WO2015067129A1 - 电子式断路器的自检模块 - Google Patents

电子式断路器的自检模块 Download PDF

Info

Publication number
WO2015067129A1
WO2015067129A1 PCT/CN2014/089370 CN2014089370W WO2015067129A1 WO 2015067129 A1 WO2015067129 A1 WO 2015067129A1 CN 2014089370 W CN2014089370 W CN 2014089370W WO 2015067129 A1 WO2015067129 A1 WO 2015067129A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
chip
control unit
micro control
power
Prior art date
Application number
PCT/CN2014/089370
Other languages
English (en)
French (fr)
Inventor
胡应龙
陈黎俊
易先君
Original Assignee
上海电科电器科技有限公司
浙江正泰电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海电科电器科技有限公司, 浙江正泰电器股份有限公司 filed Critical 上海电科电器科技有限公司
Priority to EP14859387.4A priority Critical patent/EP3067708B1/en
Priority to US15/034,674 priority patent/US9797953B2/en
Publication of WO2015067129A1 publication Critical patent/WO2015067129A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3277Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/06Arrangements for supplying operative power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/04Details with warning or supervision in addition to disconnection, e.g. for indicating that protective apparatus has functioned
    • H02H3/044Checking correct functioning of protective arrangements, e.g. by simulating a fault

Definitions

  • the present invention relates to an electronic circuit breaker, and more particularly to a self-test module for an electronic circuit breaker.
  • the low-voltage circuit breaker is a switching device that can not only turn on and off the normal load current and the overload current, but also can turn on and off the short-circuit current. At present, it has been widely used.
  • the reliable operation of the low-voltage circuit breaker is related to the safety of national life and property.
  • people In order to ensure the reliability of the low-voltage circuit breaker products, people usually set test buttons on the thermomagnetic products to test the reliability of the product action mechanism.
  • the application of electronic circuit breaker products has become more and more extensive, and more and more electronic voltage circuit breaker products have appeared in the field of low voltage circuit breakers.
  • current electronic circuit breakers lack test diagnostic functions for their completeness and reliability.
  • thermomagnetic low-voltage circuit breaker non-electronic
  • Existing electronic low-voltage circuit breakers either do not have a test function or have only a test trip function.
  • Very few products have product self-checking functions, but need to use external accessories, external accessories are not very convenient to carry and use, and the price of accessories and circuit breakers themselves are relatively high. Even if there is an external accessory, the self-test function or the detection information is not clear, and it is extremely inconvenient for the user to detect in the non-working state such as before the production is completed, the installation is used, or the product is maintained.
  • the invention aims to propose a self-checking module of an electronic circuit breaker which is convenient to use and comprehensive in function.
  • a self-test module of an electronic circuit breaker comprising a power component, a self-test opening component, an induced power supply component, a boost power supply component and a micro control unit.
  • the power supply assembly includes a rechargeable battery.
  • the self-test opening component includes a serially connected open button, a capacitor and a first power
  • the source chip, the self-test opening component is connected to the rechargeable battery.
  • the inductive power supply component includes a buck chip.
  • the boost power supply assembly includes a second power chip and a boost chip that are connected in series.
  • the micro control unit has a plurality of pins, and the plurality of pins are respectively connected to the first power chip, the second power chip, the buck chip, and the boost chip.
  • the micro control unit When the electronic circuit breaker has no load current, press the open button, the micro control unit obtains the power supply from the rechargeable battery and runs the self-test program, completes the components and obtains the test result, and indicates the self-test status after the self-test program runs. For a period of time, the controller disconnects power from the rechargeable battery.
  • the inductive power supply module when the electronic circuit breaker turns on the load current, the inductive power supply module generates a DC signal from the load current through the current transformer as an action signal of the magnetic flux converter, and the DC signal is stepped down by the decompression chip.
  • the micro control unit supplies power, and the micro control module monitors the induced current.
  • the micro control unit detects that the open button is pressed, runs the self-test program, and indicates the self-test status and maintains for a period of time.
  • the opening button is pressed and the capacitor is charged to the charging battery potential, and when the opening button is released, the capacitor is discharged to enable the first power chip to supply power to the micro control unit, the micro control unit
  • the micro control unit The induced current is not monitored, the micro control unit maintains the power supply of the first power chip and runs the self-test program, the micro control unit activates the second power chip, the second power chip outputs the enable signal to the boost chip, and the boost chip outputs the action signal.
  • the micro control unit monitors the voltage of the action signal and turns off the boost chip and commands the flux converter to operate when the action signal is boosted to be higher or higher than the operating voltage threshold of the flux converter, and the self-test program runs.
  • the micro control unit indicates the self-test state and maintains for a period of time, and then causes the first power chip to stop supplying power.
  • the power supply output pin of the first power chip and the buck output pin of the buck chip are all connected to the power supply pin of the micro control unit to supply power to the micro control unit.
  • the first enable pin of the micro control unit is connected to the first power chip, the first enable pin outputs a high level, the first power chip supplies power to the micro control unit, and the first enable pin outputs a low level.
  • a power chip stops supplying power to the micro control unit.
  • the second enable pin of the micro control unit is connected to the second power chip, the second enable pin outputs a high level, the second power chip starts and drives the boost chip to start, and the second enable pin outputs a low level. Then the second power chip turns off and turns off the boost chip.
  • the first monitoring pin of the micro control unit is connected to the input pin of the inductive power supply component to monitor the induced current.
  • Micro control unit The button monitor pin is connected to the open button to monitor whether the open button is pressed.
  • the output of the boost chip provides an action signal to the flux converter and the action signal is coupled to the second monitor pin of the micro control unit.
  • the input pin of the inductive power supply component receives a DC signal generated by the current transformer from the load current, the DC signal being used as an action signal for the flux converter.
  • the input pin is also connected to the input pin of the buck chip, and the buck output pin of the buck chip is connected to the power supply pin of the micro control unit.
  • the buck output pin of the buck chip is also connected to the rechargeable battery to charge the rechargeable battery.
  • the power supply assembly, the self-test opening assembly, the inductive power supply assembly, the boost power supply assembly, and the micro control unit are mounted on the circuit board and housed in a housing, the circuit board is located at the bottom of the housing, and the housing is wrapped Each component.
  • the bottom of the housing has a connector that is in electrical communication with the circuit board and components of the circuit board.
  • the open button extends upward and extends out of the top of the housing.
  • the self-test module is mounted on the electronic trip unit of the electronic circuit breaker, the housing of the electronic trip unit has a slot, the slot is matched with the outer casing, and the bottom of the slot has a connecting slot, the connecting slot The position and shape are matched with the connector, the connector is inserted into the connection slot, and the components in the self-test module are in electrical communication with the electronic trip unit.
  • the electronic trip has a display, an indicator light, and a navigation keypad, the self-test status being indicated by the display and indicator lights.
  • the self-test module is pluggable.
  • the self-test module of the electronic circuit breaker of the invention is pluggable and can be conveniently installed on the electronic trip unit of the circuit breaker, so that the electronic circuit breaker product is completed before production, installation and use or product maintenance.
  • the electronic trip unit will automatically diagnose the product completeness and give the test results.
  • FIG. 1 discloses a circuit schematic of a self-test module of an electronic circuit breaker in accordance with an embodiment of the present invention.
  • FIG. 2 is a block diagram showing the structure of a self-test module of an electronic circuit breaker according to an embodiment of the invention.
  • Fig. 3 discloses a schematic structural view of an electronic trip unit for mounting a self-test module of the electronic circuit breaker of the present invention.
  • Fig. 4 discloses a schematic structural view of an electronic circuit breaker equipped with a self-test module of the electronic circuit breaker of the present invention.
  • Figure 1 discloses a circuit schematic of a self-test module of an electronic circuit breaker in accordance with an embodiment of the present invention.
  • the self-test module of the electronic circuit breaker includes a power supply component 101, a self-test opening component 104, an induced power supply component 103, a boost power supply component 105, and a micro control unit 102.
  • the power supply assembly 102 includes a rechargeable battery BT, and one end of the rechargeable battery BT is grounded to GND.
  • the self-test opening component 104 includes a serially connected open button T, a capacitor C, and a first power chip U1.
  • the self-test opening component 104 is connected to the rechargeable battery BT.
  • the resistor R is connected in parallel with the capacitor C, and a diode D1 is disposed between the capacitor C and the first power chip U1.
  • the button monitoring pin BAT-IN of the micro control unit MCU is taken out from between the open button T and the diode D1, and the button monitoring pin BAT-IN monitors whether the open button T is pressed.
  • the input terminal IN of the first power chip U1 is connected to the rechargeable battery BT and is powered by the rechargeable battery BT.
  • the enable terminal EN of the first power chip U1 is connected to the first enable pin BAT-EN of the micro control unit MCU, and the first enable pin BAT-EN controls the operating state of the first power chip U1.
  • the output terminal OUT of the first power chip U1 is connected to the power supply pin DVCC of the micro control unit MCU through the second diode D2.
  • the inductive power supply assembly 103 includes a buck chip U2.
  • the input terminal PVCC of the inductive power supply assembly 103 receives a DC signal generated by the current transformer from the load current, which is used as the action signal CVCC of the flux converter.
  • a third diode D3 is used between PVCC and CVCC.
  • the input terminal Vin of the step-down chip U2 is connected to the PVCC, the step-down chip U2 steps down the DC signal input by the PVCC, and the output terminal Vout is connected to the power supply pin DVCC of the micro control unit MCU.
  • a fourth diode D4 is provided between the output terminal Vout of the buck chip U2 and the power supply pin DVCC of the micro control unit MCU.
  • the buck chip U2 steps down the DC signal to supply power to the micro control unit MCU.
  • the buck output pin of the buck chip U2, that is, the output terminal Vout is also connected to the rechargeable battery BT to charge the rechargeable battery BT.
  • a fifth diode D5 is disposed between the output terminal Vout and the rechargeable battery BT.
  • the boost power supply assembly 105 includes a second power supply chip U3 and a boosting chip U4 that are connected in series.
  • the input terminal IN of the second power chip U2 is connected to the rechargeable battery BT and is powered by the rechargeable battery BT.
  • the enable terminal EN of the second power chip U2 is connected to the second enable pin BAT-EN1 of the micro control unit MCU, and the second enable pin BAT-EN1 controls the operating state of the second power chip U2.
  • the output terminal OUT of the second power chip U2 is connected to the input terminal Vin of the boosting chip U4, and the boosting chip U4 boosts the output of the second power chip U2, and the output terminal Vout of the boosting chip U4 is used as a magnetic flux conversion.
  • the device provides an action signal CVCC.
  • a sixth diode D6 is further disposed between the output terminals Vout and CVCC of the boosting chip U4.
  • the second monitoring pin A/D IN1 of the micro control unit MCU is connected to the CVCC, and the second monitoring pin A/D IN1 monitors the boosting condition of the CVCC. When the boosting reaches the threshold voltage, the flux converter is controlled.
  • the micro control unit MCU 102 has a plurality of pins, and the plurality of pins are respectively connected to the first power chip U1, the second power chip U3, the step-down chip U2, and the boosting chip U4.
  • the pins and connections of the micro control unit MCU 102 are as follows:
  • the power supply output pin of the first power chip and the buck output pin of the buck chip are all connected to the power supply pin DVCC of the micro control unit to supply power to the micro control unit.
  • the first enable pin BAT-EN of the micro control unit is connected to the first power chip, and the first enable pin BAT-EN outputs a high level, and the first power chip supplies power to the micro control unit, and the first enable pin When the BAT-EN output is low, the first power chip stops supplying power to the micro control unit.
  • the second enable pin BAT-EN1 of the micro control unit is connected to the second power chip, and the second enable pin BAT-EN1 outputs a high level, and the second power chip starts and drives the boost chip to start.
  • the second enable pin BAT-EN1 outputs a low level, the second power chip turns off and turns off the boost chip.
  • the first monitoring pin A/D IN0 of the micro control unit is connected to the input pin PVCC of the inductive power supply component to monitor the induced current.
  • the button monitoring pin BAT-IN of the micro control unit is connected to the open button to monitor whether the open button is pressed.
  • the electronic circuit breaker has two working states, a non-working state and a working state. In the non-operating state, the electronic circuit breaker has no load current. In the working state, the electronic circuit breaker turns on the load current.
  • the basic working process in the non-working state is: when the electronic circuit breaker has no load current, press the open button, the micro control unit obtains the power supply from the rechargeable battery and runs the self-test program, completes the components and obtains the test result. After the check program finishes running, it indicates the self-test status and maintains for a period of time.
  • the controller disconnects the power supply from the rechargeable battery. Specifically, when the electronic circuit breaker has no load current, the capacitor is charged to the charging battery potential when the button is turned on, and the capacitor is discharged when the button is released to make the first power chip supply power to the micro control unit, and the micro control unit is not monitored.
  • the micro control unit maintains the power supply of the first power chip and runs the self-test program, the micro control unit activates the second power chip, the second power chip outputs the enable signal to the boost chip, and the boost chip outputs the action signal and performs Boost, the micro control unit monitors the voltage of the action signal and turns off the boost chip and commands the flux converter to operate when the action signal is boosted to be higher or higher than the operating voltage threshold of the flux converter, and the self-test program is finished.
  • the control unit indicates the self-test state and maintains for a period of time, and then causes the first power chip to stop supplying power.
  • the basic working process in the working state is: when the electronic circuit breaker is connected to the load current, the induced power supply module generates a direct current signal from the load current through the current transformer as an action signal of the magnetic flux converter, and the direct current signal is reduced by the decompression chip.
  • the micro control unit After the pressure, the micro control unit is powered. The micro control module monitors the induced current. When the button is pressed, the micro control unit detects that the open button is pressed, runs the self-test program, and indicates the self-test status and maintains for a period of time.
  • the capacitor C When the electronic circuit breaker is in the non-operating state, that is, the circuit breaker has no load current, when the open button T in the self-test opening component 104 is pressed, the capacitor C is quickly charged to the rechargeable battery BT. Potential and energy storage. When the open button T is released, the capacitor C starts to discharge, the enable terminal EN of the first power chip U1 receives a high level, the first power chip U1 is activated, and the output terminal OUT passes through the power supply pin DVCC of the micro control unit MCU 102 to the micro The control unit MCU 102 is powered.
  • the micro control unit MCU is activated, and the first monitoring pin A/D IN0 of the micro control unit MCU does not detect that there is an input signal of the inductive power supply component 103, thereby judging that the electronic circuit breaker is in an inoperative state.
  • the first enable pin BAT-EN of the micro control unit MCU outputs a high level signal to the first power chip U1 to maintain power supply.
  • the micro-control chip MCU runs a self-test program. When the analog trip test is performed, the micro-control chip MCU outputs a high-level signal through the second enable pin BAT-EN1.
  • the enable terminal EN of the second power chip U3 in the boost power supply unit 105 is activated by the high level signal outputted by the second enable pin BAT-EN1.
  • the output terminal OUT of the second power chip U3 outputs a signal to the boosting chip U4, and the boosting chip U4 boosts and outputs.
  • the boosting chip U4 needs to raise the low voltage outputted by the second power supply chip U3 to a voltage threshold required for the operation of the magnetic flux converter of the electronic circuit breaker to be used as an action signal of the magnetic flux converter.
  • the second monitoring pin A/D IN1 of the micro control unit MCU monitors the boosting condition of the output signal of the boosting chip U4 when the boosting voltage reaches the required level.
  • the micro control chip MCU outputs a low level signal through the second enable pin BAT-EN1, sequentially turns off the second power chip U3 and the boost chip U4, and stops boosting.
  • the micro control chip MCU issues a magnetic flux converter action command to drive the electronic circuit breaker to operate.
  • the micro control unit MCU indicates the self-test status and maintains for a period of time, then the first enable pin BAT-EN of the micro control unit MCU outputs a low level signal, and the first power chip U1 stops outputting, off.
  • the micro control unit MCU is broken.
  • the input terminal PVCC of the inductive power supply assembly 103 receives the DC signal processed by the current transformer from the load current through the power circuit.
  • the DC signal can directly provide energy for the action of the electronic circuit breaker flux converter.
  • the DC signal is stepped down by the step-down chip U2, and the output of the step-down chip U2 is divided into two paths. One way is supplied to the power supply pin DVCC of the micro control unit MCU, and the other is connected to the rechargeable battery BT to charge the rechargeable battery.
  • the first monitoring pin A/D IN0 of the micro control unit MCU 102 detects the power input signal of the inductive power supply component 103, and determines that the working power DVCC is not currently It is supplied by the rechargeable battery BT, but is an induced current from the load current.
  • the micro control unit MCU detects that the open button T is pressed by the button monitoring pin BAT-IN, and the micro control unit MCU runs a self-test program to indicate the self-test state and Maintain for a while.
  • FIG. 2 discloses a schematic structural view of a self-test module of an electronic circuit breaker according to an embodiment of the present invention.
  • the self-test module is designed to be pluggable and all components are disposed in a housing 200.
  • the power supply component, the self-test opening component, the inductive power supply component, the boost power supply component, and the micro control unit are collectively labeled 204 mounted on the circuit board 201, and the components and the circuit board 201 described above are housed in the housing 200.
  • the circuit board 201 is located at the bottom of the outer casing 200, and the outer casing 200 wraps the components.
  • the larger rechargeable battery 202 will occupy a larger space in the housing.
  • the open button 205 extends upwardly and extends out of the top of the outer casing 200 to facilitate operation of the open button 205.
  • the bottom of the housing 200 has a connector 203 that is in electrical communication with the circuit board 201 and the components on the circuit board.
  • the self-test module of the electronic circuit breaker of the present invention is mounted on an electronic trip unit of an electronic circuit breaker.
  • Fig. 3 discloses a schematic structural view of an electronic trip unit for mounting a self-test module of the electronic circuit breaker of the present invention.
  • the electronic trip unit includes an intelligent controller 300 having a slot 302 on the outer casing thereof, the slot 302 matching the outer casing 200 of the self-test module, and the bottom of the slot 302 having a connecting slot 301.
  • the position and shape of the connecting groove 301 are matched with the connecting member 203, and the connecting member 203 is inserted into the connecting groove 301, and the components in the self-test module are in electrical communication with the electronic trip unit.
  • the electronic trip unit also has a display screen 303, an indicator light 304, and a navigation keyboard 305.
  • the display screen 303 displays the relevant parameters and the indicator light 304 indicates the corresponding status.
  • the navigation keyboard 305 is used to perform some necessary operations.
  • Fig. 4 discloses a schematic structural view of an electronic circuit breaker equipped with a self-test module of the electronic circuit breaker of the present invention.
  • the self-test module of the electronic circuit breaker of the invention is pluggable and can be conveniently installed on the electronic trip unit of the circuit breaker, so that the electronic circuit breaker product is completed before production, installation and use or product maintenance.
  • the electronic trip unit will automatically diagnose the product's functional completeness and give the test results.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Breakers (AREA)

Abstract

一种电子式断路器的自检模块,包括电源组件(101)、自检开启组件(104)、感生供电组件(103)、升压供电组件(105)和微控制单元(102)。电源组件(101)包括充电电池(BT);自检开启组件(104)包括串接的开启按钮(T)、电容(C)和第一电源芯片(U1),自检开启组件(104)连接到充电电池(BT);感生供电组件(103)包括降压芯片(U2);升压供电组件(105)包括串接的第二电源芯片(U3)和升压芯片(U4);微控制单元(102)具有数个管脚,数个管脚分别连接到第一电源芯片(U1)、第二电源芯片(U3)、降压芯片(U2)和升压芯片(U4),微控制单元(102)运行自检程序,指示自检状态并维持一段时间。该电子式断路器的自检模块具有两种工作模式,分别是电子式断路器无负载电流模式和电子式断路器接通负载电流模式。

Description

电子式断路器的自检模块 技术领域
本发明涉及电子式断路器,更具体地说,涉及一种电子式断路器的自检模块。
背景技术
低压断路器是一种不仅可以接通和分断正常负荷电流和过负荷电流,还可以接通和分断短路电流的开关电器。目前,已获得了广泛的应用。
低压断路器的可靠运行关系着国民生命财产安全,为确保低压断路器产品的可靠性,目前人们一般在热磁式产品上设置了测试按钮,用于测试产品动作机构的可靠性。而随着智能电网的建设,电子式断路器产品的应用越来越广泛,在低压断路器领域也出现了越来越多的电子式的电压断路器产品。但目前的电子式断路器缺少针对自身功能完备性和可靠性的测试诊断功能。
现有的热磁式低压断路器(非电子式)具有测试按钮,便于用户测试产品动作机构的可靠性。而现有的电子式低压断路器或不具备测试功能,或仅具有测试脱扣功能。极个别产品具有产品自检功能,但需外接附件配合使用,外接的附件携带和使用均不是很方便,并且附件和断路器自身的价格都比较高。即使有外接附件,其自检功能或检测信息不甚明确,用户在生产完成、安装使用前或产品维护时等非工作状态下需要检测显得极为不便。
发明内容
本发明旨在提出一种使用方便,功能全面的电子式断路器的自检模块。
根据本发明的一实施例,提出一种电子式断路器的自检模块,包括电源组件、自检开启组件、感生供电组件、升压供电组件和微控制单元。电源组件包括充电电池。自检开启组件包括串接的开启按钮、电容和第一电 源芯片,自检开启组件连接到充电电池。感生供电组件包括降压芯片。升压供电组件包括串接的第二电源芯片和升压芯片。微控制单元具有数个管脚,数个管脚分别连接到第一电源芯片、第二电源芯片、降压芯片和升压芯片。电子式断路器无负载电流时,按下开启按钮,微控制单元从充电电池获取供电并运行自检程序,对各组件进行完备性并得到检测结果,自检程序运行完毕后指示自检状态并维持一段时间,控制器从充电电池处断开供电。
在一个实施例中,电子式断路器接通负载电流时,感生供电模块通过电流互感器从负载电流生成直流电信号作为磁通变换器的动作信号,该直流电信号经减压芯片降压后为微控制单元供电,微控制模块的监测到感生电流,开启按钮按下,微控制单元监测到开启按钮被按下,运行自检程序,指示自检状态并维持一段时间。
在一个实施例中,电子式断路器无负载电流时,开启按钮按下则电容被充电至充电电池电位,开启按钮松开则电容放电以使得第一电源芯片为微控制单元供电,微控制单元未监测到感生电流,微控制单元维持第一电源芯片供电并运行自检程序,微控制单元启动第二电源芯片,第二电源芯片输出使能信号至升压芯片,升压芯片输出动作信号并进行升压,微控制单元监测动作信号的电压并在动作信号升压达到或高于磁通变换器的动作电压门限时关断升压芯片并指令磁通变换器动作,自检程序运行完毕,微控制单元指示自检状态并维持一段时间,然后使得第一电源芯片停止供电。
在一个实施例中,第一电源芯片的供电输出管脚、降压芯片的降压输出管脚均连接到微控制单元的供电管脚,为微控制单元供电。微控制单元的第一使能管脚连接到第一电源芯片,第一使能管脚输出高电平则第一电源芯片为微控制单元供电,第一使能管脚输出低电平则第一电源芯片停止为微控制单元供电。微控制单元的第二使能管脚连接到第二电源芯片,第二使能管脚输出高电平则第二电源芯片启动并驱动升压芯片启动,第二使能管脚输出低电平则第二电源芯片关断并关断升压芯片。微控制单元的第一监测管脚连接到感生供电组件的输入管脚,监测感生电流。微控制单元 的按钮监测管脚连接到开启按钮,监测开启按钮是否被按下。
在一个实施例中,升压芯片的输出为磁通变换器提供动作信号,动作信号接入微控制单元的第二监测管脚。
在一个实施例中,感生供电组件的输入管脚接收由电流互感器从负载电流生成的直流电信号,直流电信号被用作磁通变换器的动作信号。输入管脚还连接到降压芯片的输入管脚,降压芯片的降压输出管脚连接到微控制单元的供电管脚。降压芯片的降压输出管脚还连接到充电电池,为充电电池充电。
在一个实施例中,电源组件、自检开启组件、感生供电组件、升压供电组件和微控制单元安装在电路板上,并被容纳在一外壳中,电路板位于外壳的底部,外壳包裹各组件。外壳的底部具有一连接件,连接件与电路板以及电路板上的各组件电气连通。开启按钮向上延伸并伸出外壳的顶部。
在一个实施例中,自检模块安装在电子式断路器的电子脱扣器上,电子脱扣器的外壳上具有插槽,插槽与外壳匹配,插槽的底部具有连接槽,连接槽的位置和形状均与连接件匹配,连接件插入连接槽,自检模块中的各组件与电子脱扣器电气连通。
在一个实施例中,电子脱扣器具有显示屏、指示灯和导航键盘,自检状态通过显示屏和指示灯而指示。
在一个实施例中,自检模块是插拔式。
本发明的电子式断路器的自检模块为可插拔式,能够方便地安装到电子是断路器的电子式脱扣器上,使电子式断路器产品在生产完成、安装使用前或产品维护时,用户无需外接任何产品附件,只需按下电子脱扣器的测试按钮,电子脱扣器将自动对产品功能完备性进行诊断并给出测试结果。
附图说明
本发明的上述的以及其他的特征、性质和优势将通过下面结合附图和实施例的描述而变得更加明显,在附图中,相同的附图标记始终表示相同的特征,其中:
图1揭示了根据本发明的一实施例的电子式断路器的自检模块的电路原理图。
图2揭示了根据本发明的一实施例的电子式断路器的自检模块的结构示意图。
图3揭示了用于安装本发明的电子式断路器的自检模块的电子式脱扣器的结构示意图。
图4揭示了装备有本发明的电子式断路器的自检模块的电子式断路器的结构示意图。
具体实施方式
首先参考图1所示,图1揭示了根据本发明的一实施例的电子式断路器的自检模块的电路原理图。该电子式断路器的自检模块,包括电源组件101、自检开启组件104、感生供电组件103、升压供电组件105和微控制单元102。
电源组件102包括充电电池BT,充电电池BT的一端接地GND。
自检开启组件104包括串接的开启按钮T、电容C和第一电源芯片U1。自检开启组件104连接到充电电池BT。在图1所示的实施例中,电阻R与电容C并联,并且在电容C和第一电源芯片U1之间设置了二极管D1。微控制单元MCU的按钮监测管脚BAT-IN自开启按钮T和二极管D1之间被引出,按钮监测管脚BAT-IN监测开启按钮T是否被按下。第一电源芯片U1的输入端IN连接到充电电池BT并由充电电池BT供电。第一电源芯片U1的使能端EN连接到微控制单元MCU的第一使能管脚BAT-EN,由第一使能管脚BAT-EN来控制第一电源芯片U1的工作状态。第一电源芯片U1的输出端OUT通过第二二极管D2连接到微控制单元MCU的供电管脚DVCC。
感生供电组件103包括降压芯片U2。在图1所示的实施例中,感生供电组件103的输入端PVCC接收由电流互感器从负载电流生成的直流电信号,该直流电信号被用作磁通变换器的动作信号CVCC。在图1所示的 实施例中,在PVCC和CVCC之间使用了第三二极管D3。降压芯片U2的输入端Vin连接到PVCC,降压芯片U2对PVCC输入的直流电信号进行降压,其输出端Vout连接到微控制单元MCU的供电管脚DVCC。在图1所示的实施例中,在降压芯片U2的输出端Vout和微控制单元MCU的供电管脚DVCC之间设置第四二极管D4。降压芯片U2将直流电信号降压后用于给微控制单元MCU供电。降压芯片U2的降压输出管脚,即输出端Vout还连接到充电电池BT,为充电电池BT充电。在图示的实施例中,输出端Vout与充电电池BT之间设置有第五二极管D5。
升压供电组件105包括串接的第二电源芯片U3和升压芯片U4。第二电源芯片U2的输入端IN连接到充电电池BT并由充电电池BT供电。第二电源芯片U2的使能端EN连接到微控制单元MCU的第二使能管脚BAT-EN1,由第二使能管脚BAT-EN1来控制第二电源芯片U2的工作状态。第二电源芯片U2的输出端OUT通过连接到升压芯片U4的输入端Vin,升压芯片U4对第二电源芯片U2的输出进行升压,升压芯片U4的输出端Vout用作磁通变换器提供动作信号CVCC。在图1所示的实施例中,在升压芯片U4的输出端Vout和CVCC之间还设置有第六二极管D6。微控制单元MCU的第二监测管脚A/D IN1连接到CVCC,第二监测管脚A/D IN1监控CVCC的升压状况,在升压达到门限电压是控制磁通变换器动作。
微控制单元MCU 102具有数个管脚,数个管脚分别连接到第一电源芯片U1、第二电源芯片U3、降压芯片U2和升压芯片U4。参考图1所示的实施例,微控制单元MCU 102的管脚以及连接方式如下:
第一电源芯片的供电输出管脚、降压芯片的降压输出管脚均连接到微控制单元的供电管脚DVCC以为微控制单元供电。
微控制单元的第一使能管脚BAT-EN连接到第一电源芯片,第一使能管脚BAT-EN输出高电平则第一电源芯片为微控制单元供电,第一使能管脚BAT-EN输出低电平则第一电源芯片停止为微控制单元供电。
微控制单元的第二使能管脚BAT-EN1连接到第二电源芯片,第二使能管脚BAT-EN1输出高电平则第二电源芯片启动并驱动升压芯片启动, 第二使能管脚BAT-EN1输出低电平则第二电源芯片关断并关断升压芯片。
微控制单元的第一监测管脚A/D IN0连接到感生供电组件的输入管脚PVCC,监测感生电流。
微控制单元的按钮监测管脚BAT-IN连接到开启按钮,监测开启按钮是否被按下。
该电子式断路器有两种工作状态,非工作状态和工作状态。在非工作状态下,电子式断路器无负载电流。在工作状态下,电子式断路器接通负载电流。
非工作状态下的基本工作过程是:电子式断路器无负载电流时,按下开启按钮,微控制单元从充电电池获取供电并运行自检程序,对各组件进行完备性并得到检测结果,自检程序运行完毕后指示自检状态并维持一段时间,控制器从充电电池处断开供电。具体而言,电子式断路器无负载电流时,开启按钮按下则电容被充电至充电电池电位,开启按钮松开则电容放电以使得第一电源芯片为微控制单元供电,微控制单元未监测到感生电流,微控制单元维持第一电源芯片供电并运行自检程序,微控制单元启动第二电源芯片,第二电源芯片输出使能信号至升压芯片,升压芯片输出动作信号并进行升压,微控制单元监测动作信号的电压并在动作信号升压达到或高于磁通变换器的动作电压门限时关断升压芯片并指令磁通变换器动作,自检程序运行完毕,微控制单元指示自检状态并维持一段时间,然后使得第一电源芯片停止供电。
工作状态下的基本工作过程是:电子式断路器接通负载电流时,感生供电模块通过电流互感器从负载电流生成直流电信号作为磁通变换器的动作信号,该直流电信号经减压芯片降压后为微控制单元供电,微控制模块的监测到感生电流,开启按钮按下,微控制单元监测到开启按钮被按下,运行自检程序,指示自检状态并维持一段时间。
结合图1所示的实施例,在该实施例中,工作过程如下:
在电子式断路器处于在非工作状态,即断路器无负载电流时,当按下自检开启组件104中的开启按钮T时,电容C迅速充电至充电电池BT的 电位并储能。开启按钮T释放时,电容C开始放电,第一电源芯片U1的使能端EN接收到高电平,第一电源芯片U1启动,输出端OUT通过微控制单元MCU 102的供电管脚DVCC向微控制单元MCU 102供电。微控制单元MCU启动,微控制单元MCU的第一监测管脚A/D IN0上没有监测到感生供电组件103存在输入信号,由此判断电子式断路器处于非工作状态。微控制单元MCU的第一使能管脚BAT-EN输出高电平信号至第一电源芯片U1以维持供电。微控制芯片MCU运行自检程序,进行模拟脱扣测试时,微控制芯片MCU通过第二使能管脚BAT-EN1输出高电平信号。升压供电组件105中的第二电源芯片U3的使能端EN得到第二使能管脚BAT-EN1输出的高电平信号而启动。第二电源芯片U3的输出端OUT输出信号至升压芯片U4,升压芯片U4进行升压并输出。升压芯片U4需要将第二电源芯片U3输出的低电压升至电子式断路器的磁通变换器动作所需电压门限以上才能被用作磁通变换器的动作信号。微控制单元MCU的第二监测管脚A/D IN1监测升压芯片U4的输出信号的升压状况,当升压电压达到要求时。微控制芯片MCU通过第二使能管脚BAT-EN1输出低电平信号,依次关断第二电源芯片U3和升压芯片U4,停止升压。同时微控制芯片MCU发出磁通变换器动作指令,驱动电子式断路器动作。自检程序运行完成时,微控制单元MCU指示自检状态并维持一段时间,然后微控制单元MCU的第一使能管脚BAT-EN输出低电平信号,第一电源芯片U1停止输出,关断微控制单元MCU。
在电子式断路器处于工作运行状态,即断路器接通负载电流时,感生供电组件103的输入端PVCC接收由电流互感器从负载电流感生的能量经由电源电路处理后的直流电信号。该直流电信号可以直接为电子式断路器磁通变换器动作提供能量。同时该直流电信号经降压芯片U2降压后,降压芯片U2的输出分为两路。一路被提供给微控制单元MCU的供电管脚DVCC,另一路连接到充电电池BT,为充电电池进行充电。在电子式断路器处于工作运行状态时,微控制单元MCU 102的第一监测管脚A/D IN0检测到感生供电组件103的电源输入信号,判断工作电源DVCC当前不是 由充电电池BT供给,而是来自负载电流的感生电流。当按下自检开启组件104中的开启按钮T时,微控制单元MCU通过按钮监测管脚BAT-IN检测到开启按钮T被按下,微控制单元MCU运行自检程序,指示自检状态并维持一段时间。
参考图2所示,图2揭示了根据本发明的一实施例的电子式断路器的自检模块的结构示意图。该自检模块被设计成可插拔式,所有的部件被设置在一外壳200中。电源组件、自检开启组件、感生供电组件、升压供电组件和微控制单元,此处统一标记为204安装在电路板201上,上述的各组件以及电路板201被被容纳在外壳200中。电路板201位于外壳200的底部,外壳200包裹各组件。体积较大的充电电池202会占据外壳中较大的空间。开启按钮205向上延伸并伸出外壳200的顶部,以便于对开启按钮205进行操作。外壳200的底部具有一连接件203,连接件与电路板201以及电路板上的各组件电气连通。
本发明的电子式断路器的自检模块被安装在电子式断路器的电子脱扣器上。图3揭示了用于安装本发明的电子式断路器的自检模块的电子式脱扣器的结构示意图。如图3所示,电子脱扣器包括智能控制器300,电子脱扣器的外壳上具有插槽302,插槽302与自检模块的外壳200匹配,插槽302的底部具有连接槽301,连接槽301的位置和形状均与连接件203匹配,连接件203插入连接槽301,自检模块中的各组件与电子脱扣器电气连通。继续参考图3所示,电子脱扣器还具有显示屏303、指示灯304和导航键盘305。微控制单元MCU运行自检程序后指示自检状态是通过显示屏303和指示灯304实现,显示屏303显示相关参数而指示灯304指示相应的状态。导航键盘305用于进行一些必要的操作。
图4揭示了装备有本发明的电子式断路器的自检模块的电子式断路器的结构示意图。
本发明的电子式断路器的自检模块为可插拔式,能够方便地安装到电子是断路器的电子式脱扣器上,使电子式断路器产品在生产完成、安装使用前或产品维护时,用户无需外接任何产品附件,只需按下电子脱扣器的 测试按钮,电子脱扣器将自动对产品功能完备性进行诊断并给出测试结果。
上述实施例是提供给熟悉本领域内的人员来实现或使用本实用新型的,熟悉本领域的人员可在不脱离本实用新型的发明思想的情况下,对上述实施例做出种种修改或变化,因而本实用新型的保护范围并不被上述实施例所限,而应该是符合权利要求书提到的创新性特征的最大范围。

Claims (10)

  1. 一种电子式断路器的自检模块,其特征在于,包括:
    电源组件,包括充电电池;
    自检开启组件,包括串接的开启按钮、电容和第一电源芯片,自检开启组件连接到充电电池;
    感生供电组件,包括降压芯片;
    升压供电组件,包括串接的第二电源芯片和升压芯片;
    微控制单元,具有数个管脚,数个管脚分别连接到第一电源芯片、第二电源芯片、降压芯片和升压芯片;
    其中,所述电子式断路器无负载电流时,按下开启按钮,微控制单元从充电电池获取供电并运行自检程序,对各组件进行完备性并得到检测结果,自检程序运行完毕后指示自检状态并维持一段时间,控制器从充电电池处断开供电。
  2. 如权利要求1所述的电子式断路器的自检模块,其特征在于,所述电子式断路器接通负载电流时,感生供电模块通过电流互感器从负载电流生成直流电信号作为磁通变换器的动作信号,该直流电信号经减压芯片降压后为微控制单元供电,微控制模块的监测到感生电流,开启按钮按下,微控制单元监测到开启按钮被按下,运行自检程序,指示自检状态并维持一段时间。
  3. 如权利要求2所述的电子式断路器的自检模块,其特征在于,所述电子式断路器无负载电流时,开启按钮按下则电容被充电至充电电池电位,开启按钮松开则电容放电以使得第一电源芯片为微控制单元供电,微控制单元未监测到感生电流,微控制单元维持第一电源芯片供电并运行自检程序,微控制单元启动第二电源芯片,第二电源芯片输出使能信号至升压芯片,升压芯片输出动作信号并进行升压,微控制单元监测动作信号的电压并在动作信号升压达到或高于磁通变换器的动作电压门限时关断升压芯片 并指令磁通变换器动作,自检程序运行完毕,微控制单元指示自检状态并维持一段时间,然后使得第一电源芯片停止供电。
  4. 如权利要求3所述的电子式断路器的自检模块,其特征在于,
    所述第一电源芯片的供电输出管脚、降压芯片的降压输出管脚均连接到微控制单元的供电管脚(DVCC),为微控制单元供电;
    微控制单元的第一使能管脚(BAT-EN)连接到第一电源芯片,第一使能管脚(BAT-EN)输出高电平则第一电源芯片为微控制单元供电,第一使能管脚(BAT-EN)输出低电平则第一电源芯片停止为微控制单元供电;
    微控制单元的第二使能管脚(BAT-EN1)连接到第二电源芯片,第二使能管脚(BAT-EN1)输出高电平则第二电源芯片启动并驱动升压芯片启动,第二使能管脚(BAT-EN1)输出低电平则第二电源芯片关断并关断升压芯片;
    微控制单元的第一监测管脚(A/D IN0)连接到感生供电组件的输入管脚(PVCC),监测感生电流;
    微控制单元的按钮监测管脚(BAT-IN)连接到开启按钮,监测开启按钮是否被按下。
  5. 如权利要求4所述的电子式断路器的自检模块,其特征在于,
    所述升压芯片的输出为磁通变换器提供动作信号(CVCC),所述动作信号(CVCC)接入微控制单元的第二监测管脚(A/D IN1)。
  6. 如权利要求4所述的电子式断路器的自检模块,其特征在于,
    所述感生供电组件的输入管脚(PVCC)接收由电流互感器从负载电流生成的直流电信号,所述直流电信号被用作磁通变换器的动作信号(CVCC);
    输入管脚(PVCC)还连接到降压芯片的输入管脚,降压芯片的降压输出管脚连接到微控制单元的供电管脚(DVCC);
    降压芯片的降压输出管脚还连接到充电电池,为充电电池充电。
  7. 如权利要求1-6中任一项所述的电子式断路器的自检模块,其特征在于,
    所述电源组件、自检开启组件、感生供电组件、升压供电组件和微控制单元安装在电路板上,并被容纳在一外壳中,所述电路板位于外壳的底部,所述外壳包裹所述各组件;
    所述外壳的底部具有一连接件,所述连接件与电路板以及电路板上的各组件电气连通;
    所述开启按钮向上延伸并伸出外壳的顶部。
  8. 如权利要求7所述的电子式断路器的自检模块,其特征在于,所述自检模块安装在电子式断路器的电子脱扣器上,所述电子脱扣器的外壳上具有插槽,所述插槽与所述外壳匹配,所述插槽的底部具有连接槽,连接槽的位置和形状均与所述连接件匹配,所述连接件插入连接槽,所述自检模块中的各组件与电子脱扣器电气连通。
  9. 如权利要求8所述的电子式断路器的自检模块,其特征在于,所述电子脱扣器具有显示屏、指示灯和导航键盘,所述自检状态通过显示屏和指示灯而指示。
  10. 如权利要求9所述的电子式断路器的自检模块,所述自检模块是插拔式。
PCT/CN2014/089370 2013-11-08 2014-10-24 电子式断路器的自检模块 WO2015067129A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14859387.4A EP3067708B1 (en) 2013-11-08 2014-10-24 Self-test module of electronic circuit breaker
US15/034,674 US9797953B2 (en) 2013-11-08 2014-10-24 Self-test module of electronic circuit breaker

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310553519.8A CN104635149B (zh) 2013-11-08 2013-11-08 电子式断路器的自检模块
CN201310553519.8 2013-11-08

Publications (1)

Publication Number Publication Date
WO2015067129A1 true WO2015067129A1 (zh) 2015-05-14

Family

ID=53040889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089370 WO2015067129A1 (zh) 2013-11-08 2014-10-24 电子式断路器的自检模块

Country Status (4)

Country Link
US (1) US9797953B2 (zh)
EP (1) EP3067708B1 (zh)
CN (1) CN104635149B (zh)
WO (1) WO2015067129A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105759791A (zh) * 2016-04-22 2016-07-13 浙江科能达电气有限公司 断路器智能控制器及基于其的实时检测方法
CN107797603A (zh) * 2017-10-13 2018-03-13 奥克斯空调股份有限公司 一种稳压块的输出电压测试装置
CN110014933A (zh) * 2018-01-03 2019-07-16 深圳智链物联科技有限公司 充电桩控制电路及充电桩

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6713291B2 (ja) * 2016-02-05 2020-06-24 株式会社デンソーテン 溶着検知装置及び溶着検知方法
CN111340319B (zh) * 2018-11-02 2022-04-15 北部湾大学 板形工件包边系统软件总体流程
CN112067984A (zh) * 2020-09-03 2020-12-11 国家电网有限公司 一种断路器非全相功能测试装置
CN116736090B (zh) * 2023-08-16 2023-11-07 深圳市南方硅谷半导体股份有限公司 一种临界点不良芯片的测试方法、装置及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000074192A1 (en) * 1998-05-28 2000-12-07 X-L Synergy, Llc Fail safe fault interrupter
CN202330643U (zh) * 2011-09-23 2012-07-11 航天科工防御技术研究试验中心 电气元件的电流测试装置
CN202362428U (zh) * 2011-11-24 2012-08-01 天津市百利电气有限公司 低压电器电子脱扣器检测装置
CN202486285U (zh) * 2011-12-23 2012-10-10 许继集团有限公司 一种检测低压成套开关设备回路完整性的测试装置
CN202522680U (zh) * 2012-04-27 2012-11-07 西安合电电气有限公司 一种断路器检测装置
CN103777137A (zh) * 2014-01-15 2014-05-07 上海诺雅克电气有限公司 具有自检功能的电子式断路器及其自诊断方法
CN203786556U (zh) * 2014-01-15 2014-08-20 上海诺雅克电气有限公司 具有自检功能的电子式断路器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3532967A (en) * 1968-01-23 1970-10-06 Mallory & Co Inc P R Testing device for circuit breakers and electrical components associated therewith
US4105965A (en) * 1977-07-14 1978-08-08 General Electric Company Static trip circuit breaker test set
JPS58201075A (ja) * 1982-05-19 1983-11-22 Oki Electric Ind Co Ltd トランスフアリ−ドスイツチの特性測定回路
US4814712A (en) * 1987-06-17 1989-03-21 General Electric Company Test kit for a circuit breaker containing an electronic trip unit
US6426634B1 (en) * 1999-03-29 2002-07-30 George A. Spencer Circuit breaker with integrated self-test enhancements
AU2001253144A1 (en) * 2000-04-04 2001-10-23 Contact Technology Systems, Inc. Power line testing device with signal generator and signal detector
US20050002137A1 (en) * 2003-01-30 2005-01-06 Frantz Germain Circuit interrupting device with reset lockout and user load test to reset activation
US7852606B2 (en) * 2005-08-24 2010-12-14 Leviton Manufacturing Company, Inc. Self-testing circuit interrupting device
US7372678B2 (en) * 2005-08-24 2008-05-13 Leviton Manufacturing Co., Inc. Circuit interrupting device with automatic test
US7911746B2 (en) * 2006-06-01 2011-03-22 Leviton Manufacturing Co., Inc. GFCI with self-test and remote annunciation capabilities
CN201075659Y (zh) * 2007-09-26 2008-06-18 上海同铁电子科技有限公司 具有自检功能的铁路信号专用智能断路器
WO2009097469A1 (en) * 2008-01-29 2009-08-06 Leviton Manufacturing Co., Inc. Self testing fault circuit interrupter apparatus and method
US8035936B2 (en) * 2008-11-18 2011-10-11 Robert Erger Multiple pole arc-fault circuit breaker using single test button
CN201528215U (zh) * 2009-05-04 2010-07-14 中兴通讯股份有限公司 一种控制电池在线充电的电路
EP2662697B1 (de) * 2012-05-10 2014-06-04 Omicron electronics GmbH Messvorrichtung zum Überprüfen eines elektrischen Leistungsschalters
CN202916621U (zh) * 2012-07-16 2013-05-01 上海诺雅克电气有限公司 一种断路器电子式控制器
CN102968170A (zh) * 2012-11-28 2013-03-13 华南理工大学 一种计算机智能自保护供电电源

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000074192A1 (en) * 1998-05-28 2000-12-07 X-L Synergy, Llc Fail safe fault interrupter
CN202330643U (zh) * 2011-09-23 2012-07-11 航天科工防御技术研究试验中心 电气元件的电流测试装置
CN202362428U (zh) * 2011-11-24 2012-08-01 天津市百利电气有限公司 低压电器电子脱扣器检测装置
CN202486285U (zh) * 2011-12-23 2012-10-10 许继集团有限公司 一种检测低压成套开关设备回路完整性的测试装置
CN202522680U (zh) * 2012-04-27 2012-11-07 西安合电电气有限公司 一种断路器检测装置
CN103777137A (zh) * 2014-01-15 2014-05-07 上海诺雅克电气有限公司 具有自检功能的电子式断路器及其自诊断方法
CN203786556U (zh) * 2014-01-15 2014-08-20 上海诺雅克电气有限公司 具有自检功能的电子式断路器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3067708A4 *
WANG, SHICHENG ET AL.: "Research of New Intelligent Controller for Permanent Magnetic Vacuum Circuit Breaker", LOW VOLTAGE APPARATUS, 30 September 2012 (2012-09-30), pages 1 - 4, XP008183576 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105759791A (zh) * 2016-04-22 2016-07-13 浙江科能达电气有限公司 断路器智能控制器及基于其的实时检测方法
CN107797603A (zh) * 2017-10-13 2018-03-13 奥克斯空调股份有限公司 一种稳压块的输出电压测试装置
CN110014933A (zh) * 2018-01-03 2019-07-16 深圳智链物联科技有限公司 充电桩控制电路及充电桩

Also Published As

Publication number Publication date
CN104635149B (zh) 2017-09-05
EP3067708A1 (en) 2016-09-14
EP3067708A4 (en) 2017-07-19
CN104635149A (zh) 2015-05-20
US20160274190A1 (en) 2016-09-22
EP3067708B1 (en) 2021-09-29
US9797953B2 (en) 2017-10-24

Similar Documents

Publication Publication Date Title
WO2015067129A1 (zh) 电子式断路器的自检模块
US7199555B2 (en) Portable emergency vehicle battery charger with microprocessor
US8527782B2 (en) Power hub
JP7348671B2 (ja) スマート接続装置、始動電源及びバッテリークランプ
CN103777137B (zh) 具有自检功能的电子式断路器及其自诊断方法
KR20140124294A (ko) Led 비상등 컨버터
CN107196406B (zh) 一种双辅助电源的切换控制方法
CN206742879U (zh) 用于智能电动设备的电池装置
CN109451623B (zh) 适配灯具内置驱动的低功率外接电源的控制方法及其电路
CN205621816U (zh) 设置有usb接口的锂离子二次电池
CN106025412A (zh) 设置有usb接口的锂离子二次电池及其充放电控制方法
CN113852277A (zh) 一种高鲁棒性dc/dc转换器
CN203339787U (zh) 电能表供电系统
CN107546818A (zh) 通用电池智能判断控制电路及灯具
CN101599642A (zh) 两段式电源供应系统
CN203786556U (zh) 具有自检功能的电子式断路器
TW202044719A (zh) 不斷電系統
CN202496003U (zh) 一种卫星接收电视机上带精确电流控制的天线供电装置
CN210670645U (zh) 一种太阳能路灯用控制系统
CN201188546Y (zh) 便携式移动电源
CN110636673A (zh) 一种太阳能路灯用控制系统
CN217282177U (zh) 一种用电安全警示的声光语音电路
CN113299055B (zh) 一种数字显示装置
TWI478457B (zh) 電路保護裝置
CN218301225U (zh) 一种用于在线监测系统的电源板卡装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14859387

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014859387

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014859387

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15034674

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE