can be modified, or any component can be omitted in each embodiment. .
  • the display device according to the present invention is suitable for, for example, a display device that controls display of a display screen built in an instrument panel of a vehicle because the visibility of an analog instrument image is improved.
  • 1 display device 2 data acquisition unit, 3 control unit, 4 drawing processing unit, 5 display unit, 5a display screen.

Abstract

 A display device is provided with: a data acquisition unit (2) for acquiring vehicle state data, vehicle environment data, and travel mode data set in the vehicle; a controller (3) for generating an analog instrument image indicating the vehicle state and dynamically varying scale intervals of the analog instrument image in accordance with at least one vehicle state recommended with the vehicle state data, vehicle environment data, and travel mode data acquired by the data acquisition unit (2); and an image-producing processor (4) for producing the analog instrument image and displaying the image on a display unit (5).

Description

表示装置Display device
 この発明は、車両などの移動体の状態を指示するアナログ計器画像を表示部に表示する表示装置に関する。 The present invention relates to a display device that displays an analog instrument image indicating a state of a moving body such as a vehicle on a display unit.
 例えば、特許文献1には、自動車のフロントガラスにコンバイナーを備えて表示虚像を運転者に向けて表示するヘッドアップディスプレイ(以下、HUDと記載する)と呼ばれる車両表示装置が開示されている。このHUDでは、液晶表示装置から照射された光学的情報を、フロントガラスに組み込まれたホログラムまたはハーフミラーからなるコンバイナーに映すことによって、運転者が運転状態から視線をほとんど動かすことなく情報を読み取ることができる。 For example, Patent Document 1 discloses a vehicle display device called a head-up display (hereinafter referred to as HUD) that includes a combiner on a windshield of an automobile and displays a display virtual image toward the driver. In this HUD, the optical information emitted from the liquid crystal display device is projected on a combiner consisting of a hologram or a half mirror incorporated in the windshield, so that the driver can read the information from the driving state with little movement of the line of sight. Can do.
 運転者は、車両を運転する場合、車速が速くなるほど目の焦点を遠方に合わせ、低速になるほど近方に合わせている。
 そこで、特許文献1に記載のHUDでは、車速が速くなるに伴って液晶表示装置をコンバイナーから遠ざけ、車速が遅くなるに伴ってコンバイナーに近づけることで、車速が速くなるに伴って運転者からの表示虚像の結像位置を遠くし、車速が遅くなるに伴って運転者からの表示虚像の結像位置を近くしている。
 これにより、車速に応じた表示虚像の結像位置と運転者の目の焦点位置との差が減って車外の状況と表示内容との視認性が向上する。
When driving the vehicle, the driver focuses the eyes farther as the vehicle speed increases and closer to the eyes as the vehicle speed decreases.
Therefore, in the HUD described in Patent Document 1, the liquid crystal display device is moved away from the combiner as the vehicle speed becomes faster, and closer to the combiner as the vehicle speed becomes slower. The image forming position of the display virtual image is made far, and the image forming position of the display virtual image from the driver is made closer as the vehicle speed decreases.
Thereby, the difference between the imaging position of the display virtual image corresponding to the vehicle speed and the focus position of the driver's eyes is reduced, and the visibility of the situation outside the vehicle and the display contents is improved.
 また、特許文献2には、車両の車速やエンジン回転数を示す計器類を画像表示する車両用メータユニットが開示されている。この車両用メータユニットは、従来の回転盤と同様に、アナログで速度を指示するアナログ計器を表示し、この指示値を示すデジタル計器の表示形態をアナログ計器と連動して変化させている。
 特に、特許文献2の車両用メータユニットは、車両の速度の増減に応じてデジタル計器の速度指示値を示す数字画像の寸法および形状の少なくとも一方を変更する。
 例えば、速度指示値が大きくなるほど、デジタル計器が指示する数値画像が大きくなるように寸法を変更する。これにより、運転者が車速の上昇に気づきやすくなる。
Patent Document 2 discloses a vehicle meter unit that displays an image of instruments indicating the vehicle speed and engine speed of the vehicle. This vehicle meter unit displays an analog instrument that indicates an analog speed in the same manner as a conventional turntable, and changes the display form of the digital instrument that indicates the indicated value in conjunction with the analog instrument.
In particular, the vehicle meter unit of Patent Document 2 changes at least one of the size and shape of a numeric image indicating the speed instruction value of the digital instrument in accordance with the increase or decrease of the speed of the vehicle.
For example, the dimension is changed so that the numerical image indicated by the digital instrument becomes larger as the speed instruction value becomes larger. This makes it easier for the driver to notice an increase in vehicle speed.
 さらに、特許文献3には、ダッシュボードに配設した表示器の表示像をダッシュボード上方の反射面で反射させることにより、フロントガラスを透してみる外の景色に表示像を重畳させて表示するHUDが開示されている。このHUDでは、車両の速度に応じて表示器をダッシュボード上面に平行に移動させることで、表示器の結像位置を変更でき、運転者にとって最適な位置に表示像を表示可能である。 Furthermore, in Patent Document 3, the display image of the display device arranged on the dashboard is reflected by the reflection surface above the dashboard, so that the display image is superimposed on the outside scenery through the windshield and displayed. HUD is disclosed. In this HUD, the image forming position of the display device can be changed by moving the display device in parallel with the upper surface of the dashboard according to the speed of the vehicle, and the display image can be displayed at an optimum position for the driver.
実開平6-87043号公報Japanese Utility Model Publication No. 6-87043 特開2009-103540号公報JP 2009-103540 A 実開平1-123731号公報Japanese Utility Model Publication No. 1-123731
 特許文献1~3に代表される従来の技術では、アナログ計器の視認性の向上が図られておらず、その指示値を迅速に認知できないという課題があった。
 例えば、特許文献1は、車速に応じた表示虚像の結像位置と運転者の目の焦点位置との差を減少させることにより、運転者から計器画像を見やすくしている。
 しかしながら、特許文献1では、アナログ計器が考慮されていないので、アナログ計器の表示態様によっては、その指示値を迅速に認知できない可能性がある。
The conventional techniques represented by Patent Documents 1 to 3 have a problem that the visibility of analog instruments is not improved and the indicated value cannot be recognized quickly.
For example, Patent Document 1 makes it easier for the driver to see the instrument image by reducing the difference between the image formation position of the display virtual image corresponding to the vehicle speed and the focus position of the driver's eyes.
However, in Patent Document 1, since an analog instrument is not considered, there is a possibility that the indicated value cannot be recognized quickly depending on the display mode of the analog instrument.
 また、特許文献2では、車両の速度に応じて計器の指示値をデジタル表示する部分のみを強調しており、アナログ計器の表示態様は変更されない。このため、車両が低速で走行している場合に、デジタル表示された指示値の数字画像とアナログ計器の指針位置以外の数値画像とが混同されやすく運転者を混乱させる可能性がある。 Also, in Patent Document 2, only the portion for digitally displaying the indicated value of the instrument according to the speed of the vehicle is emphasized, and the display mode of the analog instrument is not changed. For this reason, when the vehicle is traveling at a low speed, the digitally displayed numerical image of the indicated value is easily confused with the numerical image of the analog instrument other than the pointer position, which may confuse the driver.
 さらに、特許文献3では、車速に応じて表示器を移動させることで、フロントガラスで反射して見える表示像の位置が車速に応じて変位する。
 しかしながら、特許文献3においても、アナログ計器が考慮されていないので、運転者から見やすい位置にアナログ計器が表示されても、アナログ計器の表示態様によっては、その指示値を迅速に認知できない可能性がある。
Furthermore, in patent document 3, the position of the display image which is reflected on the windshield is displaced according to the vehicle speed by moving the display device according to the vehicle speed.
However, even in Patent Document 3, an analog instrument is not taken into consideration. Therefore, even if the analog instrument is displayed at a position that is easy to see from the driver, the indication value may not be recognized quickly depending on the display mode of the analog instrument. is there.
 この発明は、上記のような課題を解決するためになされたもので、アナログ計器画像の視認性の向上を図ることができる表示装置を得ることを目的とする。 The present invention has been made to solve the above-described problems, and an object thereof is to obtain a display device capable of improving the visibility of an analog instrument image.
 この発明に係る表示装置は、移動体の状態を指示するアナログ計器画像を表示部に表示する表示装置であって、移動体の状態、移動体の周辺状況および移動体に設定された移動モードを取得するデータ取得部と、移動体の状態を指示するアナログ計器画像を生成し、データ取得部が取得した移動体の状態、移動体の周辺状況および移動モードで推奨される移動体の状態の少なくとも一つに応じてアナログ計器画像の目盛り間隔を動的に変更する制御部と、アナログ計器画像を描画して表示部に表示する描画処理部を備える。 A display device according to the present invention is a display device that displays an analog instrument image instructing the state of a moving body on a display unit, and displays the state of the moving body, the surrounding situation of the moving body, and the movement mode set for the moving body. A data acquisition unit to acquire and an analog instrument image that indicates the state of the moving body are generated, and at least of the state of the moving body acquired by the data acquisition unit, the surrounding situation of the moving body, and the state of the moving body recommended in the moving mode A control unit that dynamically changes the scale interval of the analog instrument image according to one and a drawing processing unit that draws the analog instrument image and displays it on the display unit are provided.
 この発明によれば、アナログ計器画像の視認性の向上を図ることができるという効果がある。 According to the present invention, there is an effect that the visibility of the analog instrument image can be improved.
この発明の実施の形態1に係る表示装置の構成を示すブロック図である。It is a block diagram which shows the structure of the display apparatus which concerns on Embodiment 1 of this invention. 実施の形態1に係る表示装置の動作例を示すフローチャートである。4 is a flowchart illustrating an operation example of the display device according to the first embodiment. 描画データの一例を示す図である。It is a figure which shows an example of drawing data. 実施の形態1における速度計の表示例を示す図である。6 is a diagram showing a display example of a speedometer in the first embodiment. FIG. この発明に係る実施の形態2に係る表示装置の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the display apparatus which concerns on Embodiment 2 which concerns on this invention. 実施の形態2における速度計の表示例を示す図である。FIG. 10 is a diagram showing a display example of a speedometer in the second embodiment. この発明の実施の形態3に係る表示装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the display apparatus which concerns on Embodiment 3 of this invention. 実施の形態3における速度計の表示例を示す図である。FIG. 10 is a diagram showing a display example of a speedometer in the third embodiment. この発明の実施の形態4に係る表示装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the display apparatus which concerns on Embodiment 4 of this invention. 実施の形態4における速度計の表示例を示す図である。FIG. 10 is a diagram showing a display example of a speedometer in the fourth embodiment. この発明の実施の形態5に係る表示装置の動作(エコモード)を示すフローチャートである。It is a flowchart which shows operation | movement (eco mode) of the display apparatus which concerns on Embodiment 5 of this invention. 実施の形態5に係る表示装置の動作(スポーツモード)を示すフローチャートである。10 is a flowchart showing an operation (sport mode) of the display device according to the fifth embodiment. この発明の実施の形態6に係る表示装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the display apparatus which concerns on Embodiment 6 of this invention. 実施の形態6における速度計の表示例を示す図である。FIG. 18 shows a display example of a speedometer in the sixth embodiment. この発明の実施の形態7に係る表示装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the display apparatus which concerns on Embodiment 7 of this invention. 実施の形態7における速度計の表示例を示す図である。FIG. 38 shows a display example of a speedometer in the seventh embodiment. この発明の実施の形態8に係る表示装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the display apparatus which concerns on Embodiment 8 of this invention. 実施の形態8における速度計の表示例を示す図である。FIG. 20 shows a display example of a speedometer in the eighth embodiment. この発明の実施の形態9に係る表示装置の動作(車速変化)を示すフローチャートである。It is a flowchart which shows operation | movement (vehicle speed change) of the display apparatus which concerns on Embodiment 9 of this invention. 実施の形態9における速度計の表示例(車速変化)を示す図である。It is a figure which shows the example of a display (vehicle speed change) of the speedometer in Embodiment 9. FIG. 実施の形態9に係る表示装置の動作(加減速変化)を示すフローチャートである。25 is a flowchart showing an operation (acceleration / deceleration change) of the display device according to the ninth embodiment. 実施の形態9における速度計の表示例(加減速変化)を示す図である。It is a figure which shows the example of a display (acceleration / deceleration change) of the speedometer in Embodiment 9. FIG.
 以下、この発明をより詳細に説明するため、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、この発明の実施の形態1に係る表示装置の構成を示すブロック図である。図1に示すように、表示装置1は、移動体(例えば、車両)の状態を指示するアナログ計器画像を表示部5に表示する表示装置であり、データ取得部2、制御部3および描画処理部4を備えて構成される。なお、表示部5は、表示装置1の筐体に一体に設けてもよく、別体に設けもよい。
Hereinafter, in order to describe the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a configuration of a display device according to Embodiment 1 of the present invention. As shown in FIG. 1, the display device 1 is a display device that displays an analog instrument image that indicates the state of a moving object (for example, a vehicle) on the display unit 5, and includes a data acquisition unit 2, a control unit 3, and a drawing process. The unit 4 is provided. The display unit 5 may be provided integrally with the housing of the display device 1 or may be provided separately.
 データ取得部2は、車両状態データ、車両の環境データおよび走行モードデータを取得するデータ取得部である。
 例えば、自車両のECU(電子制御ユニット;図示せず)から各種計器類で指示する車速、燃料残量、エンジン回転数などを車両状態データとして取得する。
 また、車載カメラで撮影された自車両周辺の映像(制限速度看板など)を画像解析して得られた、自車両が走行する道路の制限速度(最高制限速度または最低制限速度)を環境データとして取得する。
 さらに、ユーザによって自車両に設定された走行モードデータをECUから取得する。走行モードデータとは、自車両に推奨される走行状態を指定するデータである。
 例えば、エコモードの場合、車両が走行する道路において省燃費となる速度範囲が推奨される。また、スポーツモードの場合、車両の高速走行が想定されるため、高速度範囲が推奨される。
The data acquisition unit 2 is a data acquisition unit that acquires vehicle state data, vehicle environment data, and travel mode data.
For example, the vehicle speed, the remaining fuel amount, the engine speed, etc., which are instructed by various instruments from the ECU (electronic control unit; not shown) of the host vehicle, are acquired as vehicle state data.
In addition, the speed limit (maximum speed limit or minimum speed limit) of the road on which the vehicle is traveling, obtained by analyzing the image of the surroundings of the vehicle (speed limit signboard, etc.) captured by the in-vehicle camera is used as environmental data. get.
Furthermore, the driving mode data set for the host vehicle by the user is acquired from the ECU. The travel mode data is data that specifies a travel state recommended for the host vehicle.
For example, in the eco mode, a speed range that saves fuel on the road on which the vehicle is traveling is recommended. Further, in the case of the sport mode, since a high speed traveling of the vehicle is assumed, a high speed range is recommended.
 制御部3は、車両状態データと描画データを用いて車両状態を指示するアナログ計器画像を生成する。また、制御部3は、データ取得部2によって取得された車両状態データ、車両の環境データおよび走行モードデータで推奨される車両状態のうちの少なくとも一つに応じてアナログ計器画像の表示態様を動的に変更する。
 描画処理部4は、制御部3から描画指示されたアナログ計器画像を描画して表示部5の画面5a上に表示する。
The control part 3 produces | generates the analog instrument image which instruct | indicates a vehicle state using vehicle state data and drawing data. In addition, the control unit 3 controls the display mode of the analog instrument image according to at least one of the vehicle state recommended by the vehicle state data acquired by the data acquisition unit 2, the vehicle environment data, and the travel mode data. Change.
The drawing processing unit 4 draws an analog instrument image instructed to be drawn from the control unit 3 and displays it on the screen 5 a of the display unit 5.
 表示部5は、例えば車両のインストルメントパネルに内蔵されて車両状態(速度情報、燃料情報、エンジン回転数など)を指示する計器画像を画面5aに表示する表示モニタである。また、表示部5は、液晶表示パネル、プラズマ表示パネル、有機ELパネルなどで実現することができる。 The display unit 5 is a display monitor that is built in, for example, an instrument panel of a vehicle and displays an instrument image indicating a vehicle state (speed information, fuel information, engine speed, etc.) on the screen 5a. The display unit 5 can be realized by a liquid crystal display panel, a plasma display panel, an organic EL panel, or the like.
 なお、データ取得部2、制御部3および描画処理部4は、この発明に特有な処理に関するプログラムをマイクロコンピュータが実行することで、ハードウェアとソフトウェアとが協働した具体的な手段として実現される。 The data acquisition unit 2, the control unit 3, and the drawing processing unit 4 are realized as specific means in which hardware and software cooperate by causing the microcomputer to execute a program relating to processing unique to the present invention. The
 次に動作について説明する。
 図2は、実施の形態1に係る表示装置の動作例を示すフローチャートである。以降では車両のアナログ速度計画像を表示部5に表示する場合について説明する。
 まず、制御部3が、メモリ(不図示)から描画データを読み出して取得する(ステップST1)。続いて、制御部3は、描画データに基づいてアナログ計器のベース画像を生成し、描画処理部4に描画を指示する(ステップST2)。
 描画処理部4は、制御部3からの指示に従い、図3に示すような目盛りのないアナログ速度計のベース画像を描画して表示部5の画面5aに表示する。
Next, the operation will be described.
FIG. 2 is a flowchart illustrating an operation example of the display device according to the first embodiment. Hereinafter, a case where an analog speedometer image of the vehicle is displayed on the display unit 5 will be described.
First, the control unit 3 reads and obtains drawing data from a memory (not shown) (step ST1). Subsequently, the control unit 3 generates a base image of the analog instrument based on the drawing data, and instructs the drawing processing unit 4 to perform drawing (step ST2).
The drawing processing unit 4 draws a base image of an analog speedometer without a scale as shown in FIG. 3 in accordance with an instruction from the control unit 3 and displays it on the screen 5 a of the display unit 5.
 次に、制御部3は、上記メモリから読み出した目盛り画像データを用いて、アナログ速度計画像の通常の目盛り画像を生成し、描画処理部4に描画を指示する(ステップST3)。描画処理部4は、制御部3からの指示に従い、通常の目盛りのアナログ速度計画像を描画して表示部5の画面5aに表示する。 Next, the control unit 3 generates a normal scale image of the analog speedometer image using the scale image data read from the memory, and instructs the drawing processing unit 4 to perform drawing (step ST3). In accordance with an instruction from the control unit 3, the drawing processing unit 4 draws an analog speedometer image with a normal scale and displays it on the screen 5 a of the display unit 5.
 制御部3は、表示部5がアナログ速度計画像を表示している間、データ取得部2により取得された現在の車速Vc(km/h)を逐次入力する(ステップST4)。
 制御部3は、データ取得部2から入力した車速Vcに基づいて、指針の位置を決定し(ステップST5)、上記メモリから読み出した指針画像データを用いて指針の画像を生成し、描画処理部4に指針の描画を指示する(ステップST6)。
 描画処理部4は、制御部3からの指示に従い、通常の間隔の目盛りで現在の車速Vcを指示するアナログ速度計画像を描画して表示部5の画面5aに表示する。
While the display unit 5 displays the analog speedometer image, the control unit 3 sequentially inputs the current vehicle speed Vc (km / h) acquired by the data acquisition unit 2 (step ST4).
The control unit 3 determines the position of the pointer based on the vehicle speed Vc input from the data acquisition unit 2 (step ST5), generates a pointer image using the pointer image data read from the memory, and performs a drawing processing unit. 4 is instructed to draw a pointer (step ST6).
In accordance with an instruction from the control unit 3, the drawing processing unit 4 draws an analog speedometer image indicating the current vehicle speed Vc at a normal interval and displays it on the screen 5 a of the display unit 5.
 続いて、制御部3は、現在の車速Vcに応じてアナログ速度計画像における目盛り間隔を動的に変更する。ここでは、現在の車速Vcを含む速度範囲を細かい目盛り間隔の描画範囲として計算する(ステップST7)。このとき、制御部3は、現在の車速Vcを入力するごとに速度範囲の上限速度VhighをVc+Vxとし、下限速度VlowをVc-Vxとして算出する(ステップST7-1)。次いで、制御部3は、現在の車速Vcを中心値とした±Vxの速度範囲を細かい目盛り間隔で描画する範囲に決定し、0(km/h)からVlow(km/h)未満の速度範囲とVhighを超える速度範囲を通常の目盛り間隔で描画する範囲に決定する(ステップST7-2)。なお、Vxには、運転者が現在の車速Vc付近の速度であり、かつ車速Vcを中心とした速度変化を視認しやすい値が設定される。 Subsequently, the control unit 3 dynamically changes the scale interval in the analog speedometer image according to the current vehicle speed Vc. Here, the speed range including the current vehicle speed Vc is calculated as a fine scale interval drawing range (step ST7). At this time, every time the current vehicle speed Vc is input, the control unit 3 calculates the upper limit speed V high of the speed range as Vc + Vx and the lower limit speed V low as Vc−Vx (step ST7-1). Next, the control unit 3 determines a speed range of ± Vx with the current vehicle speed Vc as a center value as a range to be drawn at fine scale intervals, and a speed from 0 (km / h) to less than V low (km / h). A speed range exceeding the range and V high is determined as a range for drawing at a normal scale interval (step ST7-2). Note that Vx is set to a value that is easy for the driver to visually recognize the speed change around the vehicle speed Vc, which is the speed near the current vehicle speed Vc.
 次に、制御部3は、上述のように計算した細かい間隔の速度範囲の目盛り画像と通常の間隔の速度範囲の目盛り画像を生成して描画処理部4に目盛りの描画を指示する(ステップST8)。描画処理部4は、制御部3からの指示に従って、現在のアナログ速度計画像の速度範囲のうち、現在の車速Vcを中心とした速度範囲を細かい目盛り間隔で描画して、表示部5の画面5aに表示する。これにより、車両の運転による速度変化に応じて、図4に示すようなアナログ速度計画像が表示部5の画面5aに表示される。このアナログ速度計画像において、現在の車速Vcを中心とした速度範囲Aが細かい目盛り間隔となって、その視認性が向上する。このため、運転者は、指針が現在の車速Vcを示す箇所を迅速に特定しやすく、さらに車速Vc付近の速度を直感的に認識しやすく、車速Vc付近の速度における詳細な速度変化を認識しやすくなる。 Next, the control unit 3 generates a scale image with a fine speed range calculated as described above and a scale image with a normal speed range, and instructs the drawing processing unit 4 to draw the scale (step ST8). ). In accordance with an instruction from the control unit 3, the drawing processing unit 4 draws a speed range centered on the current vehicle speed Vc in the speed range of the current analog speedometer image at fine scale intervals, and displays the screen of the display unit 5. 5a is displayed. As a result, an analog speedometer image as shown in FIG. 4 is displayed on the screen 5a of the display unit 5 in accordance with a speed change caused by driving the vehicle. In this analog speedometer image, the speed range A centered on the current vehicle speed Vc becomes a fine scale interval, and the visibility is improved. For this reason, the driver can easily identify the location where the pointer indicates the current vehicle speed Vc, and can easily recognize the speed near the vehicle speed Vc intuitively, and can recognize the detailed speed change at the speed near the vehicle speed Vc. It becomes easy.
 なお、上記説明ではアナログ速度計画像を表示する場合を示したが、その他の車両状態を示すアナログ計器画像に適用しても同様の効果を得ることができる。例えば、燃料計や回転速度計において、現在の燃料残量やエンジン回転数を中心とした範囲を細かい目盛り間隔で表示してもよい。 In the above description, an analog speedometer image is displayed. However, the same effect can be obtained when applied to analog instrument images indicating other vehicle states. For example, in a fuel meter or tachometer, a range centered on the current remaining fuel amount or engine speed may be displayed at fine scale intervals.
 以上のように、この実施の形態1によれば、車両状態データ、車両の環境データおよび車両に設定された走行モードデータを取得するデータ取得部2と、車両の状態を指示するアナログ計器画像を生成し、データ取得部2が取得した車両状態データ、車両の環境データおよび走行モードデータで推奨される車両状態の少なくとも一つに応じてアナログ計器画像の目盛り間隔を動的に変更する制御部3と、アナログ計器画像を描画して表示部5に表示する描画処理部4を備える。特に、制御部3が、車両の現在状態の指示値を含む範囲内の目盛り間隔を範囲外より細かく変更する。このように構成することで、目盛り間隔が動的に変化してアナログ計器画像の視認性の向上を図ることができる。 As described above, according to the first embodiment, the data acquisition unit 2 that acquires the vehicle state data, the environment data of the vehicle, and the travel mode data set in the vehicle, and the analog instrument image that indicates the state of the vehicle A control unit 3 that dynamically changes the scale interval of the analog instrument image according to at least one of the vehicle states recommended by the vehicle state data, the vehicle environment data, and the travel mode data that are generated and acquired by the data acquisition unit 2 And a drawing processing unit 4 for drawing an analog instrument image and displaying it on the display unit 5. In particular, the control unit 3 changes the scale interval within the range including the instruction value of the current state of the vehicle more finely than outside the range. By comprising in this way, the scale interval can change dynamically and the visibility of an analog instrument image can be improved.
 また、この実施の形態1によれば、車両の現在状態の指示値を含む範囲が、自車両の現在速度の指示値を中心値とした範囲である。このように構成することで、現在の車両状態を示す指示値を中心とした範囲が細かい目盛り間隔となり、その視認性が向上する。このため、運転者は、指針が示す箇所を迅速に特定しやすく、現在の車両状態を直感的に認識しやすく、現在の車両状態付近における詳細な状態変化を認識しやすくなる。 Further, according to the first embodiment, the range including the indication value of the current state of the vehicle is a range having the indication value of the current speed of the host vehicle as the central value. By comprising in this way, the range centering on the instruction value which shows the present vehicle state becomes a fine scale space | interval, and the visibility improves. For this reason, it is easy for the driver to quickly identify the location indicated by the pointer, to easily recognize the current vehicle state intuitively, and to recognize detailed state changes in the vicinity of the current vehicle state.
実施の形態2.
 実施の形態2に係る表示装置は、アナログ計器画像における目盛り間隔を変更する範囲が実施の形態1と異なるが、実施の形態1と基本的な構成は同様である。そこで、以降の説明において、実施の形態2の構成については図1を参照する。
Embodiment 2. FIG.
The display device according to the second embodiment is different from the first embodiment in the range of changing the scale interval in the analog instrument image, but the basic configuration is the same as the first embodiment. Therefore, in the following description, FIG. 1 is referred to for the configuration of the second embodiment.
 次に動作について説明する。
 図5は、実施の形態2に係る表示装置の動作例を示すフローチャートであって、実施の形態1で示した図2のステップST7をステップST7aに変更したものである。
 従って、ステップST7aの処理について主に説明し、以降ではアナログ速度計画像を表示部5に表示する場合について説明する。
Next, the operation will be described.
FIG. 5 is a flowchart showing an operation example of the display device according to the second embodiment, in which step ST7 of FIG. 2 shown in the first embodiment is changed to step ST7a.
Therefore, the process of step ST7a will be mainly described, and hereinafter, a case where an analog speedometer image is displayed on the display unit 5 will be described.
 制御部3は、現在の車速Vcに応じてアナログ速度計画像における目盛り間隔を動的に変更する。ここでは、現在の車速Vcを含む速度範囲を細かい目盛り間隔の描画範囲として計算する(ステップST7a)。このとき、制御部3は、現在の車速Vcを入力するごとに車速Vcの1の位を四捨五入したVc1を逐次計算する(ステップST7a-1)。 The control unit 3 dynamically changes the scale interval in the analog speedometer image according to the current vehicle speed Vc. Here, the speed range including the current vehicle speed Vc is calculated as a fine scale interval drawing range (step ST7a). At this time, every time the current vehicle speed Vc is input, the control unit 3 sequentially calculates Vc1 obtained by rounding off the 1's place of the vehicle speed Vc (step ST7a-1).
 次に、制御部3は、速度範囲の上限速度VhighをVc1+Vxとし、下限速度VlowをVc1-Vxとして算出する(ステップST7a-2)。
 この後、制御部3は、Vc1を中心値とした±Vxの速度範囲を細かい目盛り間隔で描画する範囲に決定し、0(km/h)からVlow(km/h)未満の速度範囲とVhighを超える速度範囲を通常の目盛り間隔で描画する範囲に決定する(ステップST7a-3)。なお、Vxには、運転者が現在の車速Vc付近の速度であり、かつ、車速Vcの変化を視認しやすい値が設定される。
Next, the control unit 3 calculates the upper limit speed V high of the speed range as Vc1 + Vx and the lower limit speed V low as Vc1-Vx (step ST7a-2).
After that, the control unit 3 determines a speed range of ± Vx with Vc1 as the center value as a range to be drawn with fine scale intervals, and a speed range from 0 (km / h) to less than V low (km / h) A speed range exceeding V high is determined as a range for drawing at a normal scale interval (step ST7a-3). Note that Vx is set to a value that is close to the current vehicle speed Vc and allows the driver to easily see the change in the vehicle speed Vc.
 次に、制御部3は、上述のように計算した細かい間隔の速度範囲の目盛り画像と通常の間隔の速度範囲の目盛り画像を生成して描画処理部4に目盛りの描画を指示する(ステップST8)。描画処理部4は、制御部3からの指示に従って、現在のアナログ速度計画像の速度範囲のうち、現在の車速Vcを含む速度範囲を細かい目盛り間隔で描画し、表示部5の画面5aに表示する。これにより、車両の運転による速度変化に応じて、図6に示すようなアナログ速度計画像が表示部5の画面5aに表示される。 Next, the control unit 3 generates a scale image with a fine speed range calculated as described above and a scale image with a normal speed range, and instructs the drawing processing unit 4 to draw the scale (step ST8). ). In accordance with an instruction from the control unit 3, the drawing processing unit 4 draws a speed range including the current vehicle speed Vc in the speed range of the current analog speedometer image at fine scale intervals and displays it on the screen 5 a of the display unit 5. To do. Thus, an analog speedometer image as shown in FIG. 6 is displayed on the screen 5a of the display unit 5 in accordance with the speed change caused by driving the vehicle.
 このアナログ速度計画像において、現在の車速Vcを含む速度範囲Bが細かい目盛り間隔となり、その視認性が向上する。このため、実施の形態1と同様に、運転者は、指針が現在の車速Vcを示す箇所を迅速に特定しやすく、さらに車速Vc付近の速度を直感的に認識しやすく、車速Vc付近の速度における詳細な速度変化を認識しやすくなる。 In this analog speedometer image, the speed range B including the current vehicle speed Vc becomes a fine scale interval, and the visibility is improved. Therefore, as in the first embodiment, it is easy for the driver to quickly identify the location where the pointer indicates the current vehicle speed Vc, and to easily intuitively recognize the speed near the vehicle speed Vc, and the speed near the vehicle speed Vc. It becomes easy to recognize the detailed speed change in.
 また、速度範囲Bは、10(km/h)刻みで離散的に変動する。例えば、Vxを10(km/h)とすると、速度範囲Bの速度幅は2Vx=20(km/h)である。
 ここで、現在の車速Vcが37(km/h)である場合、車速Vcの1の位を四捨五入したVc1は40cとなり、細かい目盛り間隔で表示する速度範囲Bが30(km/h)から50(km/h)までの速度範囲となる。
The speed range B varies discretely in increments of 10 (km / h). For example, if Vx is 10 (km / h), the speed width of the speed range B is 2Vx = 20 (km / h).
Here, when the current vehicle speed Vc is 37 (km / h), Vc1 obtained by rounding off the first place of the vehicle speed Vc is 40c, and the speed range B displayed at a fine scale interval is from 30 (km / h) to 50. The speed range is up to (km / h).
 一方、現在の車速Vcが45(km/h)まで増加した場合、Vc1は50(km/h)となり、細かい目盛り間隔で表示する速度範囲Bが40(km/h)から60(km/h)までの速度範囲になる。また、現在の車速Vcが34(km/h)に減少した場合、Vc1は30(km/h)となり、細かい目盛り間隔で表示する速度範囲Bが20(km/h)から40(km/h)までの速度範囲になる。 On the other hand, when the current vehicle speed Vc increases to 45 (km / h), Vc1 becomes 50 (km / h), and the speed range B displayed with fine scale intervals is 40 (km / h) to 60 (km / h). ) Speed range. Further, when the current vehicle speed Vc is reduced to 34 (km / h), Vc1 is 30 (km / h), and the speed range B displayed with fine scale intervals is 20 (km / h) to 40 (km / h). ) Speed range.
 実施の形態1では、車速の微少な変動であっても、細かい目盛り間隔で表示される速度範囲が連続的に(頻繁に)変動するため、運転者が煩わしさを感じる可能性があった。
 これに対して、実施の形態2では、運転者が車両を一定の速度域で走行させれば、細かい目盛り間隔で表示される速度範囲が固定される。これにより、実施の形態1と同様に、目盛り間隔が動的に変化してアナログ計器画像の視認性の向上を図ることができ、かつ、現在の車速Vc付近の速度が過度に変動することを防止することができる。
In the first embodiment, even if the vehicle speed is slight, the speed range displayed at fine scale intervals continuously (frequently) fluctuates, and the driver may feel annoyed.
On the other hand, in the second embodiment, if the driver drives the vehicle in a constant speed range, the speed range displayed at fine scale intervals is fixed. As a result, as in the first embodiment, the scale interval can be dynamically changed to improve the visibility of the analog instrument image, and the speed around the current vehicle speed Vc can fluctuate excessively. Can be prevented.
 また、0~20(km/h)、20~40(km/h)、40~60(km/h)というように細かい目盛り間隔で表示する速度範囲をあらかじめ設定しておき、これらの速度範囲内に現在の車速Vcが含まれた場合に通常の目盛り間隔から細かい目盛り間隔に変更させてもよい。このようにすることでも、上記と同様の効果を得ることができる。 In addition, a speed range to be displayed with fine scale intervals such as 0 to 20 (km / h), 20 to 40 (km / h), and 40 to 60 (km / h) is set in advance, and these speed ranges are set. When the current vehicle speed Vc is included, the normal scale interval may be changed to a fine scale interval. In this way, the same effect as described above can be obtained.
 なお、上記説明ではアナログ速度計画像を表示する場合を示したが、その他の車両状態を示すアナログ計器画像に適用しても同様の効果を得ることができる。例えば、燃料計や回転速度計において、現在の燃料残量やエンジン回転数を含む範囲を細かい目盛り間隔で表示し、この範囲を現在の指示値に応じて離散的に変動させてもよい。 In the above description, an analog speedometer image is displayed. However, the same effect can be obtained when applied to analog instrument images indicating other vehicle states. For example, in a fuel meter or tachometer, a range including the current remaining fuel amount and engine speed may be displayed at fine scale intervals, and this range may be discretely varied according to the current instruction value.
 以上のように、この実施の形態2によれば、制御部3が、現在の車両状態の指示値に応じて、この指示値を含む範囲を離散的に変動させる。
 実施の形態1では、車両状態の微少な変動であっても、細かい目盛り間隔で表示される範囲が連続的に(頻繁に)変動するため、運転者が煩わしさを感じる可能性があった。
 これに対して、実施の形態2では、運転者が車両を一定の車両状態で運転すれば、細かい目盛り間隔で表示される範囲が固定される。これにより、実施の形態1と同様に、目盛り間隔が動的に変化してアナログ計器画像の視認性の向上を図ることができ、かつ、車両の現在状態の指示値を含む範囲が過度に変動することを防止することができる。
As described above, according to the second embodiment, the control unit 3 discretely varies the range including the instruction value according to the instruction value of the current vehicle state.
In the first embodiment, even if there is a slight change in the vehicle state, the range displayed at fine scale intervals changes continuously (frequently), so the driver may feel annoyance.
On the other hand, in the second embodiment, if the driver drives the vehicle in a constant vehicle state, the range displayed at fine scale intervals is fixed. Accordingly, as in the first embodiment, the scale interval can be dynamically changed to improve the visibility of the analog instrument image, and the range including the indication value of the current state of the vehicle is excessively fluctuated. Can be prevented.
実施の形態3.
 実施の形態3に係る表示装置は、アナログ計器画像における目盛り間隔を変更する範囲が実施の形態1と異なるが、実施の形態1と基本的な構成は同様である。そこで、以降の説明において、実施の形態3の構成については図1を参照する。
Embodiment 3 FIG.
The display device according to the third embodiment is different from the first embodiment in the range in which the scale interval in the analog instrument image is changed, but the basic configuration is the same as the first embodiment. Therefore, in the following description, FIG. 1 is referred to for the configuration of the third embodiment.
 次に動作について説明する。
 図7は、実施の形態3に係る表示装置の動作例を示すフローチャートであって、実施の形態1で示した図2のステップST7をステップST7bに変更したものである。
 従って、ステップST7bの処理について主に説明し、以降ではアナログ速度計画像を表示部5に表示する場合について説明する。
Next, the operation will be described.
FIG. 7 is a flowchart showing an operation example of the display device according to the third embodiment, in which step ST7 of FIG. 2 shown in the first embodiment is changed to step ST7b.
Therefore, the process of step ST7b will be mainly described, and hereinafter, a case where an analog speedometer image is displayed on the display unit 5 will be described.
 制御部3は、データ取得部2によって取得された環境データに応じて、アナログ速度計画像における目盛り間隔を動的に変更する(ステップST7b)。ここでは、制御部3が、環境データとして自車両が現在走行している道路の制限速度の最高制限速度と最低制限速度を、データ取得部2から入力する。 The control unit 3 dynamically changes the scale interval in the analog speedometer image according to the environmental data acquired by the data acquisition unit 2 (step ST7b). Here, the control unit 3 inputs from the data acquisition unit 2 the maximum speed limit and the minimum speed limit of the speed limit of the road on which the host vehicle is currently traveling as environment data.
 次に、制御部3は、速度範囲の上限速度Vhighを最高制限速度に決定し、下限速度Vlowを最低制限速度に決定する(ステップST7b-1)。この後、制御部3は、Vlow(km/h)以上Vhigh(km/h)以下の速度範囲を細かい目盛り間隔で描画する範囲に決定し、0(km/h)からVlow(km/h)未満の速度範囲とVhighを超える速度範囲を通常の目盛り間隔で描画する範囲に決定する(ステップST7b-2)。 Next, the control unit 3 determines the upper limit speed V high of the speed range as the maximum speed limit and determines the lower limit speed V low as the minimum speed limit (step ST7b-1). Thereafter, the control unit 3 determines a speed range from V low (km / h) to V high (km / h) as a range to be drawn at fine scale intervals, and from 0 (km / h) to V low (km / H) and a speed range exceeding V high are determined as a range for drawing at a normal scale interval (step ST7b-2).
 次に、制御部3は、上述のように計算した細かい間隔の速度範囲の目盛り画像と通常の間隔の速度範囲の目盛り画像を生成して描画処理部4に目盛りの描画を指示する(ステップST8)。描画処理部4は、制御部3からの指示に従って、現在のアナログ速度計画像の速度範囲のうち、Vlow(km/h)以上Vhigh(km/h)以下の速度範囲を細かい目盛り間隔で描画し、表示部5の画面5aに表示する。 Next, the control unit 3 generates a scale image with a fine speed range calculated as described above and a scale image with a normal speed range, and instructs the drawing processing unit 4 to draw the scale (step ST8). ). In accordance with an instruction from the control unit 3, the drawing processing unit 4 selects a speed range from V low (km / h) to V high (km / h) from the current analog speedometer image at fine scale intervals. Draw and display on the screen 5 a of the display unit 5.
 例えば、最高制限速度が100(km/h)であり、最低制限速度50(km/h)である場合は、図8に示すようなアナログ速度計画像が表示部5の画面5aに表示される。
 このアナログ速度計画像において、車両が現在走行している道路の制限速度範囲(法定速度範囲)Cが細かい目盛り間隔となり、その視認性が向上する。
 また、車両が走行する道路の制限速度範囲が変化するごとに、細かい目盛り間隔で表示する速度範囲Cが動的に変更される。このため、運転者は、車両が走行している道路の制限速度範囲が変化したことを容易に認識することができる。
For example, when the maximum speed limit is 100 (km / h) and the minimum speed limit is 50 (km / h), an analog speedometer image as shown in FIG. 8 is displayed on the screen 5a of the display unit 5. .
In this analog speedometer image, the speed limit range (legal speed range) C of the road on which the vehicle is currently traveling becomes a fine scale interval, and the visibility is improved.
Further, every time the speed limit range of the road on which the vehicle travels changes, the speed range C displayed at fine scale intervals is dynamically changed. For this reason, the driver can easily recognize that the speed limit range of the road on which the vehicle is traveling has changed.
 なお、図8に示すように、描画処理部4が、制御部3により算出された現在の車速Vcと制限速度範囲との差を画面5aに表示してもよい。このようにすることで、運転者は、現在の車速Vcと制限速度範囲との差を迅速に認識でき、制限速度に合わせた運転を支援することが可能である。 In addition, as shown in FIG. 8, the drawing processing unit 4 may display the difference between the current vehicle speed Vc calculated by the control unit 3 and the speed limit range on the screen 5a. By doing so, the driver can quickly recognize the difference between the current vehicle speed Vc and the speed limit range, and can support driving in accordance with the speed limit.
 以上のように、この実施の形態3によれば、制御部3が、車両が走行している道路の制限速度の最低制限速度から最高制限速度までの速度範囲C内の目盛り間隔を、この速度範囲外より細かく変更する。このように構成することで、車両が走行する道路の制限速度範囲が変化するごとに細かい目盛り間隔で表示する速度範囲Cが変化するため、運転者は、車両が走行している道路の制限速度範囲が変化したことを容易に認識することができる。 As described above, according to the third embodiment, the control unit 3 sets the scale interval in the speed range C from the lowest speed limit to the highest speed limit of the road on which the vehicle is traveling. Change more finely than out of range. With this configuration, the speed range C displayed at fine scale intervals changes every time the speed limit range of the road on which the vehicle travels changes, so the driver can limit the speed limit of the road on which the vehicle travels. It can be easily recognized that the range has changed.
実施の形態4.
 実施の形態4に係る表示装置は、アナログ計器画像における目盛り間隔を変更する範囲が実施の形態1と異なるが、実施の形態1と基本的な構成は同様である。そこで、以降の説明において、実施の形態4の構成については図1を参照する。
Embodiment 4 FIG.
The display device according to the fourth embodiment is different from the first embodiment in the range in which the scale interval in the analog instrument image is changed, but the basic configuration is the same as the first embodiment. Therefore, in the following description, FIG. 1 is referred to for the configuration of the fourth embodiment.
 次に動作について説明する。
 図9は、実施の形態4に係る表示装置の動作例を示すフローチャートであって、実施の形態1で示した図2のステップST7をステップST7cに変更したものである。
 従って、ステップST7cの処理について主に説明し、以降ではアナログ速度計画像を表示部5に表示する場合について説明する。
Next, the operation will be described.
FIG. 9 is a flowchart showing an operation example of the display device according to the fourth embodiment, in which step ST7 of FIG. 2 shown in the first embodiment is changed to step ST7c.
Therefore, the process of step ST7c will be mainly described, and the case where an analog speedometer image is displayed on the display unit 5 will be described below.
 制御部3は、データ取得部2によって取得された車両状態データおよび環境データに応じて、アナログ速度計画像における目盛り間隔を動的に変更する(ステップST7c)。
 ここでは、制御部3が、環境データとして、自車両と同一車線上を先行している車両(以下、先行車両と呼ぶ)と自車両との相対速度VRfと、自車両と同一車線上を後続する車両(以下、後続車両と呼ぶ)と自車両との相対速度VRbとをデータ取得部2から入力する(ステップST7c-1)。相対速度は、自車両の進行方向をプラス方向とした自車両と先行車両および後続車両との速度差である。
The control unit 3 dynamically changes the scale interval in the analog speedometer image according to the vehicle state data and the environment data acquired by the data acquisition unit 2 (step ST7c).
Here, the control unit 3 uses the relative speed VRf between the vehicle preceding the same lane as the host vehicle (hereinafter referred to as the preceding vehicle) and the host vehicle as environmental data, and the subsequent lane on the same lane as the host vehicle. The relative speed VRb between the vehicle to be operated (hereinafter referred to as the following vehicle) and the host vehicle is input from the data acquisition unit 2 (step ST7c-1). The relative speed is a speed difference between the own vehicle, the preceding vehicle, and the succeeding vehicle in which the traveling direction of the own vehicle is a plus direction.
 次に、制御部3は、自車両と先行車両との相対速度VRfが所定の速度閾値Vx未満であるか否かを判定する(ステップST7c-2)。相対速度VRfが速度閾値Vx以上である場合(ステップST7c-2;NO)、制御部3は、細かい目盛り間隔で描画する速度範囲の上限速度VhighをVmaxに決定する(ステップST7c-3)。
 なお、Vmaxは、アナログ速度計の速度上限値または自車両が現在走行している道路の最高制限速度である。
Next, the control unit 3 determines whether or not the relative speed VRf between the host vehicle and the preceding vehicle is less than a predetermined speed threshold value Vx (step ST7c-2). When the relative speed VRf is equal to or higher than the speed threshold Vx (step ST7c-2; NO), the control unit 3 determines the upper limit speed V high of the speed range to be drawn at fine scale intervals as V max (step ST7c-3). .
V max is the maximum speed limit of the analog speedometer or the maximum speed limit of the road on which the vehicle is currently traveling.
 相対速度VRfが速度閾値Vx未満である場合(ステップST7c-2;YES)、制御部3は、細かい目盛り間隔で描画する速度範囲の上限速度Vhighを、現在の車速Vcに相対速度VRfを加算した値に決定する(ステップST7c-4)。
 次に、制御部3は、自車両と後続車両の相対速度VRbが所定の速度閾値Vyを超えているか否かを判定する(ステップST7c-5)。相対速度VRbが速度閾値Vy以下である場合(ステップST7c-5;NO)、制御部3は、細かい目盛り間隔で描画する速度範囲の下限速度Vlowを0に決定する(ステップST7c-6)。
When the relative speed VRf is less than the speed threshold value Vx (step ST7c-2; YES), the control unit 3 adds the upper limit speed V high of the speed range to be drawn at fine scale intervals and the relative speed VRf to the current vehicle speed Vc. The determined value is determined (step ST7c-4).
Next, the control unit 3 determines whether or not the relative speed VRb between the host vehicle and the following vehicle exceeds a predetermined speed threshold value Vy (step ST7c-5). When the relative speed VRb is equal to or less than the speed threshold value Vy (step ST7c-5; NO), the control unit 3 determines the lower limit speed V low of the speed range to be drawn at fine scale intervals to 0 (step ST7c-6).
 相対速度VRbが速度閾値Vyを超えている場合(ステップST7c-5;YES)、制御部3は、細かい目盛り間隔で表示する速度範囲の下限速度Vlowを、現在の車速Vcに相対速度VRbを加算した値に決定する(ステップST7c-7)。
 次に、制御部3は、下限速度Vlowが上限速度Vhigh未満であるかどうかを確認する(ステップST7c-8)。下限速度Vlowが上限速度Vhigh以上になってしまう場合(ステップST7c-8;NO)、制御部3は、細かい目盛り間隔で描画する速度範囲がないと判断する(ステップST7c-9)。
When the relative speed VRb exceeds the speed threshold value Vy (step ST7c-5; YES), the control unit 3 sets the lower limit speed V low of the speed range to be displayed at fine scale intervals, and sets the relative speed VRb to the current vehicle speed Vc. The added value is determined (step ST7c-7).
Next, the control unit 3 confirms whether or not the lower limit speed V low is less than the upper limit speed V high (step ST7c-8). When the lower limit speed V low becomes equal to or higher than the upper limit speed V high (step ST7c-8; NO), the control unit 3 determines that there is no speed range for drawing with fine scale intervals (step ST7c-9).
 下限速度Vlowが上限速度Vhigh未満である場合(ステップST7c-8;YES)、制御部3は、Vlow(km/h)以上Vhigh(km/h)以下の速度範囲を細かい目盛り間隔で描画する範囲に決定し、0(km/h)からVlow(km/h)未満の速度範囲とVhighを超える速度範囲を通常の目盛り間隔で描画する範囲に決定する(ステップST7c-10)。 When the lower limit speed V low is less than the upper limit speed V high (step ST7c-8; YES), the control unit 3 sets a speed range between V low (km / h) and V high (km / h) to a fine scale interval. The speed range between 0 (km / h) and less than V low (km / h) and the speed range exceeding V high are determined as the ranges to be drawn at normal scale intervals (step ST7c-10). ).
 次に、制御部3は、上述のように決定した細かい間隔の速度範囲の目盛り画像と通常の間隔の速度範囲の目盛り画像を生成して描画処理部4に目盛りの描画を指示する(ステップST8)。描画処理部4は、制御部3からの指示に従って、現在のアナログ速度計画像の速度範囲のうち、Vlow(km/h)以上Vhigh(km/h)以下の速度範囲を細かい目盛り間隔で描画し、表示部5の画面5aに表示する。
 例えば、現在の車速Vcが30(km/h)であり、最高制限速度60(km/h)、後続車両が35(km/h)で自車両に接近している場合、図10に示すようなアナログ速度計画像が表示部5の画面5aに表示される。
Next, the control unit 3 generates a scale image having a fine speed range determined as described above and a scale image having a normal speed range, and instructs the drawing processing unit 4 to draw the scale (step ST8). ). In accordance with an instruction from the control unit 3, the drawing processing unit 4 selects a speed range from V low (km / h) to V high (km / h) from the current analog speedometer image at fine scale intervals. Draw and display on the screen 5 a of the display unit 5.
For example, when the current vehicle speed Vc is 30 (km / h), the maximum speed limit is 60 (km / h), and the following vehicle is approaching the host vehicle at 35 (km / h), as shown in FIG. An analog speedometer image is displayed on the screen 5 a of the display unit 5.
 以上のように、この実施の形態4によれば、制御部3が、車両に先行または後続する他の車両との相対速度VRf,VRbから他の車両と衝突の可能性がない速度範囲内の目盛り間隔を、この速度範囲外よりも細かく変更する。このように構成することで、後続車両と衝突の可能性がない自車両の速度範囲Dが細かい目盛り間隔となり、その視認性が向上する。このため、運転者は、他の車両との衝突の可能性がない速度範囲を容易に認識することができる。 As described above, according to the fourth embodiment, the control unit 3 is within a speed range in which there is no possibility of a collision with another vehicle from the relative speeds VRf and VRb with the other vehicle preceding or following the vehicle. The scale interval is changed more finely than outside this speed range. By comprising in this way, the speed range D of the own vehicle which does not have the possibility of a collision with a following vehicle becomes a fine scale space | interval, and the visibility improves. For this reason, the driver can easily recognize a speed range in which there is no possibility of a collision with another vehicle.
実施の形態5.
 実施の形態5に係る表示装置は、アナログ計器画像における目盛り間隔を変更する範囲が実施の形態1と異なるが、実施の形態1と基本的な構成は同様である。そこで、以降の説明において、実施の形態5の構成については図1を参照する。
Embodiment 5 FIG.
The display device according to the fifth embodiment is different from the first embodiment in the range of changing the scale interval in the analog instrument image, but the basic configuration is the same as the first embodiment. Therefore, in the following description, FIG. 1 is referred to for the configuration of the fifth embodiment.
 次に動作について説明する。
 図11は、実施の形態5に係る表示装置の動作例を示すフローチャートであって、実施の形態1で示した図2のステップST7をステップST7dに変更したものである。
 従って、ステップST7dの処理について主に説明し、以降ではアナログ速度計画像を表示部5に表示する場合について説明する。
Next, the operation will be described.
FIG. 11 is a flowchart showing an operation example of the display device according to the fifth embodiment, in which step ST7 of FIG. 2 shown in the first embodiment is changed to step ST7d.
Therefore, the process of step ST7d will be mainly described, and the case where an analog speedometer image is displayed on the display unit 5 will be described below.
 制御部3は、データ取得部2によって取得された走行モードデータに応じて、アナログ速度計画像における目盛り間隔を動的に変更する(ステップST7d)。
 ここでは、制御部3が、エコモードで自車両に推奨される燃費効率のよい推奨速度Vaを、走行モードデータとしてデータ取得部2から入力する。
The control unit 3 dynamically changes the scale interval in the analog speedometer image according to the travel mode data acquired by the data acquisition unit 2 (step ST7d).
Here, the control unit 3 inputs a recommended speed Va with good fuel efficiency recommended for the host vehicle in the eco mode from the data acquisition unit 2 as travel mode data.
 次に、制御部3は、細かい目盛り間隔で描画する速度範囲の上限速度VhighをVa+Vxに決定し、下限速度VlowをVa-Vxに決定する(ステップST7d-1)。この後、制御部3は、Vlow(km/h)以上Vhigh(km/h)以下の速度範囲を細かい目盛り間隔で描画する範囲に決定し、0(km/h)からVlow(km/h)未満の速度範囲とVhighを超える速度範囲を通常の目盛り間隔で描画する範囲に決定する(ステップST7d-2)。なお、Vxには、運転者が推奨速度付近の速度を視認しやすい値が設定される。 Next, the control unit 3 determines the upper limit speed V high of the speed range to be drawn at fine scale intervals as Va + Vx and the lower limit speed V low as Va−Vx (step ST7d-1). Thereafter, the control unit 3 determines a speed range from V low (km / h) to V high (km / h) as a range to be drawn at fine scale intervals, and from 0 (km / h) to V low (km / H) and a speed range exceeding V high are determined to be drawn ranges at normal scale intervals (step ST7d-2). Note that Vx is set to a value that allows the driver to easily recognize a speed near the recommended speed.
 次に、制御部3は、上述のように計算した細かい間隔の速度範囲の目盛り画像と通常の間隔の速度範囲の目盛り画像を生成して描画処理部4に目盛りの描画を指示する(ステップST8)。描画処理部4は、制御部3からの指示に従って現在のアナログ速度計画像の速度範囲のうち、Vlow(km/h)以上Vhigh(km/h)以下の速度範囲を細かい目盛り間隔で描画し、表示部5の画面5aに表示する。 Next, the control unit 3 generates a scale image with a fine speed range calculated as described above and a scale image with a normal speed range, and instructs the drawing processing unit 4 to draw the scale (step ST8). ). The drawing processing unit 4 draws a speed range of V low (km / h) or more and V high (km / h) or less at a fine scale interval in the speed range of the current analog speedometer image according to an instruction from the control unit 3. And displayed on the screen 5a of the display unit 5.
 また、自車両にスポーツモードが設定されている場合、制御部3は、環境データとして自車両が現在走行している道路の制限速度の最高制限速度Vmaxを、データ取得部2から入力する。次に、図12に示すように、制御部3が、細かい目盛り間隔で描画する速度範囲の上限速度VhighをVmaxに決定し、下限速度VlowをVmax-Vxに決定する(ステップST7e-1)。この後、制御部3は、Vlow(km/h)以上Vhigh(km/h)以下の速度範囲を細かい目盛り間隔で描画する範囲に決定し、0(km/h)からVlow(km/h)未満の速度範囲とVhighを超える速度範囲を通常の目盛り間隔で描画する範囲に決定する(ステップST7e-2)。 Also, if the sports mode to the own vehicle is set, the control unit 3, the maximum speed limit V max speed limit for the road on which the vehicle is currently traveling as environment data is input from the data acquisition unit 2. Next, as shown in FIG. 12, the control unit 3 determines the upper limit speed V high of the speed range to be drawn at fine scale intervals as V max and the lower limit speed V low as Vmax−Vx (step ST7e− 1). Thereafter, the control unit 3 determines a speed range from V low (km / h) to V high (km / h) as a range to be drawn at fine scale intervals, and from 0 (km / h) to V low (km / H) and a speed range exceeding V high are determined as a range for drawing at a normal scale interval (step ST7e-2).
 以上のように、この実施の形態5によれば、制御部3が、走行モードで車両に推奨される速度範囲内の目盛り間隔を、この速度範囲外より細かく変更する。このように構成することで、走行モードで推奨される速度範囲が細かい目盛り間隔で描画され、視認性が向上する。これにより、運転者は、走行モードで推奨される速度範囲を迅速に認識することが可能である。 As described above, according to the fifth embodiment, the control unit 3 changes the scale interval within the speed range recommended for the vehicle in the travel mode more finely than outside the speed range. By comprising in this way, the speed range recommended in driving | running | working mode is drawn by a fine scale interval, and visibility improves. As a result, the driver can quickly recognize the speed range recommended in the travel mode.
実施の形態6.
 実施の形態6に係る表示装置は、アナログ計器画像における目盛り間隔を変更する内容が実施の形態1と異なるが、実施の形態1と基本的な構成は同様である。そこで、以降の説明において、実施の形態6の構成については図1を参照する。
Embodiment 6 FIG.
The display device according to the sixth embodiment is different from the first embodiment in the content of changing the scale interval in the analog instrument image, but the basic configuration is the same as the first embodiment. Therefore, in the following description, FIG. 1 is referred to for the configuration of the sixth embodiment.
 次に動作について説明する。
 図13は、実施の形態6に係る表示装置の動作例を示すフローチャートであって、実施の形態1で示した図2のステップST7をステップST7fに変更したものである。
 従って、ステップST7fの処理について主に説明し、以降ではアナログ速度計画像を表示部5に表示する場合について説明する。
Next, the operation will be described.
FIG. 13 is a flowchart showing an operation example of the display device according to the sixth embodiment, in which step ST7 of FIG. 2 shown in the first embodiment is changed to step ST7f.
Therefore, the process of step ST7f will be mainly described, and the case where an analog speedometer image is displayed on the display unit 5 will be described below.
 制御部3は、例えば、現在の車速Vcに応じてアナログ速度計画像における目盛り間隔を動的に変更する。ここでは、アナログ速度計の全ての速度範囲のうち、現在の車速Vcを含む速度範囲以外の速度範囲を、粗い目盛り間隔で描画するまたは目盛りを描画しない描画範囲として計算する(ステップST7f)。このとき、制御部3は、現在の車速Vcを入力するごとに速度範囲の上限速度VhighをVc+Vxとし、下限速度VlowをVc-Vxとして算出する。 For example, the control unit 3 dynamically changes the scale interval in the analog speedometer image according to the current vehicle speed Vc. Here, of all the speed ranges of the analog speedometer, a speed range other than the speed range including the current vehicle speed Vc is calculated as a drawing range in which a rough scale interval is drawn or a scale is not drawn (step ST7f). At this time, every time the current vehicle speed Vc is input, the control unit 3 calculates the upper limit speed V high of the speed range as Vc + Vx and the lower limit speed V low as Vc−Vx.
 次いで、制御部3は、現在の車速Vcを中心値とした±Vxの速度範囲を通常の目盛り間隔で描画する範囲に決定し、0(km/h)からVlow(km/h)未満の速度範囲とVhighを超える速度範囲を粗い目盛り間隔で描画するまたは目盛りを描画しない範囲に決定する。なお、Vxには、運転者が現在の車速Vc付近の速度であり、かつ車速Vcを中心とした速度変化を視認しやすい値が設定される。 Next, the control unit 3 determines a speed range of ± Vx centered on the current vehicle speed Vc as a range to be drawn at a normal scale interval, and is from 0 (km / h) to less than V low (km / h) A speed range that exceeds the speed range and V high is determined to be a range in which a scale is drawn at a coarse scale interval or a scale is not drawn. Note that Vx is set to a value that is easy for the driver to visually recognize the speed change around the vehicle speed Vc, which is the speed near the current vehicle speed Vc.
 次に、制御部3は、上述のように計算した通常の間隔の速度範囲の目盛り画像と粗い間隔の速度範囲の目盛り画像を生成して描画処理部4に目盛りの描画を指示する(ステップST8)。描画処理部4は、制御部3からの指示に従って、現在のアナログ速度計画像の速度範囲のうち、現在の車速Vcを中心とした速度範囲を通常の目盛り間隔で描画して、これ以外の速度範囲を粗い目盛り間隔で描画して表示部5の画面5aに表示する、もしくは、これ以外の速度範囲の目盛りをアナログ速度計画像に表示しない。 Next, the control unit 3 generates a scale image having a normal speed range and a coarse speed range image calculated as described above, and instructs the drawing processing unit 4 to draw the scale (step ST8). ). In accordance with an instruction from the control unit 3, the drawing processing unit 4 draws a speed range centered on the current vehicle speed Vc in the speed range of the current analog speedometer image at a normal scale interval, and speeds other than this The range is drawn at coarse scale intervals and displayed on the screen 5a of the display unit 5, or scales other than this range are not displayed on the analog speedometer image.
 上記処理を施すことにより、車両の運転による速度変化に応じて、図12(a)または図12(b)に示すようなアナログ速度計画像が表示部5の画面5aに表示される。
 図12(a)に示すアナログ速度計画像においては、現在の車速Vcを中心とした速度範囲Eが通常の目盛り間隔であるが、速度範囲E以外の速度範囲の目盛り間隔が通常より粗い間隔になっている。また、図12(b)に示すアナログ速度計画像においては、速度範囲Eのみの目盛りが表示され、それ以外の速度範囲の目盛りが表示されない。
By performing the above processing, an analog speedometer image as shown in FIG. 12 (a) or FIG. 12 (b) is displayed on the screen 5a of the display unit 5 in accordance with the speed change caused by driving the vehicle.
In the analog speedometer image shown in FIG. 12A, the speed range E centered on the current vehicle speed Vc is a normal scale interval, but the scale intervals of speed ranges other than the speed range E are coarser than usual. It has become. Further, in the analog speedometer image shown in FIG. 12B, only the scale of the speed range E is displayed, and the scales of the other speed ranges are not displayed.
 なお、上記説明では速度範囲Eを通常の目盛り間隔とした場合を示したが、速度範囲E以外の目盛り間隔を粗くするまたは目盛りを描画せず、速度範囲Eを実施の形態1と同様に通常よりも細かい目盛り間隔とすれば、さらに速度範囲Eの視認性が向上する。 In the above description, the speed range E is set to a normal scale interval. However, the scale range other than the speed range E is roughened or the scale is not drawn, and the speed range E is set to the normal range as in the first embodiment. If the scale interval is finer, the visibility of the speed range E is further improved.
 以上のように、この実施の形態6によれば、運転者に示したい速度範囲の目盛り間隔がそれ以外の速度範囲に比べて相対的に細かくなったように感じられ、結果的として運転者に示したい速度範囲が強調される。これにより、運転者に示したい速度範囲Eの視認性が向上する。 As described above, according to the sixth embodiment, the scale interval of the speed range desired to be shown to the driver is felt to be relatively finer than that of the other speed ranges, and as a result, to the driver. The speed range you want to show is highlighted. As a result, the visibility of the speed range E desired to be shown to the driver is improved.
 また、上記説明では、実施の形態1で細かい目盛り間隔で描画する速度範囲として決定した速度範囲以外の目盛りを粗い間隔で描画するまたは描画しない場合を示したが、実施の形態2から実施の形態5までで細かい目盛り間隔で描画する速度範囲として決定した範囲を通常の目盛り間隔で描画し、この範囲外の目盛りを粗い間隔で描画するまたは目盛りを描画しないようにしてもよい。このようにすることでも、上記と同様の効果を得ることができる。 In the above description, scales other than the speed range determined as the speed range to be drawn at fine scale intervals in the first embodiment are shown or not drawn at coarse intervals. The range determined as the speed range for drawing at fine scale intervals up to 5 may be drawn at normal scale intervals, and scales outside this range may be drawn at coarse intervals or scales may not be drawn. In this way, the same effect as described above can be obtained.
実施の形態7.
 実施の形態7に係る表示装置は、アナログ計器画像における目盛り表示明度を変更する点で実施の形態1と異なるが、実施の形態1と基本的な構成は同様である。そこで、以降の説明において、実施の形態7の構成については図1を参照する。
Embodiment 7 FIG.
The display device according to the seventh embodiment is different from the first embodiment in that the scale display brightness in the analog instrument image is changed, but the basic configuration is the same as that in the first embodiment. Therefore, in the following description, FIG. 1 is referred to for the configuration of the seventh embodiment.
 次に動作について説明する。
 図15は、実施の形態7に係る表示装置の動作例を示すフローチャートであって、実施の形態1で示した図2のステップST7をステップST7gに変更したものである。
 従って、ステップST7gの処理について主に説明し、以降ではアナログ速度計画像を表示部5に表示する場合について説明する。
Next, the operation will be described.
FIG. 15 is a flowchart showing an operation example of the display device according to the seventh embodiment, in which step ST7 of FIG. 2 shown in the first embodiment is changed to step ST7g.
Therefore, the process of step ST7g will be mainly described, and hereinafter, a case where an analog speedometer image is displayed on the display unit 5 will be described.
 制御部3は、例えば、現在の車速Vcに応じてアナログ速度計画像における目盛り間隔を動的に変更する。ここでは、アナログ速度計の全ての速度範囲のうち、現在の車速Vcを含む速度範囲を高い目盛り表示明度で描画する描画範囲として計算する(ステップST7g)。このとき、制御部3は、現在の車速Vcを入力するごとに、速度範囲の上限速度VhighをVc+Vxとし、下限速度VlowをVc-Vxとして算出する。 For example, the control unit 3 dynamically changes the scale interval in the analog speedometer image according to the current vehicle speed Vc. Here, the speed range including the current vehicle speed Vc among all speed ranges of the analog speedometer is calculated as a drawing range for drawing with high scale display brightness (step ST7g). At this time, every time the current vehicle speed Vc is input, the control unit 3 calculates the upper limit speed V high of the speed range as Vc + Vx and the lower limit speed V low as Vc−Vx.
 次いで、制御部3は、現在の車速Vcを中心値とした±Vxの速度範囲を高い目盛り表示明度で描画する範囲に決定し、0(km/h)からVlow(km/h)未満の速度範囲とVhighを超える速度範囲を低い目盛り表示明度で描画する範囲に決定する。
 なお、Vxには、運転者が現在の車速Vc付近の速度であり、かつ車速Vcを中心とした速度変化を視認しやすい値が設定される。
Next, the control unit 3 determines a speed range of ± Vx centered on the current vehicle speed Vc as a range to be drawn with high scale display brightness, and is from 0 (km / h) to less than V low (km / h). A speed range exceeding the speed range and V high is determined as a range for drawing with low scale display brightness.
Note that Vx is set to a value that is easy for the driver to visually recognize the speed change around the vehicle speed Vc, which is the speed near the current vehicle speed Vc.
 次に、制御部3は、上述のように計算した高い表示明度の速度範囲の目盛り画像と通常の表示明度の速度範囲の目盛り画像を生成して描画処理部4に目盛りの描画を指示する(ステップST8)。描画処理部4は、制御部3からの指示に従って、現在のアナログ速度計画像の速度範囲のうち、現在の車速Vcを中心とした速度範囲を高い目盛り表示明度で描画し、これ以外の速度範囲を通常の目盛り表示明度で描画して表示部5の画面5aに表示する。 Next, the control unit 3 generates a scale image in the speed range of the high display brightness calculated as described above and a scale image in the speed range of the normal display brightness, and instructs the drawing processing unit 4 to draw the scale ( Step ST8). In accordance with an instruction from the control unit 3, the drawing processing unit 4 draws a speed range centered on the current vehicle speed Vc in the speed range of the current analog speedometer image with high scale display brightness, and other speed ranges Is drawn with the normal scale display brightness and displayed on the screen 5a of the display unit 5.
 また、上記説明では、実施の形態1で細かい目盛り間隔で描画した速度範囲について、目盛り表示明度を高くする場合を示したが、車両の現在状態の指示値に応じて目盛り表示明度を高くする範囲を離散的に変動させてもよい。
 さらに、実施の形態2から実施の形態5までで細かい目盛り間隔で描画する速度範囲として決定した範囲の目盛りを高い表示明度で描画してもよい。このようにすることでも、上記と同様の効果を得ることができる。
Further, in the above description, the case where the scale display brightness is increased for the speed range drawn at fine scale intervals in the first embodiment has been described, but the range in which the scale display brightness is increased according to the indication value of the current state of the vehicle. May be discretely varied.
Furthermore, the scale in the range determined as the speed range for drawing at fine scale intervals in the second to fifth embodiments may be drawn with high display brightness. In this way, the same effect as described above can be obtained.
 さらに、運転者に示したい速度範囲の目盛り表示明度を高くする場合を示したが、この速度範囲以外の目盛りを低い表示明度で描画するまたは目盛りを描画しないようにしてもよい。例えば、図16(a)に示すように、目盛りの最高表示明度を100%、最低表示明度を40%、指針が指示する現在の車速Vcが40(km/h)であり、Vxが20(km/h)である場合、この車速Vcを含む±Vxの速度範囲の目盛り表示明度を100%で描画し、0(km/h)を超えて20(km/h)未満の速度範囲および40(km/h)を超えて60(km/h)未満の速度範囲の目盛り表示明度を80%で描画する。また、0(km/h)および60(km/h)を超えて80(km/h)未満の速度範囲の目盛り表示明度を60%で描画し、80(km/h)を超える速度範囲の目盛り表示明度を40%で描画する。このようにすることで、運転者に示したい現在の車速Vcを含む速度範囲の視認性を向上させることができる。 Furthermore, although the case where the scale display brightness of the speed range to be shown to the driver is increased is shown, the scale outside this speed range may be drawn with a low display brightness or the scale may not be drawn. For example, as shown in FIG. 16A, the maximum display brightness of the scale is 100%, the minimum display brightness is 40%, the current vehicle speed Vc indicated by the pointer is 40 (km / h), and Vx is 20 ( km / h), the scale display brightness of the speed range of ± Vx including this vehicle speed Vc is drawn at 100%, the speed range exceeding 0 (km / h) and less than 20 (km / h) and 40 The scale display brightness is drawn at 80% in a speed range exceeding (km / h) and less than 60 (km / h). Moreover, the scale display brightness of the speed range exceeding 0 (km / h) and 60 (km / h) and less than 80 (km / h) is drawn at 60%, and the speed range exceeding 80 (km / h) is drawn. The scale display brightness is drawn at 40%. By doing in this way, the visibility of the speed range including the present vehicle speed Vc which wants to show to a driver | operator can be improved.
 また、図16(b)に示すように、自車両が現在走行している道路における最低制限速度20(km/h)から最高制限速度80(km/h)までの速度範囲Fの目盛り表示明度を100%で描画し、それ以外の目盛りを描画しないようにしてもよい。これにより、運転者に示したい速度範囲の目盛り表示明度がそれ以外の速度範囲に比べて相対的に高くなったように感じられて、結果的として運転者に示したい速度範囲が強調され、運転者に示したい速度範囲Eの視認性が向上する。 Further, as shown in FIG. 16B, the scale display brightness of the speed range F from the minimum speed limit 20 (km / h) to the maximum speed limit 80 (km / h) on the road on which the host vehicle is currently traveling. May be drawn at 100%, and other scales may not be drawn. This makes it feel that the scale display brightness of the speed range you want to show to the driver is relatively high compared to the other speed ranges, and as a result, the speed range you want to show to the driver is emphasized. The visibility of the speed range E that the user wants to show is improved.
 なお、上記説明ではアナログ速度計画像を表示する場合を示したが、その他の車両状態を示すアナログ計器画像に適用しても同様の効果を得ることができる。例えば、燃料計や回転速度計において、現在の燃料残量やエンジン回転数の範囲の目盛りを高い表示明度で表示してもよい。また、運転者に示したい範囲以外の目盛りを低い表示明度で表示する、または、表示しないようにしてもよい。 In the above description, an analog speedometer image is displayed. However, the same effect can be obtained when applied to analog instrument images indicating other vehicle states. For example, in a fuel meter or tachometer, the scale of the current remaining fuel amount or engine speed range may be displayed with high display brightness. Further, a scale other than the range desired to be shown to the driver may be displayed with low display brightness or may not be displayed.
 以上のように、この実施の形態7によれば、車両の状態、車両の周辺状況および車両に設定された走行モードを取得するデータ取得部2と、車両の状態を指示するアナログ計器画像を生成し、データ取得部2が取得した車両の状態、車両の周辺状況および走行モードで推奨される車両の状態の少なくとも一つに応じて、アナログ計器画像の目盛り表示明度を動的に変更する制御部3と、アナログ計器画像を描画して表示部5に表示する描画処理部4を備える。特に、制御部3が、車両の現在状態の指示値を含む範囲内の目盛り表示明度を、この範囲外よりも高く変更する。このように構成することで、目盛り表示明度が動的に変化してアナログ計器画像の視認性の向上を図ることができる。 As described above, according to the seventh embodiment, the data acquisition unit 2 that acquires the state of the vehicle, the situation around the vehicle, and the travel mode set for the vehicle, and the analog instrument image that indicates the state of the vehicle are generated. And a controller that dynamically changes the scale display brightness of the analog instrument image according to at least one of the vehicle state acquired by the data acquisition unit 2, the vehicle surroundings, and the vehicle state recommended in the driving mode. 3 and a drawing processing unit 4 for drawing an analog instrument image and displaying it on the display unit 5. In particular, the control unit 3 changes the scale display brightness within the range including the instruction value of the current state of the vehicle to be higher than outside this range. With this configuration, the scale display brightness can be dynamically changed to improve the visibility of the analog instrument image.
実施の形態8.
 実施の形態8に係る表示装置は、アナログ計器画像の指針を変更する点で実施の形態1と異なるが、実施の形態1と基本的な構成は同様である。そこで、以降の説明において、実施の形態8の構成については図1を参照する。
Embodiment 8 FIG.
The display device according to the eighth embodiment is different from the first embodiment in that the pointer of the analog instrument image is changed, but the basic configuration is the same as that of the first embodiment. Therefore, in the following description, FIG. 1 is referred to for the configuration of the eighth embodiment.
 次に動作について説明する。
 図17は、実施の形態8に係る表示装置の動作例を示すフローチャートであり、実施の形態1で示した図2のステップST7およびステップ8を、ステップST7hおよびステップST8aに変更したものである。
 従って、ステップST7hおよびステップST8aの処理について主に説明し、以降ではアナログ速度計画像を表示部5に表示する場合について説明する。
Next, the operation will be described.
FIG. 17 is a flowchart showing an operation example of the display device according to the eighth embodiment. Step ST7 and step 8 in FIG. 2 shown in the first embodiment are changed to step ST7h and step ST8a.
Therefore, the process of step ST7h and step ST8a will be mainly described, and the case where an analog speedometer image is displayed on the display unit 5 will be described below.
 制御部3は、現在の車速Vcに応じてアナログ速度計画像における指針の太さ、形状、色、発色パターンおよび挙動の少なくとも一つを動的に変更する(ステップST7h)。
 例えば、図18(a)に示すように、制御部3は、車速Vcが0~20(km/h)である場合、上記メモリに記憶される指針画像データのうち、この速度域に対応する太さの指針画像データを選択して太線の指針画像を描画対象に決定する(ステップST7h)。
 次に、制御部3は、太線の指針画像を生成して描画処理部4に指針の描画を指示する(ステップST8a)。描画処理部4は、制御部3からの指示に従って、図18(a)における(1)に示すように、現在の車速Vcを含む速度範囲である0~20(km/h)に対応する太線の指針を描画して表示部5の画面5aに表示する。
The controller 3 dynamically changes at least one of the thickness, shape, color, color pattern, and behavior of the pointer in the analog speedometer image according to the current vehicle speed Vc (step ST7h).
For example, as shown in FIG. 18A, when the vehicle speed Vc is 0 to 20 (km / h), the control unit 3 corresponds to this speed range in the pointer image data stored in the memory. Thickness pointer image data is selected, and a thick line pointer image is determined as a drawing target (step ST7h).
Next, the control unit 3 generates a thick pointer image and instructs the drawing processing unit 4 to draw the pointer (step ST8a). The drawing processing unit 4 follows the instruction from the control unit 3 as shown by (1) in FIG. 18 (a), and the thick line corresponding to 0 to 20 (km / h) that is the speed range including the current vehicle speed Vc. Are drawn and displayed on the screen 5 a of the display unit 5.
 また、制御部3は、車速Vcが20~60(km/h)である場合、上記メモリに記憶される指針画像データのうち、この速度域に対応する太さの指針画像データを選択して、中太線の指針画像を描画対象に決定する(ステップST7h)。
 次に、制御部3は、中太線の指針画像を生成して描画処理部4に指針の描画を指示する(ステップST8a)。描画処理部4は、制御部3からの指示に従って、図18(a)における(2)に示すように、現在の車速Vcを含む速度範囲である20~60(km/h)に対応する中太線の指針を描画して表示部5の画面5aに表示する。
Further, when the vehicle speed Vc is 20 to 60 (km / h), the control unit 3 selects the pointer image data having a thickness corresponding to this speed range from the pointer image data stored in the memory. The middle thick line pointer image is determined as a drawing target (step ST7h).
Next, the control unit 3 generates a middle thick line pointer image and instructs the drawing processing unit 4 to draw the pointer (step ST8a). In accordance with an instruction from the control unit 3, the drawing processing unit 4 corresponds to a speed range including the current vehicle speed Vc of 20 to 60 (km / h) as shown in (2) in FIG. A thick pointer is drawn and displayed on the screen 5a of the display unit 5.
 さらに、制御部3は、車速Vcが60~100(km/h)である場合、上記メモリに記憶される指針画像データのうち、この速度域に対応する太さの指針画像データを選択して細線の指針画像を描画対象に決定する(ステップST7h)。
 次に、制御部3は、細線の指針画像を生成して描画処理部4に指針の描画を指示する(ステップST8a)。描画処理部4は、制御部3からの指示に従って、図18(a)における(3)に示すように、現在の車速Vcを含む速度範囲である60~100(km/h)に対応する細線の指針を描画して表示部5の画面5aに表示する。
Further, when the vehicle speed Vc is 60 to 100 (km / h), the control unit 3 selects the pointer image data having a thickness corresponding to this speed range from the pointer image data stored in the memory. A thin line pointer image is determined as a drawing target (step ST7h).
Next, the control unit 3 generates a thin line pointer image and instructs the drawing processing unit 4 to draw the pointer (step ST8a). The drawing processing unit 4 follows the instruction from the control unit 3 and, as shown in (3) in FIG. 18A, a thin line corresponding to 60 to 100 (km / h) that is the speed range including the current vehicle speed Vc. Are drawn and displayed on the screen 5 a of the display unit 5.
 また、指針の太さだけでなく、指針の形状を動的に変更してもよい。
 例えば、図18(b)に示すように、制御部3は、車速Vcが0~20(km/h)である場合、上記メモリに記憶される指針画像データのうち、この速度域に対応する形状と太さの指針画像データを選択して太線の直線形状の指針画像を描画対象に決定する(ステップST7h)。
 次に、制御部3は、太線の直線形状の指針画像を生成して描画処理部4に指針の描画を指示する(ステップST8a)。描画処理部4は、制御部3からの指示に従って、図18(b)における(1)に示すように、現在の車速Vcを含む速度範囲である0~20(km/h)に対応する太線で直線形状の指針を描画して表示部5の画面5aに表示する。
Further, not only the thickness of the pointer but also the shape of the pointer may be dynamically changed.
For example, as shown in FIG. 18B, when the vehicle speed Vc is 0 to 20 (km / h), the control unit 3 corresponds to this speed range in the pointer image data stored in the memory. The pointer image data having the shape and the thickness is selected, and the pointer image having the bold line shape is determined as a drawing target (step ST7h).
Next, the control unit 3 generates a thick, straight-line pointer image and instructs the drawing processing unit 4 to draw a pointer (step ST8a). The drawing processing unit 4 follows the instruction from the control unit 3 as shown in (1) in FIG. 18 (b) with a thick line corresponding to 0 to 20 (km / h) that is the speed range including the current vehicle speed Vc. Then, a linear pointer is drawn and displayed on the screen 5a of the display unit 5.
 また、制御部3は、車速Vcが20~60(km/h)である場合、上記メモリに記憶される指針画像データのうち、この速度域に対応する形状と太さの指針画像データを選択して、太線で矢印形状の指針画像を描画対象に決定する(ステップST7h)。
 次に、制御部3は、太線で矢印形状の指針画像を生成して描画処理部4に指針の描画を指示する(ステップST8a)。描画処理部4は、制御部3からの指示に従って、図18(b)における(2)に示すように、現在の車速Vcを含む速度範囲である20~60(km/h)に対応する太線で矢印形状の指針を描画して表示部5の画面5aに表示する。
In addition, when the vehicle speed Vc is 20 to 60 (km / h), the control unit 3 selects the pointer image data having a shape and thickness corresponding to this speed range from the pointer image data stored in the memory. Then, an arrow-shaped pointer image with a thick line is determined as a drawing target (step ST7h).
Next, the control unit 3 generates an arrow-shaped pointer image with a bold line, and instructs the drawing processing unit 4 to draw a pointer (step ST8a). The drawing processing unit 4 follows the instruction from the control unit 3 as shown in (2) in FIG. 18 (b) with a thick line corresponding to a speed range of 20 to 60 (km / h) including the current vehicle speed Vc. Then, an arrow-shaped pointer is drawn and displayed on the screen 5a of the display unit 5.
 さらに、制御部3は、車速Vcが60~100(km/h)である場合、上記メモリに記憶される指針画像データのうち、この速度域に対応する形状と太さの指針画像データを選択して細線で矢印形状の指針画像を描画対象に決定する(ステップST7h)。
 次に、制御部3は、細線で矢印形状の指針画像を生成して描画処理部4に指針の描画を指示する(ステップST8a)。描画処理部4は、制御部3からの指示に従って、図18(b)における(3)に示すように、現在の車速Vcを含む速度範囲である60~100(km/h)に対応する細線で矢印形状の指針を描画し表示部5の画面5aに表示する。
Further, when the vehicle speed Vc is 60 to 100 (km / h), the control unit 3 selects the pointer image data having a shape and thickness corresponding to this speed range from the pointer image data stored in the memory. The arrow-shaped pointer image with a thin line is determined as a drawing target (step ST7h).
Next, the control unit 3 generates an arrow-shaped pointer image with a thin line, and instructs the drawing processing unit 4 to draw the pointer (step ST8a). The drawing processing unit 4 follows the instruction from the control unit 3 and, as shown in (3) in FIG. 18B, a thin line corresponding to 60 to 100 (km / h) that is the speed range including the current vehicle speed Vc. Then, an arrow-shaped pointer is drawn and displayed on the screen 5a of the display unit 5.
 また、指針の太さ、形状だけでなく、指針の色を動的に変更してもよい。
 例えば、0~20(km/h)、20~40(km/h)、40~60(km/h)、60~80(km/h)、80~100(km/h)、100(km/h)~のそれぞれの速度域に対応する色を設定しておき、制御部3が、現在の車速Vcに応じて指針の色を決定して描画処理部4に描画を指示する。
 速度域と指針色との対応付けは、例えば低速域の0~20(km/h)と20~40(km/h)で指針を青色とし、中速域の40~60(km/h)と60~80(km/h)で緑色とし、高速域の80~100(km/h)で指針を黄色とし、100(km/h)以上では指針を赤色とする。このようにすることで、車速が上昇するにつれて指針の色が青色から最終的に赤色にグラデーションし、運転者に現在の車速を直感的に認識させることができる。
Further, not only the thickness and shape of the pointer, but also the color of the pointer may be changed dynamically.
For example, 0 to 20 (km / h), 20 to 40 (km / h), 40 to 60 (km / h), 60 to 80 (km / h), 80 to 100 (km / h), 100 (km Colors corresponding to the respective speed ranges are set, and the control unit 3 determines the color of the pointer according to the current vehicle speed Vc and instructs the drawing processing unit 4 to draw.
The correspondence between the speed range and the pointer color is, for example, 0 to 20 (km / h) in the low speed range and 20 to 40 (km / h) in blue, and 40 to 60 (km / h) in the medium speed range. 60 to 80 (km / h) is green, the high speed range is 80 to 100 (km / h), the pointer is yellow, and above 100 (km / h) the pointer is red. In this way, as the vehicle speed increases, the color of the pointer gradually changes from blue to red, and the driver can intuitively recognize the current vehicle speed.
 また、指針の太さ、形状および色だけでなく、指針の発色パターンを動的に変更してもよい。この場合、各速度域に発色パターン(色の点滅パターン)を対応付けておく。
 例えば、現在の車速が100(km/h)以上になった場合に指針を赤色でかつ高速に高輝度で点滅させて表示する。このようにすることでも、運転者に現在の車速を直感的に認識させることができる。
In addition to the thickness, shape, and color of the pointer, the coloring pattern of the pointer may be dynamically changed. In this case, a color pattern (color blinking pattern) is associated with each speed range.
For example, when the current vehicle speed is 100 (km / h) or more, the pointer is displayed in red and blinking at high speed with high brightness. This also allows the driver to intuitively recognize the current vehicle speed.
 さらに、指針の太さ、形状、色、発色パターンだけでなく、指針の挙動を動的に変更してもよい。例えば、図18(c)に示すように、アナログ速度計画像において指針が振動するように表示する。実際の運転環境においては、車速は一定の値に固定されるものではなく、運転者のアクセルの踏み加減によって速度が微小に変動している。この状況を再現することにより、運転者に対してリアルな速度表示を提供することができる。 Furthermore, not only the thickness, shape, color, and coloring pattern of the pointer, but also the behavior of the pointer may be changed dynamically. For example, as shown in FIG. 18C, display is performed so that the pointer vibrates in the analog speedometer image. In an actual driving environment, the vehicle speed is not fixed to a constant value, and the speed fluctuates slightly due to the driver's accelerator depression / depression. By reproducing this situation, a real speed display can be provided to the driver.
 また、指針の形状を動的に変更する場合において、図18(d)に示すように、現在の車速を示す画像を指針に付加してもよい。このようにアナログ表示とデジタル表示を組み合わせて車速を提示することで、運転者は、指針が指示する車速を容易に認識することができる。 Further, when the shape of the pointer is dynamically changed, as shown in FIG. 18D, an image indicating the current vehicle speed may be added to the pointer. Thus, by presenting the vehicle speed by combining the analog display and the digital display, the driver can easily recognize the vehicle speed indicated by the pointer.
 なお、上記説明ではアナログ速度計画像を表示する場合を示したが、その他の車両状態を示すアナログ計器画像に適用しても同様の効果を得ることができる。例えば、燃料計や回転速度計において、燃料残量やエンジン回転数を指示する指針の太さ、形状、色、発色パターンおよび挙動の少なくとも一つを動的に変更してもよい。このように構成することでも、上記と同様に、指針が指示する値を容易に認識することができる。 In the above description, an analog speedometer image is displayed. However, the same effect can be obtained when applied to analog instrument images indicating other vehicle states. For example, in a fuel meter or tachometer, at least one of the thickness, shape, color, coloring pattern, and behavior of the pointer that indicates the remaining fuel amount and the engine speed may be dynamically changed. Even with this configuration, the value indicated by the pointer can be easily recognized as described above.
 以上のように、この実施の形態8によれば、車両の状態、車両の周辺状況および車両に設定された走行モードを取得するデータ取得部2と、車両の状態を指示するアナログ計器画像を生成し、データ取得部2が取得した車両の状態、車両の周辺状況および走行モードで推奨される車両の状態の少なくとも一つに応じて、アナログ計器画像の指針の太さ、形状、色、発色パターンおよび挙動の少なくとも一つを動的に変更する制御部3と、アナログ計器画像を描画して表示部5に表示する描画処理部4を備える。
 このように構成することで、指針の太さ、形状、色、発色パターンおよび挙動が動的に変化してアナログ計器画像の視認性の向上を図ることができる。
As described above, according to the eighth embodiment, the data acquisition unit 2 that acquires the state of the vehicle, the surrounding situation of the vehicle, and the travel mode set for the vehicle, and the analog instrument image that indicates the state of the vehicle are generated. In accordance with at least one of the vehicle state acquired by the data acquisition unit 2, the vehicle surroundings, and the vehicle state recommended in the driving mode, the thickness, shape, color, and coloring pattern of the pointer of the analog instrument image And a control unit 3 that dynamically changes at least one of the behaviors, and a drawing processing unit 4 that draws an analog instrument image and displays it on the display unit 5.
With this configuration, the thickness, shape, color, coloring pattern and behavior of the pointer are dynamically changed to improve the visibility of the analog instrument image.
 また、この実施の形態8によれば、制御部3が、車両の現在速度が指針に付加されたアナログ計器画像を生成する。このようにすることで、アナログ表示とデジタル表示を組み合わせて車速が表示され、運転者は、指針が指示する車速を容易に認識できる。 Further, according to the eighth embodiment, the control unit 3 generates an analog instrument image in which the current speed of the vehicle is added to the pointer. In this way, the vehicle speed is displayed by combining the analog display and the digital display, and the driver can easily recognize the vehicle speed indicated by the pointer.
実施の形態9.
 実施の形態9に係る表示装置は、アナログ計器画像における全ての目盛り範囲を動的に変更する点で実施の形態1と異なるが、実施の形態1と基本的な構成は同様である。そこで、以降の説明において、実施の形態9の構成については図1を参照する。
Embodiment 9 FIG.
The display device according to the ninth embodiment is different from the first embodiment in that all scale ranges in the analog instrument image are dynamically changed, but the basic configuration is the same as the first embodiment. Therefore, in the following description, FIG. 1 is referred to for the configuration of the ninth embodiment.
 次に動作について説明する。
 図19は、実施の形態9に係る表示装置の動作例を示すフローチャートであって、実施の形態1で示した図2のステップST7をステップST7iに変更したものである。
 従って、ステップST7iの処理について主に説明し、以降ではアナログ速度計画像を表示部5に表示する場合について説明する。
Next, the operation will be described.
FIG. 19 is a flowchart showing an operation example of the display device according to the ninth embodiment, in which step ST7 of FIG. 2 shown in the first embodiment is changed to step ST7i.
Therefore, the process of step ST7i will be mainly described, and hereinafter, a case where an analog speedometer image is displayed on the display unit 5 will be described.
 制御部3は、データ取得部2によって車両状態データとして取得された現在の車速Vcに応じて、アナログ速度計画像における全ての速度範囲の目盛り間隔を動的に変更する(ステップST7i)。まず、制御部3は、現在の車速Vcが所定の速度閾値Vx未満であるか否かを判定する(ステップST7i-1)。車速Vcが速度閾値Vx未満である場合(ステップST7i-1;YES)、制御部3は、自車両が低速域で走行していると判断し、アナログ速度計画像における全ての速度範囲を粗い目盛り間隔で描画するよう決定する(ステップST7i-2)。なお、Vxは車両が低速域で走行しているかどうかを確認するための速度閾値であり、中速域の下限値に相当する値である。 The control unit 3 dynamically changes the scale intervals of all the speed ranges in the analog speedometer image according to the current vehicle speed Vc acquired as the vehicle state data by the data acquisition unit 2 (step ST7i). First, the control unit 3 determines whether or not the current vehicle speed Vc is less than a predetermined speed threshold value Vx (step ST7i-1). When the vehicle speed Vc is less than the speed threshold value Vx (step ST7i-1; YES), the control unit 3 determines that the host vehicle is traveling in a low speed range, and coarsely calibrates all speed ranges in the analog speedometer image. It is determined to draw at intervals (step ST7i-2). Vx is a speed threshold value for confirming whether or not the vehicle is traveling in the low speed range, and is a value corresponding to the lower limit value of the medium speed range.
 車速Vcが速度閾値Vx以上である場合(ステップST7i-1;NO)、制御部3は、現在の車速Vcが所定の速度閾値Vy未満であるか否かを判定する(ステップST7i-3)。なお、Vyは車両が高速域で走行しているかどうかを確認するための速度閾値であり、高速域の下限値に相当する値である。また、Vy>Vxである。 When the vehicle speed Vc is equal to or higher than the speed threshold Vx (step ST7i-1; NO), the control unit 3 determines whether or not the current vehicle speed Vc is less than a predetermined speed threshold Vy (step ST7i-3). Vy is a speed threshold value for confirming whether or not the vehicle is traveling in the high speed range, and is a value corresponding to the lower limit value of the high speed range. Further, Vy> Vx.
 車速Vcが速度閾値Vy未満である場合(ステップST7i-3;YES)、制御部3は、自車両が中速域で走行していると判断し、全ての速度範囲を通常の目盛り間隔で描画するよう決定する(ステップST7i-4)。
 車速Vcが速度閾値Vy以上である場合(ステップST7i-3;NO)、制御部3は、自車両が高速域で走行していると判断して、全ての速度範囲を細かい目盛り間隔で描画するよう決定する(ステップST7i-5)。
When the vehicle speed Vc is less than the speed threshold value Vy (step ST7i-3; YES), the control unit 3 determines that the host vehicle is traveling in the medium speed range and draws all speed ranges at normal scale intervals. It decides to do (step ST7i-4).
When the vehicle speed Vc is equal to or higher than the speed threshold Vy (step ST7i-3; NO), the control unit 3 determines that the host vehicle is traveling in a high speed range and draws all speed ranges at fine scale intervals. (Step ST7i-5).
 次に、制御部3は、上述のように目盛り間隔を決定した目盛り画像を生成して描画処理部4に目盛りの描画を指示する(ステップST8)。
 描画処理部4は、制御部3からの指示に従って、アナログ速度計画像の全ての速度範囲の目盛りを描画して表示部5の画面5aに表示する。
 これにより、図20に示すように、車両の停車または低速域で走行している場合には、アナログ速度計画像の全ての速度範囲の目盛り間隔が粗くなる。この状態から車速が中速域になると、アナログ速度計画像の全ての速度範囲が通常の目盛り間隔となる。
 車速がさらに上昇して高速域になると、アナログ速度計画像の全ての速度範囲が細かい目盛り間隔となる。
 このようにすることで、運転者は、アナログ速度計画像における全ての速度範囲の目盛り間隔の変化によって自車速度を直感的におおまかに把握することができる。
 また、図20の場合には、高速走行時に他の速度域よりも高精度に速度を指示することができる。
Next, the control unit 3 generates a scale image with the scale interval determined as described above, and instructs the drawing processing unit 4 to draw the scale (step ST8).
The drawing processing unit 4 draws the scales of all speed ranges of the analog speedometer image in accordance with instructions from the control unit 3 and displays them on the screen 5 a of the display unit 5.
Accordingly, as shown in FIG. 20, when the vehicle is stopped or traveling in a low speed range, the scale intervals of all the speed ranges of the analog speedometer image become coarse. When the vehicle speed is in the middle speed range from this state, the entire speed range of the analog speedometer image becomes the normal scale interval.
When the vehicle speed further increases to a high speed range, the entire speed range of the analog speedometer image becomes a fine scale interval.
By doing in this way, the driver | operator can grasp | ascertain roughly the own vehicle speed roughly by the change of the scale interval of all the speed ranges in an analog speedometer image.
In the case of FIG. 20, the speed can be instructed with higher accuracy than other speed ranges when traveling at high speed.
 また、上記説明では、自車両の現在速度に応じて、アナログ速度計画像における全ての速度範囲の目盛り間隔を動的に変更する場合を示したが、全ての速度範囲の目盛り表示明度を動的に変更してもよい。
 例えば、自車両が低速域で走行または停車している場合には、アナログ速度計画像の全ての速度範囲の目盛り表示明度を最低明度(例えば、40%)に決定し、自車両が中速域で走行している場合は、アナログ速度計画像の全ての速度範囲を通常の目盛り表示明度(例えば、80%)に決定する。さらに、自車両が高速域で走行している場合には、アナログ速度計画像の全ての速度範囲を高い目盛り表示明度(例えば、100%)に決定する。
 このようにすることでも、運転者は、アナログ速度計画像における全ての速度範囲の目盛り表示明度の変化によって自車速度を直感的におおまかに把握することができる。
In the above description, the scale interval of all speed ranges in the analog speedometer image is dynamically changed according to the current speed of the host vehicle. However, the scale display brightness of all speed ranges is dynamically changed. You may change to
For example, when the host vehicle is running or stopped in a low speed range, the scale display brightness of all speed ranges of the analog speedometer image is determined to be the minimum brightness (for example, 40%), and the host vehicle is in the middle speed range. When the vehicle is traveling at a normal speed display brightness (for example, 80%), the entire speed range of the analog speedometer image is determined. Further, when the host vehicle is traveling in a high speed range, all speed ranges of the analog speedometer image are determined to have a high scale display brightness (for example, 100%).
Even in this way, the driver can intuitively roughly grasp the own vehicle speed by changing the scale display brightness of all speed ranges in the analog speedometer image.
 図21は、実施の形態9に係る表示装置の別の動作例を示すフローチャートであって、実施の形態1で示した図2のステップST7をステップST7jに変更したものである。
 従って、ステップST7jの処理について主に説明し、以降ではアナログ速度計画像を表示部5に表示する場合について説明する。
FIG. 21 is a flowchart showing another operation example of the display device according to the ninth embodiment, in which step ST7 of FIG. 2 shown in the first embodiment is changed to step ST7j.
Therefore, the process of step ST7j will be mainly described, and hereinafter, a case where an analog speedometer image is displayed on the display unit 5 will be described.
 制御部3は、データ取得部2によって車両状態データとして取得された自車両の現在の加速度Acに応じて、アナログ速度計画像における全ての速度範囲の目盛り間隔を動的に変更する(ステップST7j)。
 まず、制御部3は、加速度Acが所定の加速度閾値Ax未満であるか否かを判定する(ステップST7j-1)。加速度Acが加速度閾値Ax未満である場合(ステップST7j-1;YES)、制御部3は、自車両が減速していると判断し、アナログ速度計画像における全ての速度範囲を粗い目盛り間隔で描画するよう決定する(ステップST7j-2)。なお、Axは、車両の減速を確認するための減速度閾値であり、Ax≦0となる。
The control unit 3 dynamically changes the scale intervals of all speed ranges in the analog speedometer image according to the current acceleration Ac of the host vehicle acquired as the vehicle state data by the data acquisition unit 2 (step ST7j). .
First, the control unit 3 determines whether or not the acceleration Ac is less than a predetermined acceleration threshold value Ax (step ST7j-1). When the acceleration Ac is less than the acceleration threshold value Ax (step ST7j-1; YES), the control unit 3 determines that the host vehicle is decelerating and draws all the speed ranges in the analog speedometer image with coarse scale intervals. It decides to do (step ST7j-2). Ax is a deceleration threshold for confirming deceleration of the vehicle, and Ax ≦ 0.
 加速度Acが加速度閾値Ax以上である場合(ステップST7j-1;NO)、制御部3は、加速度Acが所定の加速度閾値Ay未満であるか否かを判定する(ステップST7j-3)。なお、Ayは、車両の加速を確認するための加速度閾値であり、Ay≧0となる。車両の現在の加速度Acが加速度閾値Ay未満である場合(ステップST7j-3;YES)、制御部3は、自車両が等速走行していると判断し、全ての速度範囲を通常の目盛り間隔で描画するよう決定する(ステップST7j-4)。
 加速度Acが加速度閾値Ay以上である場合(ステップST7j-3;NO)、制御部3は、自車両が加速していると判断して、全ての速度範囲を細かい目盛り間隔で描画するよう決定する(ステップST7j-5)。
When the acceleration Ac is greater than or equal to the acceleration threshold Ax (step ST7j-1; NO), the control unit 3 determines whether or not the acceleration Ac is less than a predetermined acceleration threshold Ay (step ST7j-3). Ay is an acceleration threshold for confirming the acceleration of the vehicle, and Ay ≧ 0. When the current acceleration Ac of the vehicle is less than the acceleration threshold value Ay (step ST7j-3; YES), the control unit 3 determines that the host vehicle is traveling at a constant speed, and sets all speed ranges to normal scale intervals. (Step ST7j-4).
When the acceleration Ac is equal to or greater than the acceleration threshold value Ay (step ST7j-3; NO), the control unit 3 determines that the host vehicle is accelerating and determines to draw all speed ranges at fine scale intervals. (Step ST7j-5).
 次に、制御部3は、上述のように目盛り間隔を決定した目盛り画像を生成して描画処理部4に目盛りの描画を指示する(ステップST8)。
 描画処理部4は、制御部3からの指示に従って、アナログ速度計画像の全ての速度範囲の目盛りを描画して表示部5の画面5aに表示する。
 これにより、図22に示すように、車両が減速している場合には、アナログ速度計画像の全ての速度範囲の目盛り間隔が粗くなる。この状態から車両が等速走行すると、アナログ速度計画像の全ての速度範囲が通常の目盛り間隔となる。
 さらに車両が加速されると、アナログ速度計画像の全ての速度範囲が細かい目盛り間隔となる。このようにすることで、運転者は、アナログ速度計画像における全ての速度範囲の目盛り間隔の変化によって自車速度を直感的におおまかに把握することができる。
 また、図22の場合には、車両の加速時に他の状態よりも高精度に速度を指示することができる。
Next, the control unit 3 generates a scale image with the scale interval determined as described above, and instructs the drawing processing unit 4 to draw the scale (step ST8).
The drawing processing unit 4 draws the scales of all speed ranges of the analog speedometer image in accordance with instructions from the control unit 3 and displays them on the screen 5 a of the display unit 5.
Thereby, as shown in FIG. 22, when the vehicle is decelerating, the scale intervals of all speed ranges of the analog speedometer image become coarse. When the vehicle travels at a constant speed from this state, the entire speed range of the analog speedometer image becomes a normal scale interval.
When the vehicle is further accelerated, the entire speed range of the analog speedometer image becomes a fine scale interval. By doing in this way, the driver | operator can grasp | ascertain roughly the own vehicle speed roughly by the change of the scale interval of all the speed ranges in an analog speedometer image.
In the case of FIG. 22, it is possible to instruct the speed with higher accuracy than in other states when the vehicle is accelerated.
 また、上記説明では、自車両の現在の加減速度に応じて、アナログ速度計画像における全ての速度範囲の目盛り間隔を動的に変更する場合を示したが、全ての速度範囲の目盛り表示明度を動的に変更してもよい。
 例えば、自車両が減速している場合には、アナログ速度計画像の全ての速度範囲の目盛り表示明度を最低明度(例えば、40%)に決定し、自車両が等速走行している場合は、アナログ速度計画像の全ての速度範囲を通常の目盛り表示明度(例えば、80%)に決定する。さらに、自車両が加速している場合には、アナログ速度計画像の全ての速度範囲を高い目盛り表示明度(例えば、100%)に決定する。
 このようにすることでも、運転者は、アナログ速度計画像における全ての速度範囲の目盛り表示明度の変化によって自車速度を直感的におおまかに把握することができる。
In the above description, the case where the scale intervals of all speed ranges in the analog speedometer image are dynamically changed in accordance with the current acceleration / deceleration of the host vehicle is shown. It may be changed dynamically.
For example, when the host vehicle is decelerating, the scale display brightness of all speed ranges in the analog speedometer image is determined as the minimum brightness (for example, 40%), and the host vehicle is traveling at a constant speed. The entire speed range of the analog speedometer image is determined as normal scale display brightness (for example, 80%). Furthermore, when the host vehicle is accelerating, the entire speed range of the analog speedometer image is determined to have a high scale display brightness (for example, 100%).
Even in this way, the driver can intuitively roughly grasp the own vehicle speed by changing the scale display brightness of all speed ranges in the analog speedometer image.
 以上のように、この実施の形態9によれば、制御部3が、車両の走行速度または加減速度に応じてアナログ速度計画像の全ての速度範囲の目盛り間隔を動的に変更する。
 このように構成することで、アナログ速度計画像における全ての速度範囲の目盛り間隔の変化によって自車速度を直感的におおまかに把握することができる。
As described above, according to the ninth embodiment, the control unit 3 dynamically changes the scale intervals of all speed ranges of the analog speedometer image according to the traveling speed or acceleration / deceleration of the vehicle.
By comprising in this way, the own vehicle speed can be roughly grasped | ascertained intuitively by the change of the scale interval of all the speed ranges in an analog speedometer image.
 また、この実施の形態9によれば、制御部3が、車両の走行速度または加減速度に応じて、アナログ速度計画像の全ての速度範囲の目盛り表示明度を動的に変更する。
 このように構成することで、アナログ速度計画像における全ての速度範囲の目盛り表示明度の変化によって自車速度を直感的におおまかに把握することができる。
Further, according to the ninth embodiment, the controller 3 dynamically changes the scale display brightness of all speed ranges of the analog speedometer image according to the traveling speed or acceleration / deceleration of the vehicle.
By comprising in this way, the own vehicle speed can be roughly grasped | ascertained intuitively by the change of the scale display brightness of all the speed ranges in an analog speedometer image.
 例えば、車両の速度計は、車両の走行中に運転者が指示値(現在速度)を迅速かつ正確に認識できることが重要である。すなわち、速度計が、運転者にとって指示値を認識しにくい、または、誤認識しやすい表示態様であると、重大な事故に繋がる可能性がある。
 そこで、この発明では、上記実施の形態1~9に示したように、アナログ速度計画像の目盛り間隔、目盛り表示明度、指針の表示態様を動的に変更することで、アナログ速度計の指示箇所を強調している。このようにすることで、走行時に重要な情報となるアナログ速度計の指示箇所を迅速かつ正確に認識でき、事故のリスクを低減することができる。
For example, it is important for a speedometer of a vehicle that a driver can quickly and accurately recognize an instruction value (current speed) while the vehicle is traveling. That is, if the speedometer is in a display mode that makes it difficult for the driver to recognize the indicated value or easily recognizes it, a serious accident may occur.
Therefore, in the present invention, as indicated in the first to ninth embodiments, the analog speedometer is designated by dynamically changing the scale interval, scale display brightness, and indicator display mode of the analog speedometer image. Is emphasized. By doing so, it is possible to quickly and accurately recognize the indicated part of the analog speedometer, which is important information during traveling, and to reduce the risk of an accident.
 上記実施の形態1~9では、移動体が車両(自動車、バイク、自転車など)である場合を示したが、この発明は、鉄道車両、船舶、航空機などを含む移動体用の表示装置に適用することができる。 In the first to ninth embodiments, the case where the moving body is a vehicle (automobile, motorcycle, bicycle, etc.) has been shown. However, the present invention is applied to a display device for a moving body including a railway vehicle, a ship, an aircraft, and the like. can do.
 なお、本発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present invention, within the scope of the invention, any combination of each embodiment, any component of each embodiment can be modified, or any component can be omitted in each embodiment. .
 この発明に係る表示装置は、アナログ計器画像の視認性が向上することから、例えば、車両のインストルメントパネルに内蔵された表示画面の表示を制御する表示装置に好適である。 The display device according to the present invention is suitable for, for example, a display device that controls display of a display screen built in an instrument panel of a vehicle because the visibility of an analog instrument image is improved.
 1 表示装置、2 データ取得部、3 制御部、4 描画処理部、5 表示部、5a 表示画面。 1 display device, 2 data acquisition unit, 3 control unit, 4 drawing processing unit, 5 display unit, 5a display screen.

Claims (18)

  1.  移動体の状態を指示するアナログ計器画像を表示部に表示する表示装置であって、
     前記移動体の状態、前記移動体の周辺状況および前記移動体に設定された移動モードを取得するデータ取得部と、
     前記移動体の状態を指示するアナログ計器画像を生成し、前記データ取得部が取得した前記移動体の状態、前記移動体の周辺状況および前記移動モードで推奨される前記移動体の状態の少なくとも一つに応じて、前記アナログ計器画像の目盛り間隔を動的に変更する制御部と、
     前記アナログ計器画像を描画して前記表示部に表示する描画処理部を備える表示装置。
    A display device that displays an analog instrument image indicating the state of a moving object on a display unit,
    A data acquisition unit for acquiring a state of the mobile body, a surrounding situation of the mobile body, and a movement mode set in the mobile body;
    An analog instrument image indicating the state of the moving body is generated, and at least one of the state of the moving body acquired by the data acquisition unit, the surrounding state of the moving body, and the state of the moving body recommended in the moving mode. According to the control unit that dynamically changes the scale interval of the analog instrument image,
    A display device comprising a drawing processing unit that draws the analog instrument image and displays the image on the display unit.
  2.  前記制御部は、前記移動体の現在状態の指示値を含む範囲内の目盛り間隔を前記範囲外より細かく変更する、もしくは、この範囲外の目盛りを前記範囲内よりも粗い間隔に変更するまたは表示しないことを特徴とする請求項1記載の表示装置。 The control unit changes the scale interval within the range including the instruction value of the current state of the moving body more finely than outside the range, or changes the scale outside the range to a coarser interval than within the range or displays The display device according to claim 1, wherein the display device is not.
  3.  前記移動体の現在状態の指示値を含む範囲は、前記移動体の現在状態の指示値を中心値とした範囲であることを特徴とする請求項2記載の表示装置。 3. The display device according to claim 2, wherein the range including the instruction value of the current state of the mobile object is a range having the instruction value of the current state of the mobile object as a central value.
  4.  前記制御部は、前記移動体の現在状態の指示値に応じて前記指示値を含む範囲を離散的に変動させることを特徴とする請求項2記載の表示装置。 3. The display device according to claim 2, wherein the control unit discretely varies a range including the instruction value in accordance with an instruction value of the current state of the moving body.
  5.  前記制御部は、前記移動体の移動速度または加減速度に応じて、前記アナログ計器画像の全ての速度範囲の目盛り間隔を動的に変更することを特徴とする請求項1記載の表示装置。 The display device according to claim 1, wherein the control unit dynamically changes the scale intervals of all speed ranges of the analog instrument image according to the moving speed or acceleration / deceleration of the moving body.
  6.  前記制御部は、前記移動体が移動している道路の制限速度の下限値から上限値までの速度範囲内の目盛り間隔を前記速度範囲外より細かく変更する、もしくは、この速度範囲外の目盛りを前記速度範囲内よりも粗い間隔に変更するまたは表示しないことを特徴とする請求項1記載の表示装置。 The control unit finely changes the scale interval within the speed range from the lower limit value to the upper limit value of the speed limit of the road on which the moving body is moving, or changes the scale outside the speed range. The display device according to claim 1, wherein the interval is changed to a coarser interval than in the speed range or is not displayed.
  7.  前記制御部は、前記移動体に先行または後続する他の移動体との相対速度から前記他の移動体と衝突の可能性がない速度範囲内の目盛り間隔を前記速度範囲外よりも細かく変更する、もしくは、この速度範囲外の目盛りを前記速度範囲内より粗い間隔に変更するまたは表示しないことを特徴とする請求項1記載の表示装置。 The control unit changes a scale interval within a speed range where there is no possibility of collision with the other moving body from a relative speed with another moving body preceding or following the moving body, more finely than outside the speed range. Alternatively, the scale outside the speed range is changed to a coarser interval than the speed range or is not displayed.
  8.  前記制御部は、前記移動モードで前記移動体に推奨される速度範囲内の目盛り間隔を、この速度範囲外より細かく変更する、もしくは、この速度範囲外の目盛りを前記速度範囲内より粗い間隔に変更するまたは表示しないことを特徴とする請求項1記載の表示装置。 The controller changes the scale interval within the speed range recommended for the moving body in the movement mode more finely than outside the speed range, or makes the scale outside the speed range coarser than within the speed range. The display device according to claim 1, wherein the display device is changed or not displayed.
  9.  移動体の状態を指示するアナログ計器画像を表示部に表示する表示装置であって、
     前記移動体の状態、前記移動体の周辺状況および前記移動体に設定された移動モードを取得するデータ取得部と、
     前記移動体の状態を指示するアナログ計器画像を生成し、前記データ取得部が取得した前記移動体の状態、前記移動体の周辺状況および前記移動モードで推奨される前記移動体の状態の少なくとも一つに応じて、前記アナログ計器画像の目盛り表示明度を動的に変更する制御部と、
     前記アナログ計器画像を描画して前記表示部に表示する描画処理部を備える表示装置。
    A display device that displays an analog instrument image indicating the state of a moving object on a display unit,
    A data acquisition unit for acquiring a state of the mobile body, a surrounding situation of the mobile body, and a movement mode set in the mobile body;
    An analog instrument image indicating the state of the moving body is generated, and at least one of the state of the moving body acquired by the data acquisition unit, the surrounding state of the moving body, and the state of the moving body recommended in the moving mode. According to the control unit for dynamically changing the scale display brightness of the analog instrument image,
    A display device comprising a drawing processing unit that draws the analog instrument image and displays the image on the display unit.
  10.  前記制御部は、前記移動体の現在状態の指示値を含む範囲内の目盛り表示明度を前記範囲外より高く変更する、もしくは、この範囲外の目盛りを前記範囲内よりも低い表示明度に変更するまたは表示しないことを特徴とする請求項9記載の表示装置。 The control unit changes the scale display brightness within a range including the instruction value of the current state of the moving body to be higher than outside the range, or changes the scale outside the range to a display brightness lower than within the range. The display device according to claim 9, wherein the display device is not displayed.
  11.  前記移動体の現在状態の指示値を含む範囲は、前記移動体の現在状態の指示値を中心値とした範囲であることを特徴とする請求項10記載の表示装置。 11. The display device according to claim 10, wherein the range including the instruction value of the current state of the mobile object is a range having the instruction value of the current state of the mobile object as a center value.
  12.  前記制御部は、前記移動体の現在状態の指示値に応じて前記指示値を含む範囲を離散的に変動させることを特徴とする請求項10記載の表示装置。 The display device according to claim 10, wherein the control unit discretely varies a range including the instruction value in accordance with an instruction value of the current state of the moving body.
  13.  前記制御部は、前記移動体の移動速度または加減速度に応じて、前記アナログ計器画像の全ての速度範囲の目盛り表示明度を動的に変更することを特徴とする請求項9記載の表示装置。 10. The display device according to claim 9, wherein the control unit dynamically changes the scale display brightness of all speed ranges of the analog instrument image according to the moving speed or acceleration / deceleration of the moving body.
  14.  前記制御部は、前記移動体が移動している道路の制限速度の下限値から上限値までの速度範囲内の目盛り表示明度を前記速度範囲外より高く変更する、もしくは、この速度範囲外の目盛りを前記速度範囲内より低い表示明度に変更するまたは表示しないことを特徴とする請求項9記載の表示装置。 The control unit changes the scale display lightness within the speed range from the lower limit value to the upper limit value of the speed limit of the road on which the moving body is moving higher than outside the speed range, or a scale outside the speed range. The display device according to claim 9, wherein the display brightness is changed to a display brightness lower than the speed range or is not displayed.
  15.  前記制御部は、前記移動体に先行または後続する他の移動体との相対速度から前記他の移動体と衝突の可能性がない速度範囲内の目盛り表示明度を前記速度範囲外より高く変更する、もしくは、この速度範囲外の目盛りを前記速度範囲内より低い表示明度に変更するまたは表示しないことを特徴とする請求項9記載の表示装置。 The control unit changes a scale display brightness within a speed range in which there is no possibility of a collision with the other moving body to be higher than outside the speed range based on a relative speed with another moving body preceding or following the moving body. Alternatively, the scale outside the speed range is changed to a display brightness lower than that within the speed range or is not displayed.
  16.  前記制御部は、前記移動モードで前記移動体に推奨される速度範囲内の目盛り表示明度を、この速度範囲外より高く変更する、もしくは、この速度範囲外の目盛りを前記速度範囲内より低い表示明度に変更するまたは表示しないことを特徴とする請求項9記載の表示装置。 The control unit changes the scale display brightness within the speed range recommended for the moving body in the movement mode to be higher than outside the speed range, or displays the scale outside the speed range below the speed range. The display device according to claim 9, wherein the display device changes to brightness or does not display.
  17.  移動体の状態を指示するアナログ計器画像を表示部に表示する表示装置であって、
     前記移動体の状態、前記移動体の周辺状況および前記移動体に設定された移動モードを取得するデータ取得部と、
     前記移動体の状態を指示するアナログ計器画像を生成し、前記データ取得部が取得した前記移動体の状態、前記移動体の周辺状況および前記移動モードで推奨される前記移動体の状態の少なくとも一つに応じて、前記アナログ計器画像の指針の太さ、形状、色、発色パターンおよび挙動の少なくとも一つを動的に変更する制御部と、
     前記アナログ計器画像を描画して前記表示部に表示する描画処理部を備える表示装置。
    A display device that displays an analog instrument image indicating the state of a moving object on a display unit,
    A data acquisition unit for acquiring a state of the mobile body, a surrounding situation of the mobile body, and a movement mode set in the mobile body;
    An analog instrument image indicating the state of the moving body is generated, and at least one of the state of the moving body acquired by the data acquisition unit, the surrounding state of the moving body, and the state of the moving body recommended in the moving mode. And a controller that dynamically changes at least one of the thickness, shape, color, coloring pattern and behavior of the pointer of the analog instrument image,
    A display device comprising a drawing processing unit that draws the analog instrument image and displays the image on the display unit.
  18.  前記制御部は、前記移動体の現在速度が指針に付加された前記アナログ計器画像を生成することを特徴とする請求項17記載の表示装置。 The display device according to claim 17, wherein the control unit generates the analog instrument image in which a current speed of the moving body is added to a pointer.
PCT/JP2013/080275 2013-11-08 2013-11-08 Display device WO2015068269A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/080275 WO2015068269A1 (en) 2013-11-08 2013-11-08 Display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/080275 WO2015068269A1 (en) 2013-11-08 2013-11-08 Display device

Publications (1)

Publication Number Publication Date
WO2015068269A1 true WO2015068269A1 (en) 2015-05-14

Family

ID=53041070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080275 WO2015068269A1 (en) 2013-11-08 2013-11-08 Display device

Country Status (1)

Country Link
WO (1) WO2015068269A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020173779A1 (en) * 2019-02-26 2020-09-03 Volkswagen Aktiengesellschaft Method for operating a driver information system in an ego-vehicle and driver information system
US11807260B2 (en) 2019-02-26 2023-11-07 Volkswagen Aktiengesellschaft Method for operating a driver information system in an ego-vehicle and driver information system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182092A (en) * 2002-12-03 2004-07-02 Calsonic Kansei Corp Display device for vehicle
JP2005308477A (en) * 2004-04-20 2005-11-04 Fuji Heavy Ind Ltd Speed display device
JP2006234441A (en) * 2005-02-22 2006-09-07 Calsonic Kansei Corp Vehicle speed meter
JP2007199026A (en) * 2006-01-30 2007-08-09 Denso Corp Speed indicator for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182092A (en) * 2002-12-03 2004-07-02 Calsonic Kansei Corp Display device for vehicle
JP2005308477A (en) * 2004-04-20 2005-11-04 Fuji Heavy Ind Ltd Speed display device
JP2006234441A (en) * 2005-02-22 2006-09-07 Calsonic Kansei Corp Vehicle speed meter
JP2007199026A (en) * 2006-01-30 2007-08-09 Denso Corp Speed indicator for vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020173779A1 (en) * 2019-02-26 2020-09-03 Volkswagen Aktiengesellschaft Method for operating a driver information system in an ego-vehicle and driver information system
CN113474206A (en) * 2019-02-26 2021-10-01 大众汽车股份公司 Method for operating a driver information system in an autonomous vehicle and driver information system
US11807260B2 (en) 2019-02-26 2023-11-07 Volkswagen Aktiengesellschaft Method for operating a driver information system in an ego-vehicle and driver information system

Similar Documents

Publication Publication Date Title
CN111163968B (en) Display system in a vehicle
JP4640417B2 (en) Meter unit for vehicles
US9415686B2 (en) Display control apparatus
CN112166301A (en) Method for calculating an "augmented reality" fade-in for presenting a navigation route on an AR display unit, device for carrying out the method, motor vehicle and computer program
JP2009073431A (en) Meter unit for vehicle
JPWO2016104119A1 (en) Display system
US20210046822A1 (en) Method for calculating an ar-overlay of additional information for a display on a display unit, device for carrying out the method, as well as motor vehicle and computer program
JP2018197691A (en) Information processing device
EP4245589A2 (en) A system for controlling backlighting of a heads up display
JP6052865B2 (en) In-vehicle display control device and in-vehicle display control method
JP2005075190A (en) Display device for vehicle
JP6350271B2 (en) Display device and display method
WO2022209439A1 (en) Virtual image display device
CN110116619B (en) Method for displaying information in a head-up display HUD of a vehicle
JP2006508443A (en) Method and apparatus for operating an optical display device
WO2015068269A1 (en) Display device
CN110914094A (en) Display device for vehicle and display control device
WO2019017198A1 (en) Display device for vehicle and display control device
US11790615B2 (en) Marking objects for a vehicle using a virtual element
JP5664336B2 (en) Display control system, display control apparatus, and program
WO2021186807A1 (en) Information processing device, vehicle, and information processing method
WO2020090221A1 (en) Vehicular display device
CN114241163A (en) Method for presenting virtual elements
KR20230050535A (en) Display system and method for improving autonomous driving safety of electric bus
US20210354705A1 (en) Method for avoiding a field of view disturbance for an operator of an object, device for carrying out the method as well as vehicle and computer program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13896892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 13896892

Country of ref document: EP

Kind code of ref document: A1