WO2015065074A1 - Organic light emitting diode, and display device and illumination including same - Google Patents

Organic light emitting diode, and display device and illumination including same Download PDF

Info

Publication number
WO2015065074A1
WO2015065074A1 PCT/KR2014/010322 KR2014010322W WO2015065074A1 WO 2015065074 A1 WO2015065074 A1 WO 2015065074A1 KR 2014010322 W KR2014010322 W KR 2014010322W WO 2015065074 A1 WO2015065074 A1 WO 2015065074A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
organic light
emitting device
organic
Prior art date
Application number
PCT/KR2014/010322
Other languages
French (fr)
Korean (ko)
Inventor
김장주
김정범
Original Assignee
서울대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교 산학협력단 filed Critical 서울대학교 산학협력단
Publication of WO2015065074A1 publication Critical patent/WO2015065074A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium

Definitions

  • the present invention relates to an organic light emitting device and a display device and lighting including the same. Specifically, the present invention relates to an organic light emitting device that solves the color deviation problem according to the viewing angle, and a display device and lighting including the same.
  • an organic light emitting diode applies a voltage between an anode and a cathode of an organic light emitting diode
  • holes injected from the anode move to the light emitting layer via the hole transport layer
  • electrons injected from the cathode pass through the electron transport layer.
  • the holes and electrons (carriers) are self-luminous devices driven by the principle of recombination in the light emitting layer to generate excitons, which emit light as the excitons change from the excited state to the ground state.
  • the organic light emitting device Compared with conventional light sources such as CCFLs (cold cathode tubes), the organic light emitting device has a wide viewing angle, excellent contrast, fast response time, excellent luminance, driving voltage and response speed, and multi-coloring.
  • CCFLs cold cathode tubes
  • an object of the present invention is to provide an organic light emitting device that does not generate color deviation according to the viewing angle, and a display device and lighting including the same.
  • An organic layer comprising a layer; A transparent upper electrode formed on the organic layer; And a capping layer formed on the transparent upper electrode, wherein the capping layer provides an organic light emitting device having a refractive index of 1.0 to less than 2.0.
  • the refractive index of the capping layer may be 1.2 to 1.5.
  • the capping layer may comprise a fluoride compound.
  • the fluoride compound may be at least one selected from the group consisting of LiF, MgF 2 , CaF 2 and ScF 3 .
  • the capping layer may comprise particles of a size smaller than the wavelength of light emitted from the organic layer.
  • the capping layer may comprise two or more layers having different refractive indices.
  • the capping layer may have a thickness of 20 to 120 nm.
  • the n-doped layer comprises an n-dopant, wherein the n-dopant is Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , Cs 2 CO 3 , Rb 2 CO 3 , Ba 2 CO 3 , pyronin B, DMC (decamethylcobaltocene), BEDTTTF (bis (ethylenedithio) -tetrathiafulvalene), rhodamine B (rhodamin B), TMBI (1 , 2,3-trimethyl-2-phenyl-2,3-dihydro-1H-benzoimidazole), DMBI (1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzoimidazole) , Cl-DMBI (dichlorophenyl-1,3-dimethyl-2,3-dihydro-1H-benzoimidazole), N-DMBI (4- (1,3-dimethyl-2,3-dihydro-1
  • the n-doped layer may include an impurity layer including an n-dopant and a first electron transport layer including a first electron transport material formed on the impurity layer.
  • the crystalline organic compound may be represented by the following formula (1).
  • R is cyano (-CN), nitro (-NO 2 ), phenylsulfonyl (-SO 2 (C 6 H 5 )), cyano or nitro substituted C 2 to C 5 alkenyl, and It is selected from the group consisting of phenyl substituted with cyano or nitro.
  • the crystalline organic compound may be HAT-CN (hexaazatriphenylene hexacarbonitrile).
  • the upper electrode may comprise ITO (indium tin oxide), IZO (indium zinc oxide), ZnO (zinc oxide) or SnO 2 (tin oxide).
  • another aspect of the present invention provides a display device including the organic light emitting device as described above.
  • another aspect of the present invention provides an illumination including the organic light emitting device as described above.
  • the organic light emitting device of the present invention can secure a wide viewing angle by reducing the color variation according to the viewing angle, that is, the phenomenon of changing the spectrum of light emitted according to the viewing angle.
  • the organic light emitting device of the present invention has excellent light efficiency even when the capping layer is used, and the red light emitting device, the green light emitting device, and the blue light emitting device do not need to change the thickness of the capping layer according to the light emission color of the organic light emitting device.
  • the process is simple as it can be applied in about the same to similar thicknesses.
  • FIG. 1 is a schematic cross-sectional view of a structure of an organic light emitting diode according to an embodiment.
  • FIG. 2A illustrates emission spectra according to viewing angles of 0 ° to 60 ° in a blue organic light emitting device without a capping layer of Comparative Example 1.
  • FIG. 2A illustrates emission spectra according to viewing angles of 0 ° to 60 ° in a blue organic light emitting device without a capping layer of Comparative Example 1.
  • FIG. 2B illustrates the emission spectrum according to the viewing angle change of 0 ° to 60 ° in the blue organic light emitting device having the capping layer of Example 1.
  • FIG. 3 shows color coordinate values calculated from the emission spectra of FIGS. 2A and 2B.
  • FIG. 4A illustrates an emission spectrum according to a change in viewing angle of 0 ° to 60 ° in the green organic light emitting device without the capping layer of Comparative Example 2.
  • FIG. 4B illustrates emission spectra according to viewing angles of 0 ° to 60 ° in the green organic light emitting device having the capping layer of Example 2.
  • FIG. 5 shows color coordinate values calculated from the emission spectra of FIGS. 4A and 4B.
  • FIG. 6A illustrates an emission spectrum according to a change in viewing angle of 0 ° to 60 ° in a red organic light emitting device without a capping layer of Comparative Example 3.
  • FIG. 6B illustrates emission spectra according to viewing angles of 0 ° to 60 ° in the red organic light emitting diode having the capping layer of Example 3.
  • FIG. 6B illustrates emission spectra according to viewing angles of 0 ° to 60 ° in the red organic light emitting diode having the capping layer of Example 3.
  • FIG. 7 shows color coordinate values calculated from the emission spectra of FIGS. 6A and 6B.
  • 9A, 9B, 9C, and 9D illustrate the change in viewing angle of 0 ° to 60 ° of a green organic light emitting diode using a high refractive index material having a refractive index of 2.4 in a capping layer having a thickness of 5 nm, 10 nm, 15 nm, and 20 nm, respectively.
  • the emission spectrum is shown.
  • FIG. 10 shows color coordinate values calculated from the emission spectra of FIGS. 9A to 9D and the emission spectrum of FIG. 4B.
  • FIG. 1 is a cross-sectional view schematically showing the structure of an organic light emitting device 100 according to an embodiment.
  • the organic light emitting diode 100 may include a substrate 101, a lower electrode 110 formed on the substrate 101, an organic layer 120 formed on the lower electrode 110, and the lower electrode (
  • the transparent upper electrode 130 formed on the organic layer 120 and facing the 110 may include a capping layer 141 formed on the upper electrode 130.
  • the organic layer 120 includes an n-doped layer 123, an organic light emitting layer 125 formed on the n-doped layer 123, a hole transport layer 126 formed on the organic light emitting layer 125, and the hole transport layer ( 126 and a hole injection layer 127 formed on the crystalline organic compound.
  • an electron injection layer (not shown) may be further formed between the lower electrode 110 and the n-doped 123.
  • the substrate 101 a glass substrate or a plastic substrate having excellent mechanical strength, thermal stability, transparency, surface smoothness, ease of handling, and waterproofness may be used.
  • the substrate 101 may include SiO 2 as a main component.
  • Transparent glass substrates can be used.
  • the lower electrode 110 formed on the substrate 101 may be electrically connected to the driving transistor to receive a driving current from the driving transistor.
  • the lower electrode 110 may be formed of a metal having high reflectance, and it is preferable to use a material having a work function smaller than 4.5 eV. As a specific example, aluminum, calcium, magnesium, silver, cesium (Cs), lithium or alloys containing them may be used.
  • the lower electrode 110 may use a transparent oxide such as ITO (indium tin oxide), IZO (indium zinc oxide) or ZnO (zinc oxide). As a result, light emission may be induced simultaneously to both the lower electrode 110 and the upper electrode 130.
  • the lower electrode 110 may be formed using various known methods, for example, a deposition method, a sputtering method, a spin coating method, or a blade coating method.
  • the n-doped layer 123 formed on the lower electrode 110 is a layer that generates electrons when a voltage is applied to the device, and the electrons may be injected and transported into the organic light emitting layer 125.
  • a negative voltage is applied to the lower electrode 230 and a positive electrode is applied to the upper electrode 130, the energy barrier at the interface between the n-doped layer 123 and the lower electrode 110 is lowered, thereby lowering the lower electrode ( Irrespective of the work function value of 110, the injection and transport of electrons can be facilitated.
  • the n-doped layer 123 may be in the form of a double layer in which a first electron transport layer 123 ′′ including a first electron transport material is sequentially stacked on an impurity layer 123 ′ including an n-dopant as an impurity. have. In this case, the energy barrier at the interface between the impurity layer 123 ′ and the lower electrode 110 is lowered, thereby making it easier to inject and transport electrons regardless of the work function value of the lower electrode 110.
  • the n-doped layer 123 may be a single layer containing n-dopant as an impurity in a layer having electron transport characteristics.
  • n-dopant is not particularly limited.
  • n-dopants are lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba) ,
  • Metals such as lanthanum (La), cerium (Ce), neodymium (Nd), samarium (Sm), europium (Eu), terbium (Tb), dysprosium (Dy) and ytterbium (Yb), nitrides of the metals, the Carbonates of metals and complexes of the above metals.
  • n-dopant is Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , Cs 2 CO 3 , Rb 2 CO 3 , Ba 2 CO 3 , pyronin B, DMC (decamethyl Cobaltocene), BEDTTTF (bis (ethylenedithio) -tetrathiafulvalene), rhodamine B), TMBI (1,2,3-trimethyl-2-phenyl-2,3-dihydro-1H -Benzoimidazole), DMBI (1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzoimidazole), Cl-DMBI (dichlorophenyl-1,3-dimethyl-2,3-di Hydro-1H-benzoimidazole), N-DMBI (4- (1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl) -phenyl) -dimethyl-amine),
  • the first electron transport material a known electron transport material may be used.
  • the first electron transport material is for example B3PYMPM (bis-4,6- (3,5-di-3-pyridylphenyl) -2-methylpyrimidine), Bphen (4,7-diphenyl-1,10 -Phenanthroline), BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline), TPBi (2,2 ', 2 "-(1,3,5-benzenetriyl ) -Tris (1-phenyl-1H-benzimidazole), TPQ1 (tris-phenylquinoxalinz 1,3,5-tris [(3-phenyl-6-trifluoromethyl) quinoxalin-2-yl] Benzene), TPQ2 (tris-phenylquinoxalinz 1,3,5-tris [3- (4-tert-butylphenyl) -6-trifluoromethylquinoxalin-2-
  • the impurity layer 123 ' may be formed using a method such as vacuum deposition, sputtering, deposition polymerization, electron beam deposition, plasma deposition, chemical vapor deposition, sol-gel, inkjet printing, spin coating, offset printing, or the like.
  • the first electron transport layer 123 ′′ may be formed using a method such as vacuum deposition, spin coating, casting, or LB.
  • the impurity layer 123 ' may have a thickness of about 0.2 nm to about 10 nm, Preferably, the thickness may be 0.5 nm to 5 nm, and the thickness of the first electron transport layer 123 ′′ may be about 1 nm to about 100 nm, and preferably about 10 nm to about 50 nm.
  • the thickness of the impurity layer 123 'and the first electron transport layer 123 "satisfies the above range, the level satisfactory by the impurity layer 123' and the first electron transport layer 123" without a substantial increase in driving voltage. Electrons can be generated.
  • the n-doped layer 123 may be formed by doping the n-dopant to the electron transport material.
  • the electron transport material may be an electron transport material used for the first electron transport layer 123 ′′, and the n-dopant may be an n-dopant used for the impurity layer 123 ′.
  • the doping concentration may be about 0.1 wt% to 25 wt% based on the total weight of the n-doped layer 123.
  • the n-doped layer 123 may be formed using various methods such as vacuum deposition, spin coating, casting, or LB.
  • the thickness of the n-doped layer 123 may be about 1 nm to about 100 nm. When the thickness of the n-doped layer 123 satisfies the above range, electrons may be generated to a satisfactory level in the n-doped layer 123 without a substantial increase in driving voltage.
  • the organic light emitting layer 125 formed on the n-doped layer 123 may be formed using a known phosphorescent host and a phosphorescent dopant, or a known fluorescent host and a fluorescent dopant.
  • Alq3 tris (8-quinolinorate) aluminum
  • CBP 4,4'-N, N'-dicarbazole-biphenyl
  • mCP 1,3-bis (carba) Sol-9-yl) benzene
  • ADN 9,10-di-naphthalen-2-yl-anthracene
  • PVK poly (n-vinylcarbazole)
  • TCTA TPBI (1,3,5-tris ( N-phenylbenzimidazol-2-yl) benzene
  • TBADN 3-tert-butyl-9,10-di (naphth-2-yl) anthracene
  • E3, etc. may be used, but is not limited thereto. no.
  • PtOEP Pt (II) octaethylformine
  • Ir (piq) 3 tris (2-phenylisoquinoline) iridium (III)
  • Ir (Mphq) 3 tris (2-phenyl-4-methyl) as red dopant Quinoline) iridium (III)
  • Btp 2 Ir (acac) bis (2- (2'-benzothienyl) -pyridinato-N, C3 ') iridium (acetylacetonate)
  • DCM 4- ( Dicyanomethylene) -2-methyl-6- [p- (dimethylamino) styryl] -4H-pyran
  • DCJTB 4- (dicyanomethylene) -2-tert-butyl-6- (1,1, 7,7, -tetramethyljurrolidyl-9-enyl) -4H-pyran) and the like, but is not limited thereto.
  • Ir (ppy) 3 tris (2-phenylpyridine) iridium (III)
  • Ir (ppy) 2 acac)
  • bis (2-phenylpyridine) acetylaceto) iridium (III)
  • Ir as green dopant (mpyp) 3 tris (2- (4-tolyl) phenylpyridine) iridium (III)
  • C545T (10- (2-benzothiazolyl) -1,1,7,7-tetramethyl-2,3, 6,7, -tetrahydro-1H, 5H, 11H- [1] benzopyrano [6,7,8-ij] -quinolizine-11-one) and the like, but is not limited thereto.
  • FIrPic bis (3,5-difluoro-2- (2-pyridyl) phenyl- (2-carboxypyridyl) iridium (III)), (F 2 ppy) 2 Ir (tmd) ), Ir (dfppz) 3 , DPVBi (4,4'-bis (2,2'-diphenylethen-1-yl) biphenyl), DPAVBi (4,4'-bis (4-diphenylaminostar Aryl) biphenyl), or TBPe (2,5,8,11-tetra- tert -butyl perylene) and the like, but is not limited thereto.
  • the content of the dopant may be generally selected from about 0.01 to about 25 parts by weight based on about 100 parts by weight of the host, but is not limited thereto.
  • the organic light emitting layer 125 may have a thickness of about 10 nm to about 50 nm. When the thickness of the organic light emitting layer 125 satisfies the above range, the organic light emitting layer 125 may exhibit excellent light emission characteristics without substantially increasing the driving voltage.
  • NPB 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • TPD 4, 4'-bis [N- (3-methylphenyl) -N-phenylamino] biphenyl
  • MTDATA 4,4 ', 4 "-tris [(3-methylphenyl) phenylamino] triphenylamine
  • TAPC 1-bis (4- (N, N-di-p-tolylamino) phenyl) cyclohexane
  • TCTA 4- (9H-carbazol-9-yl) -N, N-bis [4- ( 9H-carbazol-9-yl) phenyl] -benzeneamine
  • CBP 9,9 '-[1,1'-biphenyl] -4,4'-diylbis-9H-carbazole
  • the hole transport layer 126 may be formed using various methods such as vacuum deposition, spin coating, casting, or LB.
  • the hole transport layer 126 may have a thickness of about 1 nm to about 100 nm. When the thickness of the hole transport layer 126 satisfies the above range, a satisfactory hole transport characteristic may be obtained without a substantial increase in driving voltage.
  • the hole injection layer 127 formed on the hole transport layer 126 is preferably formed of a layer made of a single undoped material.
  • the use of a layer of a single material can prevent damage to the organic layer while maintaining a satisfactory level of hole injection characteristics without a substantial increase in driving voltage.
  • the hole injection layer 127 may include a crystalline organic compound of Formula 1 below.
  • R is cyano (-CN), nitro (-NO 2 ), phenylsulfonyl (-SO2 (C6H5)), cyano or nitro substituted C 2 to C 5 alkenyl, and cyano or nitro It is selected from the group consisting of phenyl substituted with.
  • the crystalline organic compound of Formula 1 is preferably HAT-CN (hexaazatriphenylene hexacarbonitrile) of the following formula.
  • the crystalline organic compound in the hole injection layer 127 exhibits lattice, that is, crystallization, so that the hole injection layer 127 may have mechanical strength. Therefore, when the upper electrode 130 is formed by sputtering, the hole injection layer 127 may protect the lower organic layer from impact damage that may occur during the formation of the upper electrode 130. Thus, a transparent electrode can be used as the upper electrode.
  • the hole injection layer 127 may be formed using various methods such as vacuum deposition, spin coating, casting, or LB.
  • the hole injection layer 127 may have a thickness of about 1 nm to about 1,000 nm. When the thickness of the hole injection layer 127 satisfies the above range, a satisfactory hole injection characteristic may be obtained without a substantial increase in driving voltage, and the lower organic layer may be protected when the upper electrode 130 is formed.
  • the upper electrode 130 formed on the hole injection layer 127 may be formed as a transparent electrode for top emission.
  • the upper electrode 130 may be formed using a transparent metal oxide such as ITO (indium tin oxide), IZO (indium zinc oxide), ZnO (zinc oxide), or SnO 2 (tin oxide).
  • the capping layer 141 formed on the upper electrode 130 has a refractive index of less than 1.0 to 2.0.
  • the capping layer 141 having the refractive index in this range is formed on the upper electrode 130 to view the viewing angle in the conventional organic light emitting device. Accordingly, a wide viewing angle can be obtained by reducing a phenomenon in which the spectrum of light emitted is changed, and the light efficiency of the organic light emitting device is excellent.
  • the capping layer 141 since the capping layer 141 is formed on the upper electrode 130, the capping layer 141 preferably has a low light absorption, and preferably has a transmittance of more than 50% at a wavelength in the visible light region, and a transmittance of more than 80%. More preferred.
  • the material of the capping layer 141 is not particularly limited as long as it satisfies the conditions of the refractive index and the transmittance.
  • the material of the capping layer 141 may be at least one selected from the group consisting of fluoride compounds, specifically, LiF, MgF 2 , CaF 2, and ScF 3 .
  • the capping layer 141 may satisfy the low refractive index by including particles having a size smaller than the wavelength of light emitted from the organic layer. Examples of particles that may be used in the present embodiment include titanium dioxide (TiO 2 ).
  • Inorganic particles such as silica (SiO 2 ), alumina (Al 2 O 3 ), aluminum hydroxide (Al (OH) 3 ), aluminum, nickel, copper, silver and gold and silicon beads, styrene beads, PMMA (polymethylmetha Organic particles such as acrylate) beads, PU (polyurethane) beads, and PBMA (polybutyl methacrylate) beads.
  • the inorganic particles and / or the organic particles may be used together with the fluoride compound, or may be used together with a dielectric compound such as Alq 3 or a binder resin.
  • the capping layer 141 may be a single layer, the capping layer 141 may include two or more layers having different refractive indices so that the refractive index may gradually change while passing through the two or more layers.
  • the thickness of the capping layer 141 may be 20 to 120 nm.
  • the capping layer 141 may be formed to have a substantially similar thickness regardless of whether the organic light emitting diode emits red, green, or blue light.
  • the thickness of the capping layer 141 may be 70 to 90 nm, and the organic light emitting layer
  • the capping layer 141 may have a thickness of about 90 nm to about 120 nm.
  • the capping layer 141 may be formed using various methods such as vacuum deposition, spin coating, casting, or LB.
  • the organic light emitting diode 100 may include providing a substrate 101, forming a lower electrode 110 on the substrate 101, and an n-doped layer on the lower electrode 110. Forming an organic layer 120 including an organic light emitting layer 125, a hole transport layer 126, and a hole injection layer 127 including a crystalline compound, and a transparent upper electrode on the organic layer 120. Forming a capping layer 141 having a refractive index of less than 1.2 to 2 on the upper electrode 130.
  • the display device includes a substrate, an n-type thin film transistor formed on the substrate and including a source electrode, a drain electrode, an oxide semiconductor layer, a gate electrode, and a gate insulating layer; An insulation layer formed on the n-type thin film transistor; And an organic light emitting diode as described above formed on the insulating layer, wherein the lower electrode of the organic light emitting diode is electrically connected to one of the source electrode and the drain electrode.
  • the display device is excellent in luminous efficiency and may be usefully used in flexible organic light emitting display devices and lighting, which have recently emerged in the display field.
  • a transparent glass substrate was prepared, and aluminum (Al) was vacuum deposited on the glass substrate to form a lower electrode having a thickness of 100 nm.
  • Cs 2 CO 3 was vacuum deposited on the lower electrode to form an impurity layer having a thickness of 1 nm, and B3PYMPM was vacuum deposited on the impurity layer to form a first electron transport layer having a thickness of 35 nm.
  • TPBi was vacuum deposited on the first electron transport layer to form a second electron transport layer having a thickness of 15 nm.
  • MCP and FIrPic were co-deposited on the second electron transport layer at a weight ratio of 90:10 to form a light emitting layer having a thickness of 15 nm.
  • TAPC was vacuum-deposited on the emission layer to form a hole transport layer having a thickness of 20 nm.
  • HAT-CN was vacuum deposited on the hole transport layer to form a hole injection layer having a thickness of 50 nm, and then an upper electrode having a thickness of 60 nm was formed by sputter deposition of IZO.
  • a blue organic light emitting diode was manufactured according to the same method as Example 1 except that the capping layer of LiF was not formed on the IZO upper electrode.
  • a transparent glass substrate was prepared, and aluminum (Al) was vacuum deposited on the glass substrate to form a lower electrode having a thickness of 100 nm.
  • Cs 2 CO 3 was vacuum deposited on the lower electrode to form an impurity layer having a thickness of 1 nm, and B3PYMPM was vacuum deposited on the impurity layer to form a first electron transport layer having a thickness of 45 nm.
  • TPBi was vacuum deposited on the first electron transport layer to form a second electron transport layer having a thickness of 15 nm.
  • CBP and Ir (ppy) 3 were co-deposited on the second electron transport layer at a weight ratio of 92: 8 to form a light emitting layer having a thickness of 15 nm.
  • TAPC was vacuum deposited on the emission layer to form a hole transport layer having a thickness of 40 nm.
  • HAT-CN was vacuum deposited on the hole transport layer to form a hole injection layer having a thickness of 50 nm, and then an upper electrode having a thickness of 60 nm was formed by sputter deposition of IZO.
  • a green organic light emitting diode was manufactured according to the same method as Example 2 except for forming a capping layer of LiF on the IZO upper electrode.
  • a transparent glass substrate was prepared, and aluminum (Al) was vacuum deposited on the glass substrate to form a lower electrode having a thickness of 100 nm.
  • Cs 2 CO 3 was vacuum deposited on the lower electrode to form an impurity layer having a thickness of 1 nm, and B3PYMPM was vacuum deposited on the impurity layer to form a first electron transport layer having a thickness of 60 nm.
  • TPBi was vacuum deposited on the first electron transport layer to form a second electron transport layer having a thickness of 15 nm.
  • CBP and Ir (Mphq) 3 were co-deposited on the second electron transport layer at a weight ratio of 95: 5 to form a light emitting layer having a thickness of 15 nm.
  • TAPC was vacuum-deposited on the emission layer to form a hole transport layer having a thickness of 60 nm.
  • HAT-CN was vacuum deposited on the hole transport layer to form a hole injection layer having a thickness of 50 nm, and then an upper electrode having a thickness of 60 nm was formed by sputter deposition of IZO.
  • a red organic light emitting diode was manufactured according to the same method as Example 3 except that the capping layer of LiF was not formed on the IZO upper electrode.
  • the emission spectrum of the organic light emitting element was measured using a spectrophotometer while changing the viewing angle in steps from 0 ° to 60 °, and the color coordinate value was calculated from this measured value.
  • the emission spectra of Comparative Example 1 and Example 1 are shown in Figs. 2A and 2B, respectively, and their color coordinate values are also shown in Fig. 3.
  • the emission spectra of Comparative Example 2 and Example 2 are shown in Figs. 4A and 4B, respectively, and their color coordinate values are shown in Fig. 5.
  • the emission spectra of Comparative Example 3 and Example 3 are shown in Figs. 6A and 6B, respectively, and their color coordinate values are shown in Fig. 7.
  • the refractive index of the capping layer is high in FIG. 8, it can be seen that the light efficiency is good when the thickness is thin. Therefore, in order to find out whether the viewing angle can be improved even when the capping layer is made of a material having a high refractive index, the green organic light emitting device manufactured in Example 2 is used, but the material of the refractive index 2.4 is used and the thickness is 5 nm, With the capping layers of 10 nm, 15 nm and 20 nm, the emission spectrum of the organic light emitting device was obtained as a simulation result when the viewing angle was changed stepwise from 0 ° to 60 °, and the results were shown in FIGS.
  • the invention of the present application is applicable to an organic light emitting device and the field using the same.

Abstract

The present invention relates to an organic light emitting diode, and a display device and an illumination including the same, the organic light emitting diode comprising: a substrate; a lower electrode formed on the substrate; an n-doping layer formed on the lower electrode; an organic light emitting layer formed on the n-doping layer; an organic layer including a hole transport layer formed on the organic light emitting layer and a hole injection layer formed on the hole transport layer and having a crystalline organic compound; a transparent upper electrode formed on the organic layer; and a capping layer formed on the transparent upper electrode, wherein the capping layer has a refractive index of 1.0 inclusive to 2.0 exclusive.

Description

유기 발광 소자, 및 이를 포함하는 디스플레이 장치 및 조명Organic light emitting device, and display device and lighting including same
본 발명은 유기 발광 소자 및 이를 포함하는 디스플레이 장치 및 조명에 관한 것이다. 구체적으로, 본 발명은 시야각에 따른 색편차 문제를 해소한 유기 발광 소자, 및 이를 포함하는 디스플레이 장치 및 조명에 관한 것이다.The present invention relates to an organic light emitting device and a display device and lighting including the same. Specifically, the present invention relates to an organic light emitting device that solves the color deviation problem according to the viewing angle, and a display device and lighting including the same.
유기 발광 소자(organic light emitting diode)는 유기 발광 소자의 애노드 및 캐소드 간에 전압을 인가하면, 애노드로부터 주입된 정공이 정공수송층을 경유하여 발광층으로 이동하고 캐소드로부터 주입된 전자는 전자수송층을 경유하여 발광층으로 이동하고 상기 정공 및 전자(캐리어)는 발광층에서 재결합하여 엑시톤(exciton)을 생성하고 이 엑시톤이 여기 상태에서 기저상태로 변하면서 광이 방출되는 원리에 의해 구동되는 자발광형 소자이다. When an organic light emitting diode applies a voltage between an anode and a cathode of an organic light emitting diode, holes injected from the anode move to the light emitting layer via the hole transport layer, and electrons injected from the cathode pass through the electron transport layer. And the holes and electrons (carriers) are self-luminous devices driven by the principle of recombination in the light emitting layer to generate excitons, which emit light as the excitons change from the excited state to the ground state.
상기 유기 발광 소자는, CCFL(냉음극관)과 같은 종래의 광원에 비하여, 시야각이 넓고 콘트라스트가 우수할 뿐만 아니라, 응답시간이 빠르며, 휘도, 구동전압 및 응답속도 특성이 우수하고 다색화가 가능하다는 장점을 가진다.Compared with conventional light sources such as CCFLs (cold cathode tubes), the organic light emitting device has a wide viewing angle, excellent contrast, fast response time, excellent luminance, driving voltage and response speed, and multi-coloring. Has
그러나, 이러한 유기 발광 소자도 여전히 시야각에 따라 색편차가 발생하므로, 보다 넓은 시야각을 확보하기 위한 대책이 필요하다.However, such organic light emitting devices still have color deviations depending on the viewing angle, and therefore, measures for securing a wider viewing angle are necessary.
이에, 본 발명의 목적은 시야각에 따른 색 편차의 발생이 없는 유기 발광 소자, 및 이를 포함하는 디스플레이 장치 및 조명을 제공하는 것이다.Accordingly, an object of the present invention is to provide an organic light emitting device that does not generate color deviation according to the viewing angle, and a display device and lighting including the same.
상기한 본 발명의 목적을 달성하기 위하여 본 발명의 일 측면은 기판; 상기 기판 상에 형성된 하부 전극; 상기 하부 전극 상에 형성된 n-도핑층, 상기 n-도핑층 상에 형성된 유기발광층, 상기 유기발광층 상에 형성된 정공수송층 및 상기 정공수송층 상에 형성되고 결정성(crystalline) 유기화합물을 포함하는 정공주입층을 포함하는 유기층; 상기 유기층 상에 형성된 투명한 상부 전극; 및 상기 투명한 상부 전극 상에 형성된 캡핑층(capping layer)을 포함하고, 상기 캡핑층은 굴절률이 1.0 내지 2.0 미만인 유기 발광 소자를 제공한다.One aspect of the present invention to achieve the above object of the present invention; A lower electrode formed on the substrate; An n-doped layer formed on the lower electrode, an organic light emitting layer formed on the n-doped layer, a hole transport layer formed on the organic light emitting layer, and a hole injection layer formed on the hole transport layer and including a crystalline organic compound An organic layer comprising a layer; A transparent upper electrode formed on the organic layer; And a capping layer formed on the transparent upper electrode, wherein the capping layer provides an organic light emitting device having a refractive index of 1.0 to less than 2.0.
본 발명의 일 실시형태에 있어서, 상기 캡핑층의 굴절률은 1.2 내지 1.5일 수 있다.In one embodiment of the present invention, the refractive index of the capping layer may be 1.2 to 1.5.
본 발명의 추가 실시형태에 있어서, 상기 캡핑층은 플루오라이드(fluoride)계 화합물을 포함할 수 있다.In a further embodiment of the invention, the capping layer may comprise a fluoride compound.
본 발명의 추가 실시형태에 있어서, 상기 플루오라이드계 화합물은 LiF, MgF2, CaF2 및 ScF3로 이루어진 군에서 선택되는 1종 이상일 수 있다.In a further embodiment of the present invention, the fluoride compound may be at least one selected from the group consisting of LiF, MgF 2 , CaF 2 and ScF 3 .
본 발명의 추가 실시형태에 있어서, 상기 캡핑층은 유기층에서 발광되는 광의 파장보다 작은 크기의 입자를 포함할 수 있다.In a further embodiment of the invention, the capping layer may comprise particles of a size smaller than the wavelength of light emitted from the organic layer.
본 발명의 추가 실시형태에 있어서, 상기 캡핑층은 서로 다른 굴절률을 갖는 2 이상의 층을 포함할 수 있다.In a further embodiment of the present invention, the capping layer may comprise two or more layers having different refractive indices.
본 발명의 추가 실시형태에 있어서, 상기 캡핑층은 두께가 20 내지 120 nm일 수 있다.In a further embodiment of the invention, the capping layer may have a thickness of 20 to 120 nm.
본 발명의 추가 실시형태에 있어서, 상기 n-도핑층은 n-도펀트를 포함하고, 상기 n-도펀트가 Li2CO3, Na2CO3, K2CO3, Cs2CO3, Rb2CO3, Ba2CO3, 피로닌 B(pyronin B), DMC(데카메틸코발토센), BEDTTTF(비스(에틸렌디티오)-테트라티아풀발렌), 로다민B(rhodamin B), TMBI (1,2,3-트리메틸-2-페닐-2,3-디히드로-1H-벤조이미다졸), DMBI (1,3-디메틸-2-페닐-2,3-디히드로-1H-벤조이미다졸), Cl-DMBI (디클로로페닐-1,3-디메틸-2,3-디히드로-1H-벤조이미다졸), N-DMBI (4-(1,3-디메틸-2,3-디히드로-1H-벤조이미다졸-2-일)-페닐)-디메틸-아민), OH-DMBI (2-(1,3-디메틸-2,3-디히드로-1H-벤조이미다졸-2-일)-페놀), PTCDI-C13(N,N'-디트리데실페릴렌-3,4:9,10-테트라카르복실산 디이미드) 및 F-PTCDI-C4(N,N'-디부틸-1,7-디플루오로페릴렌-3,4:9,10- 테트라카르복실산 디이미드)로 이루어진 군에서 선택되는 1종 이상일 수 있다.In a further embodiment of the invention, the n-doped layer comprises an n-dopant, wherein the n-dopant is Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , Cs 2 CO 3 , Rb 2 CO 3 , Ba 2 CO 3 , pyronin B, DMC (decamethylcobaltocene), BEDTTTF (bis (ethylenedithio) -tetrathiafulvalene), rhodamine B (rhodamin B), TMBI (1 , 2,3-trimethyl-2-phenyl-2,3-dihydro-1H-benzoimidazole), DMBI (1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzoimidazole) , Cl-DMBI (dichlorophenyl-1,3-dimethyl-2,3-dihydro-1H-benzoimidazole), N-DMBI (4- (1,3-dimethyl-2,3-dihydro-1H- Benzoimidazol-2-yl) -phenyl) -dimethyl-amine), OH-DMBI (2- (1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl) -phenol) , PTCDI-C13 (N, N'-ditridecylperylene-3,4: 9,10-tetracarboxylic acid diimide) and F-PTCDI-C4 (N, N'-dibutyl-1,7- Difluoroperylene-3,4: 9,10-tetracarboxylic acid diimide) may be one or more selected from the group consisting of .
본 발명의 추가 실시형태에 있어서, 상기 n-도핑층은 n-도펀트를 포함하는 불순물층 및 상기 불순물층 상에 형성된 제1 전자수송물질을 포함하는 제1 전자수송층을 포함할 수 있다.In a further embodiment of the present invention, the n-doped layer may include an impurity layer including an n-dopant and a first electron transport layer including a first electron transport material formed on the impurity layer.
본 발명의 추가 실시형태에 있어서, 상기 결정성 유기 화합물은 하기 화학식 1로 표시될 수 있다.In a further embodiment of the present invention, the crystalline organic compound may be represented by the following formula (1).
[화학식 1][Formula 1]
Figure PCTKR2014010322-appb-I000001
Figure PCTKR2014010322-appb-I000001
상기 화학식 1에서 R은 시아노(-CN), 니트로(-NO2), 페닐술포닐(-SO2(C6H5)), 시아노 또는 니트로 치환된 C2 내지 C5 알케닐, 및 시아노 또는 니트로로 치환된 페닐로 이루어진 군에서 선택된다.In Formula 1, R is cyano (-CN), nitro (-NO 2 ), phenylsulfonyl (-SO 2 (C 6 H 5 )), cyano or nitro substituted C 2 to C 5 alkenyl, and It is selected from the group consisting of phenyl substituted with cyano or nitro.
본 발명의 추가 실시형태에 있어서, 상기 결정성 유기 화합물은 HAT-CN(헥사아자트리페닐렌 헥사카보니트릴)일 수 있다.In a further embodiment of the invention, the crystalline organic compound may be HAT-CN (hexaazatriphenylene hexacarbonitrile).
본 발명의 추가 실시형태에 있어서, 상기 상부 전극은 ITO(인듐주석산화물), IZO(인듐아연산화물), ZnO(아연 산화물) 또는 SnO2(주석산화물)을 포함할 수 있다.In a further embodiment of the invention, the upper electrode may comprise ITO (indium tin oxide), IZO (indium zinc oxide), ZnO (zinc oxide) or SnO 2 (tin oxide).
상기한 본 발명의 목적을 달성하기 위하여 본 발명의 다른 일 측면은 전술한 바와 같은 유기 발광 소자를 포함하는 디스플레이 장치를 제공한다.In order to achieve the above object of the present invention, another aspect of the present invention provides a display device including the organic light emitting device as described above.
상기한 본 발명의 목적을 달성하기 위하여 본 발명의 또 다른 일 측면은 전술한 바와 같은 유기 발광 소자를 포함하는 조명을 제공한다.In order to achieve the above object of the present invention, another aspect of the present invention provides an illumination including the organic light emitting device as described above.
본 발명의 유기 발광 소자는 캡핑층을 사용함으로써 시야각에 따른 색 편차, 즉, 시야각에 따라 발광하는 빛의 스펙트럼이 변하는 현상이 감소하여 넓은 시야각을 확보할 수 있다. 또한, 본 발명의 유기 발광 소자는 상기의 캡핑층을 사용하더라도 광효율이 우수하고, 캡핑층의 두께를 유기 발광 소자의 발광색에 따라 크게 변경시킬 필요 없이 적색 발광 소자, 녹색 발광 소자, 청색 발광 소자에서 거의 동일 내지 유사한 두께로 적용할 수 있어 공정이 간단하다.The organic light emitting device of the present invention can secure a wide viewing angle by reducing the color variation according to the viewing angle, that is, the phenomenon of changing the spectrum of light emitted according to the viewing angle. In addition, the organic light emitting device of the present invention has excellent light efficiency even when the capping layer is used, and the red light emitting device, the green light emitting device, and the blue light emitting device do not need to change the thickness of the capping layer according to the light emission color of the organic light emitting device. The process is simple as it can be applied in about the same to similar thicknesses.
도 1은 일 구현예에 따른 유기 발광 소자의 구조를 개략적으로 나타낸 단면도이다.1 is a schematic cross-sectional view of a structure of an organic light emitting diode according to an embodiment.
도 2a는 비교예 1의 캡핑층이 없는 청색 유기 발광 소자에서 0° ~ 60°의 시야각 변화에 따른 발광 스펙트럼을 나타낸다.FIG. 2A illustrates emission spectra according to viewing angles of 0 ° to 60 ° in a blue organic light emitting device without a capping layer of Comparative Example 1. FIG.
도 2b는 실시예 1의 캡핑층이 있는 청색 유기 발광 소자에서 0° ~ 60°의 시야각 변화에 따른 발광 스펙트럼을 나타낸다.FIG. 2B illustrates the emission spectrum according to the viewing angle change of 0 ° to 60 ° in the blue organic light emitting device having the capping layer of Example 1. FIG.
도 3은 상기 도 2a와 2b의 발광 스펙트럼으로부터 산출한 색좌표값을 나타낸다.3 shows color coordinate values calculated from the emission spectra of FIGS. 2A and 2B.
도 4a는 비교예 2의 캡핑층이 없는 녹색 유기 발광 소자에서 0° ~ 60°의 시야각 변화에 따른 발광 스펙트럼을 나타낸다.FIG. 4A illustrates an emission spectrum according to a change in viewing angle of 0 ° to 60 ° in the green organic light emitting device without the capping layer of Comparative Example 2.
도 4b는 실시예 2의 캡핑층이 있는 녹색 유기 발광 소자에서 0° ~ 60°의 시야각 변화에 따른 발광 스펙트럼을 나타낸다.4B illustrates emission spectra according to viewing angles of 0 ° to 60 ° in the green organic light emitting device having the capping layer of Example 2. FIG.
도 5는 상기 도 4a와 4b의 발광 스펙트럼으로부터 산출한 색좌표값을 나타낸다.FIG. 5 shows color coordinate values calculated from the emission spectra of FIGS. 4A and 4B.
도 6a는 비교예 3의 캡핑층이 없는 적색 유기 발광 소자에서 0° ~ 60°의 시야각 변화에 따른 발광 스펙트럼을 나타낸다.FIG. 6A illustrates an emission spectrum according to a change in viewing angle of 0 ° to 60 ° in a red organic light emitting device without a capping layer of Comparative Example 3.
도 6b는 실시예 3의 캡핑층이 있는 적색 유기 발광 소자에서 0° ~ 60°의 시야각 변화에 따른 발광 스펙트럼을 나타낸다.FIG. 6B illustrates emission spectra according to viewing angles of 0 ° to 60 ° in the red organic light emitting diode having the capping layer of Example 3. FIG.
도 7는 상기 도 6a와 6b의 발광 스펙트럼으로부터 산출한 색좌표값을 나타낸다.FIG. 7 shows color coordinate values calculated from the emission spectra of FIGS. 6A and 6B.
도 8은 캡핑층의 굴절률과 두께에 따른 유기 발광 소자의 광효율(양자 수율)의 변화를 나타낸다.8 illustrates a change in light efficiency (quantum yield) of the organic light emitting device according to the refractive index and the thickness of the capping layer.
도 9a, 9b, 9c 및 9d는 각각 두께가 5 nm, 10 nm, 15 nm 및 20 nm인 캡핑층에 굴절률 2.4의 고굴절률 물질을 사용한 녹색 유기 발광 소자의 0° ~ 60°의 시야각 변화에 따른 발광 스펙트럼을 나타낸다.9A, 9B, 9C, and 9D illustrate the change in viewing angle of 0 ° to 60 ° of a green organic light emitting diode using a high refractive index material having a refractive index of 2.4 in a capping layer having a thickness of 5 nm, 10 nm, 15 nm, and 20 nm, respectively. The emission spectrum is shown.
도 10은 도 9a 내지 9d의 발광 스펙트럼 및 도 4b의 발광 스펙트럼으로부터 산출한 색좌표값을 나타낸다.10 shows color coordinate values calculated from the emission spectra of FIGS. 9A to 9D and the emission spectrum of FIG. 4B.
이하에서 첨부된 도면을 참조하여 본 발명의 바람직한 구현예들을 상세히 설명한다. 그러나, 여기서 소개되는 구현예들은 본원에 개시된 내용이 당업자에게 충분히 전달될 수 있도록 하기 위해 제공되는 것일 뿐, 본 발명이 해당 구현예들에 한정되어서는 아니되며, 다른 형태로 구체화될 수도 있다. 도면에서 동일한 참조번호는 동일한 요소를 지칭한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the embodiments introduced herein are provided only to ensure that the contents disclosed herein can be sufficiently delivered to those skilled in the art, and the present invention is not limited to the embodiments, and may be embodied in other forms. Like reference numerals in the drawings refer to like elements.
도 1은 일 구현예에 따른 유기 발광 소자(100)의 구조를 개략적으로 나타낸 단면도이다. 1 is a cross-sectional view schematically showing the structure of an organic light emitting device 100 according to an embodiment.
도 1을 참조하면, 유기 발광 소자(100)는 기판(101), 상기 기판(101) 상에 형성된 하부전극(110), 상기 하부전극(110) 상에 형성된 유기층(120), 상기 하부전극(110)과 대향하며 상기 유기층(120) 상에 형성된 투명한 상부전극(130) 및 상기 상부전극(130) 상에 형성된 캡핑층(141)을 포함한다. Referring to FIG. 1, the organic light emitting diode 100 may include a substrate 101, a lower electrode 110 formed on the substrate 101, an organic layer 120 formed on the lower electrode 110, and the lower electrode ( The transparent upper electrode 130 formed on the organic layer 120 and facing the 110 may include a capping layer 141 formed on the upper electrode 130.
상기 유기층(120)은 n-도핑층(123), 상기 n-도핑층(123) 상에 형성된 유기발광층(125), 상기 유기발광층(125) 상에 형성된 정공수송층(126) 및 상기 정공수송층(126) 상에 형성되고 결정성(crystalline) 유기화합물을 포함하는 정공주입층(127)을 포함한다. 선택적으로 하부전극(110)과 n-도핑(123) 사이에 전자주입층(미도시)이 더 형성될 수 있다.The organic layer 120 includes an n-doped layer 123, an organic light emitting layer 125 formed on the n-doped layer 123, a hole transport layer 126 formed on the organic light emitting layer 125, and the hole transport layer ( 126 and a hole injection layer 127 formed on the crystalline organic compound. Optionally, an electron injection layer (not shown) may be further formed between the lower electrode 110 and the n-doped 123.
상기 기판(101)으로는 기계적 강도, 열적 안정성, 투명성, 표면 평활성, 취급용이성 및 방수성이 우수한 유리 기판 또는 플라스틱 기판을 사용할 수 있으며,예를 들면, 기판(101)으로는 SiO2를 주성분으로 하는 투명한 유리 재질 기판을 사용할 수 있다.As the substrate 101, a glass substrate or a plastic substrate having excellent mechanical strength, thermal stability, transparency, surface smoothness, ease of handling, and waterproofness may be used. For example, the substrate 101 may include SiO 2 as a main component. Transparent glass substrates can be used.
상기 기판(101) 상에 형성된 하부전극(110)은 구동 트랜지스터와 전기적으로 연결되어 구동 트랜지스터로부터 구동 전류를 공급 받을 수 있다. 하부전극(110)은 반사율이 높은 금속으로 형성될 수 있으며, 일 함수가 4.5 eV보다 작은 물질을 사용하는 것이 바람직하다. 구체적인 예로는 알루미늄, 칼슘, 마그네슘, 은, 세슘 (Cs), 리튬 또는 이들을 포함하는 알로이 (alloy)들이 사용될 수 있다. 또는, 유기 발광 소자가 하기 설명한 바와 같은 n-도핑층을 구비함에 따라, 하부 전극(110)은 ITO(인듐주석산화물), IZO(인듐아연산화물) 또는 ZnO(아연 산화물) 같은 투명한 산화물을 사용할 수 있고, 이에 따라 하부 전극(110)과 상부 전극(130)의 양쪽으로 동시에 발광을 유도할 수 있다. 하부전극(110)은 공지된 다양한 방법, 예를 들면, 증착법, 스퍼터링법, 스핀코팅법 또는 블레이드코팅법 등을 이용하여 형성될 수 있다. The lower electrode 110 formed on the substrate 101 may be electrically connected to the driving transistor to receive a driving current from the driving transistor. The lower electrode 110 may be formed of a metal having high reflectance, and it is preferable to use a material having a work function smaller than 4.5 eV. As a specific example, aluminum, calcium, magnesium, silver, cesium (Cs), lithium or alloys containing them may be used. Alternatively, as the organic light emitting device has an n-doped layer as described below, the lower electrode 110 may use a transparent oxide such as ITO (indium tin oxide), IZO (indium zinc oxide) or ZnO (zinc oxide). As a result, light emission may be induced simultaneously to both the lower electrode 110 and the upper electrode 130. The lower electrode 110 may be formed using various known methods, for example, a deposition method, a sputtering method, a spin coating method, or a blade coating method.
상기 하부전극(110) 상에 형성된 n-도핑층(123)은 소자에 전압이 인가되면 전자를 생성하는 층으로서, 이 전자가 유기발광층(125)으로 주입 및 수송될 수 있다. 하부전극(230)에 (-) 전압을 인가하고 상부전극(130)에 (+) 전극을 인가하면, n-도핑층(123)과 하부전극(110)의 계면의 에너지 장벽이 낮아져서 하부전극(110)의 일함수 값에 상관없이 전자의 주입 및 수송이 용이해 질 수 있다. The n-doped layer 123 formed on the lower electrode 110 is a layer that generates electrons when a voltage is applied to the device, and the electrons may be injected and transported into the organic light emitting layer 125. When a negative voltage is applied to the lower electrode 230 and a positive electrode is applied to the upper electrode 130, the energy barrier at the interface between the n-doped layer 123 and the lower electrode 110 is lowered, thereby lowering the lower electrode ( Irrespective of the work function value of 110, the injection and transport of electrons can be facilitated.
상기 n-도핑층(123)은 불순물인 n-도펀트를 포함하는 불순물층(123’)에 제1 전자수송물질을 포함하는 제1 전자수송층(123”)이 순서대로 적층된 이중층의 형태일 수 있다. 이 경우 불순물층(123')과 하부전극(110) 사이 계면의 에너지 장벽이 낮아져 하부전극(110)의 일함수 값에 상관없이 전자의 주입 및 수송이 용이해 질 수 있다. 또는 선택적으로 상기 n-도핑층(123)은 전자수송 특성을 가지는 층에 n-도펀트가 불순물로 함유된 단일층일 수 있다.The n-doped layer 123 may be in the form of a double layer in which a first electron transport layer 123 ″ including a first electron transport material is sequentially stacked on an impurity layer 123 ′ including an n-dopant as an impurity. have. In this case, the energy barrier at the interface between the impurity layer 123 ′ and the lower electrode 110 is lowered, thereby making it easier to inject and transport electrons regardless of the work function value of the lower electrode 110. Alternatively, the n-doped layer 123 may be a single layer containing n-dopant as an impurity in a layer having electron transport characteristics.
n-도펀트는 특별히 한정되지 않는다. n-도펀트의 예로는 리튬(Li), 나트륨(Na), 칼륨(K), 루비듐(Rb), 세슘(Cs), 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 란타늄(La), 세륨(Ce), 네오디뮴(Nd), 사마륨(Sm), 유로퓸(Eu), 테르븀(Tb), 디스프로슘(Dy) 및 이테르븀(Yb)과 같은 금속, 상기 금속의 질화물, 상기 금속의 탄산염, 및 상기 금속의 착물을 들 수 있다. 바람직하게는 n-도펀트로는 Li2CO3, Na2CO3, K2CO3, Cs2CO3, Rb2CO3, Ba2CO3, 피로닌 B(pyronin B), DMC(데카메틸코발토센), BEDTTTF(비스(에틸렌디티오)-테트라티아풀발렌), 로다민B(rhodamin B), TMBI (1,2,3-트리메틸-2-페닐-2,3-디히드로-1H-벤조이미다졸), DMBI (1,3-디메틸-2-페닐-2,3-디히드로-1H-벤조이미다졸), Cl-DMBI (디클로로페닐-1,3-디메틸-2,3-디히드로-1H-벤조이미다졸), N-DMBI (4-(1,3-디메틸-2,3-디히드로-1H-벤조이미다졸-2-일)-페닐)-디메틸-아민), OH-DMBI (2-(1,3-디메틸-2,3-디히드로-1H-벤조이미다졸-2-일)-페놀), PTCDI-C13(N,N'-디트리데실페릴렌-3,4:9,10-테트라카르복실산 디이미드) 및 F-PTCDI-C4(N,N'-디부틸-1,7-디플루오로페릴렌-3,4:9,10- 테트라카르복실산 디이미드)로 이루어진 군에서 선택되는 1종 이상을 사용할 수 있다.The n-dopant is not particularly limited. Examples of n-dopants are lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba) , Metals such as lanthanum (La), cerium (Ce), neodymium (Nd), samarium (Sm), europium (Eu), terbium (Tb), dysprosium (Dy) and ytterbium (Yb), nitrides of the metals, the Carbonates of metals and complexes of the above metals. Preferably, n-dopant is Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , Cs 2 CO 3 , Rb 2 CO 3 , Ba 2 CO 3 , pyronin B, DMC (decamethyl Cobaltocene), BEDTTTF (bis (ethylenedithio) -tetrathiafulvalene), rhodamine B), TMBI (1,2,3-trimethyl-2-phenyl-2,3-dihydro-1H -Benzoimidazole), DMBI (1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzoimidazole), Cl-DMBI (dichlorophenyl-1,3-dimethyl-2,3-di Hydro-1H-benzoimidazole), N-DMBI (4- (1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl) -phenyl) -dimethyl-amine), OH- DMBI (2- (1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl) -phenol), PTCDI-C13 (N, N'-ditridecylperylene-3,4 : 9,10-tetracarboxylic acid diimide) and F-PTCDI-C4 (N, N'-dibutyl-1,7-difluoroperylene-3,4: 9,10-tetracarboxylic acid di Mead) may be used one or more selected from the group consisting of.
제1전자수송물질로는 공지의 전자수송성 물질을 사용할 수 있다. 제1전자수송물질은 예를 들어 B3PYMPM(비스-4,6-(3,5-디-3-피리딜페닐)-2-메틸피리미딘), Bphen(4,7-디페닐-1,10-페난트롤린), BCP(2,9-디메틸-4,7-디페닐-1,10-페난트롤린), TPBi(2,2',2"-(1,3,5-벤젠트리일)-트리스(1-페닐-1H-벤즈이미다졸), TPQ1(트리스-페닐퀴녹살린즈 1,3,5-트리스[(3-페닐-6-트리플루오로메틸)퀴녹살린-2-일]벤젠), TPQ2(트리스-페닐퀴녹살린즈 1,3,5-트리스[3-(4-tert-부틸페닐)-6-트리플루오로메틸퀴녹살린-2-일]벤젠), TAZ(3-(4-비페닐릴)-4-페닐-5-터트-부틸페닐-1,2,4-트리아졸), NTAZ(4-(나프탈렌-1-일)-3,5-디페닐-4H-1,2,4-트리아졸), tBu-PBD(2-(4-비페닐릴)-5-(4-tert-부틸페닐)-1,3,4-옥사디아졸), BeBq2(10-벤조[h]퀴놀리놀-베릴륨), E3(터플루오렌) 또는 이들 중 2종 이상을 포함할 수 있으나, 이에 한정되는 것은 아니다.As the first electron transport material, a known electron transport material may be used. The first electron transport material is for example B3PYMPM (bis-4,6- (3,5-di-3-pyridylphenyl) -2-methylpyrimidine), Bphen (4,7-diphenyl-1,10 -Phenanthroline), BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline), TPBi (2,2 ', 2 "-(1,3,5-benzenetriyl ) -Tris (1-phenyl-1H-benzimidazole), TPQ1 (tris-phenylquinoxalinz 1,3,5-tris [(3-phenyl-6-trifluoromethyl) quinoxalin-2-yl] Benzene), TPQ2 (tris-phenylquinoxalinz 1,3,5-tris [3- (4-tert-butylphenyl) -6-trifluoromethylquinoxalin-2-yl] benzene), TAZ (3- (4-biphenylyl) -4-phenyl-5-tert-butylphenyl-1,2,4-triazole), NTAZ (4- (naphthalen-1-yl) -3,5-diphenyl-4H- 1,2,4-triazole), tBu-PBD (2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole), BeBq2 (10- Benzo [h] quinolinol-beryllium), E3 (terfluorene) or two or more thereof, but are not limited thereto.
불순물층(123')은 진공증착법, 스퍼터링법, 증착 중합법, 전자빔 증착법, 플라즈마 증착법, 화학기상 증착법, 졸젤법, 잉크젯 인쇄법, 스핀 코팅법, 오프셋 인쇄법 등의 방법을 사용하여 형성할 수 있고, 제1전자수송층(123")은 진공증착법, 스핀 코팅법, 캐스트법 또는 LB법 등과 같은 방법을 이용하여 형성할 수 있다. 불순물층(123')의 두께는 약 0.2 nm 내지 약 10nm, 바람직하게는 0.5 nm 내지 5 nm일 수 있고, 제1전자수송층(123")의 두께는 약 1 nm 내지 약 100 nm, 바람직하게는 약 10 nm 내지 약 50 nm일 수 있다. 불순물층(123') 및 제1전자수송층(123")의 두께가 상기 범위를 만족할 경우, 실질적인 구동 전압의 상승 없이 불순물층(123') 및 제1전자수송층(123")에 의해 만족스러운 수준으로 전자가 생성될 수 있다. The impurity layer 123 'may be formed using a method such as vacuum deposition, sputtering, deposition polymerization, electron beam deposition, plasma deposition, chemical vapor deposition, sol-gel, inkjet printing, spin coating, offset printing, or the like. The first electron transport layer 123 ″ may be formed using a method such as vacuum deposition, spin coating, casting, or LB. The impurity layer 123 'may have a thickness of about 0.2 nm to about 10 nm, Preferably, the thickness may be 0.5 nm to 5 nm, and the thickness of the first electron transport layer 123 ″ may be about 1 nm to about 100 nm, and preferably about 10 nm to about 50 nm. When the thickness of the impurity layer 123 'and the first electron transport layer 123 "satisfies the above range, the level satisfactory by the impurity layer 123' and the first electron transport layer 123" without a substantial increase in driving voltage. Electrons can be generated.
선택적으로 n-도핑층(123)은 전자수송물질에 n-도펀트를 도핑하여 형성할 수 있다. 전자수송물질은 상기 제1전자수송층(123")에 사용하는 전자수송물질을 사용할 수 있고, n-도펀트는 불순물층(123')에 사용하는 n-도펀트를 사용할 수 있다. 이때 n-도펀트의 도핑 농도는 n-도핑층(123)의 총중량 대비 약 0.1중량% 내지 25중량%일 수 있다.Optionally, the n-doped layer 123 may be formed by doping the n-dopant to the electron transport material. The electron transport material may be an electron transport material used for the first electron transport layer 123 ″, and the n-dopant may be an n-dopant used for the impurity layer 123 ′. The doping concentration may be about 0.1 wt% to 25 wt% based on the total weight of the n-doped layer 123.
n-도핑층(123)의 형성은 진공증착법, 스핀코팅법, 캐스트법 또는 LB법 등과 같은 다양한 방법을 이용할 수 있다. n-도핑층(123)의 두께는 약 1 nm 내지 약 100 nm일 수 있다. n-도핑층(123)의 두께가 상기 범위를 만족할 경우, 실질적인 구동 전압의 상승 없이 n-도핑층(123) 내에서 만족스러운 수준으로 전자가 생성될 수 있다. The n-doped layer 123 may be formed using various methods such as vacuum deposition, spin coating, casting, or LB. The thickness of the n-doped layer 123 may be about 1 nm to about 100 nm. When the thickness of the n-doped layer 123 satisfies the above range, electrons may be generated to a satisfactory level in the n-doped layer 123 without a substantial increase in driving voltage.
n-도핑층(123) 상에 형성된 유기발광층(125)은 공지의 인광 호스트와 인광 도펀트, 또는 공지의 형광 호스트와 형광 도펀트를 사용하여 형성할 수 있다. The organic light emitting layer 125 formed on the n-doped layer 123 may be formed using a known phosphorescent host and a phosphorescent dopant, or a known fluorescent host and a fluorescent dopant.
공지의 호스트로서, 예를 들어, Alq3(트리스(8-퀴놀리노레이트)알루미늄), CBP(4,4'-N,N'-디카바졸-비페닐), mCP (1,3-비스(카바졸-9-일)벤젠), ADN(9,10-디-나프탈렌-2-일-안트라센), PVK(폴리(n-비닐카바졸)), TCTA, TPBI(1,3,5-트리스(N-페닐벤즈이미다졸-2-일)벤젠), TBADN(3-터트-부틸-9,10-디(나프트-2-일) 안트라센), 또는 E3 등을 사용할 수 있으나, 이에 한정되는 것은 아니다. As the known host, for example, Alq3 (tris (8-quinolinorate) aluminum), CBP (4,4'-N, N'-dicarbazole-biphenyl), mCP (1,3-bis (carba) Sol-9-yl) benzene), ADN (9,10-di-naphthalen-2-yl-anthracene), PVK (poly (n-vinylcarbazole)), TCTA, TPBI (1,3,5-tris ( N-phenylbenzimidazol-2-yl) benzene), TBADN (3-tert-butyl-9,10-di (naphth-2-yl) anthracene), or E3, etc. may be used, but is not limited thereto. no.
적색 도펀트로서 PtOEP(Pt(II) 옥타에틸포르핀), Ir(piq)3(트리스(2-페닐이소퀴놀린)이리듐(III)), Ir(Mphq)3 (트리스(2-페닐-4-메틸퀴놀린)이리듐(III)), Btp2Ir(acac)(비스(2-(2'-벤조티에닐)-피리디나토-N,C3')이리듐(아세틸아세토네이트)), DCM(4-(디시아노메틸렌)-2-메틸-6-[p-(디메틸아미노)스티릴]-4H-피란) 또는 DCJTB(4-(디시아노메틸렌)-2-터트-부틸-6-(1,1,7,7,-테트라메틸주로리딜-9-에닐)-4H-피란) 등을 이용할 수 있으나, 이에 한정되는 것은 아니다.PtOEP (Pt (II) octaethylformine), Ir (piq) 3 (tris (2-phenylisoquinoline) iridium (III)), Ir (Mphq) 3 (tris (2-phenyl-4-methyl) as red dopant Quinoline) iridium (III)), Btp 2 Ir (acac) (bis (2- (2'-benzothienyl) -pyridinato-N, C3 ') iridium (acetylacetonate)), DCM (4- ( Dicyanomethylene) -2-methyl-6- [p- (dimethylamino) styryl] -4H-pyran) or DCJTB (4- (dicyanomethylene) -2-tert-butyl-6- (1,1, 7,7, -tetramethyljurrolidyl-9-enyl) -4H-pyran) and the like, but is not limited thereto.
녹색 도펀트로서 Ir(ppy)3 (트리스(2-페닐피리딘)이리듐(III)), Ir(ppy)2(acac)(비스(2-페닐피리딘)(아세틸아세토) 이리듐(III)), 또는 Ir(mpyp)3(트리스(2-(4-톨일)페닐피리딘) 이리듐(III)), C545T(10-(2-벤조티아졸일)-1,1,7,7-테트라메틸-2,3,6,7,-테트라하이드로-1H,5H,11H-[1]벤조피라노 [6,7,8-ij]-퀴놀리진-11-온) 등을 이용할 수 있으나, 이에 한정되는 것은 아니다.Ir (ppy) 3 (tris (2-phenylpyridine) iridium (III)), Ir (ppy) 2 (acac) (bis (2-phenylpyridine) (acetylaceto) iridium (III)), or Ir as green dopant (mpyp) 3 (tris (2- (4-tolyl) phenylpyridine) iridium (III)), C545T (10- (2-benzothiazolyl) -1,1,7,7-tetramethyl-2,3, 6,7, -tetrahydro-1H, 5H, 11H- [1] benzopyrano [6,7,8-ij] -quinolizine-11-one) and the like, but is not limited thereto.
또한, 청색 도펀트로서, FIrPic(비스(3,5-디플루오로-2-(2-피리딜)페닐-(2-카르복시피리딜)이리듐(III)), (F2ppy)2Ir(tmd), Ir(dfppz)3, DPVBi(4,4'-비스(2,2'-디페닐에텐-1-일)비페닐), DPAVBi(4,4'-비스(4-디페닐아미노스타릴) 비페닐), 또는 TBPe(2,5,8,11-테트라-tert-부틸 페릴렌) 등을 이용할 수 있으나, 이에 한정되는 것은 아니다. Further, as a blue dopant, FIrPic (bis (3,5-difluoro-2- (2-pyridyl) phenyl- (2-carboxypyridyl) iridium (III)), (F 2 ppy) 2 Ir (tmd) ), Ir (dfppz) 3 , DPVBi (4,4'-bis (2,2'-diphenylethen-1-yl) biphenyl), DPAVBi (4,4'-bis (4-diphenylaminostar Aryl) biphenyl), or TBPe (2,5,8,11-tetra- tert -butyl perylene) and the like, but is not limited thereto.
유기발광층(125)이 호스트 및 도펀트를 포함할 경우, 도펀트의 함량은 통상적으로 호스트 약 100 중량부를 기준으로 하여 약 0.01 내지 약 25 중량부의 범위에서 선택할 수 있으나, 이에 한정되는 것은 아니다.When the organic light emitting layer 125 includes a host and a dopant, the content of the dopant may be generally selected from about 0.01 to about 25 parts by weight based on about 100 parts by weight of the host, but is not limited thereto.
유기발광층(125)의 두께는 약 10 nm 내지 약 50 nm일 수 있다. 유기발광층(125)의 두께가 상기 범위를 만족할 경우 실질적인 구동 전압의 상승 없이 우수한 발광 특성을 나타낼 수 있다. The organic light emitting layer 125 may have a thickness of about 10 nm to about 50 nm. When the thickness of the organic light emitting layer 125 satisfies the above range, the organic light emitting layer 125 may exhibit excellent light emission characteristics without substantially increasing the driving voltage.
유기발광층(125) 상에 형성된 정공수송층(126)을 형성하는 재료로는 NPB(4,4'-비스[N-(1-나프틸)-N-페닐아미노]바이페닐), TPD(4,4'-비스[N-(3-메틸페닐)-N-페닐아미노]바이페닐), MTDATA(4,4',4"-트리스[(3-메틸페닐)페닐아미노]트라이페닐아민), TAPC(1,1-비스(4-(N,N-다이-p-톨릴아미노)페닐)사이클로헥세인), TCTA(4-(9H-카바졸-9-일)-N,N-비스[4-(9H-카바졸-9-일)페닐]-벤젠아민), CBP(9,9'-[1,1'-바이페닐]-4,4'-다이일비스-9H-카바졸) 및 2-TNATA(4,4',4"-트리스(N-(2-나프틸)-N-페닐아미노) 트리페닐아민) 중 적어도 1종을 들 수 있다. As a material for forming the hole transport layer 126 formed on the organic light emitting layer 125, NPB (4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl), TPD (4, 4'-bis [N- (3-methylphenyl) -N-phenylamino] biphenyl), MTDATA (4,4 ', 4 "-tris [(3-methylphenyl) phenylamino] triphenylamine), TAPC (1 , 1-bis (4- (N, N-di-p-tolylamino) phenyl) cyclohexane), TCTA (4- (9H-carbazol-9-yl) -N, N-bis [4- ( 9H-carbazol-9-yl) phenyl] -benzeneamine), CBP (9,9 '-[1,1'-biphenyl] -4,4'-diylbis-9H-carbazole) and 2- At least 1 sort (s) of TNATA (4,4 ', 4 "-tris (N- (2-naphthyl) -N-phenylamino) triphenylamine) is mentioned.
정공수송층(126)의 형성은 진공증착법, 스핀코팅법, 캐스트법 또는 LB법 등과 같은 다양한 방법을 이용할 수 있다. 정공수송층(126)의 두께는 약 1 nm 내지 약 100 nm일 수 있다. 정공수송층(126)의 두께가 상기 범위를 만족할 경우, 실질적인 구동 전압의 상승 없이 만족스러운 정도의 정공 수송 특성을 얻을 수 있다. The hole transport layer 126 may be formed using various methods such as vacuum deposition, spin coating, casting, or LB. The hole transport layer 126 may have a thickness of about 1 nm to about 100 nm. When the thickness of the hole transport layer 126 satisfies the above range, a satisfactory hole transport characteristic may be obtained without a substantial increase in driving voltage.
정공수송층(126) 상에 형성된 정공주입층(127)은 도핑하지 않은 단일 물질로 이루어진 층으로 형성하는 것이 바람직하다. 단일 물질로 이루어진 층을 사용할 경우, 실질적인 구동 전압의 상승 없이 만족스러운 수준의 정공 주입 특성을 가지면서 유기층의 손상도 방지할 수 있다. The hole injection layer 127 formed on the hole transport layer 126 is preferably formed of a layer made of a single undoped material. The use of a layer of a single material can prevent damage to the organic layer while maintaining a satisfactory level of hole injection characteristics without a substantial increase in driving voltage.
정공주입층(127)은 하기 화학식 1의 결정성(crystalline) 유기화합물을 포함할 수 있다.The hole injection layer 127 may include a crystalline organic compound of Formula 1 below.
[화학식 1][Formula 1]
Figure PCTKR2014010322-appb-I000002
Figure PCTKR2014010322-appb-I000002
상기 화학식 1에서 R은 시아노(-CN), 니트로(-NO2), 페닐술포닐(-SO2(C6H5)), 시아노 또는 니트로 치환된 C2 내지 C5 알케닐, 및 시아노 또는 니트로로 치환된 페닐로 이루어진 군에서 선택된다.In Formula 1, R is cyano (-CN), nitro (-NO 2 ), phenylsulfonyl (-SO2 (C6H5)), cyano or nitro substituted C 2 to C 5 alkenyl, and cyano or nitro It is selected from the group consisting of phenyl substituted with.
상기 화학식 1의 결정성(crystalline) 유기화합물은 바람직하게는 하기 화학식의 HAT-CN(헥사아자트리페닐렌 헥사카보니트릴)이다.The crystalline organic compound of Formula 1 is preferably HAT-CN (hexaazatriphenylene hexacarbonitrile) of the following formula.
Figure PCTKR2014010322-appb-I000003
Figure PCTKR2014010322-appb-I000003
정공주입층(127) 내의 결정성 유기화합물은 격자화, 즉 결정화되는 특성을 나타내어 정공주입층(127)이 기계적 강도를 가질 수 있다. 따라서 스퍼터링에 의하여 상부전극(130)을 형성하는 경우, 정공주입층(127)이 상부전극(130)의 형성 과정에서 발생할 수 있는 충격 손상으로부터 하부의 유기층을 보호할 수 있다. 이에 따라, 상부전극으로서 투명한 전극을 사용할 수 있다.The crystalline organic compound in the hole injection layer 127 exhibits lattice, that is, crystallization, so that the hole injection layer 127 may have mechanical strength. Therefore, when the upper electrode 130 is formed by sputtering, the hole injection layer 127 may protect the lower organic layer from impact damage that may occur during the formation of the upper electrode 130. Thus, a transparent electrode can be used as the upper electrode.
정공주입층(127)의 형성은 진공증착법, 스핀코팅법, 캐스트법 또는 LB법 등과 같은 다양한 방법을 이용할 수 있다. 정공주입층(127)의 두께는 약 1 nm 내지 약 1,000 nm일 수 있다. 정공주입층(127)의 두께가 상기 범위를 만족할 경우, 실질적인 구동 전압의 상승 없이 만족스러운 정도의 정공 주입 특성을 얻을 수 있고, 상부전극(130) 형성시 하부의 유기층을 보호할 수 있다.The hole injection layer 127 may be formed using various methods such as vacuum deposition, spin coating, casting, or LB. The hole injection layer 127 may have a thickness of about 1 nm to about 1,000 nm. When the thickness of the hole injection layer 127 satisfies the above range, a satisfactory hole injection characteristic may be obtained without a substantial increase in driving voltage, and the lower organic layer may be protected when the upper electrode 130 is formed.
정공주입층(127) 상에 형성된 상부전극(130)은 전면발광을 위해 투명 전극으로 형성할 수 있다. 예를 들면, 상부전극(130)은 ITO(인듐주석산화물), IZO(인듐아연산화물), ZnO(아연 산화물) 또는 SnO2(주석산화물) 같은 투명한 금속 산화물을 이용하여 형성할 수 있다.The upper electrode 130 formed on the hole injection layer 127 may be formed as a transparent electrode for top emission. For example, the upper electrode 130 may be formed using a transparent metal oxide such as ITO (indium tin oxide), IZO (indium zinc oxide), ZnO (zinc oxide), or SnO 2 (tin oxide).
상부전극(130) 상에 형성된 캡핑층(141)은 굴절률이 1.0 내지 2.0 미만인 것으로서, 이러한 범위의 굴절률을 갖는 캡핑층(141)을 상부전극(130)상에 형성시킴으로써 종래의 유기발광소자에서 시야각에 따라 발광하는 빛의 스펙트럼이 변하는 현상을 감소시켜 넓은 시야각을 확보할 수 있을 뿐만 아니라 유기 발광 소자의 광효율도 우수하다. 상기 굴절률은 낮을수록 바람직하다. 구체적으로, 상기 굴절률은 1.2 내지 1.5의 범위일 수 있다.The capping layer 141 formed on the upper electrode 130 has a refractive index of less than 1.0 to 2.0. The capping layer 141 having the refractive index in this range is formed on the upper electrode 130 to view the viewing angle in the conventional organic light emitting device. Accordingly, a wide viewing angle can be obtained by reducing a phenomenon in which the spectrum of light emitted is changed, and the light efficiency of the organic light emitting device is excellent. The lower the refractive index is, the more preferable. Specifically, the refractive index may be in the range of 1.2 to 1.5.
또한, 캡핑층(141)은 상부전극(130) 상에 형성되므로, 낮은 광흡수도를 갖는 것이 바람직하며, 가시광선 영역의 파장에서 투과도가 50% 초과인 것이 바람직하고, 투과도가 80% 초과인 것이 더 바람직하다.In addition, since the capping layer 141 is formed on the upper electrode 130, the capping layer 141 preferably has a low light absorption, and preferably has a transmittance of more than 50% at a wavelength in the visible light region, and a transmittance of more than 80%. More preferred.
캡핑층(141)의 재료는 상기 굴절률 및 투과도의 조건을 만족하는 것이라면 특별히 제한되지는 않는다. 예를 들어, 상기 캡핑층(141)의 재료는 플루오라이드(fluoride)계 화합물, 구체적으로, LiF, MgF2, CaF2 및 ScF3로 이루어진 군에서 선택되는 1종 이상일 수 있다. 또한, 상기 캡핑층(141)은 유기층에서 발광되는 광의 파장보다 작은 크기의 입자를 포함함으로써 상기의 저굴절률을 만족시킬 수도 있는데, 본 구현 방법에 사용할 수 있는 입자의 예로는 이산화티탄(TiO2), 실리카(SiO2), 알루미나(Al2O3), 수산화알루미늄(Al(OH)3), 알루미늄, 니켈, 구리, 은 및 금과 같은 무기 입자 및 실리콘 비드, 스티렌 비드, PMMA (폴리메틸메타크릴레이트) 비드, PU(폴리우레탄) 비드, 및 PBMA(폴리부틸메타크릴레이트) 비드와 같은 유기 입자를 들 수 있다. 상기 무기 입자 및/또는 상기 유기 입자는 상기 플루오라이드계 화합물과 함께 사용되어도 좋고, Alq3와 같은 유전성(dielectric) 화합물 또는 바인더 수지와 함께 사용되어도 좋다.The material of the capping layer 141 is not particularly limited as long as it satisfies the conditions of the refractive index and the transmittance. For example, the material of the capping layer 141 may be at least one selected from the group consisting of fluoride compounds, specifically, LiF, MgF 2 , CaF 2, and ScF 3 . In addition, the capping layer 141 may satisfy the low refractive index by including particles having a size smaller than the wavelength of light emitted from the organic layer. Examples of particles that may be used in the present embodiment include titanium dioxide (TiO 2 ). , Inorganic particles such as silica (SiO 2 ), alumina (Al 2 O 3 ), aluminum hydroxide (Al (OH) 3 ), aluminum, nickel, copper, silver and gold and silicon beads, styrene beads, PMMA (polymethylmetha Organic particles such as acrylate) beads, PU (polyurethane) beads, and PBMA (polybutyl methacrylate) beads. The inorganic particles and / or the organic particles may be used together with the fluoride compound, or may be used together with a dielectric compound such as Alq 3 or a binder resin.
캡핑층(141)은 단일층일 수도 있으나, 서로 다른 굴절률을 갖는 2 이상의 층을 포함하여, 상기 2 이상의 층을 통과하면서 점점 굴절률이 변화하도록 할 수 있다.Although the capping layer 141 may be a single layer, the capping layer 141 may include two or more layers having different refractive indices so that the refractive index may gradually change while passing through the two or more layers.
캡핑층(141)의 두께는 20 내지 120 nm일 수 있다. 상기 캡핑층(141)은 유기 발광 소자가 적색, 녹색 및 청색 중 어느 색을 발광하는지 여부에 관계없이 거의 유사한 두께로 형성시킬 수 있다. 바람직하게는 상기 유기 발광층(125)이 청색 도펀트 또는 적색 도펀트를 포함하는 청색 또는 적색 유기 발광 소자(100)일 경우에는 상기 캡핑층(141)의 두께가 70 내지 90 nm일 수 있고, 상기 유기발광층(125)이 녹색 도펀트를 포함하는 녹색 유기 발광 소자(100)일 경우에는 상기 캡핑층(141)의 두께가 90 내지 120 nm일 수 있다. 캡핑층(141)의 형성은 진공증착법, 스핀코팅법, 캐스트법 또는 LB법 등과 같은 다양한 방법을 이용할 수 있다. The thickness of the capping layer 141 may be 20 to 120 nm. The capping layer 141 may be formed to have a substantially similar thickness regardless of whether the organic light emitting diode emits red, green, or blue light. Preferably, when the organic light emitting layer 125 is a blue or red organic light emitting device 100 including a blue dopant or a red dopant, the thickness of the capping layer 141 may be 70 to 90 nm, and the organic light emitting layer When the 125 is a green organic light emitting diode 100 including a green dopant, the capping layer 141 may have a thickness of about 90 nm to about 120 nm. The capping layer 141 may be formed using various methods such as vacuum deposition, spin coating, casting, or LB.
이하, 상기 도 1을 참조하여 유기 발광 소자(100)의 제조 방법을 상세히 설명한다.Hereinafter, a method of manufacturing the organic light emitting diode 100 will be described in detail with reference to FIG. 1.
일 구현예에 따른 유기 발광 소자(100)는 기판(101)을 제공하는 단계, 상기 기판(101) 상에 하부전극(110)을 형성하는 단계, 상기 하부전극(110) 상에 n-도핑층(123), 유기발광층(125), 정공수송층(126) 및 결정성 화합물을 포함하는 정공주입층(127)을 포함한 유기층(120)을 형성하는 단계, 상기 유기층(120) 상에 투명한 상부전극(130)을 형성하는 단계, 및 상기 상부전극(130) 상에 1.2 내지 2 미만의 굴절률을 갖는 캡핑층(141)을 형성하는 단계를 거쳐 제조된다.The organic light emitting diode 100 according to the embodiment may include providing a substrate 101, forming a lower electrode 110 on the substrate 101, and an n-doped layer on the lower electrode 110. Forming an organic layer 120 including an organic light emitting layer 125, a hole transport layer 126, and a hole injection layer 127 including a crystalline compound, and a transparent upper electrode on the organic layer 120. Forming a capping layer 141 having a refractive index of less than 1.2 to 2 on the upper electrode 130.
본 발명의 다른 일 측면에 따라, 전술한 유기 발광 소자를 포함하는 디스플레이 장치가 제공된다. 구체적으로, 상기 디스플레이 장치는 기판, 상기 기판 상에 형성되며 소스 전극, 드레인 전극, 산화물 반도체층, 게이트 전극, 및 게이트 절연층을 포함하는 n형 박막 트랜지스터; 상기 n형 박막 트랜지스터 상에 형성된 절연층; 및 상기 절연층 상에 형성된 상기 설명한 유기 발광 소자를 포함하고, 상기 유기 발광 소자의 상기 하부전극이 상기 소스 전극 및 드레인 전극 중 하나와 전기적으로 연결된 디스플레이 장치일 수 있다.According to another aspect of the present invention, there is provided a display device including the organic light emitting device described above. Specifically, the display device includes a substrate, an n-type thin film transistor formed on the substrate and including a source electrode, a drain electrode, an oxide semiconductor layer, a gate electrode, and a gate insulating layer; An insulation layer formed on the n-type thin film transistor; And an organic light emitting diode as described above formed on the insulating layer, wherein the lower electrode of the organic light emitting diode is electrically connected to one of the source electrode and the drain electrode.
상기 디스플레이 장치는 발광 효율이 우수하며 최근 디스플레이 분야에 대두되고 있는 플렉시블 유기 발광 디스플레이 장치 및 조명 등에 유용하게 사용될 수 있다.The display device is excellent in luminous efficiency and may be usefully used in flexible organic light emitting display devices and lighting, which have recently emerged in the display field.
이하에서, 실시예를 통하여 본 발명을 보다 상세히 설명한다. 그러나, 이하의 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 실시예로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited to the examples.
[실시예 1] - 캡핑층이 있는 청색 유기 발광 소자의 제작Example 1 Fabrication of Blue Organic Light-Emitting Device Having a Capping Layer
투명한 유리 기판을 준비하고, 상기 유리 기판 위에 알루미늄(Al)을 진공 증착하여 100 nm 두께의 하부전극을 형성하였다. 상기 하부전극 위에 Cs2CO3를 진공 증착하여 1 nm 두께의 불순물층을 형성하고, 상기 불순물층 상에 B3PYMPM을 진공 증착하여 35 nm 두께의 제1 전자수송층을 형성하였다. 상기 제1 전자수송층 상부에 TPBi를 진공 증착하여 15 nm 두께의 제2전자수송층을 형성하였다. 상기 제2전자수송층 상부에 mCP와 FIrPic를 90:10 의 중량비로 공증착하여 15 nm 두께의 발광층을 형성하였다. 상기 발광층 상부에 TAPC를 진공 증착하여 20 nm 두께의 정공수송층을 형성하였다. 상기 정공수송층 상부에 HAT-CN을 진공 증착하여 50 nm 두께의 정공주입층을 형성한 다음, IZO를 스퍼터 증착하여 60 nm 두께의 상부전극을 형성하였다. 상기 IZO 상부전극 위에 LiF (굴절률 = 1.39)를 진공 증착하여 80 nm 두께의 캡핑층을 형성함으로써, 캡핑층이 있는 청색 유기 발광 소자가 제작되었다.A transparent glass substrate was prepared, and aluminum (Al) was vacuum deposited on the glass substrate to form a lower electrode having a thickness of 100 nm. Cs 2 CO 3 was vacuum deposited on the lower electrode to form an impurity layer having a thickness of 1 nm, and B3PYMPM was vacuum deposited on the impurity layer to form a first electron transport layer having a thickness of 35 nm. TPBi was vacuum deposited on the first electron transport layer to form a second electron transport layer having a thickness of 15 nm. MCP and FIrPic were co-deposited on the second electron transport layer at a weight ratio of 90:10 to form a light emitting layer having a thickness of 15 nm. TAPC was vacuum-deposited on the emission layer to form a hole transport layer having a thickness of 20 nm. HAT-CN was vacuum deposited on the hole transport layer to form a hole injection layer having a thickness of 50 nm, and then an upper electrode having a thickness of 60 nm was formed by sputter deposition of IZO. LiF (refractive index = 1.39) was vacuum deposited on the IZO upper electrode to form a capping layer having a thickness of 80 nm, thereby manufacturing a blue organic light emitting device having a capping layer.
[비교예 1] - 캡핑층이 없는 청색 유기 발광 소자의 제작Comparative Example 1 Fabrication of a Blue Organic Light-Emitting Device Without a Capping Layer
IZO 상부전극 위에 LiF의 캡핑층을 형성시키지 않은 것을 제외하고는, 실시예 1과 동일한 방식에 따라 청색 유기 발광 소자를 제작하였다.A blue organic light emitting diode was manufactured according to the same method as Example 1 except that the capping layer of LiF was not formed on the IZO upper electrode.
[실시예 2] - 캡핑층이 있는 녹색 유기 발광 소자의 제작Example 2 Fabrication of Green Organic Light Emitting Diode with Capping Layer
투명한 유리 기판을 준비하고, 상기 유리 기판 위에 알루미늄(Al)을 진공 증착하여 100 nm 두께의 하부전극을 형성하였다. 상기 하부전극 위에 Cs2CO3를 진공 증착하여 1 nm 두께의 불순물층을 형성하고, 상기 불순물층 상에 B3PYMPM을 진공 증착하여 45 nm 두께의 제1 전자수송층을 형성하였다. 상기 제1 전자수송층 상부에 TPBi를 진공 증착하여 15 nm 두께의 제2전자수송층을 형성하였다. 상기 제2전자수송층 상부에 CBP와 Ir(ppy)3을 92:8의 중량비로 공증착하여 15 nm 두께의 발광층을 형성하였다. 상기 발광층 상부에 TAPC를 진공 증착하여 40 nm 두께의 정공수송층을 형성하였다. 상기 정공수송층 상부에 HAT-CN을 진공 증착하여 50 nm 두께의 정공주입층을 형성한 다음, IZO를 스퍼터 증착하여 60 nm 두께의 상부전극을 형성하였다. 상기 IZO 상부전극 위에 LiF(굴절률 = 1.39)를 진공 증착하여 100 nm 두께의 캡핑층을 형성함으로써, 캡핑층이 있는 녹색 유기 발광 소자가 제작되었다.A transparent glass substrate was prepared, and aluminum (Al) was vacuum deposited on the glass substrate to form a lower electrode having a thickness of 100 nm. Cs 2 CO 3 was vacuum deposited on the lower electrode to form an impurity layer having a thickness of 1 nm, and B3PYMPM was vacuum deposited on the impurity layer to form a first electron transport layer having a thickness of 45 nm. TPBi was vacuum deposited on the first electron transport layer to form a second electron transport layer having a thickness of 15 nm. CBP and Ir (ppy) 3 were co-deposited on the second electron transport layer at a weight ratio of 92: 8 to form a light emitting layer having a thickness of 15 nm. TAPC was vacuum deposited on the emission layer to form a hole transport layer having a thickness of 40 nm. HAT-CN was vacuum deposited on the hole transport layer to form a hole injection layer having a thickness of 50 nm, and then an upper electrode having a thickness of 60 nm was formed by sputter deposition of IZO. LiF (refractive index = 1.39) was vacuum deposited on the IZO upper electrode to form a capping layer having a thickness of 100 nm, thereby manufacturing a green organic light emitting device having a capping layer.
[비교예 2] - 캡핑층이 없는 녹색 유기 발광 소자의 제작Comparative Example 2 Fabrication of Green Organic Light-Emitting Device Without Capping Layer
IZO 상부전극 위에 LiF의 캡핑층을 형성시키지 않은 것을 제외하고는, 실시예 2와 동일한 방식에 따라 녹색 유기 발광 소자를 제작하였다.A green organic light emitting diode was manufactured according to the same method as Example 2 except for forming a capping layer of LiF on the IZO upper electrode.
[실시예 3] - 캡핑층이 있는 적색 유기 발광 소자의 제작Example 3 Fabrication of Red Organic Light Emitting Diode with Capping Layer
투명한 유리 기판을 준비하고, 상기 유리 기판 위에 알루미늄(Al)을 진공 증착하여 100 nm 두께의 하부전극을 형성하였다. 상기 하부전극 위에 Cs2CO3를 진공 증착하여 1 nm 두께의 불순물층을 형성하고, 상기 불순물층 상에 B3PYMPM을 진공 증착하여 60 nm 두께의 제1 전자수송층을 형성하였다. 상기 제1 전자수송층 상부에 TPBi를 진공 증착하여 15 nm 두께의 제2전자수송층을 형성하였다. 상기 제2전자수송층 상부에 CBP와 Ir(Mphq)3를 95:5 의 중량비로 공증착하여 15 nm 두께의 발광층을 형성하였다. 상기 발광층 상부에 TAPC를 진공 증착하여 60 nm 두께의 정공수송층을 형성하였다. 상기 정공수송층 상부에 HAT-CN을 진공 증착하여 50 nm 두께의 정공주입층을 형성한 다음, IZO를 스퍼터 증착하여 60 nm 두께의 상부전극을 형성하였다. 상기 IZO 상부전극 위에 LiF(굴절률=1.39)를 진공 증착하여 80 nm 두께의 캡핑층을 형성함으로써, 캡핑층이 있는 적색 유기 발광 소자가 제작되었다.A transparent glass substrate was prepared, and aluminum (Al) was vacuum deposited on the glass substrate to form a lower electrode having a thickness of 100 nm. Cs 2 CO 3 was vacuum deposited on the lower electrode to form an impurity layer having a thickness of 1 nm, and B3PYMPM was vacuum deposited on the impurity layer to form a first electron transport layer having a thickness of 60 nm. TPBi was vacuum deposited on the first electron transport layer to form a second electron transport layer having a thickness of 15 nm. CBP and Ir (Mphq) 3 were co-deposited on the second electron transport layer at a weight ratio of 95: 5 to form a light emitting layer having a thickness of 15 nm. TAPC was vacuum-deposited on the emission layer to form a hole transport layer having a thickness of 60 nm. HAT-CN was vacuum deposited on the hole transport layer to form a hole injection layer having a thickness of 50 nm, and then an upper electrode having a thickness of 60 nm was formed by sputter deposition of IZO. LiF (refractive index = 1.39) was vacuum deposited on the IZO upper electrode to form a capping layer having a thickness of 80 nm, thereby manufacturing a red organic light emitting device having a capping layer.
[비교예 3] - 캡핑층이 없는 적색 유기 발광 소자의 제작Comparative Example 3 Fabrication of Red Organic Light-Emitting Device Without Capping Layer
IZO 상부전극 위에 LiF의 캡핑층을 형성시키지 않은 것을 제외하고는, 실시예 3과 동일한 방식에 따라 적색 유기 발광 소자를 제작하였다.A red organic light emitting diode was manufactured according to the same method as Example 3 except that the capping layer of LiF was not formed on the IZO upper electrode.
[평가예 1] - 시야각 평가Evaluation Example 1-Viewing Angle Evaluation
0°부터 60°까지 단계적으로 시야각을 변화시키면서 분광 광도계를 사용하여 유기 발광 소자의 발광 스펙트럼을 측정하고, 이 측정값으로부터 색좌표값을 산출하였다. The emission spectrum of the organic light emitting element was measured using a spectrophotometer while changing the viewing angle in steps from 0 ° to 60 °, and the color coordinate value was calculated from this measured value.
비교예 1과 실시예 1의 발광 스펙트럼을 각각 도 2a 및 도 2b에 나타내고, 이들의 색좌표값은 도 3에 함께 나타내었다. 또한, 비교예 2와 실시예 2의 발광 스펙트럼을 각각 도 4a 및 도 4b에 나타내고, 이들의 색좌표값은 도 5에 나타내었다. 또한, 비교예 3과 실시예 3의 발광 스펙트럼을 각각 도 6a 및 도 6b에 나타내고, 이들의 색좌표값은 도 7에 나타내었다.The emission spectra of Comparative Example 1 and Example 1 are shown in Figs. 2A and 2B, respectively, and their color coordinate values are also shown in Fig. 3. The emission spectra of Comparative Example 2 and Example 2 are shown in Figs. 4A and 4B, respectively, and their color coordinate values are shown in Fig. 5. The emission spectra of Comparative Example 3 and Example 3 are shown in Figs. 6A and 6B, respectively, and their color coordinate values are shown in Fig. 7.
이들 도 2 내지 7에 따르면, 캡핑층이 없는 유기 발광 소자의 경우에는 0°부터 60°까지 시야각의 변화에 따라 발광 스펙트럼 및 색좌표값에 편차가 심하게 나타나는 반면, 캡핑층이 있는 유기 발광 소자의 경우에는 이와 같이 시야각이 변하더라도 발광 스펙트럼 및 색좌표값이 변하지 않고 거의 일정하게 유지된다는 것을 알 수 있다. 이는 본 발명에 따라 캡핑층을 구비한 유기 발광 소자를 사용하면 시야각의 특성이 현저히 개선될 수 있다는 것을 의미한다.According to these FIGS. 2 to 7, in the case of the organic light emitting device without the capping layer, the variation in the emission spectrum and the color coordinate values is severely varied according to the change of the viewing angle from 0 ° to 60 °, whereas in the case of the organic light emitting device having the capping layer In this way, it can be seen that the emission spectrum and the color coordinate value remain almost constant without changing the viewing angle. This means that using the organic light emitting device having a capping layer according to the present invention can significantly improve the characteristics of the viewing angle.
[평가예 2] - 캡핑층의 굴절률와 두께에 따른 광효율 변화[Evaluation Example 2]-Light Efficiency Variation According to Refractive Index and Thickness of Capping Layer
캡핑층의 굴절률 및 두께의 변화에 따른 광효율의 변화를 알아보기 위하여 실시예 2에서 제작한 녹색 유기 발광 소자를 이용하여 시뮬레이션 결과를 얻고 이를 도 8에 나타냈다. 도 8에서, 캡핑층의 굴절률 및 두께는 각각 1.4 내지 2.5의 범위 및 0 내지 200 nm의 범위로 변화시켰으며, 광효율은 양자수율의 값으로 나타냈다. Simulation results were obtained using the green organic light emitting diode fabricated in Example 2 in order to investigate the change in the light efficiency according to the change in the refractive index and the thickness of the capping layer. In FIG. 8, the refractive index and the thickness of the capping layer were varied in the range of 1.4 to 2.5 and the range of 0 to 200 nm, respectively, and the light efficiency was expressed as a value of quantum yield.
도 8에서 광효율은 캡핑층의 굴절률이 낮으면 낮을수록 두께와 관계없이 항상 우수하고, 굴절률이 높으면 높을수록 작은 두께의 차이에도 광 효율이 크게 감소한다는 것을 알 수 있다.In FIG. 8, the lower the refractive index of the capping layer is always excellent regardless of the thickness, the higher the refractive index, the higher the refractive index, it can be seen that the light efficiency significantly decreases even in the difference of the small thickness.
[평가예 3] - 고굴절률 캡핑층을 사용하였을 때의 시야각 평가Evaluation Example 3 Evaluation of Viewing Angle When High Refractive Index Capping Layer was Used
도 8에서 캡핑층의 굴절률이 높더라도, 두께가 얇으면 광효율이 양호한 것을 알 수 있다. 따라서, 캡핑층을 고굴절률의 재료로 하였을 때에도 시야각이 개선될 수 있는지를 알아보기 위하여, 실시예 2에서 제작한 녹색 유기 발광 소자를 이용하되, 굴절률 2.4의 재료를 사용하고 두께가 각각 5 nm, 10 nm, 15 nm 및 20 nm인 캡핑층으로 하여, 0°부터 60°까지 단계적으로 시야각을 변화하였을 때 유기 발광 소자의 발광 스펙트럼을 시뮬레이션 결과로서 얻고, 이를 도 9a (두께 5 nm), 9b (두께 10 nm), 9c (두께 15 nm) 및 9d (두께 20 nm)에 나타냈다. 아울러, 상기 도 9a 내지 9d의 발광 스펙트럼 및 실시예 2의 유기 발광소자로부터 얻은 도 4b의 발광 스펙트럼으로부터 색좌표값을 얻고 이를 도 10에 나타내었다.Although the refractive index of the capping layer is high in FIG. 8, it can be seen that the light efficiency is good when the thickness is thin. Therefore, in order to find out whether the viewing angle can be improved even when the capping layer is made of a material having a high refractive index, the green organic light emitting device manufactured in Example 2 is used, but the material of the refractive index 2.4 is used and the thickness is 5 nm, With the capping layers of 10 nm, 15 nm and 20 nm, the emission spectrum of the organic light emitting device was obtained as a simulation result when the viewing angle was changed stepwise from 0 ° to 60 °, and the results were shown in FIGS. 9A (thickness 5 nm) and 9b ( Thickness 10 nm), 9c (thickness 15 nm) and 9d (thickness 20 nm). In addition, color coordinate values were obtained from the emission spectra of FIGS. 9A to 9D and the emission spectrum of FIG. 4B obtained from the organic light emitting diode of Example 2, and are shown in FIG. 10.
이들 도 9a 내지 9d 및 도 10에 따르면, 고굴절률의 캡핑층을 사용한 유기 발광 소자의 경우에는 두께가 얇더라도 발광 스펙트럼 및 색좌표값에 편차가 심하게 나타난다는 것을 알 수 있다. 이는 캡핑층의 굴절률이 높으면 광효율은 양호하게 유지되더라도 캡핑층의 사용에 따른 시야각의 개선 효과가 나타나지 않는다는 것을 의미한다.According to these FIGS. 9A to 9D and 10, in the case of the organic light emitting device using the high refractive index capping layer, even if the thickness is thin, the emission spectrum and the color coordinate value are severely shown. This means that if the refractive index of the capping layer is high, even if the light efficiency is kept good, the improvement of the viewing angle according to the use of the capping layer does not appear.
본 출원의 발명은 유기 발광 소자 및 이를 이용한 분야에 적용가능하다. The invention of the present application is applicable to an organic light emitting device and the field using the same.

Claims (14)

  1. 기판;Board;
    상기 기판 상에 형성된 하부 전극;A lower electrode formed on the substrate;
    상기 하부 전극 상에 형성된 n-도핑층, 상기 n-도핑층 상에 형성된 유기발광층, 상기 유기발광층 상에 형성된 정공수송층 및 상기 정공수송층 상에 형성되고 결정성(crystalline) 유기화합물을 포함하는 정공주입층을 포함하는 유기층;An n-doped layer formed on the lower electrode, an organic light emitting layer formed on the n-doped layer, a hole transport layer formed on the organic light emitting layer, and a hole injection layer formed on the hole transport layer and including a crystalline organic compound An organic layer comprising a layer;
    상기 유기층 상에 형성된 투명한 상부 전극; 및A transparent upper electrode formed on the organic layer; And
    상기 투명한 상부 전극 상에 형성된 캡핑층(capping layer)을 포함하고, 상기 캡핑층은 굴절률이 1.0 내지 2.0 미만인 유기 발광 소자.And a capping layer formed on the transparent upper electrode, wherein the capping layer has a refractive index of 1.0 to less than 2.0.
  2. 제1항에 있어서, 상기 캡핑층의 굴절률이 1.2 내지 1.5인 유기 발광 소자.The organic light emitting device of claim 1, wherein the capping layer has a refractive index of about 1.2 to about 1.5.
  3. 제1항에 있어서, 상기 캡핑층이 플루오라이드(fluoride)계 화합물을 포함하는 유기 발광 소자.The organic light emitting device of claim 1, wherein the capping layer comprises a fluoride compound.
  4. 제1항에 있어서, 상기 플루오라이드계 화합물이 LiF, MgF2, CaF2 및 ScF3로 이루어진 군에서 선택되는 1종 이상인 유기 발광 소자.The organic light emitting device of claim 1, wherein the fluoride compound is at least one selected from the group consisting of LiF, MgF 2 , CaF 2, and ScF 3 .
  5. 제1항에 있어서, 상기 캡핑층이 유기층에서 발광되는 광의 파장보다 작은 크기의 입자를 포함하는 유기 발광 소자.The organic light emitting device of claim 1, wherein the capping layer includes particles having a size smaller than a wavelength of light emitted from the organic layer.
  6. 제1항에 있어서, 상기 캡핑층이 서로 다른 굴절률을 갖는 2 이상의 층을 포함하는 유기 발광 소자.The organic light emitting diode of claim 1, wherein the capping layer comprises two or more layers having different refractive indices.
  7. 제1항에 있어서, 상기 캡핑층의 두께가 20 내지 120 nm인 유기 발광 소자. The organic light emitting device of claim 1, wherein the capping layer has a thickness of about 20 nm to about 120 nm.
  8. 제1항에 있어서, 상기 n-도핑층은 n-도펀트를 포함하고, 상기 n-도펀트가 Li2CO3, Na2CO3, K2CO3, Cs2CO3, Rb2CO3, Ba2CO3, 피로닌 B(pyronin B), DMC(데카메틸코발토센), BEDTTTF(비스(에틸렌디티오)-테트라티아풀발렌), 로다민B(rhodamin B), TMBI (1,2,3-트리메틸-2-페닐-2,3-디히드로-1H-벤조이미다졸), DMBI (1,3-디메틸-2-페닐-2,3-디히드로-1H-벤조이미다졸), Cl-DMBI (디클로로페닐-1,3-디메틸-2,3-디히드로-1H-벤조이미다졸), N-DMBI (4-(1,3-디메틸-2,3-디히드로-1H-벤조이미다졸-2-일)-페닐)-디메틸-아민), OH-DMBI (2-(1,3-디메틸-2,3-디히드로-1H-벤조이미다졸-2-일)-페놀), PTCDI-C13(N,N'-디트리데실페릴렌-3,4:9,10-테트라카르복실산 디이미드) 및 F-PTCDI-C4(N,N'-디부틸-1,7-디플루오로페릴렌-3,4:9,10- 테트라카르복실산 디이미드)로 이루어진 군에서 선택되는 1종 이상인 유기 발광 소자.The method of claim 1, wherein the n-doped layer comprises an n- dopant, the n- dopant is Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , Cs 2 CO 3 , Rb 2 CO 3 , Ba 2 CO 3 , pyronin B, DMC (decamethylcobaltocene), BEDTTTF (bis (ethylenedithio) -tetrathiafulvalene), rhodamine B (rhodamin B), TMBI (1,2, 3-trimethyl-2-phenyl-2,3-dihydro-1H-benzoimidazole), DMBI (1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzoimidazole), Cl- DMBI (dichlorophenyl-1,3-dimethyl-2,3-dihydro-1H-benzoimidazole), N-DMBI (4- (1,3-dimethyl-2,3-dihydro-1H-benzoimidazole -2-yl) -phenyl) -dimethyl-amine), OH-DMBI (2- (1,3-dimethyl-2,3-dihydro-1 H-benzoimidazol-2-yl) -phenol), PTCDI- C13 (N, N'-ditridecyl perylene-3,4: 9,10-tetracarboxylic acid diimide) and F-PTCDI-C4 (N, N'-dibutyl-1,7-difluoro Perylene-3,4: 9,10-tetracarboxylic acid diimide).
  9. 제8항에 있어서, 상기 n-도핑층은 n-도펀트를 포함하는 불순물층 및 상기 불순물층 상에 형성된 제1 전자수송물질을 포함하는 제1 전자수송층을 포함하는 유기 발광 소자.The organic light emitting device of claim 8, wherein the n-doped layer includes an impurity layer including an n-dopant and a first electron transport layer including a first electron transport material formed on the impurity layer.
  10. 제1항에 있어서, 상기 결정성 유기 화합물이 하기 화학식 1로 표시되는 유기 발광 소자:The organic light emitting device of claim 1, wherein the crystalline organic compound is represented by the following Chemical Formula 1:
    [화학식 1] [Formula 1]
    Figure PCTKR2014010322-appb-I000004
    Figure PCTKR2014010322-appb-I000004
    상기 화학식 1에서 R은 시아노(-CN), 니트로(-NO2), 페닐술포닐(-SO2(C6H5)), 시아노 또는 니트로 치환된 C2 내지 C5 알케닐, 및 시아노 또는 니트로로 치환된 페닐로 이루어진 군에서 선택된다.In Formula 1, R is cyano (-CN), nitro (-NO2), phenylsulfonyl (-SO2 (C6H5)), C2 to C5 alkenyl substituted with cyano or nitro, and cyano or nitro substituted It is selected from the group consisting of phenyl.
  11. 제10항에 있어서, 상기 결정성 유기 화합물이 HAT-CN(헥사아자트리페닐렌 헥사카보니트릴)인 유기 발광 소자.The organic light-emitting device according to claim 10, wherein the crystalline organic compound is HAT-CN (hexaazatriphenylene hexacarbonitrile).
  12. 제1항에 있어서, 상기 상부 전극은 ITO(인듐주석산화물), IZO(인듐아연산화물), ZnO(아연 산화물) 또는 SnO2(주석산화물)을 포함하는 유기 발광 소자.The organic light emitting device of claim 1, wherein the upper electrode comprises ITO (indium tin oxide), IZO (indium zinc oxide), ZnO (zinc oxide), or SnO 2 (tin oxide).
  13. 제1항 내지 제12항 중 어느 한 항에 따른 유기 발광 소자를 포함하는 디스플레이 장치.A display device comprising the organic light emitting device according to any one of claims 1 to 12.
  14. 제1항 내지 제12항 중 어느 한 항에 따른 유기 발광 소자를 포함하는 조명.An illumination comprising the organic light emitting element according to any one of claims 1 to 12.
PCT/KR2014/010322 2013-11-01 2014-10-31 Organic light emitting diode, and display device and illumination including same WO2015065074A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130132529A KR101581033B1 (en) 2013-11-01 2013-11-01 organic light-emitting diode, and display device and illumination
KR10-2013-0132529 2013-11-01

Publications (1)

Publication Number Publication Date
WO2015065074A1 true WO2015065074A1 (en) 2015-05-07

Family

ID=53004580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010322 WO2015065074A1 (en) 2013-11-01 2014-10-31 Organic light emitting diode, and display device and illumination including same

Country Status (2)

Country Link
KR (1) KR101581033B1 (en)
WO (1) WO2015065074A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109786568A (en) * 2017-11-13 2019-05-21 三星显示有限公司 Organic Light Emitting Diode and oganic light-emitting display device comprising it
CN111384247A (en) * 2018-12-27 2020-07-07 Tcl集团股份有限公司 Quantum dot light-emitting diode and preparation method thereof
CN113937233A (en) * 2021-09-30 2022-01-14 武汉天马微电子有限公司 Organic electroluminescent device and application thereof
US11871655B2 (en) * 2016-05-10 2024-01-09 Lg Chem, Ltd. Organic electroluminescent device and manufacturing method therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102492730B1 (en) 2015-10-02 2023-01-27 삼성디스플레이 주식회사 Organic light emitting diode display
KR102553880B1 (en) * 2017-08-07 2023-07-10 삼성디스플레이 주식회사 Light emitting diode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060062556A (en) * 2004-12-03 2006-06-12 삼성에스디아이 주식회사 Organic light emitting device having cathode of magnesium-calcium layer and fabrication method of the same
KR20120078294A (en) * 2010-12-31 2012-07-10 서울대학교산학협력단 Inverted organic light-emitting diode and flat display device comprising the same
KR101182701B1 (en) * 2007-06-20 2012-09-13 글로벌 오엘이디 테크놀러지 엘엘씨 Phosphorescent oled having double exciton-blocking layers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101244706B1 (en) * 2009-12-01 2013-03-18 삼성디스플레이 주식회사 Organic light emitting diode display

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060062556A (en) * 2004-12-03 2006-06-12 삼성에스디아이 주식회사 Organic light emitting device having cathode of magnesium-calcium layer and fabrication method of the same
KR101182701B1 (en) * 2007-06-20 2012-09-13 글로벌 오엘이디 테크놀러지 엘엘씨 Phosphorescent oled having double exciton-blocking layers
KR20120078294A (en) * 2010-12-31 2012-07-10 서울대학교산학협력단 Inverted organic light-emitting diode and flat display device comprising the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11871655B2 (en) * 2016-05-10 2024-01-09 Lg Chem, Ltd. Organic electroluminescent device and manufacturing method therefor
CN109786568A (en) * 2017-11-13 2019-05-21 三星显示有限公司 Organic Light Emitting Diode and oganic light-emitting display device comprising it
CN109786568B (en) * 2017-11-13 2023-06-30 三星显示有限公司 Organic light emitting diode and organic light emitting display device including the same
CN111384247A (en) * 2018-12-27 2020-07-07 Tcl集团股份有限公司 Quantum dot light-emitting diode and preparation method thereof
CN111384247B (en) * 2018-12-27 2021-05-28 Tcl科技集团股份有限公司 Quantum dot light-emitting diode and preparation method thereof
CN113937233A (en) * 2021-09-30 2022-01-14 武汉天马微电子有限公司 Organic electroluminescent device and application thereof
CN113937233B (en) * 2021-09-30 2024-04-02 武汉天马微电子有限公司 Organic electroluminescent device and application thereof

Also Published As

Publication number Publication date
KR20150069577A (en) 2015-06-24
KR101581033B1 (en) 2015-12-29

Similar Documents

Publication Publication Date Title
US10658431B2 (en) Organic light-emitting diode having charge generation layer and manufacturing method thereof and display device
CN106068267B (en) Electronics padded coaming and Organnic electroluminescent device comprising it
WO2015065074A1 (en) Organic light emitting diode, and display device and illumination including same
US20140014927A1 (en) Organic light emitting device
US9088001B2 (en) Organic light emitting display and method for fabricating the same
US9012902B2 (en) Organic electroluminescent element
WO2012033322A2 (en) Substrate for an organic electronic device and an organic electronic device comprising the same
WO2016133252A1 (en) Organic light-emitting element comprising host, phosphorescent dopant, and fluorescent dopant
WO2013154342A1 (en) Organic light-emitting diode containing co-hosts forming exciplex, and lighting device and display apparatus including same
US9780337B2 (en) Organic light-emitting diode and manufacturing method thereof
US20050037234A1 (en) Organic EL device
US20120126222A1 (en) Organic electroluminescent element
KR20110087829A (en) Oled display apparatus and method thereof
CN101394695A (en) Light-emitting device, display, and electronic apparatus
CN102214794A (en) Organic light emitting diode device
WO2014112821A1 (en) Organic light-emitting diode
KR20090010761A (en) White organic light emitting device
EP1603174A2 (en) Organic electroluminescent device
KR102083434B1 (en) Organic light emitting device and manufacturing method thereof
CN112038501B (en) Top-emitting organic electroluminescent device
CN109473560A (en) Display panel and its manufacturing method, display device for mounting on vehicle
US8969864B2 (en) Organic light emitting device having a bulk layer comprising a first and second material
KR101573762B1 (en) Double-sided organic light-emitting diode and display device and illumination
US20130048968A1 (en) Display apparatus and image pickup apparatus
KR20150008709A (en) Organic light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14859237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14859237

Country of ref document: EP

Kind code of ref document: A1