WO2015064648A1 - Green algae that generates a fatty acid - Google Patents

Green algae that generates a fatty acid Download PDF

Info

Publication number
WO2015064648A1
WO2015064648A1 PCT/JP2014/078791 JP2014078791W WO2015064648A1 WO 2015064648 A1 WO2015064648 A1 WO 2015064648A1 JP 2014078791 W JP2014078791 W JP 2014078791W WO 2015064648 A1 WO2015064648 A1 WO 2015064648A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
strain
treatment
culture
gene
Prior art date
Application number
PCT/JP2014/078791
Other languages
French (fr)
Japanese (ja)
Inventor
雄太 長坂
臼田 佳弘
陽子 桑原
鈴木 茂雄
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Publication of WO2015064648A1 publication Critical patent/WO2015064648A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • C12N1/125Unicellular algae isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6463Glycerides obtained from glyceride producing microorganisms, e.g. single cell oil
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/89Algae ; Processes using algae

Definitions

  • the present invention relates to green algae that produce fatty acids and use thereof.
  • Soybean seeds and oil palm (oil ⁇ palm) fruits which are oil plants generally used as a raw material for edible fats and oils, contain about 20% fat.
  • microalgae are known to produce fats and oils, and the yield of fats and oils per area of such microalgae is large for oil plants.
  • Exceed. In green algae, for example, it is known that SUHL0708 strain belonging to the genus Desmodesmus accumulates about 28% of fat and oil on an average dry weight of alga body during the culture period (Patent Document 1).
  • recovery of fats and oils from alga bodies requires steps such as alga body separation, dehydration, cell disruption, and oil purification, and is complicated and difficult.
  • fatty acids are produced by subjecting a culture of Chlorella kessleri to a medium temperature (Patent Document 2).
  • Patent Document 2 there is no known strain that produces fatty acids by a medium temperature treatment in green algae belonging to the genus Desmodemus.
  • An object of the present invention is to provide a green algae that generates fatty acids and a method for using the same.
  • the present invention can be exemplified as follows.
  • a green alga that belongs to the genus Desmodesmus and accumulates 25% (w / w) or more of fatty acid per dry weight of the alga when the alga is subjected to intermediate temperature treatment.
  • a green alga selected from the group consisting of AJ7846 strain (FERM BP-22252), AJ7847 strain (FERM BP-22253), and derivatives thereof.
  • the method wherein the bacterium has been modified so as to increase the ability to assimilate fatty acids.
  • the bacterium is a bacterium belonging to the family Enterobacteriaceae or a coryneform bacterium.
  • the method wherein the bacterium is Escherichia coli, Pantoea ananatis, or Corynebacterium glutamicum.
  • the organic solvent is methanol.
  • the method, wherein the medium-low temperature treatment is performed at a temperature of 5 ° C. to 60 ° C. and lower than the medium temperature treatment.
  • the algae of the present invention are green algae that accumulate (generate) fatty acids when the algal bodies are subjected to intermediate temperature treatment.
  • the algae of the present invention may be green algae that accumulate (generate) 25% (w / w) or more of fatty acids per dry weight of algal bodies when the algal bodies are subjected to intermediate temperature treatment.
  • the algae of the present invention may belong to the genus Desmodesmus.
  • Desmodesmus algatas (Desmodesmus armatus), Desmodesmus communis, Desmodesmus rkpirkollei, Desmodesmus ⁇ musstats Perforatus (Desmodesmus perforatus), Desmodesmus intermedius, Desmodesmus brasiliensis, Desmodesmus elegans, Desmodesmus desgans, Desmodesmus elegans ), Desmodesmus Pseudoserratus, Desmodes Maximus (Desmodes) mus maximus), and Desmodesmus bicellularis.
  • algae of the present invention include green algae selected from AJ7846 strain (FERM BP-22252), AJ7847 strain (FERM BP-22253), and derivatives thereof.
  • the AJ7846 and AJ7847 strains are considered to be related to the genus Desmodesmus such as Desmodesmus armatus and Desmodesmus communis.
  • the base sequence of 18S rDNA of AJ7846 strain is shown in SEQ ID NO: 4. According to BLAST analysis of 18S rDNA, AJ7846 strain shows 99.71% homology to Desmodesmus armatus var. Subalternans CCAP 276 / 4A strain and 99.24% homology to Desmodesmus communis CCAP 276 / 4B strain.
  • the base sequence of 18S rDNA of AJ7847 strain is shown in SEQ ID NO: 3. According to BLAST analysis of 18S rDNA, AJ7847 strain shows 99.77% homology to Desmodesmus armatus var. Subalternans CCAP 276 / 4A strain and 99.31% homology to Desmodesmus communis CCAP 276 / 4B strain.
  • the above-mentioned “derivative strain” means a strain constructed with the AJ7846 strain or AJ7847 strain as the parent strain (ancestor strain) and having the same or higher fatty acid producing ability as the parent strain (ancestral strain).
  • the derivative strain may be bred by artificial modification, for example.
  • Artificial alteration includes alteration by genetic engineering techniques and alteration by mutation treatment. Mutation treatments include X-ray irradiation, UV irradiation, and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), ethylmethanesulfonate (EMS), and methylmethanesulfonate (MMS). ) And the like.
  • stock produced naturally for example at the time of use of a parent strain (ancestor strain) may be sufficient.
  • derivative strains include mutant strains that are naturally generated when the AJ7846 strain or AJ7847 strain is cultured.
  • a derivative strain may be constructed by one type of modification or may be constructed by two or more types of modification.
  • “Having a fatty acid production capacity equal to or higher than that of the parent strain” means that when the derived strain is cultured and the algal cells are subjected to intermediate temperature treatment, 70% or more, 80% or more of the amount of fatty acid produced under the same conditions in the parent strain , 90% or more, or 95% or more of fatty acids may be produced.
  • the algae of the present invention can be used for the production of, for example, fatty acids, fatty acid esters, sugar glycerol, or combinations thereof. Specifically, by culturing the algae of the present invention and appropriately treating the obtained algal bodies, fatty acids, fatty acid esters, sugar glycerol, or combinations thereof are produced.
  • fatty acids, fatty acid esters, and sugar glycerol are collectively referred to as “target substances”.
  • processes for generating target substances may be collectively referred to as “target substance generation processes”.
  • the method of the present invention includes culturing the algae of the present invention in a medium, subjecting the algal bodies obtained by the culture to a target substance generation treatment, and recovering the target substance from the treated product, Is a method for producing a target substance.
  • algae refers to algae cells obtained by culturing algae in a medium.
  • “treating / subjecting a target object (algae or a processed product thereof) under a specific condition may be read as“ incubating ”the target object under the specific condition.
  • the culture method is not particularly limited as long as the algae of the present invention can grow.
  • the culture conditions can be appropriately set by those skilled in the art.
  • the culture can be performed, for example, under normal conditions used for culturing microalgae.
  • algae such as Chlorella algae, Arthrospira algae (Spirulina), and Dunaliella salina are cultivated industrially on a large scale (Spolaore). , P. et al. 2006. J. Biosci. Bioeng. 101: 87-96).
  • the culture may be performed with reference to such knowledge, for example.
  • Culturing is autotrophic culture using photosynthesis without using organic compounds, heterotrophic culture using organic compounds without using photosynthesis, or mixed nutrition using both photosynthesis and organic compounds. It can be carried out by culture (mixotrophic culture). The culture may usually be performed by autotrophic culture.
  • Culture may be performed in an open system or a closed system.
  • culture can be performed in an open culture system called an open pond.
  • culture can be performed in a closed culture system called a closed photobioreactor.
  • the medium used for the culture is not particularly limited as long as the algae of the present invention can grow.
  • the culture medium may contain, for example, a nitrogen source and various inorganic salts.
  • the culture medium may contain other components, such as a carbon source, as needed.
  • a person skilled in the art can appropriately set the type and concentration of the medium components.
  • a normal medium used for culturing microalgae can be used.
  • As such a medium specifically, for example, 0.3 ⁇ HSM medium (Oyama, Y. et al. 2006. Planta-224: 646-654), 0.2 ⁇ Gambogue medium (Izumo, A. et al. 2007.
  • TAP medium Algae are also known to accumulate fats and oils in the algae when the nitrogen source is depleted (Thompson GA Jr. 1996. Biochim. Biophys. Acta 1302: 17-45).
  • a medium in which the concentration of the nitrogen source is limited may be used for culturing the algae of the present invention.
  • the culture can be performed using a liquid medium.
  • the culture temperature may be, for example, 20 to 40 ° C., preferably 25 to 35 ° C., more preferably around 30 ° C.
  • the initial pH of the medium may be, for example, near neutrality. Near neutral may be, for example, pH 7-9.
  • Near neutral may be, for example, pH 7-9.
  • a suitable inorganic or organic acidic or alkaline substance can be used for pH adjustment.
  • the culture may be performed with aeration.
  • the aeration amount may be, for example, 0.1 to 2 vvm (volume per volume per minute) as an aeration amount per minute per culture medium volume.
  • the culture medium may be further supplied to CO 2.
  • the supply amount of CO 2 may be, for example, 0.5 to 5% (v / v) with respect to the aeration amount.
  • CO 2 and air may be supplied separately to the culture solution, or mixed and supplied to the culture solution.
  • light is supplied to the culture system.
  • the light can be supplied using a suitable light source. Examples of the light source include a white fluorescent lamp, a white light emitting diode, a high pressure sodium lamp, and sunlight. These light sources may be used in appropriate combination.
  • the illuminance of light may be, for example, 1,000 to 10,000 lux.
  • the culture solution may be appropriately stirred or circulated.
  • Various operations such as light supply, air supply, CO 2 supply, agitation, and circulation may be performed continuously or intermittently.
  • the culture period may be, for example, 1 to 40 days.
  • the culture can be performed by batch culture, fed-batch culture, continuous culture, or a combination thereof.
  • cultivation may be performed by dividing into seed culture and main culture.
  • the main culture may be performed, for example, by inoculating 1-50% (v / v) of the seed culture solution in the main culture medium.
  • the culture conditions for the seed culture and the main culture may or may not be the same.
  • both seed culture and main culture may be performed by batch culture.
  • seed culture may be performed by batch culture, and main culture may be performed by fed-batch culture or continuous culture.
  • the algal bodies of the algae of the present invention are produced in the medium.
  • the algal bodies may be subjected to a target substance generation process while contained in the medium, or may be collected from the medium and then subjected to a target substance generation process.
  • the algal bodies may be subjected to a target substance generation treatment after being appropriately pretreated.
  • Examples of the pretreatment include dilution, concentration, freezing, thawing, and drying. These pretreatments may be appropriately combined.
  • the pretreatment can be appropriately selected according to various conditions such as the type of target substance generation treatment.
  • the method for recovering the algal cells from the medium is not particularly limited, and for example, a known method (Grima, E. M. et al. 2003. Biotechnol. Advances 20: 491-515) can be used.
  • algal bodies can be recovered from the culture medium by methods such as natural sedimentation, centrifugation, and filtration. At that time, a flocculant may be used.
  • the collected algal bodies can be appropriately washed using an appropriate medium.
  • the collected alga bodies can be appropriately resuspended using an appropriate medium.
  • Examples of the medium that can be used for washing and suspension include an aqueous medium (aqueous solvent) such as water and an aqueous buffer, an organic medium (organic solvent) such as methanol, and a mixture thereof.
  • aqueous medium such as water and an aqueous buffer
  • organic medium organic solvent
  • the medium can be appropriately selected according to various conditions such as the type of target substance generation treatment.
  • the algal bodies may be subjected to a target substance generation treatment after being diluted or concentrated to a desired degree, for example.
  • Algae body is diluted or concentrated so that the algal body concentration in the suspension is, for example, 25 g / L or more, or 250 g / L or more in terms of dry weight, and then the target substance generation treatment May be used.
  • the algal bodies can be diluted using an appropriate medium as described above. Concentration of algal bodies can be performed, for example, by precipitating algal bodies and removing the supernatant appropriately. Further, the algae can be concentrated by, for example, freeze-drying or evaporation.
  • the algal bodies may be frozen once and then subjected to a target substance generation treatment.
  • the freezing temperature may be, for example, 0 ° C. or lower, ⁇ 20 ° C. or lower, or ⁇ 50 ° C. or lower, and may be ⁇ 80 ° C. or higher.
  • the freezing time may be, for example, 1 hour or longer and 24 hours or shorter. Moreover, you may repeat freeze-thaw.
  • the pH of the reaction system may be adjusted to be weakly acidic or weakly alkaline.
  • the weak acidity may be, for example, pH 3.0 to 7.0, pH 4.0 to 6.0, or pH 4.5 to 6.0.
  • the weak alkalinity may be, for example, pH 7.5 to 12.0, pH 9.0 to 11.0, or pH 9.0 to 10.5.
  • the pH can be adjusted using, for example, an acidic substance such as hydrochloric acid, or an alkaline substance such as NaOH or KOH. By adjusting the pH, the algal bodies may or may not be hydrolyzed.
  • Fatty acid production by medium temperature treatment Fatty acids can be produced by subjecting algal bodies obtained by culture to medium temperature treatment. That is, one aspect of the method of the present invention includes culturing the algae of the present invention in a medium, subjecting the algal bodies obtained by the culture to a medium temperature treatment, and recovering fatty acids from the treated product, Is a method for producing a fatty acid. In the present invention, only one fatty acid may be produced, or two or more fatty acids may be produced.
  • “Medium temperature treatment” refers to treatment at an intermediate temperature.
  • the intermediate temperature treatment for example, the treatment at the intermediate temperature described in WO2011 / 013707 can be referred to.
  • the algal bodies can be subjected to intermediate temperature treatment in a state suspended in an appropriate medium as described above.
  • the “medium temperature” is not particularly limited as long as it is a temperature at which a fatty acid is generated.
  • the intermediate temperature can be appropriately set according to various conditions such as processing time.
  • the intermediate temperature may be, for example, 35 ° C. or higher, 40 ° C. or higher, 45 ° C. or higher, or 50 ° C. or higher. Further, the intermediate temperature may be, for example, 70 ° C. or lower, 65 ° C.
  • the time for the medium temperature treatment can be appropriately set according to various conditions such as the treatment temperature.
  • the time for the medium temperature treatment may be, for example, 1 hour or more, or 5 hours or more.
  • the intermediate temperature treatment time may be, for example, 48 hours or less, or 24 hours or less.
  • the pH of the medium temperature treatment is not particularly limited as long as the fatty acid is generated by the medium temperature treatment.
  • the pH of the medium temperature treatment may be, for example, pH 3.0 to 11.0.
  • the pH of the medium temperature treatment may be, for example, weakly acidic, near neutral, or weakly alkaline.
  • the weak acidity may be in the above weak acid range, for example, pH 4.5 to 6.0.
  • Near neutral may be, for example, pH 7.0-9.0.
  • the weak alkalinity may be in the weak alkalinity range as described above, for example, pH 9.0 to 10.5.
  • the pH of the medium temperature treatment is preferably pH 4.5 to 9.5, more preferably pH 4.5 to 6.5.
  • the pH of the medium temperature treatment is preferably pH 4.5 to 9.5, more preferably pH 5.5 to 7.5.
  • the medium temperature treatment may be performed by standing or may be performed while stirring or shaking.
  • the medium temperature treatment may be performed continuously or intermittently. Reaction conditions such as treatment temperature may or may not be constant throughout the medium temperature treatment. That is, for example, the algal cells may be continuously treated at the same temperature (hereinafter, also referred to as “continuous intermediate temperature treatment”), or may be treated by changing the temperature in the middle.
  • the continuous intermediate temperature treatment may be performed, for example, in the above-exemplified intermediate temperature range and the above-exemplified intermediate temperature treatment range.
  • the aspect which reduces temperature on the way is mentioned, for example.
  • the temperature of the first stage intermediate temperature treatment may be, for example, the intermediate temperature range exemplified above.
  • the temperature of the second stage intermediate temperature treatment may be, for example, 30 ° C or higher, 35 ° C or higher, or 40 ° C or higher.
  • the temperature of the second stage intermediate temperature treatment may be, for example, 55 ° C. or lower, 50 ° C. or lower, or 45 ° C. or lower.
  • the time of the first stage intermediate temperature treatment may be, for example, 1 minute or more, 5 minutes or more, 10 minutes or more, or 20 minutes or more.
  • the time of the first stage intermediate temperature treatment may be, for example, 120 minutes or less, or 60 minutes or less.
  • the second stage intermediate temperature treatment time may be, for example, 1 hour or more, 2 hours or more, or 4 hours or more.
  • the time of the second stage intermediate temperature treatment may be, for example, 20 hours or less, or 15 hours or less.
  • Fatty acids can be recovered from the processed product by the medium temperature treatment. Normally, a large amount of fatty acid can be contained in the algae in the treated product. Therefore, it is preferable to extract the fatty acid from the algal body after the intermediate temperature treatment and recover the fatty acid.
  • the method for extracting the fatty acid is not particularly limited, and for example, a known method can be used.
  • a technique for extracting fats and oils from general algae can be used. Examples of such methods include organic solvent treatment, ultrasonic treatment, bead crushing treatment, acid treatment, alkali treatment, enzyme treatment, hydrothermal treatment, supercritical treatment, microwave treatment, electromagnetic field treatment, and pressing treatment.
  • the treated product by the medium temperature treatment may be used for extraction of fatty acid as it is, or may be used for extraction of fatty acid after appropriate treatment such as concentration, dilution, drying and the like.
  • the treated product obtained by the intermediate temperature treatment may be separated into a precipitate (algae) and a supernatant by centrifugation or the like. In that case, fatty acids can be extracted from the precipitate.
  • Processed products by intermediate temperature treatment are diluted or concentrated so that the concentration of the precipitate is, for example, 250 ⁇ g / L or less, or 125 g / L or less in terms of dry weight, and then used for fatty acid extraction. Good.
  • the organic solvent treatment it is preferable to treat a treated product having a precipitate concentration of 125 g / L or less.
  • the organic solvent treatment it is preferable to separate the precipitate from the supernatant and treat it.
  • the organic solvent treatment may or may not be performed after drying the treated product by the intermediate temperature treatment.
  • the organic solvent used for the organic solvent treatment is not particularly limited as long as the fatty acid can be extracted from the treated product by the medium temperature treatment.
  • the organic solvent include alcohols such as methanol, ethanol, 2-propanol, butanol, pentanol, hexanol, heptanol, and octanol, ketones such as acetone, ethers such as dimethyl ether and diethyl ether, methyl acetate, and ethyl acetate. Such as esters, alkanes such as n-hexane, and chloroform.
  • the organic solvent one kind of organic solvent may be used, or two or more kinds of organic solvents may be used in combination.
  • the pH of the alkali treatment is not particularly limited as long as it is a pH at which a fatty acid can be extracted from a treated product by a medium temperature treatment.
  • the pH of the alkali treatment is usually pH 8.5 or higher, preferably pH 10.5 or higher, more preferably pH 11.5 or higher, and pH 14 or lower.
  • the temperature for the alkali treatment is usually 30 ° C. or higher, preferably 50 ° C. or higher, more preferably 70 ° C. or higher.
  • the temperature of the alkali treatment may be preferably 120 ° C. or lower.
  • the alkali treatment time may be usually 10 minutes or longer, preferably 30 minutes or longer, more preferably 50 minutes or longer.
  • the alkali treatment time may be preferably 150 minutes or less.
  • An alkaline substance such as NaOH or KOH can be used for the alkali treatment.
  • the recovery of the eluted fatty acid can be performed by a known method used for separation and purification of compounds. Examples of such a method include an ion exchange resin method and a membrane treatment method. These methods can be used in appropriate combination.
  • the collected fatty acid may contain components such as algal bodies, medium components, moisture, components used for various treatments, and metabolic byproducts of the algae of the present invention in addition to the fatty acids.
  • the fatty acid may be purified to the desired degree. Fatty acid purity is, for example, 30% (w / w) or higher, 50% (w / w) or higher, 70% (w / w) or higher, 90% (w / w) or higher, or 95% (w / w) ) Or more.
  • the fatty acid ester can be produced by subjecting the algal bodies obtained by the culture to a two-stage reaction of medium temperature treatment and medium to low temperature treatment in the presence of alcohol. That is, one embodiment of the method of the present invention includes culturing the algae of the present invention in a medium, subjecting the algae obtained by the culture to a medium temperature treatment, and treating the medium temperature treated product in the presence of alcohol. It is a method for producing a fatty acid ester, comprising subjecting to a low-temperature treatment and recovering the fatty acid ester from the treated product of the medium-low temperature treatment. In the present invention, only one fatty acid ester may be produced, or two or more fatty acid esters may be produced.
  • the two-stage reaction for example, the two-stage reaction described in WO2012 / 099172 can be referred to.
  • the two-stage reaction includes an intermediate temperature treatment which is a first stage treatment and a medium and low temperature treatment in the presence of alcohol which is a second stage treatment.
  • the second stage treatment is a treatment for producing a fatty acid ester.
  • the first stage treatment is a treatment for changing the state of the algal bodies of the algae of the present invention so as to promote the production of fatty acid esters in the second stage treatment.
  • “Medium temperature treatment” means treatment at medium temperature. “Medium and low temperature treatment” refers to treatment at medium and low temperatures. “Medium temperature” refers to a temperature lower than the medium temperature. “Medium temperature” and “medium low temperature” are not particularly limited as long as they are temperatures at which fatty acid esters are formed by a two-stage reaction. “Medium temperature” and “medium temperature” can be appropriately set according to various conditions such as processing time.
  • the temperature (medium temperature) of the first stage treatment may be, for example, 35 ° C. or higher, 40 ° C. or higher, 45 ° C. or higher, or 50 ° C. or higher.
  • the temperature (intermediate temperature) of the 1st process may be 70 degrees C or less, 65 degrees C or less, or 60 degrees C or less, for example.
  • the processing time for the first stage may be, for example, 1 minute or more, 5 minutes or more, 10 minutes or more, or 20 minutes or more.
  • the time for the first step may be, for example, 120 minutes or less, or 60 minutes or less.
  • the temperature of the second stage treatment may be, for example, 5 ° C or higher, 20 ° C or higher, or 30 ° C or higher. Further, the temperature of the second stage treatment (medium / low temperature) may be, for example, 60 ° C. or lower, 50 ° C. or lower, or 45 ° C. or lower.
  • the processing time for the second stage may be, for example, 10 minutes or longer, 30 minutes or longer, 1 hour or longer, or 2 hours or longer. Further, the time for the second stage may be, for example, 15 hours or less, 10 hours or less, or 5 hours or less.
  • the pH of the two-stage reaction is not particularly limited as long as the fatty acid ester is produced by the two-stage reaction.
  • the pH of the medium temperature treatment may be, for example, pH 3.0 to 11.0.
  • the pH of the two-stage reaction may be, for example, weakly acidic, near neutral, or weakly alkaline.
  • the first-stage treatment and the second-stage treatment may be performed by standing or may be performed while stirring or shaking.
  • Reaction conditions such as the treatment temperature may or may not be constant throughout the first stage of treatment.
  • Reaction conditions such as treatment temperature may or may not be constant throughout the second stage treatment.
  • the temperature of the reaction system is lowered and the second stage treatment is performed in the presence of alcohol.
  • the processed product of the first step may be used for the second step as it is, or may be used for the second step after appropriately performing treatments such as concentration and dilution.
  • the alcohol may be present in the reaction system so as to come into contact with the processed product of the first step.
  • an alcohol may be added to the processed product of the first stage, or a processed product of the first stage may be added to the alcohol.
  • the algal bodies may be separated from the processed product of the first stage treatment, and the separated algal bodies may be mixed with the reaction liquid for the second stage treatment containing alcohol.
  • the concentration of alcohol in the reaction system in the second stage treatment is usually 5% (v / v) or more, preferably 10% (v / v) or more, more preferably 20% (v / v) or more. It may be. Further, the alcohol concentration in the reaction system in the second stage treatment is usually 70% (v / v) or less, preferably 60% (v / v) or less, more preferably 50% (v / v). It may be the following.
  • the alcohol used for the second stage treatment is not particularly limited as long as the fatty acid ester is generated by the two-stage reaction.
  • lower alcohols having 5 or less carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol, pentanol, ethylene glycol, hexanol, heptanol, octanol, nonanol, decanol, undecanol
  • Examples thereof include higher alcohols having 6 or more carbon atoms such as dodecanol, tridecanol, and tetradecanol.
  • the fatty acid ester can be recovered from the processed product of the two-stage reaction.
  • generated fatty acid ester may be contained abundantly in the algal body in a processed material. Therefore, it is preferable to extract the fatty acid ester from the algal body after the two-step reaction and recover the fatty acid ester.
  • ⁇ Fatty acid ester production by a two-step reaction does not require addition of a catalyst.
  • the reason is that the lipase originally possessed by the algae of the present invention is likely to act on lipids by the first treatment, and the lipase allows lipids such as fats and oils, ceramides, phospholipids, sugars. It is thought that this is because a transesterification reaction occurs between lipid (Glycolipid) and the like and alcohol added from outside.
  • the transesterification reaction by lipase is generally promoted in the presence of an organic solvent other than alcohols. Therefore, for example, an amount of an organic solvent effective to promote the transesterification reaction may be added to the reaction system during the second stage treatment.
  • organic solvent examples include hexane, heptane, isooctane, chloroform, ethyl acetate, and petroleum ether.
  • the collected fatty acid ester can be used as it is or in combination with pharmaceuticals, cosmetics, foods and drinks.
  • the blending amount of the fatty acid ester is not particularly limited as long as the function of the fatty acid ester is exhibited.
  • the blending amount of the fatty acid ester is not particularly limited, and may be, for example, 1 ppm (w / w) or more, 100 ppm (w / w) or more, or 1% (w / w) or more.
  • the amount of the fatty acid ester is not particularly limited, and may be, for example, 100% (w / w) or less, 10% (w / w) or less, or 1% (w / w) or less.
  • Sugar glycerol can be produced by subjecting the algal cells obtained by the culture to a medium temperature treatment and / or an organic solvent treatment. That is, one embodiment of the method of the present invention includes culturing the algae of the present invention in a medium, subjecting the algae obtained by the culture to a medium temperature treatment and / or organic solvent treatment, and from a treated product of the treatment. Recovering sugar glycerol, a method for producing sugar glycerol.
  • the medium temperature treatment and organic solvent treatment used for the production of sugar glycerol may be collectively referred to as a sugar glycerol production treatment.
  • “Sugar glycerol” refers to a compound having a structure in which a sugar is glycosidically bonded to a hydroxyl group of glycerol.
  • the sugar may be bound to any hydroxyl group of glycerol.
  • the sugar may be bonded to only one of the three hydroxyl groups of glycerol, or may be bonded to two or three hydroxyl groups. In the present invention, only one sugar glycerol may be produced, or two or more sugar glycerols may be produced.
  • the type of sugar is not particularly limited.
  • the sugar may be a monosaccharide, a polysaccharide, or a derivative thereof.
  • monosaccharides include glucose and galactose.
  • Polysaccharide refers to a saccharide composed of two or more monosaccharides. That is, the polysaccharide here includes disaccharides and oligosaccharides.
  • the polysaccharide may be linear or may have a branched chain.
  • the polysaccharide may be composed of one kind of monosaccharide or may be composed of two or more kinds of monosaccharides.
  • the degree of polymerization of the polysaccharide is not particularly limited, and may be, for example, 2 to 50, 2 to 10, or 2 to 5.
  • Examples of the polysaccharide include a polysaccharide containing galactose as a constituent sugar. Specific examples of the polysaccharide containing galactose as a constituent sugar include digalactose.
  • a “sugar derivative” refers to a sugar in which components such as atoms and functional groups have been introduced, substituted, or removed.
  • modification introduction, replacement, and removal of components are collectively referred to as “modification”.
  • the location to be modified is not particularly limited, and may be, for example, on a carbon atom, on an oxygen atom, or other location. There may be one place to be modified, or two or more places. There may be one type of modification, or two or more types.
  • the sugar derivative include deoxy sugar, amino sugar, sugar acid, and sugar alcohol.
  • the functional group to be introduced include an acetyl group, an amino group, an alkyl group, and a sulfonyl group (—SO 3 —R).
  • R in the sulfonyl group (—SO 3 —R) is not particularly limited, and may be, for example, a hydrogen atom (H) or an alkyl group.
  • sugar glycerol examples include galactosylglycerol, digalactosylglycerol, and sulfoquinovosylglycerol.
  • Galactosylglycerol is a sugar glycerol in which galactose is bonded to the hydroxyl group of any one carbon of glycerol.
  • Digalactosylglycerol is a sugar glycerol in which digalactose is bound to the hydroxyl group of any one carbon of glycerol.
  • Sulfoquinovosyl glycerol is a sugar glycerol in which sulfo quinose is bound to the hydroxyl group of any one carbon of glycerol. Unless otherwise specified, all of galactosylglycerol, digalactosylglycerol, and sulfoquinovosylglycerol have sugars bound to the hydroxyl group at the 1st carbon of glycerol, and sugars bound to the hydroxyl group at the 2nd carbon of glycerol. Or a saccharide bonded to the hydroxyl group at the 3-position carbon of glycerol, or a mixture thereof.
  • ⁇ Medium temperature treatment> For the medium temperature treatment, the description regarding the medium temperature treatment in the above ⁇ 2-2> can be applied.
  • Organic solvent treatment refers to treatment with an organic solvent.
  • the conditions for the organic solvent treatment are not particularly limited as long as sugar glycerol is produced by the organic solvent treatment.
  • the organic solvent treatment can be performed by bringing the algal bodies into contact with the organic solvent.
  • the collected alga bodies may be suspended in an organic solvent, or an organic solvent may be added to the alga body suspension.
  • organic solvent examples include alcohols such as methanol, ethanol, 2-propanol, butanol, pentanol, hexanol, heptanol and octanol, ketones such as acetone, ethers such as dimethyl ether and diethyl ether, methyl acetate and ethyl acetate. Esters, alkanes such as n-hexane, benzene, phenol, and chloroform.
  • organic solvent a water-soluble thing is preferable.
  • alcohol is preferable and methanol is more preferable.
  • the organic solvent one kind of organic solvent may be used, or two or more kinds of organic solvents may be used in combination.
  • the organic solvent may be a pure product or a mixture with other components.
  • examples of other components include an aqueous medium (aqueous solvent) such as water and an aqueous buffer solution. That is, for example, an aqueous solution of an organic solvent can be used for the organic solvent treatment.
  • the organic solvent concentration in the mixture may be, for example, 10% (v / v) or more, or 20% (v / v) or more, 90% (v / v) or less, 70% (v / v) or less Or 50% (v / v) or less.
  • the concentration of the organic solvent in the reaction solution for performing the organic solvent treatment may be, for example, 10% (v / v) or more, or 20% (v / v) or more, 90% (v / v) or less, It may be 70% (v / v) or less, or 50% (v / v) or less.
  • the organic solvent treatment time may be, for example, 10 minutes or longer, 30 minutes or longer, or 1 hour or longer. Further, the time of the organic solvent treatment may be, for example, 10 hours or less, 5 hours or less, or 3 hours or less.
  • the temperature of the organic solvent treatment may or may not be controlled. The temperature of the organic solvent treatment may be, for example, 10 to 70 ° C. or room temperature. The organic solvent treatment may be performed by standing or may be performed while stirring or shaking.
  • sugar glycerol is produced in the reaction supernatant and / or in the algal bodies.
  • sugar glycerol can be confirmed by a known method used for detection or identification of a compound. Examples of such a method include HPLC, LC / MS, GC / MS, and NMR. These methods can be used in appropriate combination.
  • the produced sugar glycerol can be collected by a known method used for separation and purification of compounds. Examples of such a method include an ion exchange resin method and a membrane treatment method. These methods can be used in appropriate combination.
  • sugar glycerol accumulates in the algal bodies, for example, if the algal bodies are crushed by means such as ultrasonic waves, and the sugar glycerol is recovered from the supernatant obtained by removing the algal bodies by means such as centrifugation. Good.
  • the collected sugar glycerol may contain components such as algal bodies, medium components, moisture, components used for various treatments, and metabolic byproducts of the algae of the present invention in addition to sugar glycerol.
  • the sugar glycerol may be purified to the desired degree.
  • the purity of sugar glycerol is, for example, 30% (w / w) or higher, 50% (w / w) or higher, 70% (w / w) or higher, 90% (w / w) or higher, or 95% (w / w) w) That's it.
  • the recovered sugar glycerol can be used as it is or in combination with pharmaceuticals, cosmetics, foods and drinks.
  • the amount of sugar glycerol blended is not particularly limited as long as the function of sugar glycerol is exhibited.
  • the blending amount of sugar glycerol is not particularly limited, and may be, for example, 1 ppm (w / w) or more, 100 ppm (w / w) or more, or 1% (w / w) or more.
  • the amount of sugar glycerol is not particularly limited, and may be, for example, 100% (w / w) or less, 10% (w / w) or less, or 1% (w / w) or less.
  • Glycerol glycerol may have functions such as prebiotics, ⁇ -amylase activation, moisturizing, or cell activation.
  • the treated product (medium-temperature treated product) by the intermediate temperature treatment described in ⁇ 2-2> above can be used, for example, as a carbon source for L-amino acid fermentation (WO2011) / 013707). That is, the present invention includes (A) culturing the algae of the present invention in a medium, (B) subjecting the algal cells obtained by the culture to a medium temperature treatment, and (C) a bacterium having L-amino acid-producing ability.
  • L-amino acid fermentation may be performed in the same manner as normal L-amino acid fermentation using bacteria, except that a medium containing a medium-temperature treated product is used.
  • the intermediate temperature processed product used for L-amino acid fermentation may be a processed product itself by intermediate temperature treatment. It may be subjected to a treatment such as drying, extraction, and centrifugation, or may be a component such as a fatty acid recovered from a treated product by an intermediate temperature treatment.
  • the processed product used for L-amino acid fermentation may be a fatty acid.
  • the fatty acid may or may not contain a component other than the fatty acid.
  • the fatty acid may be purified to the desired degree.
  • the fatty acid may be a free form or a salt thereof, or a mixture thereof.
  • the salt include alkali metal salts such as sodium salt and potassium salt.
  • Alkali metal salts of fatty acids are highly water-soluble, and are micellized and retained in water, so that they can be efficiently used by the bacteria of the present invention.
  • fatty acids it is preferable to increase the solubility of fatty acids by performing a treatment for promoting homogenization of fatty acids so that the bacterium of the present invention can use fatty acids more efficiently.
  • Examples of the treatment for promoting homogenization include emulsification.
  • Emulsification can be carried out, for example, by adding an emulsification accelerator or a surfactant.
  • Examples of the emulsification accelerator include phospholipids and sterols.
  • As the surfactant for example, a surfactant generally used in the field of biology can be used.
  • nonionic surfactants include, for example, polyoxyethylene sorbitan fatty acid esters such as polyoxyethylene sorbitan monooleate (Tween 80), alkyl glucosides such as n-octyl ⁇ -D-glucoside, Sucrose fatty acid esters such as sugar stearate, polyglycerin fatty acid esters such as polyglycerol stearate, Triton X-100 (TritonTriX-100), polyoxyethylene (20) cetyl ether (Brij-58), nonylphenol ethoxy Rate (Tergitol NP-40).
  • the surfactant include zwitterionic surfactants such as alkylbetaines such as N, N-dimethyl-N-dodecylglycine betaine.
  • examples of the treatment for promoting homogenization include homogenizer treatment, homomixer treatment, ultrasonic treatment, high pressure treatment, and high temperature treatment.
  • homogenizer treatment and / or ultrasonic treatment are preferable.
  • the treatment for promoting homogenization is preferably performed under alkaline conditions in which fatty acids can exist stably.
  • the alkaline condition is preferably pH 9 or more, more preferably pH 10 or more.
  • fats and oils may remain in the precipitate obtained by centrifuging the medium temperature treatment. Fats and oils produce fatty acids and glycerol by hydrolysis. The fatty acid and / or glycerol thus obtained may be used as a carbon source for L-amino acid fermentation as it is or after being appropriately purified.
  • the hydrolysis of fats and oils can be performed enzymatically using lipase, for example (WO2011 / 013707).
  • you may perform the hydrolysis of fats and oils chemically. Examples of the chemical hydrolysis method include a continuous high-temperature hydrolysis method in which oil and fat are in countercurrent contact with water under high temperature (250-260 ° C.) and high pressure (5-6 MPa).
  • the supernatant obtained by centrifuging the medium-temperature treated product may contain compounds such as glycerol, glucose, and starch fragments. These compounds may be used as carbon sources for L-amino acid fermentation as they are or after being appropriately purified.
  • the fragmented product of starch produces glucose by hydrolysis. The glucose thus obtained may be used as it is or after being appropriately purified as a carbon source for L-amino acid fermentation. For example, a supernatant with an increased glucose concentration thus obtained may be used. Hydrolysis of the starch fragment can be carried out enzymatically using, for example, amylase (WO2011 / 013707).
  • Bacteria used for L-amino acid fermentation The bacterium of the present invention is a bacterium having L-amino acid-producing ability.
  • “bacteria having L-amino acid-producing ability” means bacteria that have the ability to accumulate in the medium or in the cells so that the target L-amino acid can be produced and recovered when cultured in the medium.
  • the bacterium having L-amino acid-producing ability may be a bacterium capable of accumulating a larger amount of the target L-amino acid in the medium than the unmodified strain.
  • Non-modified strains include wild strains and parent strains.
  • the bacterium having L-amino acid-producing ability is a bacterium that can accumulate the target L-amino acid in an amount of 0.5 g / L or more, more preferably 1.0 g / L or more in the medium. May be.
  • L-amino acids include basic amino acids such as L-lysine, L-ornithine, L-arginine, L-histidine, L-citrulline, L-isoleucine, L-alanine, L-valine, L-leucine, glycine, etc.
  • Aliphatic amino acids amino acids which are hydroxymonoaminocarboxylic acids such as L-threonine and L-serine, cyclic amino acids such as L-proline, aromatic amino acids such as L-phenylalanine, L-tyrosine and L-tryptophan, L- Examples thereof include sulfur-containing amino acids such as cysteine, L-cystine and L-methionine, acidic amino acids such as L-glutamic acid and L-aspartic acid, and amino acids having an amide group in the side chain such as L-glutamine and L-asparagine.
  • the bacterium of the present invention may have only one L-amino acid producing ability or may have two or more L-amino acid producing ability.
  • the term “amino acid” may mean an L-amino acid unless otherwise specified.
  • the L-amino acid produced may be a free form, a salt thereof, or a mixture thereof. That is, in the present invention, the term “L-amino acid” may mean a free L-amino acid, a salt thereof, or a mixture thereof, unless otherwise specified. Examples of the salt will be described later.
  • bacteria belonging to the family Enterobacteriaceae and coryneform bacteria examples include bacteria belonging to the family Enterobacteriaceae and coryneform bacteria.
  • NCBI National Center for Biotechnology Information
  • the Escherichia bacterium is not particularly limited, but includes bacteria classified into the genus Escherichia by classification known to microbiologists.
  • Escherichia bacteria include, for example, Neidhardt et al. (Backmann, B. J. 1996. Derivations and Genotypes of some mutant derivatives of Escherichia coli K-12, p. 2460-2488. Table 1.
  • F. D. Nehard (ed.) “Escherichia, coli, and Salmonella, Cellular, and Molecular, Biology / Second Edition, American, Society, for Microbiology, Press, Washington, DC).
  • bacteria belonging to the genus Escherichia include Escherichia coli.
  • Specific examples of Escherichia coli include Escherichia coli W3110 (ATCC11027325) and Escherichia coli MG1655 (ATCC 47076) derived from the prototype wild-type strain K12.
  • the bacteria belonging to the genus Enterobacter are not particularly limited, but include bacteria classified into the genus Enterobacter by classification known to microbiologists.
  • Enterobacter bacteria include Enterobacter agglomerans and Enterobacter aerogenes.
  • Specific examples of Enterobacter agglomerans include the Enterobacter agglomerans ATCC12287 strain.
  • Specific examples of Enterobacter aerogenes include Enterobacter aerogenes ATCC13048, NBRC12010 (BiotechonolonBioeng.eng2007 Mar 27; 98 (2) 340-348), AJ110637 (FERM BP-10955) .
  • Enterobacter bacteria include those described in European Patent Application Publication No. EP0952221. Some Enterobacter agglomerans are classified as Pantoea agglomerans.
  • Pantoea bacterium is not particularly limited, and examples include bacteria classified into the Pantoea genus by classification known to microbiologists.
  • Examples of the genus Pantoea include Pantoea ⁇ ananatis, Pantoea stewartii, Pantoea agglomerans, and Pantoea citrea.
  • Pantoea Ananatis LMG20103 strain AJ13355 strain (FERM ⁇ BP-6614), AJ13356 strain (FERM BP-6615), AJ13601 strain (FERM BP-7207), SC17 strain (FERM BP) -11091), and SC17 (0) strain (VKPM B-9246).
  • Pantoea bacterium also includes a bacterium reclassified as Pantoea in this way.
  • Examples of the genus Erwinia include Erwinia amylovora and Erwinia carotovora.
  • Examples of Klebsiella bacteria include Klebsiella planticola.
  • coryneform bacteria examples include bacteria belonging to genera such as Corynebacterium genus, Brevibacterium genus, and Microbacterium genus.
  • coryneform bacteria include the following species. Corynebacterium acetoacidophilum Corynebacterium acetoglutamicum Corynebacterium alkanolyticum Corynebacterium callunae Corynebacterium glutamicum Corynebacterium lilium Corynebacterium melassecola Corynebacterium thermoaminogenes (Corynebacterium efficiens) Corynebacterium herculis Brevibacterium divaricatum (Corynebacterium glutamicum) Brevibacterium flavum (Corynebacterium glutamicum) Brevibacterium immariophilum Brevibacterium lactofermentum (Corynebacterium glutamicum) Brevibacterium roseum Brevibacterium saccharolyticum Brevibacterium thiogenitalis Corynebacterium ammoniagenes (Corynebacterium stationis) Brevibacterium album Brevibacterium cerinum Microbacterium ammoniaphilum
  • coryneform bacteria include the following strains. Corynebacterium acetoacidophilum ATCC 13870 Corynebacterium acetoglutamicum ATCC 15806 Corynebacterium alkanolyticum ATCC 21511 Corynebacterium callunae ATCC 15991 Corynebacterium glutamicum ATCC 13020, ATCC 13032, ATCC 13060, ATCC 13869, FERM BP-734 Corynebacterium lilium ATCC 15990 Corynebacterium melassecola ATCC 17965 Corynebacterium efficiens (Corynebacterium thermoaminogenes) AJ12340 (FERM BP-1539) Corynebacterium herculis ATCC 13868 Corynebacterium glutamicum (Brevibacterium divaricatum) ATCC 14020 Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13826, ATCC 14067, AJ124
  • corynebacteria belonging to the genus Brevibacterium has been classified as a genus of corynebacteria, but bacteria integrated into the genus corynebacteria (Int. J. Syst. Bacteriol., 41, 255 (1991)) are also available. included.
  • Corynebacterium stationis which was previously classified as Corynebacterium ammoniagenes, includes bacteria that have been reclassified as Corynebacterium stationis by 16S rRNA sequencing (Int. J Syst. Evol. Microbiol., 60, 874-879 (2010)).
  • strains can be sold, for example, from the American Type Culture Collection (address 12301 Parklawn Drive, Rockville, Maryland 20852 P.O. Box 1549, Manassas, VA 20108, United States States of America). That is, a registration number corresponding to each strain is given, and it is possible to receive a sale using this registration number (see http://www.atcc.org/). The registration number corresponding to each strain is described in the catalog of American Type Culture Collection.
  • the bacterium of the present invention may inherently have L-amino acid-producing ability or may have been modified to have L-amino acid-producing ability.
  • a bacterium having L-amino acid-producing ability can be obtained, for example, by imparting L-amino acid-producing ability to the bacterium as described above, or by enhancing the L-amino acid-producing ability of the bacterium as described above. .
  • L-amino acid-producing ability can be imparted or enhanced by a method conventionally used for breeding amino acid-producing bacteria such as coryneform bacteria or Escherichia bacteria (Amino Acid Fermentation, Academic Publishing Center, Inc., 1986). (May 30, 1st edition issued, see pages 77-100). Examples of such methods include acquisition of auxotrophic mutants, acquisition of L-amino acid analog-resistant strains, acquisition of metabolic control mutants, and recombination with enhanced activity of L-amino acid biosynthetic enzymes. The creation of stocks. In the breeding of L-amino acid-producing bacteria, properties such as auxotrophy, analog resistance, and metabolic control mutation that are imparted may be single, or two or more.
  • L-amino acid biosynthetic enzymes whose activities are enhanced in breeding L-amino acid-producing bacteria may be used alone or in combination of two or more.
  • imparting properties such as auxotrophy, analog resistance, and metabolic control mutation may be combined with enhancing the activity of biosynthetic enzymes.
  • An auxotrophic mutant, an analog resistant strain, or a metabolically controlled mutant having L-amino acid production ability is subjected to normal mutation treatment of the parent strain or wild strain, and the auxotrophic, analog It can be obtained by selecting those exhibiting resistance or metabolic control mutations and having the ability to produce L-amino acids.
  • Normal mutation treatments include X-ray and ultraviolet irradiation, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), ethyl methane sulfonate (EMS), methyl methane sulfonate (MMS), etc. Treatment with a mutagen is included.
  • the L-amino acid-producing ability can be imparted or enhanced by enhancing the activity of an enzyme involved in the target L-amino acid biosynthesis. Enhancing enzyme activity can be achieved, for example, by modifying bacteria so that expression of a gene encoding the enzyme is enhanced.
  • Methods for enhancing gene expression include increasing the gene copy number and increasing gene transcription and translation. Increasing the copy number of a gene can be achieved, for example, by introducing a vector carrying the gene into the host or by introducing the gene onto the chromosome of the host.
  • Increasing gene transcription and translation can include, for example, a promoter, an SD sequence (RBS), or a spacer region between the RBS and the start codon (eg, a sequence immediately upstream of the start codon (5′-UTR)), etc. This can be achieved by modifying the expression regulatory region.
  • RBS SD sequence
  • start codon eg, a sequence immediately upstream of the start codon (5′-UTR)
  • the L-amino acid-producing ability can be imparted or enhanced by reducing the activity of an enzyme that catalyzes a reaction that branches from the biosynthetic pathway of the target L-amino acid to produce a compound other than the target L-amino acid. It can be carried out.
  • an enzyme that catalyzes a reaction that produces a compound other than the target L-amino acid by branching from the biosynthetic pathway of the target L-amino acid includes enzymes involved in the degradation of the target amino acid. It is.
  • the reduction of the enzyme activity can be achieved, for example, by modifying the bacterium so that the expression of the gene encoding the enzyme is reduced or by destroying the gene.
  • Decreasing gene expression is, for example, regulating expression of a promoter, an SD sequence (RBS), or a spacer region between the RBS and the start codon (eg, a sequence immediately upstream of the start codon (5′-UTR)), etc. This can be achieved by modifying the region. Disrupting a gene can be achieved, for example, by deleting part or all of the gene.
  • L-amino acid-producing bacteria and methods for imparting or enhancing L-amino acid-producing ability are given below.
  • any of the modifications exemplified below for imparting or enhancing the properties of L-amino acid-producing bacteria and L-amino acid-producing ability may be used alone or in appropriate combination.
  • Examples of the method for imparting or enhancing L-glutamic acid-producing ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-glutamic acid biosynthetic enzymes is increased. .
  • Such enzymes include, but are not limited to, glutamate dehydrogenase (gdhA), glutamine synthetase (glnA), glutamate synthase (gltBD), isocitrate dehydrogenase (icdA), aconite hydratase (acnA, acnB), citrate synthase (GltA), methyl citrate synthase (prpC), phosphoenolpyruvate carboxylase (ppc), pyruvate carboxylase (pyc), pyruvate dehydrogenase (aceEF, lpdA), pyruvate kinase (pykA, pykF), phosphoenol Pyruvate synthase (ppsA), enolase (eno), phosphoglyceromutase (pgmA, pgmI), phosphoglycerate kinase (pgk),
  • the parentheses are examples of abbreviations for genes encoding the enzymes (the same applies to the following description).
  • these enzymes it is preferable to enhance the activity of one or more enzymes selected from, for example, glutamate dehydrogenase, citrate synthase, phosphoenolpyruvate carboxylase, and methyl citrate synthase.
  • Strains belonging to the family Enterobacteriaceae that have been modified to increase expression of the citrate synthase gene, phosphoenolpyruvate carboxylase gene, and / or glutamate dehydrogenase gene include those disclosed in EP1078989A, EP955368A, and EP952221A Can be mentioned.
  • Examples of strains belonging to the family Enterobacteriaceae that have been modified to increase the expression of the Entner-Doudoroff pathway genes (edd, eda) include those disclosed in EP1352966B.
  • Examples of coryneform bacteria modified to increase the expression of the glutamate synthetase gene (gltBD) include those disclosed in WO99 / 07853.
  • the method for imparting or enhancing the ability to produce L-glutamic acid is, for example, selected from enzymes that catalyze a reaction that branches from the biosynthetic pathway of L-glutamic acid to produce a compound other than L-glutamic acid.
  • a method of modifying the bacterium so that the activity of the further enzyme is reduced can also be mentioned.
  • Examples of such enzymes include, but are not limited to, isocitrate lyase (aceA), ⁇ -ketoglutarate dehydrogenase (sucA, odhA), phosphotransacetylase (pta), acetate kinase (ack), acetohydroxyacid synthase (ilvG ), Acetolactate synthase (ilvI), formate acetyltransferase (pfl), lactate dehydrogenase (ldh), alcohol dehydrogenase (adh), glutamate decarboxylase (gadAB), succinate dehydrogenase (sdhABCD), 1-pyrroline-5-carboxylate
  • An example is dehydrogenase (putA).
  • aceA isocitrate lyase
  • sucA, odhA phosphotransacetylase
  • ack acetate kinase
  • ack acetohydroxy
  • Escherichia bacteria with reduced or deficient ⁇ -ketoglutarate dehydrogenase activity and methods for obtaining them are described in US Pat. Nos. 5,378,616 and 5,573,945.
  • a method for reducing or eliminating ⁇ -ketoglutarate dehydrogenase activity in enteric bacteria such as Pantoea bacteria, Enterobacter bacteria, Klebsiella bacteria, Erwinia bacteria, and the like are disclosed in U.S. Patent No. 6,197,559, U.S. Patent No. 6,682,912, This is disclosed in US Pat. No. 6,331,419, US Pat. No. 8,129,151, and WO2008 / 075483.
  • bacteria belonging to the genus Escherichia with reduced or deficient ⁇ -ketoglutarate dehydrogenase activity include the following strains.
  • E. coli W3110sucA Kmr
  • E. coli AJ12624 (FERM BP-3853)
  • E. coli AJ12628 (FERM BP-3854)
  • E. coli AJ12949 (FERM BP-4881)
  • E. coli W3110sucA is a strain obtained by disrupting the sucA gene encoding the ⁇ -ketoglutarate dehydrogenase of E. coli W3110. This strain is completely deficient in ⁇ -ketoglutarate dehydrogenase activity.
  • Coryneform bacteria with reduced or deficient ⁇ -ketoglutarate dehydrogenase activity and methods for obtaining them are described in WO2008 / 075483.
  • Specific examples of coryneform bacteria with reduced or deficient ⁇ -ketoglutarate dehydrogenase activity include the following strains.
  • L-glutamic acid-producing bacteria or parent strains for inducing them include Pantoea ananatis AJ13355 strain (FERM BP-6614), Pantoea ananatis SC17 strain (FERM BP-11091), Pantoea ananatis SC17 (0) strain (VKPM B) -9246) and the like.
  • the AJ13355 strain is a strain isolated as a strain capable of growing on a medium containing L-glutamic acid and a carbon source at low pH from soil in Iwata City, Shizuoka Prefecture.
  • the SC17 strain is a strain selected from the AJ13355 strain as a low mucus production mutant (US Pat. No. 6,596,517).
  • examples of L-glutamic acid-producing bacteria and parent strains for inducing them also include Pantoea bacteria with reduced or deficient ⁇ -ketoglutarate dehydrogenase activity.
  • Pantoea bacteria with reduced or deficient ⁇ -ketoglutarate dehydrogenase activity include the AJ13356 strain (US Pat. No. 6,331,419) which is the E1 subunit gene (sucA) deficient strain of the ⁇ -ketoglutarate dehydrogenase of the AJ13355 strain, and the SC17sucA strain which is the sucA gene deficient strain of the SC17 strain ( US Pat. No. 6,596,517).
  • the AJ13356 strain was founded on February 19, 1998 at the Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology (currently the National Institute for Product Evaluation Technology, Patent Biological Depositary Center, Postal Code: 292-0818, Address: Chiba, Japan. Deposited at Kisarazu City Kazusa Kamashichi 2-5-8 120) under the accession number FERM P-16645 and transferred to the international deposit under the Budapest Treaty on 11 January 1999 and given the accession number FERM BP-6616 ing.
  • the SC17sucA strain was also assigned the private number AJ417.
  • the AJ13355 strain was identified as Enterobacter agglomerans at the time of its isolation, but has recently been reclassified as Pantoea anaananatis by 16S rRNA nucleotide sequence analysis and the like. Therefore, the AJ13355 strain and the AJ13356 strain are deposited as Enterobacter agglomerans in the above depository organization, but are described as Pantoea ananatis in this specification.
  • L-glutamic acid-producing bacteria or parent strains for inducing them include Pantoea bacteria such as Pantoea ananatis SC17sucA / RSFCPG + pSTVCB strain, Pantoea ananatis AJ13601 strain, Pantoea ananatis NP106 strain, and Pantoea ananatis NA1 strain .
  • Pantoea bacteria such as Pantoea ananatis SC17sucA / RSFCPG + pSTVCB strain, Pantoea ananatis AJ13601 strain, Pantoea ananatis NP106 strain, and Pantoea ananatis NA1 strain .
  • the SC17sucA / RSFCPG + pSTVCB strain is different from the SC17sucA strain in that the plasmid RSFCPG containing the citrate synthase gene (gltA), the phosphoenolpyruvate carboxylase gene (ppc), and the glutamate dehydrogenase gene (gdhA) derived from Escherichia coli, and Brevi
  • This is a strain obtained by introducing a plasmid pSTVCB containing a citrate synthase gene (gltA) derived from bacteria lactofermentum.
  • the AJ13601 strain was selected from the SC17sucA / RSFCPG + pSTVCB strain as a strain resistant to a high concentration of L-glutamic acid at low pH.
  • the NP106 strain is a strain obtained by removing the plasmid RSFCPG + pSTVCB from the AJ13601 strain.
  • AJ13601 shares were registered with the National Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology (currently the National Institute for Product Evaluation Technology, Biological Depositary Center, Postal Code: 292-0818, Address: Chiba, Japan. Deposited at Kisarazu City Kazusa Kamashika 2-5-8 120) under the accession number FERM P-17516, transferred to an international deposit based on the Budapest Treaty on July 6, 2000 and given the accession number FERM BP-7207 ing.
  • L-glutamic acid-producing bacteria or parent strains for inducing them include strains in which both ⁇ -ketoglutarate dehydrogenase (sucA) activity and succinate dehydrogenase (sdh) activity are reduced or deficient (JP 2010) -041920).
  • specific examples of such strains include, for example, a pantoea ananatis NA1 sucAsdhA double-deficient strain and a Corynebacterium glutamicum 140ATCC14067 odhAsdhA double-deficient strain (Corynebacterium glutamicum 8L3G ⁇ SDH strain) (Japanese Patent Laid-Open No. 2010-041920).
  • examples of L-glutamic acid-producing bacteria or parent strains for inducing them include auxotrophic mutants.
  • the auxotrophic mutant include E. coli VL334thrC + (VKPM B-8961) (EP 1172433).
  • E. coli VL334 (VKPM B-1641) is an L-isoleucine and L-threonine auxotroph having a mutation in the thrC gene and the ilvA gene (US Pat. No. 4,278,765).
  • E. coli VL334thrC + is an L-isoleucine-requiring L-glutamic acid-producing bacterium obtained by introducing a wild type allele of the thrC gene into VL334. The wild type allele of the thrC gene was introduced by a general transduction method using bacteriophage P1 grown on cells of wild type E. coli K12 strain (VKPM B-7).
  • examples of L-glutamic acid-producing bacteria or parent strains for inducing them also include strains resistant to aspartic acid analogs. These strains may be deficient in ⁇ -ketoglutarate dehydrogenase activity, for example.
  • Specific examples of strains resistant to aspartate analogs and lacking ⁇ -ketoglutarate dehydrogenase activity include, for example, E. coli AJ13199 (FERM BP-5807) (US Pat. No. 5,908,768), and L-glutamic acid.
  • E. coli FFRM P-12379 US Pat. No. 5,393,671
  • E. coli AJ13138 FERM BP-5565
  • a bacterium is modified so that the activity of D-xylulose-5-phosphate-phosphoketolase and / or fructose-6-phosphate phosphoketolase is increased.
  • There is also a method to do (Special Table 2008-509661). Either one or both of D-xylulose-5-phosphate-phosphoketolase activity and fructose-6-phosphate phosphoketolase activity may be enhanced.
  • D-xylulose-5-phosphate phosphoketolase and fructose-6-phosphate phosphoketolase may be collectively referred to as phosphoketolase.
  • D-xylulose-5-phosphate-phosphoketolase activity is the consumption of phosphoric acid to convert xylulose-5-phosphate into glyceraldehyde-3-phosphate and acetyl phosphate, and one molecule of H 2 O Means the activity of releasing. This activity is measured by the method described in Goldberg, M. et al. (Methods Enzymol., 9,515-520 (1966)) or L. Meile (J. Bacteriol. (2001) 183; 2929-2936). be able to.
  • fructose-6-phosphate phosphoketolase activity means that phosphoric acid is consumed, fructose 6-phosphate is converted into erythrose-4-phosphate and acetyl phosphate, and one molecule of H 2 O is released. Means activity. This activity is measured by the method described in Racker, E (Methods Enzymol., 5, 276-280 (1962)) or L. Meile (J. Bacteriol. (2001) 183; 2929-2936). be able to.
  • Examples of a method for imparting or enhancing L-glutamic acid producing ability include, for example, enhancing expression of yhfK gene (WO2005 / 085419) and ybjL gene (WO2008 / 133161) which are L-glutamic acid excretion genes. It is done.
  • Examples of methods for imparting or enhancing L-glutamic acid-producing ability for coryneform bacteria include methods for imparting resistance to organic acid analogs and respiratory inhibitors, and methods for imparting sensitivity to cell wall synthesis inhibitors. It is done. Specific examples of such a method include, for example, a method for imparting monofluoroacetic acid resistance (Japanese Patent Laid-Open No. 50-113209), a method for imparting adenine resistance or thymine resistance (Japanese Patent Laid-Open No. 57-065198), and urease.
  • JP 52-038088 Method of weakening (JP 52-038088), method of imparting malonic acid resistance (JP 52-038088), method of imparting resistance to benzopyrones or naphthoquinones (JP 56-1889), HOQNO Method for imparting resistance (Japanese Patent Laid-Open No. 56-140895), method for imparting resistance to ⁇ -ketomalonic acid (Japanese Patent Laid-Open No. 57-2689), method for imparting guanidine resistance (Japanese Patent Laid-Open No. 56-35981), sensitivity to penicillin And the like (JP-A-4-88994).
  • resistant or susceptible bacteria include the following strains: Corynebacterium glutamicum (Brevibacterium flavum) AJ3949 (FERM BP-2632; see JP 50-113209) Corynebacterium glutamicum AJ11628 (FERM P-5736; see JP-A-57-065198) Corynebacterium glutamicum (Brevibacterium flavum) AJ11355 (FERM P-5007; see JP 56-1889) Corynebacterium glutamicum AJ11368 (FERM P-5020; see JP-A-56-1889) Corynebacterium glutamicum (Brevibacterium flavum) AJ11217 (FERM P-4318; see JP-A-57-2689) Corynebacterium glutamicum AJ11218 (FERM P-4319; see JP 57-2689) Corynebacterium glutamicum (Brevibacterium flavum) AJ11564 (FERM P-
  • Examples of a method for imparting or enhancing L-glutamic acid producing ability for coryneform bacteria include a method for enhancing expression of the yggB gene and a method for introducing a mutant yggB gene having a mutation introduced into the coding region ( WO2006 / 070944).
  • the yggB gene encodes a mechanosensitive channel.
  • the yggB gene of Corynebacterium glutamicum ATCC13032 corresponds to a complementary sequence of the sequences 1,336,091 to 1,337,692 in the genome sequence registered in the NCBI database under GenBank Accession No. NC_003450, and is also called NCgl1221.
  • the YggB protein encoded by the yggB gene of Corynebacterium glutamicum ATCC13032 is registered as GenBank accession No. NP_600492.
  • Examples of the method for imparting or enhancing L-glutamine production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-glutamine biosynthesis enzymes is increased.
  • Examples of such an enzyme include, but are not limited to, glutamate dehydrogenase (gdhA) and glutamine synthetase (glnA).
  • the activity of glutamine synthetase may be enhanced by disrupting the glutamine adenylyltransferase gene (glnE) or the PII regulatory protein gene (glnB) (EP1229121).
  • the method for imparting or enhancing L-glutamine production ability is, for example, selected from an enzyme that catalyzes a reaction that branches from the biosynthetic pathway of L-glutamine to produce a compound other than L-glutamine.
  • an enzyme that catalyzes a reaction that branches from the biosynthetic pathway of L-glutamine to produce a compound other than L-glutamine.
  • a method of modifying the bacterium so that the activity of the further enzyme is reduced can also be mentioned.
  • Such an enzyme is not particularly limited, and includes glutaminase.
  • L-glutamine-producing bacteria or parent strains for inducing them examples include coryneform bacteria (EP1229121, EP1424398) with enhanced activity of glutamate dehydrogenase (gdhA) and / or glutamine synthetase (glnA), and coryneforms with reduced glutaminase activity Type bacteria (Japanese Patent Laid-Open No. 2004-187684).
  • the L-glutamine-producing bacterium or the parent strain for inducing it is a strain belonging to the genus Escherichia having a mutant glutamine synthetase in which the tyrosine residue at position 397 of glutamine synthetase is substituted with another amino acid residue. (US Patent Application Publication No. 2003-0148474).
  • Corynebacterium glutamicum (Brevibacterium flavum) AJ11573 (FERM P-5492; JP 56-161495) Corynebacterium glutamicum (Brevibacterium flavum) AJ11576 (FERM BP-10381; JP 56-161495) Corynebacterium glutamicum (Brevibacterium flavum) AJ12212 (FERM P-8123; JP-A 61-202694)
  • Examples of the method for imparting or enhancing L-proline production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-proline biosynthesis enzymes is increased.
  • Such enzymes include glutamate-5-kinase (proB), ⁇ -glutamyl-phosphate reductase, pyrroline-5-carboxylate reductase (putA).
  • proB glutamate-5-kinase
  • PDA pyrroline-5-carboxylate reductase
  • the proB gene German Patent No. 3127361
  • the proB gene German Patent No. 3127361 encoding glutamate-5-kinase in which feedback inhibition by L-proline is released can be suitably used.
  • a method for imparting or enhancing L-proline production ability for example, a method of modifying bacteria so that the activity of an enzyme involved in L-proline degradation is reduced.
  • an enzyme include proline dehydrogenase and ornithine aminotransferase.
  • L-proline-producing bacteria or parent strains for deriving them include, for example, E. coli NRRL B-12403 and NRRL B-12404 (British Patent No. 2075056), E. coli VKPM B-8012 ( Russian patent application 2000124295), E. coli plasmid variant described in German Patent 3127361, Bloom FR et al (The 15th Miami winter symposium, 1983, p.34), E. coli plasmid variant, 3, E. coli 702 strain (VKPMB-8011) resistant to 4-dehydroxyproline and azatidine-2-carboxylate, E. coli 702ilvA strain (VKPM B-8012) (EP 1172433) which is a 702 ilvA gene-deficient strain Is mentioned.
  • L-threonine producing bacteria examples include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-threonine biosynthetic enzymes is increased. .
  • enzymes include, but are not limited to, aspartokinase III (lysC), aspartate semialdehyde dehydrogenase (asd), aspartokinase I (thrA), homoserine kinase (thrB), threonine synthase ( threonine synthase) (thrC), aspartate aminotransferase (aspartate transaminase) (aspC).
  • aspartokinase III lysC
  • aspartate semialdehyde dehydrogenase aspartokinase I
  • thrB homoserine kinase
  • thrC threonine synthase
  • aspartate aminotransferase aspartate transaminase
  • the L-threonine biosynthesis gene may be introduced into a strain in which threonine degradation is suppressed.
  • strains in which threonine degradation is suppressed include E. coli TDH6 strain lacking threonine dehydrogenase activity (Japanese Patent Laid-Open No. 2001-346578).
  • the activity of the L-threonine biosynthetic enzyme is inhibited by the final product L-threonine. Therefore, in order to construct an L-threonine-producing bacterium, it is preferable to modify the L-threonine biosynthetic gene so that it is not subject to feedback inhibition by L-threonine.
  • the thrA, thrB, and thrC genes constitute a threonine operon, and the threonine operon forms an attenuator structure. Expression of the threonine operon is inhibited by isoleucine and threonine in the culture medium, and is suppressed by attenuation.
  • Enhanced expression of the threonine operon can be achieved by removing the leader sequence or attenuator in the attenuation region (Lynn, S. P., Burton, W. S., Donohue, T. J., Gould, R. M., Gumport, R. I., and Gardner, J. F. J. Mol. Biol. 194: 59-69 1987 (1987); WO02 / 26993; WO2005 / 049808; WO2003 / 097839).
  • the threonine operon may be constructed so that a gene involved in threonine biosynthesis is expressed under the control of a lambda phage repressor and promoter (see European Patent No. 0593792).
  • Bacteria modified so as not to be subjected to feedback inhibition by L-threonine can also be obtained by selecting a strain resistant to ⁇ -amino- ⁇ -hydroxyvaleric acid (AHV), which is an L-threonine analog.
  • HAV ⁇ -amino- ⁇ -hydroxyvaleric acid
  • the threonine operon modified so as not to be subjected to feedback inhibition by L-threonine is improved in the expression level in the host by increasing the copy number or being linked to a strong promoter.
  • An increase in copy number can be achieved by introducing a plasmid containing a threonine operon into the host.
  • An increase in copy number can also be achieved by transferring the threonine operon onto the host genome using a transposon, Mu phage, or the like.
  • examples of a method for imparting or enhancing L-threonine production ability include a method for imparting L-threonine resistance to a host and a method for imparting L-homoserine resistance.
  • the imparting of resistance can be achieved, for example, by enhancing the expression of a gene that imparts resistance to L-threonine or a gene that imparts resistance to L-homoserine.
  • genes that confer resistance include rhtA gene (Res. Microbiol. 154: 123-135 (2003)), rhtB gene (European Patent Application Publication No. 0994190), rhtC gene (European Patent Application Publication No.
  • L-threonine-producing bacteria or parent strains for deriving them include, for example, E. coli TDH-6 / pVIC40 (VKPM B-3996) (US Patent No. 5,175,107, US Patent No. 5,705,371), E. coli 472T23 / pYN7 (ATCC 98081) (U.S. Patent No. 5,631,157), E. coli NRRL-21593 (U.S. Patent No. 5,939,307), E. coli FERM BP-3756 (U.S. Patent No. 5,474,918), E. coli FERM BP-3519 and FERM BP-3520 (U.S. Patent No. 5,376,538), E.
  • E. coli MG442 (Gusyatiner et al., Genetika (in Russian), 14, 947-956 (1978)), E. coli VL643 and VL2055 ( EP 1149911 A), and E. coli VKPM B-5318 (EP 0593792 B).
  • VKPM B-3996 strain is a strain obtained by introducing plasmid pVIC40 into TDH-6 strain.
  • the TDH-6 strain is sucrose-assimilating, lacks the thrC gene, and has a leaky mutation in the ilvA gene.
  • the VKPM B-3996 strain has a mutation that imparts resistance to a high concentration of threonine or homoserine in the rhtA gene.
  • the plasmid pVIC40 is a plasmid in which a thrA * BC operon containing a mutant thrA gene encoding an aspartokinase homoserine dehydrogenase I resistant to feedback inhibition by threonine and a wild type thrBC gene is inserted into an RSF1010-derived vector (US Patent) No. 5,705,371).
  • This mutant thrA gene encodes aspartokinase homoserine dehydrogenase I substantially desensitized to feedback inhibition by threonine.
  • the strain VKPM B-5318 is non-isoleucine-requiring and retains the plasmid pPRT614 in which the control region of the threonine operon in the plasmid pVIC40 is replaced with a temperature-sensitive lambda phage C1 repressor and a PR promoter.
  • VKPM B-5318 was assigned to Lucian National Collection of Industrial Microorganisms (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) on May 3, 1990 under the accession number VKPM B-5318 Has been deposited internationally.
  • the thrA gene encoding aspartokinase homoserine dehydrogenase I of E. coli has been revealed (nucleotide numbers 337-2799, GenBank accession NC_000913.2, gi: 49175990).
  • the thrA gene is located between the thrL gene and the thrB gene in the chromosome of E. coli K-12.
  • the thrB gene encoding homoserine kinase of Escherichia coli has been elucidated (nucleotide numbers 2801 to 3733, GenBank accession NC_000913.2, gi: 49175990).
  • the thrB gene is located between the thrA gene and the thrC gene in the chromosome of E. coli K-12.
  • the thrC gene encoding threonine synthase from E.coli has been elucidated (nucleotide numbers 3734 to 5020, GenBank accession NC_000913.2, gi: 49175990).
  • the thrC gene is located between the thrB gene and the yaaX open reading frame in the chromosome of E. coli K-12.
  • thrA * BC operon containing a mutant thrA gene encoding an aspartokinase homoserine dehydrogenase I resistant to feedback inhibition by threonine and a wild type thrBC gene is known in the threonine-producing strain E. coli VKPM B-3996. It can be obtained from plasmid pVIC40 (US Pat. No. 5,705,371).
  • the rhtA gene of E. coli is present at 18 minutes of the E. coli chromosome close to the glnHPQ operon, which encodes a glutamine transport system element.
  • the rhtA gene is the same as ORF1 (ybiF gene, nucleotide numbers 764 to 1651, GenBank accession number AAA218541, gi: 440181), and is located between the pexB gene and the ompX gene.
  • the unit that expresses the protein encoded by ORF1 is called rhtA gene (rht: resistant toosehomoserine andeonthreonine (resistant to homoserine and threonine)).
  • the asd gene of E. coli has already been clarified (nucleotide numbers 3572511 to 3571408, GenBank accession NC_000913.1, gi: 16131307), and can be obtained by PCR using primers prepared based on the nucleotide sequence of the gene ( White, TJ et al., Trends Genet., 5, 185 (1989)).
  • the asd gene of other microorganisms can be obtained similarly.
  • the aspC gene of E. ⁇ ⁇ coli has already been clarified (nucleotide numbers 983742 to 984932, GenBank accession NC_000913.1, gi: 16128895), and obtained by PCR using a primer prepared based on the nucleotide sequence of the gene be able to.
  • the aspC gene of other microorganisms can be obtained similarly.
  • coryneform bacteria having L-threonine-producing ability examples include Corynebacterium acetoacidophilum AJ12318123 (FERM BP-1172) (see US Patent No. 5,188,949).
  • Examples of a method for imparting or enhancing L-lysine production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-lysine biosynthesis enzymes is increased.
  • Such enzymes include, but are not limited to, dihydrodipicolinate synthase (dapA), aspartokinase III (lysC), dihydrodipicolinate reductase (dapB), diaminopimelate Deaminopimelate decarboxylase (lysA), diaminopimelate dehydrogenase (ddh) (US Pat. No.
  • phosphoenolpyruvate carboxylase ppc
  • aspartate semialdehyde dehydrogenase aspartate semialdehyde dehydrogenase
  • Asd aspartate aminotransferase (aspartate transaminase)
  • dapF diaminopimelate epi Diaminopimelate epimerase
  • dapD tetrahydrodipicolinate succinylase
  • dapE succinyl-diaminopimelate deacylase
  • aspartase aspartase (195) ).
  • dihydrodipicolinate reductase diaminopimelate decarboxylase, diaminopimelate dehydrogenase, phosphoenolpyruvate carboxylase, aspartate aminotransferase, diaminopimelate epimerase, aspartate semialdehyde dehydrogenase, tetrahydrodipicolinate succinylase, and
  • the activity of one or more enzymes selected from succinyl diaminopimelate deacylase is enhanced.
  • a gene (cyo) (EP 1170376 A) involved in energy efficiency, a gene encoding nicotinamide nucleotide transhydrogenase (pntAB) ( US Pat. No. 5,830,716), ybjE gene (WO2005 / 073390), or combinations thereof may have increased expression levels.
  • Aspartokinase III (lysC) is subject to feedback inhibition by L-lysine.
  • a mutant lysC gene encoding aspartokinase III that has been desensitized to feedback inhibition by L-lysine is used. It may be used (US Pat. No.
  • a method for imparting or enhancing L-lysine producing ability for coryneform bacteria for example, a method of modifying the bacteria so that the activity of the lysine excretion system (lysE) is increased (WO97 / 23597). ).
  • the lysE gene of Corynebacterium glutamicum ATCC 13032 corresponds to the complementary sequence of the 1329712-1330413 sequence in the genome sequence registered in the NCBI database as GenBank accession NC_006958 (VERSION NC_006958.1 GI: 62388892).
  • the LysE protein of Corynebacterium glutamicum ATCC13032 is registered as GenBank accession YP_225551 (YP_225551.1 GI: 62390149).
  • the method for imparting or enhancing L-lysine production ability is, for example, selected from enzymes that catalyze the reaction of branching from the biosynthetic pathway of L-lysine to produce compounds other than L-lysine.
  • enzymes that catalyze the reaction of branching from the biosynthetic pathway of L-lysine to produce compounds other than L-lysine.
  • a method of modifying the bacterium so that the activity of the further enzyme is reduced can also be mentioned.
  • Such enzymes include, but are not limited to, homoserine dehydrogenase, lysine decarboxylase (US Pat. No. 5,827,698), and malic enzyme (WO2005 / 010175). .
  • L-lysine-producing bacteria or parent strains for inducing them include mutants having resistance to L-lysine analogs.
  • L-lysine analogs inhibit the growth of bacteria such as Enterobacteriaceae and coryneform bacteria, but this inhibition is completely or partially released when L-lysine is present in the medium.
  • the L-lysine analog is not particularly limited, and examples thereof include oxalysine, lysine hydroxamate, S- (2-aminoethyl) -L-cysteine (AEC), ⁇ -methyllysine, and ⁇ -chlorocaprolactam.
  • Mutant strains having resistance to these lysine analogs can be obtained by subjecting bacteria to normal artificial mutation treatment.
  • L-lysine-producing bacteria or parent strains for deriving them include, for example, E. coli AJ11442 (FERM BP-1543, NRRL B-12185; see U.S. Pat. No. 4,346,170) and E. coli VL611. Can be mentioned. In these strains, feedback inhibition of aspartokinase by L-lysine is released.
  • L-lysine-producing bacteria or parent strains for inducing them include E. coli WC196 strain.
  • the WC196 strain was bred by conferring AEC resistance to the W3110 strain derived from E. coli K-12 (US Pat. No. 5,827,698).
  • the WC196 strain was named E.
  • Preferred L-lysine producing bacteria include E.coli WC196 ⁇ cadA ⁇ ldc and E.coli WC196 ⁇ cadA ⁇ ldc / pCABD2 (WO2010 / 061890).
  • WC196 ⁇ cadA ⁇ ldc is a strain constructed by disrupting the cadA and ldcC genes encoding lysine decarboxylase from the WC196 strain.
  • WC196 ⁇ cadA ⁇ ldc / pCABD2 is a strain constructed by introducing plasmid pCABD2 (US Pat. No. 6,040,160) containing a lysine biosynthesis gene into WC196 ⁇ cadA ⁇ ldc.
  • WC196 ⁇ cadA ⁇ ldc was named AJ110692, and on October 7, 2008, National Institute of Advanced Industrial Science and Technology, Patent Biological Depositary Center (currently, National Institute of Technology and Evaluation, Patent Biological Depositary Center, ZIP Code: 292-0818, Address: 2-5-8 120, Kazusa Kamashitsu, Kisarazu City, Chiba Prefecture, Japan) was deposited under the accession number FERM BP-11027.
  • pCABD2 is a mutant dapA gene encoding dihydrodipicolinate synthase (DDPS) derived from Escherichia coli having a mutation that is desensitized to feedback inhibition by L-lysine, and a mutation that is desensitized to feedback inhibition by L-lysine.
  • a mutant lysC gene encoding aspartokinase III derived from Escherichia coli, dapB gene encoding dihydrodipicolinate reductase derived from Escherichia coli, and ddh encoding a diaminopimelate dehydrogenase derived from Brevibacterium lactofermentum Contains genes.
  • a preferable L-lysine-producing bacterium includes E.coli AJIK01 strain (NITE BP-01520).
  • the AJIK01 strain was named E. coli AJ111046.
  • Patent Microorganisms Deposit Center Postal Code: 292-0818, Address: Kazusa Kama, Kisarazu City, Chiba Prefecture, Japan
  • No. 2-5-8 120
  • coryneform bacteria having L-lysine-producing ability examples include, for example, AEC-resistant mutant strains (Corynebacterium glutamicum (Brevibacterium lactofermentum) AJ11082 (NRRL 470 B-11470) strain, etc .; Japanese Patent Publication No. 56-1914, Japanese Patent Publication No. 56- No. 1915, No. 57-14157, No. 57-14158, No. 57-30474, No. 58-10075, No. 59-4993, No. 61-35840 No.
  • L-homoserine for its growth Mutants that require amino acids such as (see Japanese Patent Publication Nos. 48-28078 and 56-6499); exhibit resistance to AEC, and further L-leucine, L-homoserine, L-proline, L-serine Mutants requiring amino acids such as L-arginine, L-alanine and L-valine (US Pat. No.
  • Examples of the method for imparting or enhancing L-arginine-producing ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-arginine biosynthesis enzymes is increased. .
  • Examples of such enzymes include, but are not limited to, N-acetylglutamate synthase (argA), N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine Examples include transaminase (argD), acetylornithine deacetylase (argE) ornithine carbamoyltransferase (argF), argininosuccinate synthase (argG), argininosuccinate lyase (argH), and carbamoyl phosphate synthase (carAB).
  • argA N-acetylglutamate synthase
  • argC N-acetylglutamylphosphate reductase
  • argJ ornithine acetyltransferase
  • N-acetylglutamate synthase (argA) gene examples include mutant N-acetylglutamate synthase in which amino acid residues corresponding to the 15th to 19th positions of the wild type are substituted and feedback inhibition by L-arginine is released. It is preferable to use a gene to be encoded (European Application Publication No. 1170361).
  • L-arginine-producing bacteria or parent strains for inducing the same include, for example, E. coli 237 strain (VKPM B-7925) (US Patent Application Publication 2002/058315 A1), mutant N-acetylglutamic acid Its derivative strain ⁇ ⁇ ( Russian patent application No. 2001112869, EP1170361A1) introduced with the argA gene encoding synthase, E.237coli 382 strain (VKPM B-7926) 237 (VKPM B-7926) EP1170358A1) and E. coli 382ilvA + strain, which is a strain in which the wild-type ilvA gene derived from E. coli K-12 strain is introduced into 382 strain.
  • E. coli 237 strain VKPM B-7925
  • US Patent Application Publication 2002/058315 A1 mutant N-acetylglutamic acid Its derivative strain ⁇ ⁇
  • E.237coli 382 strain VKPM B-7926
  • L-arginine-producing bacteria or parent strains for inducing them include strains having resistance to amino acid analogs and the like.
  • Such strains include, for example, ⁇ -methylmethionine, p-fluorophenylalanine, D-arginine, arginine hydroxamic acid, S- (2-aminoethyl) -cysteine, ⁇ -methylserine, ⁇ -2-thienylalanine, or Examples include Escherichia coli mutants having resistance to sulfaguanidine (see JP-A-56-106598).
  • L-arginine-producing bacteria or parent strains for inducing them include strains lacking ArgR, an arginine repressor (US Patent Application Publication No. 2002-0045223), and strains that have increased intracellular glutamine synthetase activity. Examples thereof include coryneform bacteria such as (US Patent Application Publication No. 2005-0014236).
  • L-arginine-producing bacteria or parent strains for inducing them include mutants of coryneform bacteria having resistance to amino acid analogs and the like.
  • examples of such a strain include, in addition to 2-thiazolealanine resistance, a strain having L-histidine, L-proline, L-threonine, L-isoleucine, L-methionine, or L-tryptophan auxotrophic No. 54-44096); strains resistant to ketomalonic acid, fluoromalonic acid, or monofluoroacetic acid (JP 57-18989); strains resistant to argininol (Japanese Patent Publication No.
  • a strain resistant to X-guanidine (X is a fatty chain or a derivative thereof) (Japanese Patent Laid-Open No. 2-186995); a strain resistant to arginine hydroxamate and 6-azauracil (Japanese Patent Laid-Open No. 57-150381) ).
  • Specific examples of coryneform bacteria having the ability to produce L-arginine include the following strains.
  • L-citrulline and L-ornithine-producing bacteria share a biosynthetic pathway with L-arginine.
  • N-acetylglutamate synthase argA
  • N-acetylglutamylphosphate reductase argC
  • ornithine acetyltransferase argJ
  • N-acetylglutamate kinase argB
  • acetylornithine transaminase argD
  • WO 2006-35831 By increasing the enzyme activity of deacetylase (argE), the ability to produce L-citrulline and / or L-ornithine can be imparted or enhanced (WO 2006-35831).
  • Examples of the method for imparting or enhancing L-histidine production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-histidine biosynthesis enzymes is increased.
  • Examples of such an enzyme include, but are not limited to, ATP phosphoribosyltransferase (hisG), phosphoribosyl-AMP cyclohydrolase (hisI), phosphoribosyl-ATP pyrophosphohydrolase (hisI), phosphoribosylformimino-5-aminoimidazole carboxamide ribonucleoside.
  • tide isomerase (hisA), amide transferase (hisH), histidinol phosphate aminotransferase (hisC), histidinol phosphatase (hisB), and histidinol dehydrogenase (hisD).
  • hisA tide isomerase
  • hisH amide transferase
  • hisC histidinol phosphate aminotransferase
  • hisB histidinol phosphatase
  • hisD histidinol dehydrogenase
  • L-histidine biosynthetic enzymes encoded by hisG and hisBHAFI are known to be inhibited by L-histidine. Therefore, the ability to produce L-histidine can be imparted or enhanced, for example, by introducing a mutation that confers resistance to feedback inhibition in the ATP phosphoribosyltransferase gene (hisG) ( Russian Patent No. 2003677 and No. 2). 2119536).
  • L-histidine-producing bacteria or parent strains for inducing them include, for example, E. coli 24 strain (VKPM B-5945, RU2003677), E. coli NRRL B-12116-B-12121 (US Patent) No. 4,388,405), E. coli H-9342 (FERM BP-6675) and H-9343 (FERM BP-6676) (U.S. Patent No. 6,344,347), E. coli H-9341 (FERM BP-6674) (EP1085087) E. coli AI80 / pFM201 (US Pat. No. 6,258,554), E.
  • E. coli FERM P-5038 and 5048 into which a vector carrying DNA encoding an L-histidine biosynthetic enzyme was introduced Japanese Patent Laid-Open No. 56-005099
  • E. coli strain EP1016710A
  • E. coli 80 strain VKPM B
  • Sulfaguanidine DL-1,2,4-triazole-3-alanine
  • streptomycin -7270 Russian Patent No. 2119536
  • Examples of the method for imparting or enhancing L-cysteine production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-cysteine biosynthesis enzymes is increased.
  • Examples of such an enzyme include, but are not limited to, serine acetyltransferase (cysE) and 3-phosphoglycerate dehydrogenase (serA).
  • Serine acetyltransferase activity can be enhanced, for example, by introducing a mutant cysE gene encoding a mutant serine acetyltransferase resistant to feedback inhibition by cysteine into bacteria.
  • Mutant serine acetyltransferases are disclosed, for example, in JP-A-11-155571 and US Patent Publication No. 20050112731. Further, the 3-phosphoglycerate dehydrogenase activity can be enhanced by introducing, for example, a mutant serA gene encoding a mutant 3-phosphoglycerate dehydrogenase resistant to feedback inhibition by serine into a bacterium. Mutant 3-phosphoglycerate dehydrogenase is disclosed, for example, in US Pat. No. 6,180,373.
  • the method for imparting or enhancing L-cysteine production ability is selected from, for example, an enzyme that catalyzes a reaction that branches from the biosynthesis pathway of L-cysteine to produce a compound other than L-cysteine.
  • an enzyme that catalyzes a reaction that branches from the biosynthesis pathway of L-cysteine to produce a compound other than L-cysteine Alternatively, a method of modifying the bacterium so that the activity of the further enzyme is reduced can also be mentioned.
  • examples of such enzymes include enzymes involved in the degradation of L-cysteine.
  • the enzyme involved in the degradation of L-cysteine is not particularly limited, but cystathionine- ⁇ -lyase (metC) (Japanese Patent Laid-Open No. 11-155571, Chandra et.
  • examples of methods for imparting or enhancing L-cysteine production ability include enhancing the L-cysteine excretion system and enhancing the sulfate / thiosulfate transport system.
  • proteins of the L-cysteine excretion system include proteins encoded by the ydeD gene (JP 2002-233384), proteins encoded by the yfiK gene (JP 2004-49237), emrAB, emrKY, yojIH, acrEF, bcr, And each protein encoded by each gene of cusA (Japanese Patent Laid-Open No.
  • sulfate / thiosulfate transport system protein examples include proteins encoded by the cysPTWAM gene cluster.
  • L-cysteine-producing bacteria or parent strains for deriving them include, for example, E. coli JM15 (US Patent) transformed with various cysE alleles encoding mutant serine acetyltransferase resistant to feedback inhibition. No. 6,218,168, Russian Patent Application No. 2003121601), E. coli W3110 (US Pat.No. 5,972,663), cysteine desulfhydrase, which has an overexpressed gene encoding a protein suitable for excretion of substances toxic to cells Examples include E. coli strain (JP11155571A2) with reduced activity and E. coli W3110 (WO01 / 27307A1) with increased activity of the transcriptional control factor of the positive cysteine regulon encoded by the cysB gene.
  • coryneform bacteria having L-cysteine-producing ability examples include coryneform bacteria in which intracellular serine acetyltransferase activity is increased by retaining serine acetyltransferase with reduced feedback inhibition by L-cysteine (for example, JP-A-2002-233384).
  • Examples of a method for imparting or enhancing L-serine production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-serine biosynthetic enzymes is increased.
  • Examples of such enzymes include, but are not limited to, 3-phosphoglycerate dehydrogenase (serA), phosphoserine transaminase (serC), and phosphoserine phosphatase (serB) (Japanese Patent Laid-Open No. 11-253187).
  • the 3-phosphoglycerate dehydrogenase activity can be enhanced, for example, by introducing a mutant serA gene encoding a mutant 3-phosphoglycerate dehydrogenase resistant to feedback inhibition by serine into bacteria. Mutant 3-phosphoglycerate dehydrogenase is disclosed, for example, in US Pat. No. 6,180,373.
  • L-serine-producing bacteria or parent strains for inducing them examples include coryneform bacteria that are resistant to azaserine or ⁇ - (2-thienyl) -DL-alanine and lack L-serine resolution. (JP-A-10-248588).
  • coryneform bacteria include, for example, Corynebacterium glutamicum (Brevibacterium flavum) AJ13324 (FERM P-16128) ⁇ ⁇ , which is resistant to azaserine and lacks L-serine resolution, and ⁇ - (2- Corynebacterium glutamicum (Brevibacterium flavum) AJ13325 (FERM ⁇ ⁇ P-16129) ⁇ ⁇ that is resistant to thienyl) -DL-alanine and lacks the resolution of L-serine (Japanese Patent Laid-Open No. 10-248588).
  • L-methionine producing bacteria examples include L-threonine-requiring strains and mutants having resistance to norleucine (Japanese Patent Laid-Open No. 2000-139471).
  • examples of L-methionine-producing bacteria or parent strains for deriving them also include strains that retain mutant homoserine transsuccinylase that is resistant to feedback inhibition by L-methionine (Japanese Patent Laid-Open No. 2000-139471). , US20090029424).
  • L-methionine is biosynthesized with L-cysteine as an intermediate, L-methionine production ability can be improved by improving L-cysteine production ability (Japanese Patent Laid-Open No. 2000-139471, US20080311632).
  • L-methionine-producing bacteria or parent strains for inducing them include, for example, E. coli AJ11539 (NRRL B-12399), E. coli AJ11540 (NRRL B-12400), E. coli AJ11541 (NRRL B-12401), E. coli AJ11542 (NRRL B-12402) (British Patent No. 2075055), E. coli 218 strain (VKPM B-8125) having resistance to norleucine, an analog of L-methionine (Russian Patent No. 2209248) No.), 73 shares (VKPM B-8126) (Russian Patent No. 2215782), E.
  • coli AJ13425 (FERM P-16808) (Japanese Patent Laid-Open No. 2000-139471).
  • the AJ13425 strain lacks a methionine repressor, weakens intracellular S-adenosylmethionine synthetase activity, and produces intracellular homoserine transsuccinylase activity, cystathionine ⁇ -synthase activity, and aspartokinase-homoserine dehydrogenase II.
  • L-threonine-requiring strain derived from E. coli W3110 with enhanced activity.
  • Examples of the method for imparting or enhancing the ability to produce L-leucine include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-leucine biosynthesis enzymes is increased. .
  • Examples of such an enzyme include, but are not limited to, an enzyme encoded by a gene of leuABCD operon.
  • a mutant leuA gene US Pat. No. 6,403,342
  • encoding isopropyl malate synthase from which feedback inhibition by L-leucine has been released can be suitably used.
  • L-leucine-producing bacteria or parent strains for inducing the same include, for example, leucine-resistant E. coli strains (eg, 57 strains (VKPM B-7386, US Pat. No. 6,124,121)), ⁇ - E. coli strains resistant to leucine analogs such as 2-thienylalanine, 3-hydroxyleucine, 4-azaleucine, 5,5,5-trifluoroleucine (JP-B-62-34397 and JP-A-8-70879), WO96 And strains belonging to the genus Escherichia such as E. coli strain and E. coli H-9068 (JP-A-8-70879) obtained by the genetic engineering method described in / 06926.
  • leucine-resistant E. coli strains eg, 57 strains (VKPM B-7386, US Pat. No. 6,124,121)
  • ⁇ - E. coli strains resistant to leucine analogs such as 2-thienylalan
  • Coryneform bacteria having L-leucine-producing ability include, for example, Corynebacterium amicglutamicum (Brevibacterium lactofermentum) AJ3718 (FERM P-2516), which is resistant to 2-thiazolealanine and ⁇ -hydroxyleucine, and is auxotrophic for isoleucine and methionine. Is mentioned.
  • Examples of the method for imparting or enhancing L-isoleucine producing ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-isoleucine biosynthesis enzymes is increased.
  • Examples of such an enzyme include, but are not limited to, threonine deaminase and acetohydroxy acid synthase (JP-A-2-458, FR 0356739, and US Pat. No. 5,998,178).
  • L-isoleucine-producing bacteria or parent strains for inducing them include mutants having resistance to 6-dimethylaminopurine (Japanese Patent Laid-Open No. 5-304969), thiisoleucine, isoleucine hydroxamate, etc.
  • Escherichia bacteria such as mutant strains resistant to isoleucine analogs and mutant strains resistant to DL-ethionine and / or arginine hydroxamate in addition to isoleucine analogs (JP-A-5-130882).
  • coryneform bacteria having the ability to produce L-isoleucine examples include, for example, coryneform bacteria (JP 2001-169788) in which a brnE gene encoding a branched-chain amino acid excretion protein is amplified, and protoplast fusion with L-lysine-producing bacteria.
  • coryneform bacteria imparted with isoleucine-producing ability Japanese Patent Laid-Open No. Sho 62-74293
  • coryneform bacteria enhanced with homoserine dehydrogenase Japanese Patent Laid-Open No. Sho 62-91193
  • threonine hydroxamate resistant strain Japanese Patent Laid-Open No.
  • Examples of a method for imparting or enhancing L-valine production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-valine biosynthetic enzymes is increased.
  • Examples of such enzymes include, but are not limited to, enzymes encoded by genes of ilvGMEDA operon and ilvBNC operon. ilvBN encodes acetohydroxy acid synthase, and ilvC encodes isomeroreductase (WO 00/50624).
  • the ilvGMEDA operon and the ilvBNC operon are subject to expression suppression (attenuation) by L-valine, L-isoleucine, and / or L-leucine. Therefore, in order to enhance the enzyme activity, it is preferable to remove or modify the region necessary for attenuation and to cancel the expression suppression by the produced L-valine.
  • the threonine deaminase encoded by the ilvA gene is an enzyme that catalyzes the deamination reaction from L-threonine to 2-ketobutyric acid, which is the rate-limiting step of the L-isoleucine biosynthesis system. Therefore, for L-valine production, it is preferable that the ilvA gene is disrupted and the threonine deaminase activity is reduced.
  • the method for imparting or enhancing L-valine-producing ability is, for example, selected from enzymes that catalyze a reaction that branches from the biosynthetic pathway of L-valine to produce a compound other than L-valine.
  • enzymes that catalyze a reaction that branches from the biosynthetic pathway of L-valine to produce a compound other than L-valine.
  • a method of modifying the bacterium so that the activity of the further enzyme is reduced can also be mentioned.
  • examples of such enzymes include, but are not limited to, threonine dehydratase involved in L-leucine synthesis and enzymes involved in D-pantothenic acid synthesis (International Publication No. 00/50624).
  • L-valine-producing bacterium or the parent strain for deriving the same include, for example, the E. coli strain (US Pat. No. 5,998,178) that has been modified to overexpress the ilvGMEDA operon.
  • examples of L-valine-producing bacteria or parent strains for deriving them also include strains having mutations in aminoacyl t-RNA synthetases (US Pat. No. 5,658,766).
  • examples of such a strain include E. coli VL1970 having a mutation in the ileS gene encoding isoleucine tRNA synthetase.
  • E. coli VL1970 was accepted on June 24, 1988 at Lucian National Collection of Industrial Microorganisms (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) under the accession number VKPM B-4411. It has been deposited.
  • examples of L-valine-producing bacteria or parent strains for deriving the same also include mutant strains (WO96 / 06926) that require lipoic acid for growth and / or lack H + -ATPase. .
  • L-valine-producing bacteria or parent strains for inducing them include strains having resistance to amino acid analogs and the like.
  • Such strains include, for example, L-isoleucine and L-methionine requirement, coryneform bacterial strains resistant to D-ribose, purine ribonucleoside, or pyrimidine ribonucleoside and capable of producing L-valine.
  • L-alanine producing bacteria examples include coryneform bacteria lacking H + -ATPase (Appl Microbiol Biotechnol. 2001 Nov; 57 (4): 534-40) and aspartic acid ⁇ -Coryneform bacteria with enhanced decarboxylase activity (JP 07-163383 A).
  • L-tryptophan producing bacteria L-phenylalanine producing bacteria, L-tyrosine producing bacteria>
  • methods for imparting or enhancing L-tryptophan production ability, L-phenylalanine production ability, and / or L-tyrosine production ability include biosynthesis of L-tryptophan, L-phenylalanine, and / or L-tyrosine.
  • Biosynthetic enzymes common to these aromatic amino acids are not particularly limited, but 3-deoxy-D-arabinohepturonic acid-7-phosphate synthase (aroG), 3-dehydroquinate synthase (aroB) Shikimate dehydrogenase (aroE), shikimate kinase (aroL), 5-enolic acid pyruvylshikimate 3-phosphate synthase (aroA), chorismate synthase (aroC) (European Patent No. 763127). Expression of genes encoding these enzymes is controlled by a tyrosine repressor (tyrR), and the activity of these enzymes may be enhanced by deleting the tyrR gene (European Patent No. 763127).
  • tyrR tyrosine repressor
  • L-tryptophan biosynthesis enzyme examples include, but are not limited to, anthranilate synthase (trpE), tryptophan synthase (trpAB), and phosphoglycerate dehydrogenase (serA).
  • trpE anthranilate synthase
  • trpAB tryptophan synthase
  • serA phosphoglycerate dehydrogenase
  • L-tryptophan production ability can be imparted or enhanced by introducing DNA containing a tryptophan operon.
  • Tryptophan synthase consists of ⁇ and ⁇ subunits encoded by trpA and trpB genes, respectively.
  • anthranilate synthase is subject to feedback inhibition by L-tryptophan
  • a gene encoding the enzyme into which a mutation that releases feedback inhibition is introduced may be used.
  • phosphoglycerate dehydrogenase is feedback-inhibited by L-serine
  • a gene encoding the enzyme into which a mutation that releases feedback inhibition is introduced may be used to enhance the activity of the enzyme.
  • L-tryptophan-producing ability is imparted or enhanced by increasing the expression of an operon consisting of malate synthase (aceB), isocitrate lyase (aceA), and isocitrate dehydrogenase kinase / phosphatase (aceK). (WO2005 / 103275).
  • the L-phenylalanine biosynthetic enzyme is not particularly limited, and examples thereof include chorismate mutase and prefenate dehydratase. Chorismate mutase and prefenate dehydratase are encoded by the pheA gene as a bifunctional enzyme. Since chorismate mutase-prefenate dehydratase is feedback-inhibited by L-phenylalanine, in order to enhance the activity of the enzyme, a gene encoding the enzyme into which a mutation that releases feedback inhibition is introduced may be used.
  • the L-tyrosine biosynthetic enzyme is not particularly limited, and examples thereof include chorismate mutase and prephenate dehydrogenase. Chorismate mutase and prefenate dehydrogenase are encoded by the tyrA gene as a bifunctional enzyme. Since chorismate mutase-prefenate dehydrogenase is feedback-inhibited by L-tyrosine, to enhance the activity of the enzyme, a gene encoding the enzyme into which a mutation that releases feedback inhibition is introduced may be used.
  • the L-tryptophan, L-phenylalanine, and / or L-tyrosine producing bacterium may be modified so that biosynthesis of aromatic amino acids other than the target aromatic amino acid is lowered.
  • L-tryptophan, L-phenylalanine, and / or L-tyrosine-producing bacteria may be modified so that the by-product uptake system is enhanced.
  • By-products include aromatic amino acids other than the desired aromatic amino acid. Examples of genes encoding uptake systems of by-products include, for example, uptake systems of tnaB and mtr, which are L-tryptophan uptake systems, and pheP, L-tyrosine, which are genes encoding uptake systems of L-phenylalanine. TyrP, which is a gene coding for (EP1484410).
  • E. coli JP4735 / pMU3028 carrying a mutant trpS gene encoding a partially inactivated tryptophanyl-tRNA synthetase. DSM10122) and JP6015 / pMU91 (DSM10123) (U.S. Patent No. 5,756,345)
  • E. coli SV164 with trpE allele encoding anthranilate synthase not subject to feedback inhibition by tryptophan
  • phosphoglycerate dehydrogenase not subject to feedback inhibition by serine E. coli SV164 pGH5
  • coryneform bacteria having L-tryptophan-producing ability include, for example, Corynebacterium glutamicum 118AJ12118 (FERM BP-478 patent 01681002) resistant to sulfaguanidine, a strain into which tryptophan operon has been introduced (JP 63240794), coryneform And a strain into which a gene encoding shikimate kinase derived from a type bacterium has been introduced (Japanese Patent Laid-Open No. 01994749).
  • E. coli AJ12739 (tyrA :: Tn10, tyrR) (VKPM) lacking chorismate mutase-prefenate dehydrogenase and tyrosine repressor B-8197) (WO03 / 044191)
  • E. coli HW1089 (ATCC 55371) (U.S. Patent No. 5,354,672), carrying a mutant pheA34 gene encoding chorismate mutase-prefenate dehydratase with released feedback inhibition
  • E.Coli MWEC 101-b KR8903681
  • E.coli NRRL B-12141 NRRL B-12145
  • NRRL B-12146 NRRL B-12147
  • US Pat. No. 4,407,952 E.coli NRRL B-12141
  • NRRL B-12145 NRRL B-12146
  • NRRL B-12147 US Pat. No. 4,407,952
  • E. coli K-12 that retains a gene encoding chorismate mutase-prefenate dehydratase in which feedback inhibition is released.
  • ⁇ W3110 (tyrA) / pPHAB> (FERM BP-3566)
  • L-phenylalanine-producing bacteria or parent strains for inducing them include, for example, strains belonging to the genus Escherichia in which the activity of the protein encoded by the yedA gene or the yddG gene is increased (US2003 / 0148473, US2003 / 0157667, WO03 / 044192).
  • coryneform bacteria having the ability to produce L-phenylalanine include, for example, Corynebacterium amicglutamicum BPS-13 strain FER (FERM BP-1777), Corynebacterium glutamicum K77 (FERM BP-2062) having reduced phosphoenolpyruvate carboxylase or pyruvate kinase activity Corynebacterium glutamicum K78 (FERM BP-2063) (European Patent Publication No. 331145, Japanese Patent Laid-Open No. 02-303495) and tyrosine-requiring strain (Japanese Patent Laid-Open No. 05-049489).
  • coryneform bacteria having the ability to produce L-tyrosine include Corynebacterium glutamicum AJ11655 (FERM P-5836) (Japanese Patent Publication No. 2-6517), Corynebacterium glutamicum (Brevibacterium lactofermentum) AJ12081 (FERM P-7249) -70093).
  • examples of a method for imparting or enhancing L-amino acid-producing ability include a method of modifying a bacterium so that the activity of discharging L-amino acid from the bacterium cell is increased.
  • the activity to excrete L-amino acids can be increased, for example, by increasing the expression of a gene encoding a protein that excretes L-amino acids.
  • genes encoding proteins that excrete various amino acids include b2682 gene (ygaZ), b2683 gene (ygaH), b1242 gene (ychE), and b3434 gene (yhgN) (Japanese Patent Laid-Open No. 2002-300874) .
  • examples of a method for imparting or enhancing L-amino acid producing ability include a method for modifying bacteria so that the activity of a protein involved in sugar metabolism or a protein involved in energy metabolism is increased.
  • Proteins involved in sugar metabolism include proteins involved in sugar uptake and glycolytic enzymes.
  • genes encoding proteins involved in sugar metabolism include glucose 6-phosphate isomerase gene (pgi; WO 01/02542 pamphlet), phosphoenolpyruvate synthase gene (pps; EP 877090 specification) , Phosphoenolpyruvate carboxylase gene (ppc; WO 95/06114 pamphlet), pyruvate carboxylase gene (pyc; WO 99/18228 pamphlet, European application 1092776), phosphoglucomutase gene (Pgm; WO 03/04598 pamphlet), fructose diphosphate aldolase gene (pfkB, fbp; WO 03/04664 pamphlet), pyruvate kinase gene (pykF; WO 03/008609 pamphlet), transaldolase Gene (talB; WO03 / 008611 pamphlet), fumarase residue Examples include
  • genes encoding proteins involved in energy metabolism include a transhydrogenase gene (pntAB; US Pat. No. 5,830,716), a cytochrome bo type oxidase (cyoB; European Patent Application Publication No. 1070376) Is mentioned.
  • the bacterium of the present invention may be modified, for example, so as to enhance the fatty acid assimilation ability.
  • modifications may include reducing the expression of the fadR gene, enhancing the expression of one or more genes selected from the group consisting of the fadL, fadE, fadD, fadB, and fadA genes, and the cyoABCDE operon. Examples thereof include enhancing expression and combinations thereof (Japanese Patent Laid-Open No. 2011-167071).
  • the fadR gene encodes a negative transcription factor for the fad regulon (DiRusso, C. C. et al. 1992. J. Biol. Chem. 267: 8685-8691; DiRusso, C. C. et al. 1993. Mol Microbiol. 7: 311-322).
  • the fad regulon includes the fadL, fadE, fadD, fadB, and fadA genes, which encode proteins involved in fatty acid metabolism.
  • the fadR gene and fad regulon are found, for example, in bacteria belonging to the family Enterobacteriaceae.
  • the fadR gene of Escherichia coli K12 MG1655 strain corresponds to the sequence at positions 124161-1234880 in the genome sequence of the same strain (GenBank accession No. NC_000913).
  • the FadR protein of Escherichia coli K12 MG1655 strain is registered under GenBank accession No. NP_415705.
  • the fadL gene encodes an outer membrane transporter capable of taking up long-chain fatty acids (Kumar, G. B. and Black, P. N. 1993. J. Biol. Chem. 268: 15469-15476; Stenberg, F. et al. 2005. J. Biol. Chem. 280: 34409-34419).
  • the fadL gene of Escherichia coli K12 MG1655 strain corresponds to the sequence from 2459328 to 2460668 in the genome sequence of the same strain (GenBank accession No. NC_000913).
  • the FadL protein of Escherichia coli K12 MG1655 strain is registered under GenBank accession No. NP_416846.
  • the fadD gene catalyzes the reaction to produce fatty acyl-CoA (fatty-acyl-CoA) from long-chain fatty acids (fatty-acyl-CoA-synthetase activity) and encodes a protein incorporated through the inner membrane ( Dirusso, C. C. and Black, P. N. 2004. J. Biol. Chem. 279: 49563-49566; Schmelter, T. et al. 2004. J. Biol. Chem. 279: 24163-24170).
  • the fadD gene of Escherichia coli K12 MG1655 strain corresponds to a complementary sequence of the sequences 160885 to 1887770 in the genome sequence (GenBank ⁇ accession No. NC_000913) of the same strain.
  • the FadD protein of Escherichia coli K12 MG1655 strain is registered under GenBank accession No. NP_416319.
  • the fadE gene encodes a protein having an acyl-CoA dehydrogenase activity that catalyzes a reaction to oxidize fatty acyl-CoA (O'Brien, W. J. and Frerman, F. E. 1977. J. Bacteriol. 132: 532-540; Campbell, J. W. and Cronan, J. E. 2002. J. Bacteriol. 184: 3759-3764).
  • the fadE gene of Escherichia coli K12 MG1655 strain corresponds to a complementary sequence of the sequences from 240859 to 243303 in the genome sequence of the same strain (GenBank accession No. NC_000913).
  • the FadE protein of Escherichia coli K12 MG1655 strain is registered under GenBank accession No. NP_414756.
  • the fadB gene encodes the ⁇ subunit of the fatty acid oxidation complex.
  • the ⁇ subunit includes enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, 3-hydroxyacyl-CoA epimerase, ⁇ 3-cis- ⁇ 2 -Has four activities of trans-enoyl CoA isomerase ( ⁇ 3-cis- ⁇ 2-trans-enoyl-CoA isomerase) (Pramanik, A. et al. 1979. J. Bacteriol. 137: 469-473; Yang, S. Y. and Schulz, H. 1983. J. Biol. Chem. 258: 9780-9785).
  • the fadB gene of Escherichia coli K12 MG1655 strain corresponds to the complementary sequence of the 4026805-4028994 position in the genome sequence of the same strain (GenBank accession No. NC_000913).
  • the FadB protein of Escherichia coli K12 MG1655 strain is registered under GenBank accession No. NP_418288.
  • the fadA gene encodes the ⁇ subunit of the fatty acid oxidation complex.
  • the ⁇ subunit has 3-ketoacyl-CoA thiolase activity (Pramanik, A. et al. 1979. J. Bacteriol. 137: 469-473).
  • the fadA gene of Escherichia coli K12 MG1655 strain corresponds to a complementary sequence of the 4025632 to 4026795 positions in the genome sequence (GenBank accession No. NC_000913) of the same strain.
  • the FadA protein of Escherichia coli K12 MG1655 strain is registered under GenBank accession No. YP_026272.
  • the fadA and fadB genes form the fadBA operon (Yang, S. Y. et al. 1990. J. Biol. Chem. 265: 10424-10429).
  • the expression of the entire fadBA operon may be enhanced.
  • the cyoABCDE operon encodes a cytochrome bo-terminal oxidase complex, which is one of the terminal oxidases.
  • cyoB gene has subunit I
  • cyoA gene has subunit II
  • cyoC gene has subunit III
  • cyoC gene has subunit IV
  • cyoE gene has heme O synthase activity.
  • the cyo operon is found, for example, in bacteria belonging to the family Enterobacteriaceae.
  • the cyoABCDE gene of Escherichia coli K12 MG1655 strain is complementary to the sequences of 449887 to 450834, 447874 to 449865, 447270 to 448884, 446941 to 447270, and 446039 to 446929 in the genome sequence of the same strain (GenBank accession No.
  • CyoABCDE protein of Escherichia coli K12 MG1655 strain is registered under GenBank accession No. NP_414966, NP_414965, NP_414964, NP_414963, and NP_414962, respectively.
  • the gene used for bacterial breeding is not limited to the above-exemplified genes or genes having a known base sequence, as long as it encodes a protein having the original function maintained, and may be a variant thereof.
  • the variant may be, for example, a homologue or artificially modified gene of the above-exemplified gene or a gene having a known base sequence.
  • the gene used encodes a protein in which the original function is maintained, one or several amino acids at one or several positions are substituted, deleted, or deleted in the amino acid sequence of a known protein. It may be a gene encoding a protein having an inserted or added amino acid sequence.
  • the function of the protein is usually 70% or more, preferably 80% or more, more preferably 90% or more with respect to the protein before one or several amino acids are substituted, deleted, inserted or added. Can be maintained.
  • the “one or several” is different depending on the position of the amino acid residue in the three-dimensional structure of the protein and the type of amino acid residue, but specifically 1 to 50, 1 to 40, 1 to 30 It means 1 to 20, preferably 1 to 20, more preferably 1 to 10, still more preferably 1 to 5, and particularly preferably 1 to 3.
  • substitution, deletion, insertion, or addition of one or several amino acids described above is a conservative mutation that maintains the protein function normally.
  • a typical conservative mutation is a conservative substitution.
  • Conservative substitution is a polar amino acid between Phe, Trp, and Tyr when the substitution site is an aromatic amino acid, and between Leu, Ile, and Val when the substitution site is a hydrophobic amino acid. In this case, between Gln and Asn, when it is a basic amino acid, between Lys, Arg, and His, when it is an acidic amino acid, between Asp and Glu, when it is an amino acid having a hydroxyl group Is a mutation that substitutes between Ser and Thr.
  • substitutions considered as conservative substitutions include substitution from Ala to Ser or Thr, substitution from Arg to Gln, His or Lys, substitution from Asn to Glu, Gln, Lys, His or Asp, Asp to Asn, Glu or Gln, Cys to Ser or Ala, Gln to Asn, Glu, Lys, His, Asp or Arg, Glu to Gly, Asn, Gln, Lys or Asp Substitution, Gly to Pro substitution, His to Asn, Lys, Gln, Arg or Tyr substitution, Ile to Leu, Met, Val or Phe substitution, Leu to Ile, Met, Val or Phe substitution, Substitution from Lys to Asn, Glu, Gln, His or Arg, substitution from Met to Ile, Leu, Val or Phe, substitution from Phe to Trp, Tyr, Met, Ile or Leu, Ser to Thr or Ala Substitution, substitution from Trp to Phe or Tyr, substitution
  • the gene having a conservative mutation as described above is 80% or more, preferably 90% or more, more preferably 95% or more, still more preferably 97% or more, particularly with respect to the entire amino acid sequence of a known protein.
  • it may be a gene encoding a protein having 99% or more homology and maintaining the original function.
  • “homology” may refer to “identity”.
  • the gene used was hybridized under stringent conditions with a probe that can be prepared from a known gene sequence, for example, a complementary sequence to all or part of the known gene sequence, and the original function was maintained. It may be DNA encoding a protein. “Stringent conditions” refers to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. For example, highly homologous DNAs, for example, 80% or more, preferably 90% or more, more preferably 95% or more, more preferably 97% or more, particularly preferably 99% or more between DNAs having homology.
  • the probe used for the hybridization may be a part of a gene complementary sequence.
  • a probe can be prepared by PCR using an oligonucleotide prepared on the basis of a known gene sequence as a primer and a DNA fragment containing these base sequences as a template.
  • hybridization washing conditions include 50 ° C., 2 ⁇ SSC, and 0.1% SDS.
  • the gene to be used may be one in which an arbitrary codon is replaced with an equivalent codon as long as it encodes a protein whose original function is maintained.
  • the gene used may be modified so as to have an optimal codon according to the codon usage frequency of the host to be used.
  • the medium used for L-amino acid fermentation is not particularly limited as long as it contains a medium-temperature-treated product and the bacterium of the present invention can grow and L-amino acid is produced.
  • a normal medium used for culturing microorganisms such as bacteria can be used.
  • the medium may contain a component selected from a carbon source, a nitrogen source, a phosphate source, a sulfur source, and other various organic components and inorganic components, if necessary, in addition to the medium-temperature treated product.
  • the type and concentration of the medium component may be appropriately set according to various conditions such as the type of bacteria used and the type of L-amino acid to be produced.
  • the medium-temperature treated product may or may not be used as the sole carbon source. That is, in L-amino acid fermentation, other carbon sources may be used in combination with the medium-temperature processed product.
  • Other carbon sources are not particularly limited as long as they can be assimilated by the bacterium of the present invention to produce L-amino acids. Specific examples of other carbon sources include glucose, fructose, sucrose, lactose, galactose, xylose, arabinose, molasses, starch hydrolyzate, biomass hydrolyzate, and other sugars, acetic acid, fumaric acid, citric acid, etc.
  • the ratio of the carbon source derived from the medium-temperature processed product in the total carbon source is, for example, 5% by weight or more, 10% by weight or more, 20% by weight or more, preferably 30% by weight or more. More preferably, it may be 50% by weight or more.
  • one type of carbon source may be used, or two or more types of carbon sources may be used in combination.
  • the nitrogen source include ammonium salts such as ammonium sulfate, ammonium chloride, and ammonium phosphate, organic nitrogen sources such as peptone, yeast extract, meat extract, and soybean protein degradation product, ammonia, and urea.
  • Ammonia gas or ammonia water used for pH adjustment may be used as a nitrogen source.
  • the nitrogen source one kind of nitrogen source may be used, or two or more kinds of nitrogen sources may be used in combination.
  • the phosphoric acid source examples include phosphates such as potassium dihydrogen phosphate and dipotassium hydrogen phosphate, and phosphate polymers such as pyrophosphoric acid.
  • phosphates such as potassium dihydrogen phosphate and dipotassium hydrogen phosphate
  • phosphate polymers such as pyrophosphoric acid.
  • the phosphoric acid source one type of phosphoric acid source may be used, or two or more types of phosphoric acid sources may be used in combination.
  • the sulfur source include inorganic sulfur compounds such as sulfate, thiosulfate, and sulfite, and sulfur-containing amino acids such as cysteine, cystine, and glutathione.
  • the sulfur source one kind of sulfur source may be used, or two or more kinds of sulfur sources may be used in combination.
  • organic and inorganic components include, for example, inorganic salts such as sodium chloride and potassium chloride; trace metals such as iron, manganese, magnesium and calcium; vitamin B1, vitamin B2, vitamin B6 and nicotine Examples include vitamins such as acid, nicotinamide, and vitamin B12; amino acids; nucleic acids; and organic components such as peptone, casamino acid, yeast extract, and soybean protein degradation products containing these.
  • inorganic salts such as sodium chloride and potassium chloride
  • trace metals such as iron, manganese, magnesium and calcium
  • vitamin B1, vitamin B2, vitamin B6 and nicotine include vitamins such as acid, nicotinamide, and vitamin B12; amino acids; nucleic acids; and organic components such as peptone, casamino acid, yeast extract, and soybean protein degradation products containing these.
  • vitamins such as acid, nicotinamide, and vitamin B12
  • amino acids amino acids
  • nucleic acids amino acids
  • organic components such as peptone, casamino acid, yeast extract, and soybean
  • L-lysine producing bacteria often have an enhanced L-lysine biosynthetic pathway and weakened L-lysine resolution. Therefore, when culturing such L-lysine-producing bacteria, for example, one or more amino acids selected from L-threonine, L-homoserine, L-isoleucine, and L-methionine are supplemented to the medium. Is preferred.
  • L-glutamic acid when L-glutamic acid is produced by coryneform bacteria, it is preferable to limit the amount of biotin in the medium, or to add a surfactant or penicillin to the medium. In order to suppress foaming during culture, it is preferable to add an appropriate amount of a commercially available antifoaming agent to the medium.
  • Culture conditions are not particularly limited as long as the bacterium of the present invention can grow and L-amino acids are produced.
  • the culture can be performed, for example, under normal conditions used for culture of microorganisms such as bacteria.
  • the culture conditions may be appropriately set according to various conditions such as the type of bacteria used and the type of L-amino acid to be produced.
  • Cultivation can be performed using a liquid medium.
  • the culture medium of the bacterium of the present invention cultured in a solid medium such as an agar medium may be directly inoculated into a liquid medium, or the bacterium of the present invention seeded in a liquid medium is used as a liquid for main culture.
  • the medium may be inoculated. That is, the culture may be performed separately for seed culture and main culture. In that case, the culture conditions of the seed culture and the main culture may or may not be the same.
  • the amount of the bacterium of the present invention contained in the medium at the start of culture is not particularly limited.
  • a seed culture solution having an OD660 of 4 to 8 may be added at 0.1 to 30% by mass, preferably 1 to 10% by mass with respect to the medium for main culture at the start of culture.
  • Culture can be performed by batch culture, fed-batch culture, continuous culture, or a combination thereof.
  • the culture medium at the start of the culture is also referred to as “initial culture medium”.
  • a medium supplied to a culture system (fermentor) in fed-batch culture or continuous culture is also referred to as “fed-batch medium”.
  • supplying a feeding medium to a culture system in fed-batch culture or continuous culture is also referred to as “fed-batch”.
  • cultivation is performed by dividing into seed culture and main culture, for example, both seed culture and main culture may be performed by batch culture. Further, for example, seed culture may be performed by batch culture, and main culture may be performed by fed-batch culture or continuous culture.
  • each medium component may be contained in the initial medium, the fed-batch medium, or both.
  • the type of component contained in the initial culture medium may or may not be the same as the type of component contained in the fed-batch medium.
  • concentration of each component contained in a starting culture medium may be the same as the density
  • the concentration of the medium-temperature treated product in the medium is not particularly limited as long as the bacterium of the present invention can use the medium-temperature treated product as a carbon source.
  • the medium temperature treatment product may be contained in the medium such that the fatty acid concentration in the medium is 10 w / v% or less, preferably 5 w / v% or less, more preferably 2 w / v% or less. Further, the medium temperature treatment product is, for example, such that the fatty acid concentration in the medium is 0.2 w / v% or more, preferably 0.5 w / v% or more, more preferably 1.0 w / v% or more. May be contained.
  • the intermediate temperature treatment product may be contained in the initial culture medium, the fed-batch medium, or both in the concentration range exemplified above.
  • the medium-temperature treated product When the medium-temperature treated product is contained in the fed-batch medium, the medium-temperature treated product has, for example, a fatty acid concentration in the medium after fed-batch of 5 w / v% or less, preferably 2 w / v% or less, more preferably You may contain in a feeding medium so that it may become 1 w / v% or less.
  • the medium-temperature treated product has, for example, a fatty acid concentration in the medium after fed-batch of 0.01 w / v% or more, preferably 0.02 w / v% or more. More preferably, it may be contained in the fed-batch medium so as to be 0.05 w / v% or more.
  • the medium-temperature treated product may be contained in the concentration range exemplified above when it is used only as a carbon source. Further, the intermediate-temperature treated product may be contained in the concentration range exemplified above when another carbon source is used in combination. In addition, when the intermediate temperature treated product is used in combination with another carbon source, for example, the concentration range obtained by appropriately correcting the concentration range exemplified above according to the ratio of the carbon source derived from the middle temperature treated product in the total carbon source, etc. It may be contained. In addition, you may apply mutatis mutandis when the description regarding the density
  • the medium-temperature treated product may or may not be contained in the medium in a certain concentration range during the entire culture period.
  • the medium-temperature processed product may be insufficient for some period. “Insufficient” means that the required amount is not satisfied.
  • the concentration in the medium may be zero.
  • Partial period refers to, for example, a period of 1% or less, a period of 5% or less, a period of 10% or less, a period of 20% or less, a period of 30% or less, or a period of the whole culture period, or It may be a period of 50% or less.
  • cultivation may mean the whole period of main culture, when culture
  • the culture can be performed aerobically, for example.
  • the culture can be performed by aeration culture or shaking culture.
  • the oxygen concentration may be controlled to, for example, 5 to 50%, preferably about 10% of the saturated oxygen concentration.
  • the pH of the medium may be, for example, pH 3 to 10, preferably pH 4.0 to 9.5. During the culture, the pH of the medium can be adjusted as necessary.
  • the pH of the medium is adjusted using various alkaline or acidic substances such as ammonia gas, ammonia water, sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, magnesium carbonate, sodium hydroxide, calcium hydroxide, magnesium hydroxide, etc. can do.
  • the culture temperature may be, for example, 20 to 45 ° C, preferably 25 ° C to 37 ° C.
  • the culture period may be, for example, 1 hour or more, 4 hours or more, 10 hours or more, or 15 hours or more, and may be 168 hours or less, 120 hours or less, 90 hours, or 72 hours or less. Specifically, the culture period may be, for example, 10 hours to 120 hours.
  • the culture may be continued, for example, until the carbon source in the medium is consumed or until the activity of the bacterium of the present invention is lost. By culturing the bacterium of the present invention under such conditions, L-amino acids accumulate in the cells and / or in the medium.
  • fed-batch culture or continuous culture fed-batch may be continued throughout the entire culture period or only during a part of the culture period.
  • multiple feedings may be performed intermittently.
  • the duration of one feeding is, for example, 30% or less, preferably 20% or less, more preferably 10% of the total time of the plurality of feedings.
  • the start and stop of fed batch may be repeated so that:
  • the second and subsequent feedings are controlled so that they are started when the carbon source in the fermentation medium is depleted in the immediately preceding feeding stop phase.
  • Carbon source depletion can be detected, for example, by increasing pH or increasing dissolved oxygen concentration.
  • extraction of the culture solution may be continued throughout the entire culture period, or may be continued only during a part of the culture period. Further, in continuous culture, a plurality of culture solutions may be extracted intermittently. Extraction and feeding of the culture solution may or may not be performed simultaneously. For example, the feeding may be performed after the culture solution is extracted, or the culture solution may be extracted after the feeding.
  • the amount of the culture solution to be withdrawn is preferably the same as the amount of the medium to be fed.
  • the “same amount” may be, for example, an amount of 93 to 107% with respect to the amount of medium to be fed.
  • the withdrawal may be started within 5 hours, preferably within 3 hours, more preferably within 1 hour after the start of fed-batch.
  • the bacterial cells can be reused by recovering L-amino acid from the extracted culture medium and recirculating the filtration residue containing the bacterial cells in the fermenter (French Patent No. 2669935). ).
  • L-glutamic acid when producing L-glutamic acid, it is also possible to carry out the culture while precipitating L-glutamic acid in the medium using a liquid medium adjusted to conditions under which L-glutamic acid is precipitated.
  • the conditions under which L-glutamic acid precipitates are, for example, pH 5.0 to 3.0, preferably pH 4.9 to 3.5, more preferably pH 4.9 to 4.0, and particularly preferably around pH 4.7. (European Patent Application Publication No. 1078989).
  • cultivation may be performed at the said pH in the whole period, and may be performed at the said pH only for a part of period.
  • the “partial period” may be, for example, a period of 50% or more, 70% or more, 80% or more, 90% or more, 95% or more, or 99% or more of the entire culture period.
  • a method of fermenting basic amino acid using bicarbonate ion and / or carbonate ion as a main counter ion of basic amino acid may be used.
  • basic amino acids can be produced while reducing the amount of sulfate ions and / or chloride ions that have been conventionally used as counter ions for basic amino acids.
  • L-amino acid can be confirmed by a known method used for detection or identification of a compound. Examples of such a method include HPLC, LC / MS, GC / MS, and NMR. These methods can be used in appropriate combination.
  • the produced L-amino acid can be recovered by a known method used for separation and purification of compounds. Examples of such a method include an ion exchange resin method, a membrane treatment method, a precipitation method, and a crystallization method. These methods can be used in appropriate combination. In the case where L-amino acid accumulates in the microbial cells, for example, the microbial cells are crushed with ultrasonic waves, and the microbial cells are removed by centrifugation from the supernatant obtained by ion exchange resin method or the like. Amino acids can be recovered. The recovered L-amino acid may be a free form, a salt thereof, or a mixture thereof.
  • Examples of the salt include sulfate, hydrochloride, carbonate, ammonium salt, sodium salt, and potassium salt.
  • L-lysine may be free L-lysine, L-lysine sulfate, L-lysine hydrochloride, L-lysine carbonate, or a mixture thereof.
  • L-glutamic acid may be free L-glutamic acid, sodium L-glutamate (MSG), ammonium L-glutamate (monoammonium L-glutamate), or a mixture thereof. .
  • ammonium L-glutamate in the fermentation broth is crystallized by adding an acid, and equimolar sodium hydroxide is added to the crystals to obtain sodium L-glutamate (MSG).
  • MSG sodium L-glutamate
  • you may decolorize by adding activated carbon before and after the crystallization see Industrial crystallization of sodium glutamate, Journal of the Seawater Society of Japan, Vol. 56, No. 5, Tetsuya Kawakita).
  • L-amino acid is precipitated in the medium, it can be recovered by centrifugation or filtration.
  • the L-amino acid precipitated in the medium may be isolated together after crystallization of the L-amino acid dissolved in the medium.
  • the recovered L-amino acid may contain components other than the L-amino acid, such as bacterial cells, medium components, water, and bacterial metabolic byproducts.
  • the purity of the recovered L-amino acid is, for example, 30% (w / w) or higher, 50% (w / w) or higher, 70% (w / w) or higher, 80% (w / w) or higher, 90% (W / w) or more, or 95% (w / w) or more.
  • Example 1 Acquisition of a high-accumulation strain of fatty acids of microalgae (1) Cultivation of water or soil samples Water or soil samples were collected from ponds, rivers, paddy fields, etc. in various parts of Japan.
  • the culture solution in which the growth of green algae was confirmed as described above was applied to a plate medium of 0.2 ⁇ Gamborg's B5 medium, and cultured for 2 weeks under the same conditions as described above except that it was not shaken. At that time, when preferential growth of contaminating bacteria was observed on the plate medium, the culture solution was sterilized by hypochlorous acid treatment. Specifically, after diluting a sodium hypochlorite solution having an effective chlorine concentration of 8.5 to 17.5% 100 times with sterilized water, the diluted solution is mixed with the culture solution so that the effective chlorine concentration is about 10 ppm, It was allowed to stand at room temperature for 10 minutes.
  • a sodium thiosulfate solution adjusted to 10,000 ppm was added to the medium so as to be about 10 times the amount of added effective chlorine.
  • the treated culture solution was applied to a plate medium of 0.2 ⁇ Gamborg's'B5 medium and cultured for 2 weeks.
  • a single colony was scraped with a platinum loop from a plate medium in which good growth of green algae was confirmed, applied to a plate medium of 0.2 ⁇ Gamborg's B5 medium, and further cultured for 2 weeks to obtain an algal isolate.
  • the two strains thus obtained were designated as AJ7847 strain (FERM BP-22253) and AJ7846 strain (FERM BP-22252).
  • 18S rDNA region amplification universal primers (primer set 1: SEQ ID NOs: 1 and 2) for green algae were used. Molecular phylogenetic analysis was performed using rDNA as an index. The sequenced 18S rDNA region sequences are shown in SEQ ID NO: 3 (AJ7847 strain) and SEQ ID NO: 4 (AJ7846 strain). Using these sequences, BLAST search from NCBI database (http://www.ncbi.nlm.nih.gov/Blast.cgi) was used to obtain highly homologous green alga-derived 18S rDNA sequence data. I made a tree.
  • ClustalX2 was used for creating multiple alignments
  • Sea View was used for editing
  • NJplot was used for displaying and editing phylogenetic trees.
  • the phylogenetic tree was created based on the ClustalX2 neighborhood join method, assuming that the bootstrap random number was 111 and the bootstrap number was 1000.
  • the obtained phylogenetic tree is shown in FIG. From these results, it was revealed that the AJ7847 and AJ7846 strains are related to the genus Desmodesmus. It was confirmed that the AJ7847 strain and the AJ7846 strain showed a high homology of more than 99% with respect to the known strains Desmodesmus armatus var. Subalternans CCAP 276 / 4A and Desmodesmus communis CCAP 276 / 4B.
  • Example 2 Cultivation evaluation of green algae strain (1) Cultivation of green algae strain A colony on a plate medium of an isolated green algae strain scraped with a platinum loop was added 50 mL of 0.2 ⁇ Gamborg's B5 medium. The cells were inoculated into mL Erlenmeyer flasks and cultured for one week. These cultures were seeded in a flask to which 10 mL of fresh 0.2 ⁇ Gamborg's B5 medium was added so that the turbidity at a wavelength of 750 nm immediately after the addition was 0.25.
  • the algal bodies used for the measurement of the amount of fatty acids were prepared as follows. 1 mL of the culture solution cultured by the method described in (1) above was dispensed into a 1.5 mL tube, frozen (-80 ° C, 30 minutes), and then incubated at 50 ° C for 20 hours. Next, centrifugation (12,000 rpm, 5 minutes) was performed to precipitate algal bodies. In addition, 1 mL of the culture solution was dispensed into a 1.5 mL tube, and the alga body precipitated by centrifugation (12,000 rpm, 5 minutes) was defined as an untreated alga body.
  • the obtained dried product was dissolved and diluted to an appropriate concentration using 2-propanol, and the fatty acid content was measured using a fatty acid colorimetric kit (Wako Pure Chemicals, LabAssay TM NEFA). The measurement was performed by measuring the absorbance using a 96-well microplate and an absorbance plate reader according to the protocol attached to the kit.
  • the isolated green algae strains, AJ7847 strain and AJ7846 strain both showed higher values of fatty acid production and fatty acid content per algal body than the related strains (Table 1). It should be noted that fatty acids were not detected in any strain under conditions using medium temperature treated untreated algal cells.
  • the present invention provides green algae that produce fatty acids.
  • the green algae can be used for the production of fatty acids, fatty acid esters, sugar glycerol, or combinations thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 Provided are: a green algae that generates a fatty acid; and a method for using same. A green algae such as AJ7846 strain (FERM BP-22252) or AJ7847 strain (FERM BP-22253), or derivative strains thereof, is cultured, and by appropriately processing the phycobiont thus obtained, a fatty acid, fatty acid ester, sugar glycerol, or a combination of the above, is produced.

Description

脂肪酸を生成する緑藻類Green algae that produce fatty acids
 本発明は、脂肪酸を生成する緑藻類およびその利用に関する。 The present invention relates to green algae that produce fatty acids and use thereof.
 一般的に食用油脂の原料として用いられる油糧植物である大豆の種子やアブラヤシ(oil palm)の果実は、20%程度の油脂を含んでいる。これに対し、非特許文献1に報告されているように、微細藻類には油脂を生産するものが知られており、そのような微細藻類の面積当たりの油脂の収量は、油糧植物を大きく上回る。緑藻では、例えば、デスモデスムス(Desmodesmus)属に属するSUHL0708株が、油脂等を、培養期間における平均で藻体乾燥重量あたり約28%蓄積することが知られている(特許文献1)。しかし、藻体からの油脂の回収は、藻体分離、脱水、細胞破砕、および油脂の精製等の工程を要し、煩雑かつ困難である。 Soybean seeds and oil palm (oil で palm) fruits, which are oil plants generally used as a raw material for edible fats and oils, contain about 20% fat. On the other hand, as reported in Non-Patent Document 1, microalgae are known to produce fats and oils, and the yield of fats and oils per area of such microalgae is large for oil plants. Exceed. In green algae, for example, it is known that SUHL0708 strain belonging to the genus Desmodesmus accumulates about 28% of fat and oil on an average dry weight of alga body during the culture period (Patent Document 1). However, recovery of fats and oils from alga bodies requires steps such as alga body separation, dehydration, cell disruption, and oil purification, and is complicated and difficult.
 また、クロレラ・ケスレリ(Chlorella kessleri)の培養物を中温処理することで脂肪酸が生成することが知られている(特許文献2)。その一方で、デスモデスムス属に属する緑藻で中温処理により脂肪酸を生成する株は知られていない。 Further, it is known that fatty acids are produced by subjecting a culture of Chlorella kessleri to a medium temperature (Patent Document 2). On the other hand, there is no known strain that produces fatty acids by a medium temperature treatment in green algae belonging to the genus Desmodemus.
特開2012-44923号公報JP 2012-44923 A WO 2011/013707 A1WO 2011/013707 A1
 本発明は、脂肪酸を生成する緑藻類およびその利用法を提供することを課題とする。 An object of the present invention is to provide a green algae that generates fatty acids and a method for using the same.
 本発明者は、上記課題を解決するために鋭意研究を行った結果、脂肪酸を生成する新規な緑藻類を自然界から見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors have found a novel green algae that produces fatty acids from the natural world and completed the present invention.
 すなわち、本発明は以下の通り例示できる。
[1]
 デスモデスムス(Desmodesmus)属に属し、藻体を中温処理に供した際に、藻体の乾燥重量当たり25%(w/w)以上の脂肪酸を蓄積する緑藻。
[2]
 デスモデスムス・アルマタス(Desmodesmus armatus)、デスモデスムス・コムニス(Desmodesmus communis)、デスモデスムス・ピルコレイ(Desmodesmus pirkollei)、デスモデスムス・コスタトグラニュラタス(Desmodesmus costatogranulatus)、デスモデスムス・パノニカス(Desmodesmus pannonicus)、デスモデスムス・ペルフォラタス(Desmodesmus perforatus)、デスモデスムス・インターミディウス(Desmodesmus intermedius)、デスモデスムス・ブラシリエンシス(Desmodesmus brasiliensis)、デスモデスムス・エレガンス(Desmodesmus elegans)、デスモデスムス・ヒストリクス(Desmodesmus hystrix)、デスモデスムス・クアドリカウダ(Desmodesmus quadricauda)、デスモデスムス・シュードセラタス(Desmodesmus pseudoserratus)、デスモデスムス・マクシムス(Desmodesmus maximus)、およびデスモデスムス・ビセルラリス(Desmodesmus bicellularis)から選択される、前記緑藻。
[3]
 AJ7846株(FERM BP-22252)、AJ7847株(FERM BP-22253)、およびそれらの誘導株からなる群より選択される緑藻。
[4]
 前記緑藻を培地で培養すること、
 前記培養により得られた藻体を中温処理に供すること、および
 前記処理の処理物から脂肪酸を回収すること、
 を含む、脂肪酸を製造する方法。
[5]
 前記緑藻を培地で培養すること、
 前記培養により得られた藻体を中温処理に供すること、
 前記中温処理の処理物をアルコールの存在下で中低温処理に供すること、および
 前記中低温処理の処理物から脂肪酸エステルを回収すること、
 を含む、脂肪酸エステルを製造する方法。
[6]
 前記緑藻を培地で培養すること、
 前記培養により得られた藻体を中温処理および/または有機溶媒処理に供すること、および
 前記処理の処理物から糖グリセロールを回収すること、
 を含む、糖グリセロールを製造する方法。
[7]
 前記緑藻を培地で培養すること、
 前記培養により得られた藻体を中温処理に供すること、
 L-アミノ酸生産能を有する細菌を、前記処理の処理物を含有する培地で培養して、L-アミノ酸を該培地中又は該細菌の菌体内に生成蓄積すること、および
 該培地又は菌体よりL-アミノ酸を採取すること、
 を含む、L-アミノ酸を製造する方法。
[8]
 前記処理物が、脂肪酸である、前記方法。
[9]
 前記細菌が、脂肪酸資化能が高まるように改変されている、前記方法。
[10]
 前記細菌が、腸内細菌科に属する細菌またはコリネ型細菌である、前記方法。
[11]
 前記細菌が、エシェリヒア・コリ(Escherichia coli)、パントエア・アナナティス(Pantoea ananatis)、またはコリネバクテリウム・グルタミカム(Corynebacterium glutamicum)である、前記方法。
[12]
 前記有機溶媒が、メタノールである、前記方法。
[13]
 前記中低温処理が、5℃~60℃であって、且つ、前記中温処理より低い温度で行われる、前記方法。
[14]
 前記中温処理が、35℃~70℃で行われる、前記方法。
[15]
 前記中温処理が、pH3.0~11.0で行われる、前記方法。
[16]
 前記中温処理の後に、当該中温処理の処理物をアルカリ処理に供することを含み、当該アルカリ処理の処理物から脂肪酸が回収される、前記方法。
[17]
 前記中温処理の前に、酸またはアルカリにより藻体を加水分解することを含む、前記方法。
That is, the present invention can be exemplified as follows.
[1]
A green alga that belongs to the genus Desmodesmus and accumulates 25% (w / w) or more of fatty acid per dry weight of the alga when the alga is subjected to intermediate temperature treatment.
[2]
Desmodesmus armatus, Desmodesmus communis, Desmodesmus pirkollei, Desmodesmus costatogranulatus, Desmodesmus costatogranulatus, Desmodesmus costatogranulatus Desmodesmus intermedius, Desmodesmus brasiliensis, Desmodesmus elegans, Desmodesmus hystrix, Desmodesmus quads, Desmodesmus quadreda Tas (Desmodesmus pseudoserratus), Desmodesmus maximus, and Desmodesmus -Said green algae selected from Desmodesmus bicellularis.
[3]
A green alga selected from the group consisting of AJ7846 strain (FERM BP-22252), AJ7847 strain (FERM BP-22253), and derivatives thereof.
[4]
Culturing the green algae in a medium;
Subjecting the algal bodies obtained by the culture to a medium temperature treatment, and recovering fatty acids from the treated product,
A method for producing a fatty acid, comprising:
[5]
Culturing the green algae in a medium;
Subjecting the algal bodies obtained by the culture to a medium temperature treatment,
Subjecting the medium-temperature treated product to a medium-low temperature treatment in the presence of alcohol, and recovering a fatty acid ester from the medium-low temperature treated product,
A method for producing a fatty acid ester.
[6]
Culturing the green algae in a medium;
Subjecting the algal cells obtained by the culture to a medium temperature treatment and / or an organic solvent treatment, and recovering sugar glycerol from the treated product,
A process for producing sugar glycerol, comprising:
[7]
Culturing the green algae in a medium;
Subjecting the algal bodies obtained by the culture to a medium temperature treatment,
Culturing a bacterium having L-amino acid-producing ability in a medium containing the treatment product, producing and accumulating L-amino acid in the medium or in the bacterial body, and from the medium or the bacterial body Collecting L-amino acids;
A process for producing an L-amino acid comprising:
[8]
The said process the said processed material is a fatty acid.
[9]
The method, wherein the bacterium has been modified so as to increase the ability to assimilate fatty acids.
[10]
The method, wherein the bacterium is a bacterium belonging to the family Enterobacteriaceae or a coryneform bacterium.
[11]
The method, wherein the bacterium is Escherichia coli, Pantoea ananatis, or Corynebacterium glutamicum.
[12]
The method, wherein the organic solvent is methanol.
[13]
The method, wherein the medium-low temperature treatment is performed at a temperature of 5 ° C. to 60 ° C. and lower than the medium temperature treatment.
[14]
The method, wherein the intermediate temperature treatment is performed at 35 ° C to 70 ° C.
[15]
The method, wherein the intermediate temperature treatment is performed at a pH of 3.0 to 11.0.
[16]
The method, wherein after the intermediate temperature treatment, the intermediate temperature treatment product is subjected to an alkali treatment, and the fatty acid is recovered from the alkali treatment treatment product.
[17]
The method comprising hydrolyzing algal bodies with acid or alkali before the intermediate temperature treatment.
18S rDNAの塩基配列に基づく、AJ7846株およびAJ7847株の系統樹を示す図。The figure which shows the phylogenetic tree of AJ7846 strain and AJ7847 strain based on the base sequence of 18S rDNA.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
<1>本発明の藻類
 本発明の藻類は、藻体を中温処理に供した際に、脂肪酸を蓄積(生成)する緑藻である。本発明の藻類は、藻体を中温処理に供した際に、藻体の乾燥重量当たり25%(w/w)以上の脂肪酸を蓄積(生成)する緑藻であってよい。
<1> Algae of the Present Invention The algae of the present invention are green algae that accumulate (generate) fatty acids when the algal bodies are subjected to intermediate temperature treatment. The algae of the present invention may be green algae that accumulate (generate) 25% (w / w) or more of fatty acids per dry weight of algal bodies when the algal bodies are subjected to intermediate temperature treatment.
 本発明の藻類は、デスモデスムス(Desmodesmus)属に属していてよい。Desmodesmus属藻類としては、デスモデスムス・アルマタス(Desmodesmus armatus)、デスモデスムス・コムニス(Desmodesmus communis)、デスモデスムス・ピルコレイ(Desmodesmus pirkollei)、デスモデスムス・コスタトグラニュラタス(Desmodesmus costatogranulatus)、デスモデスムス・パノニカス(Desmodesmus pannonicus)、デスモデスムス・ペルフォラタス(Desmodesmus perforatus)、デスモデスムス・インターミディウス(Desmodesmus intermedius)、デスモデスムス・ブラシリエンシス(Desmodesmus brasiliensis)、デスモデスムス・エレガンス(Desmodesmus elegans)、デスモデスムス・ヒストリクス(Desmodesmus hystrix)、デスモデスムス・クアドリカウダ(Desmodesmus quadricauda)、デスモデスムス・シュードセラタス(Desmodesmus pseudoserratus)、デスモデスムス・マクシムス(Desmodesmus maximus)、およびデスモデスムス・ビセルラリス(Desmodesmus bicellularis)が挙げられる。 The algae of the present invention may belong to the genus Desmodesmus. Desmodesmus algatas (Desmodesmus armatus), Desmodesmus communis, Desmodesmus rkpirkollei, Desmodesmus パ musstats Perforatus (Desmodesmus perforatus), Desmodesmus intermedius, Desmodesmus brasiliensis, Desmodesmus elegans, Desmodesmus desgans, Desmodesmus elegans ), Desmodesmus Pseudoserratus, Desmodes Maximus (Desmodes) mus maximus), and Desmodesmus bicellularis.
 本発明の藻類として、具体的には、例えば、AJ7846株(FERM BP-22252)、AJ7847株(FERM BP-22253)、およびそれらの誘導株から選択される緑藻が挙げられる。 Specific examples of the algae of the present invention include green algae selected from AJ7846 strain (FERM BP-22252), AJ7847 strain (FERM BP-22253), and derivatives thereof.
 AJ7846株は、2013年5月14日に、独立行政法人製品評価技術基盤機構 特許生物寄託センター(郵便番号292-0818、日本国千葉県木更津かずさ鎌足2-5-8  120号室)に、受託番号FERM BP-22252の下に寄託されている。 AJ7846 shares were commissioned on May 14, 2013 at the Patent Organism Depository Center (Postal Code 292-0818, Kisarazu Kazusa Kamashi 2-5-8 120, Chiba, Japan) on May 14, 2013 Deposited under the number FERM BP-22252.
 AJ7847株は、2013年5月14日に、独立行政法人製品評価技術基盤機構 特許生物寄託センター(郵便番号292-0818、日本国千葉県木更津かずさ鎌足2-5-8  120号室)に、受託番号FERM BP-22253の下に寄託されている。 AJ7847 shares were commissioned on May 14, 2013 at the Patent Organism Depository Center (Postal Code 292-0818, Kisarazu Kazusa Kamashi 2-5-8 120, Chiba, Japan) on May 14, 2013 Deposited under the number FERM BP-22253.
 AJ7846株およびAJ7847株は、デスモデスムス・アルマタス(Desmodesmus armatus)やデスモデスムス・コムニス(Desmodesmus communis)等のDesmodesmus属と類縁関係にあると考えられる。 The AJ7846 and AJ7847 strains are considered to be related to the genus Desmodesmus such as Desmodesmus armatus and Desmodesmus communis.
 AJ7846株の18S rDNAの塩基配列を配列番号4に示す。AJ7846株は、18S rDNAのBLAST解析によれば、Desmodesmus armatus var. subalternans CCAP 276/4A株に対し99.71%、Desmodesmus communis CCAP 276/4B株に対し99.24%の相同性を示す。 The base sequence of 18S rDNA of AJ7846 strain is shown in SEQ ID NO: 4. According to BLAST analysis of 18S rDNA, AJ7846 strain shows 99.71% homology to Desmodesmus armatus var. Subalternans CCAP 276 / 4A strain and 99.24% homology to Desmodesmus communis CCAP 276 / 4B strain.
 AJ7847株の18S rDNAの塩基配列を配列番号3に示す。AJ7847株は、18S rDNAのBLAST解析によれば、Desmodesmus armatus var. subalternans CCAP 276/4A株に対し99.77%、Desmodesmus communis CCAP 276/4B株に対し99.31%の相同性を示す。 The base sequence of 18S rDNA of AJ7847 strain is shown in SEQ ID NO: 3. According to BLAST analysis of 18S rDNA, AJ7847 strain shows 99.77% homology to Desmodesmus armatus var. Subalternans CCAP 276 / 4A strain and 99.31% homology to Desmodesmus communis CCAP 276 / 4B strain.
 上記「誘導株」とは、AJ7846株またはAJ7847株を親株(祖先株)として構築された株であって、且つ、親株(祖先株)と同等以上の脂肪酸生成能を有するものをいう。誘導株は、例えば、人為的な改変により育種されたものであってよい。人為的な改変としては、遺伝子工学的手法による改変や、突然変異処理による改変が挙げられる。突然変異処理としては、X線の照射、紫外線の照射、ならびにN-メチル-N'-ニトロ-N-ニトロソグアニジン(MNNG)、エチルメタンスルフォネート(EMS)、およびメチルメタンスルフォネート(MMS)等の変異剤による処理が挙げられる。また、誘導株は、例えば、親株(祖先株)の使用の際に自然に生じたものであってもよい。そのような誘導株としては、例えば、AJ7846株またはAJ7847株を培養する際に自然に生じた変異株が挙げられる。誘導株は、1種の改変により構築されてもよく、2種またはそれ以上の改変により構築されてもよい。 The above-mentioned “derivative strain” means a strain constructed with the AJ7846 strain or AJ7847 strain as the parent strain (ancestor strain) and having the same or higher fatty acid producing ability as the parent strain (ancestral strain). The derivative strain may be bred by artificial modification, for example. Artificial alteration includes alteration by genetic engineering techniques and alteration by mutation treatment. Mutation treatments include X-ray irradiation, UV irradiation, and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), ethylmethanesulfonate (EMS), and methylmethanesulfonate (MMS). ) And the like. Moreover, the derivative | guide_body strain | stump | stock produced naturally, for example at the time of use of a parent strain (ancestor strain) may be sufficient. Examples of such derivative strains include mutant strains that are naturally generated when the AJ7846 strain or AJ7847 strain is cultured. A derivative strain may be constructed by one type of modification or may be constructed by two or more types of modification.
 「親株と同等以上の脂肪酸生成能を有する」とは、誘導株を培養し、藻体を中温処理に供した際に、親株において同条件で生成する脂肪酸量の、70%以上、80%以上、90%以上、または95%以上の量の脂肪酸が生成することを意味してよい。 “Having a fatty acid production capacity equal to or higher than that of the parent strain” means that when the derived strain is cultured and the algal cells are subjected to intermediate temperature treatment, 70% or more, 80% or more of the amount of fatty acid produced under the same conditions in the parent strain , 90% or more, or 95% or more of fatty acids may be produced.
<2>本発明の藻類の利用
 本発明の藻類は、例えば、脂肪酸、脂肪酸エステル、糖グリセロール、またはそれらの組み合わせの製造に利用できる。具体的には、本発明の藻類を培養し、得られた藻体を適宜処理することにより、脂肪酸、脂肪酸エステル、糖グリセロール、またはそれらの組み合わせが生成する。なお、脂肪酸、脂肪酸エステル、および糖グリセロールを総称して、「目的物質」ともいう。また、目的物質を生成するための処理を総称して、「目的物質生成処理」という場合がある。すなわち、本発明の方法は、本発明の藻類を培地で培養すること、前記培養により得られた藻体を目的物質生成処理に供すること、および前記処理の処理物から目的物質を回収すること、を含む、目的物質を製造する方法である。なお、本発明において、「藻体」とは、藻類を培地で培養して得られる藻類の細胞をいう。また、本発明において、対象物(藻体やその処理物)を特定の条件で「処理する/処理に供する」ことを、対象物を当該条件で「インキュベートする」と読み替えてもよい。
<2> Use of Algae of the Present Invention The algae of the present invention can be used for the production of, for example, fatty acids, fatty acid esters, sugar glycerol, or combinations thereof. Specifically, by culturing the algae of the present invention and appropriately treating the obtained algal bodies, fatty acids, fatty acid esters, sugar glycerol, or combinations thereof are produced. In addition, fatty acids, fatty acid esters, and sugar glycerol are collectively referred to as “target substances”. In addition, processes for generating target substances may be collectively referred to as “target substance generation processes”. That is, the method of the present invention includes culturing the algae of the present invention in a medium, subjecting the algal bodies obtained by the culture to a target substance generation treatment, and recovering the target substance from the treated product, Is a method for producing a target substance. In the present invention, “algae” refers to algae cells obtained by culturing algae in a medium. Further, in the present invention, “treating / subjecting a target object (algae or a processed product thereof) under a specific condition may be read as“ incubating ”the target object under the specific condition.
<2-1>培養方法
 培養方法は、本発明の藻類が増殖できる限り、特に制限されない。培養条件は、当業者が適宜設定することができる。培養は、例えば、微細藻類の培養に用いられる通常の条件で行うことができる。微細藻類の培養については多くの知見があり、例えば、Chlorella属藻類、Arthrospira属藻類(Spirulina)、およびDunaliella salina等の藻類は、食用として、工業的に大規模な培養が行われている(Spolaore, P. et al. 2006. J. Biosci. Bioeng. 101: 87-96)。培養は、例えば、このような知見を参照して実施してよい。
<2-1> Culture Method The culture method is not particularly limited as long as the algae of the present invention can grow. The culture conditions can be appropriately set by those skilled in the art. The culture can be performed, for example, under normal conditions used for culturing microalgae. There is a lot of knowledge about the culture of microalgae. For example, algae such as Chlorella algae, Arthrospira algae (Spirulina), and Dunaliella salina are cultivated industrially on a large scale (Spolaore). , P. et al. 2006. J. Biosci. Bioeng. 101: 87-96). The culture may be performed with reference to such knowledge, for example.
 培養は、光合成を利用し有機化合物を利用しない独立栄養培養(autotrophic culture)、光合成を利用せず有機化合物を利用する従属栄養培養(heterotrophic culture)、または光合成と有機化合物の両方を利用する混合栄養培養(mixotrophic culture)により実施することができる。培養は、通常は、独立栄養培養(autotrophic culture)により実施してよい。 Culturing is autotrophic culture using photosynthesis without using organic compounds, heterotrophic culture using organic compounds without using photosynthesis, or mixed nutrition using both photosynthesis and organic compounds. It can be carried out by culture (mixotrophic culture). The culture may usually be performed by autotrophic culture.
 培養は、解放系で行われてもよく、閉鎖系で行われてもよい。例えば、オープンポンドと呼ばれる解放培養系で培養を行うことができる。また、例えば、クローズドフォトバイオリアクターと呼ばれる閉鎖培養系で培養を行うことができる。 Culture may be performed in an open system or a closed system. For example, culture can be performed in an open culture system called an open pond. For example, culture can be performed in a closed culture system called a closed photobioreactor.
 培養に用いられる培地は、本発明の藻類が増殖できる限り、特に制限されない。培地は、例えば、窒素源や各種無機塩を含有していてよい。また、培地は、例えば、必要に応じて炭素源等の他の成分を含有していてもよい。培地成分の種類や濃度は、当業者が適宜設定することができる。培地としては、例えば、微細藻類の培養に用いられる通常の培地を用いることができる。そのような培地として、具体的には、例えば、0.3×HSM培地(Oyama, Y. et al. 2006. Planta 224: 646-654)、0.2×ガンボーグ培地(Izumo, A. et al. 2007. Plant Science 172: 1138-1147)、modified NORO培地(Yamaberi, K. et al. 1998. J. Mar. Biotechnol. 6: 44-48; Takagi, M. et al. 2000. Appl. Microbiol. Biotechnol. 54: 112-117)、Bold's Basal Medium(Tornabene, T. G. et al. 1983. Enzyme and Microb. Technol. 5: 435-440; Archibald, P. A. and Bold, H. C. 1970. Phytomorphology 20: 383-389)、F/2培地(Lie, C.-P. and Lin, L.-P. 2001. Bot. Bull. Acad. Sin. 42: 207-214)、TAP培地が挙げられる。また、藻類は、窒素源が枯渇すると油脂を藻体内に蓄積することが知られている(Thompson GA Jr. 1996. Biochim. Biophys. Acta 1302: 17-45)。本発明においては、窒素源の濃度を制限した培地を本発明の藻類の培養に用いてもよい。 The medium used for the culture is not particularly limited as long as the algae of the present invention can grow. The culture medium may contain, for example, a nitrogen source and various inorganic salts. Moreover, the culture medium may contain other components, such as a carbon source, as needed. A person skilled in the art can appropriately set the type and concentration of the medium components. As the medium, for example, a normal medium used for culturing microalgae can be used. As such a medium, specifically, for example, 0.3 × HSM medium (Oyama, Y. et al. 2006. Planta-224: 646-654), 0.2 × Gambogue medium (Izumo, A. et al. 2007. Plant) Science 172: 1138-1147), modified NORO medium (Yamaberi, K. et al. 1998. J. Mar. Biotechnol. 6: 44-48; Takagi, M. et al. 2000. Appl. Microbiol. Biotechnol. 54: 112-117), Bold's Basal Medium (Tornabene, T. G. et al. 1983. Enzyme and Microb. Technol. 5: 435-440; Archibald, P. A. and Bold, H. C. 1970. Phytomorphology 20: 383-389), F / 2 medium (Lie, C.-P. and Lin, L.-P. 2001. Bot. Bull. Acad. Sin. 42: 207-214), TAP medium. Algae are also known to accumulate fats and oils in the algae when the nitrogen source is depleted (Thompson GA Jr. 1996. Biochim. Biophys. Acta 1302: 17-45). In the present invention, a medium in which the concentration of the nitrogen source is limited may be used for culturing the algae of the present invention.
 培養は、液体培地を用いて行うことができる。培養温度は、例えば、20~40℃、好ましくは25℃~35℃、より好ましくは30℃付近であってよい。培地の初発pHは、例えば、中性付近であってよい。中性付近とは、例えば、pH 7~9であってよい。培養中はpH調整を行ってもよく、行わなくともよい。pH調整には、適当な無機あるいは有機の酸性あるいはアルカリ性物質を使用することができる。培養は、通気しながら行ってよい。通気量は、例えば、培養液単位体積当たりの1分間の通気量として、0.1~2 vvm(volume per volume per minute)であってよい。培養液には、さらにCO2を供給してもよい。CO2の供給量は、例えば、通気量に対して、0.5~5%(v/v)であってよい。CO2と空気は、別個に培養液に供給してもよく、混合して培養液に供給してもよい。光合成を利用する場合、培養系に光を供給する。光は、適当な光源を利用して供給することができる。光源としては、例えば、白色蛍光灯、白色発光ダイオード、高圧ナトリウムランプ、太陽光が挙げられる。これらの光源は、適宜組み合わせて利用してもよい。光の照度は、例えば、1,000~10,000 luxであってよい。培養液は、適宜、撹拌または循環させてよい。光の供給、空気の供給、CO2の供給、撹拌、循環等の各種操作は、連続的に行われてもよく、間欠的に行われてもよい。各種操作の条件は、培養を通じて一定であってもよく、そうでなくてもよい。培養期間は、例えば、1~40日間であってよい。培養は、回分培養(batch culture)、流加培養(Fed-batch culture)、連続培養(continuous culture)、またはそれらの組み合わせにより実施することができる。また、培養は、種培養と本培養とに分けて行われてもよい。本培養は、例えば、本培養の培地に、種培養液を1~50%(v/v)植菌することにより行ってよい。種培養と本培養の培養条件は、同一であってもよく、そうでなくてもよい。例えば、種培養と本培養を、共に回分培養で行ってもよい。また、例えば、種培養を回分培養で行い、本培養を流加培養または連続培養で行ってもよい。 The culture can be performed using a liquid medium. The culture temperature may be, for example, 20 to 40 ° C., preferably 25 to 35 ° C., more preferably around 30 ° C. The initial pH of the medium may be, for example, near neutrality. Near neutral may be, for example, pH 7-9. During the culture, the pH may or may not be adjusted. A suitable inorganic or organic acidic or alkaline substance can be used for pH adjustment. The culture may be performed with aeration. The aeration amount may be, for example, 0.1 to 2 vvm (volume per volume per minute) as an aeration amount per minute per culture medium volume. The culture medium may be further supplied to CO 2. The supply amount of CO 2 may be, for example, 0.5 to 5% (v / v) with respect to the aeration amount. CO 2 and air may be supplied separately to the culture solution, or mixed and supplied to the culture solution. When using photosynthesis, light is supplied to the culture system. The light can be supplied using a suitable light source. Examples of the light source include a white fluorescent lamp, a white light emitting diode, a high pressure sodium lamp, and sunlight. These light sources may be used in appropriate combination. The illuminance of light may be, for example, 1,000 to 10,000 lux. The culture solution may be appropriately stirred or circulated. Various operations such as light supply, air supply, CO 2 supply, agitation, and circulation may be performed continuously or intermittently. Conditions for various operations may or may not be constant throughout the culture. The culture period may be, for example, 1 to 40 days. The culture can be performed by batch culture, fed-batch culture, continuous culture, or a combination thereof. Moreover, culture | cultivation may be performed by dividing into seed culture and main culture. The main culture may be performed, for example, by inoculating 1-50% (v / v) of the seed culture solution in the main culture medium. The culture conditions for the seed culture and the main culture may or may not be the same. For example, both seed culture and main culture may be performed by batch culture. Further, for example, seed culture may be performed by batch culture, and main culture may be performed by fed-batch culture or continuous culture.
 このようにして本発明の藻類を培養することにより、培地に本発明の藻類の藻体が生成する。 Thus, by culturing the algae of the present invention, the algal bodies of the algae of the present invention are produced in the medium.
 藻体は、培地に含まれたまま目的物質生成処理に供してもよく、培地から回収してから目的物質生成処理に供してもよい。また、藻体は、適宜前処理を行ってから目的物質生成処理に供してもよい。前処理としては、例えば、希釈、濃縮、凍結、融解、乾燥等が挙げられる。これらの前処理は、適宜組み合わせて行ってもよい。前処理は、目的物質生成処理の種類等の諸条件に応じて適宜選択することができる。 The algal bodies may be subjected to a target substance generation process while contained in the medium, or may be collected from the medium and then subjected to a target substance generation process. In addition, the algal bodies may be subjected to a target substance generation treatment after being appropriately pretreated. Examples of the pretreatment include dilution, concentration, freezing, thawing, and drying. These pretreatments may be appropriately combined. The pretreatment can be appropriately selected according to various conditions such as the type of target substance generation treatment.
 藻体を培地から回収する手法は特に制限されず、例えば公知の手法(Grima, E. M. et al. 2003. Biotechnol. Advances 20: 491-515)を利用できる。具体的には、例えば、自然沈降、遠心分離、濾過等の手法により、藻体を培地から回収することができる。また、その際、凝集剤(flocculant)を利用してもよい。回収した藻体は、適当な媒体を用いて適宜洗浄することができる。また、回収した藻体は、適当な媒体を用いて適宜再懸濁することができる。洗浄や懸濁に利用できる媒体としては、例えば、水や水性緩衝液等の水性媒体(水性溶媒)、メタノール等の有機媒体(有機溶媒)、およびそれらの混合物が挙げられる。媒体は、目的物質生成処理の種類等の諸条件に応じて適宜選択することができる。 The method for recovering the algal cells from the medium is not particularly limited, and for example, a known method (Grima, E. M. et al. 2003. Biotechnol. Advances 20: 491-515) can be used. Specifically, for example, algal bodies can be recovered from the culture medium by methods such as natural sedimentation, centrifugation, and filtration. At that time, a flocculant may be used. The collected algal bodies can be appropriately washed using an appropriate medium. The collected alga bodies can be appropriately resuspended using an appropriate medium. Examples of the medium that can be used for washing and suspension include an aqueous medium (aqueous solvent) such as water and an aqueous buffer, an organic medium (organic solvent) such as methanol, and a mixture thereof. The medium can be appropriately selected according to various conditions such as the type of target substance generation treatment.
 藻体は、例えば、所望の程度に希釈または濃縮してから目的物質生成処理に供してよい。藻体は、懸濁液中の藻体濃度が、乾燥重量に換算して、例えば、25 g/L以上、または250 g/L以上となるように、希釈または濃縮してから目的物質生成処理に供してよい。藻体の希釈は、上述したような適当な媒体を用いて行うことができる。藻体の濃縮は、例えば、藻体を沈殿させ、上清を適宜除くことにより、行うことができる。また、藻体の濃縮は、例えば、凍結乾燥やエバポレーションにより行うこともできる。 The algal bodies may be subjected to a target substance generation treatment after being diluted or concentrated to a desired degree, for example. Algae body is diluted or concentrated so that the algal body concentration in the suspension is, for example, 25 g / L or more, or 250 g / L or more in terms of dry weight, and then the target substance generation treatment May be used. The algal bodies can be diluted using an appropriate medium as described above. Concentration of algal bodies can be performed, for example, by precipitating algal bodies and removing the supernatant appropriately. Further, the algae can be concentrated by, for example, freeze-drying or evaporation.
 藻体は、例えば、一旦凍結させてから目的物質生成処理に供してよい。凍結温度は、例えば、0℃以下、-20℃以下、または-50℃以下であってよく、-80℃以上であってもよい。凍結時間は、例えば、1時間以上であってよく、24時間以下であってもよい。また、凍結融解を繰り返してもよい。 For example, the algal bodies may be frozen once and then subjected to a target substance generation treatment. The freezing temperature may be, for example, 0 ° C. or lower, −20 ° C. or lower, or −50 ° C. or lower, and may be −80 ° C. or higher. The freezing time may be, for example, 1 hour or longer and 24 hours or shorter. Moreover, you may repeat freeze-thaw.
 目的物質生成処理の前には、反応系のpHを弱酸性あるいは弱アルカリ性に調整してもよい。弱酸性とは、例えば、pH 3.0~7.0、pH 4.0~6.0、またはpH 4.5~6.0であってよい。弱アルカリ性とは、例えば、pH 7.5~12.0、pH 9.0~11.0、またはpH 9.0~10.5であってよい。pHの調整は、例えば、塩酸等の酸性物質や、NaOHやKOH等のアルカリ性物質を用いて行うことができる。当該pH調整により、藻体が加水分解されてもよく、されなくてもよい。 * Before the target substance generation treatment, the pH of the reaction system may be adjusted to be weakly acidic or weakly alkaline. The weak acidity may be, for example, pH 3.0 to 7.0, pH 4.0 to 6.0, or pH 4.5 to 6.0. The weak alkalinity may be, for example, pH 7.5 to 12.0, pH 9.0 to 11.0, or pH 9.0 to 10.5. The pH can be adjusted using, for example, an acidic substance such as hydrochloric acid, or an alkaline substance such as NaOH or KOH. By adjusting the pH, the algal bodies may or may not be hydrolyzed.
<2-2>中温処理による脂肪酸生成
 培養により得られた藻体を中温処理に供することにより、脂肪酸を生成できる。すなわち、本発明の方法の一態様は、本発明の藻類を培地で培養すること、前記培養により得られた藻体を中温処理に供すること、および前記処理の処理物から脂肪酸を回収すること、を含む、脂肪酸を製造する方法である。本発明においては、1種の脂肪酸のみが製造されてもよく、2種またはそれ以上の脂肪酸が製造されてもよい。
<2-2> Fatty acid production by medium temperature treatment Fatty acids can be produced by subjecting algal bodies obtained by culture to medium temperature treatment. That is, one aspect of the method of the present invention includes culturing the algae of the present invention in a medium, subjecting the algal bodies obtained by the culture to a medium temperature treatment, and recovering fatty acids from the treated product, Is a method for producing a fatty acid. In the present invention, only one fatty acid may be produced, or two or more fatty acids may be produced.
<中温処理>
 「中温処理」とは、中温度での処理をいう。中温処理としては、例えば、WO2011/013707に記載の中温度での処理を参照できる。藻体は、上述したような適当な媒体に懸濁した状態で中温処理に供することができる。「中温度」は、脂肪酸が生成する温度であれば特に制限されない。中温度は、処理時間等の諸条件に応じて適宜設定できる。中温度は、例えば、35℃以上、40℃以上、45℃以上、または50℃以上であってよい。また、中温度は、例えば、70℃以下、65℃以下、または60℃以下であってよい。中温処理の時間は、処理温度等の諸条件に応じて適宜設定できる。中温処理の時間は、例えば、1時間以上、または5時間以上であってよい。また、中温処理の時間は、例えば、48時間以下、または24時間以下であってよい。中温処理のpHは、中温処理により脂肪酸が生成する限り特に制限されない。中温処理のpHは、例えば、pH 3.0~11.0であってよい。中温処理のpHは、例えば、弱酸性であってもよく、中性付近であってもよく、弱アルカリ性であってもよい。弱酸性とは、上記のような弱酸性の範囲、例えば、pH 4.5~6.0であってよい。中性付近とは、例えば、pH 7.0~9.0であってよい。弱アルカリ性とは、上記のような弱アルカリ性の範囲、例えば、pH 9.0~10.5であってよい。また、AJ7846株を用いて中温処理を行う際には、中温処理のpHは、pH 4.5~9.5が好ましく、pH 4.5~6.5がより好ましい。また、AJ7847株を用いて中温処理を行う際には、中温処理のpHは、pH 4.5~9.5が好ましく、pH 5.5~7.5がより好ましい。中温処理は、静置で行ってもよく、撹拌や振とうしながら行ってもよい。
<Medium temperature treatment>
“Medium temperature treatment” refers to treatment at an intermediate temperature. As the intermediate temperature treatment, for example, the treatment at the intermediate temperature described in WO2011 / 013707 can be referred to. The algal bodies can be subjected to intermediate temperature treatment in a state suspended in an appropriate medium as described above. The “medium temperature” is not particularly limited as long as it is a temperature at which a fatty acid is generated. The intermediate temperature can be appropriately set according to various conditions such as processing time. The intermediate temperature may be, for example, 35 ° C. or higher, 40 ° C. or higher, 45 ° C. or higher, or 50 ° C. or higher. Further, the intermediate temperature may be, for example, 70 ° C. or lower, 65 ° C. or lower, or 60 ° C. or lower. The time for the medium temperature treatment can be appropriately set according to various conditions such as the treatment temperature. The time for the medium temperature treatment may be, for example, 1 hour or more, or 5 hours or more. Further, the intermediate temperature treatment time may be, for example, 48 hours or less, or 24 hours or less. The pH of the medium temperature treatment is not particularly limited as long as the fatty acid is generated by the medium temperature treatment. The pH of the medium temperature treatment may be, for example, pH 3.0 to 11.0. The pH of the medium temperature treatment may be, for example, weakly acidic, near neutral, or weakly alkaline. The weak acidity may be in the above weak acid range, for example, pH 4.5 to 6.0. Near neutral may be, for example, pH 7.0-9.0. The weak alkalinity may be in the weak alkalinity range as described above, for example, pH 9.0 to 10.5. When the medium temperature treatment is performed using the AJ7846 strain, the pH of the medium temperature treatment is preferably pH 4.5 to 9.5, more preferably pH 4.5 to 6.5. When the medium temperature treatment is performed using the AJ7847 strain, the pH of the medium temperature treatment is preferably pH 4.5 to 9.5, more preferably pH 5.5 to 7.5. The medium temperature treatment may be performed by standing or may be performed while stirring or shaking.
 中温処理は、連続的に行われてもよく、間欠的に行われてもよい。処理温度等の反応条件は、中温処理を通じて一定であってもよく、そうでなくてもよい。すなわち、藻体は、例えば、連続で同じ温度で処理(以下、「連続中温処理」ともいう)してもよく、途中で温度を変動させて処理してもよい。連続中温処理は、例えば、上記例示した中温度の範囲および上記例示した中温処理の時間の範囲で行われてよい。途中で温度を変動させる態様としては、例えば、途中で温度を低下させる態様が挙げられる。途中で温度を低下させる態様としては、例えば、第一段中温処理として、一旦中温度で処理した後に、第二段中温処理として、第一段中温処理の温度を下回る温度で処理する態様が挙げられる。第一段中温処理の温度は、例えば、上記例示した中温度の範囲であってよい。第二段中温処理の温度は、例えば、30℃以上、35℃以上、または40℃以上であってよい。また、第二段中温処理の温度は、例えば、55℃以下、50℃以下、または45℃以下であってよい。第一段中温処理の時間は、例えば、1分以上、5分以上、10分以上、または20分以上であってよい。第一段中温処理の時間は、例えば、120分以下、または60分以下であってよい。第二段中温処理の時間は、例えば、1時間以上、2時間以上、または4時間以上であってよい。第二段中温処理の時間は、例えば、20時間以下、または15時間以下であってよい。 The medium temperature treatment may be performed continuously or intermittently. Reaction conditions such as treatment temperature may or may not be constant throughout the medium temperature treatment. That is, for example, the algal cells may be continuously treated at the same temperature (hereinafter, also referred to as “continuous intermediate temperature treatment”), or may be treated by changing the temperature in the middle. The continuous intermediate temperature treatment may be performed, for example, in the above-exemplified intermediate temperature range and the above-exemplified intermediate temperature treatment range. As an aspect which changes temperature on the way, the aspect which reduces temperature on the way is mentioned, for example. As an aspect of lowering the temperature in the middle, for example, an aspect of treating at a temperature lower than the temperature of the first stage intermediate temperature treatment as the second stage intermediate temperature treatment after once treating at an intermediate temperature as the first stage intermediate temperature treatment. It is done. The temperature of the first stage intermediate temperature treatment may be, for example, the intermediate temperature range exemplified above. The temperature of the second stage intermediate temperature treatment may be, for example, 30 ° C or higher, 35 ° C or higher, or 40 ° C or higher. The temperature of the second stage intermediate temperature treatment may be, for example, 55 ° C. or lower, 50 ° C. or lower, or 45 ° C. or lower. The time of the first stage intermediate temperature treatment may be, for example, 1 minute or more, 5 minutes or more, 10 minutes or more, or 20 minutes or more. The time of the first stage intermediate temperature treatment may be, for example, 120 minutes or less, or 60 minutes or less. The second stage intermediate temperature treatment time may be, for example, 1 hour or more, 2 hours or more, or 4 hours or more. The time of the second stage intermediate temperature treatment may be, for example, 20 hours or less, or 15 hours or less.
 中温処理による処理物からは、脂肪酸を回収することができる。なお、通常、脂肪酸は、処理物中の藻体内に多く含まれ得る。よって、中温処理後の藻体から脂肪酸を抽出し、脂肪酸を回収するのが好ましい。 Fatty acids can be recovered from the processed product by the medium temperature treatment. Normally, a large amount of fatty acid can be contained in the algae in the treated product. Therefore, it is preferable to extract the fatty acid from the algal body after the intermediate temperature treatment and recover the fatty acid.
 脂肪酸を抽出する手法は特に制限されず、例えば公知の手法を利用できる。例えば、一般的な藻類から油脂を抽出する手法を利用できる。そのような手法としては、例えば、有機溶剤処理、超音波処理、ビーズ破砕処理、酸処理、アルカリ処理、酵素処理、水熱処理、超臨界処理、マイクロ波処理、電磁場処理、圧搾処理が挙げられる。 The method for extracting the fatty acid is not particularly limited, and for example, a known method can be used. For example, a technique for extracting fats and oils from general algae can be used. Examples of such methods include organic solvent treatment, ultrasonic treatment, bead crushing treatment, acid treatment, alkali treatment, enzyme treatment, hydrothermal treatment, supercritical treatment, microwave treatment, electromagnetic field treatment, and pressing treatment.
 中温処理による処理物は、そのまま脂肪酸の抽出に供してもよく、適宜、濃縮、希釈、乾燥等の処理を行ってから脂肪酸の抽出に供してもよい。例えば、中温処理による処理物を、遠心分離等により、沈殿物(藻体)と上清に分離してもよい。その場合、沈殿物から脂肪酸を抽出することができる。中温処理による処理物は、沈殿物濃度が、乾燥重量に換算して、例えば、250 g/L以下、または125 g/L以下となるように、希釈または濃縮してから脂肪酸の抽出に供してよい。具体的には、例えば、アルカリ処理の場合は、沈殿物濃度が125 g/L以下の処理物を処理することが好ましい。また、例えば、有機溶剤処理の場合は、沈殿物を上清液から分離して処理することが好ましい。有機溶剤処理は、中温処理による処理物を乾燥してから行ってもよく、そうでなくてもよい。 The treated product by the medium temperature treatment may be used for extraction of fatty acid as it is, or may be used for extraction of fatty acid after appropriate treatment such as concentration, dilution, drying and the like. For example, the treated product obtained by the intermediate temperature treatment may be separated into a precipitate (algae) and a supernatant by centrifugation or the like. In that case, fatty acids can be extracted from the precipitate. Processed products by intermediate temperature treatment are diluted or concentrated so that the concentration of the precipitate is, for example, 250 以下 g / L or less, or 125 g / L or less in terms of dry weight, and then used for fatty acid extraction. Good. Specifically, for example, in the case of alkali treatment, it is preferable to treat a treated product having a precipitate concentration of 125 g / L or less. For example, in the case of organic solvent treatment, it is preferable to separate the precipitate from the supernatant and treat it. The organic solvent treatment may or may not be performed after drying the treated product by the intermediate temperature treatment.
 有機溶剤処理に用いられる有機溶剤は、中温処理による処理物から脂肪酸を抽出できるものであれば特に制限されない。有機溶剤としては、例えば、メタノール、エタノール、2-プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール等のアルコール類、アセトン等のケトン類、ジメチルエーテル、ジエチルエーテル等のエーテル類、酢酸メチル、酢酸エチル等のエステル類、n-ヘキサン等のアルカン類、クロロホルムが挙げられる。有機溶剤としては、1種の有機溶剤を用いてもよく、2種またはそれ以上の有機溶剤を組み合わせて用いてもよい。 The organic solvent used for the organic solvent treatment is not particularly limited as long as the fatty acid can be extracted from the treated product by the medium temperature treatment. Examples of the organic solvent include alcohols such as methanol, ethanol, 2-propanol, butanol, pentanol, hexanol, heptanol, and octanol, ketones such as acetone, ethers such as dimethyl ether and diethyl ether, methyl acetate, and ethyl acetate. Such as esters, alkanes such as n-hexane, and chloroform. As the organic solvent, one kind of organic solvent may be used, or two or more kinds of organic solvents may be used in combination.
 アルカリ処理のpHは、中温処理による処理物から脂肪酸を抽出できるpHであれば特に制限されない。アルカリ処理のpHは、通常にはpH 8.5以上、好ましくはpH 10.5以上、さらに好ましくはpH 11.5以上であってよく、pH 14以下であってよい。アルカリ処理の温度は、通常には30℃以上、好ましくは50℃以上、さらに好ましくは70℃以上であってよい。アルカリ処理の温度は、好ましくは120℃以下であってよい。アルカリ処理の時間は、通常には10分以上、好ましくは30分以上、さらに好ましくは50分以上であってよい。アルカリ処理の時間は、好ましくは150分以下であってよい。アルカリ処理には、NaOHやKOH等のアルカリ性物質を利用することができる。 The pH of the alkali treatment is not particularly limited as long as it is a pH at which a fatty acid can be extracted from a treated product by a medium temperature treatment. The pH of the alkali treatment is usually pH 8.5 or higher, preferably pH 10.5 or higher, more preferably pH 11.5 or higher, and pH 14 or lower. The temperature for the alkali treatment is usually 30 ° C. or higher, preferably 50 ° C. or higher, more preferably 70 ° C. or higher. The temperature of the alkali treatment may be preferably 120 ° C. or lower. The alkali treatment time may be usually 10 minutes or longer, preferably 30 minutes or longer, more preferably 50 minutes or longer. The alkali treatment time may be preferably 150 minutes or less. An alkaline substance such as NaOH or KOH can be used for the alkali treatment.
 溶出した脂肪酸の回収は、化合物の分離精製に用いられる公知の手法により行うことができる。そのような手法としては、例えば、イオン交換樹脂法や膜処理法が挙げられる。これらの手法は適宜組み合わせて用いることができる。 The recovery of the eluted fatty acid can be performed by a known method used for separation and purification of compounds. Examples of such a method include an ion exchange resin method and a membrane treatment method. These methods can be used in appropriate combination.
 回収された脂肪酸は、脂肪酸以外に、藻体、培地成分、水分、各種処理に用いられた成分、本発明の藻類の代謝副産物等の成分を含んでいてよい。脂肪酸は、所望の程度に精製されていてよい。脂肪酸の純度は、例えば、30%(w/w)以上、50%(w/w)以上、70%(w/w)以上、90%(w/w)以上、または95%(w/w)以上であってよい。 The collected fatty acid may contain components such as algal bodies, medium components, moisture, components used for various treatments, and metabolic byproducts of the algae of the present invention in addition to the fatty acids. The fatty acid may be purified to the desired degree. Fatty acid purity is, for example, 30% (w / w) or higher, 50% (w / w) or higher, 70% (w / w) or higher, 90% (w / w) or higher, or 95% (w / w) ) Or more.
<2-3>二段階反応による脂肪酸エステル生成
 培養により得られた藻体を、中温処理およびアルコール存在下での中低温処理の二段階反応に供することにより、脂肪酸エステルを生成できる。すなわち、本発明の方法の一態様は、本発明の藻類を培地で培養すること、前記培養により得られた藻体を中温処理に供すること、前記中温処理の処理物をアルコールの存在下で中低温処理に供すること、および前記中低温処理の処理物から脂肪酸エステルを回収すること、を含む、脂肪酸エステルを製造する方法である。本発明においては、1種の脂肪酸エステルのみが製造されてもよく、2種またはそれ以上の脂肪酸エステルが製造されてもよい。
<2-3> Fatty acid ester production by two-stage reaction The fatty acid ester can be produced by subjecting the algal bodies obtained by the culture to a two-stage reaction of medium temperature treatment and medium to low temperature treatment in the presence of alcohol. That is, one embodiment of the method of the present invention includes culturing the algae of the present invention in a medium, subjecting the algae obtained by the culture to a medium temperature treatment, and treating the medium temperature treated product in the presence of alcohol. It is a method for producing a fatty acid ester, comprising subjecting to a low-temperature treatment and recovering the fatty acid ester from the treated product of the medium-low temperature treatment. In the present invention, only one fatty acid ester may be produced, or two or more fatty acid esters may be produced.
 二段階反応としては、例えば、WO2012/099172に記載の二段階反応を参照できる。二段階反応は、一段目の処理である中温処理と、二段目の処理であるアルコール存在下での中低温処理、を含む。二段目の処理は、脂肪酸エステルを生成するための処理である。一段目の処理は、二段目の処理における脂肪酸エステルの生成を促進するよう、本発明の藻類の藻体の状態を変化させる処理である。 As the two-stage reaction, for example, the two-stage reaction described in WO2012 / 099172 can be referred to. The two-stage reaction includes an intermediate temperature treatment which is a first stage treatment and a medium and low temperature treatment in the presence of alcohol which is a second stage treatment. The second stage treatment is a treatment for producing a fatty acid ester. The first stage treatment is a treatment for changing the state of the algal bodies of the algae of the present invention so as to promote the production of fatty acid esters in the second stage treatment.
 「中温処理」とは、中温度での処理をいう。「中低温処理」とは、中低温での処理をいう。「中低温」とは、中温度よりも低い温度をいう。「中温度」および「中低温」は、二段階反応により脂肪酸エステルが生成する温度であれば特に制限されない。「中温度」および「中低温」は、処理時間等の諸条件に応じて適宜設定できる。 “Medium temperature treatment” means treatment at medium temperature. “Medium and low temperature treatment” refers to treatment at medium and low temperatures. “Medium temperature” refers to a temperature lower than the medium temperature. “Medium temperature” and “medium low temperature” are not particularly limited as long as they are temperatures at which fatty acid esters are formed by a two-stage reaction. “Medium temperature” and “medium temperature” can be appropriately set according to various conditions such as processing time.
 一段目の処理の温度(中温度)は、例えば、35℃以上、40℃以上、45℃以上、または50℃以上であってよい。また、一段目の処理の温度(中温度)は、例えば、70℃以下、65℃以下、または60℃以下であってよい。一段目の処理の時間は、例えば、1分以上、5分以上、10分以上、または20分以上であってよい。また、一段目の処理の時間は、例えば、120分以下、または60分以下であってよい。 The temperature (medium temperature) of the first stage treatment may be, for example, 35 ° C. or higher, 40 ° C. or higher, 45 ° C. or higher, or 50 ° C. or higher. Moreover, the temperature (intermediate temperature) of the 1st process may be 70 degrees C or less, 65 degrees C or less, or 60 degrees C or less, for example. The processing time for the first stage may be, for example, 1 minute or more, 5 minutes or more, 10 minutes or more, or 20 minutes or more. In addition, the time for the first step may be, for example, 120 minutes or less, or 60 minutes or less.
 二段目の処理の温度(中低温)は、例えば、5℃以上、20℃以上、または30℃以上であってよい。また、二段目の処理の温度(中低温)は、例えば、60℃以下、50℃以下、または45℃以下であってよい。二段目の処理の時間は、例えば、10分以上、30分以上、1時間以上、または2時間以上であってよい。また、二段目の処理の時間は、例えば、15時間以下、10時間以下、または5時間以下であってよい。 The temperature of the second stage treatment (medium / low temperature) may be, for example, 5 ° C or higher, 20 ° C or higher, or 30 ° C or higher. Further, the temperature of the second stage treatment (medium / low temperature) may be, for example, 60 ° C. or lower, 50 ° C. or lower, or 45 ° C. or lower. The processing time for the second stage may be, for example, 10 minutes or longer, 30 minutes or longer, 1 hour or longer, or 2 hours or longer. Further, the time for the second stage may be, for example, 15 hours or less, 10 hours or less, or 5 hours or less.
 二段階反応のpHは、二段階反応により脂肪酸エステルが生成する限り特に制限されない。中温処理のpHは、例えば、pH 3.0~11.0であってよい。二段階反応のpHは、例えば、弱酸性であってもよく、中性付近であってもよく、弱アルカリ性であってもよい。 The pH of the two-stage reaction is not particularly limited as long as the fatty acid ester is produced by the two-stage reaction. The pH of the medium temperature treatment may be, for example, pH 3.0 to 11.0. The pH of the two-stage reaction may be, for example, weakly acidic, near neutral, or weakly alkaline.
 一段目の処理および二段目の処理は、それぞれ、静置で行ってもよく、撹拌や振とうしながら行ってもよい。処理温度等の反応条件は、一段目の処理を通じて一定であってもよく、そうでなくてもよい。処理温度等の反応条件は、二段目の処理を通じて一定であってもよく、そうでなくてもよい。 The first-stage treatment and the second-stage treatment may be performed by standing or may be performed while stirring or shaking. Reaction conditions such as the treatment temperature may or may not be constant throughout the first stage of treatment. Reaction conditions such as treatment temperature may or may not be constant throughout the second stage treatment.
 一段目の処理後に、反応系の温度を低下させ、アルコールの存在下で二段目の処理を行う。一段目の処理の処理物は、そのまま二段目の処理に供してもよく、適宜、濃縮、希釈等の処理を行ってから二段目の処理に供してもよい。アルコールは、一段目の処理の処理物と接触するように反応系に存在させればよい。例えば、一段目の処理の処理物にアルコールを添加してもよく、アルコールに一段目の処理の処理物を添加してもよい。また、例えば、一段目の処理の処理物から藻体を分離し、分離した藻体を、アルコールを含む二段目の処理用の反応液と混合してもよい。 After the first stage treatment, the temperature of the reaction system is lowered and the second stage treatment is performed in the presence of alcohol. The processed product of the first step may be used for the second step as it is, or may be used for the second step after appropriately performing treatments such as concentration and dilution. The alcohol may be present in the reaction system so as to come into contact with the processed product of the first step. For example, an alcohol may be added to the processed product of the first stage, or a processed product of the first stage may be added to the alcohol. Further, for example, the algal bodies may be separated from the processed product of the first stage treatment, and the separated algal bodies may be mixed with the reaction liquid for the second stage treatment containing alcohol.
 二段目の処理における反応系でのアルコールの濃度は、通常には5%(v/v)以上、好ましくは10%(v/v)以上、さらに好ましくは20%(v/v)以上であってよい。また、二段目の処理における反応系でのアルコールの濃度は、通常には70%(v/v)以下、好ましくは60%(v/v)以下、さらに好ましくは50%(v/v)以下であってよい。 The concentration of alcohol in the reaction system in the second stage treatment is usually 5% (v / v) or more, preferably 10% (v / v) or more, more preferably 20% (v / v) or more. It may be. Further, the alcohol concentration in the reaction system in the second stage treatment is usually 70% (v / v) or less, preferably 60% (v / v) or less, more preferably 50% (v / v). It may be the following.
 二段目の処理に用いられるアルコールは、二段階反応により脂肪酸エステルが生成するものであれば特に制限されない。二段目の処理に用いられるアルコールとしては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、ペンタノール、エチレングリコール等の炭素数5以下の低級アルコールや、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール等の炭素数6以上の高級アルコールが挙げられる。 The alcohol used for the second stage treatment is not particularly limited as long as the fatty acid ester is generated by the two-stage reaction. As the alcohol used in the second stage treatment, lower alcohols having 5 or less carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol, pentanol, ethylene glycol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, Examples thereof include higher alcohols having 6 or more carbon atoms such as dodecanol, tridecanol, and tetradecanol.
 二段階反応の処理物からは、脂肪酸エステルを回収することができる。なお、通常、生成した脂肪酸エステルは、処理物中の藻体内に多く含まれ得る。よって、二段階反応後の藻体から脂肪酸エステルを抽出し、脂肪酸エステルを回収するのが好ましい。 The fatty acid ester can be recovered from the processed product of the two-stage reaction. In addition, normally, the produced | generated fatty acid ester may be contained abundantly in the algal body in a processed material. Therefore, it is preferable to extract the fatty acid ester from the algal body after the two-step reaction and recover the fatty acid ester.
 二段階反応の処理物からの脂肪酸エステルの抽出や回収については、<2-2>の中温処理による処理物からの脂肪酸の抽出や回収に関する記載を準用できる。 For the extraction and recovery of fatty acid esters from the processed product of the two-stage reaction, the description relating to the extraction and recovery of fatty acid from the processed product by intermediate temperature treatment in <2-2> can be applied mutatis mutandis.
 二段階反応による脂肪酸エステル生成は、触媒の添加を必要としない。その理由は、一段目の処理により、本発明の藻類がもともと有するリパーゼが脂質に作用しやすい状態になり、そのリパーゼによって、脂質、例えば、油脂、セラミド(Ceramide)、リン脂質(Phospholipid)、糖脂質(Glycolipid)等、と外部より添加したアルコールとの間でエステル交換反応が起こるためであると考えられる。 ∙ Fatty acid ester production by a two-step reaction does not require addition of a catalyst. The reason is that the lipase originally possessed by the algae of the present invention is likely to act on lipids by the first treatment, and the lipase allows lipids such as fats and oils, ceramides, phospholipids, sugars. It is thought that this is because a transesterification reaction occurs between lipid (Glycolipid) and the like and alcohol added from outside.
 リパーゼによるエステル交換反応は、一般的に、アルコール類以外の有機溶剤の存在下で促進される。よって、例えば、二段目の処理の際に、エステル交換反応を促進させるのに有効な量の有機溶剤を反応系に添加してもよい。そのような有機溶剤としては、例えば、ヘキサン、ヘプタン、イソオクタン、クロロホルム、酢酸エチル、石油エーテルが挙げられる。 The transesterification reaction by lipase is generally promoted in the presence of an organic solvent other than alcohols. Therefore, for example, an amount of an organic solvent effective to promote the transesterification reaction may be added to the reaction system during the second stage treatment. Examples of such an organic solvent include hexane, heptane, isooctane, chloroform, ethyl acetate, and petroleum ether.
 回収された脂肪酸エステルは、そのまま、あるいは医薬品、化粧品、飲食品等に配合して利用できる。脂肪酸エステルの配合量は、脂肪酸エステルの機能が発揮される限り、特に制限されない。脂肪酸エステルの配合量は、特に制限されないが、例えば、1 ppm(w/w)以上、100 ppm(w/w)以上、または1%(w/w)以上であってよい。また、脂肪酸エステルの配合量は、特に制限されないが、例えば、100%(w/w)以下、10%(w/w)以下、または1%(w/w)以下であってよい。 The collected fatty acid ester can be used as it is or in combination with pharmaceuticals, cosmetics, foods and drinks. The blending amount of the fatty acid ester is not particularly limited as long as the function of the fatty acid ester is exhibited. The blending amount of the fatty acid ester is not particularly limited, and may be, for example, 1 ppm (w / w) or more, 100 ppm (w / w) or more, or 1% (w / w) or more. The amount of the fatty acid ester is not particularly limited, and may be, for example, 100% (w / w) or less, 10% (w / w) or less, or 1% (w / w) or less.
<2-4>中温処理および/または有機溶媒処理による糖グリセロール生成
 培養により得られた藻体を中温処理および/または有機溶媒処理に供することにより、糖グリセロールを生成できる。すなわち、本発明の方法の一態様は、本発明の藻類を培地で培養すること、前記培養により得られた藻体を中温処理および/または有機溶媒処理に供すること、および前記処理の処理物から糖グリセロールを回収すること、を含む、糖グリセロールを製造する方法である。なお、糖グリセロールの生成に利用される中温処理および有機溶媒処理を総称して、糖グリセロール生成処理という場合がある。
<2-4> Production of sugar glycerol by medium temperature treatment and / or organic solvent treatment Sugar glycerol can be produced by subjecting the algal cells obtained by the culture to a medium temperature treatment and / or an organic solvent treatment. That is, one embodiment of the method of the present invention includes culturing the algae of the present invention in a medium, subjecting the algae obtained by the culture to a medium temperature treatment and / or organic solvent treatment, and from a treated product of the treatment. Recovering sugar glycerol, a method for producing sugar glycerol. In addition, the medium temperature treatment and organic solvent treatment used for the production of sugar glycerol may be collectively referred to as a sugar glycerol production treatment.
 「糖グリセロール」とは、グリセロールの水酸基に糖がグリコシド結合した構造を有する化合物をいう。糖は、グリセロールのいずれの水酸基に結合していてもよい。糖は、グリセロールの3つの水酸基の内、1つの水酸基のみに結合していてもよく、2つまたは3つの水酸基に結合していてもよい。本発明においては、1種の糖グリセロールのみが製造されてもよく、2種またはそれ以上の糖グリセロールが製造されてもよい。 “Sugar glycerol” refers to a compound having a structure in which a sugar is glycosidically bonded to a hydroxyl group of glycerol. The sugar may be bound to any hydroxyl group of glycerol. The sugar may be bonded to only one of the three hydroxyl groups of glycerol, or may be bonded to two or three hydroxyl groups. In the present invention, only one sugar glycerol may be produced, or two or more sugar glycerols may be produced.
 糖の種類は特に制限されない。糖は、単糖、多糖、またはそれらの誘導体であってよい。 The type of sugar is not particularly limited. The sugar may be a monosaccharide, a polysaccharide, or a derivative thereof.
 単糖として、具体的には、例えば、グルコースやガラクトースが挙げられる。 Specific examples of monosaccharides include glucose and galactose.
 「多糖」とは、2分子またはそれ以上の単糖で構成される糖をいう。すなわち、ここでいう多糖には、二糖やオリゴ糖も含まれる。多糖は、直鎖状であってもよく、分岐鎖を有していてもよい。多糖は、1種の単糖で構成されていてもよく、2種またはそれ以上の単糖で構成されていてもよい。多糖の重合度は、特に制限されないが、例えば、2~50、2~10、または2~5であってよい。多糖としては、例えば、ガラクトースを構成糖として含む多糖が挙げられる。ガラクトースを構成糖として含む多糖として、具体的には、例えば、ジガラクトースが挙げられる。 “Polysaccharide” refers to a saccharide composed of two or more monosaccharides. That is, the polysaccharide here includes disaccharides and oligosaccharides. The polysaccharide may be linear or may have a branched chain. The polysaccharide may be composed of one kind of monosaccharide or may be composed of two or more kinds of monosaccharides. The degree of polymerization of the polysaccharide is not particularly limited, and may be, for example, 2 to 50, 2 to 10, or 2 to 5. Examples of the polysaccharide include a polysaccharide containing galactose as a constituent sugar. Specific examples of the polysaccharide containing galactose as a constituent sugar include digalactose.
 「糖の誘導体」とは、原子や官能基等の構成要素が導入、置換、または除去された糖をいう。以下、構成要素の導入、置換、および除去を総称して「改変」ともいう。改変を受ける箇所は特に制限されず、例えば、炭素原子上であってもよく、酸素原子上であってもよく、それ以外の箇所であってもよい。改変を受ける箇所は、1ヶ所であってよく、2ヶ所またはそれ以上であってもよい。改変の種類は、1種であってもよく、2種またはそれ以上であってもよい。糖の誘導体としては、例えば、デオキシ糖、アミノ糖、糖酸、糖アルコールが挙げられる。また、導入される官能基としては、例えば、アセチル基、アミノ基、アルキル基、スルホニル基(-SO3-R)が挙げられる。スルホニル基(-SO3-R)の「R」は、特に制限されないが、例えば、水素原子(H)やアルキル基であってよい。スルホニル基(-SO3-R)は、例えば、スルホ基(-SO3H)であってよい(R=Hの場合)。糖の誘導体としては、例えば、グルコース誘導体やガラクトース誘導体が挙げられる。グルコース誘導体として、具体的には、例えば、キノボースやスルホニルキノボースが挙げられる。スルホニルキノボースは、例えば、スルホキノボースであってよい(R=Hの場合)。ガラクトース誘導体として、具体的には、例えば、フコースやスルホニルフコースが挙げられる。スルホニルフコースは、例えば、スルホフコースであってよい(R=Hの場合)。 A “sugar derivative” refers to a sugar in which components such as atoms and functional groups have been introduced, substituted, or removed. Hereinafter, introduction, replacement, and removal of components are collectively referred to as “modification”. The location to be modified is not particularly limited, and may be, for example, on a carbon atom, on an oxygen atom, or other location. There may be one place to be modified, or two or more places. There may be one type of modification, or two or more types. Examples of the sugar derivative include deoxy sugar, amino sugar, sugar acid, and sugar alcohol. Examples of the functional group to be introduced include an acetyl group, an amino group, an alkyl group, and a sulfonyl group (—SO 3 —R). “R” in the sulfonyl group (—SO 3 —R) is not particularly limited, and may be, for example, a hydrogen atom (H) or an alkyl group. The sulfonyl group (—SO 3 —R) may be, for example, a sulfo group (—SO 3 H) (when R = H). Examples of sugar derivatives include glucose derivatives and galactose derivatives. Specific examples of the glucose derivative include quinobose and sulfonyl quinose. The sulfonyl quinose may be, for example, a sulfo quinose (when R = H). Specific examples of the galactose derivative include fucose and sulfonyl fucose. The sulfonyl fucose may be, for example, sulfofucose (when R = H).
 糖グリセロールとして、具体的には、例えば、ガラクトシルグリセロール、ジガラクトシルグリセロール、およびスルホキノボシルグリセロールが挙げられる。ガラクトシルグリセロールは、グリセロールのいずれか1つの炭素の水酸基にガラクトースが結合した糖グリセロールである。ジガラクトシルグリセロールは、グリセロールのいずれか1つの炭素の水酸基にジガラクトースが結合した糖グリセロールである。スルホキノボシルグリセロールは、グリセロールのいずれか1つの炭素の水酸基にスルホキノボースが結合した糖グリセロールである。ガラクトシルグリセロール、ジガラクトシルグリセロール、およびスルホキノボシルグリセロールは、特記しない限り、いずれも、グリセロールの1位の炭素の水酸基に糖が結合したもの、グリセロールの2位の炭素の水酸基に糖が結合したもの、グリセロールの3位の炭素の水酸基に糖が結合したもの、またはそれらの混合物であってよい。 Specific examples of sugar glycerol include galactosylglycerol, digalactosylglycerol, and sulfoquinovosylglycerol. Galactosylglycerol is a sugar glycerol in which galactose is bonded to the hydroxyl group of any one carbon of glycerol. Digalactosylglycerol is a sugar glycerol in which digalactose is bound to the hydroxyl group of any one carbon of glycerol. Sulfoquinovosyl glycerol is a sugar glycerol in which sulfo quinose is bound to the hydroxyl group of any one carbon of glycerol. Unless otherwise specified, all of galactosylglycerol, digalactosylglycerol, and sulfoquinovosylglycerol have sugars bound to the hydroxyl group at the 1st carbon of glycerol, and sugars bound to the hydroxyl group at the 2nd carbon of glycerol. Or a saccharide bonded to the hydroxyl group at the 3-position carbon of glycerol, or a mixture thereof.
<中温処理>
 中温処理については、上記<2-2>の中温処理に関する記載を準用できる。
<Medium temperature treatment>
For the medium temperature treatment, the description regarding the medium temperature treatment in the above <2-2> can be applied.
<有機溶媒処理>
 「有機溶媒処理」とは、有機溶媒による処理をいう。有機溶媒処理の条件は、有機溶媒処理により糖グリセロールが生成する限り特に制限されない。有機溶媒処理は、藻体と有機溶媒を接触させることにより行うことができる。例えば、回収した藻体を有機溶媒で懸濁してもよいし、藻体の懸濁物に有機溶媒を添加してもよい。有機溶媒としては、例えば、メタノール、エタノール、2-プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール等のアルコール類、アセトン等のケトン類、ジメチルエーテル、ジエチルエーテル等のエーテル類、酢酸メチル、酢酸エチル等のエステル類、n-ヘキサン等のアルカン類、ベンゼン、フェノール、クロロホルムが挙げられる。有機溶媒としては、水溶性のものが好ましい。有機溶媒としては、アルコールが好ましく、メタノールがより好ましい。有機溶媒としては、1種の有機溶媒を用いてもよく、2種またはそれ以上の有機溶媒を組み合わせて用いてもよい。有機溶媒は、純品であってもよく、他の成分との混合物であってもよい。他の成分としては、例えば、水や水性緩衝液等の水性媒体(水性溶媒)が挙げられる。すなわち、例えば、有機溶媒処理には、有機溶媒の水溶液を利用することができる。混合物中の有機溶媒濃度は、例えば、10%(v/v)以上、または20%(v/v)以上であってよく、90%(v/v)以下、70%(v/v)以下、または50%(v/v)以下であってよい。また、有機溶媒処理を行う反応液中の有機溶媒濃度は、例えば、10%(v/v)以上、または20%(v/v)以上であってよく、90%(v/v)以下、70%(v/v)以下、または50%(v/v)以下であってよい。有機溶媒処理の時間は、例えば、10分以上、30分以上、または1時間以上であってよい。また、有機溶媒処理の時間は、例えば、10時間以下、5時間以下、または3時間以下であってよい。有機溶媒処理の温度は、制御されてもよく、制御されなくてもよい。有機溶媒処理の温度は、例えば、10~70℃であってよく、室温であってもよい。有機溶媒処理は、静置で行ってもよく、撹拌や振とうしながら行ってもよい。
<Organic solvent treatment>
“Organic solvent treatment” refers to treatment with an organic solvent. The conditions for the organic solvent treatment are not particularly limited as long as sugar glycerol is produced by the organic solvent treatment. The organic solvent treatment can be performed by bringing the algal bodies into contact with the organic solvent. For example, the collected alga bodies may be suspended in an organic solvent, or an organic solvent may be added to the alga body suspension. Examples of the organic solvent include alcohols such as methanol, ethanol, 2-propanol, butanol, pentanol, hexanol, heptanol and octanol, ketones such as acetone, ethers such as dimethyl ether and diethyl ether, methyl acetate and ethyl acetate. Esters, alkanes such as n-hexane, benzene, phenol, and chloroform. As an organic solvent, a water-soluble thing is preferable. As an organic solvent, alcohol is preferable and methanol is more preferable. As the organic solvent, one kind of organic solvent may be used, or two or more kinds of organic solvents may be used in combination. The organic solvent may be a pure product or a mixture with other components. Examples of other components include an aqueous medium (aqueous solvent) such as water and an aqueous buffer solution. That is, for example, an aqueous solution of an organic solvent can be used for the organic solvent treatment. The organic solvent concentration in the mixture may be, for example, 10% (v / v) or more, or 20% (v / v) or more, 90% (v / v) or less, 70% (v / v) or less Or 50% (v / v) or less. Further, the concentration of the organic solvent in the reaction solution for performing the organic solvent treatment may be, for example, 10% (v / v) or more, or 20% (v / v) or more, 90% (v / v) or less, It may be 70% (v / v) or less, or 50% (v / v) or less. The organic solvent treatment time may be, for example, 10 minutes or longer, 30 minutes or longer, or 1 hour or longer. Further, the time of the organic solvent treatment may be, for example, 10 hours or less, 5 hours or less, or 3 hours or less. The temperature of the organic solvent treatment may or may not be controlled. The temperature of the organic solvent treatment may be, for example, 10 to 70 ° C. or room temperature. The organic solvent treatment may be performed by standing or may be performed while stirring or shaking.
 このようにして藻体を糖グリセロール生成処理に供することにより、反応上清中および/または藻体内に、糖グリセロールが生成する。 By subjecting the algal cells to the sugar glycerol production treatment in this way, sugar glycerol is produced in the reaction supernatant and / or in the algal bodies.
 糖グリセロールが生成したことは、化合物の検出または同定に用いられる公知の手法により確認することができる。そのような手法としては、例えば、HPLC、LC/MS、GC/MS、NMRが挙げられる。これらの手法は適宜組み合わせて用いることができる。 The formation of sugar glycerol can be confirmed by a known method used for detection or identification of a compound. Examples of such a method include HPLC, LC / MS, GC / MS, and NMR. These methods can be used in appropriate combination.
 生成した糖グリセロールの回収は、化合物の分離精製に用いられる公知の手法により行うことができる。そのような手法としては、例えば、イオン交換樹脂法や膜処理法が挙げられる。これらの手法は適宜組み合わせて用いることができる。藻体内に糖グリセロールが蓄積する場合には、例えば、藻体を超音波等の手段により破砕し、遠心分離等の手段により藻体を除去して得られる上清から、糖グリセロールを回収すればよい。 The produced sugar glycerol can be collected by a known method used for separation and purification of compounds. Examples of such a method include an ion exchange resin method and a membrane treatment method. These methods can be used in appropriate combination. When sugar glycerol accumulates in the algal bodies, for example, if the algal bodies are crushed by means such as ultrasonic waves, and the sugar glycerol is recovered from the supernatant obtained by removing the algal bodies by means such as centrifugation. Good.
 回収された糖グリセロールは、糖グリセロール以外に、藻体、培地成分、水分、各種処理に用いられた成分、本発明の藻類の代謝副産物等の成分を含んでいてよい。糖グリセロールは、所望の程度に精製されていてよい。糖グリセロールの純度は、例えば、30%(w/w)以上、50%(w/w)以上、70%(w/w)以上、90%(w/w)以上、または95%(w/w)以上であってよい。 The collected sugar glycerol may contain components such as algal bodies, medium components, moisture, components used for various treatments, and metabolic byproducts of the algae of the present invention in addition to sugar glycerol. The sugar glycerol may be purified to the desired degree. The purity of sugar glycerol is, for example, 30% (w / w) or higher, 50% (w / w) or higher, 70% (w / w) or higher, 90% (w / w) or higher, or 95% (w / w) w) That's it.
 回収された糖グリセロールは、そのまま、あるいは医薬品、化粧品、飲食品等に配合して利用できる。糖グリセロールの配合量は、糖グリセロールの機能が発揮される限り、特に制限されない。糖グリセロールの配合量は、特に制限されないが、例えば、1 ppm(w/w)以上、100 ppm(w/w)以上、または1%(w/w)以上であってよい。また、糖グリセロールの配合量は、特に制限されないが、例えば、100%(w/w)以下、10%(w/w)以下、または1%(w/w)以下であってよい。糖グリセロールは、例えば、プレバイオティクス、α-アミラーゼ活性化、保湿、または細胞賦活等の機能を有し得る。 The recovered sugar glycerol can be used as it is or in combination with pharmaceuticals, cosmetics, foods and drinks. The amount of sugar glycerol blended is not particularly limited as long as the function of sugar glycerol is exhibited. The blending amount of sugar glycerol is not particularly limited, and may be, for example, 1 ppm (w / w) or more, 100 ppm (w / w) or more, or 1% (w / w) or more. The amount of sugar glycerol is not particularly limited, and may be, for example, 100% (w / w) or less, 10% (w / w) or less, or 1% (w / w) or less. Glycerol glycerol may have functions such as prebiotics, α-amylase activation, moisturizing, or cell activation.
<3>中温処理の処理物を利用したL-アミノ酸発酵
 上記<2-2>に記載の中温処理による処理物(中温処理物)は、例えば、L-アミノ酸発酵の炭素源として利用できる(WO2011/013707)。すなわち、本発明は、(A)本発明の藻類を培地で培養すること、(B)前記培養により得られた藻体を中温処理に供すること、(C)L-アミノ酸生産能を有する細菌を、前記処理の処理物を含有する培地で培養して、L-アミノ酸を該培地中又は該細菌の菌体内に生成蓄積すること、および(D)該培地又は菌体よりL-アミノ酸を採取すること、を含む、L-アミノ酸を製造する方法、を提供する。同方法に用いられる細菌を、「本発明の細菌」ともいう。
<3> L-Amino Acid Fermentation Utilizing Medium-Temperature Processed Product The treated product (medium-temperature treated product) by the intermediate temperature treatment described in <2-2> above can be used, for example, as a carbon source for L-amino acid fermentation (WO2011) / 013707). That is, the present invention includes (A) culturing the algae of the present invention in a medium, (B) subjecting the algal cells obtained by the culture to a medium temperature treatment, and (C) a bacterium having L-amino acid-producing ability. Culturing in a medium containing the treated product, and producing and accumulating L-amino acid in the medium or in the bacterial cells; and (D) collecting the L-amino acid from the medium or the bacterial cells. A method for producing an L-amino acid. The bacterium used in this method is also referred to as “the bacterium of the present invention”.
 L-アミノ酸発酵は、中温処理物を含有する培地を用いること以外は、細菌を用いた通常のL-アミノ酸発酵と同様に実施してよい。 L-amino acid fermentation may be performed in the same manner as normal L-amino acid fermentation using bacteria, except that a medium containing a medium-temperature treated product is used.
<3-1>L-アミノ酸発酵に用いられる処理物
 L-アミノ酸発酵に用いられる中温処理物は、中温処理による処理物そのものであってもよく、中温処理による処理物を適宜、濃縮、希釈、乾燥、抽出、遠心分離等の処理に供したものであってもよく、中温処理による処理物から回収された脂肪酸等の成分であってもよい。
<3-1> Processed Product Used for L-Amino Acid Fermentation The intermediate temperature processed product used for L-amino acid fermentation may be a processed product itself by intermediate temperature treatment. It may be subjected to a treatment such as drying, extraction, and centrifugation, or may be a component such as a fatty acid recovered from a treated product by an intermediate temperature treatment.
 例えば、L-アミノ酸発酵に用いられる処理物は、脂肪酸であってよい。脂肪酸は、脂肪酸以外の成分を含んでいてもよく、含んでいなくてもよい。脂肪酸は、所望の程度に精製されていてよい。 For example, the processed product used for L-amino acid fermentation may be a fatty acid. The fatty acid may or may not contain a component other than the fatty acid. The fatty acid may be purified to the desired degree.
 脂肪酸は、フリー体もしくはその塩、またはそれらの混合物であってよい。塩としては、ナトリウム塩やカリウム塩等のアルカリ金属塩が挙げられる。脂肪酸のアルカリ金属塩は、水溶性が高く、また、ミセル化して水中に保持されるため、本発明の細菌により効率的に利用され得る。 The fatty acid may be a free form or a salt thereof, or a mixture thereof. Examples of the salt include alkali metal salts such as sodium salt and potassium salt. Alkali metal salts of fatty acids are highly water-soluble, and are micellized and retained in water, so that they can be efficiently used by the bacteria of the present invention.
 また、本発明の細菌が脂肪酸をより効率的に利用できるよう、脂肪酸の均一化を促進する処理を行い、脂肪酸の溶解度を高めるのが好ましい。 Moreover, it is preferable to increase the solubility of fatty acids by performing a treatment for promoting homogenization of fatty acids so that the bacterium of the present invention can use fatty acids more efficiently.
 均一化を促進する処理としては、例えば、乳化が挙げられる。乳化は、例えば、乳化促進剤や界面活性剤を添加することにより実施できる。乳化促進剤としては、例えば、リン脂質やステロールが挙げられる。界面活性剤としては、例えば、一般的に生物学の分野で用いられる界面活性剤が利用できる。界面活性剤としては、非イオン界面活性剤では、例えば、ポリオキシエチレンソルビタンモノオレイン酸エステル(Tween 80)などのポリオキシエチレンソルビタン脂肪酸エステル、n-オクチルβ-D-グルコシドなどのアルキルグルコシド、ショ糖ステアリン酸エステルなどのショ糖脂肪酸エステル、ポリグリセリンステアリン酸エステルなどのポリグリセリン脂肪酸エステル、トライトンX-100(Triton X-100)、ポリオキシエチレン(20)セチルエーテル(Brij-58)、ノニルフェノールエトキシレート(Tergitol NP-40)が挙げられる。また、界面活性剤としては、両性イオン界面活性剤では、例えば、N,N-ジメチル-N-ドデシルグリシンベタインなどのアルキルベタインが挙げられる。 Examples of the treatment for promoting homogenization include emulsification. Emulsification can be carried out, for example, by adding an emulsification accelerator or a surfactant. Examples of the emulsification accelerator include phospholipids and sterols. As the surfactant, for example, a surfactant generally used in the field of biology can be used. As the surfactant, nonionic surfactants include, for example, polyoxyethylene sorbitan fatty acid esters such as polyoxyethylene sorbitan monooleate (Tween 80), alkyl glucosides such as n-octyl β-D-glucoside, Sucrose fatty acid esters such as sugar stearate, polyglycerin fatty acid esters such as polyglycerol stearate, Triton X-100 (TritonTriX-100), polyoxyethylene (20) cetyl ether (Brij-58), nonylphenol ethoxy Rate (Tergitol NP-40). Examples of the surfactant include zwitterionic surfactants such as alkylbetaines such as N, N-dimethyl-N-dodecylglycine betaine.
 また、均一化を促進する処理としては、例えば、ホモジナイザー処理、ホモミキサー処理、超音波処理、高圧処理、高温処理が挙げられる。これらの中では、ホモジナイザー処理および/または超音波処理が好ましい。また、ホモジナイザー処理および/または超音波処理と、界面活性剤による処理を、組み合わせて用いるのがより好ましい。 Further, examples of the treatment for promoting homogenization include homogenizer treatment, homomixer treatment, ultrasonic treatment, high pressure treatment, and high temperature treatment. Among these, homogenizer treatment and / or ultrasonic treatment are preferable. Further, it is more preferable to use a combination of a homogenizer treatment and / or an ultrasonic treatment and a treatment with a surfactant.
 均一化を促進する処理は、脂肪酸が安定に存在できるアルカリ条件下で行われるのが好ましい。アルカリ条件とは、好ましくはpH9以上、より好ましくはpH10以上であってよい。 The treatment for promoting homogenization is preferably performed under alkaline conditions in which fatty acids can exist stably. The alkaline condition is preferably pH 9 or more, more preferably pH 10 or more.
 また、中温処理の処理物を遠心分離して得られた沈殿物には、油脂が残存し得る。油脂は、加水分解により、脂肪酸とグリセロールを生じる。そのようにして得られる脂肪酸および/またはグリセロールは、そのまま、あるいは適宜精製等して、L-アミノ酸発酵の炭素源として利用してよい。油脂の加水分解は、例えば、リパーゼを利用して酵素的に行うことができる(WO2011/013707)。また、油脂の加水分解は、化学的に行ってもよい。化学的な加水分解法としては、例えば、高温(250-260℃)、高圧(5-6MPa)下で油脂と水を向流接触させる連続高温加水分解法が挙げられる。 Moreover, fats and oils may remain in the precipitate obtained by centrifuging the medium temperature treatment. Fats and oils produce fatty acids and glycerol by hydrolysis. The fatty acid and / or glycerol thus obtained may be used as a carbon source for L-amino acid fermentation as it is or after being appropriately purified. The hydrolysis of fats and oils can be performed enzymatically using lipase, for example (WO2011 / 013707). Moreover, you may perform the hydrolysis of fats and oils chemically. Examples of the chemical hydrolysis method include a continuous high-temperature hydrolysis method in which oil and fat are in countercurrent contact with water under high temperature (250-260 ° C.) and high pressure (5-6 MPa).
 また、中温処理の処理物を遠心分離して得られた上清には、グリセロール、グルコース、スターチの断片化物等の化合物が含まれ得る。これらの化合物は、そのまま、あるいは適宜精製等して、L-アミノ酸発酵の炭素源として利用してよい。なお、スターチの断片化物は、加水分解により、グルコースを生じる。そのようにして得られるグルコースは、そのまま、あるいは適宜精製等して、L-アミノ酸発酵の炭素源として利用してよい。例えば、そのようにして得られるグルコース濃度が高められた上清を利用してもよい。スターチの断片化物の加水分解は、例えば、アミラーゼを利用して酵素的に行うことができる(WO2011/013707)。 Also, the supernatant obtained by centrifuging the medium-temperature treated product may contain compounds such as glycerol, glucose, and starch fragments. These compounds may be used as carbon sources for L-amino acid fermentation as they are or after being appropriately purified. In addition, the fragmented product of starch produces glucose by hydrolysis. The glucose thus obtained may be used as it is or after being appropriately purified as a carbon source for L-amino acid fermentation. For example, a supernatant with an increased glucose concentration thus obtained may be used. Hydrolysis of the starch fragment can be carried out enzymatically using, for example, amylase (WO2011 / 013707).
<3-2>L-アミノ酸発酵に用いられる細菌
 本発明の細菌は、L-アミノ酸生産能を有する細菌である。本発明において、「L-アミノ酸生産能を有する細菌」とは、培地で培養したときに、目的とするL-アミノ酸を生成し、回収できる程度に培地中または菌体内に蓄積する能力を有する細菌をいう。L-アミノ酸生産能を有する細菌は、非改変株よりも多い量の目的とするL-アミノ酸を培地に蓄積することができる細菌であってよい。非改変株としては、野生株や親株が挙げられる。また、L-アミノ酸生産能を有する細菌は、好ましくは0.5g/L以上、より好ましくは1.0g/L以上の量の目的とするL-アミノ酸を培地に蓄積することができる細菌であってもよい。
<3-2> Bacteria used for L-amino acid fermentation The bacterium of the present invention is a bacterium having L-amino acid-producing ability. In the present invention, “bacteria having L-amino acid-producing ability” means bacteria that have the ability to accumulate in the medium or in the cells so that the target L-amino acid can be produced and recovered when cultured in the medium. Say. The bacterium having L-amino acid-producing ability may be a bacterium capable of accumulating a larger amount of the target L-amino acid in the medium than the unmodified strain. Non-modified strains include wild strains and parent strains. The bacterium having L-amino acid-producing ability is a bacterium that can accumulate the target L-amino acid in an amount of 0.5 g / L or more, more preferably 1.0 g / L or more in the medium. May be.
 L-アミノ酸としては、L-リジン、L-オルニチン、L-アルギニン、L-ヒスチジン、L-シトルリン等の塩基性アミノ酸、L-イソロイシン、L-アラニン、L-バリン、L-ロイシン、グリシン等の脂肪族アミノ酸、L-スレオニン、L-セリン等のヒドロキシモノアミノカルボン酸であるアミノ酸、L-プロリン等の環式アミノ酸、L-フェニルアラニン、L-チロシン、L-トリプトファン等の芳香族アミノ酸、L-システイン、L-シスチン、L-メチオニン等の含硫アミノ酸、L-グルタミン酸、L-アスパラギン酸等の酸性アミノ酸、L-グルタミン、L-アスパラギン等の側鎖にアミド基を持つアミノ酸が挙げられる。本発明の細菌は、1種のL-アミノ酸の生産能のみを有していてもよく、2種またはそれ以上のL-アミノ酸の生産能を有していてもよい。 L-amino acids include basic amino acids such as L-lysine, L-ornithine, L-arginine, L-histidine, L-citrulline, L-isoleucine, L-alanine, L-valine, L-leucine, glycine, etc. Aliphatic amino acids, amino acids which are hydroxymonoaminocarboxylic acids such as L-threonine and L-serine, cyclic amino acids such as L-proline, aromatic amino acids such as L-phenylalanine, L-tyrosine and L-tryptophan, L- Examples thereof include sulfur-containing amino acids such as cysteine, L-cystine and L-methionine, acidic amino acids such as L-glutamic acid and L-aspartic acid, and amino acids having an amide group in the side chain such as L-glutamine and L-asparagine. The bacterium of the present invention may have only one L-amino acid producing ability or may have two or more L-amino acid producing ability.
 本発明において、「アミノ酸」という用語は、特記しない限り、L-アミノ酸を意味してよい。生産されるL-アミノ酸は、フリー体、その塩、またはそれらの混合物であってよい。すなわち、本発明において、「L-アミノ酸」という用語は、特記しない限り、フリー体のL-アミノ酸、その塩、またはそれらの混合物を意味してよい。塩の例については後述する。 In the present invention, the term “amino acid” may mean an L-amino acid unless otherwise specified. The L-amino acid produced may be a free form, a salt thereof, or a mixture thereof. That is, in the present invention, the term “L-amino acid” may mean a free L-amino acid, a salt thereof, or a mixture thereof, unless otherwise specified. Examples of the salt will be described later.
 細菌としては、例えば、腸内細菌科(Enterobacteriaceae)に属する細菌やコリネ型細菌が挙げられる。 Examples of the bacteria include bacteria belonging to the family Enterobacteriaceae and coryneform bacteria.
 腸内細菌科に属する細菌としては、エシェリヒア(Escherichia)属、エンテロバクター(Enterobacter)属、パントエア(Pantoea)属、クレブシエラ(Klebsiella)属、セラチア(Serratia)属、エルビニア(Erwinia)属、フォトラブダス(Photorhabdus)属、プロビデンシア(Providencia)属、サルモネラ(Salmonella)属、モルガネラ(Morganella)等の属に属する細菌が挙げられる。具体的には、NCBI(National Center for Biotechnology Information)のデータベース(http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=91347)で用いられている分類法により腸内細菌科に分類されている細菌を用いることができる。 The bacteria belonging to the family Enterobacteriaceae include Escherichia, Enterobacter, Pantoea, Klebsiella, Serratia, Erwinia, Photolabdas Examples include bacteria belonging to genera such as (Photorhabdus), Providencia, Salmonella, Morganella, and the like. Specifically, according to the taxonomy used in the NCBI (National Center for Biotechnology Information) database (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=91347) Bacteria classified in the family Enterobacteriaceae can be used.
 エシェリヒア属細菌としては、特に制限されないが、微生物学の専門家に知られている分類によりエシェリヒア属に分類されている細菌が挙げられる。エシェリヒア属細菌としては、例えば、Neidhardtらの著書(Backmann, B. J. 1996. Derivations and Genotypes of some mutant derivatives of Escherichia coli K-12, p. 2460-2488. Table 1. In F. D. Neidhardt (ed.), Escherichia coli and Salmonella Cellular and Molecular Biology/Second Edition, American Society for Microbiology Press, Washington, D.C.)に記載されたものが挙げられる。エシェリヒア属細菌としては、例えば、エシェリヒア・コリ(Escherichia coli)が挙げられる。エシェリヒア・コリとして、具体的には、例えば、プロトタイプの野生株K12由来のエシェリヒア・コリW3110(ATCC 27325)やエシェリヒア・コリMG1655(ATCC 47076)が挙げられる。 The Escherichia bacterium is not particularly limited, but includes bacteria classified into the genus Escherichia by classification known to microbiologists. Examples of Escherichia bacteria include, for example, Neidhardt et al. (Backmann, B. J. 1996. Derivations and Genotypes of some mutant derivatives of Escherichia coli K-12, p. 2460-2488. Table 1. In F. D. Nehard (ed.), “Escherichia, coli, and Salmonella, Cellular, and Molecular, Biology / Second Edition, American, Society, for Microbiology, Press, Washington, DC). Examples of bacteria belonging to the genus Escherichia include Escherichia coli. Specific examples of Escherichia coli include Escherichia coli W3110 (ATCC11027325) and Escherichia coli MG1655 (ATCC 47076) derived from the prototype wild-type strain K12.
 エンテロバクター属細菌としては、特に制限されないが、微生物学の専門家に知られている分類によりエンテロバクター属に分類されている細菌が挙げられる。エンテロバクター属細菌としては、例えば、エンテロバクター・アグロメランス(Enterobacter agglomerans)やエンテロバクター・アエロゲネス(Enterobacter aerogenes)が挙げられる。エンテロバクター・アグロメランスとして、具体的には、例えば、エンテロバクター・アグロメランスATCC12287株が挙げられる。エンテロバクター・アエロゲネスとして、具体的には、例えば、エンテロバクター・アエロゲネスATCC13048株、NBRC12010株(Biotechonol Bioeng. 2007 Mar 27; 98(2) 340-348)、AJ110637株(FERM BP-10955)が挙げられる。また、エンテロバクター属細菌としては、例えば、欧州特許出願公開EP0952221号明細書に記載されたものが挙げられる。なお、Enterobacter agglomeransには、Pantoea agglomeransと分類されているものも存在する。 The bacteria belonging to the genus Enterobacter are not particularly limited, but include bacteria classified into the genus Enterobacter by classification known to microbiologists. Examples of Enterobacter bacteria include Enterobacter agglomerans and Enterobacter aerogenes. Specific examples of Enterobacter agglomerans include the Enterobacter agglomerans ATCC12287 strain. Specific examples of Enterobacter aerogenes include Enterobacter aerogenes ATCC13048, NBRC12010 (BiotechonolonBioeng.eng2007 Mar 27; 98 (2) 340-348), AJ110637 (FERM BP-10955) . Examples of Enterobacter bacteria include those described in European Patent Application Publication No. EP0952221. Some Enterobacter agglomerans are classified as Pantoea agglomerans.
 パントエア属細菌としては、特に制限されないが、微生物学の専門家に知られている分類によりパントエア属に分類されている細菌が挙げられる。パントエア属細菌としては、例えば、パントエア・アナナティス(Pantoea ananatis)、パントエア・スチューアルティ(Pantoea stewartii)、パントエア・アグロメランス(Pantoea agglomerans)、パントエア・シトレア(Pantoea citrea)が挙げられる。パントエア・アナナティスとして、具体的には、例えば、パントエア・アナナティスLMG20103株、AJ13355株(FERM BP-6614)、AJ13356株(FERM BP-6615)、AJ13601株(FERM BP-7207)、SC17株(FERM BP-11091)、及びSC17(0)株(VKPM B-9246)が挙げられる。なお、エンテロバクター・アグロメランスのある種のものは、最近、16S rRNAの塩基配列分析等に基づき、パントエア・アグロメランス、パントエア・アナナティス、パントエア・ステワルティイ等に再分類された(Int. J. Syst. Bacteriol., 43, 162-173 (1993))。本発明において、パントエア属細菌には、このようにパントエア属に再分類された細菌も含まれる。 The Pantoea bacterium is not particularly limited, and examples include bacteria classified into the Pantoea genus by classification known to microbiologists. Examples of the genus Pantoea include Pantoea 、 ananatis, Pantoea stewartii, Pantoea agglomerans, and Pantoea citrea. Specifically, for example, Pantoea Ananatis LMG20103 strain, AJ13355 strain (FERM 、 BP-6614), AJ13356 strain (FERM BP-6615), AJ13601 strain (FERM BP-7207), SC17 strain (FERM BP) -11091), and SC17 (0) strain (VKPM B-9246). Certain types of Enterobacter agglomerans were recently reclassified as Pantoea agglomerans, Pantoea ananatis, Pantoea stewartii, etc. based on 16S rRNA nucleotide sequence analysis (Int. J. Syst. Bacteriol) ., 43, 162-173 (1993)). In the present invention, the Pantoea bacterium also includes a bacterium reclassified as Pantoea in this way.
 エルビニア属細菌としては、エルビニア・アミロボーラ(Erwinia amylovora)、エルビニア・カロトボーラ(Erwinia carotovora)が挙げられる。クレブシエラ属細菌としては、クレブシエラ・プランティコーラ(Klebsiella planticola)が挙げられる。 Examples of the genus Erwinia include Erwinia amylovora and Erwinia carotovora. Examples of Klebsiella bacteria include Klebsiella planticola.
 コリネ型細菌としては、コリネバクテリウム(Corynebacterium)属、ブレビバクテリウム(Brevibacterium)属、およびミクロバクテリウム(Microbacterium)属等の属に属する細菌が挙げられる。 Examples of coryneform bacteria include bacteria belonging to genera such as Corynebacterium genus, Brevibacterium genus, and Microbacterium genus.
 コリネ型細菌としては、具体的には、下記のような種が挙げられる。
コリネバクテリウム・アセトアシドフィラム(Corynebacterium acetoacidophilum)
コリネバクテリウム・アセトグルタミカム(Corynebacterium acetoglutamicum)
コリネバクテリウム・アルカノリティカム(Corynebacterium alkanolyticum)
コリネバクテリウム・カルナエ(Corynebacterium callunae)
コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)
コリネバクテリウム・リリウム(Corynebacterium lilium)
コリネバクテリウム・メラセコーラ(Corynebacterium melassecola)
コリネバクテリウム・サーモアミノゲネス(コリネバクテリウム・エフィシエンス)(Corynebacterium thermoaminogenes (Corynebacterium efficiens))
コリネバクテリウム・ハーキュリス(Corynebacterium herculis)
ブレビバクテリウム・ディバリカタム(コリネバクテリウム・グルタミカム)(Brevibacterium divaricatum (Corynebacterium glutamicum))
ブレビバクテリウム・フラバム(コリネバクテリウム・グルタミカム)(Brevibacterium flavum (Corynebacterium glutamicum))
ブレビバクテリウム・イマリオフィラム(Brevibacterium immariophilum)
ブレビバクテリウム・ラクトファーメンタム(コリネバクテリウム・グルタミカム)(Brevibacterium lactofermentum (Corynebacterium glutamicum))
ブレビバクテリウム・ロゼウム(Brevibacterium roseum)
ブレビバクテリウム・サッカロリティカム(Brevibacterium saccharolyticum)
ブレビバクテリウム・チオゲニタリス(Brevibacterium thiogenitalis)
コリネバクテリウム・アンモニアゲネス(コリネバクテリウム・スタティオニス)(Corynebacterium ammoniagenes (Corynebacterium stationis))
ブレビバクテリウム・アルバム(Brevibacterium album)
ブレビバクテリウム・セリナム(Brevibacterium cerinum)
ミクロバクテリウム・アンモニアフィラム(Microbacterium ammoniaphilum)
Specific examples of coryneform bacteria include the following species.
Corynebacterium acetoacidophilum
Corynebacterium acetoglutamicum
Corynebacterium alkanolyticum
Corynebacterium callunae
Corynebacterium glutamicum
Corynebacterium lilium
Corynebacterium melassecola
Corynebacterium thermoaminogenes (Corynebacterium efficiens)
Corynebacterium herculis
Brevibacterium divaricatum (Corynebacterium glutamicum)
Brevibacterium flavum (Corynebacterium glutamicum)
Brevibacterium immariophilum
Brevibacterium lactofermentum (Corynebacterium glutamicum)
Brevibacterium roseum
Brevibacterium saccharolyticum
Brevibacterium thiogenitalis
Corynebacterium ammoniagenes (Corynebacterium stationis)
Brevibacterium album
Brevibacterium cerinum
Microbacterium ammoniaphilum
 コリネ型細菌としては、具体的には、下記のような菌株が挙げられる。
Corynebacterium acetoacidophilum ATCC 13870
Corynebacterium acetoglutamicum ATCC 15806
Corynebacterium alkanolyticum ATCC 21511
Corynebacterium callunae ATCC 15991
Corynebacterium glutamicum ATCC 13020, ATCC 13032, ATCC 13060,ATCC 13869,FERM BP-734
Corynebacterium lilium ATCC 15990
Corynebacterium melassecola ATCC 17965
Corynebacterium efficiens (Corynebacterium thermoaminogenes) AJ12340 (FERM BP-1539)
Corynebacterium herculis ATCC 13868
Corynebacterium glutamicum (Brevibacterium divaricatum) ATCC 14020
Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13826, ATCC 14067, AJ12418(FERM BP-2205)
Brevibacterium immariophilum ATCC 14068
Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869
Brevibacterium roseum ATCC 13825
Brevibacterium saccharolyticum ATCC 14066
Brevibacterium thiogenitalis ATCC 19240
Corynebacterium ammoniagenes (Corynebacterium stationis) ATCC 6871, ATCC 6872
Brevibacterium album ATCC 15111
Brevibacterium cerinum ATCC 15112
Microbacterium ammoniaphilum ATCC 15354
Specific examples of coryneform bacteria include the following strains.
Corynebacterium acetoacidophilum ATCC 13870
Corynebacterium acetoglutamicum ATCC 15806
Corynebacterium alkanolyticum ATCC 21511
Corynebacterium callunae ATCC 15991
Corynebacterium glutamicum ATCC 13020, ATCC 13032, ATCC 13060, ATCC 13869, FERM BP-734
Corynebacterium lilium ATCC 15990
Corynebacterium melassecola ATCC 17965
Corynebacterium efficiens (Corynebacterium thermoaminogenes) AJ12340 (FERM BP-1539)
Corynebacterium herculis ATCC 13868
Corynebacterium glutamicum (Brevibacterium divaricatum) ATCC 14020
Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13826, ATCC 14067, AJ12418 (FERM BP-2205)
Brevibacterium immariophilum ATCC 14068
Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869
Brevibacterium roseum ATCC 13825
Brevibacterium saccharolyticum ATCC 14066
Brevibacterium thiogenitalis ATCC 19240
Corynebacterium ammoniagenes (Corynebacterium stationis) ATCC 6871, ATCC 6872
Brevibacterium album ATCC 15111
Brevibacterium cerinum ATCC 15112
Microbacterium ammoniaphilum ATCC 15354
 なお、コリネバクテリウム属細菌には、従来ブレビバクテリウム属に分類されていたが、現在コリネバクテリウム属に統合された細菌(Int. J. Syst. Bacteriol., 41, 255(1991))も含まれる。また、コリネバクテリウム・スタティオニスには、従来コリネバクテリウム・アンモニアゲネスに分類されていたが、16S rRNAの塩基配列解析等によりコリネバクテリウム・スタティオニスに再分類された細菌も含まれる(Int. J. Syst. Evol. Microbiol., 60, 874-879(2010))。 In addition, the corynebacteria belonging to the genus Brevibacterium has been classified as a genus of corynebacteria, but bacteria integrated into the genus corynebacteria (Int. J. Syst. Bacteriol., 41, 255 (1991)) are also available. included. Corynebacterium stationis, which was previously classified as Corynebacterium ammoniagenes, includes bacteria that have been reclassified as Corynebacterium stationis by 16S rRNA sequencing (Int. J Syst. Evol. Microbiol., 60, 874-879 (2010)).
 これらの菌株は、例えば、アメリカン・タイプ・カルチャー・コレクション(住所12301 Parklawn Drive, Rockville, Maryland 20852 P.O. Box 1549, Manassas, VA 20108, United States of America)より分譲を受けることが出来る。すなわち各菌株に対応する登録番号が付与されており、この登録番号を利用して分譲を受けることが出来る(http://www.atcc.org/参照)。各菌株に対応する登録番号は、アメリカン・タイプ・カルチャー・コレクションのカタログに記載されている。 These strains can be sold, for example, from the American Type Culture Collection (address 12301 Parklawn Drive, Rockville, Maryland 20852 P.O. Box 1549, Manassas, VA 20108, United States States of America). That is, a registration number corresponding to each strain is given, and it is possible to receive a sale using this registration number (see http://www.atcc.org/). The registration number corresponding to each strain is described in the catalog of American Type Culture Collection.
 本発明の細菌は、本来的にL-アミノ酸生産能を有するものであってもよく、L-アミノ酸生産能を有するように改変されたものであってもよい。L-アミノ酸生産能を有する細菌は、例えば、上記のような細菌にL-アミノ酸生産能を付与することにより、または、上記のような細菌のL-アミノ酸生産能を増強することにより、取得できる。 The bacterium of the present invention may inherently have L-amino acid-producing ability or may have been modified to have L-amino acid-producing ability. A bacterium having L-amino acid-producing ability can be obtained, for example, by imparting L-amino acid-producing ability to the bacterium as described above, or by enhancing the L-amino acid-producing ability of the bacterium as described above. .
 L-アミノ酸生産能の付与または増強は、従来、コリネ型細菌又はエシェリヒア属細菌等のアミノ酸生産菌の育種に採用されてきた方法により行うことができる(アミノ酸発酵、(株)学会出版センター、1986年5月30日初版発行、第77~100頁参照)。そのような方法としては、例えば、栄養要求性変異株の取得、L-アミノ酸のアナログ耐性株の取得、代謝制御変異株の取得、L-アミノ酸の生合成系酵素の活性が増強された組換え株の創製が挙げられる。L-アミノ酸生産菌の育種において、付与される栄養要求性、アナログ耐性、代謝制御変異等の性質は、単独であってもよく、2種又は3種以上であってもよい。また、L-アミノ酸生産菌の育種において、活性が増強されるL-アミノ酸生合成系酵素も、単独であってもよく、2種又は3種以上であってもよい。さらに、栄養要求性、アナログ耐性、代謝制御変異等の性質の付与と、生合成系酵素の活性の増強が組み合わされてもよい。 L-amino acid-producing ability can be imparted or enhanced by a method conventionally used for breeding amino acid-producing bacteria such as coryneform bacteria or Escherichia bacteria (Amino Acid Fermentation, Academic Publishing Center, Inc., 1986). (May 30, 1st edition issued, see pages 77-100). Examples of such methods include acquisition of auxotrophic mutants, acquisition of L-amino acid analog-resistant strains, acquisition of metabolic control mutants, and recombination with enhanced activity of L-amino acid biosynthetic enzymes. The creation of stocks. In the breeding of L-amino acid-producing bacteria, properties such as auxotrophy, analog resistance, and metabolic control mutation that are imparted may be single, or two or more. In addition, L-amino acid biosynthetic enzymes whose activities are enhanced in breeding L-amino acid-producing bacteria may be used alone or in combination of two or more. Furthermore, imparting properties such as auxotrophy, analog resistance, and metabolic control mutation may be combined with enhancing the activity of biosynthetic enzymes.
 L-アミノ酸生産能を有する栄養要求性変異株、アナログ耐性株、又は代謝制御変異株は、親株又は野生株を通常の変異処理に供し、得られた変異株の中から、栄養要求性、アナログ耐性、又は代謝制御変異を示し、且つL-アミノ酸生産能を有するものを選択することによって取得できる。通常の変異処理としては、X線や紫外線の照射、N-メチル-N’-ニトロ-N-ニトロソグアニジン(MNNG)、エチルメタンスルフォネート(EMS)、メチルメタンスルフォネート(MMS)等の変異剤による処理が挙げられる。 An auxotrophic mutant, an analog resistant strain, or a metabolically controlled mutant having L-amino acid production ability is subjected to normal mutation treatment of the parent strain or wild strain, and the auxotrophic, analog It can be obtained by selecting those exhibiting resistance or metabolic control mutations and having the ability to produce L-amino acids. Normal mutation treatments include X-ray and ultraviolet irradiation, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), ethyl methane sulfonate (EMS), methyl methane sulfonate (MMS), etc. Treatment with a mutagen is included.
 また、L-アミノ酸生産能の付与又は増強は、目的のL-アミノ酸の生合成に関与する酵素の活性を増強することによっても行うことができる。酵素活性の増強は、例えば、同酵素をコードする遺伝子の発現が増強するように細菌を改変することにより達成できる。遺伝子の発現を増強する方法としては、遺伝子のコピー数を増加させることや、遺伝子の転写や翻訳を増大させることが挙げられる。遺伝子のコピー数を増加させることは、例えば、同遺伝子を搭載したベクターを宿主に導入することや、遺伝子を宿主の染色体上に導入することにより達成できる。遺伝子の転写や翻訳を増大させることは、例えば、プロモーター、SD配列(RBS)、またはRBSと開始コドンとの間のスペーサー領域(例えば開始コドンのすぐ上流の配列(5'-UTR))等の発現調節領域を改変することにより達成できる。遺伝子の発現を増強する方法は、WO00/18935号パンフレット、欧州特許出願公開1010755号明細書等に記載されている。 Also, the L-amino acid-producing ability can be imparted or enhanced by enhancing the activity of an enzyme involved in the target L-amino acid biosynthesis. Enhancing enzyme activity can be achieved, for example, by modifying bacteria so that expression of a gene encoding the enzyme is enhanced. Methods for enhancing gene expression include increasing the gene copy number and increasing gene transcription and translation. Increasing the copy number of a gene can be achieved, for example, by introducing a vector carrying the gene into the host or by introducing the gene onto the chromosome of the host. Increasing gene transcription and translation can include, for example, a promoter, an SD sequence (RBS), or a spacer region between the RBS and the start codon (eg, a sequence immediately upstream of the start codon (5′-UTR)), etc. This can be achieved by modifying the expression regulatory region. Methods for enhancing gene expression are described in WO00 / 18935 pamphlet, European Patent Application Publication No. 1010755, and the like.
 また、L-アミノ酸生産能の付与又は増強は、目的のL-アミノ酸の生合成経路から分岐して目的のL-アミノ酸以外の化合物を生成する反応を触媒する酵素の活性を低下させることによっても行うことができる。なお、ここでいう「目的のL-アミノ酸の生合成経路から分岐して目的のL-アミノ酸以外の化合物を生成する反応を触媒する酵素」には、目的のアミノ酸の分解に関与する酵素も含まれる。酵素活性の低下は、例えば、同酵素をコードする遺伝子の発現が低下するように細菌を改変することや、同遺伝子を破壊することにより達成できる。遺伝子の発現を低下させることは、例えば、プロモーター、SD配列(RBS)、またはRBSと開始コドンとの間のスペーサー領域(例えば開始コドンのすぐ上流の配列(5'-UTR))等の発現調節領域を改変することにより達成できる。遺伝子を破壊することは、例えば、同遺伝子の一部または全体を欠失させることにより達成できる。 Furthermore, the L-amino acid-producing ability can be imparted or enhanced by reducing the activity of an enzyme that catalyzes a reaction that branches from the biosynthetic pathway of the target L-amino acid to produce a compound other than the target L-amino acid. It can be carried out. As used herein, “an enzyme that catalyzes a reaction that produces a compound other than the target L-amino acid by branching from the biosynthetic pathway of the target L-amino acid” includes enzymes involved in the degradation of the target amino acid. It is. The reduction of the enzyme activity can be achieved, for example, by modifying the bacterium so that the expression of the gene encoding the enzyme is reduced or by destroying the gene. Decreasing gene expression is, for example, regulating expression of a promoter, an SD sequence (RBS), or a spacer region between the RBS and the start codon (eg, a sequence immediately upstream of the start codon (5′-UTR)), etc. This can be achieved by modifying the region. Disrupting a gene can be achieved, for example, by deleting part or all of the gene.
 以下、L-アミノ酸生産菌、およびL-アミノ酸生産能を付与または増強する方法について具体的に例示する。なお、以下に例示するようなL-アミノ酸生産菌が有する性質およびL-アミノ酸生産能を付与または増強するための改変は、いずれも、単独で用いてもよく、適宜組み合わせて用いてもよい。 Specific examples of L-amino acid-producing bacteria and methods for imparting or enhancing L-amino acid-producing ability are given below. In addition, any of the modifications exemplified below for imparting or enhancing the properties of L-amino acid-producing bacteria and L-amino acid-producing ability may be used alone or in appropriate combination.
<L-グルタミン酸生産菌>
 L-グルタミン酸生産能を付与又は増強するための方法としては、例えば、L-グルタミン酸生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、グルタミン酸デヒドロゲナーゼ(gdhA)、グルタミンシンテターゼ(glnA)、グルタミン酸シンターゼ(gltBD)、イソクエン酸デヒドロゲナーゼ(icdA)、アコニテートヒドラターゼ(acnA, acnB)、クエン酸シンターゼ(gltA)、メチルクエン酸シンターゼ(prpC)、ホスホエノールピルビン酸カルボシキラーゼ(ppc)、ピルビン酸カルボキシラーゼ(pyc)、ピルビン酸デヒドロゲナーゼ(aceEF, lpdA)、ピルベートキナーゼ(pykA, pykF)、ホスホエノールピルビン酸シンターゼ(ppsA)、エノラーゼ(eno)、ホスホグリセロムターゼ(pgmA, pgmI)、ホスホグリセリン酸キナーゼ(pgk)、グリセルアルデヒド-3-リン酸デヒドロゲナーゼ(gapA)、トリオースリン酸イソメラーゼ(tpiA)、フルクトースビスリン酸アルドラーゼ(fbp)、ホスホフルクトキナーゼ(pfkA, pfkB)、グルコースリン酸イソメラーゼ(pgi)、6-ホスホグルコン酸デヒドラターゼ(edd)、2-ケト-3-デオキシ-6-ホスホグルコン酸アルドラーゼ(eda)、トランスヒドロゲナーゼが挙げられる。なお、カッコ内は、その酵素をコードする遺伝子の略記号の一例である(以下の記載においても同様)。これらの酵素の中では、例えば、グルタミン酸デヒドロゲナーゼ、クエン酸シンターゼ、ホスホエノールピルビン酸カルボキシラーゼ、及びメチルクエン酸シンターゼから選択される1またはそれ以上の酵素の活性を増強するのが好ましい。
<L-glutamic acid producing bacteria>
Examples of the method for imparting or enhancing L-glutamic acid-producing ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-glutamic acid biosynthetic enzymes is increased. . Such enzymes include, but are not limited to, glutamate dehydrogenase (gdhA), glutamine synthetase (glnA), glutamate synthase (gltBD), isocitrate dehydrogenase (icdA), aconite hydratase (acnA, acnB), citrate synthase (GltA), methyl citrate synthase (prpC), phosphoenolpyruvate carboxylase (ppc), pyruvate carboxylase (pyc), pyruvate dehydrogenase (aceEF, lpdA), pyruvate kinase (pykA, pykF), phosphoenol Pyruvate synthase (ppsA), enolase (eno), phosphoglyceromutase (pgmA, pgmI), phosphoglycerate kinase (pgk), glyceraldehyde-3-phosphate dehydrogenase (gapA), triose phosphate isomerase (tpiA), fructose Bisli Acid aldolase (fbp), phosphofructokinase (pfkA, pfkB), glucose phosphate isomerase (pgi), 6-phosphogluconate dehydratase (edd), 2-keto-3-deoxy-6-phosphogluconate aldolase (eda) ), Transhydrogenase. The parentheses are examples of abbreviations for genes encoding the enzymes (the same applies to the following description). Among these enzymes, it is preferable to enhance the activity of one or more enzymes selected from, for example, glutamate dehydrogenase, citrate synthase, phosphoenolpyruvate carboxylase, and methyl citrate synthase.
 クエン酸シンターゼ遺伝子、ホスホエノールピルビン酸カルボキシラーゼ遺伝子、および/またはグルタミン酸デヒドロゲナーゼ遺伝子の発現が増大するように改変された腸内細菌科に属する株としては、EP1078989A、EP955368A、及びEP952221Aに開示されたものが挙げられる。また、エントナー・ドゥドロフ経路の遺伝子(edd, eda)の発現が増大するように改変された腸内細菌科に属する株としては、EP1352966Bに開示されたものが挙げられる。また、グルタミン酸シンテターゼ遺伝子(gltBD)の発現が増大するように改変されたコリネ型細菌としては、WO99/07853に開示されたものが挙げられる。 Strains belonging to the family Enterobacteriaceae that have been modified to increase expression of the citrate synthase gene, phosphoenolpyruvate carboxylase gene, and / or glutamate dehydrogenase gene include those disclosed in EP1078989A, EP955368A, and EP952221A Can be mentioned. Examples of strains belonging to the family Enterobacteriaceae that have been modified to increase the expression of the Entner-Doudoroff pathway genes (edd, eda) include those disclosed in EP1352966B. Examples of coryneform bacteria modified to increase the expression of the glutamate synthetase gene (gltBD) include those disclosed in WO99 / 07853.
 また、L-グルタミン酸生産能を付与又は増強するための方法としては、例えば、L-グルタミン酸の生合成経路から分岐してL-グルタミン酸以外の化合物を生成する反応を触媒する酵素から選択される1またはそれ以上の酵素の活性が低下するように細菌を改変する方法も挙げられる。そのような酵素としては、特に制限されないが、イソクエン酸リアーゼ(aceA)、α-ケトグルタル酸デヒドロゲナーゼ(sucA, odhA)、ホスホトランスアセチラーゼ(pta)、酢酸キナーゼ(ack)、アセトヒドロキシ酸シンターゼ(ilvG)、アセト乳酸シンターゼ(ilvI)、ギ酸アセチルトランスフェラーゼ(pfl)、乳酸デヒドロゲナーゼ(ldh)、アルコールデヒドロゲナーゼ(adh)、グルタミン酸デカルボキシラーゼ(gadAB)、コハク酸デヒドロゲナーゼ(sdhABCD)、1-ピロリン-5-カルボキシレートデヒドロゲナーゼ(putA)が挙げられる。これらの酵素の中では、例えば、α-ケトグルタル酸デヒドロゲナーゼ活性を低下又は欠損させることが好ましい。 The method for imparting or enhancing the ability to produce L-glutamic acid is, for example, selected from enzymes that catalyze a reaction that branches from the biosynthetic pathway of L-glutamic acid to produce a compound other than L-glutamic acid. Alternatively, a method of modifying the bacterium so that the activity of the further enzyme is reduced can also be mentioned. Examples of such enzymes include, but are not limited to, isocitrate lyase (aceA), α-ketoglutarate dehydrogenase (sucA, odhA), phosphotransacetylase (pta), acetate kinase (ack), acetohydroxyacid synthase (ilvG ), Acetolactate synthase (ilvI), formate acetyltransferase (pfl), lactate dehydrogenase (ldh), alcohol dehydrogenase (adh), glutamate decarboxylase (gadAB), succinate dehydrogenase (sdhABCD), 1-pyrroline-5-carboxylate An example is dehydrogenase (putA). Among these enzymes, for example, it is preferable to reduce or eliminate α-ketoglutarate dehydrogenase activity.
 α-ケトグルタル酸デヒドロゲナーゼ活性が低下または欠損したエシェリヒア属細菌、及びそれらの取得方法は、米国特許第5,378,616号及び第5,573,945号に記載されている。また、パントエア属細菌、エンテロバクター属細菌、クレブシエラ属細菌、エルビニア属細菌等の腸内細菌においてα-ケトグルタル酸デヒドロゲナーゼ活性を低下または欠損させる方法は、米国特許6,197,559号公報、米国特許6,682,912号公報、米国特許6,331,419号公報、米国特許8,129,151号公報、およびWO2008/075483に開示されている。α-ケトグルタル酸デヒドロゲナーゼ活性が低下または欠損したエシェリヒア属細菌として、具体的には、例えば、下記の株が挙げられる。
E. coli W3110sucA::Kmr
E. coli AJ12624 (FERM BP-3853)
E. coli AJ12628 (FERM BP-3854)
E. coli AJ12949 (FERM BP-4881)
Escherichia bacteria with reduced or deficient α-ketoglutarate dehydrogenase activity and methods for obtaining them are described in US Pat. Nos. 5,378,616 and 5,573,945. In addition, a method for reducing or eliminating α-ketoglutarate dehydrogenase activity in enteric bacteria such as Pantoea bacteria, Enterobacter bacteria, Klebsiella bacteria, Erwinia bacteria, and the like are disclosed in U.S. Patent No. 6,197,559, U.S. Patent No. 6,682,912, This is disclosed in US Pat. No. 6,331,419, US Pat. No. 8,129,151, and WO2008 / 075483. Specific examples of bacteria belonging to the genus Escherichia with reduced or deficient α-ketoglutarate dehydrogenase activity include the following strains.
E. coli W3110sucA :: Kmr
E. coli AJ12624 (FERM BP-3853)
E. coli AJ12628 (FERM BP-3854)
E. coli AJ12949 (FERM BP-4881)
 E. coli W3110sucA::Kmr は、E. coli W3110のα-ケトグルタル酸デヒドロゲナーゼをコードするsucA遺伝子を破壊することにより得られた株である。この株は、α-ケトグルタル酸デヒドロゲナーゼ活性を完全に欠損している。 E. coli W3110sucA :: Kmr is a strain obtained by disrupting the sucA gene encoding the α-ketoglutarate dehydrogenase of E. coli W3110. This strain is completely deficient in α-ketoglutarate dehydrogenase activity.
 α-ケトグルタル酸デヒドロゲナーゼ活性が低下または欠損したコリネ型細菌、及びそれらの取得方法は、WO2008/075483に記載されている。α-ケトグルタレートデヒドロゲナーゼ活性が低下または欠損したコリネ型細菌として、具体的には、例えば、下記の株が挙げられる。
Corynebacterium glutamicum (Brevibacterium lactofermentum) L30-2株 (特開2006-340603号明細書)
Corynebacterium glutamicum (Brevibacterium lactofermentum) ΔS株 (国際公開95/34672号パンフレット)
Corynebacterium glutamicum (Brevibacterium lactofermentum) AJ12821 (FERM BP-4172;フランス特許公報9401748号明細書参照)
Corynebacterium glutamicum (Brevibacterium flavum) AJ12822 (FERM BP-4173;フランス特許公報9401748号明細書)
Corynebacterium glutamicum AJ12823 (FERM BP-4174;フランス特許公報9401748号明細書)
Corynebacterium glutamicum L30-2株 (特開2006-340603号)
Coryneform bacteria with reduced or deficient α-ketoglutarate dehydrogenase activity and methods for obtaining them are described in WO2008 / 075483. Specific examples of coryneform bacteria with reduced or deficient α-ketoglutarate dehydrogenase activity include the following strains.
Corynebacterium glutamicum (Brevibacterium lactofermentum) strain L30-2 (JP 2006-340603)
Corynebacterium glutamicum (Brevibacterium lactofermentum) ΔS strain (WO95 / 34672 pamphlet)
Corynebacterium glutamicum (Brevibacterium lactofermentum) AJ12821 (FERM BP-4172; see French Patent 9401748)
Corynebacterium glutamicum (Brevibacterium flavum) AJ12822 (FERM BP-4173; French Patent Publication 9401748)
Corynebacterium glutamicum AJ12823 (FERM BP-4174; French Patent Publication 9401748)
Corynebacterium glutamicum L30-2 strain (JP 2006-340603)
 また、L-グルタミン酸生産菌又はそれを誘導するための親株としては、Pantoea ananatis AJ13355株(FERM BP-6614)、Pantoea ananatis SC17株(FERM BP-11091)、Pantoea ananatis SC17(0)株(VKPM B-9246)等のパントエア属細菌も挙げられる。AJ13355株は、静岡県磐田市の土壌から、低pHでL-グルタミン酸及び炭素源を含む培地で増殖できる株として分離された株である。SC17株は、AJ13355株から、粘液質低生産変異株として選択された株である(米国特許第6,596,517号)。SC17株は、2009年2月4日に、独立行政法人産業技術総合研究所 特許生物寄託センター(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に寄託され、受託番号FERM BP-11091が付与されている。AJ13355株は、1998年2月19日に、工業技術院生命工学工業技術研究所(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に、受託番号FERM P-16644として寄託され、1999年1月11日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-6614が付与されている。 In addition, L-glutamic acid-producing bacteria or parent strains for inducing them include Pantoea ananatis AJ13355 strain (FERM BP-6614), Pantoea ananatis SC17 strain (FERM BP-11091), Pantoea ananatis SC17 (0) strain (VKPM B) -9246) and the like. The AJ13355 strain is a strain isolated as a strain capable of growing on a medium containing L-glutamic acid and a carbon source at low pH from soil in Iwata City, Shizuoka Prefecture. The SC17 strain is a strain selected from the AJ13355 strain as a low mucus production mutant (US Pat. No. 6,596,517). On February 4, 2009, SC17 shares were incorporated by the National Institute of Advanced Industrial Science and Technology, Patent Biological Depositary Center (currently the National Institute of Technology and Evaluation, Patent Biological Depositary Center, ZIP Code: 292-0818, Address: Japan Kazusa Kamashizu 2-5-8-5120, Kisarazu City, Chiba Prefecture, Japan), and has been given the accession number FERM BP-11091. AJ13355 shares were founded on February 19, 1998 at the Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology (currently the National Institute for Product Evaluation Technology, Patent Biological Depositary Center, Postal Code: 292-0818, Address: Chiba, Japan Deposited in Kazusa, Kazusa, Kazusa 2-5-8 120) under the deposit number FERM P-16644, transferred to an international deposit under the Budapest Treaty on January 11, 1999, and given the deposit number FERM BP-6614 Has been.
 また、L-グルタミン酸生産菌又はそれを誘導するための親株としては、α-ケトグルタル酸デヒドロゲナーゼ活性が低下または欠損したパントエア属細菌も挙げられる。そのような株としては、AJ13355株のα-ケトグルタル酸デヒドロゲナーゼのE1サブユニット遺伝子(sucA)欠損株であるAJ13356株(米国特許第6,331,419号)、及びSC17株のsucA遺伝子欠損株であるSC17sucA株(米国特許第6,596,517号)が挙げられる。AJ13356株は、1998年2月19日に、工業技術院生命工学工業技術研究所(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM P-16645として寄託され、1999年1月11日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-6616が付与されている。また、SC17sucA株は、ブライベートナンバーAJ417が付与され、2004年2月26日に独立行政法人産業技術総合研究所 特許生物寄託センター(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM BP-8646として寄託されている。 In addition, examples of L-glutamic acid-producing bacteria and parent strains for inducing them also include Pantoea bacteria with reduced or deficient α-ketoglutarate dehydrogenase activity. Such strains include the AJ13356 strain (US Pat. No. 6,331,419) which is the E1 subunit gene (sucA) deficient strain of the α-ketoglutarate dehydrogenase of the AJ13355 strain, and the SC17sucA strain which is the sucA gene deficient strain of the SC17 strain ( US Pat. No. 6,596,517). The AJ13356 strain was founded on February 19, 1998 at the Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology (currently the National Institute for Product Evaluation Technology, Patent Biological Depositary Center, Postal Code: 292-0818, Address: Chiba, Japan. Deposited at Kisarazu City Kazusa Kamashichi 2-5-8 120) under the accession number FERM P-16645 and transferred to the international deposit under the Budapest Treaty on 11 January 1999 and given the accession number FERM BP-6616 ing. The SC17sucA strain was also assigned the private number AJ417. On February 26, 2004, the National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center (now the National Institute for Product Evaluation Technology Patent Biological Deposit Center, postal code) : 292-0818, Address: Kazusa Kamashitsu 2-5-8 津 120, Kisarazu, Chiba, Japan), deposited under the accession number FERM BP-8646.
 尚、AJ13355株は、分離された当時はEnterobacter agglomeransと同定されたが、近年、16S rRNAの塩基配列解析などにより、Pantoea ananatisに再分類されている。よって、AJ13355株及びAJ13356株は、上記寄託機関にEnterobacter agglomeransとして寄託されているが、本明細書ではPantoea ananatisとして記載する。 The AJ13355 strain was identified as Enterobacter agglomerans at the time of its isolation, but has recently been reclassified as Pantoea anaananatis by 16S rRNA nucleotide sequence analysis and the like. Therefore, the AJ13355 strain and the AJ13356 strain are deposited as Enterobacter agglomerans in the above depository organization, but are described as Pantoea ananatis in this specification.
 また、L-グルタミン酸生産菌又はそれを誘導するための親株としては、Pantoea ananatis SC17sucA/RSFCPG+pSTVCB株、Pantoea ananatis AJ13601株、Pantoea ananatis NP106株、及びPantoea ananatis NA1株等のパントエア属細菌も挙げられる。SC17sucA/RSFCPG+pSTVCB株は、SC17sucA株に、エシェリヒア・コリ由来のクエン酸シンターゼ遺伝子(gltA)、ホスホエノールピルビン酸カルボキシラーゼ遺伝子(ppc)、およびグルタミン酸デヒドロゲナーゼ遺伝子(gdhA)を含むプラスミドRSFCPG、並びに、ブレビバクテリウム・ラクトファーメンタム由来のクエン酸シンターゼ遺伝子(gltA)を含むプラスミドpSTVCBを導入して得られた株である。AJ13601株は、このSC17sucA/RSFCPG+pSTVCB株から低pH下で高濃度のL-グルタミン酸に耐性を示す株として選択された株である。また、NP106株は、AJ13601株からプラスミドRSFCPG+pSTVCBを脱落させた株である。AJ13601株は、1999年8月18日に、工業技術院生命工学工業技術研究所(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM P-17516として寄託され、2000年7月6日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-7207が付与されている。 Examples of L-glutamic acid-producing bacteria or parent strains for inducing them include Pantoea bacteria such as Pantoea ananatis SC17sucA / RSFCPG + pSTVCB strain, Pantoea ananatis AJ13601 strain, Pantoea ananatis NP106 strain, and Pantoea ananatis NA1 strain . The SC17sucA / RSFCPG + pSTVCB strain is different from the SC17sucA strain in that the plasmid RSFCPG containing the citrate synthase gene (gltA), the phosphoenolpyruvate carboxylase gene (ppc), and the glutamate dehydrogenase gene (gdhA) derived from Escherichia coli, and Brevi This is a strain obtained by introducing a plasmid pSTVCB containing a citrate synthase gene (gltA) derived from bacteria lactofermentum. The AJ13601 strain was selected from the SC17sucA / RSFCPG + pSTVCB strain as a strain resistant to a high concentration of L-glutamic acid at low pH. The NP106 strain is a strain obtained by removing the plasmid RSFCPG + pSTVCB from the AJ13601 strain. On August 18, 1999, AJ13601 shares were registered with the National Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology (currently the National Institute for Product Evaluation Technology, Biological Depositary Center, Postal Code: 292-0818, Address: Chiba, Japan. Deposited at Kisarazu City Kazusa Kamashika 2-5-8 120) under the accession number FERM P-17516, transferred to an international deposit based on the Budapest Treaty on July 6, 2000 and given the accession number FERM BP-7207 ing.
 また、L-グルタミン酸生産菌又はそれを誘導するための親株としては、α-ケトグルタル酸デヒドロゲナーゼ(sucA)活性およびコハク酸デヒドロゲナーゼ(sdh)活性の両方が低下または欠損した株も挙げられる(特開2010-041920号)。そのような株として、具体的には、例えば、Pantoea ananatis NA1のsucAsdhA二重欠損株やCorynebacterium glutamicum ATCC14067のodhAsdhA二重欠損株(Corynebacterium glutamicum 8L3GΔSDH株)が挙げられる(特開2010-041920号)。 Examples of L-glutamic acid-producing bacteria or parent strains for inducing them include strains in which both α-ketoglutarate dehydrogenase (sucA) activity and succinate dehydrogenase (sdh) activity are reduced or deficient (JP 2010) -041920). Specific examples of such strains include, for example, a pantoea ananatis NA1 sucAsdhA double-deficient strain and a Corynebacterium glutamicum 140ATCC14067 odhAsdhA double-deficient strain (Corynebacterium glutamicum 8L3GΔSDH strain) (Japanese Patent Laid-Open No. 2010-041920).
 また、L-グルタミン酸生産菌又はそれを誘導するための親株としては、栄養要求性変異株も挙げられる。栄養要求性変異株として、具体的には、例えば、E. coli VL334thrC+ (VKPM B-8961) (EP 1172433) が挙げられる。E. coli VL334 (VKPM B-1641) は、thrC遺伝子及びilvA遺伝子に変異を有するL-イソロイシン及びL-スレオニン要求性株である (米国特許第4,278,765号)。E. coli VL334thrC+は、thrC遺伝子の野生型アレルをVL334に導入することにより得られた、L-イソロイシン要求性のL-グルタミン酸生産菌である。thrC遺伝子の野生型アレルは、野生型E. coli K12株 (VKPM B-7) の細胞で増殖したバクテリオファージP1を用いる一般的形質導入法により導入された。 In addition, examples of L-glutamic acid-producing bacteria or parent strains for inducing them include auxotrophic mutants. Specific examples of the auxotrophic mutant include E. coli VL334thrC + (VKPM B-8961) (EP 1172433). E. coli VL334 (VKPM B-1641) is an L-isoleucine and L-threonine auxotroph having a mutation in the thrC gene and the ilvA gene (US Pat. No. 4,278,765). E. coli VL334thrC + is an L-isoleucine-requiring L-glutamic acid-producing bacterium obtained by introducing a wild type allele of the thrC gene into VL334. The wild type allele of the thrC gene was introduced by a general transduction method using bacteriophage P1 grown on cells of wild type E. coli K12 strain (VKPM B-7).
 また、L-グルタミン酸生産菌又はそれを誘導するための親株としては、アスパラギン酸アナログに耐性を有する株も挙げられる。これらの株は、例えば、α-ケトグルタル酸デヒドロゲナーゼ活性を欠損していてもよい。アスパラギン酸アナログに耐性を有し、α-ケトグルタル酸デヒドロゲナーゼ活性を欠損した株として、具体的には、例えば、E. coli AJ13199 (FERM BP-5807) (米国特許第5,908,768号)、さらにL-グルタミン酸分解能が低下したE. coli FFRM P-12379 (米国特許第5,393,671号)、E. coli AJ13138 (FERM BP-5565) (米国特許第6,110,714号) が挙げられる。 In addition, examples of L-glutamic acid-producing bacteria or parent strains for inducing them also include strains resistant to aspartic acid analogs. These strains may be deficient in α-ketoglutarate dehydrogenase activity, for example. Specific examples of strains resistant to aspartate analogs and lacking α-ketoglutarate dehydrogenase activity include, for example, E. coli AJ13199 (FERM BP-5807) (US Pat. No. 5,908,768), and L-glutamic acid. E. coli FFRM P-12379 (US Pat. No. 5,393,671) and E. coli AJ13138 (FERM BP-5565) (US Pat. No. 6,110,714) are known.
 また、L-グルタミン酸生産能を付与又は増強するための方法としては、例えば、D-キシルロース-5-リン酸-ホスホケトラーゼ及び/又はフルクトース-6-リン酸ホスホケトラーゼの活性が増大するように細菌を改変する方法も挙げられる(特表2008-509661)。D-キシルロース-5-リン酸-ホスホケトラーゼ活性及びフルクトース-6-リン酸ホスホケトラーゼ活性はいずれか一方を増強してもよいし、両方を増強してもよい。なお、本明細書ではD-キシルロース-5-リン酸-ホスホケトラーゼとフルクトース-6-リン酸ホスホケトラーゼをまとめてホスホケトラーゼと呼ぶことがある。 As a method for imparting or enhancing L-glutamic acid-producing ability, for example, a bacterium is modified so that the activity of D-xylulose-5-phosphate-phosphoketolase and / or fructose-6-phosphate phosphoketolase is increased. There is also a method to do (Special Table 2008-509661). Either one or both of D-xylulose-5-phosphate-phosphoketolase activity and fructose-6-phosphate phosphoketolase activity may be enhanced. In the present specification, D-xylulose-5-phosphate phosphoketolase and fructose-6-phosphate phosphoketolase may be collectively referred to as phosphoketolase.
 D-キシルロース-5-リン酸-ホスホケトラーゼ活性とは、リン酸を消費して、キシルロース-5-リン酸をグリセルアルデヒド-3-リン酸とアセチルリン酸に変換し、一分子のH2Oを放出する活性を意味する。この活性は、Goldberg, M.らの文献 (Methods Enzymol., 9,515-520 (1966)) またはL.Meileの文献 (J.Bacteriol. (2001) 183; 2929-2936) に記載の方法によって測定することができる。 D-xylulose-5-phosphate-phosphoketolase activity is the consumption of phosphoric acid to convert xylulose-5-phosphate into glyceraldehyde-3-phosphate and acetyl phosphate, and one molecule of H 2 O Means the activity of releasing. This activity is measured by the method described in Goldberg, M. et al. (Methods Enzymol., 9,515-520 (1966)) or L. Meile (J. Bacteriol. (2001) 183; 2929-2936). be able to.
 また、フルクトース-6-リン酸ホスホケトラーゼ活性とは、リン酸を消費して、フルクトース6-リン酸をエリスロース-4-リン酸とアセチルリン酸に変換し、一分子のH2Oを放出する活性を意味する。この活性は、Racker, Eの文献 (Methods Enzymol., 5, 276-280 (1962)) またはL.Meileの文献 (J.Bacteriol. (2001) 183; 2929-2936) に記載の方法によって測定することができる。 In addition, fructose-6-phosphate phosphoketolase activity means that phosphoric acid is consumed, fructose 6-phosphate is converted into erythrose-4-phosphate and acetyl phosphate, and one molecule of H 2 O is released. Means activity. This activity is measured by the method described in Racker, E (Methods Enzymol., 5, 276-280 (1962)) or L. Meile (J. Bacteriol. (2001) 183; 2929-2936). be able to.
 また、L-グルタミン酸生産能を付与又は増強するための方法としては、例えば、L-グルタミン酸排出遺伝子であるyhfK遺伝子(WO2005/085419)やybjL遺伝子(WO2008/133161)の発現を増強することも挙げられる。 Examples of a method for imparting or enhancing L-glutamic acid producing ability include, for example, enhancing expression of yhfK gene (WO2005 / 085419) and ybjL gene (WO2008 / 133161) which are L-glutamic acid excretion genes. It is done.
 また、コリネ型細菌について、L-グルタミン酸生産能を付与または増強する方法としては、有機酸アナログや呼吸阻害剤などへの耐性を付与する方法や、細胞壁合成阻害剤に対する感受性を付与する方法も挙げられる。そのような方法として、具体的には、例えば、モノフルオロ酢酸耐性を付与する方法(特開昭50-113209)、アデニン耐性またはチミン耐性を付与する方法(特開昭57-065198)、ウレアーゼを弱化させる方法(特開昭52-038088)、マロン酸耐性を付与する方法(特開昭52-038088)、ベンゾピロン類またはナフトキノン類への耐性を付与する方法(特開昭56-1889)、HOQNO耐性を付与する方法(特開昭56-140895)、α-ケトマロン酸耐性を付与する方法(特開昭57-2689)、グアニジン耐性を付与する方法(特開昭56-35981)、ペニシリンに対する感受性を付与する方法(特開平4-88994)などが挙げられる。 Examples of methods for imparting or enhancing L-glutamic acid-producing ability for coryneform bacteria include methods for imparting resistance to organic acid analogs and respiratory inhibitors, and methods for imparting sensitivity to cell wall synthesis inhibitors. It is done. Specific examples of such a method include, for example, a method for imparting monofluoroacetic acid resistance (Japanese Patent Laid-Open No. 50-113209), a method for imparting adenine resistance or thymine resistance (Japanese Patent Laid-Open No. 57-065198), and urease. Method of weakening (JP 52-038088), method of imparting malonic acid resistance (JP 52-038088), method of imparting resistance to benzopyrones or naphthoquinones (JP 56-1889), HOQNO Method for imparting resistance (Japanese Patent Laid-Open No. 56-140895), method for imparting resistance to α-ketomalonic acid (Japanese Patent Laid-Open No. 57-2689), method for imparting guanidine resistance (Japanese Patent Laid-Open No. 56-35981), sensitivity to penicillin And the like (JP-A-4-88994).
 このような耐性菌または感受性菌の具体例としては、下記のような菌株が挙げられる。
Corynebacterium glutamicum (Brevibacterium flavum) AJ3949 (FERM BP-2632;特開昭50-113209参照)
Corynebacterium glutamicum AJ11628 (FERM P-5736;特開昭57-065198参照)
Corynebacterium glutamicum (Brevibacterium flavum) AJ11355 (FERM P-5007;特開昭56-1889号公報参照)
Corynebacterium glutamicum AJ11368 (FERM P-5020;特開昭56-1889号公報参照)
Corynebacterium glutamicum (Brevibacterium flavum) AJ11217 (FERM P-4318;特開昭57-2689号公報参照)
Corynebacterium glutamicum AJ11218 (FERM P-4319;特開昭57-2689号公報参照)
Corynebacterium glutamicum (Brevibacterium flavum) AJ11564 (FERM P-5472;特開昭56-140895公報参照)
Corynebacterium glutamicum (Brevibacterium flavum) AJ11439 (FERM P-5136;特開昭56-35981号公報参照)
Corynebacterium glutamicum H7684 (FERM BP-3004;特開平04-88994号公報参照)
Corynebacterium glutamicum (Brevibacterium lactofermentum) AJ11426(FERM P-5123;特開平56-048890号公報参照)
Corynebacterium glutamicum AJ11440(FERM P-5137;特開平56-048890号公報参照)
Corynebacterium glutamicum (Brevibacterium lactofermentum) AJ11796(FERM P-6402;特開平58-158192号公報参照)
Specific examples of such resistant or susceptible bacteria include the following strains:
Corynebacterium glutamicum (Brevibacterium flavum) AJ3949 (FERM BP-2632; see JP 50-113209)
Corynebacterium glutamicum AJ11628 (FERM P-5736; see JP-A-57-065198)
Corynebacterium glutamicum (Brevibacterium flavum) AJ11355 (FERM P-5007; see JP 56-1889)
Corynebacterium glutamicum AJ11368 (FERM P-5020; see JP-A-56-1889)
Corynebacterium glutamicum (Brevibacterium flavum) AJ11217 (FERM P-4318; see JP-A-57-2689)
Corynebacterium glutamicum AJ11218 (FERM P-4319; see JP 57-2689)
Corynebacterium glutamicum (Brevibacterium flavum) AJ11564 (FERM P-5472; see JP-A-56-140895)
Corynebacterium glutamicum (Brevibacterium flavum) AJ11439 (FERM P-5136; see JP-A-56-35981)
Corynebacterium glutamicum H7684 (FERM BP-3004; see JP 04-88994 A)
Corynebacterium glutamicum (Brevibacterium lactofermentum) AJ11426 (FERM P-5123; see JP-A-56-048890)
Corynebacterium glutamicum AJ11440 (FERM P-5137; see JP-A-56-048890)
Corynebacterium glutamicum (Brevibacterium lactofermentum) AJ11796 (FERM P-6402; see JP-A-58-158192)
 また、コリネ型細菌について、L-グルタミン酸生産能を付与または増強する方法としては、yggB遺伝子の発現を増強する方法やコード領域内に変異を導入した変異型yggB遺伝子を導入する方法も挙げられる(WO2006/070944)。yggB遺伝子は、メカノセンシティブチャンネル(mechanosensitive channel)をコードする遺伝子である。Corynebacterium glutamicum ATCC13032のyggB遺伝子は、NCBIデータベースにGenBank Accession No. NC_003450で登録されているゲノム配列中、1,336,091~1,337,692の配列の相補配列に相当し、NCgl1221とも呼ばれる。Corynebacterium glutamicum ATCC13032のyggB遺伝子にコードされるYggBタンパク質は、GenBank accession No. NP_600492として登録されている。 Examples of a method for imparting or enhancing L-glutamic acid producing ability for coryneform bacteria include a method for enhancing expression of the yggB gene and a method for introducing a mutant yggB gene having a mutation introduced into the coding region ( WO2006 / 070944). The yggB gene encodes a mechanosensitive channel. The yggB gene of Corynebacterium glutamicum ATCC13032 corresponds to a complementary sequence of the sequences 1,336,091 to 1,337,692 in the genome sequence registered in the NCBI database under GenBank Accession No. NC_003450, and is also called NCgl1221. The YggB protein encoded by the yggB gene of Corynebacterium glutamicum ATCC13032 is registered as GenBank accession No. NP_600492.
<L-グルタミン生産菌>
 L-グルタミン生産能を付与又は増強するための方法としては、例えば、L-グルタミン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、グルタミン酸デヒドロゲナーゼ(gdhA)やグルタミンシンセターゼ(glnA)が挙げられる。なお、グルタミンシンセターゼの活性は、グルタミンアデニリルトランスフェラーゼ遺伝子(glnE)の破壊やPII制御タンパク質遺伝子(glnB)の破壊によって増強してもよい(EP1229121)。
<L-glutamine producing bacteria>
Examples of the method for imparting or enhancing L-glutamine production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-glutamine biosynthesis enzymes is increased. . Examples of such an enzyme include, but are not limited to, glutamate dehydrogenase (gdhA) and glutamine synthetase (glnA). The activity of glutamine synthetase may be enhanced by disrupting the glutamine adenylyltransferase gene (glnE) or the PII regulatory protein gene (glnB) (EP1229121).
 また、L-グルタミン生産能を付与又は増強するための方法としては、例えば、L-グルタミンの生合成経路から分岐してL-グルタミン以外の化合物を生成する反応を触媒する酵素から選択される1またはそれ以上の酵素の活性が低下するように細菌を改変する方法も挙げられる。そのような酵素としては、特に制限されないが、グルタミナーゼが挙げられる。 The method for imparting or enhancing L-glutamine production ability is, for example, selected from an enzyme that catalyzes a reaction that branches from the biosynthetic pathway of L-glutamine to produce a compound other than L-glutamine. Alternatively, a method of modifying the bacterium so that the activity of the further enzyme is reduced can also be mentioned. Such an enzyme is not particularly limited, and includes glutaminase.
 L-グルタミン生産菌又はそれを誘導するための親株としては、グルタミン酸デヒドロゲナーゼ(gdhA)および/またはグルタミンシンセターゼ(glnA)の活性を増強したコリネ型細菌(EP1229121, EP1424398)やグルタミナーゼ活性が低下したコリネ型細菌(特開2004-187684)が挙げられる。また、L-グルタミン生産菌又はそれを誘導するための親株としては、グルタミンシンセターゼの397位のチロシン残基が他のアミノ酸残基に置換された変異型グルタミンシンセターゼを有するエシェリヒア属に属する株が挙げられる(米国特許出願公開第2003-0148474号明細書)。 Examples of L-glutamine-producing bacteria or parent strains for inducing them include coryneform bacteria (EP1229121, EP1424398) with enhanced activity of glutamate dehydrogenase (gdhA) and / or glutamine synthetase (glnA), and coryneforms with reduced glutaminase activity Type bacteria (Japanese Patent Laid-Open No. 2004-187684). The L-glutamine-producing bacterium or the parent strain for inducing it is a strain belonging to the genus Escherichia having a mutant glutamine synthetase in which the tyrosine residue at position 397 of glutamine synthetase is substituted with another amino acid residue. (US Patent Application Publication No. 2003-0148474).
 また、コリネ型細菌について、L-グルタミン生産能を付与または増強する方法としては、6-ジアゾ-5-オキソ-ノルロイシン耐性を付与する方法 (特開平3-232497)、プリンアナログ耐性及びメチオニンスルホキシド耐性を付与する方法 (特開昭61-202694)、α-ケトマレイン酸耐性を付与する方法 (特開昭56-151495)が挙げられる。L-グルタミン生産能を有するコリネ型細菌として、具体的には、例えば、以下の株が挙げられる。
Corynebacterium glutamicum (Brevibacterium flavum) AJ11573 (FERM P-5492;特開昭56-161495)
Corynebacterium glutamicum (Brevibacterium flavum) AJ11576 (FERM BP-10381;特開昭56-161495)
Corynebacterium glutamicum (Brevibacterium flavum) AJ12212 (FERM P-8123;特開昭61-202694)
As methods for imparting or enhancing L-glutamine-producing ability for coryneform bacteria, methods for imparting 6-diazo-5-oxo-norleucine resistance (Japanese Patent Laid-Open No. 3-232497), purine analog resistance and methionine sulfoxide resistance And a method for imparting resistance to α-ketomaleic acid (Japanese Patent Laid-Open No. 56-151495). Specific examples of coryneform bacteria having the ability to produce L-glutamine include the following strains.
Corynebacterium glutamicum (Brevibacterium flavum) AJ11573 (FERM P-5492; JP 56-161495)
Corynebacterium glutamicum (Brevibacterium flavum) AJ11576 (FERM BP-10381; JP 56-161495)
Corynebacterium glutamicum (Brevibacterium flavum) AJ12212 (FERM P-8123; JP-A 61-202694)
<L-プロリン生産菌>
 L-プロリン生産能を付与又は増強するための方法としては、例えば、L-プロリン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、グルタミン酸-5-キナーゼ(proB)、γ‐グルタミル-リン酸レダクターゼ、ピロリン-5-カルボキシレートレダクターゼ(putA)が挙げられる。酵素活性の増強には、例えば、L-プロリンによるフィードバック阻害が解除されたグルタミン酸-5-キナーゼをコードするproB遺伝子(ドイツ特許第3127361号)が好適に利用できる。
<L-proline producing bacteria>
Examples of the method for imparting or enhancing L-proline production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-proline biosynthesis enzymes is increased. . Such enzymes include glutamate-5-kinase (proB), γ-glutamyl-phosphate reductase, pyrroline-5-carboxylate reductase (putA). For the enhancement of enzyme activity, for example, the proB gene (German Patent No. 3127361) encoding glutamate-5-kinase in which feedback inhibition by L-proline is released can be suitably used.
 また、L-プロリン生産能を付与又は増強するための方法としては、例えば、L-プロリン分解に関与する酵素の活性が低下するように細菌を改変する方法が挙げられる。そのような酵素としては、プロリンデヒドロゲナーゼやオルニチンアミノトランスフェラーゼが挙げられる。 In addition, as a method for imparting or enhancing L-proline production ability, for example, a method of modifying bacteria so that the activity of an enzyme involved in L-proline degradation is reduced. Examples of such an enzyme include proline dehydrogenase and ornithine aminotransferase.
 L-プロリン生産菌又はそれを誘導するための親株として、具体的には、例えば、E. coli NRRL B-12403及びNRRL B-12404 (英国特許第2075056号)、E. coli VKPM B-8012 (ロシア特許出願2000124295)、ドイツ特許第3127361号に記載のE. coliプラスミド変異体、Bloom F.R. et al (The 15th Miami winter symposium, 1983, p.34)に記載のE. coliプラスミド変異体、3,4-デヒドロキシプロリンおよびアザチジン-2-カルボキシレートに耐性のE. coli 702株(VKPMB-8011)、702株のilvA遺伝子欠損株であるE. coli 702ilvA株(VKPM B-8012) (EP 1172433) が挙げられる。 Specific examples of L-proline-producing bacteria or parent strains for deriving them include, for example, E. coli NRRL B-12403 and NRRL B-12404 (British Patent No. 2075056), E. coli VKPM B-8012 ( Russian patent application 2000124295), E. coli plasmid variant described in German Patent 3127361, Bloom FR et al (The 15th Miami winter symposium, 1983, p.34), E. coli plasmid variant, 3, E. coli 702 strain (VKPMB-8011) resistant to 4-dehydroxyproline and azatidine-2-carboxylate, E. coli 702ilvA strain (VKPM B-8012) (EP 1172433) which is a 702 ilvA gene-deficient strain Is mentioned.
<L-スレオニン生産菌>
 L-スレオニン生産能を付与又は増強するための方法としては、例えば、L-スレオニン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、アスパルトキナーゼIII(lysC)、アスパラギン酸セミアルデヒドデヒドロゲナーゼ(asd)、アスパルトキナーゼI(thrA)、ホモセリンキナーゼ(homoserine kinase)(thrB)、スレオニンシンターゼ(threonine synthase)(thrC)、アスパラギン酸アミノトランスフェラーゼ(アスパラギン酸トランスアミナーゼ)(aspC)が挙げられる。これらの酵素の中では、アスパルトキナーゼIII、アスパラギン酸セミアルデヒドデヒドロゲナーゼ、アスパルトキナーゼI、ホモセリンキナーゼ、アスパラギン酸アミノトランスフェラーゼ、及びスレオニンシンターゼから選択される1またはそれ以上の酵素の活性を増強するのが好ましい。L-スレオニン生合成系遺伝子は、スレオニン分解が抑制された株に導入してもよい。スレオニン分解が抑制された株としては、例えば、スレオニンデヒドロゲナーゼ活性が欠損したE. coli TDH6株(特開2001-346578号)が挙げられる。
<L-threonine producing bacteria>
Examples of the method for imparting or enhancing the ability to produce L-threonine include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-threonine biosynthetic enzymes is increased. . Examples of such enzymes include, but are not limited to, aspartokinase III (lysC), aspartate semialdehyde dehydrogenase (asd), aspartokinase I (thrA), homoserine kinase (thrB), threonine synthase ( threonine synthase) (thrC), aspartate aminotransferase (aspartate transaminase) (aspC). Among these enzymes, it enhances the activity of one or more enzymes selected from aspartokinase III, aspartate semialdehyde dehydrogenase, aspartokinase I, homoserine kinase, aspartate aminotransferase, and threonine synthase. Is preferred. The L-threonine biosynthesis gene may be introduced into a strain in which threonine degradation is suppressed. Examples of strains in which threonine degradation is suppressed include E. coli TDH6 strain lacking threonine dehydrogenase activity (Japanese Patent Laid-Open No. 2001-346578).
 L-スレオニン生合成系酵素の活性は、最終産物のL-スレオニンによって阻害される。従って、L-スレオニン生産菌を構築するためには、L-スレオニンによるフィードバック阻害を受けないようにL-スレオニン生合成系遺伝子を改変するのが好ましい。上記thrA、thrB、thrC遺伝子は、スレオニンオペロンを構成しており、スレオニンオペロンは、アテニュエーター構造を形成している。スレオニンオペロンの発現は、培養液中のイソロイシン、スレオニンに阻害を受け、アテニュエーションにより抑制される。スレオニンオペロンの発現の増強は、アテニュエーション領域のリーダー配列あるいはアテニュエーターを除去することにより達成できる(Lynn, S. P., Burton, W. S., Donohue, T. J., Gould, R. M., Gumport, R. I., and Gardner, J. F. J. Mol. Biol. 194:59-69 (1987); WO02/26993; WO2005/049808; WO2003/097839参照)。 The activity of the L-threonine biosynthetic enzyme is inhibited by the final product L-threonine. Therefore, in order to construct an L-threonine-producing bacterium, it is preferable to modify the L-threonine biosynthetic gene so that it is not subject to feedback inhibition by L-threonine. The thrA, thrB, and thrC genes constitute a threonine operon, and the threonine operon forms an attenuator structure. Expression of the threonine operon is inhibited by isoleucine and threonine in the culture medium, and is suppressed by attenuation. Enhanced expression of the threonine operon can be achieved by removing the leader sequence or attenuator in the attenuation region (Lynn, S. P., Burton, W. S., Donohue, T. J., Gould, R. M., Gumport, R. I., and Gardner, J. F. J. Mol. Biol. 194: 59-69 1987 (1987); WO02 / 26993; WO2005 / 049808; WO2003 / 097839).
 スレオニンオペロンの上流には固有のプロモーターが存在するが、同プロモーターを非天然のプロモーターに置換してもよい(WO98/04715号パンフレット参照)。また、スレオニン生合成関与遺伝子がラムダファ-ジのリプレッサーおよびプロモーターの制御下で発現するようにスレオニンオペロンを構築してもよい(欧州特許第0593792号明細書参照)。また、L-スレオニンによるフィードバック阻害を受けないように改変された細菌は、L-スレオニンアナログであるα-amino-β-hydroxyvaleric acid(AHV)に耐性な菌株を選抜することによっても取得できる。 A unique promoter exists upstream of the threonine operon, but this promoter may be replaced with a non-natural promoter (see pamphlet of WO98 / 04715). In addition, the threonine operon may be constructed so that a gene involved in threonine biosynthesis is expressed under the control of a lambda phage repressor and promoter (see European Patent No. 0593792). Bacteria modified so as not to be subjected to feedback inhibition by L-threonine can also be obtained by selecting a strain resistant to α-amino-β-hydroxyvaleric acid (AHV), which is an L-threonine analog.
 このようにL-スレオニンによるフィードバック阻害を受けないように改変されたスレオニンオペロンは、コピー数の上昇により、あるいは強力なプロモーターに連結されることにより、宿主内での発現量が向上しているのが好ましい。コピー数の上昇は、スレオニンオペロンを含むプラスミドを宿主に導入することにより達成できる。また、コピー数の上昇は、トランスポゾン、Muファ-ジ等を利用して、宿主のゲノム上にスレオニンオペロンを転移させることによっても達成できる。 Thus, the threonine operon modified so as not to be subjected to feedback inhibition by L-threonine is improved in the expression level in the host by increasing the copy number or being linked to a strong promoter. Is preferred. An increase in copy number can be achieved by introducing a plasmid containing a threonine operon into the host. An increase in copy number can also be achieved by transferring the threonine operon onto the host genome using a transposon, Mu phage, or the like.
 また、L-スレオニン生産能を付与または増強する方法としては、宿主にL-スレオニン耐性を付与する方法やL-ホモセリン耐性を付与する方法も挙げられる。耐性の付与は、例えば、L-スレオニンに耐性を付与する遺伝子、L-ホモセリンに耐性を付与する遺伝子の発現を強化することにより達成できる。耐性を付与する遺伝子としては、rhtA遺伝子(Res. Microbiol. 154:123-135 (2003))、rhtB遺伝子(欧州特許出願公開第0994190号明細書)、rhtC遺伝子(欧州特許出願公開第1013765号明細書)、yfiK遺伝子、yeaS遺伝子(欧州特許出願公開第1016710号明細書)が挙げられる。また、宿主にL-スレオニン耐性を付与する方法は、欧州特許出願公開第0994190号明細書や国際公開第90/04636号パンフレットに記載の方法を参照出来る。 In addition, examples of a method for imparting or enhancing L-threonine production ability include a method for imparting L-threonine resistance to a host and a method for imparting L-homoserine resistance. The imparting of resistance can be achieved, for example, by enhancing the expression of a gene that imparts resistance to L-threonine or a gene that imparts resistance to L-homoserine. Examples of genes that confer resistance include rhtA gene (Res. Microbiol. 154: 123-135 (2003)), rhtB gene (European Patent Application Publication No. 0994190), rhtC gene (European Patent Application Publication No. 1013765) ), YfiK gene, and yeaS gene (European Patent Application Publication No. 1016710). For methods for imparting L-threonine resistance to a host, methods described in European Patent Application Publication No. 0994190 and International Publication No. 90/04636 can be referred to.
 L-スレオニン生産菌又はそれを誘導するための親株として、具体的には、例えば、E. coli TDH-6/pVIC40 (VKPM B-3996) (米国特許第5,175,107号、米国特許第5,705,371号)、E. coli 472T23/pYN7 (ATCC 98081) (米国特許第5,631,157号)、E. coli NRRL-21593 (米国特許第5,939,307号)、E. coli FERM BP-3756 (米国特許第5,474,918号)、E. coli FERM BP-3519及びFERM BP-3520 (米国特許第5,376,538号)、E. coli MG442 (Gusyatiner et al., Genetika (in Russian), 14, 947-956 (1978))、E. coli VL643及びVL2055 (EP 1149911 A)、ならびにE. coli VKPM B-5318 (EP 0593792 B) が挙げられる。 Specific examples of L-threonine-producing bacteria or parent strains for deriving them include, for example, E. coli TDH-6 / pVIC40 (VKPM B-3996) (US Patent No. 5,175,107, US Patent No. 5,705,371), E. coli 472T23 / pYN7 (ATCC 98081) (U.S. Patent No. 5,631,157), E. coli NRRL-21593 (U.S. Patent No. 5,939,307), E. coli FERM BP-3756 (U.S. Patent No. 5,474,918), E. coli FERM BP-3519 and FERM BP-3520 (U.S. Patent No. 5,376,538), E. coli MG442 (Gusyatiner et al., Genetika (in Russian), 14, 947-956 (1978)), E. coli VL643 and VL2055 ( EP 1149911 A), and E. coli VKPM B-5318 (EP 0593792 B).
 VKPM B-3996株は、TDH-6株に、プラスミドpVIC40を導入した株である。TDH-6株は、スクロース資化性であり、thrC遺伝子を欠損し、ilvA遺伝子にリーキー(leaky)変異を有する。また、VKPM B-3996株は、rhtA遺伝子に、高濃度のスレオニンまたはホモセリンに対する耐性を付与する変異を有する。プラスミドpVIC40は、RSF1010由来ベクターに、スレオニンによるフィードバック阻害に耐性のアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードする変異型thrA遺伝子と野生型thrBC遺伝子を含むthrA*BCオペロンが挿入されたプラスミドである(米国特許第5,705,371号)。この変異型thrA遺伝子は、スレオニンによるフィードバック阻害が実質的に解除されたアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードする。B-3996株は、1987年11月19日、オールユニオン・サイエンティフィック・センター・オブ・アンチビオティクス(Nagatinskaya Street 3-A, 117105 Moscow, Russia)に、受託番号RIA 1867で寄託されている。この株は、また、1987年4月7日、ルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) に、受託番号VKPM B-3996で寄託されている。 VKPM B-3996 strain is a strain obtained by introducing plasmid pVIC40 into TDH-6 strain. The TDH-6 strain is sucrose-assimilating, lacks the thrC gene, and has a leaky mutation in the ilvA gene. The VKPM B-3996 strain has a mutation that imparts resistance to a high concentration of threonine or homoserine in the rhtA gene. The plasmid pVIC40 is a plasmid in which a thrA * BC operon containing a mutant thrA gene encoding an aspartokinase homoserine dehydrogenase I resistant to feedback inhibition by threonine and a wild type thrBC gene is inserted into an RSF1010-derived vector (US Patent) No. 5,705,371). This mutant thrA gene encodes aspartokinase homoserine dehydrogenase I substantially desensitized to feedback inhibition by threonine. B-3996 was deposited on 19 November 1987 at the All Union Scientific Center of Antibiotics (Nagatinskaya Street 3-A, 117105 Moscow, Russia) with accession number RIA 1867. . This strain was also transferred to Lucian National Collection of Industrial Microorganisms (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) on 7 April 1987 under the accession number VKPM B-3996. It has been deposited.
 VKPM B-5318株は、イソロイシン非要求性であり、プラスミドpVIC40中のスレオニンオペロンの制御領域を温度感受性ラムダファージC1リプレッサー及びPRプロモーターにより置換したプラスミドpPRT614を保持する。VKPM B-5318は、1990年5月3日、ルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) に、受託番号VKPM B-5318で国際寄託されている。 The strain VKPM B-5318 is non-isoleucine-requiring and retains the plasmid pPRT614 in which the control region of the threonine operon in the plasmid pVIC40 is replaced with a temperature-sensitive lambda phage C1 repressor and a PR promoter. VKPM B-5318 was assigned to Lucian National Collection of Industrial Microorganisms (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) on May 3, 1990 under the accession number VKPM B-5318 Has been deposited internationally.
 E. coliのアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードするthrA遺伝子は明らかにされている(ヌクレオチド番号337~2799, GenBank accession NC_000913.2, gi: 49175990)。thrA遺伝子は、E. coli K-12の染色体において、thrL遺伝子とthrB遺伝子との間に位置する。Escherichia coliのホモセリンキナーゼをコードするthrB遺伝子は明らかにされている(ヌクレオチド番号2801~3733, GenBank accession NC_000913.2, gi: 49175990)。thrB遺伝子は、E. coli K-12の染色体において、thrA遺伝子とthrC遺伝子との間に位置する。E. coliのスレオニンシンターゼをコードするthrC遺伝子は明らかにされている(ヌクレオチド番号3734~5020, GenBank accession NC_000913.2, gi: 49175990)。thrC遺伝子は、E. coli K-12の染色体において、thrB遺伝子とyaaXオープンリーディングフレームとの間に位置する。また、スレオニンによるフィードバック阻害に耐性のアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードする変異型thrA遺伝子と野生型thrBC遺伝子を含むthrA*BCオペロンは、スレオニン生産株E. coli VKPM B-3996に存在する周知のプラスミドpVIC40(米国特許第5,705,371号)から取得できる。 The thrA gene encoding aspartokinase homoserine dehydrogenase I of E. coli has been revealed (nucleotide numbers 337-2799, GenBank accession NC_000913.2, gi: 49175990). The thrA gene is located between the thrL gene and the thrB gene in the chromosome of E. coli K-12. The thrB gene encoding homoserine kinase of Escherichia coli has been elucidated (nucleotide numbers 2801 to 3733, GenBank accession NC_000913.2, gi: 49175990). The thrB gene is located between the thrA gene and the thrC gene in the chromosome of E. coli K-12. The thrC gene encoding threonine synthase from E.coli has been elucidated (nucleotide numbers 3734 to 5020, GenBank accession NC_000913.2, gi: 49175990). The thrC gene is located between the thrB gene and the yaaX open reading frame in the chromosome of E. coli K-12. In addition, a thrA * BC operon containing a mutant thrA gene encoding an aspartokinase homoserine dehydrogenase I resistant to feedback inhibition by threonine and a wild type thrBC gene is known in the threonine-producing strain E. coli VKPM B-3996. It can be obtained from plasmid pVIC40 (US Pat. No. 5,705,371).
 E. coliのrhtA遺伝子は、グルタミン輸送系の要素をコードするglnHPQ オペロンに近いE. coli染色体の18分に存在する。rhtA遺伝子は、ORF1 (ybiF遺伝子, ヌクレオチド番号764~1651, GenBank accession number AAA218541, gi:440181)と同一であり、pexB遺伝子とompX遺伝子との間に位置する。ORF1によりコードされるタンパク質を発現するユニットは、rhtA遺伝子と呼ばれている(rht: resistant to homoserine and threonine(ホモセリン及びスレオニンに耐性))。また、高濃度のスレオニン又はホモセリンへの耐性を付与するrhtA23変異が、ATG開始コドンに対して-1位のG→A置換であることが判明している(ABSTRACTS of the 17th International Congress of Biochemistry and Molecular Biology in conjugation with Annual Meeting of the American Society for Biochemistry and Molecular Biology, San Francisco, California August 24-29, 1997, abstract No. 457, EP 1013765 A)。 The rhtA gene of E. coli is present at 18 minutes of the E. coli chromosome close to the glnHPQ operon, which encodes a glutamine transport system element. The rhtA gene is the same as ORF1 (ybiF gene, nucleotide numbers 764 to 1651, GenBank accession number AAA218541, gi: 440181), and is located between the pexB gene and the ompX gene. The unit that expresses the protein encoded by ORF1 is called rhtA gene (rht: resistant toosehomoserine andeonthreonine (resistant to homoserine and threonine)). It has also been found that the rhtA23 mutation conferring resistance to high concentrations of threonine or homoserine is a G → A substitution at position -1 relative to the ATG initiation codon (ABSTRACTS of the 17th International Congress of Biochemistry and Molecular Biology in conjugation with Annual Meeting of the American Society for Biochemistry and Molecular Biology, San Francisco, California August 24-29, 1997, abstract No. 457, EP 1013765 A).
 E. coliのasd遺伝子は既に明らかにされており(ヌクレオチド番号3572511~3571408, GenBank accession NC_000913.1, gi:16131307)、その遺伝子の塩基配列に基づいて作製されたプライマーを用いるPCRにより取得できる(White, T.J. et al., Trends Genet., 5, 185 (1989)参照)。他の微生物のasd遺伝子も同様に得ることができる。 The asd gene of E. coli has already been clarified (nucleotide numbers 3572511 to 3571408, GenBank accession NC_000913.1, gi: 16131307), and can be obtained by PCR using primers prepared based on the nucleotide sequence of the gene ( White, TJ et al., Trends Genet., 5, 185 (1989)). The asd gene of other microorganisms can be obtained similarly.
 また、E. coliのaspC遺伝子も既に明らかにされており(ヌクレオチド番号983742~984932, GenBank accession NC_000913.1, gi:16128895)、その遺伝子の塩基配列に基づいて作製されたプライマーを用いるPCRにより得ることができる。他の微生物のaspC遺伝子も同様に得ることができる。 In addition, the aspC gene of E. 既 に coli has already been clarified (nucleotide numbers 983742 to 984932, GenBank accession NC_000913.1, gi: 16128895), and obtained by PCR using a primer prepared based on the nucleotide sequence of the gene be able to. The aspC gene of other microorganisms can be obtained similarly.
 また、L-スレオニン生産能を有するコリネ型細菌としては、例えば、Corynebacterium acetoacidophilum AJ12318 (FERM BP-1172) (米国特許第5,188,949号参照) が挙げられる。 Examples of coryneform bacteria having L-threonine-producing ability include Corynebacterium acetoacidophilum AJ12318123 (FERM BP-1172) (see US Patent No. 5,188,949).
<L-リジン生産菌>
 L-リジン生産能を付与又は増強するための方法としては、例えば、L-リジン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、ジヒドロジピコリン酸シンターゼ(dihydrodipicolinate synthase)(dapA)、アスパルトキナーゼIII(aspartokinase III)(lysC)、ジヒドロジピコリン酸レダクターゼ(dihydrodipicolinate reductase)(dapB)、ジアミノピメリン酸デカルボキシラーゼ(diaminopimelate decarboxylase)(lysA)、ジアミノピメリン酸デヒドロゲナーゼ(diaminopimelate dehydrogenase)(ddh)(米国特許第6,040,160号)、ホスホエノールピルビン酸カルボキシラーゼ(phosphoenolpyruvate carboxylase)(ppc)、アスパラギン酸セミアルデヒドデヒドロゲナーゼ(aspartate semialdehyde dehydrogenase)(asd)、アスパラギン酸アミノトランスフェラーゼ(aspartate aminotransferase)(アスパラギン酸トランスアミナーゼ(aspartate transaminase))(aspC)、ジアミノピメリン酸エピメラーゼ(diaminopimelate epimerase)(dapF)、テトラヒドロジピコリン酸スクシニラーゼ(tetrahydrodipicolinate succinylase)(dapD)、スクシニルジアミノピメリン酸デアシラーゼ(succinyl-diaminopimelate deacylase)(dapE)、及びアスパルターゼ(aspartase)(aspA)(EP 1253195 A)が挙げられる。これらの酵素の中では、例えば、ジヒドロジピコリン酸レダクターゼ、ジアミノピメリン酸デカルボキシラーゼ、ジアミノピメリン酸デヒドロゲナーゼ、ホスホエノールピルビン酸カルボキシラーゼ、アスパラギン酸アミノトランスフェラーゼ、ジアミノピメリン酸エピメラーゼ、アスパラギン酸セミアルデヒドデヒドロゲナーゼ、テトラヒドロジピコリン酸スクシニラーゼ、及びスクシニルジアミノピメリン酸デアシラーゼから選択される1またはそれ以上の酵素の活性を増強するのが好ましい。また、L-リジン生産菌又はそれを誘導するための親株では、エネルギー効率に関与する遺伝子(cyo)(EP 1170376 A)、ニコチンアミドヌクレオチドトランスヒドロゲナーゼ(nicotinamide nucleotide transhydrogenase)をコードする遺伝子(pntAB)(米国特許第5,830,716号)、ybjE遺伝子(WO2005/073390)、またはこれらの組み合わせの発現レベルが増大していてもよい。アスパルトキナーゼIII(lysC)はL-リジンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、L-リジンによるフィードバック阻害が解除されたアスパルトキナーゼIIIをコードする変異型lysC遺伝子を利用してもよい(米国特許5,932,453号明細書)。また、ジヒドロジピコリン酸合成酵素(dapA)L-リジンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、L-リジンによるフィードバック阻害が解除されたジヒドロジピコリン酸合成酵素をコードする変異型dapA遺伝子を利用してもよい。
<L-lysine producing bacteria>
Examples of a method for imparting or enhancing L-lysine production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-lysine biosynthesis enzymes is increased. . Such enzymes include, but are not limited to, dihydrodipicolinate synthase (dapA), aspartokinase III (lysC), dihydrodipicolinate reductase (dapB), diaminopimelate Deaminopimelate decarboxylase (lysA), diaminopimelate dehydrogenase (ddh) (US Pat. No. 6,040,160), phosphoenolpyruvate carboxylase (ppc), aspartate semialdehyde dehydrogenase (aspartate semialdehyde dehydrogenase) ) (Asd), aspartate aminotransferase (aspartate transaminase) (aspC), diaminopimelate epi Diaminopimelate epimerase (dapF), tetrahydrodipicolinate succinylase (dapD), succinyl-diaminopimelate deacylase (dapE), and aspartase (aspA) (195) ). Among these enzymes, for example, dihydrodipicolinate reductase, diaminopimelate decarboxylase, diaminopimelate dehydrogenase, phosphoenolpyruvate carboxylase, aspartate aminotransferase, diaminopimelate epimerase, aspartate semialdehyde dehydrogenase, tetrahydrodipicolinate succinylase, and Preferably, the activity of one or more enzymes selected from succinyl diaminopimelate deacylase is enhanced. In addition, in L-lysine producing bacteria or a parent strain for deriving the same, a gene (cyo) (EP 1170376 A) involved in energy efficiency, a gene encoding nicotinamide nucleotide transhydrogenase (pntAB) ( US Pat. No. 5,830,716), ybjE gene (WO2005 / 073390), or combinations thereof may have increased expression levels. Aspartokinase III (lysC) is subject to feedback inhibition by L-lysine. To enhance the activity of the enzyme, a mutant lysC gene encoding aspartokinase III that has been desensitized to feedback inhibition by L-lysine is used. It may be used (US Pat. No. 5,932,453). In addition, since it is subjected to feedback inhibition by dihydrodipicolinate synthase (dapA) L-lysine, in order to enhance the activity of the enzyme, a mutant type encoding dihydrodipicolinate synthase from which feedback inhibition by L-lysine is released The dapA gene may be used.
 また、コリネ型細菌について、L-リジン生産能を付与又は増強するための方法としては、例えば、リジン排出系(lysE)の活性が増大するように細菌を改変する方法が挙げられる(WO97/23597)。Corynebacterium glutamicum ATCC 13032のlysE遺伝子は、NCBIデータベースにGenBank accession NC_006958 (VERSION NC_006958.1  GI:62388892)として登録されているゲノム配列中、1329712~1330413位の配列の相補配列に相当する。Corynebacterium glutamicum ATCC13032のLysEタンパク質は、GenBank accession YP_225551 (YP_225551.1  GI:62390149)として登録されている。 Further, as a method for imparting or enhancing L-lysine producing ability for coryneform bacteria, for example, a method of modifying the bacteria so that the activity of the lysine excretion system (lysE) is increased (WO97 / 23597). ). The lysE gene of Corynebacterium glutamicum ATCC 13032 corresponds to the complementary sequence of the 1329712-1330413 sequence in the genome sequence registered in the NCBI database as GenBank accession NC_006958 (VERSION NC_006958.1 GI: 62388892). The LysE protein of Corynebacterium glutamicum ATCC13032 is registered as GenBank accession YP_225551 (YP_225551.1 GI: 62390149).
 また、L-リジン生産能を付与又は増強するための方法としては、例えば、L-リジンの生合成経路から分岐してL-リジン以外の化合物を生成する反応を触媒する酵素から選択される1またはそれ以上の酵素の活性が低下するように細菌を改変する方法も挙げられる。そのような酵素としては、特に制限されないが、ホモセリンデヒドロゲナーゼ(homoserine dehydrogenase)、リジンデカルボキシラーゼ(lysine decarboxylase)(米国特許第5,827,698号)、及びリンゴ酸酵素(malic enzyme)(WO2005/010175)が挙げられる。 The method for imparting or enhancing L-lysine production ability is, for example, selected from enzymes that catalyze the reaction of branching from the biosynthetic pathway of L-lysine to produce compounds other than L-lysine. Alternatively, a method of modifying the bacterium so that the activity of the further enzyme is reduced can also be mentioned. Such enzymes include, but are not limited to, homoserine dehydrogenase, lysine decarboxylase (US Pat. No. 5,827,698), and malic enzyme (WO2005 / 010175). .
 また、L-リジン生産菌又はそれを誘導するための親株としては、L-リジンアナログに耐性を有する変異株が挙げられる。L-リジンアナログは腸内細菌科の細菌やコリネ型細菌等の細菌の生育を阻害するが、この阻害は、L-リジンが培地に共存するときには完全にまたは部分的に解除される。L-リジンアナログとしては、特に制限されないが、オキサリジン、リジンヒドロキサメート、S-(2-アミノエチル)-L-システイン(AEC)、γ-メチルリジン、α-クロロカプロラクタムが挙げられる。これらのリジンアナログに対して耐性を有する変異株は、細菌を通常の人工変異処理に付すことによって得ることができる。 In addition, examples of L-lysine-producing bacteria or parent strains for inducing them include mutants having resistance to L-lysine analogs. L-lysine analogs inhibit the growth of bacteria such as Enterobacteriaceae and coryneform bacteria, but this inhibition is completely or partially released when L-lysine is present in the medium. The L-lysine analog is not particularly limited, and examples thereof include oxalysine, lysine hydroxamate, S- (2-aminoethyl) -L-cysteine (AEC), γ-methyllysine, and α-chlorocaprolactam. Mutant strains having resistance to these lysine analogs can be obtained by subjecting bacteria to normal artificial mutation treatment.
 L-リジン生産菌又はそれを誘導するための親株として、具体的には、例えば、E. coli AJ11442(FERM BP-1543, NRRL B-12185; 米国特許第4,346,170号参照)及びE. coli VL611が挙げられる。これらの株では、アスパルトキナーゼのL-リジンによるフィードバック阻害が解除されている。 Specific examples of L-lysine-producing bacteria or parent strains for deriving them include, for example, E. coli AJ11442 (FERM BP-1543, NRRL B-12185; see U.S. Pat. No. 4,346,170) and E. coli VL611. Can be mentioned. In these strains, feedback inhibition of aspartokinase by L-lysine is released.
 L-リジン生産菌又はそれを誘導するための親株として、具体的には、E. coli WC196株も挙げられる。WC196株は、E. coli K-12に由来するW3110株にAEC耐性を付与することにより育種された(米国特許第5,827,698号)。WC196株は、E. coli AJ13069と命名され、1994年12月6日、工業技術院生命工学工業技術研究所(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM P-14690として寄託され、1995年9月29日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-5252が付与されている(米国特許第5,827,698号)。 Specific examples of L-lysine-producing bacteria or parent strains for inducing them include E. coli WC196 strain. The WC196 strain was bred by conferring AEC resistance to the W3110 strain derived from E. coli K-12 (US Pat. No. 5,827,698). The WC196 strain was named E. coli AJ13069, and on December 6, 1994, the Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology (now the National Institute for Product Evaluation Technology, Patent Biological Depositary Center, ZIP Code: 292-0818 , Address: 2-5-8 鎌 120, Kazusa Kamashitsu, Kisarazu City, Chiba, Japan), deposited under the accession number FERM P-14690, transferred to an international deposit under the Budapest Treaty on September 29, 1995. FERM BP-5252 is granted (US Pat. No. 5,827,698).
 好ましいL-リジン生産菌として、E. coli WC196ΔcadAΔldcやE. coli WC196ΔcadAΔldc/pCABD2が挙げられる(WO2010/061890)。WC196ΔcadAΔldcは、WC196株より、リジンデカルボキシラーゼをコードするcadA及びldcC遺伝子を破壊することにより構築した株である。WC196ΔcadAΔldc/pCABD2は、WC196ΔcadAΔldcに、リジン生合成系遺伝子を含むプラスミドpCABD2(米国特許第6,040,160号)を導入することにより構築した株である。WC196ΔcadAΔldcは、AJ110692と命名され、2008年10月7日、独立行政法人産業技術総合研究所 特許生物寄託センター(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM BP-11027として寄託された。pCABD2は、L-リジンによるフィードバック阻害が解除された変異を有するエシェリヒア・コリ由来のジヒドロジピコリン酸合成酵素(DDPS)をコードする変異型dapA遺伝子と、L-リジンによるフィードバック阻害が解除された変異を有するエシェリヒア・コリ由来のアスパルトキナーゼIIIをコードする変異型lysC遺伝子と、エシェリヒア・コリ由来のジヒドロジピコリン酸レダクターゼをコードするdapB遺伝子と、ブレビバクテリウム・ラクトファーメンタム由来ジアミノピメリン酸デヒドロゲナーゼをコードするddh遺伝子を含んでいる。 Preferred L-lysine producing bacteria include E.coli WC196ΔcadAΔldc and E.coli WC196ΔcadAΔldc / pCABD2 (WO2010 / 061890). WC196ΔcadAΔldc is a strain constructed by disrupting the cadA and ldcC genes encoding lysine decarboxylase from the WC196 strain. WC196ΔcadAΔldc / pCABD2 is a strain constructed by introducing plasmid pCABD2 (US Pat. No. 6,040,160) containing a lysine biosynthesis gene into WC196ΔcadAΔldc. WC196ΔcadAΔldc was named AJ110692, and on October 7, 2008, National Institute of Advanced Industrial Science and Technology, Patent Biological Depositary Center (currently, National Institute of Technology and Evaluation, Patent Biological Depositary Center, ZIP Code: 292-0818, Address: 2-5-8 120, Kazusa Kamashitsu, Kisarazu City, Chiba Prefecture, Japan) was deposited under the accession number FERM BP-11027. pCABD2 is a mutant dapA gene encoding dihydrodipicolinate synthase (DDPS) derived from Escherichia coli having a mutation that is desensitized to feedback inhibition by L-lysine, and a mutation that is desensitized to feedback inhibition by L-lysine. A mutant lysC gene encoding aspartokinase III derived from Escherichia coli, dapB gene encoding dihydrodipicolinate reductase derived from Escherichia coli, and ddh encoding a diaminopimelate dehydrogenase derived from Brevibacterium lactofermentum Contains genes.
 好ましいL-リジン生産菌として、E. coli AJIK01株(NITE BP-01520)も挙げられる。AJIK01株は、E. coli AJ111046と命名され、2013年1月29日に、独立行政法人製品評価技術基盤機構 特許微生物寄託センター(郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に寄託され、2014年5月15日にブダペスト条約に基づく国際寄託に移管され、受託番号NITE BP-01520が付与されている。 A preferable L-lysine-producing bacterium includes E.coli AJIK01 strain (NITE BP-01520). The AJIK01 strain was named E. coli AJ111046. On January 29, 2013, the National Institute of Technology and Evaluation, Patent Microorganisms Deposit Center (Postal Code: 292-0818, Address: Kazusa Kama, Kisarazu City, Chiba Prefecture, Japan) No. 2-5-8 (120)), transferred to an international deposit based on the Budapest Treaty on May 15, 2014, and assigned the deposit number NITE BP-01520.
 また、L-リジン生産能を有するコリネ型細菌としては、例えば、AEC耐性変異株(Corynebacterium glutamicum (Brevibacterium lactofermentum) AJ11082(NRRL B-11470)株など;特公昭56-1914号公報、特公昭56-1915号公報、特公昭57-14157号公報、特公昭57-14158号公報、特公昭57-30474号公報、特公昭58-10075号公報、特公昭59-4993号公報、特公昭61-35840号公報、特公昭62-24074号公報、特公昭62-36673号公報、特公平5-11958号公報、特公平7-112437号公報、特公平7-112438号公報参照);その生育にL-ホモセリン等のアミノ酸を必要とする変異株(特公昭48-28078号公報、特公昭56-6499号公報参照);AECに耐性を示し、更にL-ロイシン、L-ホモセリン、L-プロリン、L-セリン、L-アルギニン、L-アラニン、L-バリン等のアミノ酸を要求する変異株(米国特許第3708395号及び第3825472号明細書参照);DL-α-アミノ-ε-カプロラクタム、α-アミノ-ラウリルラクタム、アスパラギン酸アナログ、スルファ剤、キノイド、N-ラウロイルロイシンに耐性を示す変異株;オキザロ酢酸デカルボキシラーゼ阻害剤または呼吸系酵素阻害剤に対する耐性を示す変異株(特開昭50-53588号公報、特開昭50-31093号公報、特開昭52-102498号公報、特開昭53-9394号公報、特開昭53-86089号公報、特開昭55-9783号公報、特開昭55-9759号公報、特開昭56-32995号公報、特開昭56-39778号公報、特公昭53-43591号公報、特公昭53-1833号公報);イノシトールまたは酢酸を要求する変異株(特開昭55-9784号公報、特開昭56-8692号公報);フルオロピルビン酸または34℃以上の温度に対して感受性を示す変異株(特開昭55-9783号公報、特開昭53-86090号公報);エチレングリコールに耐性を示す変異株(米国特許第4411997号明細書)が挙げられる。 Examples of coryneform bacteria having L-lysine-producing ability include, for example, AEC-resistant mutant strains (Corynebacterium glutamicum (Brevibacterium lactofermentum) AJ11082 (NRRL 470 B-11470) strain, etc .; Japanese Patent Publication No. 56-1914, Japanese Patent Publication No. 56- No. 1915, No. 57-14157, No. 57-14158, No. 57-30474, No. 58-10075, No. 59-4993, No. 61-35840 No. 62-24074, JP-B 62-36673, JP-B 5-11958, JP-B 7-112437, JP-B 7-112438); L-homoserine for its growth Mutants that require amino acids such as (see Japanese Patent Publication Nos. 48-28078 and 56-6499); exhibit resistance to AEC, and further L-leucine, L-homoserine, L-proline, L-serine Mutants requiring amino acids such as L-arginine, L-alanine and L-valine (US Pat. No. 3,708,395 and 3825472); DL-α-amino-ε-caprolactam, α-amino-lauryllactam, aspartic acid analogs, sulfa drugs, quinoids, mutant strains resistant to N-lauroylleucine; oxaloacetate decarboxylase inhibitors Alternatively, mutant strains exhibiting resistance to respiratory enzyme inhibitors (Japanese Patent Laid-Open Nos. 50-53588, 50-31093, 52-102498, 53-9394, JP-A-53-86089, JP-A-55-9783, JP-A-55-9759, JP-A-56-32995, JP-A-56-39778, JP-B-53-43591 No. 53-1833); mutants that require inositol or acetic acid (JP 55-9784, JP 56-8692); fluoropyruvic acid or a temperature of 34 ° C. or higher And sensitive mutants (Japanese Patent Laid-Open Nos. 55-9783 and 53-86090); Call mutants showing resistance (US Pat. No. 4,411,997) are mentioned.
<L-アルギニン生産菌>
 L-アルギニン生産能を付与又は増強するための方法としては、例えば、L-アルギニン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、N-アセチルグルタミン酸シンターゼ(argA)、N-アセチルグルタミルリン酸レダクターゼ(argC)、オルニチンアセチルトランスフェラーゼ(argJ)、N-アセチルグルタミン酸キナーゼ(argB)、アセチルオルニチントランスアミナーゼ(argD)、アセチルオルニチンデアセチラーゼ(argE)オルニチンカルバモイルトランスフェラーゼ(argF)、アルギニノコハク酸シンターゼ(argG)、アルギニノコハク酸リアーゼ(argH)、カルバモイルリン酸シンターゼ(carAB)が挙げられる。N-アセチルグルタミン酸シンターゼ(argA)遺伝子としては、例えば、野生型の15位~19位に相当するアミノ酸残基が置換され、L-アルギニンによるフィードバック阻害が解除された変異型N-アセチルグルタミン酸シンターゼをコードする遺伝子を用いると好適である(欧州出願公開1170361号明細書)。
<L-arginine producing bacteria>
Examples of the method for imparting or enhancing L-arginine-producing ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-arginine biosynthesis enzymes is increased. . Examples of such enzymes include, but are not limited to, N-acetylglutamate synthase (argA), N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine Examples include transaminase (argD), acetylornithine deacetylase (argE) ornithine carbamoyltransferase (argF), argininosuccinate synthase (argG), argininosuccinate lyase (argH), and carbamoyl phosphate synthase (carAB). Examples of the N-acetylglutamate synthase (argA) gene include mutant N-acetylglutamate synthase in which amino acid residues corresponding to the 15th to 19th positions of the wild type are substituted and feedback inhibition by L-arginine is released. It is preferable to use a gene to be encoded (European Application Publication No. 1170361).
 L-アルギニン生産菌又はそれを誘導するための親株として、具体的には、例えば、E. coli 237株 (VKPM B-7925) (米国特許出願公開2002/058315 A1)、変異型N-アセチルグルタミン酸シンターゼをコードするargA遺伝子が導入されたその誘導株 (ロシア特許出願第2001112869号, EP1170361A1)、237株由来の酢酸資化能が向上した株であるE. coli 382株 (VKPM B-7926) (EP1170358A1)、及び382株にE. coli K-12株由来の野生型ilvA遺伝子が導入された株であるE. coli 382ilvA+株が挙げられる。E. coli 237株は、2000年4月10日にルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) にVKPM B-7925の受託番号で寄託され、2001年5月18日にブダペスト条約に基づく国際寄託に移管された。E. coli 382株は、2000年4月10日にルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) にVKPM B-7926の受託番号で寄託されている。 Specific examples of L-arginine-producing bacteria or parent strains for inducing the same include, for example, E. coli 237 strain (VKPM B-7925) (US Patent Application Publication 2002/058315 A1), mutant N-acetylglutamic acid Its derivative strain さ れ (Russian patent application No. 2001112869, EP1170361A1) introduced with the argA gene encoding synthase, E.237coli 382 strain (VKPM B-7926) 237 (VKPM B-7926) EP1170358A1) and E. coli 382ilvA + strain, which is a strain in which the wild-type ilvA gene derived from E. coli K-12 strain is introduced into 382 strain. E. coli 237 shares were registered with VKPM B-7925 on April 10, 2000 at Lucian National Collection of Industrial Microorganisms (1 Dorozhny proezd., 1 Moscow 117545, Russia) And was transferred to an international deposit under the Budapest Treaty on May 18, 2001. E. coli 382 shares were awarded VKPM B-7926 to Lucian National Collection of Industrial Microorganisms (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) on April 10, 2000 Deposited at
 また、L-アルギニン生産菌又はそれを誘導するための親株としては、アミノ酸アナログ等への耐性を有する株も挙げられる。そのような株としては、例えば、α-メチルメチオニン、p-フルオロフェニルアラニン、D-アルギニン、アルギニンヒドロキサム酸、S-(2-アミノエチル)-システイン、α-メチルセリン、β-2-チエニルアラニン、またはスルファグアニジンに耐性を有するエシェリヒア・コリ変異株(特開昭56-106598号公報参照)が挙げられる。 In addition, examples of L-arginine-producing bacteria or parent strains for inducing them include strains having resistance to amino acid analogs and the like. Such strains include, for example, α-methylmethionine, p-fluorophenylalanine, D-arginine, arginine hydroxamic acid, S- (2-aminoethyl) -cysteine, α-methylserine, β-2-thienylalanine, or Examples include Escherichia coli mutants having resistance to sulfaguanidine (see JP-A-56-106598).
 また、L-アルギニン生産菌又はそれを誘導するための親株としては、アルギニンリプレッサーであるArgRを欠損した株(米国特許出願公開2002-0045223号)や細胞内のグルタミンシンテターゼ活性を上昇させた株(米国特許出願公開2005-0014236号公報)等のコリネ型細菌も挙げられる。 Examples of L-arginine-producing bacteria or parent strains for inducing them include strains lacking ArgR, an arginine repressor (US Patent Application Publication No. 2002-0045223), and strains that have increased intracellular glutamine synthetase activity. Examples thereof include coryneform bacteria such as (US Patent Application Publication No. 2005-0014236).
 また、L-アルギニン生産菌又はそれを誘導するための親株としては、アミノ酸アナログなどへの耐性を有するコリネ型細菌の変異株も挙げられる。そのような株としては、例えば、2-チアゾールアラニン耐性に加えて、L-ヒスチジン、L-プロリン、L-スレオニン、L-イソロイシン、L-メチオニン、またはL-トリプトファン要求性を有する株(特開昭54-44096号公報);ケトマロン酸、フルオロマロン酸、又はモノフルオロ酢酸に耐性を有する株(特開昭57-18989号公報);アルギニノールに耐性を有する株(特公昭62-24075号公報);X-グアニジン(Xは脂肪鎖又はその誘導体)に耐性を有する株(特開平2-186995号公報);アルギニンヒドロキサメート及び6-アザウラシルに耐性を有する株(特開昭57-150381号公報)が挙げられる。L-アルギニン生産能を有するコリネ型細菌の具体例としては、下記のような菌株が挙げられる。
Corynebacterium glutamicum (Brevibacterium flavum) AJ11169(FERM BP-6892)
Corynebacterium glutamicum (Brevibacterium lactofermentum) AJ12092(FERM BP-6906)
Corynebacterium glutamicum (Brevibacterium flavum) AJ11336(FERM BP-6893)
Corynebacterium glutamicum (Brevibacterium flavum) AJ11345(FERM BP-6894)
Corynebacterium glutamicum (Brevibacterium lactofermentum) AJ12430(FERM BP-2228)
In addition, examples of L-arginine-producing bacteria or parent strains for inducing them include mutants of coryneform bacteria having resistance to amino acid analogs and the like. Examples of such a strain include, in addition to 2-thiazolealanine resistance, a strain having L-histidine, L-proline, L-threonine, L-isoleucine, L-methionine, or L-tryptophan auxotrophic No. 54-44096); strains resistant to ketomalonic acid, fluoromalonic acid, or monofluoroacetic acid (JP 57-18989); strains resistant to argininol (Japanese Patent Publication No. 62-24075) A strain resistant to X-guanidine (X is a fatty chain or a derivative thereof) (Japanese Patent Laid-Open No. 2-186995); a strain resistant to arginine hydroxamate and 6-azauracil (Japanese Patent Laid-Open No. 57-150381) ). Specific examples of coryneform bacteria having the ability to produce L-arginine include the following strains.
Corynebacterium glutamicum (Brevibacterium flavum) AJ11169 (FERM BP-6892)
Corynebacterium glutamicum (Brevibacterium lactofermentum) AJ12092 (FERM BP-6906)
Corynebacterium glutamicum (Brevibacterium flavum) AJ11336 (FERM BP-6893)
Corynebacterium glutamicum (Brevibacterium flavum) AJ11345 (FERM BP-6894)
Corynebacterium glutamicum (Brevibacterium lactofermentum) AJ12430 (FERM BP-2228)
<L-シトルリン生産菌およびL-オルニチン生産菌>
 L-シトルリンおよびL-オルニチンは、L-アルギニンと生合成経路が共通している。よって、N-アセチルグルタミン酸シンターゼ(argA)、N-アセチルグルタミルリン酸レダクターゼ(argC)、オルニチンアセチルトランスフェラーゼ(argJ)、N-アセチルグルタミン酸キナーゼ(argB)、アセチルオルニチントランスアミナーゼ(argD)、および/またはアセチルオルニチンデアセチラーゼ(argE)の酵素活性を上昇させることによって、L-シトルリンおよび/またはL-オルニチンの生産能を付与または増強することができる(国際公開2006-35831号パンフレット)。
<L-citrulline-producing bacteria and L-ornithine-producing bacteria>
L-citrulline and L-ornithine share a biosynthetic pathway with L-arginine. Thus, N-acetylglutamate synthase (argA), N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine transaminase (argD), and / or acetylornithine By increasing the enzyme activity of deacetylase (argE), the ability to produce L-citrulline and / or L-ornithine can be imparted or enhanced (WO 2006-35831).
<L-ヒスチジン生産菌>
 L-ヒスチジン生産能を付与又は増強するための方法としては、例えば、L-ヒスチジン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、ATPホスホリボシルトランスフェラーゼ(hisG)、ホスホリボシル-AMPサイクロヒドロラーゼ(hisI)、ホスホリボシル-ATPピロホスホヒドロラーゼ(hisI)、ホスホリボシルフォルミミノ-5-アミノイミダゾールカルボキサミドリボタイドイソメラーゼ(hisA)、アミドトランスフェラーゼ(hisH)、ヒスチジノールフォスフェイトアミノトランスフェラーゼ(hisC)、ヒスチジノールフォスファターゼ(hisB)、ヒスチジノールデヒドロゲナーゼ(hisD)が挙げられる。
<L-histidine producing bacteria>
Examples of the method for imparting or enhancing L-histidine production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-histidine biosynthesis enzymes is increased. . Examples of such an enzyme include, but are not limited to, ATP phosphoribosyltransferase (hisG), phosphoribosyl-AMP cyclohydrolase (hisI), phosphoribosyl-ATP pyrophosphohydrolase (hisI), phosphoribosylformimino-5-aminoimidazole carboxamide ribonucleoside. Examples thereof include tide isomerase (hisA), amide transferase (hisH), histidinol phosphate aminotransferase (hisC), histidinol phosphatase (hisB), and histidinol dehydrogenase (hisD).
 これらの内、hisG及びhisBHAFIにコードされるL-ヒスチジン生合成系酵素は、L-ヒスチジンにより阻害されることが知られている。従って、L-ヒスチジン生産能は、例えば、ATPホスホリボシルトランスフェラーゼ遺伝子(hisG)にフィードバック阻害への耐性を付与する変異を導入することにより、付与または増強させることができる(ロシア特許第2003677号及び第2119536号)。 Of these, L-histidine biosynthetic enzymes encoded by hisG and hisBHAFI are known to be inhibited by L-histidine. Therefore, the ability to produce L-histidine can be imparted or enhanced, for example, by introducing a mutation that confers resistance to feedback inhibition in the ATP phosphoribosyltransferase gene (hisG) (Russian Patent No. 2003677 and No. 2). 2119536).
 L-ヒスチジン生産菌又はそれを誘導するための親株として、具体的には、例えば、E. coli 24株 (VKPM B-5945, RU2003677)、E. coli NRRL B-12116~B-12121 (米国特許第4,388,405号)、E. coli H-9342 (FERM BP-6675)及びH-9343 (FERM BP-6676) (米国特許第6,344,347号)、E. coli H-9341 (FERM BP-6674) (EP1085087)、E. coli AI80/pFM201 (米国特許第6,258,554号)、L-ヒスチジン生合成系酵素をコードするDNAを保持するベクターを導入したE. coli FERM P-5038及び5048 (特開昭56-005099号)、アミノ酸輸送の遺伝子を導入したE. coli株(EP1016710A)、スルファグアニジン、DL-1,2,4-トリアゾール-3-アラニン、及びストレプトマイシンに対する耐性を付与したE. coli 80株(VKPM B-7270, ロシア特許第2119536号)などのエシェリヒア属に属する株が挙げられる。 Specific examples of L-histidine-producing bacteria or parent strains for inducing them include, for example, E. coli 24 strain (VKPM B-5945, RU2003677), E. coli NRRL B-12116-B-12121 (US Patent) No. 4,388,405), E. coli H-9342 (FERM BP-6675) and H-9343 (FERM BP-6676) (U.S. Patent No. 6,344,347), E. coli H-9341 (FERM BP-6674) (EP1085087) E. coli AI80 / pFM201 (US Pat. No. 6,258,554), E. coli FERM P-5038 and 5048 into which a vector carrying DNA encoding an L-histidine biosynthetic enzyme was introduced (Japanese Patent Laid-Open No. 56-005099) ), E. coli strain (EP1016710A) introduced with a gene for amino acid transport, E. coli 80 strain (VKPM B) with resistance to sulfaguanidine, DL-1,2,4-triazole-3-alanine, and streptomycin -7270, (Russian Patent No. 2119536) and other strains belonging to the genus Escherichia.
<L-システイン生産菌>
 L-システイン生産能を付与又は増強するための方法としては、例えば、L-システイン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、セリンアセチルトランスフェラーゼ(cysE)や3-ホスホグリセリン酸デヒドロゲナーゼ(serA)が挙げられる。セリンアセチルトランスフェラーゼ活性は、例えば、システインによるフィードバック阻害に耐性の変異型セリンアセチルトランスフェラーゼをコードする変異型cysE遺伝子を細菌に導入することにより増強できる。変異型セリンアセチルトランスフェラーゼは、例えば、特開平11-155571や米国特許公開第20050112731に開示されている。また、3-ホスホグリセリン酸デヒドロゲナーゼ活性は、例えば、セリンによるフィードバック阻害に耐性の変異型3-ホスホグリセリン酸デヒドロゲナーゼをコードする変異型serA遺伝子を細菌に導入することにより増強できる。変異型3-ホスホグリセリン酸デヒドロゲナーゼは、例えば、米国特許第6,180,373号に開示されている。
<L-cysteine producing bacteria>
Examples of the method for imparting or enhancing L-cysteine production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-cysteine biosynthesis enzymes is increased. . Examples of such an enzyme include, but are not limited to, serine acetyltransferase (cysE) and 3-phosphoglycerate dehydrogenase (serA). Serine acetyltransferase activity can be enhanced, for example, by introducing a mutant cysE gene encoding a mutant serine acetyltransferase resistant to feedback inhibition by cysteine into bacteria. Mutant serine acetyltransferases are disclosed, for example, in JP-A-11-155571 and US Patent Publication No. 20050112731. Further, the 3-phosphoglycerate dehydrogenase activity can be enhanced by introducing, for example, a mutant serA gene encoding a mutant 3-phosphoglycerate dehydrogenase resistant to feedback inhibition by serine into a bacterium. Mutant 3-phosphoglycerate dehydrogenase is disclosed, for example, in US Pat. No. 6,180,373.
 また、L-システイン生産能を付与又は増強するための方法としては、例えば、L-システインの生合成経路から分岐してL-システイン以外の化合物を生成する反応を触媒する酵素から選択される1またはそれ以上の酵素の活性が低下するように細菌を改変する方法も挙げられる。そのような酵素としては、例えば、L-システインの分解に関与する酵素が挙げられる。L-システインの分解に関与する酵素としては、特に制限されないが、シスタチオニン-β-リアーゼ(metC)(特開平11-155571号、Chandra et. al., Biochemistry, 21 (1982) 3064-3069))、トリプトファナーゼ(tnaA)(特開2003-169668、Austin Newton et. al., J. Biol. Chem. 240 (1965) 1211-1218)、O-アセチルセリンスルフヒドリラーゼB(cysM)(特開2005-245311)、malY遺伝子産物(特開2005-245311)、Pantoea ananatisのd0191遺伝子産物(特開2009-232844)、システインデスルフヒドラーゼ(aecD)(特開2002-233384)が挙げられる。 The method for imparting or enhancing L-cysteine production ability is selected from, for example, an enzyme that catalyzes a reaction that branches from the biosynthesis pathway of L-cysteine to produce a compound other than L-cysteine. Alternatively, a method of modifying the bacterium so that the activity of the further enzyme is reduced can also be mentioned. Examples of such enzymes include enzymes involved in the degradation of L-cysteine. The enzyme involved in the degradation of L-cysteine is not particularly limited, but cystathionine-β-lyase (metC) (Japanese Patent Laid-Open No. 11-155571, Chandra et. Al., Biochemistry, 21 (1982) 3064-3069)) Tryptophanase (tnaA) (Japanese Patent Laid-Open No. 2003-169668, Austin 、 Newton et. Al., J. Biol. Chem. 240 (1965) 1211-1218), O-acetylserine sulfhydrylase B (cysM) (special JP 2005-245311), malY gene product (JP 2005-245311), d0191 gene product of Pantoea 遺 伝 子 ananatis (JP 2009-232844), and cysteine desulfhydrase (aecD) (JP 2002-233384).
 また、L-システイン生産能を付与又は増強するための方法としては、例えば、L-システイン排出系を増強することや硫酸塩/チオ硫酸塩輸送系を増強することも挙げられる。L-システイン排出系のタンパク質としては、ydeD遺伝子にコードされるタンパク質(特開2002-233384)、yfiK遺伝子にコードされるタンパク質(特開2004-49237)、emrAB、emrKY、yojIH、acrEF、bcr、およびcusAの各遺伝子にコードされる各タンパク質(特開2005-287333)、yeaS遺伝子にコードされるタンパク質(特開2010-187552)が挙げられる。硫酸塩/チオ硫酸塩輸送系のタンパク質としては、cysPTWAM遺伝子クラスターにコードされるタンパク質が挙げられる。 In addition, examples of methods for imparting or enhancing L-cysteine production ability include enhancing the L-cysteine excretion system and enhancing the sulfate / thiosulfate transport system. Examples of proteins of the L-cysteine excretion system include proteins encoded by the ydeD gene (JP 2002-233384), proteins encoded by the yfiK gene (JP 2004-49237), emrAB, emrKY, yojIH, acrEF, bcr, And each protein encoded by each gene of cusA (Japanese Patent Laid-Open No. 2005-287333), and protein encoded by the yeaS gene (Japanese Patent Laid-Open No. 2010-187552). Examples of the sulfate / thiosulfate transport system protein include proteins encoded by the cysPTWAM gene cluster.
 L-システイン生産菌又はそれを誘導するための親株として、具体的には、例えば、フィードバック阻害耐性の変異型セリンアセチルトランスフェラーゼをコードする種々のcysEアレルで形質転換されたE. coli JM15 (米国特許第6,218,168号、ロシア特許出願第2003121601号)、細胞に毒性の物質を排出するのに適したタンパク質をコードする過剰発現遺伝子を有するE. coli W3110 (米国特許第5,972,663号)、システインデスルフヒドラーゼ活性が低下したE. coli株 (JP11155571A2)、cysB遺伝子によりコードされる正のシステインレギュロンの転写制御因子の活性が上昇したE. coli W3110 (WO01/27307A1)が挙げられる。 Specific examples of L-cysteine-producing bacteria or parent strains for deriving them include, for example, E. coli JM15 (US Patent) transformed with various cysE alleles encoding mutant serine acetyltransferase resistant to feedback inhibition. No. 6,218,168, Russian Patent Application No. 2003121601), E. coli W3110 (US Pat.No. 5,972,663), cysteine desulfhydrase, which has an overexpressed gene encoding a protein suitable for excretion of substances toxic to cells Examples include E. coli strain (JP11155571A2) with reduced activity and E. coli W3110 (WO01 / 27307A1) with increased activity of the transcriptional control factor of the positive cysteine regulon encoded by the cysB gene.
 また、L-システイン生産能を有するコリネ型細菌としては、例えば、L-システインによるフィードバック阻害が低減されたセリンアセチルトランスフェラーゼを保持することにより、細胞内のセリンアセチルトランスフェラーゼ活性が上昇したコリネ型細菌(特開2002-233384)が挙げられる。 Examples of coryneform bacteria having L-cysteine-producing ability include coryneform bacteria in which intracellular serine acetyltransferase activity is increased by retaining serine acetyltransferase with reduced feedback inhibition by L-cysteine (for example, JP-A-2002-233384).
<L-セリン生産菌>
 L-セリン生産能を付与又は増強するための方法としては、例えば、L-セリン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる(特開平11-253187)。そのような酵素としては、特に制限されないが、3-ホスホグリセリン酸デヒドロゲナーゼ(serA)、ホスホセリントランスアミナーゼ(serC)、ホスホセリンホスファターゼ(serB)が挙げられる(特開平11-253187)。3-ホスホグリセリン酸デヒドロゲナーゼ活性は、例えば、セリンによるフィードバック阻害に耐性の変異型3-ホスホグリセリン酸デヒドロゲナーゼをコードする変異型serA遺伝子を細菌に導入することにより増強できる。変異型3-ホスホグリセリン酸デヒドロゲナーゼは、例えば、米国特許第6,180,373号に開示されている。
<L-serine producing bacteria>
Examples of a method for imparting or enhancing L-serine production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-serine biosynthetic enzymes is increased. (Japanese Patent Laid-Open No. 11-253187). Examples of such enzymes include, but are not limited to, 3-phosphoglycerate dehydrogenase (serA), phosphoserine transaminase (serC), and phosphoserine phosphatase (serB) (Japanese Patent Laid-Open No. 11-253187). The 3-phosphoglycerate dehydrogenase activity can be enhanced, for example, by introducing a mutant serA gene encoding a mutant 3-phosphoglycerate dehydrogenase resistant to feedback inhibition by serine into bacteria. Mutant 3-phosphoglycerate dehydrogenase is disclosed, for example, in US Pat. No. 6,180,373.
 L-セリン生産菌又はそれを誘導するための親株としては、例えば、アザセリンまたはβ-(2-チエニル)-DL-アラニンに耐性を示し、かつL-セリン分解能を欠失したコリネ型細菌が挙げられる(特開平10-248588)。そのようなコリネ型細菌として、具体的には、例えば、アザセリンに耐性を示し、かつL-セリン分解能を欠失したCorynebacterium glutamicum (Brevibacterium flavum) AJ13324 (FERM P-16128) や、β-(2-チエニル)-DL-アラニンに耐性を示し、かつL-セリンの分解能を欠失したCorynebacterium glutamicum (Brevibacterium flavum) AJ13325 (FERM P-16129) が挙げられる(特開平10-248588)。 Examples of L-serine-producing bacteria or parent strains for inducing them include coryneform bacteria that are resistant to azaserine or β- (2-thienyl) -DL-alanine and lack L-serine resolution. (JP-A-10-248588). Specific examples of such coryneform bacteria include, for example, Corynebacterium glutamicum (Brevibacterium flavum) AJ13324 (FERM P-16128) し た, which is resistant to azaserine and lacks L-serine resolution, and β- (2- Corynebacterium glutamicum (Brevibacterium flavum) AJ13325 (FERM 示 し P-16129) 示 し that is resistant to thienyl) -DL-alanine and lacks the resolution of L-serine (Japanese Patent Laid-Open No. 10-248588).
<L-メチオニン生産菌>
 L-メチオニン生産菌又はそれを誘導するための親株としては、L-スレオニン要求株や、ノルロイシンに耐性を有する変異株が挙げられる(特開2000-139471)。また、L-メチオニン生産菌又はそれを誘導するための親株としては、L-メチオニンによるフィードバック阻害に対して耐性をもつ変異型ホモセリントランスサクシニラーゼを保持する株も挙げられる(特開2000-139471、US20090029424)。なお、L-メチオニンはL-システインを中間体として生合成されるため、L-システインの生産能の向上によりL-メチオニンの生産能も向上させることができる(特開2000-139471、US20080311632)。
<L-methionine producing bacteria>
Examples of L-methionine-producing bacteria or parent strains for inducing them include L-threonine-requiring strains and mutants having resistance to norleucine (Japanese Patent Laid-Open No. 2000-139471). In addition, examples of L-methionine-producing bacteria or parent strains for deriving them also include strains that retain mutant homoserine transsuccinylase that is resistant to feedback inhibition by L-methionine (Japanese Patent Laid-Open No. 2000-139471). , US20090029424). Since L-methionine is biosynthesized with L-cysteine as an intermediate, L-methionine production ability can be improved by improving L-cysteine production ability (Japanese Patent Laid-Open No. 2000-139471, US20080311632).
 L-メチオニン生産菌又はそれを誘導するための親株として、具体的には、例えば、E. coli AJ11539 (NRRL B-12399)、E. coli AJ11540 (NRRL B-12400)、E. coli AJ11541 (NRRL B-12401)、E. coli AJ11542 (NRRL B-12402) (英国特許第2075055号)、L-メチオニンのアナログであるノルロイシン耐性を有するE. coli 218株 (VKPM B-8125)(ロシア特許第2209248号)や73株 (VKPM B-8126) (ロシア特許第2215782号)、E. coli AJ13425 (FERM P-16808)(特開2000-139471)が挙げられる。AJ13425株は、メチオニンリプレッサーを欠損し、細胞内のS-アデノシルメチオニンシンセターゼ活性が弱化し、細胞内のホモセリントランスサクシニラーゼ活性、シスタチオニンγ-シンターゼ活性、及びアスパルトキナーゼ-ホモセリンデヒドロゲナーゼII活性が増強された、E. coli W3110由来のL-スレオニン要求株である。 Specific examples of L-methionine-producing bacteria or parent strains for inducing them include, for example, E. coli AJ11539 (NRRL B-12399), E. coli AJ11540 (NRRL B-12400), E. coli AJ11541 (NRRL B-12401), E. coli AJ11542 (NRRL B-12402) (British Patent No. 2075055), E. coli 218 strain (VKPM B-8125) having resistance to norleucine, an analog of L-methionine (Russian Patent No. 2209248) No.), 73 shares (VKPM B-8126) (Russian Patent No. 2215782), E. coli AJ13425 (FERM P-16808) (Japanese Patent Laid-Open No. 2000-139471). The AJ13425 strain lacks a methionine repressor, weakens intracellular S-adenosylmethionine synthetase activity, and produces intracellular homoserine transsuccinylase activity, cystathionine γ-synthase activity, and aspartokinase-homoserine dehydrogenase II. L-threonine-requiring strain derived from E. coli W3110 with enhanced activity.
<L-ロイシン生産菌>
 L-ロイシン生産能を付与又は増強するための方法としては、例えば、L-ロイシン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、leuABCDオペロンの遺伝子にコードされる酵素が挙げられる。また、酵素活性の増強には、例えば、L-ロイシンによるフィードバック阻害が解除されたイソプロピルマレートシンターゼをコードする変異leuA遺伝子(米国特許第6,403,342号)が好適に利用できる。
<L-leucine producing bacteria>
Examples of the method for imparting or enhancing the ability to produce L-leucine include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-leucine biosynthesis enzymes is increased. . Examples of such an enzyme include, but are not limited to, an enzyme encoded by a gene of leuABCD operon. For enhancing enzyme activity, for example, a mutant leuA gene (US Pat. No. 6,403,342) encoding isopropyl malate synthase from which feedback inhibition by L-leucine has been released can be suitably used.
 L-ロイシン生産菌又はそれを誘導するための親株として、具体的には、例えば、ロイシン耐性のE. coli株 (例えば、57株 (VKPM B-7386, 米国特許第6,124,121号))、β-2-チエニルアラニン、3-ヒドロキシロイシン、4-アザロイシン、5,5,5-トリフルオロロイシンなどのロイシンアナログ耐性のE. coli株(特公昭62-34397号及び特開平8-70879号)、WO96/06926に記載された遺伝子工学的方法で得られたE. coli株、E. coli H-9068 (特開平8-70879号)などのエシェリヒア属に属する株が挙げられる。 Specific examples of L-leucine-producing bacteria or parent strains for inducing the same include, for example, leucine-resistant E. coli strains (eg, 57 strains (VKPM B-7386, US Pat. No. 6,124,121)), β- E. coli strains resistant to leucine analogs such as 2-thienylalanine, 3-hydroxyleucine, 4-azaleucine, 5,5,5-trifluoroleucine (JP-B-62-34397 and JP-A-8-70879), WO96 And strains belonging to the genus Escherichia such as E. coli strain and E. coli H-9068 (JP-A-8-70879) obtained by the genetic engineering method described in / 06926.
 L-ロイシン生産能を有するコリネ型細菌としては、例えば、2-チアゾールアラニン及びβ-ハイドロキシロイシンに耐性で、且つイソロイシン及びメチオニン要求性である、Corynebacterium glutamicum (Brevibacterium lactofermentum) AJ3718(FERM P-2516)が挙げられる。 Coryneform bacteria having L-leucine-producing ability include, for example, Corynebacterium amicglutamicum (Brevibacterium lactofermentum) AJ3718 (FERM P-2516), which is resistant to 2-thiazolealanine and β-hydroxyleucine, and is auxotrophic for isoleucine and methionine. Is mentioned.
<L-イソロイシン生産菌>
 L-イソロイシン生産能を付与又は増強するための方法としては、例えば、L-イソロイシン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、スレオニンデアミナーゼやアセトヒドロキシ酸シンターゼが挙げられる(特開平2-458号, FR 0356739, 及び米国特許第5,998,178号)。
<L-isoleucine producing bacterium>
Examples of the method for imparting or enhancing L-isoleucine producing ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-isoleucine biosynthesis enzymes is increased. . Examples of such an enzyme include, but are not limited to, threonine deaminase and acetohydroxy acid synthase (JP-A-2-458, FR 0356739, and US Pat. No. 5,998,178).
 L-イソロイシン生産菌又はそれを誘導するための親株として、具体的には、例えば、6-ジメチルアミノプリンに耐性を有する変異株(特開平5-304969号)、チアイソロイシン、イソロイシンヒドロキサメートなどのイソロイシンアナログに耐性を有する変異株、イソロイシンアナログに加えてDL-エチオニン及び/またはアルギニンヒドロキサメートに耐性を有する変異株(特開平5-130882号)等のエシェリヒア属細菌が挙げられる。 Specific examples of L-isoleucine-producing bacteria or parent strains for inducing them include mutants having resistance to 6-dimethylaminopurine (Japanese Patent Laid-Open No. 5-304969), thiisoleucine, isoleucine hydroxamate, etc. Escherichia bacteria such as mutant strains resistant to isoleucine analogs and mutant strains resistant to DL-ethionine and / or arginine hydroxamate in addition to isoleucine analogs (JP-A-5-130882).
 L-イソロイシン生産能を有するコリネ型細菌としては、例えば、分岐鎖アミノ酸排出タンパク質をコードするbrnE遺伝子を増幅したコリネ型細菌(特開2001-169788)、L-リジン生産菌とのプロトプラスト融合によりL-イソロイシン生産能を付与したコリネ型細菌(特開昭62-74293)、ホモセリンデヒドロゲナーゼを強化したコリネ型細菌(特開昭62-91193)、スレオニンハイドロキサメート耐性株(特開昭62-195293)、α-ケトマロン耐性株(特開昭61-15695)、メチルリジン耐性株(特開昭61-15696)、Corynebacterium glutamicum (Brevibacterium flavum) AJ12149(FERM BP-759)(米国特許第4,656,135号)が挙げられる。 Examples of coryneform bacteria having the ability to produce L-isoleucine include, for example, coryneform bacteria (JP 2001-169788) in which a brnE gene encoding a branched-chain amino acid excretion protein is amplified, and protoplast fusion with L-lysine-producing bacteria. -Coryneform bacteria imparted with isoleucine-producing ability (Japanese Patent Laid-Open No. Sho 62-74293), coryneform bacteria enhanced with homoserine dehydrogenase (Japanese Patent Laid-Open No. Sho 62-91193), threonine hydroxamate resistant strain (Japanese Patent Laid-Open No. Sho 62-195293) , Α-ketomalone resistant strain (JP 61-15695), methyl lysine resistant strain (JP 61-15696), Corynebacterium glutamicum (Brevibacterium flavum) AJ12149 (FERM BP-759) (US Patent No. 4,656,135) .
<L-バリン生産菌>
 L-バリン生産能を付与又は増強するための方法としては、例えば、L-バリン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、ilvGMEDAオペロンやilvBNCオペロンの遺伝子にコードされる酵素が挙げられる。ilvBNはアセトヒドロキシ酸シンターゼを、ilvCはイソメロリダクターゼ(国際公開00/50624号)を、それぞれコードする。なお、ilvGMEDAオペロンおよびilvBNCオペロンは、L-バリン、L-イソロイシン、および/またはL-ロイシンによる発現抑制(アテニュエーション)を受ける。よって、酵素活性の増強のためには、アテニュエーションに必要な領域を除去または改変し、生成するL-バリンによる発現抑制を解除するのが好ましい。また、ilvA遺伝子がコードするスレオニンデアミナーゼは、L-イソロイシン生合成系の律速段階であるL-スレオニンから2-ケト酪酸への脱アミノ化反応を触媒する酵素である。よって、L-バリン生産のためには、ilvA遺伝子が破壊等され、スレオニンデアミナーゼ活性が減少しているのが好ましい。
<L-valine producing bacteria>
Examples of a method for imparting or enhancing L-valine production ability include a method of modifying a bacterium so that the activity of one or more enzymes selected from L-valine biosynthetic enzymes is increased. . Examples of such enzymes include, but are not limited to, enzymes encoded by genes of ilvGMEDA operon and ilvBNC operon. ilvBN encodes acetohydroxy acid synthase, and ilvC encodes isomeroreductase (WO 00/50624). The ilvGMEDA operon and the ilvBNC operon are subject to expression suppression (attenuation) by L-valine, L-isoleucine, and / or L-leucine. Therefore, in order to enhance the enzyme activity, it is preferable to remove or modify the region necessary for attenuation and to cancel the expression suppression by the produced L-valine. The threonine deaminase encoded by the ilvA gene is an enzyme that catalyzes the deamination reaction from L-threonine to 2-ketobutyric acid, which is the rate-limiting step of the L-isoleucine biosynthesis system. Therefore, for L-valine production, it is preferable that the ilvA gene is disrupted and the threonine deaminase activity is reduced.
 また、L-バリン生産能を付与又は増強するための方法としては、例えば、L-バリンの生合成経路から分岐してL-バリン以外の化合物を生成する反応を触媒する酵素から選択される1またはそれ以上の酵素の活性が低下するように細菌を改変する方法も挙げられる。そのような酵素としては、特に制限されないが、L-ロイシン合成に関与するスレオニンデヒドラターゼやD-パントテン酸合成に関与する酵素が挙げられる(国際公開00/50624号)。 The method for imparting or enhancing L-valine-producing ability is, for example, selected from enzymes that catalyze a reaction that branches from the biosynthetic pathway of L-valine to produce a compound other than L-valine. Alternatively, a method of modifying the bacterium so that the activity of the further enzyme is reduced can also be mentioned. Examples of such enzymes include, but are not limited to, threonine dehydratase involved in L-leucine synthesis and enzymes involved in D-pantothenic acid synthesis (International Publication No. 00/50624).
 L-バリン生産菌又はそれを誘導するための親株として、具体的には、例えば、ilvGMEDAオペロンを過剰発現するように改変されたE. coli株(米国特許第5,998,178号) が挙げられる。 Specific examples of the L-valine-producing bacterium or the parent strain for deriving the same include, for example, the E. coli strain (US Pat. No. 5,998,178) that has been modified to overexpress the ilvGMEDA operon.
 また、L-バリン生産菌又はそれを誘導するための親株としては、アミノアシルt-RNAシンテターゼに変異を有する株(米国特許第5,658,766号)も挙げられる。そのような株としては、例えば、イソロイシンtRNAシンテターゼをコードするileS遺伝子に変異を有するE. coli VL1970が挙げられる。E. coli VL1970は、1988年6月24日、ルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia)に、受託番号VKPM B-4411で寄託されている。また、L-バリン生産菌又はそれを誘導するための親株としては、生育にリポ酸を要求する、および/または、H+-ATPaseを欠失している変異株(WO96/06926)も挙げられる。 In addition, examples of L-valine-producing bacteria or parent strains for deriving them also include strains having mutations in aminoacyl t-RNA synthetases (US Pat. No. 5,658,766). Examples of such a strain include E. coli VL1970 having a mutation in the ileS gene encoding isoleucine tRNA synthetase. E. coli VL1970 was accepted on June 24, 1988 at Lucian National Collection of Industrial Microorganisms (VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia) under the accession number VKPM B-4411. It has been deposited. In addition, examples of L-valine-producing bacteria or parent strains for deriving the same also include mutant strains (WO96 / 06926) that require lipoic acid for growth and / or lack H + -ATPase. .
 また、L-バリン生産菌又はそれを誘導するための親株としては、アミノ酸アナログなどへの耐性を有する株も挙げられる。そのような株としては、例えば、L-イソロイシンおよびL-メチオニン要求性、ならびにD-リボース、プリンリボヌクレオシド、またはピリミジンリボヌクレオシドに耐性を有し、且つL-バリン生産能を有するコリネ型細菌株(FERM P-1841、FERM P-29、特公昭53-025034)、ポリケトイド類に耐性を有するコリネ型細菌株(FERM P-1763、FERM P-1764、特公平06-065314)、酢酸を唯一の炭素源とする培地でL-バリン耐性を示し、且つグルコースを唯一の炭素源とする培地でピルビン酸アナログ(フルオロピルビン酸等)に感受性を有するコリネ型細菌株(FERM BP-3006、FERM BP-3007、特許3006929号)が挙げられる。 In addition, examples of L-valine-producing bacteria or parent strains for inducing them include strains having resistance to amino acid analogs and the like. Such strains include, for example, L-isoleucine and L-methionine requirement, coryneform bacterial strains resistant to D-ribose, purine ribonucleoside, or pyrimidine ribonucleoside and capable of producing L-valine. (FERM P-1841, FERM P-29, JP-B 53-025034), Coryneform bacteria strains resistant to polyketoids (FERM P-1763, FERM P-1764, JP-B-06-065314), acetic acid only Coryneform bacterial strains (FERM BP-3006, FERM BP-) which are L-valine resistant in a medium with carbon source and sensitive to pyruvate analogs (fluoropyruvic acid etc.) in medium with glucose as the only carbon source. 3007, Japanese Patent No. 3006929).
<L-アラニン生産菌>
 L-アラニン生産菌又はそれを誘導するための親株としては、H+-ATPaseを欠失しているコリネ型細菌(Appl Microbiol Biotechnol. 2001 Nov;57(4):534-40)やアスパラギン酸β-デカルボキシラーゼ活性が増強されたコリネ型細菌(特開平07-163383)が挙げられる。
<L-alanine producing bacteria>
Examples of L-alanine-producing bacteria or parent strains for inducing them include coryneform bacteria lacking H + -ATPase (Appl Microbiol Biotechnol. 2001 Nov; 57 (4): 534-40) and aspartic acid β -Coryneform bacteria with enhanced decarboxylase activity (JP 07-163383 A).
<L-トリプトファン生産菌、L-フェニルアラニン生産菌、L-チロシン生産菌>
 L-トリプトファン生産能、L-フェニルアラニン生産能、および/またはL-チロシン生産能を付与又は増強するための方法としては、例えば、L-トリプトファン、L-フェニルアラニン、および/またはL-チロシンの生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。
<L-tryptophan producing bacteria, L-phenylalanine producing bacteria, L-tyrosine producing bacteria>
Examples of methods for imparting or enhancing L-tryptophan production ability, L-phenylalanine production ability, and / or L-tyrosine production ability include biosynthesis of L-tryptophan, L-phenylalanine, and / or L-tyrosine. Examples include a method of modifying a bacterium so that the activity of one or more enzymes selected from system enzymes is increased.
 これらの芳香族アミノ酸に共通する生合成系酵素としては、特に制限されないが、3-デオキシ-D-アラビノヘプツロン酸-7-リン酸シンターゼ(aroG)、3-デヒドロキネートシンターゼ(aroB)、シキミ酸デヒドロゲナーゼ(aroE)、シキミ酸キナーゼ(aroL)、5-エノール酸ピルビルシキミ酸3-リン酸シンターゼ(aroA)、コリスミ酸シンターゼ(aroC)が挙げられる(欧州特許763127号)。これらの酵素をコードする遺伝子の発現はチロシンリプレッサー(tyrR)によって制御されており、tyrR遺伝子を欠損させることによって、これらの酵素の活性を増強してもよい(欧州特許763127号)。 Biosynthetic enzymes common to these aromatic amino acids are not particularly limited, but 3-deoxy-D-arabinohepturonic acid-7-phosphate synthase (aroG), 3-dehydroquinate synthase (aroB) Shikimate dehydrogenase (aroE), shikimate kinase (aroL), 5-enolic acid pyruvylshikimate 3-phosphate synthase (aroA), chorismate synthase (aroC) (European Patent No. 763127). Expression of genes encoding these enzymes is controlled by a tyrosine repressor (tyrR), and the activity of these enzymes may be enhanced by deleting the tyrR gene (European Patent No. 763127).
 L-トリプトファン生合成系酵素としては、特に制限されないが、アントラニル酸シンターゼ(trpE)、トリプトファンシンターゼ(trpAB)、及びホスホグリセリン酸デヒドロゲナーゼ(serA)が挙げられる。例えば、トリプトファンオペロンを含むDNAを導入することにより、L-トリプトファン生産能を付与又は増強できる。トリプトファンシンターゼは、それぞれtrpA及びtrpB遺伝子によりコードされるα及びβサブユニットからなる。アントラニル酸シンターゼはL-トリプトファンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、フィードバック阻害を解除する変異を導入した同酵素をコードする遺伝子を利用してもよい。ホスホグリセリン酸デヒドロゲナーゼはL-セリンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、フィードバック阻害を解除する変異を導入した同酵素をコードする遺伝子を利用してもよい。さらに、マレートシンターゼ(aceB)、イソクエン酸リアーゼ(aceA)、およびイソクエン酸デヒドロゲナーゼキナーゼ/フォスファターゼ(aceK)からなるオペロン(aceオペロン)の発現を増大させることによりL-トリプトファン生産能を付与または増強してもよい(WO2005/103275)。 Examples of the L-tryptophan biosynthesis enzyme include, but are not limited to, anthranilate synthase (trpE), tryptophan synthase (trpAB), and phosphoglycerate dehydrogenase (serA). For example, L-tryptophan production ability can be imparted or enhanced by introducing DNA containing a tryptophan operon. Tryptophan synthase consists of α and β subunits encoded by trpA and trpB genes, respectively. Since anthranilate synthase is subject to feedback inhibition by L-tryptophan, in order to enhance the activity of the enzyme, a gene encoding the enzyme into which a mutation that releases feedback inhibition is introduced may be used. Since phosphoglycerate dehydrogenase is feedback-inhibited by L-serine, a gene encoding the enzyme into which a mutation that releases feedback inhibition is introduced may be used to enhance the activity of the enzyme. Furthermore, L-tryptophan-producing ability is imparted or enhanced by increasing the expression of an operon consisting of malate synthase (aceB), isocitrate lyase (aceA), and isocitrate dehydrogenase kinase / phosphatase (aceK). (WO2005 / 103275).
 L-フェニルアラニン生合成系酵素としては、特に制限されないが、コリスミ酸ムターゼ及びプレフェン酸デヒドラターゼが挙げられる。コリスミ酸ムターゼ及びプレフェン酸デヒドラターゼは、2機能酵素としてpheA遺伝子によってコードされている。コリスミ酸ムターゼ-プレフェン酸デヒドラターゼはL-フェニルアラニンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、フィードバック阻害を解除する変異を導入した同酵素をコードする遺伝子を利用してもよい。 The L-phenylalanine biosynthetic enzyme is not particularly limited, and examples thereof include chorismate mutase and prefenate dehydratase. Chorismate mutase and prefenate dehydratase are encoded by the pheA gene as a bifunctional enzyme. Since chorismate mutase-prefenate dehydratase is feedback-inhibited by L-phenylalanine, in order to enhance the activity of the enzyme, a gene encoding the enzyme into which a mutation that releases feedback inhibition is introduced may be used.
 L-チロシン生合成系酵素としては、特に制限されないが、コリスミ酸ムターゼ及びプレフェン酸デヒドロゲナーゼが挙げられる。コリスミ酸ムターゼ及びプレフェン酸デヒドロゲナーゼは、2機能酵素としてtyrA遺伝子によってコードされている。コリスミ酸ムターゼ-プレフェン酸デヒドロゲナーゼはL-チロシンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、フィードバック阻害を解除する変異を導入した同酵素をコードする遺伝子を利用してもよい。 The L-tyrosine biosynthetic enzyme is not particularly limited, and examples thereof include chorismate mutase and prephenate dehydrogenase. Chorismate mutase and prefenate dehydrogenase are encoded by the tyrA gene as a bifunctional enzyme. Since chorismate mutase-prefenate dehydrogenase is feedback-inhibited by L-tyrosine, to enhance the activity of the enzyme, a gene encoding the enzyme into which a mutation that releases feedback inhibition is introduced may be used.
 L-トリプトファン、L-フェニルアラニン、および/またはL-チロシンの生産菌は、目的の芳香族アミノ酸以外の芳香族アミノ酸の生合成が低下するように改変されていてもよい。また、L-トリプトファン、L-フェニルアラニン、および/またはL-チロシンの生産菌は、副生物の取り込み系が増強されるように改変されていてもよい。副生物としては、目的の芳香族アミノ酸以外の芳香族アミノ酸が挙げられる。副生物の取り込み系をコードする遺伝子としては、例えば、L-トリプトファンの取り込み系をコードする遺伝子であるtnaBやmtr、L-フェニルアラニンの取り込み系をコードする遺伝子であるpheP、L-チロシンの取り込み系をコードする遺伝子であるtyrPが挙げられる(EP1484410)。 The L-tryptophan, L-phenylalanine, and / or L-tyrosine producing bacterium may be modified so that biosynthesis of aromatic amino acids other than the target aromatic amino acid is lowered. In addition, L-tryptophan, L-phenylalanine, and / or L-tyrosine-producing bacteria may be modified so that the by-product uptake system is enhanced. By-products include aromatic amino acids other than the desired aromatic amino acid. Examples of genes encoding uptake systems of by-products include, for example, uptake systems of tnaB and mtr, which are L-tryptophan uptake systems, and pheP, L-tyrosine, which are genes encoding uptake systems of L-phenylalanine. TyrP, which is a gene coding for (EP1484410).
 L-トリプトファン生産菌又はそれを誘導するための親株として、具体的には、例えば、部分的に不活化されたトリプトファニル-tRNAシンテターゼをコードする変異型trpS遺伝子を保持するE. coli JP4735/pMU3028 (DSM10122)及びJP6015/pMU91 (DSM10123) (米国特許第5,756,345号)、トリプトファンによるフィードバック阻害を受けないアントラニル酸シンターゼをコードするtrpEアレルを有するE. coli SV164、セリンによるフィードバック阻害を受けないホスホグリセリン酸デヒドロゲナーゼをコードするserAアレル及びトリプトファンによるフィードバック阻害を受けないアントラニル酸シンターゼをコードするtrpEアレルを有するE. coli SV164 (pGH5) (米国特許第6,180,373号)、トリプトファンによるフィードバック阻害を受けないアントラニル酸シンターゼをコードするtrpEアレルを含むトリプトファンオペロンが導入された株 (特開昭57-71397号, 特開昭62-244382号, 米国特許第4,371,614号)、トリプトファナーゼが欠損したE. coli AGX17 (pGX44) (NRRL B-12263)及びAGX6(pGX50)aroP (NRRL B-12264) (米国特許第4,371,614号)、ホスホエノールピルビン酸生産能が増大したE. coli AGX17/pGX50,pACKG4-pps (WO9708333, 米国特許第6,319,696号)、yedA遺伝子またはyddG遺伝子にコードされるタンパク質の活性が増大したエシェリヒア属に属する株 (米国特許出願公開2003/0148473 A1及び2003/0157667 A1) が挙げられる。 As an L-tryptophan-producing bacterium or a parent strain for deriving it, specifically, for example, E. coli JP4735 / pMU3028 carrying a mutant trpS gene encoding a partially inactivated tryptophanyl-tRNA synthetase. DSM10122) and JP6015 / pMU91 (DSM10123) (U.S. Patent No. 5,756,345), E. coli SV164 with trpE allele encoding anthranilate synthase not subject to feedback inhibition by tryptophan, phosphoglycerate dehydrogenase not subject to feedback inhibition by serine E. coli SV164 (pGH5) (U.S. Pat.No. 6,180,373) with serA allele encoding and trpE allele encoding anthranilate synthase not subject to feedback inhibition by tryptophan, coding for anthranilate synthase not subject to feedback inhibition by tryptophan A strain introduced with a tryptophan operon containing a trpE allele (JP 57-71397, JP 62-244382, U.S. Pat.No. 4,371,614), E. coliGX AGX17 (pGX44) lacking tryptophanase NRRL B-12263) and AGX6 (pGX50) aroP (NRRL B-12264) (U.S. Pat.No. 4,371,614), E. coli AGX17 / pGX50, pACKG4-pps (WO9708333, U.S. Patent No. No. 6,319,696), strains belonging to the genus Escherichia with increased activity of the protein encoded by the yedA gene or the yddG gene (US Patent Application Publications 2003/0148473 A1 and 2003/0157667 A1).
 L-トリプトファン生産能を有するコリネ型細菌としては、例えば、サルファグアニジンに耐性のCorynebacterium glutamicum AJ12118(FERM BP-478 特許01681002号)、トリプトファンオペロンが導入された株(特開昭63240794号公報)、コリネ型細菌由来のシキミ酸キナーゼをコードする遺伝子が導入された株(特開01994749号公報)が挙げられる。 Examples of coryneform bacteria having L-tryptophan-producing ability include, for example, Corynebacterium glutamicum 118AJ12118 (FERM BP-478 patent 01681002) resistant to sulfaguanidine, a strain into which tryptophan operon has been introduced (JP 63240794), coryneform And a strain into which a gene encoding shikimate kinase derived from a type bacterium has been introduced (Japanese Patent Laid-Open No. 01994749).
 L-フェニルアラニン生産菌又はそれを誘導するための親株として、具体的には、例えば、コリスミ酸ムターゼ-プレフェン酸デヒドロゲナーゼ及びチロシンリプレッサーを欠損したE. coli AJ12739 (tyrA::Tn10, tyrR) (VKPM B-8197)(WO03/044191)、フィードバック阻害が解除されたコリスミ酸ムターゼ-プレフェン酸デヒドラターゼをコードする変異型pheA34遺伝子を保持するE. coli HW1089 (ATCC 55371) (米国特許第 5,354,672号)、E. coli MWEC101-b (KR8903681)、E. coli NRRL B-12141、NRRL B-12145、NRRL B-12146、NRRL B-12147 (米国特許第4,407,952号)が挙げられる。また、L-フェニルアラニン生産菌又はそれを誘導するための親株として、具体的には、例えば、フィードバック阻害が解除されたコリスミ酸ムターゼ-プレフェン酸デヒドラターゼをコードする遺伝子を保持するE. coli K-12 <W3110 (tyrA)/pPHAB> (FERM BP-3566)、E. coli K-12 <W3110 (tyrA)/pPHAD> (FERM BP-12659)、E. coli K-12 <W3110 (tyrA)/pPHATerm> (FERM BP-12662)、E. coli K-12 AJ 12604 <W3110 (tyrA)/pBR-aroG4, pACMAB> (FERM BP-3579)も挙げられる(EP 488424 B1)。また、L-フェニルアラニン生産菌又はそれを誘導するための親株として、具体的には、例えば、yedA遺伝子またはyddG遺伝子にコードされるタンパク質の活性が増大したエシェリヒア属に属する株も挙げられる(US2003/0148473、US2003/0157667、WO03/044192)。 As an L-phenylalanine producing bacterium or a parent strain for deriving the same, specifically, for example, E. coli AJ12739 (tyrA :: Tn10, tyrR) (VKPM) lacking chorismate mutase-prefenate dehydrogenase and tyrosine repressor B-8197) (WO03 / 044191), E. coli HW1089 (ATCC 55371) (U.S. Patent No. 5,354,672), carrying a mutant pheA34 gene encoding chorismate mutase-prefenate dehydratase with released feedback inhibition (US Patent No. 5,354,672), E .Coli MWEC 101-b (KR8903681), E.coli NRRL B-12141, NRRL B-12145, NRRL B-12146, NRRL B-12147 (US Pat. No. 4,407,952). Further, as an L-phenylalanine-producing bacterium or a parent strain for deriving the same, specifically, for example, E. coli K-12 that retains a gene encoding chorismate mutase-prefenate dehydratase in which feedback inhibition is released. <W3110 (tyrA) / pPHAB> (FERM BP-3566), E. coli K-12 <W3110 (tyrA) / pPHAD> (FERM BP-12659), E. coli K-12 <W3110 (tyrA) / pPHATerm> (FERM BP-12662), E. coli K-12 AJ 12604 <W3110 (tyrA) / pBR-aroG4, pACMAB> (FERM BP-3579) (EP 488424 B1). Specific examples of L-phenylalanine-producing bacteria or parent strains for inducing them include, for example, strains belonging to the genus Escherichia in which the activity of the protein encoded by the yedA gene or the yddG gene is increased (US2003 / 0148473, US2003 / 0157667, WO03 / 044192).
 L-フェニルアラニン生産能を有するコリネ型細菌としては、例えば、ホスホエノールピルビン酸カルボキシラーゼまたはピルビン酸キナーゼ活性が低下したCorynebacterium glutamicum BPS-13株 (FERM BP-1777)、Corynebacterium glutamicum K77 (FERM BP-2062)、Corynebacterium glutamicum K78 (FERM BP-2063)(欧州特許公開公報331145号、特開平 02-303495号)、チロシン要求性株(特開平05-049489)が挙げられる。 Examples of coryneform bacteria having the ability to produce L-phenylalanine include, for example, Corynebacterium amicglutamicum BPS-13 strain FER (FERM BP-1777), Corynebacterium glutamicum K77 (FERM BP-2062) having reduced phosphoenolpyruvate carboxylase or pyruvate kinase activity Corynebacterium glutamicum K78 (FERM BP-2063) (European Patent Publication No. 331145, Japanese Patent Laid-Open No. 02-303495) and tyrosine-requiring strain (Japanese Patent Laid-Open No. 05-049489).
 L-チロシン生産能を有するコリネ型細菌としては、例えば、Corynebacterium glutamicum AJ11655 (FERM P-5836)(特公平2-6517)、Corynebacterium glutamicum (Brevibacterium lactofermentum) AJ12081 (FERM P-7249)(特開昭60-70093)が挙げられる。 Examples of coryneform bacteria having the ability to produce L-tyrosine include Corynebacterium glutamicum AJ11655 (FERM P-5836) (Japanese Patent Publication No. 2-6517), Corynebacterium glutamicum (Brevibacterium lactofermentum) AJ12081 (FERM P-7249) -70093).
 また、L-アミノ酸生産能を付与または増強する方法としては、例えば、細菌の細胞からL-アミノ酸を排出する活性が増大するように細菌を改変する方法が挙げられる。L-アミノ酸を排出する活性は、例えば、L-アミノ酸を排出するタンパク質をコードする遺伝子の発現を上昇させることにより、増大させることができる。各種アミノ酸を排出するタンパク質をコードする遺伝子としては、例えば、b2682遺伝子(ygaZ)、b2683遺伝子(ygaH)、b1242遺伝子(ychE)、b3434遺伝子(yhgN)が挙げられる(特開2002-300874号公報)。 In addition, examples of a method for imparting or enhancing L-amino acid-producing ability include a method of modifying a bacterium so that the activity of discharging L-amino acid from the bacterium cell is increased. The activity to excrete L-amino acids can be increased, for example, by increasing the expression of a gene encoding a protein that excretes L-amino acids. Examples of genes encoding proteins that excrete various amino acids include b2682 gene (ygaZ), b2683 gene (ygaH), b1242 gene (ychE), and b3434 gene (yhgN) (Japanese Patent Laid-Open No. 2002-300874) .
 また、L-アミノ酸生産能を付与または増強する方法としては、例えば、糖代謝に関与するタンパク質やエネルギー代謝に関与するタンパク質の活性が増大するように細菌を改変する方法が挙げられる。 In addition, examples of a method for imparting or enhancing L-amino acid producing ability include a method for modifying bacteria so that the activity of a protein involved in sugar metabolism or a protein involved in energy metabolism is increased.
 糖代謝に関与するタンパク質としては、糖の取り込みに関与するタンパク質や解糖系酵素が挙げられる。糖代謝に関与するタンパク質をコードする遺伝子としては、グルコース6-リン酸イソメラーゼ遺伝子(pgi;国際公開第01/02542号パンフレット)、ホスホエノールピルビン酸シンターゼ遺伝子(pps;欧州出願公開877090号明細書)、ホスホエノ-ルピルビン酸カルボキシラ-ゼ遺伝子(ppc;国際公開95/06114号パンフレット)、ピルビン酸カルボキシラーゼ遺伝子(pyc;国際公開99/18228号パンフレット、欧州出願公開1092776号明細書)、ホスホグルコムターゼ遺伝子(pgm;国際公開03/04598号パンフレット)、フルクトース二リン酸アルドラーゼ遺伝子(pfkB, fbp;国際公開03/04664号パンフレット)、ピルビン酸キナーゼ遺伝子(pykF;国際公開03/008609号パンフレット)、トランスアルドラーゼ遺伝子(talB;国際公開03/008611号パンフレット)、フマラーゼ遺伝子(fum;国際公開01/02545号パンフレット)、non-PTSスクロース取り込み遺伝子(csc;欧州出願公開149911号パンフレット)、スクロース資化性遺伝子(scrABオペロン;国際公開第90/04636号パンフレット)が挙げられる。 Proteins involved in sugar metabolism include proteins involved in sugar uptake and glycolytic enzymes. Examples of genes encoding proteins involved in sugar metabolism include glucose 6-phosphate isomerase gene (pgi; WO 01/02542 pamphlet), phosphoenolpyruvate synthase gene (pps; EP 877090 specification) , Phosphoenolpyruvate carboxylase gene (ppc; WO 95/06114 pamphlet), pyruvate carboxylase gene (pyc; WO 99/18228 pamphlet, European application 1092776), phosphoglucomutase gene (Pgm; WO 03/04598 pamphlet), fructose diphosphate aldolase gene (pfkB, fbp; WO 03/04664 pamphlet), pyruvate kinase gene (pykF; WO 03/008609 pamphlet), transaldolase Gene (talB; WO03 / 008611 pamphlet), fumarase residue Examples include children (fum; international publication 01/02545 pamphlet), non-PTS sucrose uptake gene (csc; European application publication 149911 pamphlet), sucrose utilization gene (scrAB operon; international publication 90/04636 pamphlet) It is done.
 エネルギー代謝に関与するタンパク質をコードする遺伝子としては、トランスヒドロゲナーゼ遺伝子(pntAB;米国特許 5,830,716号明細書)、チトクロムbo型オキシダーゼ(cytochromoe bo type oxidase)遺伝子(cyoB;欧州特許出願公開1070376号明細書)が挙げられる。 Examples of genes encoding proteins involved in energy metabolism include a transhydrogenase gene (pntAB; US Pat. No. 5,830,716), a cytochrome bo type oxidase (cyoB; European Patent Application Publication No. 1070376) Is mentioned.
 また、本発明の細菌は、例えば、脂肪酸資化能が高まるように改変されていてもよい。そのような改変としては、fadR遺伝子の発現を弱化すること、fadL、fadE、fadD、fadB、及びfadA遺伝子からなる群より選択される1またはそれ以上の遺伝子の発現を増強すること、cyoABCDEオペロンの発現を増強すること、およびそれらの組み合わせが挙げられる(特開2011-167071)。 In addition, the bacterium of the present invention may be modified, for example, so as to enhance the fatty acid assimilation ability. Such modifications may include reducing the expression of the fadR gene, enhancing the expression of one or more genes selected from the group consisting of the fadL, fadE, fadD, fadB, and fadA genes, and the cyoABCDE operon. Examples thereof include enhancing expression and combinations thereof (Japanese Patent Laid-Open No. 2011-167071).
 fadR遺伝子は、fadレギュロンの負の転写因子をコードする(DiRusso, C. C. et al. 1992. J. Biol. Chem. 267: 8685-8691; DiRusso, C. C. et al. 1993. Mol. Microbiol. 7: 311-322)。fadレギュロンには、fadL、fadE、fadD、fadB、及びfadA遺伝子が含まれ、これらの遺伝子は脂肪酸代謝に関与するタンパク質をコードする。fadR遺伝子およびfadレギュロンは、例えば、腸内細菌科に属する細菌に見出される。エシェリヒア・コリK12 MG1655株のfadR遺伝子は、同株のゲノム配列(GenBank accession No. NC_000913)における1234161~1234880位の配列に相当する。エシェリヒア・コリK12 MG1655株のFadRタンパク質は、GenBank accession No. NP_415705で登録されている。 The fadR gene encodes a negative transcription factor for the fad regulon (DiRusso, C. C. et al. 1992. J. Biol. Chem. 267: 8685-8691; DiRusso, C. C. et al. 1993. Mol Microbiol. 7: 311-322). The fad regulon includes the fadL, fadE, fadD, fadB, and fadA genes, which encode proteins involved in fatty acid metabolism. The fadR gene and fad regulon are found, for example, in bacteria belonging to the family Enterobacteriaceae. The fadR gene of Escherichia coli K12 MG1655 strain corresponds to the sequence at positions 124161-1234880 in the genome sequence of the same strain (GenBank accession No. NC_000913). The FadR protein of Escherichia coli K12 MG1655 strain is registered under GenBank accession No. NP_415705.
 fadL遺伝子は、長鎖脂肪酸の取り込み能を有する外膜のトランスポーターをコードする(Kumar, G. B. and Black, P. N. 1993. J. Biol. Chem. 268: 15469-15476; Stenberg, F. et al. 2005. J. Biol. Chem. 280: 34409-34419)。エシェリヒア・コリK12 MG1655株のfadL遺伝子は、同株のゲノム配列(GenBank accession No. NC_000913)における2459328~2460668位の配列に相当する。エシェリヒア・コリK12 MG1655株のFadLタンパク質は、GenBank accession No. NP_416846で登録されている。 The fadL gene encodes an outer membrane transporter capable of taking up long-chain fatty acids (Kumar, G. B. and Black, P. N. 1993. J. Biol. Chem. 268: 15469-15476; Stenberg, F. et al. 2005. J. Biol. Chem. 280: 34409-34419). The fadL gene of Escherichia coli K12 MG1655 strain corresponds to the sequence from 2459328 to 2460668 in the genome sequence of the same strain (GenBank accession No. NC_000913). The FadL protein of Escherichia coli K12 MG1655 strain is registered under GenBank accession No. NP_416846.
 fadD遺伝子は、長鎖脂肪酸から脂肪酸アシルCoA(fatty acyl-CoA)を生成する反応を触媒するとともに(脂肪酸アシルCoA合成酵素(fatty acyl-CoA synthetase)活性)、内膜を通して取り込むタンパク質をコードする(Dirusso, C. C. and Black, P. N. 2004. J. Biol. Chem. 279: 49563-49566; Schmelter, T. et al. 2004. J. Biol. Chem. 279: 24163-24170)。エシェリヒア・コリK12 MG1655株のfadD遺伝子は、同株のゲノム配列(GenBank accession No. NC_000913)における1886085~1887770位の配列の相補配列に相当する。エシェリヒア・コリK12 MG1655株のFadDタンパク質は、GenBank accession No. NP_416319で登録されている。 The fadD gene catalyzes the reaction to produce fatty acyl-CoA (fatty-acyl-CoA) from long-chain fatty acids (fatty-acyl-CoA-synthetase activity) and encodes a protein incorporated through the inner membrane ( Dirusso, C. C. and Black, P. N. 2004. J. Biol. Chem. 279: 49563-49566; Schmelter, T. et al. 2004. J. Biol. Chem. 279: 24163-24170). The fadD gene of Escherichia coli K12 MG1655 strain corresponds to a complementary sequence of the sequences 160885 to 1887770 in the genome sequence (GenBank 株 accession No. NC_000913) of the same strain. The FadD protein of Escherichia coli K12 MG1655 strain is registered under GenBank accession No. NP_416319.
 fadE遺伝子は、脂肪酸アシルCoAを酸化する反応を触媒するアシルCoAデヒドロゲナーゼ(acyl-CoA dehydrogenase)活性を有するタンパク質をコードする(O'Brien, W. J. and Frerman, F. E. 1977. J. Bacteriol. 132: 532-540; Campbell, J. W. and Cronan, J. E. 2002. J. Bacteriol. 184: 3759-3764)。エシェリヒア・コリK12 MG1655株のfadE遺伝子は、同株のゲノム配列(GenBank accession No. NC_000913)における240859~243303位の配列の相補配列に相当する。エシェリヒア・コリK12 MG1655株のFadEタンパク質は、GenBank accession No. NP_414756で登録されている。 The fadE gene encodes a protein having an acyl-CoA dehydrogenase activity that catalyzes a reaction to oxidize fatty acyl-CoA (O'Brien, W. J. and Frerman, F. E. 1977. J. Bacteriol. 132: 532-540; Campbell, J. W. and Cronan, J. E. 2002. J. Bacteriol. 184: 3759-3764). The fadE gene of Escherichia coli K12 MG1655 strain corresponds to a complementary sequence of the sequences from 240859 to 243303 in the genome sequence of the same strain (GenBank accession No. NC_000913). The FadE protein of Escherichia coli K12 MG1655 strain is registered under GenBank accession No. NP_414756.
 fadB遺伝子は、脂肪酸酸化複合体(fatty acid oxidation complex)のαサブユニットをコードする。αサブユニットは、エノイルCoAヒドラターゼ(enoyl-CoA hydratase)、3-ヒドロキシアシルCoAデヒドロゲナーゼ(3-hydroxyacyl-CoA dehydrogenase)、3-ヒドロキシアシルCoAエピメラーゼ(3-hydroxyacyl-CoA epimerase)、Δ3-シス-Δ2-トランス-エノイルCoAイソメラーゼ(Δ3-cis-Δ2-trans-enoyl-CoA isomerase)の4つの活性を有する(Pramanik, A. et al. 1979. J. Bacteriol. 137: 469-473; Yang, S. Y. and Schulz, H. 1983. J. Biol. Chem. 258: 9780-9785)。エシェリヒア・コリK12 MG1655株のfadB遺伝子は、同株のゲノム配列(GenBank accession No. NC_000913)における4026805~4028994位の配列の相補配列に相当する。エシェリヒア・コリK12 MG1655株のFadBタンパク質は、GenBank accession No. NP_418288で登録されている。 The fadB gene encodes the α subunit of the fatty acid oxidation complex. The α subunit includes enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, 3-hydroxyacyl-CoA epimerase, Δ3-cis-Δ2 -Has four activities of trans-enoyl CoA isomerase (Δ3-cis-Δ2-trans-enoyl-CoA isomerase) (Pramanik, A. et al. 1979. J. Bacteriol. 137: 469-473; Yang, S. Y. and Schulz, H. 1983. J. Biol. Chem. 258: 9780-9785). The fadB gene of Escherichia coli K12 MG1655 strain corresponds to the complementary sequence of the 4026805-4028994 position in the genome sequence of the same strain (GenBank accession No. NC_000913). The FadB protein of Escherichia coli K12 MG1655 strain is registered under GenBank accession No. NP_418288.
 fadA遺伝子は、脂肪酸酸化複合体(fatty acid oxidation complex)のβサブユニットをコードする。βサブユニットは、3-ケトアシルCoAチオラーゼ(3-ketoacyl-CoA thiolase)活性を有する(Pramanik, A. et al. 1979. J. Bacteriol. 137: 469-473)。エシェリヒア・コリK12 MG1655株のfadA遺伝子は、同株のゲノム配列(GenBank accession No. NC_000913)における4025632~4026795位の配列の相補配列に相当する。エシェリヒア・コリK12 MG1655株のFadAタンパク質は、GenBank accession No. YP_026272で登録されている。 The fadA gene encodes the β subunit of the fatty acid oxidation complex. The β subunit has 3-ketoacyl-CoA thiolase activity (Pramanik, A. et al. 1979. J. Bacteriol. 137: 469-473). The fadA gene of Escherichia coli K12 MG1655 strain corresponds to a complementary sequence of the 4025632 to 4026795 positions in the genome sequence (GenBank accession No. NC_000913) of the same strain. The FadA protein of Escherichia coli K12 MG1655 strain is registered under GenBank accession No. YP_026272.
 fadAおよびfadB遺伝子は、fadBAオペロンを形成している(Yang, S. Y. et al. 1990. J. Biol. Chem. 265: 10424-10429)。よって、例えば、fadBAオペロン全体の発現を増強してもよい。 The fadA and fadB genes form the fadBA operon (Yang, S. Y. et al. 1990. J. Biol. Chem. 265: 10424-10429). Thus, for example, the expression of the entire fadBA operon may be enhanced.
 cyoABCDEオペロン(cyoオペロン)は、末端酸化酵素の一つであるシトクロムbo型酸化酵素複合体(cytochrome bo terminal oxidase complex)をコードする。具体的には、cyoB遺伝子がサブユニットIを、cyoA遺伝子がサブユニットIIを、cyoC遺伝子がサブユニットIIIを、cyoC遺伝子がサブユニットIVを、cyoE遺伝子がヘムOシンターゼ(heme O synthase)活性を有するタンパク質をコードする(Gennis, R. B. and Stewart, V. 1996. p. 217-261. In F. D.Neidhardt (ed.), Escherichia coli and Salmonella Cellular and Molecular Biology/Second Edition, American Society for Microbiology Press, Washington, D.C; Chepuri et al. 1990. J. Biol. Chem. 265: 11185-11192)。cyoオペロンは、例えば、腸内細菌科に属する細菌に見出される。エシェリヒア・コリK12 MG1655株のcyoABCDE遺伝子は、それぞれ、同株のゲノム配列(GenBank accession No. NC_000913)における449887~450834、447874~449865、447270~447884、446941~447270、446039~446929位の配列の相補配列に相当する。エシェリヒア・コリK12 MG1655株のCyoABCDEタンパク質は、それぞれ、GenBank accession No. NP_414966、NP_414965、NP_414964、NP_414963、NP_414962で登録されている。 The cyoABCDE operon (cyo operon) encodes a cytochrome bo-terminal oxidase complex, which is one of the terminal oxidases. Specifically, cyoB gene has subunit I, cyoA gene has subunit II, cyoC gene has subunit III, cyoC gene has subunit IV, and cyoE gene has heme O synthase activity. (Gennis, R. B. and Stewart, V. 1996. p. 217-261. In F. D.Neidhardt (ed.), Escherichia coli and Salmonella Cellular and Molecular Biology / Second Edity, American Soty for Microbiology Press, Washington, DC; Chepuri et al. 1990. J Biol Chem Chem 265: 11185-11192). The cyo operon is found, for example, in bacteria belonging to the family Enterobacteriaceae. The cyoABCDE gene of Escherichia coli K12 MG1655 strain is complementary to the sequences of 449887 to 450834, 447874 to 449865, 447270 to 448884, 446941 to 447270, and 446039 to 446929 in the genome sequence of the same strain (GenBank accession No. NC_000913), respectively. Corresponds to an array. The CyoABCDE protein of Escherichia coli K12 MG1655 strain is registered under GenBank accession No. NP_414966, NP_414965, NP_414964, NP_414963, and NP_414962, respectively.
 なお、細菌の育種に使用される遺伝子は、元の機能が維持されたタンパク質をコードする限り、上記例示した遺伝子や公知の塩基配列を有する遺伝子に限られず、そのバリアントであってもよい。バリアントは、例えば、上記例示した遺伝子や公知の塩基配列を有する遺伝子のホモログや人為的な改変体であってよい。 It should be noted that the gene used for bacterial breeding is not limited to the above-exemplified genes or genes having a known base sequence, as long as it encodes a protein having the original function maintained, and may be a variant thereof. The variant may be, for example, a homologue or artificially modified gene of the above-exemplified gene or a gene having a known base sequence.
 例えば、使用される遺伝子は、元の機能が維持されたタンパク質をコードする限りにおいて、公知のタンパク質のアミノ酸配列において、1若しくは数個の位置での1又は数個のアミノ酸が置換、欠失、挿入、又は付加されたアミノ酸配列を有するタンパク質をコードする遺伝子であってもよい。この場合、タンパク質の機能は、1又は数個のアミノ酸が置換、欠失、挿入、又は付加される前のタンパク質に対して、通常70%以上、好ましくは80%以上、より好ましくは90%以上が維持され得る。なお上記「1又は数個」とは、アミノ酸残基のタンパク質の立体構造における位置やアミノ酸残基の種類によっても異なるが、具体的には、1~50個、1~40個、1~30個、好ましくは1~20個、より好ましくは1~10個、さらに好ましくは1~5個、特に好ましくは1~3個を意味する。 For example, as long as the gene used encodes a protein in which the original function is maintained, one or several amino acids at one or several positions are substituted, deleted, or deleted in the amino acid sequence of a known protein. It may be a gene encoding a protein having an inserted or added amino acid sequence. In this case, the function of the protein is usually 70% or more, preferably 80% or more, more preferably 90% or more with respect to the protein before one or several amino acids are substituted, deleted, inserted or added. Can be maintained. The “one or several” is different depending on the position of the amino acid residue in the three-dimensional structure of the protein and the type of amino acid residue, but specifically 1 to 50, 1 to 40, 1 to 30 It means 1 to 20, preferably 1 to 20, more preferably 1 to 10, still more preferably 1 to 5, and particularly preferably 1 to 3.
 上記の1若しくは数個のアミノ酸の置換、欠失、挿入、または付加は、タンパク質の機能が正常に維持される保存的変異である。保存的変異の代表的なものは、保存的置換である。保存的置換とは、置換部位が芳香族アミノ酸である場合には、Phe、Trp、Tyr間で、置換部位が疎水性アミノ酸である場合には、Leu、Ile、Val間で、極性アミノ酸である場合には、Gln、Asn間で、塩基性アミノ酸である場合には、Lys、Arg、His間で、酸性アミノ酸である場合には、Asp、Glu間で、ヒドロキシル基を持つアミノ酸である場合には、Ser、Thr間でお互いに置換する変異である。保存的置換とみなされる置換としては、具体的には、AlaからSer又はThrへの置換、ArgからGln、His又はLysへの置換、AsnからGlu、Gln、Lys、His又はAspへの置換、AspからAsn、Glu又はGlnへの置換、CysからSer又はAlaへの置換、GlnからAsn、Glu、Lys、His、Asp又はArgへの置換、GluからGly、Asn、Gln、Lys又はAspへの置換、GlyからProへの置換、HisからAsn、Lys、Gln、Arg又はTyrへの置換、IleからLeu、Met、Val又はPheへの置換、LeuからIle、Met、Val又はPheへの置換、LysからAsn、Glu、Gln、His又はArgへの置換、MetからIle、Leu、Val又はPheへの置換、PheからTrp、Tyr、Met、Ile又はLeuへの置換、SerからThr又はAlaへの置換、ThrからSer又はAlaへの置換、TrpからPhe又はTyrへの置換、TyrからHis、Phe又はTrpへの置換、及び、ValからMet、Ile又はLeuへの置換が挙げられる。また、上記のようなアミノ酸の置換、欠失、挿入、付加、または逆位等には、遺伝子が由来する生物の個体差、種の違いに基づく場合などの天然に生じる変異(mutant又はvariant)によって生じるものも含まれる。 The substitution, deletion, insertion, or addition of one or several amino acids described above is a conservative mutation that maintains the protein function normally. A typical conservative mutation is a conservative substitution. Conservative substitution is a polar amino acid between Phe, Trp, and Tyr when the substitution site is an aromatic amino acid, and between Leu, Ile, and Val when the substitution site is a hydrophobic amino acid. In this case, between Gln and Asn, when it is a basic amino acid, between Lys, Arg, and His, when it is an acidic amino acid, between Asp and Glu, when it is an amino acid having a hydroxyl group Is a mutation that substitutes between Ser and Thr. Specifically, substitutions considered as conservative substitutions include substitution from Ala to Ser or Thr, substitution from Arg to Gln, His or Lys, substitution from Asn to Glu, Gln, Lys, His or Asp, Asp to Asn, Glu or Gln, Cys to Ser or Ala, Gln to Asn, Glu, Lys, His, Asp or Arg, Glu to Gly, Asn, Gln, Lys or Asp Substitution, Gly to Pro substitution, His to Asn, Lys, Gln, Arg or Tyr substitution, Ile to Leu, Met, Val or Phe substitution, Leu to Ile, Met, Val or Phe substitution, Substitution from Lys to Asn, Glu, Gln, His or Arg, substitution from Met to Ile, Leu, Val or Phe, substitution from Phe to Trp, Tyr, Met, Ile or Leu, Ser to Thr or Ala Substitution, substitution from Thr to Ser or Ala, substitution from Trp to Phe or Tyr, substitution from Tyr to His, Phe or Trp, and substitution from Val to Met, Ile or Leu. In addition, amino acid substitutions, deletions, insertions, additions, or inversions as described above include naturally occurring mutations (mutants or variants) such as those based on individual differences or species differences of the organism from which the gene is derived. Also included by
 さらに、上記のような保存的変異を有する遺伝子は、公知のタンパク質のアミノ酸配列全体に対して、80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは97%以上、特に好ましくは99%以上の相同性を有し、かつ、元の機能が維持されたタンパク質をコードする遺伝子であってもよい。尚、本明細書において、「相同性」(homology)は、「同一性」(identity)を指すことがある。 Furthermore, the gene having a conservative mutation as described above is 80% or more, preferably 90% or more, more preferably 95% or more, still more preferably 97% or more, particularly with respect to the entire amino acid sequence of a known protein. Preferably, it may be a gene encoding a protein having 99% or more homology and maintaining the original function. In the present specification, “homology” may refer to “identity”.
 また、使用される遺伝子は、公知の遺伝子配列から調製され得るプローブ、例えば公知の遺伝子配列の全体または一部に対する相補配列、とストリンジェントな条件下でハイブリダイズし、元の機能が維持されたタンパク質をコードするDNAであってもよい。「ストリンジェントな条件」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。一例を示せば、相同性が高いDNA同士、例えば80%以上、好ましくは90%以上、より好ましくは95%以上、より好ましくは97%以上、特に好ましくは99%以上の相同性を有するDNA同士がハイブリダイズし、それより相同性が低いDNA同士がハイブリダイズしない条件、あるいは通常のサザンハイブリダイゼーションの洗いの条件である60℃、1×SSC、0.1% SDS、好ましくは60℃、0.1×SSC、0.1% SDS、より好ましくは、68℃、0.1×SSC、0.1% SDSに相当する塩濃度および温度で、1回、好ましくは2~3回洗浄する条件を挙げることができる。 In addition, the gene used was hybridized under stringent conditions with a probe that can be prepared from a known gene sequence, for example, a complementary sequence to all or part of the known gene sequence, and the original function was maintained. It may be DNA encoding a protein. “Stringent conditions” refers to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. For example, highly homologous DNAs, for example, 80% or more, preferably 90% or more, more preferably 95% or more, more preferably 97% or more, particularly preferably 99% or more between DNAs having homology. Is hybridized and DNAs with lower homology do not hybridize with each other, or normal Southern hybridization washing conditions of 60 ° C., 1 × SSC, 0.1% SDS, preferably 60 ° C., 0.1 × SSC And 0.1% SDS, more preferably 68 ° C., 0.1 × SSC, salt concentration and temperature corresponding to 0.1% SDS, and conditions of washing once, preferably 2 to 3 times.
 上述の通り、上記ハイブリダイゼーションに用いるプローブは、遺伝子の相補配列の一部であってもよい。そのようなプローブは、公知の遺伝子配列に基づいて作製したオリゴヌクレオチドをプライマーとし、これらの塩基配列を含むDNA断片を鋳型とするPCRによって作製することができる。例えば、プローブとして、300 bp程度の長さのDNA断片を用いる場合には、ハイブリダイゼーションの洗いの条件としては、50℃、2×SSC、0.1% SDSが挙げられる。 As described above, the probe used for the hybridization may be a part of a gene complementary sequence. Such a probe can be prepared by PCR using an oligonucleotide prepared on the basis of a known gene sequence as a primer and a DNA fragment containing these base sequences as a template. For example, when a DNA fragment having a length of about 300 bp is used as a probe, hybridization washing conditions include 50 ° C., 2 × SSC, and 0.1% SDS.
 また、使用される遺伝子は、元の機能が維持されたタンパク質をコードする限り、任意のコドンがそれと等価のコドンに置換されたものであってもよい。例えば、使用される遺伝子は、使用する宿主のコドン使用頻度に応じて最適なコドンを有するように改変されたものであってもよい。 In addition, the gene to be used may be one in which an arbitrary codon is replaced with an equivalent codon as long as it encodes a protein whose original function is maintained. For example, the gene used may be modified so as to have an optimal codon according to the codon usage frequency of the host to be used.
<3-3>L-アミノ酸発酵
 L-アミノ酸発酵に使用する培地は、中温処理物を含有し、本発明の細菌が増殖でき、L-アミノ酸が生産される限り、特に制限されない。培地としては、例えば、細菌等の微生物の培養に用いられる通常の培地を用いることができる。培地は、中温処理物に加えて、炭素源、窒素源、リン酸源、硫黄源、その他の各種有機成分や無機成分から選択される成分を必要に応じて含有してよい。培地成分の種類や濃度は、使用する細菌の種類や製造するL-アミノ酸の種類等の諸条件に応じて適宜設定してよい。
<3-3> L-Amino Acid Fermentation The medium used for L-amino acid fermentation is not particularly limited as long as it contains a medium-temperature-treated product and the bacterium of the present invention can grow and L-amino acid is produced. As the medium, for example, a normal medium used for culturing microorganisms such as bacteria can be used. The medium may contain a component selected from a carbon source, a nitrogen source, a phosphate source, a sulfur source, and other various organic components and inorganic components, if necessary, in addition to the medium-temperature treated product. The type and concentration of the medium component may be appropriately set according to various conditions such as the type of bacteria used and the type of L-amino acid to be produced.
 L-アミノ酸発酵においては、中温処理物は、唯一炭素源(sole carbon source)として利用されてもよく、そうでなくてもよい。すなわち、L-アミノ酸発酵においては、中温処理物に加えて、他の炭素源を併用してもよい。他の炭素源は、本発明の細菌が資化してL-アミノ酸を生成し得るものであれば、特に限定されない。他の炭素源として、具体的には、例えば、グルコース、フルクトース、スクロース、ラクトース、ガラクトース、キシロース、アラビノース、廃糖蜜、澱粉加水分解物、バイオマスの加水分解物等の糖類、酢酸、フマル酸、クエン酸、コハク酸、リンゴ酸等の有機酸類、グリセロール、粗グリセロール、エタノール等のアルコール類が挙げられる。他の炭素源を用いる場合には、総炭素源中の中温処理物に由来する炭素源の比率は、例えば、5重量%以上、10重量%以上、20重量%以上、好ましくは30重量%以上、より好ましくは50重量%以上であってよい。他の炭素源としては、1種の炭素源を用いてもよく、2種またはそれ以上の炭素源を組み合わせて用いてもよい。 In L-amino acid fermentation, the medium-temperature treated product may or may not be used as the sole carbon source. That is, in L-amino acid fermentation, other carbon sources may be used in combination with the medium-temperature processed product. Other carbon sources are not particularly limited as long as they can be assimilated by the bacterium of the present invention to produce L-amino acids. Specific examples of other carbon sources include glucose, fructose, sucrose, lactose, galactose, xylose, arabinose, molasses, starch hydrolyzate, biomass hydrolyzate, and other sugars, acetic acid, fumaric acid, citric acid, etc. Examples thereof include organic acids such as acid, succinic acid and malic acid, and alcohols such as glycerol, crude glycerol and ethanol. When other carbon sources are used, the ratio of the carbon source derived from the medium-temperature processed product in the total carbon source is, for example, 5% by weight or more, 10% by weight or more, 20% by weight or more, preferably 30% by weight or more. More preferably, it may be 50% by weight or more. As another carbon source, one type of carbon source may be used, or two or more types of carbon sources may be used in combination.
 窒素源として、具体的には、例えば、硫酸アンモニウム、塩化アンモニウム、リン酸アンモニウム等のアンモニウム塩、ペプトン、酵母エキス、肉エキス、大豆タンパク質分解物等の有機窒素源、アンモニア、ウレアが挙げられる。pH調整に用いられるアンモニアガスやアンモニア水を窒素源として利用してもよい。窒素源としては、1種の窒素源を用いてもよく、2種またはそれ以上の窒素源を組み合わせて用いてもよい。 Specific examples of the nitrogen source include ammonium salts such as ammonium sulfate, ammonium chloride, and ammonium phosphate, organic nitrogen sources such as peptone, yeast extract, meat extract, and soybean protein degradation product, ammonia, and urea. Ammonia gas or ammonia water used for pH adjustment may be used as a nitrogen source. As the nitrogen source, one kind of nitrogen source may be used, or two or more kinds of nitrogen sources may be used in combination.
 リン酸源として、具体的には、例えば、リン酸2水素カリウム、リン酸水素2カリウム等のリン酸塩、ピロリン酸等のリン酸ポリマーが挙げられる。リン酸源としては、1種のリン酸源を用いてもよく、2種またはそれ以上のリン酸源を組み合わせて用いてもよい。 Specific examples of the phosphoric acid source include phosphates such as potassium dihydrogen phosphate and dipotassium hydrogen phosphate, and phosphate polymers such as pyrophosphoric acid. As the phosphoric acid source, one type of phosphoric acid source may be used, or two or more types of phosphoric acid sources may be used in combination.
 硫黄源として、具体的には、例えば、硫酸塩、チオ硫酸塩、亜硫酸塩等の無機硫黄化合物、システイン、シスチン、グルタチオン等の含硫アミノ酸が挙げられる。硫黄源としては、1種の硫黄源を用いてもよく、2種またはそれ以上の硫黄源を組み合わせて用いてもよい。 Specific examples of the sulfur source include inorganic sulfur compounds such as sulfate, thiosulfate, and sulfite, and sulfur-containing amino acids such as cysteine, cystine, and glutathione. As the sulfur source, one kind of sulfur source may be used, or two or more kinds of sulfur sources may be used in combination.
 その他の各種有機成分や無機成分として、具体的には、例えば、塩化ナトリウム、塩化カリウム等の無機塩類;鉄、マンガン、マグネシウム、カルシウム等の微量金属類;ビタミンB1、ビタミンB2、ビタミンB6、ニコチン酸、ニコチン酸アミド、ビタミンB12等のビタミン類;アミノ酸類;核酸類;これらを含有するペプトン、カザミノ酸、酵母エキス、大豆タンパク質分解物等の有機成分が挙げられる。その他の各種有機成分や無機成分としては、1種の成分を用いてもよく、2種またはそれ以上の成分を組み合わせて用いてもよい。 Other various organic and inorganic components include, for example, inorganic salts such as sodium chloride and potassium chloride; trace metals such as iron, manganese, magnesium and calcium; vitamin B1, vitamin B2, vitamin B6 and nicotine Examples include vitamins such as acid, nicotinamide, and vitamin B12; amino acids; nucleic acids; and organic components such as peptone, casamino acid, yeast extract, and soybean protein degradation products containing these. As other various organic components and inorganic components, one component may be used, or two or more components may be used in combination.
 また、生育にアミノ酸などを要求する栄養要求性変異株を使用する場合には、培地に要求される栄養素を補添することが好ましい。例えば、L-リジン生産菌は、L-リジン生合成経路が強化され、L-リジン分解能が弱化されている場合が多い。よって、そのようなL-リジン生産菌を培養する場合には、例えば、L-スレオニン、L-ホモセリン、L-イソロイシン、L-メチオニンから選ばれる1またはそれ以上のアミノ酸を培地に補添するのが好ましい。 Moreover, when using an auxotrophic mutant strain that requires an amino acid or the like for growth, it is preferable to supplement nutrients required for the medium. For example, L-lysine producing bacteria often have an enhanced L-lysine biosynthetic pathway and weakened L-lysine resolution. Therefore, when culturing such L-lysine-producing bacteria, for example, one or more amino acids selected from L-threonine, L-homoserine, L-isoleucine, and L-methionine are supplemented to the medium. Is preferred.
 また、例えば、コリネ型細菌によりL-グルタミン酸を製造する場合は、培地中のビオチン量を制限することや、培地に界面活性剤またはペニシリンを添加することが好ましい。また、培養時の発泡を抑えるために、培地には市販の消泡剤を適量添加しておくことが好ましい。 Also, for example, when L-glutamic acid is produced by coryneform bacteria, it is preferable to limit the amount of biotin in the medium, or to add a surfactant or penicillin to the medium. In order to suppress foaming during culture, it is preferable to add an appropriate amount of a commercially available antifoaming agent to the medium.
 培養条件は、本発明の細菌が増殖でき、L-アミノ酸が生産される限り、特に制限されない。培養は、例えば、細菌等の微生物の培養に用いられる通常の条件で行うことができる。培養条件は、使用する細菌の種類や製造するL-アミノ酸の種類等の諸条件に応じて適宜設定してよい。 Culture conditions are not particularly limited as long as the bacterium of the present invention can grow and L-amino acids are produced. The culture can be performed, for example, under normal conditions used for culture of microorganisms such as bacteria. The culture conditions may be appropriately set according to various conditions such as the type of bacteria used and the type of L-amino acid to be produced.
 培養は、液体培地を用いて行うことができる。培養の際には、本発明の細菌を寒天培地等の固体培地で培養したものを直接液体培地に接種してもよく、本発明の細菌を液体培地で種培養したものを本培養用の液体培地に接種してもよい。すなわち、培養は、種培養と本培養とに分けて行われてもよい。その場合、種培養と本培養の培養条件は、同一であってもよく、そうでなくてもよい。培養開始時に培地に含有される本発明の細菌の量は特に制限されない。例えば、OD660=4~8の種培養液を、培養開始時に、本培養用の培地に対して0.1質量%~30質量%、好ましくは1質量%~10質量%、添加してよい。 Cultivation can be performed using a liquid medium. When culturing, the culture medium of the bacterium of the present invention cultured in a solid medium such as an agar medium may be directly inoculated into a liquid medium, or the bacterium of the present invention seeded in a liquid medium is used as a liquid for main culture. The medium may be inoculated. That is, the culture may be performed separately for seed culture and main culture. In that case, the culture conditions of the seed culture and the main culture may or may not be the same. The amount of the bacterium of the present invention contained in the medium at the start of culture is not particularly limited. For example, a seed culture solution having an OD660 of 4 to 8 may be added at 0.1 to 30% by mass, preferably 1 to 10% by mass with respect to the medium for main culture at the start of culture.
 培養は、回分培養(batch culture)、流加培養(Fed-batch culture)、連続培養(continuous culture)、またはそれらの組み合わせにより実施することができる。なお、培養開始時の培地を、「初発培地」ともいう。また、流加培養または連続培養において培養系(発酵槽)に供給する培地を、「流加培地」ともいう。また、流加培養または連続培養において培養系に流加培地を供給することを、「流加」ともいう。なお、培養が種培養と本培養とに分けて行われる場合、例えば、種培養と本培養を、共に回分培養で行ってもよい。また、例えば、種培養を回分培養で行い、本培養を流加培養または連続培養で行ってもよい。 Culture can be performed by batch culture, fed-batch culture, continuous culture, or a combination thereof. The culture medium at the start of the culture is also referred to as “initial culture medium”. A medium supplied to a culture system (fermentor) in fed-batch culture or continuous culture is also referred to as “fed-batch medium”. In addition, supplying a feeding medium to a culture system in fed-batch culture or continuous culture is also referred to as “fed-batch”. In addition, when culture | cultivation is performed by dividing into seed culture and main culture, for example, both seed culture and main culture may be performed by batch culture. Further, for example, seed culture may be performed by batch culture, and main culture may be performed by fed-batch culture or continuous culture.
 本発明において、各培地成分は、初発培地、流加培地、またはその両方に含有されていてよい。初発培地に含有される成分の種類は、流加培地に含有される成分の種類と、同一であってもよく、そうでなくてもよい。また、初発培地に含有される各成分の濃度は、流加培地に含有される各成分の濃度と、同一であってもよく、そうでなくてもよい。また、含有する成分の種類および/または濃度の異なる2種またはそれ以上の流加培地を用いてもよい。例えば、複数回の流加が間欠的に行われる場合、各流加培地に含有される成分の種類および/または濃度は、同一であってもよく、そうでなくてもよい。 In the present invention, each medium component may be contained in the initial medium, the fed-batch medium, or both. The type of component contained in the initial culture medium may or may not be the same as the type of component contained in the fed-batch medium. Moreover, the density | concentration of each component contained in a starting culture medium may be the same as the density | concentration of each component contained in a feeding culture medium, and may not be so. Moreover, you may use the 2 or more types of feeding culture medium from which the kind and / or density | concentration of a component to contain differ. For example, when multiple feedings are performed intermittently, the types and / or concentrations of the components contained in each feeding medium may or may not be the same.
 L-アミノ酸発酵において、培地中の中温処理物濃度は、本発明の細菌が中温処理物を炭素源として利用できる限り、特に制限されない。中温処理物は、例えば、培地中の脂肪酸濃度が、10w/v%以下、好ましくは5w/v%以下、より好ましくは2w/v%以下となるように、培地に含有されてよい。また、中温処理物は、例えば、培地中の脂肪酸濃度が、0.2w/v%以上、好ましくは0.5w/v%以上、より好ましくは1.0w/v%以上となるように、培地に含有されてよい。中温処理物は、初発培地、流加培地、またはその両方に、上記例示した濃度範囲で含有されていてよい。 In L-amino acid fermentation, the concentration of the medium-temperature treated product in the medium is not particularly limited as long as the bacterium of the present invention can use the medium-temperature treated product as a carbon source. The medium temperature treatment product may be contained in the medium such that the fatty acid concentration in the medium is 10 w / v% or less, preferably 5 w / v% or less, more preferably 2 w / v% or less. Further, the medium temperature treatment product is, for example, such that the fatty acid concentration in the medium is 0.2 w / v% or more, preferably 0.5 w / v% or more, more preferably 1.0 w / v% or more. May be contained. The intermediate temperature treatment product may be contained in the initial culture medium, the fed-batch medium, or both in the concentration range exemplified above.
 また、中温処理物が流加培地に含有される場合、中温処理物は、例えば、流加後の培地中の脂肪酸濃度が、5w/v%以下、好ましくは2w/v%以下、より好ましくは1w/v%以下となるように、流加培地に含有されてもよい。また、中温処理物が流加培地に含有される場合、中温処理物は、例えば、流加後の培地中の脂肪酸濃度が、0.01w/v%以上、好ましくは0.02w/v%以上、より好ましくは0.05w/v%以上となるように、流加培地に含有されてもよい。 When the medium-temperature treated product is contained in the fed-batch medium, the medium-temperature treated product has, for example, a fatty acid concentration in the medium after fed-batch of 5 w / v% or less, preferably 2 w / v% or less, more preferably You may contain in a feeding medium so that it may become 1 w / v% or less. In addition, when the medium-temperature treated product is contained in the fed-batch medium, the medium-temperature treated product has, for example, a fatty acid concentration in the medium after fed-batch of 0.01 w / v% or more, preferably 0.02 w / v% or more. More preferably, it may be contained in the fed-batch medium so as to be 0.05 w / v% or more.
 中温処理物は、唯一炭素源として利用される場合に、上記例示した濃度範囲で含有されていてよい。また、中温処理物は、他の炭素源を併用する場合に、上記例示した濃度範囲で含有されてもよい。また、中温処理物は、他の炭素源を併用する場合に、例えば、総炭素源中の中温処理物に由来する炭素源の比率等に応じて、上記例示した濃度範囲を適宜修正した濃度範囲で含有されてもよい。なお、上記脂肪酸の濃度に関する記載は、中温処理物中の脂肪酸以外の成分を利用する場合に準用してもよい。 The medium-temperature treated product may be contained in the concentration range exemplified above when it is used only as a carbon source. Further, the intermediate-temperature treated product may be contained in the concentration range exemplified above when another carbon source is used in combination. In addition, when the intermediate temperature treated product is used in combination with another carbon source, for example, the concentration range obtained by appropriately correcting the concentration range exemplified above according to the ratio of the carbon source derived from the middle temperature treated product in the total carbon source, etc. It may be contained. In addition, you may apply mutatis mutandis when the description regarding the density | concentration of the said fatty acid utilizes components other than the fatty acid in a medium temperature processed material.
 中温処理物は、培養の全期間において一定の濃度範囲で培地に含有されていてもよく、そうでなくてもよい。例えば、一部の期間、中温処理物が不足していてもよい。「不足する」とは、要求量を満たさないことをいい、例えば、培地中の濃度がゼロとなることであってよい。「一部の期間」とは、例えば、培養の全期間の内の、1%以下の期間、5%以下の期間、10%以下の期間、20%以下の期間、30%以下の期間、または50%以下の期間であってよい。なお、「培養の全期間」とは、培養が種培養と本培養とに分けて行われる場合には、本培養の全期間を意味してよい。中温処理物が不足する期間には、他の炭素源が充足されているのが好ましい。このように、一部の期間、中温処理物が不足していても、中温処理物を含有する培地での培養期間が存在する限り、「中温処理物を含有する培地中で細菌を培養する」ことに含まれる。 The medium-temperature treated product may or may not be contained in the medium in a certain concentration range during the entire culture period. For example, the medium-temperature processed product may be insufficient for some period. “Insufficient” means that the required amount is not satisfied. For example, the concentration in the medium may be zero. “Partial period” refers to, for example, a period of 1% or less, a period of 5% or less, a period of 10% or less, a period of 20% or less, a period of 30% or less, or a period of the whole culture period, or It may be a period of 50% or less. In addition, "the whole period of culture | cultivation" may mean the whole period of main culture, when culture | cultivation is performed by dividing into seed culture and main culture. It is preferable that another carbon source is satisfied during the period when the medium-temperature processed product is insufficient. Thus, even if the medium-temperature processed product is insufficient for some period, as long as there is a culture period in the medium containing the medium-temperature processed product, “cultivate bacteria in the medium containing the medium-temperature processed product” Included in that.
 脂肪酸等の各種成分の濃度は、ガスクロマトグラフィー(Hashimoto, K. et al. 1996. Biosci. Biotechnol. Biochem. 70:22-30)やHPLC(Lin, J. T. et al. 1998. J. Chromatogr. A. 808: 43-49)により測定することができる。 The concentration of various components such as fatty acids was measured by gas chromatography (Hashimoto, K. et al. 1996. Biosci. Biotechnol. Biochem. 70: 22-30) and HPLC (Lin, J. T. et al. 1998. J. Chromatogr. A. 808: 43-49).
 培養は、例えば、好気的に行うことができる。例えば、培養は、通気培養または振盪培養で行うことができる。酸素濃度は、例えば、飽和酸素濃度の5~50%、好ましくは10%程度に制御されてよい。培地のpHは、例えば、pH 3~10、好ましくはpH 4.0~9.5であってよい。培養中、必要に応じて培地のpHを調整することができる。培地のpHは、アンモニアガス、アンモニア水、炭酸ナトリウム、重炭酸ナトリウム、炭酸カリウム、重炭酸カリウム、炭酸マグネシウム、水酸化ナトリウム、水酸化カルシウム、水酸化マグネシウム等の各種アルカリ性または酸性物質を用いて調整することができる。培養温度は、例えば、20~45℃、好ましくは25℃~37℃であってよい。培養期間は、例えば、1時間以上、4時間以上、10時間以上、または15時間以上であってよく、168時間以下、120時間以下、90時間、または72時間以下であってよい。培養期間は、具体的には、例えば、10時間~120時間であってよい。培養は、例えば、培地中の炭素源が消費されるまで、あるいは本発明の細菌の活性がなくなるまで、継続してもよい。このような条件下で本発明の細菌を培養することにより、菌体内および/または培地中にL-アミノ酸が蓄積する。 The culture can be performed aerobically, for example. For example, the culture can be performed by aeration culture or shaking culture. The oxygen concentration may be controlled to, for example, 5 to 50%, preferably about 10% of the saturated oxygen concentration. The pH of the medium may be, for example, pH 3 to 10, preferably pH 4.0 to 9.5. During the culture, the pH of the medium can be adjusted as necessary. The pH of the medium is adjusted using various alkaline or acidic substances such as ammonia gas, ammonia water, sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, magnesium carbonate, sodium hydroxide, calcium hydroxide, magnesium hydroxide, etc. can do. The culture temperature may be, for example, 20 to 45 ° C, preferably 25 ° C to 37 ° C. The culture period may be, for example, 1 hour or more, 4 hours or more, 10 hours or more, or 15 hours or more, and may be 168 hours or less, 120 hours or less, 90 hours, or 72 hours or less. Specifically, the culture period may be, for example, 10 hours to 120 hours. The culture may be continued, for example, until the carbon source in the medium is consumed or until the activity of the bacterium of the present invention is lost. By culturing the bacterium of the present invention under such conditions, L-amino acids accumulate in the cells and / or in the medium.
 流加培養または連続培養においては、流加は、培養の全期間を通じて継続されてもよく、培養の一部の期間においてのみ継続されてもよい。また、流加培養または連続培養においては、複数回の流加が間欠的に行われてもよい。 In fed-batch culture or continuous culture, fed-batch may be continued throughout the entire culture period or only during a part of the culture period. In addition, in fed-batch culture or continuous culture, multiple feedings may be performed intermittently.
 複数回の流加が間欠的に行われる場合、1回当たりの流加の継続時間が、複数回の流加の合計時間の、例えば30%以下、好ましくは20%以下、より好ましくは10%以下となるように、流加の開始と停止を繰り返してもよい。 When a plurality of feedings are intermittently performed, the duration of one feeding is, for example, 30% or less, preferably 20% or less, more preferably 10% of the total time of the plurality of feedings. The start and stop of fed batch may be repeated so that:
 また、複数回の流加が間欠的に行われる場合、2回目以降の流加を、その直前の流加停止期において発酵培地中の炭素源が枯渇したときに開始されるように制御することにより、発酵培地中の炭素源濃度を自動的に低レベルに維持することもできる(米国特許5,912,113号明細書)。炭素源の枯渇は、例えば、pHの上昇または溶存酸素濃度の上昇により検出できる。 In addition, when multiple feedings are performed intermittently, the second and subsequent feedings are controlled so that they are started when the carbon source in the fermentation medium is depleted in the immediately preceding feeding stop phase. Can automatically maintain the carbon source concentration in the fermentation medium at a low level (US Pat. No. 5,912,113). Carbon source depletion can be detected, for example, by increasing pH or increasing dissolved oxygen concentration.
 連続培養においては、培養液の引き抜きは、培養の全期間を通じて継続されてもよく、培養の一部の期間においてのみ継続されてもよい。また、連続培養においては、複数回の培養液の引き抜きが間欠的に行われてもよい。培養液の引き抜きと流加は、同時に行われてもよく、そうでなくてもよい。例えば、培養液の引き抜きを行った後で流加を行ってもよく、流加を行った後で培養液の引き抜きを行ってもよい。引き抜く培養液量は、流加させる培地量と同量であるのが好ましい。ここで、「同量」とは、例えば、流加させる培地量に対して93~107%の量であってよい。 In continuous culture, extraction of the culture solution may be continued throughout the entire culture period, or may be continued only during a part of the culture period. Further, in continuous culture, a plurality of culture solutions may be extracted intermittently. Extraction and feeding of the culture solution may or may not be performed simultaneously. For example, the feeding may be performed after the culture solution is extracted, or the culture solution may be extracted after the feeding. The amount of the culture solution to be withdrawn is preferably the same as the amount of the medium to be fed. Here, the “same amount” may be, for example, an amount of 93 to 107% with respect to the amount of medium to be fed.
 培養液を連続的に引き抜く場合には、流加と同時に、または流加の開始後に、引き抜きを開始するのが好ましい。例えば、流加の開始後5時間以内、好ましくは3時間以内、より好ましくは1時間以内に、引き抜きを開始してよい。 When the culture solution is continuously extracted, it is preferable to start the extraction simultaneously with the feeding or after the start of the feeding. For example, the withdrawal may be started within 5 hours, preferably within 3 hours, more preferably within 1 hour after the start of fed-batch.
 培養液を間欠的に引き抜く場合には、予定したL-アミノ酸濃度に到達したときに、培養液を一部引き抜いてL-アミノ酸を回収し、新たに培地を流加して培養を継続するのが好ましい。 When the culture solution is withdrawn intermittently, when the planned L-amino acid concentration is reached, a part of the culture solution is withdrawn to recover the L-amino acid, and the culture is continued by feeding a new medium. Is preferred.
 また、引き抜かれた培養液から、L-アミノ酸を回収し、菌体を含むろ過残留物を発酵槽中に再循環させることにより、菌体を再利用することもできる(フランス特許2669935号明細書)。 In addition, the bacterial cells can be reused by recovering L-amino acid from the extracted culture medium and recirculating the filtration residue containing the bacterial cells in the fermenter (French Patent No. 2669935). ).
 また、L-グルタミン酸を製造する場合、L-グルタミン酸が析出する条件に調整された液体培地を用いて、培地中にL-グルタミン酸を析出させながら培養を行うことも出来る。L-グルタミン酸が析出する条件としては、例えば、pH5.0~3.0、好ましくはpH4.9~3.5、さらに好ましくはpH4.9~4.0、特に好ましくはpH4.7付近の条件が挙げられる(欧州特許出願公開第1078989号明細書)。尚、培養は、その全期間において上記pHで行われてもよく、一部の期間のみ上記pHで行われてもよい。「一部の期間」とは、例えば、培養の全期間の50%以上、70%以上、80%以上、90%以上、95%以上、または99%以上の期間であってよい。 In addition, when producing L-glutamic acid, it is also possible to carry out the culture while precipitating L-glutamic acid in the medium using a liquid medium adjusted to conditions under which L-glutamic acid is precipitated. The conditions under which L-glutamic acid precipitates are, for example, pH 5.0 to 3.0, preferably pH 4.9 to 3.5, more preferably pH 4.9 to 4.0, and particularly preferably around pH 4.7. (European Patent Application Publication No. 1078989). In addition, culture | cultivation may be performed at the said pH in the whole period, and may be performed at the said pH only for a part of period. The “partial period” may be, for example, a period of 50% or more, 70% or more, 80% or more, 90% or more, 95% or more, or 99% or more of the entire culture period.
 また、L-リジン等の塩基性アミノ酸を製造する場合、重炭酸イオン及び/又は炭酸イオンを塩基性アミノ酸の主なカウンタイオンとして利用して塩基性アミノ酸を発酵生産する方法を利用してもよい(特開2002-65287、US2002-0025564A、EP1813677A)。これらの方法によれば、塩基性アミノ酸のカウンタイオンとして従来利用されていた硫酸イオン及び/又は塩化物イオンの使用量を削減しつつ、塩基性アミノ酸を製造することができる。 Further, when a basic amino acid such as L-lysine is produced, a method of fermenting basic amino acid using bicarbonate ion and / or carbonate ion as a main counter ion of basic amino acid may be used. (Unexamined-Japanese-Patent No. 2002-65287, US2002-0025564A, EP1813677A). According to these methods, basic amino acids can be produced while reducing the amount of sulfate ions and / or chloride ions that have been conventionally used as counter ions for basic amino acids.
 L-アミノ酸が生成したことは、化合物の検出または同定に用いられる公知の手法により確認することができる。そのような手法としては、例えば、HPLC、LC/MS、GC/MS、NMRが挙げられる。これらの手法は適宜組み合わせて用いることができる。 The formation of L-amino acid can be confirmed by a known method used for detection or identification of a compound. Examples of such a method include HPLC, LC / MS, GC / MS, and NMR. These methods can be used in appropriate combination.
 生成したL-アミノ酸の回収は、化合物の分離精製に用いられる公知の手法により行うことができる。そのような手法としては、例えば、イオン交換樹脂法、膜処理法、沈殿法、および晶析法が挙げられる。これらの手法は適宜組み合わせて用いることができる。なお、菌体内にL-アミノ酸が蓄積する場合には、例えば、菌体を超音波などにより破砕し、遠心分離によって菌体を除去して得られる上清から、イオン交換樹脂法などによってL-アミノ酸を回収することができる。回収されるL-アミノ酸は、フリー体、その塩、またはそれらの混合物であってよい。塩としては、例えば、硫酸塩、塩酸塩、炭酸塩、アンモニウム塩、ナトリウム塩、カリウム塩が挙げられる。例えば、L-リジンは、フリー体のL-リジン、L-リジン硫酸塩、L-リジン塩酸塩、L-リジン炭酸塩、またはそれらの混合物であってもよい。また、例えば、L-グルタミン酸は、フリー体のL-グルタミン酸、L―グルタミン酸ナトリウム(monosodium L-glutamate;MSG)、L-グルタミン酸アンモニウム塩(monoammonium L-glutamate)、またはそれらの混合物であってもよい。例えば、L-グルタミン酸の場合、発酵液中のL-グルタミン酸アンモニウムを酸を加えて晶析させ、結晶に等モルの水酸化ナトリウムを添加することでL-グルタミン酸ナトリウム(MSG)が得られる。なお、晶析前後に活性炭を加えて脱色してもよい(グルタミン酸ナトリウムの工業晶析 日本海水学会誌 56巻 5号 川喜田哲哉参照)。 The produced L-amino acid can be recovered by a known method used for separation and purification of compounds. Examples of such a method include an ion exchange resin method, a membrane treatment method, a precipitation method, and a crystallization method. These methods can be used in appropriate combination. In the case where L-amino acid accumulates in the microbial cells, for example, the microbial cells are crushed with ultrasonic waves, and the microbial cells are removed by centrifugation from the supernatant obtained by ion exchange resin method or the like. Amino acids can be recovered. The recovered L-amino acid may be a free form, a salt thereof, or a mixture thereof. Examples of the salt include sulfate, hydrochloride, carbonate, ammonium salt, sodium salt, and potassium salt. For example, L-lysine may be free L-lysine, L-lysine sulfate, L-lysine hydrochloride, L-lysine carbonate, or a mixture thereof. Further, for example, L-glutamic acid may be free L-glutamic acid, sodium L-glutamate (MSG), ammonium L-glutamate (monoammonium L-glutamate), or a mixture thereof. . For example, in the case of L-glutamic acid, ammonium L-glutamate in the fermentation broth is crystallized by adding an acid, and equimolar sodium hydroxide is added to the crystals to obtain sodium L-glutamate (MSG). In addition, you may decolorize by adding activated carbon before and after the crystallization (see Industrial crystallization of sodium glutamate, Journal of the Seawater Society of Japan, Vol. 56, No. 5, Tetsuya Kawakita).
 また、L-アミノ酸が培地中に析出する場合は、遠心分離又は濾過等により回収することができる。また、培地中に析出したL-アミノ酸は、培地中に溶解しているL-アミノ酸を晶析した後に、併せて単離してもよい。 If L-amino acid is precipitated in the medium, it can be recovered by centrifugation or filtration. The L-amino acid precipitated in the medium may be isolated together after crystallization of the L-amino acid dissolved in the medium.
 尚、回収されるL-アミノ酸は、L-アミノ酸以外に、例えば、細菌菌体、培地成分、水分、及び細菌の代謝副産物等の成分を含んでいてもよい。回収されたL-アミノ酸の純度は、例えば、30%(w/w)以上、50%(w/w)以上、70%(w/w)以上、80%(w/w)以上、90%(w/w)以上、または95%(w/w)以上であってよい。 The recovered L-amino acid may contain components other than the L-amino acid, such as bacterial cells, medium components, water, and bacterial metabolic byproducts. The purity of the recovered L-amino acid is, for example, 30% (w / w) or higher, 50% (w / w) or higher, 70% (w / w) or higher, 80% (w / w) or higher, 90% (W / w) or more, or 95% (w / w) or more.
 以下、本発明を実施例によりさらに具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
<実施例1>微細藻類の脂肪酸高蓄積株の取得
(1)水又は土壌サンプルの培養
 日本国内各地の池、川、水田などから水または土壌のサンプルを採取した。
<Example 1> Acquisition of a high-accumulation strain of fatty acids of microalgae (1) Cultivation of water or soil samples Water or soil samples were collected from ponds, rivers, paddy fields, etc. in various parts of Japan.
 0.2×Gamborg's B5培地(日本製薬)5 mLを入れた6穴マイクロプレート(日本ベクトン・ディッキンソン)に、水サンプル又は土壌サンプルを微量添加した。各々のマイクロプレートを、植物インキュベータCLE-303(トミー精工)内で振とう培養した。培養開始から2週間で、緑藻の増殖を目視にて確認した。尚、培養の際は、ポータブルガス混合装置PMG-1(コフロック)を使用し、空気及びCO2の混合ガスを植物インキュベータ内に通気することで、インキュベータ内部のCO2濃度が3%程度になるよう調整した。植物インキュベータ内では、白色蛍光灯を光源とした連続照射(光量:約80 μE/m2s)を行い、温度は30℃に設定した。尚、Gamborg's B5培地の組成は以下の通りである。 A small amount of water sample or soil sample was added to a 6-well microplate (Nippon Becton Dickinson) containing 5 mL of 0.2 × Gamborg's B5 medium (Nippon Pharmaceutical). Each microplate was cultured with shaking in a plant incubator CLE-303 (Tomy Seiko). Two weeks after the start of the culture, the growth of green algae was visually confirmed. When culturing, the portable gas mixing device PMG-1 (Koflock) is used and the mixed gas of air and CO 2 is vented into the plant incubator, so that the CO 2 concentration inside the incubator becomes about 3%. Adjusted as follows. In the plant incubator, continuous irradiation (light quantity: about 80 μE / m 2 s) was performed using a white fluorescent lamp as the light source, and the temperature was set to 30 ° C. The composition of Gamborg's B5 medium is as follows.
<1×Gamborg's B5培地(日本製薬)の組成>
KNO3           2500 mg
MgSO4・7H2O     250 mg
NaH2PO4・H2O    150 mg
CaCl2・2H2O     150 mg
(NH4)2SO4       134 mg
Na2・EDTA        37.3 mg
FeSO4・7H2O      27.8 mg
MnSO4・H2O       10 mg 
H3BO3             3 mg
ZnSO4・7H2O       2 mg
KI                0.75 mg
Na2MoO4・2H2O     0.25 mg
CuSO4・5H2O       0.025 mg
CoCl2・6H2O       0.025 mg
蒸留水         1000 mL
<Composition of 1 × Gamborg's B5 medium (Nippon Pharmaceutical)>
KNO 3 2500 mg
MgSO 4・ 7H 2 O 250 mg
NaH 2 PO 4・ H 2 O 150 mg
CaCl 2・ 2H 2 O 150 mg
(NH 4 ) 2 SO 4 134 mg
Na 2・ EDTA 37.3 mg
FeSO 4・ 7H 2 O 27.8 mg
MnSO 4・ H 2 O 10 mg
H 3 BO 3 3 mg
ZnSO 4・ 7H 2 O 2 mg
KI 0.75 mg
Na 2 MoO 4・ 2H 2 O 0.25 mg
CuSO 4・ 5H 2 O 0.025 mg
CoCl 2・ 6H 2 O 0.025 mg
Distilled water 1000 mL
(2)緑藻の単離
 0.2×Gamborg's B5培地に終濃度1.5 %になるようアガロースを添加し、オートクレーブ滅菌(120℃, 15分)した後に、シャーレ一枚あたりに30 mLずつ分注し、0.2×Gamborg's B5培地の平板培地を作製した。
(2) Isolation of green algae Agarose was added to 0.2 × Gamborg's B5 medium to a final concentration of 1.5%, autoclaved (120 ° C, 15 minutes), then dispensed 30 mL per dish. X A plate medium of Gamborg's B5 medium was prepared.
 上記で緑藻の増殖が確認できた培養液を、0.2×Gamborg's B5培地の平板培地に塗布し、振とうしないこと以外は先と同条件で2週間培養を行った。その際、平板培地上で汚染細菌の優先的な増殖が認められる場合には、培養液に対して次亜塩素酸処理による無菌化を行った。具体的には、有効塩素濃度8.5~17.5%の次亜塩素酸ナトリウム溶液を滅菌水で100倍希釈した後、その希釈液を有効塩素濃度が約10 ppmになるように培養液と混合し、10分室温静置した。次に、10,000 ppmに調整したチオ硫酸ナトリウム溶液を、加えた有効塩素の約10倍量になるよう培地に添加した。処理後の培養液を0.2×Gamborg's B5培地の平板培地に塗布し、2週間培養を行った。緑藻の良好な増殖が確認できた平板培地から、単一コロニーを白金耳でかき取り、0.2×Gamborg's B5培地の平板培地に塗布し、更に2週間培養を行い、藻類単離株を取得した。このようにして取得した2株をAJ7847株(FERM BP-22253)およびAJ7846株(FERM BP-22252)とした。 The culture solution in which the growth of green algae was confirmed as described above was applied to a plate medium of 0.2 × Gamborg's B5 medium, and cultured for 2 weeks under the same conditions as described above except that it was not shaken. At that time, when preferential growth of contaminating bacteria was observed on the plate medium, the culture solution was sterilized by hypochlorous acid treatment. Specifically, after diluting a sodium hypochlorite solution having an effective chlorine concentration of 8.5 to 17.5% 100 times with sterilized water, the diluted solution is mixed with the culture solution so that the effective chlorine concentration is about 10 ppm, It was allowed to stand at room temperature for 10 minutes. Next, a sodium thiosulfate solution adjusted to 10,000 ppm was added to the medium so as to be about 10 times the amount of added effective chlorine. The treated culture solution was applied to a plate medium of 0.2 × Gamborg's'B5 medium and cultured for 2 weeks. A single colony was scraped with a platinum loop from a plate medium in which good growth of green algae was confirmed, applied to a plate medium of 0.2 × Gamborg's B5 medium, and further cultured for 2 weeks to obtain an algal isolate. The two strains thus obtained were designated as AJ7847 strain (FERM BP-22253) and AJ7846 strain (FERM BP-22252).
(3)緑藻単離株の分子系統解析
 上記のようにして単離された緑藻株について、緑藻用の18S rDNA領域増幅用ユニバーサルプライマー(プライマーセット1:配列番号1、2)を用いて、18S rDNAを指標とした分子系統解析を行った。配列決定した18S rDNA領域配列を、配列番号3(AJ7847株)および配列番号4(AJ7846株)に示す。これらの配列を対象として、NCBIのデータベース(http://www.ncbi.nlm.nih.gov/Blast.cgi)からBLAST検索を用い、相同性の高い緑藻由来18S rDNA配列データを取得し、系統樹作成を行った。多重アラインメント作成には、ClustalX2、編集にはSea View、系統樹の表示及び編集にはNJplotを用いた。系統樹は、ClustalX2による近隣結合法に基づき、ブートストラップのための乱数は111、ブートストラップ回数は1000として、作成した。得られた系統樹を図1に示す。この結果から、AJ7847株及びAJ7846株は、Desmodesmus属と類縁関係にあることが明らかとなった。AJ7847株及びAJ7846株は、とりわけ、公知の株であるDesmodesmus armatus var. subalternans CCAP 276/4A株およびDesmodesmus communis CCAP 276/4B株に対し99%を上回る高い相同性を示すことが確認された。
(3) Molecular phylogenetic analysis of green algae isolates For the green algae strains isolated as described above, 18S rDNA region amplification universal primers (primer set 1: SEQ ID NOs: 1 and 2) for green algae were used. Molecular phylogenetic analysis was performed using rDNA as an index. The sequenced 18S rDNA region sequences are shown in SEQ ID NO: 3 (AJ7847 strain) and SEQ ID NO: 4 (AJ7846 strain). Using these sequences, BLAST search from NCBI database (http://www.ncbi.nlm.nih.gov/Blast.cgi) was used to obtain highly homologous green alga-derived 18S rDNA sequence data. I made a tree. ClustalX2 was used for creating multiple alignments, Sea View was used for editing, and NJplot was used for displaying and editing phylogenetic trees. The phylogenetic tree was created based on the ClustalX2 neighborhood join method, assuming that the bootstrap random number was 111 and the bootstrap number was 1000. The obtained phylogenetic tree is shown in FIG. From these results, it was revealed that the AJ7847 and AJ7846 strains are related to the genus Desmodesmus. It was confirmed that the AJ7847 strain and the AJ7846 strain showed a high homology of more than 99% with respect to the known strains Desmodesmus armatus var. Subalternans CCAP 276 / 4A and Desmodesmus communis CCAP 276 / 4B.
<実施例2>緑藻株の培養評価
(1)緑藻株の培養
 単離された緑藻株の平板培地上のコロニーを白金耳でかき取ったものを、0.2×Gamborg's B5培地 10 mLを加えた50 mL容三角フラスコに植菌し、一週間培養を行った。これらの培養液を、新鮮な0.2×Gamborg's B5培地10 mLを加えたフラスコに、添加直後の波長750 nmにおける濁度が0.25となるよう植種した。CO2濃度を3%に保持した空気-CO2混合ガスで満たされた植物インキュベータを用い、温度30℃、光量80 μE/m2sを12時間、光量0 μE/m2sを12時間で繰り返す日照条件において、14日間培養を行った。上記の系統樹解析にて18S rDNA領域配列がAJ7847株およびAJ7846株と高い相同性を示したDesmodesmus armatus var. subalternans CCAP 276/4A株及びDesmodesmus communis CCAP 276/4B株を、The Culture Collection of Algae and Protozoa (CCAP) より入手し、対照として、同様に培養した。
<Example 2> Cultivation evaluation of green algae strain (1) Cultivation of green algae strain A colony on a plate medium of an isolated green algae strain scraped with a platinum loop was added 50 mL of 0.2 × Gamborg's B5 medium. The cells were inoculated into mL Erlenmeyer flasks and cultured for one week. These cultures were seeded in a flask to which 10 mL of fresh 0.2 × Gamborg's B5 medium was added so that the turbidity at a wavelength of 750 nm immediately after the addition was 0.25. Using a plant incubator filled with an air-CO 2 gas mixture with a CO 2 concentration of 3%, temperature 30 ° C, light intensity 80 μE / m 2 s for 12 hours, light intensity 0 μE / m 2 s for 12 hours The culture was carried out for 14 days under repeated sunshine conditions. The Culture Collection of Algae and Desmodesmus armatus var.subalternans CCAP 276 / 4A and Desmodesmus communis CCAP 276 / 4B strains whose 18S rDNA region sequence showed high homology with the AJ7847 and AJ7846 strains in the above phylogenetic tree analysis Obtained from Protozoa (CCAP) and cultured in the same manner as a control.
(2)藻体乾燥重量の測定
 1.5 mL容チューブに、各緑藻培養液1 mLを分注し、遠心分離(12,000 rpm、5分)して上清を除去した後、50℃で2日間乾燥し、藻体乾燥重量を測定した。
(2) Measurement of dry weight of alga bodies 1 mL of each green algae culture solution is dispensed into a 1.5 mL tube, centrifuged (12,000 rpm, 5 minutes) to remove the supernatant, and then dried at 50 ° C for 2 days. The alga body dry weight was measured.
(3)藻体の中温処理
 脂肪酸量の測定に用いる藻体は、以下のようにして調製した。上記(1)に記載の方法で培養した培養液1 mLを1.5 mL容チューブに分注し、凍結処理(-80℃、30分)後、 50℃で20時間インキュベートした。次に遠心分離(12,000 rpm、5分)し藻体を沈殿させて得た。また、培養液1 mLを1.5 mL容チューブに分注し、遠心分離(12,000 rpm、5分)して沈殿させた藻体を中温処理未処理の藻体とした。
(3) Medium temperature treatment of algal bodies The algal bodies used for the measurement of the amount of fatty acids were prepared as follows. 1 mL of the culture solution cultured by the method described in (1) above was dispensed into a 1.5 mL tube, frozen (-80 ° C, 30 minutes), and then incubated at 50 ° C for 20 hours. Next, centrifugation (12,000 rpm, 5 minutes) was performed to precipitate algal bodies. In addition, 1 mL of the culture solution was dispensed into a 1.5 mL tube, and the alga body precipitated by centrifugation (12,000 rpm, 5 minutes) was defined as an untreated alga body.
(4)脂肪酸量測定
 得られた藻体にメタノール500 μlとクロロホルム250 μlを加え懸濁した後、実験室用ミキサー(ボルテックス)で10分撹拌した。次にクロロホルム250 μlと1% NaCl水溶液250 μlを加え再度10分撹拌した。得られた溶液を遠心分離(12,000 rpm、5分)すると、下層(クロロホルム層)、中層(抽出残渣層)、上層(水及びメタノール層)に分離した。この下層全量を回収し、遠心濃縮器(トミー精工)を用いて乾固するまで溶媒を除去した。得られた乾固物を2-プロパノールを用いて適切な濃度となるまで溶解および希釈し、脂肪酸比色定量キット(和光純薬, LabAssay(商標)NEFA)を用いて脂肪酸含量を測定した。測定は、キットの添付プロトコルに従い、96穴マイクロプレートと吸光プレートリーダーを用いて吸光度を測定することにより行った。単離された緑藻株、AJ7847株およびAJ7846株は、いずれも、脂肪酸生産量及び藻体当たりの脂肪酸含有量ともに、近縁株よりも高い値を示した(表1)。尚、中温処理未処理藻体を用いた条件では、いずれの株でも脂肪酸は検出されなかった。
(4) Measurement of fatty acid amount After adding 500 μl of methanol and 250 μl of chloroform to the obtained algal cells and suspending them, the mixture was stirred with a laboratory mixer (vortex) for 10 minutes. Next, 250 μl of chloroform and 250 μl of 1% NaCl aqueous solution were added and stirred again for 10 minutes. When the obtained solution was centrifuged (12,000 rpm, 5 minutes), it was separated into a lower layer (chloroform layer), an intermediate layer (extraction residue layer), and an upper layer (water and methanol layer). The total amount of this lower layer was recovered, and the solvent was removed until dryness using a centrifugal concentrator (Tomy Seiko). The obtained dried product was dissolved and diluted to an appropriate concentration using 2-propanol, and the fatty acid content was measured using a fatty acid colorimetric kit (Wako Pure Chemicals, LabAssay ™ NEFA). The measurement was performed by measuring the absorbance using a 96-well microplate and an absorbance plate reader according to the protocol attached to the kit. The isolated green algae strains, AJ7847 strain and AJ7846 strain both showed higher values of fatty acid production and fatty acid content per algal body than the related strains (Table 1). It should be noted that fatty acids were not detected in any strain under conditions using medium temperature treated untreated algal cells.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明により、脂肪酸を生成する緑藻類が提供される。当該緑藻類は、脂肪酸、脂肪酸エステル、糖グリセロール、またはそれらの組み合わせの製造等に利用できる。 The present invention provides green algae that produce fatty acids. The green algae can be used for the production of fatty acids, fatty acid esters, sugar glycerol, or combinations thereof.
<配列表の説明>
配列番号1、2:プライマー
配列番号3:AJ7847株の18S rDNA領域の塩基配列
配列番号4:AJ7846株の18S rDNA領域の塩基配列
<Explanation of Sequence Listing>
SEQ ID NOs: 1, 2: Primer SEQ ID NO: 3: Base sequence of 18S rDNA region of AJ7847 strain SEQ ID NO: 4: Base sequence of 18S rDNA region of AJ7846 strain

Claims (17)

  1.  デスモデスムス(Desmodesmus)属に属し、藻体を中温処理に供した際に、藻体の乾燥重量当たり25%(w/w)以上の脂肪酸を蓄積する緑藻。 Green algae belonging to the genus Desmodesmus and accumulating 25% (w / w) or more of fatty acids per dry weight of algal bodies when the algal bodies are subjected to intermediate temperature treatment.
  2.  デスモデスムス・アルマタス(Desmodesmus armatus)、デスモデスムス・コムニス(Desmodesmus communis)、デスモデスムス・ピルコレイ(Desmodesmus pirkollei)、デスモデスムス・コスタトグラニュラタス(Desmodesmus costatogranulatus)、デスモデスムス・パノニカス(Desmodesmus pannonicus)、デスモデスムス・ペルフォラタス(Desmodesmus perforatus)、デスモデスムス・インターミディウス(Desmodesmus intermedius)、デスモデスムス・ブラシリエンシス(Desmodesmus brasiliensis)、デスモデスムス・エレガンス(Desmodesmus elegans)、デスモデスムス・ヒストリクス(Desmodesmus hystrix)、デスモデスムス・クアドリカウダ(Desmodesmus quadricauda)、デスモデスムス・シュードセラタス(Desmodesmus pseudoserratus)、デスモデスムス・マクシムス(Desmodesmus maximus)、およびデスモデスムス・ビセルラリス(Desmodesmus bicellularis)から選択される、請求項1に記載の緑藻。 Desmodesmus , Desmodesmus intermedius, Desmodesmus brasilien, Desmodesmus elegans, Desmodesmus hystrix, Desmodes de smodem Desmus Tas (Desmodesmus pseudoserratus), Desmodesmus maximus, and It is selected from Modesumusu-Biserurarisu (Desmodesmus bicellularis), green alga of claim 1.
  3.  AJ7846株(FERM BP-22252)、AJ7847株(FERM BP-22253)、およびそれらの誘導株からなる群より選択される緑藻。 Green algae selected from the group consisting of AJ7846 strain (FERM BP-22252), AJ7847 strain (FERM BP-22253), and derivatives thereof.
  4.  請求項1~3のいずれか1項に記載の緑藻を培地で培養すること、
     前記培養により得られた藻体を中温処理に供すること、および
     前記処理の処理物から脂肪酸を回収すること、
     を含む、脂肪酸を製造する方法。
    Culturing the green algae according to any one of claims 1 to 3 in a medium;
    Subjecting the algal bodies obtained by the culture to a medium temperature treatment, and recovering fatty acids from the treated product,
    A method for producing a fatty acid, comprising:
  5.  請求項1~3のいずれか1項に記載の緑藻を培地で培養すること、
     前記培養により得られた藻体を中温処理に供すること、
     前記中温処理の処理物をアルコールの存在下で中低温処理に供すること、および
     前記中低温処理の処理物から脂肪酸エステルを回収すること、
     を含む、脂肪酸エステルを製造する方法。
    Culturing the green algae according to any one of claims 1 to 3 in a medium;
    Subjecting the algal bodies obtained by the culture to a medium temperature treatment,
    Subjecting the medium-temperature treated product to a medium-low temperature treatment in the presence of alcohol, and recovering a fatty acid ester from the medium-low temperature treated product,
    A method for producing a fatty acid ester.
  6.  請求項1~3のいずれか1項に記載の緑藻を培地で培養すること、
     前記培養により得られた藻体を中温処理および/または有機溶媒処理に供すること、および
     前記処理の処理物から糖グリセロールを回収すること、
     を含む、糖グリセロールを製造する方法。
    Culturing the green algae according to any one of claims 1 to 3 in a medium;
    Subjecting the algal cells obtained by the culture to a medium temperature treatment and / or an organic solvent treatment, and recovering sugar glycerol from the treated product,
    A process for producing sugar glycerol, comprising:
  7.  請求項1~3のいずれか1項に記載の緑藻を培地で培養すること、
     前記培養により得られた藻体を中温処理に供すること、
     L-アミノ酸生産能を有する細菌を、前記処理の処理物を含有する培地で培養して、L-アミノ酸を該培地中又は該細菌の菌体内に生成蓄積すること、および
     該培地又は菌体よりL-アミノ酸を採取すること、
     を含む、L-アミノ酸を製造する方法。
    Culturing the green algae according to any one of claims 1 to 3 in a medium;
    Subjecting the algal bodies obtained by the culture to a medium temperature treatment,
    Culturing a bacterium having L-amino acid-producing ability in a medium containing the treatment product, producing and accumulating L-amino acid in the medium or in the bacterial body, and from the medium or the bacterial body Collecting L-amino acids;
    A process for producing an L-amino acid comprising:
  8.  前記処理物が、脂肪酸である、請求項7に記載の方法。 The method according to claim 7, wherein the treated product is a fatty acid.
  9.  前記細菌が、脂肪酸資化能が高まるように改変されている、請求項7または8に記載の方法。 The method according to claim 7 or 8, wherein the bacterium has been modified so that fatty acid assimilation ability is enhanced.
  10.  前記細菌が、腸内細菌科に属する細菌またはコリネ型細菌である、請求項7~9のいずれか1項に記載の方法。 The method according to any one of claims 7 to 9, wherein the bacterium is a bacterium belonging to the family Enterobacteriaceae or a coryneform bacterium.
  11.  前記細菌が、エシェリヒア・コリ(Escherichia coli)、パントエア・アナナティス(Pantoea ananatis)、またはコリネバクテリウム・グルタミカム(Corynebacterium glutamicum)である、請求項10に記載の方法。 The method according to claim 10, wherein the bacterium is Escherichia coli, Pantoea ananatis, or Corynebacterium glutamicum.
  12.  前記有機溶媒が、メタノールである、請求項6に記載の方法。 The method according to claim 6, wherein the organic solvent is methanol.
  13.  前記中低温処理が、5℃~60℃であって、且つ、前記中温処理より低い温度で行われる、請求項5に記載の方法。 The method according to claim 5, wherein the medium / low temperature treatment is performed at a temperature of 5 ° C to 60 ° C and lower than the medium temperature treatment.
  14.  前記中温処理が、35℃~70℃で行われる、請求項4~13のいずれか1項に記載の方法。 The method according to any one of claims 4 to 13, wherein the intermediate temperature treatment is performed at 35 ° C to 70 ° C.
  15.  前記中温処理が、pH3.0~11.0で行われる、請求項4~14のいずれか1項に記載の方法。 The method according to any one of claims 4 to 14, wherein the intermediate temperature treatment is performed at a pH of 3.0 to 11.0.
  16.  前記中温処理の後に、当該中温処理の処理物をアルカリ処理に供することを含み、当該アルカリ処理の処理物から脂肪酸が回収される、請求項4、14または15に記載の方法。 The method according to claim 4, 14, or 15, wherein after the intermediate temperature treatment, the intermediate temperature treatment product is subjected to an alkali treatment, and the fatty acid is recovered from the alkali treatment product.
  17.  前記中温処理の前に、酸またはアルカリにより藻体を加水分解することを含む、請求項4~16のいずれか1項に記載の方法。 The method according to any one of claims 4 to 16, comprising hydrolyzing the algal body with an acid or an alkali before the intermediate temperature treatment.
PCT/JP2014/078791 2013-11-01 2014-10-29 Green algae that generates a fatty acid WO2015064648A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013227888A JP2017000001A (en) 2013-11-01 2013-11-01 Green algae that produce fatty acid
JP2013-227888 2013-11-01

Publications (1)

Publication Number Publication Date
WO2015064648A1 true WO2015064648A1 (en) 2015-05-07

Family

ID=53004248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078791 WO2015064648A1 (en) 2013-11-01 2014-10-29 Green algae that generates a fatty acid

Country Status (2)

Country Link
JP (1) JP2017000001A (en)
WO (1) WO2015064648A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107365708A (en) * 2016-05-12 2017-11-21 财团法人食品工业发展研究所 Grid algae (DESMODESMUS SP.) and its application on Synthetic Oil and raw matter fuel
CN115161201A (en) * 2022-05-26 2022-10-11 珠海元育生物科技有限公司 Scenedesmus strain and culture method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020191851A (en) * 2019-05-30 2020-12-03 国立大学法人神戸大学 Method for producing aromatic compound

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013707A1 (en) * 2009-07-29 2011-02-03 味の素株式会社 Method for producing l-amino acid
JP2012044923A (en) * 2010-08-26 2012-03-08 Tokyo Electric Power Co Inc:The Green alga scenedesmus, lipid producing method including culture process of green alga scenedesmus, and dried alga body of scenedesmus
WO2012099172A1 (en) * 2011-01-18 2012-07-26 味の素株式会社 Method for producing fatty acid ester
JP2012239452A (en) * 2011-05-24 2012-12-10 Ajinomoto Co Inc Highly starch-accumulating microalgae, method for producing glucose using the same, and method for producing objective substance
WO2013063595A1 (en) * 2011-10-28 2013-05-02 Sapphire Energy, Inc. Processes for upgrading algae oils and products thereof
WO2013130406A1 (en) * 2012-02-24 2013-09-06 Sapphire Energy, Inc. Lipid and growth trait genes
WO2014192940A1 (en) * 2013-05-31 2014-12-04 味の素株式会社 Method for producing glucosylglycerol

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013707A1 (en) * 2009-07-29 2011-02-03 味の素株式会社 Method for producing l-amino acid
JP2012044923A (en) * 2010-08-26 2012-03-08 Tokyo Electric Power Co Inc:The Green alga scenedesmus, lipid producing method including culture process of green alga scenedesmus, and dried alga body of scenedesmus
WO2012099172A1 (en) * 2011-01-18 2012-07-26 味の素株式会社 Method for producing fatty acid ester
JP2012239452A (en) * 2011-05-24 2012-12-10 Ajinomoto Co Inc Highly starch-accumulating microalgae, method for producing glucose using the same, and method for producing objective substance
WO2013063595A1 (en) * 2011-10-28 2013-05-02 Sapphire Energy, Inc. Processes for upgrading algae oils and products thereof
WO2013130406A1 (en) * 2012-02-24 2013-09-06 Sapphire Energy, Inc. Lipid and growth trait genes
WO2014192940A1 (en) * 2013-05-31 2014-12-04 味の素株式会社 Method for producing glucosylglycerol

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KOICHIRO AWAI: "Kogoseimaku Galacto Shishitsu Gosei Keiro no Tayosei", KOGOSEI KENKYU, vol. 19, no. 1, 2009, pages 9 - 12 *
SAMORI G. ET AL.: "Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: Part I", WATER RES., vol. 47, no. 2, pages 791 - 801 *
SOLOVCHENKO A. E. ET AL.: "Stress-Induced Changes in Pigment and Fatty Acid Content in the Microalga Desmodesmus sp. Isolated from a White Sea Hydroid", RUSS. J. PLANT PHYSIOL., vol. 60, no. 3, May 2013 (2013-05-01), pages 313 - 321 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107365708A (en) * 2016-05-12 2017-11-21 财团法人食品工业发展研究所 Grid algae (DESMODESMUS SP.) and its application on Synthetic Oil and raw matter fuel
CN115161201A (en) * 2022-05-26 2022-10-11 珠海元育生物科技有限公司 Scenedesmus strain and culture method and application thereof
CN115161201B (en) * 2022-05-26 2024-03-19 珠海元育生物科技有限公司 Sclerophyllum strain and culture method and application thereof

Also Published As

Publication number Publication date
JP2017000001A (en) 2017-01-05

Similar Documents

Publication Publication Date Title
US8728772B2 (en) Method for producing an L-amino acid
CN107893089B (en) Method for producing L-amino acid
US8771981B2 (en) Method for producing an L-amino acid
CN108690856B (en) Process for producing L-amino acid
US11198894B2 (en) Method of producing an l-amino acid involving a carotenoid biosynthesis enzyme
JP2016192903A (en) Method for manufacturing l-amino acid from biomass derived from seaweed
EP3686216A1 (en) Method for producing l-amino acid
WO2015186749A1 (en) Method for producing l-amino acids
WO2015064648A1 (en) Green algae that generates a fatty acid
US20140127761A1 (en) Method for Producing Fatty Acid
WO2011096554A1 (en) MANUFACTURING METHOD FOR MUTANT rpsA GENE AND L-AMINO ACID
JP6459962B2 (en) Method for producing L-amino acid
JP2016208852A (en) Green algae modified strain producing fatty acid
US20150211033A1 (en) Method for Producing L-Amino Acid
US20150218605A1 (en) Method for Producing L-Amino Acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14859224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14859224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP